JBoss Cache User Guide

A clustered, transactional cache

Release 2.0.0 Habanero
June 2007

Authors:

ManikSurtani(manik@jboss.org)
BelaBan(bela@jboss.com)
BenWang(ben.wang@jboss.com)
BrianStansberry(brian.stansberry@jboss.com)
GalderZamarrefio(galder.zamarreno@jboss.com)

DanielHuang(dhuang@jboss.org)

Copyright © 2004, 2005, 2006, 2007 JBoss, a division of Red Hat Inc.

Table of Contents

(= =0 PSSR %
[INtrodUCtion t0 JBOSS CACNEuveiiiiieeeiiiiiiiee it e e e et e e e e s e e e e e e e e e e s et eeeaeeesssnssbaeeeaaaeeseannreees 1
L OVEIVIBIW ittt e e e e oo ettt et e e e e e e aaattaeeeeeeee e e e e n st teeeeeaeeeeeaannneeeneeaeeeeeaannrnneeeeens 2
1.1 What iSIBOSS CACNE?eeiiiiiiiiie ettt ettt et e e st e e e e nnne e e e e e 2
1.1.2. And What iSPOJO CBCNET ..o 2

1.2, SUMMANY Of FEAIUMESuuuuiiii s asnaannsnsnsnnnsnnnnnnnnnnnnnnns 2

1.3, REQUITEIMENTS ...ieteiee ettt ettt ettt e e ekttt e e e et et e e e st e e e st e e e e anbbe e e e e annn e e e e e nnes 3

O o= 01 SRR 4

AU L < A o PP PPP T PPPPPROPPPRPN 5
2.0, AP ClBSSES ..uveiieiiiuiiiee ettt e e ettt e e e ettt e e e ettt e e e e st e e e e aste e e e e ettt e e e aante e e e e e naeeeeaanaeeeeannreeeeeans 5

2.2. Instantiating and Starting the CaChieoo i 5

2.3. Caching and RELreVING DaLAcoccuuriiiiiiiieeiiiii et 6

2.4, TRE AN CIBSS ..ottt e e e e e e e e e e e e e e s s st a b b e e e e e e e e e sanntbbaeeeaaaeeaans 7

2.5. Stopping and Destroying the CaChecueviiiiiiii e 8

P S O o = 1V oo =SOSR 9

2.7. Adding @ CaChELISLENESccii it e e e e e r e e e e e e s et aaaeraaaeeean 9

2.8. USING CAChE LOBAEN'Soeeieiiiiiee ettt nnnnee e 11

2.9. USING EVICHON POIICIES ...cooieei it e e et e e e e e e 12

R O] 0 1o [0 ¢ 1o o HN OO P O TP PP 13
G I I 0o 011 To ¥ = 1 Lo W @Y= £/ = 13

3.2. Creating @ CONIQUIELIONouuiiieiiiiie ettt e s s e e e snbe e e e s snbneeeeans 13
3.2.1. Parsing an XML-based Configuration Fileccccccevviviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 13

3.2.2. ProgrammatiC ConfigUIalioncoeeeeiiiiiiiiiiieee e e e e e s siinre e e e e e 14

3.2.3. USINg @N 1OC FTaMEWOTKuviiieiiiiiiee ettt 15

3.3. Composition of aConfiguration OBJECEcccuuviiiiiee e 15

3.4. DYNamiC RECONTIGUIATIONccoiiuuiiieiiiiiiee ettt e ettt e e et e e e e as 17

3.5. Overriding the Configuration Viathe Option APooovvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 17

4. Deploying JBOSS CACHEveiiiiiiiiiie et 18
4.1. Standalone Use / Programatic DeploymMentoooiioiiiiiiiiiiiieee e 18

4.2. IMX-Based Deployment in JBoss AS (JBOSSAS5.X aNd 4.X) weeeveeeeeiiecivinieeieeeeeeeciiveeeeenn 18

4.3. ViaJBoss MicrocontaiNer (JBOSSAS 5.X) ..uverieeiiiiiiieeiiiiiee sttt e 19

4.4. Binding to INDI INJBOSSAS ...ttt e e e st e e e e s e et raeeeaeas 21

4.5. Runtime Management INFOrmMaLioncooourieeiiiiieiiiei e 21
4.5.1. IBOSS CAChE MBEANScooiiiiiiiiiiiiiie ettt a e e 21

4.5.2. Registering the CacheJmxWrapper with the MBeanServercccoceevviiieeeiiinenn. 22

4.5.2.1. ProgramatiC RegiStralioncc.uueiiriieeeiiiiiieiee e 22

4.5.2.2. IMX-Based Deployment in JBoss AS (JBossAS4.x and 5.X)ccccvvveeeeen.. 23

4.5.2.3. ViaJBoss Microcontainer (JBOSSAS5.X) .oceviuvrreeiiiirieeiiiiiee et e e 23

4.5.3. JB0OSS CaChe SLAISHICSuvvveeeiiiiiie ettt ettt e e e nneeeas 25

4.5.4. ReceivVing IMX NOUTICAIIONScoeiiiuirieeiiiiiiie et 25

4.5.5. Accessing Cache MBeans in a Standalone Environmentccevvvvvvveeeeeeeeeeeeeeennen. 27

5. Version Compatibility and INteroperabilitycceeeiiiiiiioiiiiic e 29
5.1. ComPatiDIlIty MEBETTX ...co.eeeeeeeiiiiie e e e e e e e 29

[1. IBOSS CaChe ATCNITECIUIEvviiieiiieiie ettt e et e et e e e et e e e s nnabe e e e enees 30

Release 2.0.0 Habanero

JBoss Cache User Guide

I (11 (= ot (PP PRI 31
6.1. Data Structures Within The CaChiecooi i 31
B.2. SPI INEEITACES ..ottt e e e e e et e e e e e e e e e e e e e e e e e e a 32
6.3. Method INVOCatioNS ON NOUESeeiiiieei it e e e e e s rare e e e e e e e 33

B.3.1. INLEICEPLONS ... 33
6.3.1.1. Writing CuStomM INEEFCEPLOISuvvveieeeeiicciiieeee e e s et e s ee e e e e e 35

6.3.2. MEtNOACEIIS ... e e e e e e e e e s st e e e e snraeeeeans 35
6.3.3. INVOCALONCONEXLSvvieeeiiiiieeeiiieee ettt e e st e e st e e st e e e e snae e e e s snbeeeessnreeeeeans 35

6.4. Managers FOI SUDSYSIEMSviiiiiiiiieeiiiei ettt e e e s e e e s nnbaeeeean 35
L I 0o AV =4 = [35
6.4.2. BUAYMBNGOEYeiieiiiiiie ittt ettt e ettt e e ettt e e e e e e snbeeeeean 36
6.4.3. CaChel 0aderMaNAgESoiiiiiieiie e e et e e e e e e 36

6.5. Marshaling AN WiIr€ FOIMELScoeviiiiiiiiiieiiie e e e e a e e e e 36
6.5.1. The Marshaller INerfacecccvvueiiiiiee e 37
6.5.2. VersoNAWAreMarshall€Fcoooiiiiiiiiiii e e 37
6.5.2.1. CaChEL 0BOENSeviiiiiiie e e e e 38

6.5.3. CaCheMarshaller200ccceeieiiiiiie e e e e s s nree e e s snreeeeean 38

6.6. Class Loading and REJIONScoiiiiiiiiiiiiiieeeiiiiee ettt s e e e s ee e 38

A 1= oo ST 39

7.1. Cache REPIICAiON MOAESceviiieiiie et e e r e e e e e e 39
50 5t T o o I Y oo USSR 39
7.1.2. REPIICAEA CACNESvvviiiii i e e e e et r e e e e e e eanneees 39

7.1.2.1. Replicated Caches and TranSaCtioNScoccuveeeerriereeeiiiiiee e e sieeee e 39
7.1.2.2. Buddy Replication ..o 40

728 1 01V7: L F= 1 o o USSR 43

AT - (SRl I =0 = PRSPPI 43
7.3.1. StAE TraNSF O TYPES wuvveieeeee i i ittt e e e e e e s e e e e e e e et e e e e e e e e e annnrees 43
7.3.2. Byte array and streaming based state transferccoceeviiiiiiiiieee e 43
7.3.3. Full and partial State tranSfEruviieiee e 44
7.3.4. Transient ("in-memory") and persistent statetransferccccceeevvviiciiiieniee e, 45
7.3.5. Configuring State Transferooooeeiieiii 46

O o gL 0= [£ TP PPTUPPRPTRTPRPN 47
8.1. The CachelL oader Interface and LIfECYCIEcoocvviiiiiiiiii e 47
8.2, CONFIQUIALION ...ttt e e e e e e e e e e e e e s et e e e e e eeessasatarareeeaaeesaans 49

8.2.1. Singleton Store CONFIQUIATIONeviiiiiiiee et et e e 51

8.3. Shipped IMPIEMENLALIONS ... e e e e e e e e 52
8.3.1. File system based CaChe l0a0EN'Scooiiiiiiiiiiiee e 52
8.3.2. Cache loaders that delegateto other caches ..., 52
8.3.3. IDBCCAChELOAHESeeeiiiiiiiiee ettt 53

8.3.3.1. IDBCCachel oader Configuralioncceoiourreeeririreeeiiiire e e e sieeee e 53
8.3.4. TcpDelegatingCacheL 0adercoovvviiiiiiiiiiiiic e 56
8.3.5. Transforming CaChe LOBAEN'Sevviiiiiiiiieiiieee et 57

8.4. CaChE PASSIVALIONuieiiiiieiiiite ettt et e e e e e e e e sttt e e e e e e e e e snebreeeeeaaeeaaas 58

RIS 1= (=0 [J PRSP P PR OPPPRPPPPPRRN 58
8.5.1. Local Cache WIith SLOMEcc.eeeieiiieee e 58
8.5.2. Replicated Caches With All Caches Sharing The Same Storeccccvvevveeeeiiinnnee, 58
8.5.3. Replicated Caches With Only One Cache Having A SIOrecccvvveiiiiiieeiiiieeeens 59
8.5.4. Replicated Caches With Each Cache Having ItsOwn Storecccccvveeeeeeeeiecnee, 60
8.5.5. HierarchiCal Cathesccoii i e 61

Release 2.0.0 Habanero

JBoss Cache User Guide

8.5.6. MUItiple CachE LOATESS ... e e 63

9. EVICHION POIICIES ...ttt e e e e e e e e e e e e e s s sttt e e e e e e e e s esnsnbaeeeeaeeeeeannnneees 66
9.1. Configuring EVICHION POlICIEScccooeiiieieeee e, 66
9.1.1. BaSIC CONFIQUIAIONveiiieiiiiie ettt e e e s e e s sntneeeen 66

9.1.2. EVICHION REJIONS ..o, 67

9.1.2.1. Overlapping EVICtioN REJIONSccooiiiiiiiiiiiee e 67

9.1.3. ProgrammatiC CONfIQUIELIONuuviieiiiieieeiiree e st e e e e 67

9.2. Shipped EVICLION POLICIES ...t e e e e e e e 68
9.2.1. LRUPOlicy - Least ReCently USedcueiiiiiiiiieiiiiie e 68

9.2.2. FIFOPOlicy - FIrst IN, FIrSt QULceviiiiiiiiee e sneee e 68

9.2.3. MRUPOlicy - M0st RECENtIY USEAcooiuiiiiiiiiiiie et 68

9.2.4. LFUPolicy - Least Frequently USEdoveiiiiiireiiiiiie e eeee e 68

9.2.5. EXPITatioNPOIICYvviiiiiieee ettt e e e e s e et a e e e 69

9.2.6. ElementSizePolicy - Eviction based on number of key/value pairsinanode............. 70

9.3. Writing Your Own EVIiction POLICIEScccvviiiiiiie i 70
9.3.1. Eviction Policy PIUGIN DESIGNcccuuiiiiiiiiiie ittt 70

9.3.2. Interfacestoimplement ..., 70

10. TransaCtionNS 8N CONCUITENCY ...eeeeiurreeeiiireeeeaautteeeeasteeeesstereeeaasaeeeeaasbeeeesasaeeeesansbneeesannneeeeans 72
JO.1. CONCUITENE ACCESS ... e 72
00 0 O o SRR TPPRP 72

10.1.2. PeSSIMISHIC IOCKING ...veeeeiiiiiiieiiiiei ettt 72

10.1.2.1. 1SOlEHON TEVEIS ..ot 72

10.1.2.2. Insertion and Remaval of NOAESccvvvieeiiiiiiiiiiiriee e 73

10.1.3. OPtiMIStiC LOCKINGuuuuui s nanannsnnnnnnnnnnnnnnnnns 74

0 0 B AN g 11 (o (1 = SR 74

10.1.3.2. DAAVEISIONINGevveeeiiiiieee ettt e e s e et e e e e e s s e e e s anreeeeennes 74

O G TC T @0 o) 1T [0 =1 o) o [USSR 75

10.2. TranSaCtioNal SUPPOITceeiuriieeeiiiiee ettt e ettt e e e e et e s s e e e s e e e e e e anrneeeeans 76

[11. JBOSS CaCNE REFEIEINCESveeeieiiiiie ettt et e et e e et e e e esee e e e e annneeeeenees 78
11. Configuration REFEINENCESvviiiiiiiiie et e s s e e s anbneeeeans 79
11.1. Sample XML Configuration FIlecccoiioiiiiiiii e nenennnnnnes 79

11.2. Reference table of XML atribDULESccuvviiiiiiiiicc e 81

A Y Q= 1 = o= RS 86
12.1. IBOSS CACNE SEALISHICS ...vvveeeuiiiiee ittt ettt e e e e e e s st e e e s et e e e e nnrneeeeans 86

12.2. IMX MBEAN NOLITICAHONSeeeeiiieeeiiiiiiiiiiee et e e e e e e e e s s e 87

Release 2.0.0 Habanero

Preface

This is the official JBoss Cache user guide. Along with its accompanying documents (an FAQ, a tutorial and a
whole set of documents on PojoCache), thisis freely available on the JBoss Cache documentation site. [1]

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional cache. Pojo Cache,
also a part of the JBoss Cache distribution, is documented separately. (Pojo Cache is a cache that deals with Plain
Old Java Objects, complete with object relationships, with the ability to cluster such pojos while maintaining their
relationships. Please see the Pojo Cache documentation for more information about this.)

This book is targeted at both developers wishing to use JBoss Cache as a clustering and caching library in their
codebase, as well as people who wish to "OEM" JBoss Cache by building on and extending its features. As such,
this book is split into two major sections - one detailing the "User" API and the other going much deeper into spe-
cialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation and understand-
ing of transactions and concurrent threads is necessary. No prior knowledge of JBoss Application Server is expec-
ted or required.

For further discussion, use the user forum [2] linked on the JBoss Cache website. [3] We also provide a mechanism
for tracking bug reports and feature reguests on the JBoss Cache JIRA issue tracker. [4] If you are interested in the
development of JBoss Cache or in tranglating this documentation into other languages, we'd love to hear from you.
Please post a message on the user forum [5] or contact us by using the JBoss Cache developer mailing list. [6]

This book is specifically targeted at the JBoss Cache release of the same version number. It may not apply to older
or newer releases of JBoss Cache. It is important that you use the documentation appropriate to the version of
JBoss Cache you intend to use.

[1] http://labs.jboss.com/jbosscache

[2] http://www.jboss.com/index.html ?modul e=bb& op=viewforumé& f=157
[3] http://labs.jboss.com/jbosscache

[4] http://jirajboss.com/jira/lbrowse/JBCACHE

[5] http://www.jboss.com/index.html ?modul e=bb& op=viewforumé& f=157
[6] https://lists.jboss.org/mailman/listinfo/jbosscache-dev

Release 2.0.0 Habanero \Y

http://labs.jboss.com/jbosscache
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

Part I. Introduction to JBoss Cache

This section covers what developers would need to quickly start using JBoss Cache in their projects. It covers an
overview of the concepts and API, configuration and deployment information.

Overview

1.1. What is JBoss Cache?

JBoss Cache is atree-structured, clustered, transactional cache. It is the backbone for many fundamental JBoss Ap-
plication Server clustering services, including - in certain versions - clustering INDI, HTTP and EJB sessions.

JBoss Cache can a'so be used as a standal one transactional and clustered caching library or even an object oriented
data store. It can even be embedded in other enterprise Java frameworks and application servers such as BEA Web-
Logic or IBM WebSphere, Tomcat, Spring, Hibernate, and many others. It is also very commonly used directly by
standalone Java applications that do not run from within an application server, to maintain clustered state.

1.1.1. And what is Pojo Cache?

Pojo Cacheis an extension of the core JBoss Cache API. Pojo Cache offers additional functionality such as:

* maintaining object references even after replication or persistence.
« finegrained replication, where only modified object fields are replicated.
e "APl-less' clustering model where pojos are simply annotated as being clustered.

Pojo Cache has a complete and separate set of documentation, including a user guide, FAQ and tutorial and as
such, Pojo Cacheis not discussed further in this book.

1.2. Summary of Features

JBoss Cache offers a simple and straightforward API, where data (simple Java objects) can be placed in the cache
and, based on configuration options selected, this data may be one or al of:

» replicated to some or al cache instancesin acluster.
» persisted to disk and/or aremote cluster ("far-cache').

« garbage collected from memory when memory runs low, and passivated to disk so state isn't lost.
In addition, JBoss Cache offers arich set of enterprise-class features:

e being ableto participate in JTA transactions (works with Java EE compliant TransactionM anagers).

Release 2.0.0 Habanero 2

Overview

e attachto JIMX servers and provide runtime statistics on the state of the cache.
« alow client code to attach listeners and receive notifications on cache events.

A cache is organised as a tree, with a single root. Each node in the tree essentially contains a Map, which acts as a
store for key/value pairs. The only requirement placed on objects that are cached is that they implement
java.io. Serializabl e . Note that this requirement does not exist for Pojo Cache.

JBoss Cache can be either local or replicated. Loca trees exist only inside the VM in which they are created,
whereas replicated trees propagate any changes to some or al other trees in the same cluster. A cluster may span
different hosts on a network or just different VMs on asingle host.

When a change is made to an object in the cache and that change is done in the context of atransaction, the replica-
tion of changesis deferred until the transaction commits successfully. All modifications are kept in alist associated
with the transaction for the caller. When the transaction commits, we replicate the changes. Otherwise, (on aroll-
back) we simply undo the changes locally resulting in zero network traffic and overhead. For example, if a caler
makes 100 modifications and then rolls back the transaction, we will not replicate anything, resulting in no network
traffic.

If a caler has no transaction associated with it (and isolation level is not NONE - more about this later), we will
replicate right after each modification, e.g. in the above case we would send 100 messages, plus an additional mes-
sage for the rollback. In this sense, running without a transaction can be thought of as analogous as running with
auto-commit switched on in JDBC terminology, where each operation is committed automatically.

JBoss Cache works out of the box with most popular transaction managers, and even provides an APl where cus-
tom transaction manager lookups can be written.

The cache is also completely thread-safe. It uses a pessimistic locking scheme for nodes in the tree by default, with
an optimistic locking scheme as a configurable option. With pessimistic locking, the degree of concurrency can be
tuned using a number of isolation levels, corresponding to database-style transaction isolation levels, i.e., SERIAL-
IZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED and NONE. Concurrency,
locking and isolation levels will be discussed later.

1.3. Requirements

JBoss Cache requires Java 5.0 (or newer).

However, there is away to build JBoss Cache as a Java 1.4.x compatible binary using JBossRetro [1] to retroweave
the Java 5.0 binaries. However, Red Hat Inc. does not offer professional support around the retroweaved binary at
this time and the Java 1.4.x compatible binary is not in the binary distribution. See this wiki [2] page for details on
building the retroweaved binary for yourself.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies on JGroups [3] , and Apache's commons-log-
ging [4] . JBoss Cache ships with all dependent libraries necessary to run out of the box.

[1] http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro

[2] http://wiki.jboss.org/wiki/Wiki.j sp?page=IBossCacheHabaneroJaval.4
[3] http://www.jgroups.org

[4] http://jakarta.apache.org/commons/logging/

Release 2.0.0 Habanero 3

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/

Overview

1.4. License

JBoss Cache is an open source product, using the business and OEM-friendly OSl-approved [5] LGPL license. [6]
Commercial development support, production support and training for JBoss Cache is available through JBoss, a
division of Red Hat Inc. [7] JBoss Cache is a part of JBoss Professional Open Source JEMS [8] (JBoss Enterprise
Middleware Suite).

[5] http://www.opensource.org/

[6] http://www.gnu.org/copyleft/lesser.html
[7] http://www.jboss.com

[8] http://www.jboss.comindex

Release 2.0.0 Habanero 4

http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.comindex

User API

2.1. API Classes

The cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed and optionally
started using the CacheFact ory . The CacheFact ory allows you to create a Cache either from a Conf i gur at i on ob-
ject or an XML file. Once you have areference to a Cache , you can use it to ook up Node objectsin the tree struc-
ture, and store datain the tree.

[Public AP

CacheFactory O

Configuration
{org.jboss.cache) g

{org.jboss.cache.config)

+orerteCachels Cacks

+orertaCachel start booleak) Cache

+orerteCachel confighileMName : String r o Cackse

+orertaCachel confighileMam e String, stavt booleak) Cache
+orerteCachel configuration : Configuration) Cache

+orerteCachel configuration : Configuration, start © baglean b Cache

Z
|
Defau it Cache Factory
{org.jbosz.cache)
Nade (@)
Cache O (org jboss.cache)
{org.jboss.cache) << getter==tgetParenty Node
= = = = << getter==tgetChildrend © Set

<< getter=>+getConfigurations) - Configuration <ogetter==+getChildrenNames « Set
<<getterm+getRest(y Mode <<getter==+getDatad | Map
+addCachelistenery) Cachelistener } - vald <ogetter=x+getkeysi T fet
+addCachelistener region : Fgn, | Cachelistener ;- vold <ogetter==+getEqnd Eqn
+removeCechelistenery] Cackelistener; @ void +addChild f: Eqr) Mode
t+remaveCachelistenery region : Fgm, | . Cachelistener } @ void +removeChilde £ Fqn) @ vaid
<<getter=>+getCachelistenersf - Set <<gerter==+getChildi £ Eqn)y Mode
<wgetter=>tgetCachelistencrs{ region : Fan i het Fputd key @ Glject, value | Object b Qlject
+put{ fgn : Fan, key © Ohject, value | Glject } - Object <<getter==+gety k Object 3 Object
tputFarExternalRead! fan - Fqn, key - Object, value - Qlyject - void Fremover kay | Qbject L Qlject
+put{fgn Fqn, date Map } void +elearDatal) © void
+remavel fqn o Fan, key | OQbject } - Ohject +hasChildef - Fan) baalean
+remavelade] fqn - Fan) vaid . : +remaveChilds childName @ Qlject } - vaid
<<getter==+get{iqn Fgn, ey Object }: Ohject <<getter==+getChild name | Object) - Node
+ewict{fqn Fan, recursive | boolean ;. vaid : +putfAbsant key | Qlyect, value - Object o Qlject
<< getter==+getRegion! fan . Fqn, createlfAbsent : boolean) - Region +replacer key © Qbject, value © Qhject i - Qlject
+oreately v oid +replace! key © Qlfect, aldValue | Qlyject, nevwialue @ Qlyject } - baolean
+start(} [vald +putAll map : Map
+stapl vaid +datasized int
+destroy wald
< getters=tgetiny ocation Contextd | InvacationCartext
< setteps et acatioh Contexty oty D lnvocatiohContext 3 0 void
<< getters=tgetl ocxlAddresso Address
< getters=getemberss sy
+rmavel kodeToMaove @ Far, wewParant Egn i void
< gQetters A getersiond | String

Reviewing the javadoc for the above interfaces is the best way to learn the API. Below we cover some of the main
points.

2.2. Instantiating and Starting the Cache

Release 2.0.0 Habanero 5

User AP

An instance of the Cache interface can only be created via a CacheFact ory . (Thisis unlike JBoss Cache 1.x, where
an instance of the old Tr eeCache class could be directly instantiated.)

CacheFact ory provides a number of overloaded methods for creating a cache , but they all do the same thing:

e Gain access to a Confi gurati on , either by having one passed in as a method parameter, or by parsing XML
content and constructing one. The XML content can come from a provided input stream or from a classpath or
filesystem location. See the chapter on Configuration for more on obtaining a Confi gurati on .

* Instantiate the Cache and provide it with areference to the Conf i gurati on .

e Optionaly invoke the cache'screat e() andstart () methods.

An example of the simplest mechanism for creating and starting a cache, using the default configuration values:

CacheFactory factory = Defaul t CacheFactory. getlnstance();
Cache cache = factory. createCache();

Here wetell the cacheFact or y to find and parse a configuration file on the classpath:

CacheFactory factory = Defaul t CacheFactory. getlnstance();
Cache cache = factory. createCache("cache-configuration.xm");

Here we configure the cache from a file, but want to programatically change a configuration element. So, we tell
the factory not to start the cache, and instead do it ourselves:

CacheFactory factory = Defaul t CacheFactory. getlnstance();

Cache cache = factory. createCache("cache-configuration.xm", false);
Configuration config = cache. get Configuration();

config.setC usterNane(this.getC usterNane());

/1 Have to create and start cache before using it

cache.create();
cache.start();

2.3. Caching and Retrieving Data

Next, let's use the cache API to access aNode in the cache and then do some simple reads and writes to that node.

/1 Let's get ahold of the root node.
Node root Node = cache. get Root () ;

/1 Remenber, JBoss Cache stores data in a tree structure.
/1 Al nodes in the tree structure are identified by Fgn objects.
Fgn peterGiffinFgn = Fgn.fronBtring("/griffin/peter");

/1 Create a new Node
Node peterGiffin = root Node. addChil d(peterGiffinFqgn);

Release 2.0.0 Habanero 6

User AP

/1 let's store sone data in the node
peterGiffin.put("isCartoonCharacter", Bool ean. TRUE);
peterGiffin.put("favouriteDrink", new Beer());

/] some tests (just assunme this code is in a JUnit test case)
assert True(peterGiffin.get("isCartoonCharacter"));
assert Equal s(peterGiffinFgn, peterGiffin.getFqn());
assert True(r oot Node. hasChi |l d(peterGiffinFgn));

Set keys = new HashSet ();

keys. add("i sCart oonCharacter");

keys. add("favouriteDrink");

assert Equal s(keys, peterGiffin.getKeys());

/1l let's renove sone data fromthe node
peterGiffin.renmove("favouriteDrink");

assertNul | (peterGiffin.get("favouriteDrink");

Il let's renmove the node altogether
r oot Node. renoveChi | d(peterGiffinFgn);

assert Fal se(root Node. hasChi |l d(peterGiffinFgn));

The cache interface also exposes put/get/remove operations that take an Fgn as an argument:

Fagn peterGiffinFgn = Fgn.fronString("/griffin/peter");

cache. put (peterGiffinFgn, "isCartoonCharacter", Bool ean. TRUE);
cache. put (peterGiffinFgn, "favouriteDrink", new Beer());

assert True(peterGiffin.get(peterGiffinFgn, "isCartoonCharacter"));
assert True(cache. get Root Node() . hasChi | d(peterGiffinFqgn));

cache. renove(peterGiffinFgn, "favouriteDrink");
assertNul | (cache. get (peterGiffinFgn, "favouriteDrink");
cache. removeNode(peterGi ffinFqn);

assert Fal se(cache. get Root Node() . hasChi | d(peterGiffinFqgn));

2.4. The Fgn Class

The previous section used the Fgn classin its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fgn) encapsulates a list of names which represent a path to a particular location in the
cache's tree structure. The elements in the list are typically string s but can be any j ect or a mix of different

types.

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache. Reading the docu-
mentation on each APl call that makes use of Fgn will tell you whether the API expects arelative or absolute Fqn .

The Fgn class provides are variety of constructors; see the javadoc for al the possibilities. The following illustrates

Release 2.0.0 Habanero 7

User AP

the most commonly used approaches to creating an Fgn:

/1l Create an Fqn pointing to node 'Joe' under parent node 'Smith'
/1 under the 'people' section of the tree

/1 Parse it froma String
Fgn<String> abc = Fgn.fronString("/peopl e/ Sm th/Joe/");

[/ Build it directly. A bit nore efficient to construct than parsing
String[] strings = new String[] { "people", "Snith", "Joe" };
Fagn<String> abc = new Fgn<String>(strings);

/1l Here we want to use types other than String
oj ect[] objs = new Object[]{ "accounts", "NY', new |nteger(12345) };
Fgn<Obj ect > acct Fqn = new Fgn<Qbj ect >(obj s);

Note that

Fgn<String> f = new Fqn<String>("/al/b/c");

is not the same as

Fan<String> f = Fgn.fronString("/al/b/c");

The former will result in an Fgn with a single element, called "/alb/c" which hangs directly under the cache root.
The latter will result in a3 element Fgn, where "c" idicates a child of "b", which isachild of "a’, and "a" hangs off
the cache root. Another way to look at it is that the "/" separarator is only parsed when it forms part of a String
passed in to Fgn. fronst ri ng() and not otherwise.

The JBoss Cache API in the 1.x releases included many overloaded convenience methods that took a string in the "/
alb/c" format in place of an Fgn . In the interests of API simplicity, no such convenience methods are available in
the JBC 2.x API.

2.5. Stopping and Destroying the Cache

It is good practice to stop and destroy your cache when you are done using it, particularly if it is a clustered cache
and has thus used a JGroups channel. Stopping and destroying a cache ensures resources like the JGroups channel
are properly cleaned up.

cache. stop();
cache. destroy();

Not also that a cache that has had st op() invoked on it can be started again with anew call tostart () . Similarly,
a cache that has had dest roy() invoked on it can be created again with a new call to creat e() (and then started
again withastart () cal).

Release 2.0.0 Habanero 8

User AP

2.6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured to operate affects the cluster-
wide behavior of any put or renove operation, so we'll briefly mention the various modes here.

JBoss Cache modes are denoted by the or g. j boss. cache. confi g. Confi gurati on. CacheMode enumeration. They
consist of:

e LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't communicate with other caches
in a cluster. Therefore their contents don't need to be Serializable; however, we recommend making them Seri-
aizable, allowing you the flexibility to change the cache mode at any time.

 REPL_SYNC - synchronous replication. Replicated caches replicate all changes to the other caches in the
cluster. Synchronous replication means that changes are replicated and the caller blocks until replication ac-
knowledgements are received.

e REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above, replicated caches replicate all
changes to the other caches in the cluster. Being asynchronous, the caller does not block until replication ac-
knowledgements are received.

* INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every time data is
changed in a cache other caches in the cluster receive a message informing them that their datais now stale and
should be evicted from memory. This reduces replication overhead while still being able to invalidate stale data
on remote caches.

¢ INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation messages to be broad-
cast asynchronoudly.

See the chapter on Clustering for more details on how the cache's mode affects behavior. See the chapter on Con-
figuration for info on how to configure things like the cache's mode.

2.7. Adding a CacheListener

The @rg. j boss. cache. notifications. annotati on. CacheLi st ener annotation is a convenient mechanism for
receiving notifications from a cache about events that happen in the cache. Classes annotated with @achelLi st ener
need to be public classes. In addition, the class needs to have one or more methods annotated with one of the meth-
od-level annotations (in the or g. j boss. cache. noti fi cati ons. annot ati on package). Methods annotated as such
need to be publicc have a void return type, and accept a single parameter of type
org.j boss. cache. noti fications. event. Event Or one of it's subtypes.

* @achestarted - methods annotated such receive a notification when the cache is started. Methods need to ac-
cept a parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . CacheSt art edEvent

» @acheSt opped - methods annotated such receive a notification when the cache is stopped. Methods need to ac-
cept a parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . CacheSt oppedEvent

Release 2.0.0 Habanero 9

User AP

@odeCr eat ed - methods annotated such receive a notification when a node is created. Methods need to accept
a parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . NodeCr eat edEvent .

@odeRenoved - methods annotated such receive a notification when anode is removed. Methods need to accept
a parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . NodeRenovedEvent .

@odeMdi fi ed - methods annotated such receive a notification when a node is modified. Methods need to ac-
cept a parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . NodeModi fi edEvent

@lodeMved - methods annotated such receive a notification when a node is moved. Methods need to accept a
parameter type which is assignable from or g. j boss. cache. noti fi cati ons. event . NodeMovedEvent .

@lodeVi si t ed - methods annotated such receive a notification when a node is started. Methods need to accept a
parameter type which isassignable from or g. j boss. cache. noti fi cati ons. event . NodeVi si t edEvent .

@bodeLoaded - methods annotated such receive a notification when a node is loaded from a CacheLoader .
Methods need to accept a parameter type which is assignable from
org. j boss. cache. notifications. event. NodeLoadedEvent .

@odeEvi ct ed - methods annotated such receive a notification when a node is evicted from memory. Methods
need to accept a parameter type which is assignable from
org.j boss. cache. notifications. event. NodeEvi ct edEvent .

@odeAct i vat ed - methods annotated such receive a notification when a node is activated. Methods need to ac-
cept a parameter type which is assignable from
org.j boss.cache. notifications.event. NodeActi vat edEvent .

@lodePassi vat ed - methods annotated such receive a notification when a node is passivated. Methods need to
accept a parameter type which is assignable from
org.j boss. cache. notifications. event. NodePassi vat edEvent .

@r ansact i onRegi stered - methods annotated such receive a notification when the cache registers a
javax. transacti on. Synchroni zat i on with a registered transaction manager. Methods need to accept a para-
meter type which is assignable from or g. j boss. cache. noti fi cati ons. event . Transact i onRegi st er edEvent

@r ansact i onConpl et ed - methods annotated such receive a notification when the cache receives a commit or
rollback call from a registered transaction manager. Methods need to accept a parameter type which is as-
signable from or g. j boss. cache. noti fi cati ons. event. Transact i onConpl et edEvent .

@i ewChanged - methods annotated such receive a notification when the group structure of the cluster changes.
Methods need to accept a parameter type which is assignable from
org. j boss. cache. notifications. event. Vi ewChangedEvent .

@acheBl ocked - methods annotated such receive a naotification when the cluster requests that cache operations
are blocked for a state transfer event. Methods need to accept a parameter type which is assignable from
org.j boss. cache. notifications. event. CacheBl ockedEvent .

@acheUnbl ocked - methods annotated such receive a notification when the cluster requests that cache opera-
tions are unblocked after a state transfer event. Methods need to accept a parameter type which is assignable

Release 2.0.0 Habanero 10

User AP

fromorg. j boss. cache. noti fi cati ons. event. CacheUnbl ockedEvent .

Refer to the javadocs on the annotations as well as the Event subtypes for details of what is passed in to your meth-
od, and when.

Example:

@acheli st ener
public class MLi stener

{

@cacheSt art ed
@CacheSt opped
public void cacheStart St opEvent (Event e)

{
switch (e.getType())

{
case Event. Type. CACHE STARTED:

System out. println("Cache has started");
br eak;

case Event. Type. CACHE STOPPED:
System out . printl n("Cache has stopped");
br eak;

}
}

@\odeCr eat ed

@odeRenoved

@\odeVi si t ed

@lodeMbdi fi ed

@\odeMoved

public void | ogNodeEvent (NodeEvent ne)

{

| og("An event on node " + ne.getFqn() + " has occured");

}
}

2.8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of nodes to disk or to remote cache
clusters, and alow for passivation when caches run out of memory. In addition, cache loaders allow JBoss Cache to
perform 'warm starts, where in-memory state can be preloaded from persistent storage. JBoss Cache ships with a
number of cache loader implementations.

e org.jboss. cache. | oader. Fi | eCacheLoader - abasic, filesystem based cache loader that persists data to disk.
Non-transactional and not very performant, but a very simple solution. Used mainly for testing and not recom-
mended for production use.

* org.jboss. cache. | oader. JDBCCacheLoader - uses a JDBC connection to store data. Connections could be
created and maintained in an internal pool (uses the c3p0 pooling library) or from a configured DataSource.
The database this Cachel oader connects to could be local or remotely located.

Release 2.0.0 Habanero 11

User AP

e org.]boss. cache. | oader. Bdbj eCacheLoader - uses Oracle's BerkeleyDB file-based transactional database to
persist data. Transactional and very performant, but potentially restrictive license.

e org.]boss. cache. | oader. JdbnCacheLoader - an upcoming open source aternative to the BerkeleyDB.

e org.jboss. cache. | oader.tcp. TcpCacheLoader - usesa TCP socket to "persist” datato a remote cluster, using
a"far cache" pattern. 1

e org.jboss. cache. | oader. O ust er edCacheLoader - used as a "read-only" Cachel oader, where other nodes in
the cluster are queried for state.

These Cacheloaders, along with advanced aspects and tuning issues, are discussed in the chapter dedicated to

Cachel oaders .

2.9. Using Eviction Policies

Eviction policies are the counterpart to Cachel oaders. They are necessary to make sure the cache does not run out
of memory and when the cache startsto fill, the eviction algorithm running in a separate thread offloads in-memory
state to the Cacheloader and frees up memory. Eviction policies can be configured on a per-region basis, so differ-
ent subtrees in the cache could have different eviction preferences. JBoss Cache ships with several eviction
policies:

e org.jboss. cache. eviction. LRUPol i cy - an eviction policy that evicts the least recently used nodes when
thresholds are hit.

e org.jboss. cache. eviction. LFUPol i cy - an eviction policy that evicts the least frequently used nodes when
thresholds are hit.

e org.jboss. cache. eviction. MRUPol i cy - an eviction policy that evicts the most recently used nodes when
thresholds are hit.

e org.]boss. cache. evi ction. FI FOPol i cy - an eviction policy that creates a first-in-first-out queue and evicts
the oldest nodes when thresholds are hit.

e org.|boss. cache. eviction. Expi rationPol i cy - an eviction policy that selects nodes for eviction based on an
expiry time each node is configured with.

e org.|boss. cache. eviction. El ement Si zePol i cy - an eviction policy that selects nodes for eviction based on
the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the chapter dedicated to eviction

policies. .

1http://wi ki.jboss.org/wiki/Wiki.jsp?page=JBossClusteringPatternFarCache

Release 2.0.0 Habanero 12

Configuration

3.1. Configuration Overview

Theorg. j boss. cache. confi g. Confi gurati on class (along with its component parts) is a Java Bean that encapsu-
lates the configuration of the cache and all of its architectural elements (cache loaders, evictions palicies, etc.)

The Conf i gur ati on exposes numerous properties which are summarized in the configuration reference section of
this book and many of which are discussed in later chapters. Any time you see a configuration option discussed in
this book, you can assume that the Confi gurati on class or one of its component parts exposes a simple property
setter/getter for that configuration option.

3.2. Creating a Configuration
As discussed in the User API section , before a Cache can be created, the CacheFact ory must be provided with a

Conf i gurat i on object or with afile name or input stream to use to parse a Confi gur at i on from XML. The follow-
ing sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File
The most convenient way to configure JBoss Cache isviaan XML file. The JBoss Cache distribution ships with a

number of configuration files for common use cases. It is recommended that these files be used as a starting point,
and tweaked to meet specific needs.

Hereis asimple example configuration file:

<?xm version="1.0" encodi ng="UTF-8"?>

<l--
<l--
<l-- Sanpl e JBoss Cache Service Configuration
<l--
<l--

I T B T
VVV VYV

<server>

<nbean code="org.jboss. cache. | nx. CacheJnxW apper" nanme="] boss. cache: servi ce=Cache" >

<l-- Configure the Transacti onManager -->
<attri bute name="Transacti onManager Lookupd ass" >

org.j boss. cache.transacti on. Generi cTransacti onManager Lookup
</attribute>

Release 2.0.0 Habanero 13

Configuration

<I'-- Node | ocking level : SERI ALl ZABLE
REPEATABLE_READ (def aul t)
READ _COWM TTED
READ_UNCOMM TTED
NONE -->
<attribute name="1|sol ati onLevel ">READ COW TTED</ attri bute>

<I'-- Lock parent before doing node additions/renoves -->
<attri bute name="LockPar ent For Chi |l dl nsert Renove" >t rue</attri but e>

<l-- Valid nodes are LOCAL (default)
REPL_ASYNC
REPL_SYNC
I NVALI DATI ON_ASYNC
| NVALI DATION_ SYNC -->
<attribute nanme="CacheMode" >LOCAL</ attri but e>

<l-- Max nunber of mlliseconds to wait for a |ock acquisition -->
<attribute name="LockAcqui sitionTi meout">15000</attri bute>

<l-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionConfig">
<confi g>

<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<attribute name="policyd ass">org.jboss. cache. evi cti on. LRUPol i cy</attri bute>

<l-- Cache w de default -->
<regi on nanme="/_default_ ">
<attribute nane="naxNodes">5000</attri bute>
<attribute nanme="ti neToLi veSeconds">1000</attri but e>
</ regi on>
</ confi g>
</attribute>
</ mbean>
</ server>

Another, more complete, sample XML file is included in the configuration reference section of this book, along
with a handy look-up table explaining the various options.

For historical reasons, the format of the JBoss Cache configuraton file follows that of a JBoss AS Service Archive
(SAR) deployment descriptor (and still can be used as such inside JBoss AS). Because of this dual usage, you may
see elements in some configuration files (such as depends or cl asspat h) that are not relevant outside JBoss AS.
These can safely beignored.

Here's how you tell the cacheFact ory to create and start a cache by finding and parsing a configuration file on the
classpath:

CacheFactory factory = Defaul t CacheFactory. getlnstance();
Cache cache = factory. createCache("cache-configuration.xm");

3.2.2. Programmatic Configuration

In addition to the XML-based configuration above, the Confi gurati on can be built up programatically, using the
simple property mutators exposed by Confi gurati on and its components. When constructed, the Confi gurati on

Release 2.0.0 Habanero 14

Configuration

object is preset with JBoss Cache defaults and can even be used as-is for a quick start.

Following is an example of programatically creating a Conf i gur ati on configured to match the one produced by the
XML example above, and then using it to create a Cache :

Configuration config = new Configuration();

String tm c = GenericTransacti onManager Lookup. cl ass. get Nanme() ;
config. set Transacti onManager LookupC ass(tmni c);

config. setlsol ati onLevel (Isol ati onLevel . READ_COW TTED) ;

confi g. set CacheMbde(CacheMbde. LOCAL) ;

confi g. set LockPar ent For Chi | dl nsert Renove(true);

config. set LockAcqui si ti onTi meout (15000) ;

Evi cti onConfig ec = new EvictionConfig();
ec. set Wakeupl nt er val Seconds(5) ;
ec. set Def aul t Evi cti onPol i cyCl ass(LRUPol i cy. cl ass. get Nane());

Evi cti onRegi onConfi g erc = new Evi cti onRegi onConfi g();
erc. set Regi onNane(" _default_");

LRUConfiguration Iru = new LRUConfiguration();
| ru. set MaxNodes(5000) ;
I ru. set Ti neToLi veSeconds(1000) ;

erc. setEvi ctionPolicyConfig(lru);

Li st <Evi cti onRegi onConfi g> ercs = new Arrayli st <Evi cti onRegi onConfi g>();
ercs. add(erc);

ec. set Evi cti onRegi onConfi gs(erc);

config.set EvictionConfig(ec);

CacheFactory factory = Defaul t CacheFactory. getlnstance();
Cache cache = factory. createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use of XML -based
configuration. However, if your application requires it, there is no reason not to use XML-based configuration for
most of the attributes, and then access the Confi gur ati on object to programatically change a few items from the
defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running, except those annot-
ated as @ynani ¢ . Dynamic properties are also marked as such in the configuration reference table. Attempting to
change a non-dynamic property will result in aConf i gur ati onException .

3.2.3. Using an IOC Framework

The confi gurati on class and its component parts are all Java Beans that expose all config elements via simple set-
ters and getters. Therefore, any good 10C framework should be able to build up a Confi gurati on from an XML
filein the framework's own format. See the deployment via the JBoss micrcontainer section for an example of this.

3.3. Composition of a Confi gurati on Object

A Confi guration iscomposed of a number of subobjects:

Release 2.0.0 Habanero 15

Configuration

1 Configuration

1
0.1 0.1 0.4 1
BuddyReplicationConfig EvictionConfig CachelLoaderConfig RuntimeConfig
1 1 1
1 1.% 1.%
Buddyl ocatorConfig EvictionRegionConfig IndividualCachel oaderConfig
1
EvictiorPolicy Config

Following is a brief overview of the components of a Confi gurati on . See the javadoc and the linked chapters in
this book for a more complete explanation of the configurations associated with each component.

* Configuration : top level object in the hierarchy; exposes the configuration properties listed in the configura-
tion reference section of this book.

* BuddyReplicationConfig :only relevant if buddy replication is used. Genera buddy replication configuration
options. Must include a:

* BuddyLocat or Confi g : implementation-specific configuration object for the BuddyLocat or implementation be-
ing used. What configuration elements are exposed depends on the needs of the BuddyLocat or implementation.

e EvictionConfig:onlyrelevantif eviction is used. Genera eviction configuration options. Must include at least
one:

* EvictionRegi onConfi g : onefor each eviction region; names the region, etc. Must include a

e EvictionPolicyConfig :implementation-specific configuration object for the Evi cti onPol i cy implementation
being used. What configuration elements are exposed depends on the needs of the Evi ct i onPol i cy implement-
ation.

e CachelLoader Confi g : only relevant if a cache loader is used. General cache loader configuration options. Must
include at least one:

e I ndividual CacheLoader Config : implementation-specific configuration object for the CacheLoader imple-
mentation being used. What configuration elements are exposed depends on the needs of the CacheLoader im-
plementation.

e RuntimeConfig : exposesto cache clients certain information about the cache's runtime environment (e.g. mem-
bership in buddy replication groups if buddy replication is used.) Also alows direct injection into the cache of
needed external serviceslikea JTA Transacti onManager Of a JGroups Channel Factory .

Release 2.0.0 Habanero 16

Configuration

3.4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running is supported, by programmatic-
ally obtaining the conf i gur at i on object from the running cache and changing values. E.g.,

Configuration liveConfig = cache. get Configuration();
I'iveConfig.setLockAcqui sitionTi nmeout (2000);

A complete listing of which options may be changed dynamically is in the configuration reference section. An
org. j boss. cache. confi g. Confi gurati onExcepti on will be thrown if you attempt to change a setting that is not
dynamic.

3.5. Overriding the Configuration Via the Option API

The Option API alows you to override certain behaviours of the cache on a per invocation basis. Thisinvolves cre-
ating an instance of or g. j boss. cache. confi g. Opti on , Setting the options you wish to override on the opt i on ob-
ject and passing it inthe | nvocat i onCont ext before invoking your method on the cache.

E.g., to override the default node versioning used with optimistic locking:

Dat aVer si on v = new MyCust onDat aVer si on() ;
cache. get I nvocati onCont ext (). get Opti onOverri des(). set Dat aVer si on(Vv);
Node ch = cache. get Root (). addChi |l d(Fqn.fronString("/a/b/c"));

E.qg., to suppress replication of aput call inaREPL_SYNC cache:

Node node = cache.getChild(Fgn.frontring("/al/b/c"));
cache. get I nvocati onCont ext (). get Opti onOverri des(). set Local Onl y(true);
node. put ("l ocal Counter", new I nteger(2));

See the javadocs on the opt i on class for details on the options available.

Release 2.0.0 Habanero 17

Deploying JBoss Cache

4.1. Standalone Use / Programatic Deployment

When used in a standalone Java program, al that needs to be done is to instantiate the cache using the CacheFact -
ory and aConfi gurati on instance or an XML file, as discussed in the User API and Configuration chapters.

The same techniques can be used when an application running in an application server wishes to programatically
deploy a cache rather than relying on an application server's deployment features. An example of this would be a
webapp deploying acacheviaaj avax. servl et. Servl et Cont ext Li st ener .

If, after deploying your cache you wish to expose a management interface to it in IMX, see the section on Progra-
matic Registrationin IMX .

4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)

If JBoss Cache is run in JBoss AS then the cache can be deployed as an MBean simply by copying a standard
cache configuration file to the server's depl oy directory. The standard format of JBoss Cache's standard XML con-
figuration file (as shown in the Configuration Reference) is the same as a JBoss AS M Bean deployment descriptor,
so the AS's SAR Deployer has no trouble handling it. Also, you don't have to place the configuration file directly in
depl oy ; you can package it along with other services or JEE componentsin a SAR or EAR.

In AS5, if you're using a server config based on the standard al | config, then that's all you need to do; all required
jars will be on the classpath. Otherwise, you will need to ensure j bosscache. jar and j groups-al | . jar are onthe
classpath. You may need to add other jars if you're using things like JdbrCacheLoader . The simplest way to do
this is to copy the jars from the JBoss Cache distribution's 1i b directory to the server config's|i b directory. You
could aso package the jars with the configuration file in Service Archive (.sar) file or an EAR.

It is possible to deploy a JBoss Cache 2.0 instance in JBoss AS 4.x (at least in 4.2.0.GA; other AS releases are
completely untested). However, the significant APl changes between the JBoss Cache 2.x and 1.x releases mean
none of the standard AS 4.x clustering services (e.g. http session replication) that rely on JBoss Cache will work
with JBoss Cache 2.x. Also, be aware that usage of JBoss Cache 2.x in AS 4.x is not something the JBoss Cache
developers are making any significant effort to test, so be sure to test your application well (which of course you're
doing anyway.)

Note in the example the value of the nbean element's code attribute: or g. j boss. cache. j mx. CacheJmxW apper .
Thisis the class JBoss Cache uses to handle IMX integration; the Cache itself does not expose an MBean interface.
See the JBoss Cache M Beans section for more on the CacheJnxW apper .

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a IMX proxy can be used to
get areference to the cache:

Release 2.0.0 Habanero 18

Deploying JBoss Cache

MBeanServer server = MBeanServerLocator.| ocateJBoss();
Cbj ect Nane on = new Obj ect Nanme("] boss. cache: servi ce=Cache");
CacheJmxW apper MBean cacheW apper =
(CachedmxW apper MBean) MBeanSer ver | nvocati onHandl er. newPr oxyl nst ance(server, on
CacheJmxW apper MBean. cl ass, fal se);
Cache cache = cacheW apper. get Cache();
Node root = cache.getRoot(); // etc etc

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current VM. The
j avax. managenment . MBeanSer ver | nvocat i onHandl er Class newPr oxyl nst ance method creates a dynamic proxy
implementing the given interface and uses IMX to dynamically dispatch methods invoked against the generated in-
terface to the MBean. The name used to look up the MBean is the same as defined in the cache's configuration file.

Once the proxy to the CacheJmxW apper is obtained, the get Cache() will return areference to the Cache itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services via deployment of a file whose name
ends with - beans. xni . A POJO service is one whose implementation is via a "Plain Old Java Object", meaning a
simple java bean that isn't required to implement any special interfaces or extend any particular superclass. A Cache
isaPOJO service, and all the componentsin a Confi gurati on are also POJOS, so deploying a cache in thisway is
anatural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss AS. JBoss Microcon-
tainer is a sophisticated 10C framework (similar to Spring). A - beans. xni fileisbasically a descriptor that tells the
|OC framework how to assembl e the various beans that make up a POJO service.

The rules for how to deploy the file, how to package it, how to ensure the required jars are on the classpath, etc. are
the same as for a JM X-based deployment .

Following is an example - beans. xni file. If you look in the server/al | / depl oy directory of an AS 5 installation,
you can find several more examples.

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- First we create a Configuration object for the cache -->
<bean name="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

<I-- Externally injected services -->
<property nane="runti meConfig">
<bean nane="Exanpl eCacheRunti neConfi g" class="org.j boss. cache. confi g. Runti meConfi g">
<property nane="transacti onManager">
<i nj ect bean="j boss: servi ce=Transacti onManager"
property="Transacti onManager"/ >
</ property>
<property nane="nmuxChannel Fact ory" ><i nj ect bean="JChannel Factory"/></property>
</ bean>

Release 2.0.0 Habanero 19

Deploying JBoss Cache

</ property>
<property name="nmnul ti pl exer St ack" >udp</ property>
<property nane="cl ust er Nane" >Exanpl e- Enti t yCache</ pr operty>

<l --
Node | ocking | evel : SERI ALI ZABLE

REPEATABLE_READ (def aul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE

-->

<property name="isol ati onLevel ">REPEATABLE_READ</ pr operty>

<l-- Valid nodes are LOCAL
REPL_ASYNC
REPL_SYNC
-->
<property nanme="cacheMde">REPL_SYNC</ pr operty>

<l-- The max anmount of time (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nenbers in a clustered environnent

-->

<property nane="initial StateRetrieval Ti neout">15000</ pr operty>

<l-- Nunmber of milliseconds to wait until all responses for a
synchronous call have been received.

SRS

<property nane="syncRepl Ti neout " >20000</ pr operty>

<I-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<property nanme="| ockAcqui siti onTi neout">15000</ pr operty>

<property nane="exposeManagenent Stati stics">true</property>

<I-- Mist be true if any entity depl oyment uses a scoped cl assl oader -->
<property nanme="useRegi onBasedMar shal | i ng" >t rue</ property>
<l-- Miust match the val ue of "useRegi onBasedMarshalling" -->

<property name="inacti veOnStartup">true</property>

<I-- Specific eviction policy configurations. This is LRU -->
<property nane="evictionConfig">
<bean nane="Exanpl eEvi cti onConfi g"
cl ass="org. j boss. cache. confi g. Evi cti onConfi g">
<property nane="defaul t Evi cti onPol i cyCl ass">
org.j boss. cache. evi cti on. LRUPol i cy
</ property>
<property nane="wakeupl nt erval Seconds" >5</ property>
<property nanme="evicti onRegi onConfi gs">
<list>
<bean nane="Exanpl eDef aul t Evi cti onRegi onConfi g"
cl ass="org.j boss. cache. confi g. Evi cti onRegi onConfi g">
<property nanme="regi onNane">/ _default_</property>
<property nane="evi ctionPolicyConfig">
<bean name="Exanpl eDef aul t LRUConfi g"
cl ass="org.j boss. cache. evi cti on. LRUConfi gurati on">
<property nanme="naxNodes" >5000</ property>
<property nane="ti meToLi veSeconds" >1000</ pr operty>
</ bean>
</ property>
</ bean>
</list>
</ property>
</ bean>

Release 2.0.0 Habanero

Deploying JBoss Cache

</ property>
</ bean>

<l-- Factory to build the Cache. -->
<bean nane="Def aul t CacheFactory" cl ass="org. | boss. cache. Def aul t CacheFact ory" >
<constructor factoryC ass="org.]j boss. cache. Def aul t CacheFact ory"
fact oryMet hod="get | nst ance"/ >
</ bean>

<I-- The cache itself -->
<bean nane="Exanpl eCache" cl ass="org. | boss. cache. Cachel nmpl ">

<constructor factoryMethod="createCache">
<factory bean="Def aul t CacheFactory"/>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>

</ constructor>

</ bean>

</ depl oynent >

See the JBoss Microcontainer documentation 2 for details on the above syntax. Basically, each bean element rep-
resents an object; most going to create a Conf i gur at i on and its constituent parts .

An interesting thing to note in the above example is the use of the Runti meConfi g object. External resources like a
Transact i onManager and a JGroups Channel Fact ory that are visible to the microcontainer are dependency injec-
ted into the Runt i meConfi g . The assumption here is that in some other deployment descriptor in the AS, the refer-
enced beans have been described.

4.4. Binding to JNDI in JBoss AS

With the 1.x JBoss Cache releases, a proxy to the cache could be bound into JBoss AS's INDI tree using the AS's
JRWPPr oxyFact ory service. With JBoss Cache 2.x, this no longer works. An alternative way of doing a similar
thing with a POJO (i.e. non-JM X-based) service like a Cache is under development by the JBoss AS team 3 That
feature is not available as of the time of this writing, although it will be completed before AS 5.0.0.GA is released.
We will add awiki page describing how to use it once it becomes available.

4.5. Runtime Management Information

JBoss Cache includes IMX MBeans to expose cache functionality and provide statistics that can be used to analyze
cache operations. JBoss Cache can also broadcast cache events as MBean notifications for handling via IMX mon-
itoring tools.

45.1. JBoss Cache MBeans

2http:// |abs.jboss.com/jbossmc/docs
3http://j irajboss.com/jiralbrowse/JBA S-4456

Release 2.0.0 Habanero 21

Deploying JBoss Cache

JBoss Cache provides an MBean that can be registered with your environments IMX server to allow access to the
cache instance via IMX. This MBean is the or g. j boss. cache. j mx. CacheJnmxW apper . It is a StandardMBean, so
it'sMBean interfaceisor g. j boss. cache. j mx. CacheJnxW apper MBean . This MBean can be used to:

» Get areference to the underlying Cache .

Invoke create/start/stop/destroy lifecycle operations on the underlying Cache .
» Inspect various details about the cache's current state (number of nodes, lock information, etc.)

« See numerous details about the cache's configuration, and change those configuration items that can be changed
when the cache has already been started.
See the CacheJmxW apper MBean javadoc for more details.

It is important to note a significant architectural difference between JBoss Cache 1.x and 2.x. In 1.x, the old
TreeCache class was itself an MBean, and essentialy exposed the cache's entire APl via IMX. In 2.x, IMX has
been returned to it's fundamenta role as a management layer. The Cache object itself is completely unaware of
IJMX; instead IMX functionality is added through awrapper class designed for that purpose. Furthermore, the inter-
face exposed through IM X has been limited to management functions; the genera cache API is no longer exposed
through IMX. For example, it isno longer possible to invoke acache put or get viathe IMX interface.

If a cacheJmxW apper is registered, JBoss Cache also provides MBeans for each interceptor configured in the
cache's interceptor stack. These MBeans are used to capture and expose statistics related to cache operations. They
are hierarchically associated with the CacheJmxW apper MBean and have service names that reflect this relation-
ship. For example, a replication interceptor MBean for the j boss. cache: servi ce=Tontat O ust eri ngCache in-
stance will be accessible through the service named
j boss. cache: servi ce=Tontat O ust eri ngCache, cache-i nt ercept or=Repl i cati onl nterceptor .

4.5.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxW apper isregistered in IMX depends on how you are deploying your cache:

4.5.2.1. Programatic Registration

Simplest way to do thisisto create your Cache and passit to the CacheJmxW apper constructor.

CacheFactory factory = Defaul t CacheFactory. getlnstance();

[/ Build but don't start the cache

/1 (although it would work OK if we started it)

Cache cache = factory. createCache("cache-configuration.xm", false);

CacheJnmxW apper MBean wr apper = new CacheJnxW apper (cache);
MBeanServer server = getMBeanServer(); // however you do it

Cbj ect Nane on = new Obj ect Name("] boss. cache: servi ce=TreeCache");
server. regi st er MBean(w apper, on);

/1 Invoking |lifecycle nethods on the wapper results
/1 in a call through to the cache

wr apper.create();

wr apper.start();

use the cache

Release 2.0.0 Habanero 22

Deploying JBoss Cache

on application shutdown

/1 Invoking lifecycle nethods on the w apper results
/1 in a call through to the cache

wr apper . stop();

wr apper . destroy();

Alternatively, build a Confi gurati on object and pass it to the CacheimxW apper . The wrapper will construct the

Cache :

Configuration config = buildConfiguration(); // whatever it does

CacheJmxW apper MBean wr apper = new CacheJnxW apper (confi g);
MBeanServer server = getMBeanServer(); // however you do it

Cbj ect Nane on = new Obj ect Nanme("] boss. cache: servi ce=TreeCache");

server. regi st er MBean(w apper, on);

[/l Call to wapper.create() will build the Cache if one wasn't

wr apper.create();
wr apper.start();

// Now that it's built, created and started, get the cache fromthe w apper

Cache cache = wrapper. get Cache();
use the cache
on application shutdown

wr apper . st op() ;
wr apper . destroy();

4.5.2.2. JIMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cache in JBoss AS using a -servicexml file , a CacheJmxW apper is automatically re-
gistered. There is no need to do anything further. The cacheJmxW apper is accessible from an MBean server

through the service name specified in the cache configuration file's nbean element.

4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

CacheJmxW apper isaPOJO, so the microcontainer has no problem creating one. The trick is getting it to register
your bean in IMX. This can be done by specifying the or g. j boss. aop. mi crocont ai ner . aspect s. j mx. JMX annota-

tion on the CacheJmxW apper bean:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oynment xml ns="urn:j boss: bean- depl oyer: 2. 0" >
<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

build up the Configuration

</ bean>

Release 2.0.0 Habanero

23

Deploying JBoss Cache

<l-- Factory to build the Cache. -->
<bean name="Def aul t CacheFact ory" cl ass="org.j boss. cache. Def aul t CacheFact ory" >
<constructor factoryC ass="org.jboss. cache. Def aul t CacheFact ory"
fact oryMet hod="get | nst ance"/ >
</ bean>

<I-- The cache itself -->
<bean name="Exanpl eCache" cl ass="org.jboss. cache. Cachel npl ">

<constructor factoryMethod="createnew nstance">
<factory bean="Def aul t CacheFactory"/>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ const ructor >
</ bean>

<l-- JMX Managenent -->
<bean nane="Exanpl eCacheJnxW apper" cl ass="org.j boss. cache.jnx. CacheJnxW apper ">

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspects. j nx. IMX(name="j boss. cache: servi ce=Exanpl eTr eeCact
exposedl nt er f ace=or g. j boss. cache. j nx. CacheJnxW apper MBean. cl ass,
regi sterDirectly=true)</annotation>
<construct or>
<par anet er ><i nj ect bean="Exanpl eCache"/ ></ par anet er >
</ const ruct or >

</ bean>

</ depl oynent >

As discussed in the Programatic Registration section, CacheJmxW apper can do the work of building, creating and
starting the cache if it is provided with a Confi gur ati on . With the microcontainer, this is the preferred approach,
as it saves the boilerplate XML needed to create the CacheFactory :

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">
<I-- First we create a Configuration object for the cache -->
<bean name="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">
build up the Configuration
</ bean>
<bean nane="Exanpl eCache" cl ass="org. | boss. cache.jnx. CacheJnxW apper" >
<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j nk. JMX(nane="] boss. cache: servi ce=Exanpl eTr eeCact
exposedl nt er f ace=or g. j boss. cache. j nx. CacheJnxW apper MBean. cl ass,
regi sterDirectly=true)</annotati on>
<constructor >
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/></ par anet er >

</ constructor>

</ bean>

Release 2.0.0 Habanero 24

Deploying JBoss Cache

</ depl oynent >

4.5.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor MBeans. Gathering
of statisticsis enabled by default; this can be disabled for a specific cache instance through the ExposeManagenent -
Statistics configuration attribute. Note that the mgjority of the statistics are provided by the cacheMgnt I nt er -
ceptor , SO this MBean is the most significant in this regard. If you want to disable all statistics for performance
reasons, you set ExposeManagenent Stati sti cs t0 fal se as thiswill prevent the CacheMgnt | nt er cept or from be-
ing included in the cache's interceptor stack when the cache is started.

If a cacheJmxW apper is registered with IMX, the wrapper also ensures that an MBean is registered in IMX for
each interceptor that exposes statistics 4, Management tools can then access those MBeans to examine the statist-
ics. See the section in the IMX Reference chapter pertaining to the statistics that are made available viaJMX.

The name under which the interceptor MBeans will be registered is derived by taking the j ect Nane under which
the CacheJmxW apper is registered and adding acache-i nt er cept or attribute key whose value is the non-qualified
name of the interceptor class. So, for example, if the CacheJnxWapper were registered under
jboss. cache: service=TreeCache , the name of the cCachemyntinterceptor MBean would be
j boss. cache: servi ce=Tr eeCache, cache-i nt er cept or =CacheMynt | nt er cept or .

Each interceptor's MBean exposes a St at i sti csEnabl ed attribute that can be used to disable maintenance of stat-
istics for that interceptor. In addition, each interceptor MBean provides the following common operations and at-
tributes.

e dunpStatistics - returnsanap containing the interceptor's attributes and val ues.
* resetStatistics -resetsall statistics maintained by the interceptor.

e setStatisticsEnabl ed(bool ean) - alows statistics to be disabled for a specific interceptor.

4.5.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier in the User API chapter. Users
can alternatively utilize the cache's management information infrastructure to receive these events via JM X notific-
ations. Cache events are accessible as notifications by registering aNot i fi cati onLi st ener for the CacheJmxWw ap-

per .

See the section in the IMX Reference chapter pertaining to IMX notifications for alist of notifications that can be
received through the CacheJmxW apper .

The following is an example of how to programmatically receive cache notifications when running in a JBoss AS

4 Note that if the cacheJmw apper isnot registered in IMX, the interceptor MBeans will not be registered either. The JBoss Cache 1.4 releases
included code that would try to "discover" an MBeanSer ver and automatically register the interceptor MBeans with it. For JBoss Cache 2.x we
decided that this sort of "discovery" of the IMX environment was beyond the proper scope of a caching library, so we removed this functional-

ity.

Release 2.0.0 Habanero 25

Deploying JBoss Cache

environment. In this example, the client uses afilter to specify which events are of interest.

M/Li stener |istener = new MyLi stener();
NotificationFilterSupport filter = null;

/'l get reference to MBean server
Context ic = new Initial Context();
MBeanSer ver Connecti on server = (MBeanServer Connection)ic. | ookup("jnx/invoker/RM Adaptor");

/'l get reference to CacheMgnt | nterceptor MBean
String cache_service = "jboss. cache: servi ce=Tontat Cl ust eri ngCache";
Cbj ect Nane ngnt _nane = new bj ect Nanme(cache_servi ce);

/1 configure a filter to only receive node created and renpved events
filter = new NotificationFilterSupport();

filter.disabl eAll Types();

filter.enabl eType(CacheNotifi cati onBroadcast er. NOTI F_NODE_CREATED) ;
filter.enabl eType(CacheNotifi cati onBroadcast er. NOTI F_NODE_REMOVED) ;

/] register the listener with a filter
/1 leave the filter null to receive all cache events
server.addNoti ficationLi stener(ngnt_nane, listener, filter, null);

Il

/1 on conpl etion of processing, unregister the |istener
server.renoveNoti ficationLi stener(ngnt _nane, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MyListener inplenents NotificationListener, Serializable

{
public void handl eNotification(Notification notification, Cbject handback)

{
String message = notification. get Message();
String type = notification.getType();
(bj ect userData = notification.getUserData();

Systemout.println(type + ": " + nmessage);

if (userData == null)

{ Systemout.println("notification data is null");
?I se if (userData instanceof String)

Systemout.println("notification data: " + (String) userData);

el se if (userData instanceof Cbject[])

{
bject[] ud = (Object[]) userData;
for (Object data : ud)
{
Systemout.println("notification data: " + data.toString());
}
}
el se
{
Systemout. println("notification data class: " + userData.getC ass().getNane());

Release 2.0.0 Habanero 26

Deploying JBoss Cache

Note that the JBoss Cache management implementation only listens to cache events after a client registers to re-
ceive MBean notifications. As soon as ho clients are registered for notifications, the MBean will remove itself asa
cache listener.

4.5.5. Accessing Cache MBeans in a Standalone Environment

JBoss Cache MBeans are easily accessed when running cache instances in an application server that provides an
MBean server interface such as JBoss IMX Console. Refer to your server documentation for instructions on how to
access MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a non-server environment if the VM
is JDK 5.0 or later. When running a standalone cache in a JDK 5.0 environment, you can access the cache's
MBeans as follows.

1. Set the system property - Dcom sun. managenent . j mxr enot e when starting the VM where the cache will run.
2. Oncethe JVM isrunning, start the JDK 5.0 consol e utility, located in your JDK's/ bi n directory.

3. When the utility loads, you will be able to select your running JVM and connect to it. The JBoss Cache
MBeans will be available on the MBeans panel.

Note that the j consol e utility will automatically register as a listener for cache notifications when connected to a
JVM running JBoss Cache instances.

The following figure shows cache interceptor MBeans in j consol e . Cache statistics are displayed for the Ca-
cheMgnt | nt erceptor

Release 2.0.0 Habanero 27

Deploying JBoss Cache

< J2SE 5.0 Monitering & Management Console: 2780@localhost (=1 % |
Connection
| Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
B Tree [atributes | Operations | Netifications | Info |
== qulmplamentatian N&iis Vehic
& [Tijavalang ‘|AverageReadTime 0
o= (] java.util logging | AverageWriteTime 2
¢ [1iboss.cache :|ElapsedTime 541
¢ [ClusterTreeCacha |Evictions 0
9 [CacheMgmtintarceptor] |HitMissRatio 0.8571428571428571
@ Callinterceptor ;f||H"t5 6
o3 PeasimisticLockinterceptor ;;||"'”559S _ 1
@ Replicationinterceptor “[NumberOfAtributes 6
@ Tuinterceptor ;:“Numberomodes 3
@ Unlockinterceptar ::|Rea.dert8Haﬂu 0.7
& [TomeatClusteringCache |/ StatisticsEnabled frue
| Stores 10
‘| TimesSinceReset 541
Refresh

Figure 4.1. CacheM gmtinterceptor MBean in jconsole

Release 2.0.0 Habanero

Version Compatibility and Interoperability

Within amajor version, releases of JBoss Cache are meant to be compatible and interoperable. Compatible in the
sense that it should be possible to upgrade an application from one version to another by simply replacing the jars.
Interoperable in the sense that if two different versions of JBoss Cache are used in the same cluster, they should be
able to exchange replication and state transfer messages. Note however that interoperability requires use of the
same JGroups version in all nodes in the cluster. In most cases, the version of JGroups used by a version of JBoss
Cache can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. However, JBoss Cache 2.1.x
will be API and binary compatible with 2.0.x.

A configuration attribute, Repl i cati onVersi on, is available and is used to control the wire format of inter-cache
communications. They can be wound back from more efficient and newer protocols to "compatible" versions when
talking to older releases. This mechanism allows us to improve JBoss Cache by using more efficient wire formats
while still providing a means to preserve interoperability.

5.1. Compatibility Matrix

A compatibility matrix [1] is maintained on the JBoss Cache website, which contains information on different ver-
sions of JBoss Cache, JGroups and JBoss AS.

[1] http://labs.jboss.com/portal/jbosscache/compatibility/index.html

Release 2.0.0 Habanero 29

http://labs.jboss.com/portal/jbosscache/compatibility/index.html

Part Il. JBoss Cache Architecture

This section digs deeper into the JBoss Cache architecture, and is meant for developers wishing to extend or en-
hance JBoss Cache, write plugins or are just looking for detailed knowledge of how things work under the hood.

Architecture

6.1. Data Structures Within The Cache

A Cache consists of a collection of Node instances, organised in a tree structure. Each Node contains a Map which
holds the data objects to be cached. It isimportant to note that the structure is a mathematical tree, and not a graph;
each Node has one and only one parent, and the root node is denoted by the constant fully qualitied name, Fqn. ROOT

The reason for organising nodes as such is to improve concurrent access to data and make replication and persist-
ence more fine-grained.

e N A

N /AN /

Figure6.1. Data structured asatree

In the diagram above, each box represents a VM. You see 2 caches in separate VMs, replicating data to each oth-
er. These VMs can be located on the same physical machine, or on 2 different machines connected by a network
link. The underlying group communication between networked nodes is done using JGroups [1] .

Any modifications (see API chapter) in one cache instance will be replicated to the other cache. Naturally, you can

[1] http://www.jgroups.org

Release 2.0.0 Habanero 31

http://www.jgroups.org

Architecture

have more than 2 caches in a cluster. Depending on the transactional settings, this replication will occur either after
each modification or at the end of atransaction, at commit time. When a new cache is created, it can optionaly ac-
guire the contents from one of the existing caches on startup.

6.2. SPI Interfaces

In addition to cache and Node interfaces, JBoss Cache exposes more powerful CachesPl and NodeSPI interfaces,
which offer more control over the internals of JBoss Cache. These interfaces are not intended for general use, but
are designed for people who wish to extend and enhance JBoss Cache, or write custom I nt er cept or Of Cachel-
oader instances.

5Py
O

Nede
{orgjboss.cache)
A

NedeSFP! O
{org.jboss.cache)

< < getters=>dgetChildranlosdedl} : boolerr

<< setter==+setChildrenloaded! loaded [boolean) void

<< getter=>=+getDatal padedy boolean

<< setter==+setDatal padedi datal oaded [boolean) vold

< <getter==+getCaches) | CacheSPl

= = getter=>=+getQrCreate Child{ name | Okiect, 1x . GlokalTransaction ;- Node§P!
<< getter==4getlocky Nodelock

<<setter==+setbgni D Fgr o void

<< getter=>+getChildrenMaplivectsy - Map

= < getter==tisDeleted?) : boclear

+markdsDelateds marker - boolean) vold

+markdsDelated! marker | boolean, recursive D boolean } o void
+addChildf rodeMName | Qhjzct, nodeToddd | Node) - vaid
FprintDetailss sk StringRuffer, indent D int) void

+printg sk StringButfer, indent int } [void WaorkspaceNade O
<< setter=tsetVersion version | DataVersion ;| void {org.jboss.cache.optimisticy

< < getter==4getVersiond) | DataVersion

<< getter==4getChildrenDivectsy | Set << getter==+getMergadChildrans Map
+removeChildrenDivectsy - void << getter==+getersion DataVersion

< < getter==+getChildrenDivecty incl kedd sDeleted | boolean } | 58t < serters=LsetVersion] version | DataVersion y D void

<< getter==+getChildDirecty childName © Object } - NodeSP) < <getter==Hishinte koolean

+addChildDirect! childMName : Fgn } - Noeda5SFPl << getter=>=+getMergadhatal; Map

< < getter==+getChildDirecti childMame : Fgr p - NedeSP) << getter==+gethodes : Nodespl

+removeChildDivecti fqn : Fgr) void < < gatter==tgetTransactionWorkspaced | TransactionWorkspace
+ramoveChildDirecty childMName : Qhject) @ vaid << getter==+isCreatedy boolean

+ramovelivecty key - Qhjact }: Object +markd s Creatads) | vold

FpuDivect key - Object, value Okject 3 Ohjact << getter==+HsVersioninglmplicitly | boolean

<< getter==4getDatalivect Map < < setter==tsetVersioninglmplicity b D boolezr) veid

< <getterstgetDirecti key : Objact) © Object +ereate Child! child_wame @ Cliect, parent - NodeSPl, cache @ CachelPl wersion : Data¥ersion }: NodeSP
+olearDatalivectl | vold << getter==+isheleteds) | hoclean

< < getter=4getkeysDirectly | Set +markd sDelateds marker boolean } D vold

<< getter==+getChildrenNamesDirecty © Set +markd sDelatedf marker boolean, recursive) boolean) D vold

< < getter==+getParents) | NodaSPl << getter==+getChild! 2 Qbject 3 Node§P)
+setChildrenMapDirecty children © Map } << getter==+getChild{ f: Fan) NodesP)

FputANDirects data Map) +addChild] workspaceNode : WorkspaceNode) void

forgjboss.cache)

CacheSF! O
{orgjboss.cache)

< < getter==4getinterceptorChaing | List

+addinterceptor! i Interceptar, position D int) void

Fremovelnterceptor] position Dint) D void

< < getter==+getBuddyManagers) | BuddyManzger

<< getter==+getTransactionTabklel) | TrarsactionTakle

<< getter==+getBPCManagers) | RPCManager

< < getters=+getStateTra M g : StataTre M g

<< getter==4getClusteramely | String

< < getter==4gethumberOfAtiribures int

< < getter==+gethumberQfNodes s | int

<< getter=>=+getCachel oaderManageryy | CacheloaderManzger

== getter==+getlockTaklel Map

< < getter=>=+getlegicnManzgers | RegionManzger

< < getter==4gethotifiersy | Notifisr

< < getter==+getMarshallers : Marshaller

< < getter==+getRooty Node§Pl

<< getter=>=+getTransectionManagers | TransactionMarnager

+getCurrent Transaction! tx Trarsaction, createlfNotExists @ hoolean p: GlobalTransaction
+peakifqn Fgn, includeDeletedNodes koolzan) NedeSP)

+graviteteDatal fgn Fgn, searchBuddyBackupSubtress boolean) GravitateResul

Figure6.2. SPI Interfaces

Release 2.0.0 Habanero 32

Architecture

The cachesP! interface cannot be created, but is injected into | nt er cept or and CacheLoader implementations by
the set Cache(CacheSPI cache) methods on these interfaces. CachesPl extends Cache so al the functionality of
the basic APl is made available.

Similarly, a NodesPI interface cannot be created. Instead, one is obtained by performing operations on CacheSPI ,
obtained as above. For example, Cache. get Root () : Node iSoverridden as CacheSPI . get Root () : NodeSPI .

It is important to note that directly casting a Cache or Node to it's SPI counterpart is not recommended and is bad
practice, since the inheritace of interfaces it is not a contract that is guaranteed to be upheld moving forward. The
exposed public APIs, on the other hand, is guaranteed to be upheld.

6.3. Method Invocations On Nodes

Since the cache is essentially a collection of nhodes, aspects such as clustering, persistence, eviction, etc. need to be
applied to these nodes when operations are invoked on the cache as awhole or on individual nodes. To achieve this
in a clean, modular and extensible manner, an interceptor chain is used. The chain is built up of a series of inter-
ceptors, each one adding an aspect or particular functionality. The chain is built when the cache is created, based on
the configuration used.

It isimportant to note that the NodesPI offers some methods (such as the xxxDi r ect () method family) that operate
on a node directly without passing through the interceptor stack. Plugin authors should note that using such meth-
ods will affect the aspects of the cache that may need to be applied, such as locking, replication, etc. Basicaly,
don't use such methods unless you really know what you're doing!

6.3.1. Interceptors

An|nterceptor isan abstract class, several of which comprise an interceptor chain. It exposes ani nvoke() meth-
od, which must be overridden by implementing classes to add behaviour to a call before passing the call down the
chain by calling super . i nvoke() .

Release 2.0.0 Habanero 33

Architecture

[Interceptnr]]

Iterceptor
rorg.jbozz. cache.interceptors)

<= Cconstructor=>=+Interceptord

<=zetterz=>=+zethext{i: Interceptor) vaoid
<-=getter>=>=+getiextd ; Interceptar

<= zetter>=>=+zetiZachef cache : Cache>Pl) : void

+invaokei m : MethodCall) : Object

<= getter>>=+getitatizsticsEnabledd : boaolean

<= zetter>>=+zetstatizsticsEnabled(enabled : boolean) : void
<= getter>=>=+getlLazt ; Interceptor

<= zetter>=>=+zetlLazt] last | Interceptor) void
+dumpitatisticsd Map-=k-=5tring, V-=0bject =
+rezetstatizticsd void

<= getter>==FizActive!tx : Tranzaction) : boolean

<= getter>==FizPreparing{tx : Tranzaction) : boaolean

<= getterz=FizWalid{ tx . Tranzaction) : boolean

<= getter>==FizOnePhaseCommitFrepareMebod m : MethodCall) ; boolean
+tostringd ;o string

Invocation Context
rorg.jboss. cache)

< ConEtructors>=~lnvocationZontextd
<-=zetter>>=+zetlocalRollbackonkyy localRollbackonly : boolean) : woid
<-=getter>=>=+getTranzactiond : Transaction
<-<zetterz=4zetTranzactiond tranzaction : Tranzaction) ; woid
<-=getter>=>=+getClobalTranzactiond . SlobalTranzaction
<-<zetter>=x=+4zetClobalTranzactiony globalTranzaction : ClobalTranzaction) woid
<-<getter>=>=+getOptionOverridez 0 Option
<-zetterz=+zetOptionOverridesd optionOverrides | Option) woid
<-<getter>=>=+iz0riginLocald : boalean
<-<zetter>=+4zetOriginLlocalf ariginLlocal ; boolean) ; woid
+tostringd : String

<-=getter>=>=+isTxHazModz0 : boolean
<-<zetter>=x=+zetTxHazModz{ b : boolean) : woid
<-=getter>=>=+izLocalRollbackOnly) : boalean

+rezetd void

+cloned : InvocationContext

<-zetterz==4zetitatel template | InvocationContext b woid
+equalsf o Object } : boolean

+hazhCoded ;int

<-<getter>=>=+getCacheliztenerBventzd ; Lizt<E->=MethodCall=
+addCacheliztenerBventy event | MethodCall b : woid
+clearCacheliztenerBventzd o woid

Figure 6.3. SPI Interfaces

Release 2.0.0 Habanero

Architecture

JBoss Cache ships with several interceptors, representing different configuration options, some of which are:

e TxInterceptor - looks for ongoing transactions and registers with transaction managers to participate in syn-
chronization events

e Replicationlnterceptor - replicates state across a cluster using a JGroups channel

e Cacheloader | nterceptor - loads datafrom a persistent store if the data requested is not available in memory
The interceptor chain configured for your cache instance can be obtained and inspected by calling
CacheSPI . get | nt er cept or Chai n() , which returns an ordered Li st of interceptors.

6.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending I nt er cept or and overriding
invoke() . The custom interceptor will need to be added to the interceptor chain by using the
CacheSPI . addl nt er cept or () method.

Adding custom interceptors via XML is not supported at thistime.

6.3.2. MethodCalls

org. j boss. cache. nar shal | . Met hodCal | isaclass that encapsulates aj ava. | ang. refl ecti on. Met hod and an Co-
ject[] representing the method's arguments. It is an extension of the or g. j gr oups. bl ocks. Met hodCal | class, that
adds a mechanism for identifying known methods using magic humbers and method ids, which makes marshalling
and unmarshalling more efficient and performant.

Thisiscentral to the | nt er cept or architecture, and isthe only parameter passed into I nt ercept or. i nvoke() .

6.3.3. InvocationContexts

I nvocat i onCont ext holds intermediate state for the duration of a single invocation, and is set up and destroyed by
thel nvocati onCont ext | nt er cept or Which sits at the start of the chain.

I nvocat i onCont ext , as its name implies, holds contextual information associated with a single cache method in-
vocation. Contextual information includes associated j avax. transaction. Transact i on or
org.j boss. cache. transaction. d obal Transaction , method invocation origin (Invocati onCon-
text.isOriginLocal ()) aswell asption overrides.

Thel nvocati onCont ext can be obtained by calling Cache. get | nvocat i onCont ext () .

6.4. Managers For Subsystems

Some aspects and functionality is shared by more than a single interceptor. Some of these have been encapsulated
into managers, for use by various interceptors, and are made available by the cachespI interface.

6.4.1. RpcManager

Release 2.0.0 Habanero 35

Architecture

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches, and encapsu-
lates the JGroups channel used.

6.4.2. BuddyManager

This class manages buddy groups and invokes group organisation remote calls to organise a cluster of caches into
smaller sub-groups.

6.4.3. CacheLoaderManager

Sets up and configures cache loaders. This class wraps individual CacheLoader instances in delegating classes,
such as Si ngl et onSt or eCachelLoader Or AsyncCachelLoader , Of may add the CacheLoader to a chain using the
Chai ni ngCachelLoader .

6.5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing to an oj ect Qut put St r eamdur-
ing replication. Over various releases in the JBoss Cache 1.x.x series this approach was gradually deprecated in fa-
vour of a more mature marshalling framework. In the JBoss Cache 2.x.x series, thisis the only officially supported
and recommended mechanism for writing objects to datastreams.

Release 2.0.0 Habanero 36

Architecture

[Marzhaller |

JI — T T 7 T|From org.jgroupsz.blocks
RpcDispatcher.Marshaller

Marshaller G‘

+objestToQbjactStreams ohyj | Objact, our) ObjectOurputitraam
+objectbrom QbjactStream s in . Qbjactinputhtream 3 Ohjact
+objactEromStraagmlis InputStraam 0 Okbjact

+objectTodbjactStreams obj Objact, out OljectOutputitraam, region Fgn)

Fi
o
I

AbkstractMarshaller
forg.jbozs.cache.marshally [

Yers ionAwareMarshaller CacheMarshaller200
(org.jbozz cache.marzhall) I (org.jbozz.cache.marzhall)

Delegates to
Cachemarshaller
200 for streams
that have used
version 200.

Figure6.4. The Marshaller interface

6.5.1. The Marshaller Interface

The Marshal | er interface extends RpcDi spat cher . Marshal | er from JGroups. This interface has two main imple-
mentations - a delegating Ver si onAwar eMar shal | er and a concrete CacheMar shal | er 200 .

The marshaller can be obtained by calling CacheSPI . get Marshal I er() , and defaults to the Versi onAwar e-
Mar shal | er . Users may aso write their own marshallers by implementing the mvar shal | er interface and adding it
to their configuration, by using the Mar shal | er d ass configuration attribute.

6.5.2. VersionAwareMarshaller

Release 2.0.0 Habanero 37

Architecture

As the name suggests, this marshaller adds aversion short to the start of any stream when writing, enabling simil-
ar Ver si onAvar eMar shal | er instances to read the version short and know which specific marshaller implementa-
tion to delegate the call to. For example, CacheMar shal | er 200 , is the marshaller for JBoss Cache 2.0.x. JBoss
Cache 2.1.x, say, may ship with CacheMar shal | er 210 with an improved wire protocol. Using a Ver si onAwar e-
var shal | er helps achieve wire protocol compatibility between minor releases but still affords us the flexibility to
tweak and improve the wire protocol between minor or micro releases.

6.5.2.1. CachelLoaders

Some of the existing cache loaders, such as the JDBCCacheLoader and the Fi | eCacheLoader relied on persisting
data using Qvj ect Qut put St reamas well, but now, they are using the Ver si onAwar eMar shal | er to marshall the per-
sisted data to their cache stores.

6.5.3. CacheMarshaller200

This marshaller treats well-known objects that need marshalling - such as Met hodCal | , Fgn , Dat aVer si on , and
even some JDK objectssuch asstring, Li st , Bool ean and others as types that do not need complete class defini-
tions. Instead, each of these well-known types are represented by ashort , which isalot more efficient.

In addition, reference counting is done to reduce duplication of writing certain objects multiple times, to help keep
the streams small and efficient.

Also, if UseRegi onBasedMar shal | i ng is enabled (disabled by default) the marshaller adds region information to the
stream before writing any data. This region information isin the form of a st ri ng representation of an Fqn . When
unmarshalling, the Regi onManager can be used to find the relevant Regi on , and use a region-specific d assLoader
to unmarshall the stream. This is specifically useful when used to cluster state for application servers, where each
deployment hasit's own d assLoader . See the section below on regions for more information.

6.6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the application tend to put instances of
objects specific to their application in the cache (or in an Ht t pSessi on object) which would require replication. Itis
common for application servers to assign separate d assLoader instances to each application deployed, but have
JBoss Cache libraries referenced by the application server's d assLoader .

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a concept called re-
gions. A region is a portion of the cache which share a common class loader (a region aso has other uses - see
eviction policies).

A region is created by using the Cache. get Regi on(Fgn fqgn, bool ean creat el f Not Exi sts) method, and returns
an implementation of the Regi on interface. Once aregion is obtained, a class |oader for the region can be set or un-
set, and the region can be activated/deactivated. By default, regions are active unless the | nacti venSt art up con-
figuration attributeissettotrue .

Release 2.0.0 Habanero 38

Clustering

This chapter talks about aspects around clustering JBoss Cache.

7.1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the cache can be con-
figured to replicate changes, or to invalidate changes. A detailed discussion on this follows.

7.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. Therefore their elements
don't need to be serializable - however, we recommend making them serializable, enabling a user to change the
cache mode at any time. The dependency on the JGroups library is till there, although a JGroups channel is not
started.

7.1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in the cluster. Replication can
either happen after each modification (no transactions), or at the end of atransaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options is application dependent. Syn-
chronous replication blocks the caller (e.g. on aput ()) until the modifications have been replicated successfully to
all nodesin a cluster. Asynchronous replication performs replication in the background (the put () returns immedi-
ately). JBoss Cache aso offers a replication queue, where modifications are replicated periodically (i.e. interval-
based), or when the queue size exceeds a number of elements, or a combination thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires acknowledgments
from al nodesin a cluster that they received and applied the modification successfully (round-trip time). However,
when a synchronous replication returns successfully, the caller knows for sure that all modifications have been ap-
plied to all cache instances, whereas this is not be the case with asynchronous replication. With asynchronous rep-
lication, errors are simply written to alog. Even when using transactions, a transaction may succeed but replication
may not succeed on al cache instances.

7.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a transaction commits.
This results in minimising replication traffic since a single modification is broadcast rather than a series of indi-
vidual modifications, and can be a lot more efficient than not using transactions. Another effect of thisisthat if a
transaction were to roll back, nothing is broadcast across a cluster.

Release 2.0.0 Habanero 39

Clustering

Depending on whether you are running your cluster in asynchronous or synchronous mode, JBoss Cache will use
either asingle phase or two phase commit [1] protocol, respectively.

7.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASY NC. All modifications are replicated in asingle call, which instructs re-
mote caches to apply the changes to their local in-memory state and commit locally. Remote errors/rollbacks are
never fed back to the originator of the transaction since the communication is asynchronous.

7.1.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache broadcasts a pre-
pare call, which carries al modifications relevant to the transaction. Remote caches then acquire local locks on
their in-memory state and apply the modifications. Once all remote caches respond to the prepare call, the originat-
or of the transaction broadcasts a commit. Thisinstructs all remote caches to commit their data. If any of the caches
fail to respond to the prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are asynchronous. Thisis be-
cause Sun's JTA specification [2] does not specify how transactional resources should deal with failures at this
stage of atransaction; and other resources participating in the transaction may have indeterminate state anyway. As
such, we do away with the overhead of synchronous communication for this phase of the transaction. That said,
they can be forced to be synchronous using the SyncCommi t Phase and SyncRol | backPhase configuration attributes.

7.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to al instances in a cluster. Instead, each instance
picks one or more 'buddies in the cluster, and only replicates to these specific buddies. This greatly helps scalabil-
ity asthere is no longer amemory and network traffic impact every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when areplicated cache is used by a servlet container
to store HTTP session data. One of the pre-requisites to buddy replication working well and being a real benefit is
the use of session affinity , more casually known as sticky sessions in HTTP session replication speak. What this
means is that if certain datais frequently accessed, it is desirable that thisis always accessed on one instance rather
than in a round-robin fashion as this helps the cache cluster optimise how it chooses buddies, where it stores data,
and minimises replication traffic.

If thisis not possible, Buddy Replication may prove to be more of an overhead than a benefit.

7.1.2.2.1. Selecting Buddies

[1] http://en.wikipedia.org/wiki/Two-phase_commit_protocol
[2] http://java.sun.com/products/jtal

Release 2.0.0 Habanero 40

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/

Clustering

[BuddyReplication

Buddylocator O
{org.jboss.cache buddyreplication)

< < getter==+getConfigh | FuddvlacatarCanfig
+init candig D Buddyl ocarorConfig) - vaid
+locateBuddiesy buddyPoolMap | Map<k-=Address, V-=5tring=, currentMembearship - List<F-=Address> dataCwrer Address p o List<F-=Address=>

.{I_

i
NextMember Buddylocator
{org.jboss.cache buddyreplication)

Figure 7.1. BuddyL ocator

Buddy Replication uses an instance of a BuddyLocat or Which contains the logic used to select buddies in a net-
work. JBoss Cache currently ships with a single implementation, Next Menber BuddyLocat or , which is used as a de-
fault if no implementation is provided. The Next Member BuddyLocat or Selects the next member in the cluster, asthe
name suggests, and guarantees an even spread of buddies for each instance.

The Next Menmber BuddyLocat or takesin 2 parameters, both optional.

* nunBuddi es - specifies how many buddies each instance should pick to back its data onto. This defaultsto 1.

* ignoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different physical host. If
not able to do so though, it will fall back to colocated instances. This defaultstot rue .

7.1.2.2.2. BuddyPools

Also known as replication groups , a buddy pool is an optional construct where each instance in a cluster may be
configured with a buddy pool name. Think of this as an 'exclusive club membership' where when selecting buddies,
BuddyLocat or Sthat support buddy pools would try and select buddies sharing the same buddy pool name. This al-
lows system administrators a degree of flexibility and control over how buddies are selected. For example, a sysad-
min may put two instances on two separate physical servers that may be on two separate physical racks in the same
buddy pool. So rather than picking an instance on a different host on the same rack, BuddyLocat or Swould rather
pick the instance in the same buddy pool, on a separate rack which may add a degree of redundancy.

7.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the cache (directly or in-
directly, via some other service such as HTTP session replication) is able to redirect the request to any other ran-
dom cache instance in the cluster. Thisiswhere a concept of Data Gravitation comesin.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache does not contain
this information, it asks other instances in the cluster for the data. In other words, data is lazily transferred, migrat-
ing only when other nodes ask for it. This strategy prevents a network storm effect where lots of data is pushed
around healthy nodes because only one (or afew) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances to check in
the backup data they store for other caches. This means that even if a cache containing your session dies, other in-

Release 2.0.0 Habanero 41

Clustering

stances will till be able to access this data by asking the cluster to search through their backups for this data.

Once located, this data is transferred to the instance which requested it and is added to this instance's data tree. The
datais then (optionaly) removed from al other instances (and backups) so that if session affinity is used, the affin-
ity should now be to this new cache instance which has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration properties pertain to
data gravitation.

e dataGavitationRemoveOnFi nd - forces all remote caches that own the data or hold backups for the data to re-
move that data, thereby making the requesting cache the new data owner. This removal, of course, only hap-
pens after the new owner finishes replicating data to its buddy. If set to fal se an evict is broadcast instead of a
remove, so any state persisted in cache loaders will remain. This is useful if you have a shared cache |oader
configured. Defaultsto t r ue .

e dataGavitationSearchBackupTrees - ASks remote instances to search through their backups as well as main
data trees. Defaults to t rue . The resulting effect is that if thisistrue then backup nodes can respond to data
gravitation requestsin addition to data owners.

e autoDataG avitation - Whether data gravitation occurs for every cache miss. By default thisisset to f al se to
prevent unnecessary network calls. Most use cases will know when it may need to gravitate data and will pass
in an Opt i on to enable data gravitation on a per-invocation basis. If aut oDat aGravi tation iStrue this Opti on
IS unnecessary.

7.1.2.2.4. Configuration

<!'-- Buddy Replication config -->
<attribute name="BuddyReplicati onConfi g">
<confi g>

<I'-- Enabl es buddy replication. This is the ONLY mandatory configuration el enent here. -->
<buddyRepl i cati onEnabl ed>t r ue</ buddyRepl i cat i onEnabl ed>

<l-- These are the default values anyway -->
<buddyLocat or Cl ass>or g. j boss. cache. buddyr epl i cati on. Next Menber BuddyLocat or </ buddyLocat or Cl ass>

<l'-- nunBuddi es is the nunber of backup nodes each node nmintains. ignoreCol ocatedBuddi es neans
that each node will *try* to select a buddy on a different physical host. If not able to do ¢
it will fall back to col ocated nodes. -->

<buddyLocat or Properti es>
nunBuddi es = 1
i gnor eCol ocat edBuddi es = true
</ buddyLocat or Properti es>

<I-- Away to specify a preferred replication group. If specified, we try and pi ck a buddy which st
the same pool nanme (falling back to other buddies if not available). This allows the sysdnmin t
hint at backup buddi es are picked, so for exanple, nodes may be hinted topick buddies on a dif
physi cal rack or power supply for added fault tol erance. -->

<buddyPool Nanme>myBuddyPool Repl i cat i onG oup</ buddyPool Name>

<l-- Comuni cation timeout for inter-buddy group organi sati on nessages (such as assigning to and
renovi ng from groups, defaults to 1000. -->
<buddyCommuni cat i onTi meout >2000</ buddyConmuni cat i onTi neout >

<I-- \Wether data is renpbved fromold owners when gravitated to a new owner. Defaults to true. -->

Release 2.0.0 Habanero 42

Clustering

<dat aGravi t ati onRenoveOnFi nd>t r ue</ dat aG avi t at i onRenoveOnFi nd>

<I'-- \Wet her backup nodes can respond to data gravitation requests, or only the data owner is
supposed to respond. Defaults to true. -->
<dat aGravi t ati onSear chBackupTr ees>t rue</ dat aG avi t ati onSear chBackupTr ees>

<I-- \Whether all cache misses result in a data gravitation request. Defaults to false, requiring
callers to enabl e data gravitation on a per-invocation basis using the Qptions APl. -->
<aut oDat aGravi t ati on>f al se</ aut oDat aGravi tati on>

</ confi g>
</attribute>

7.2. Invalidation

If acacheis configured for invalidation rather than replication, every time data is changed in a cache other caches
in the cluster receive a message informing them that their data is now stale and should be evicted from memory. In-
validation, when used with a shared cache loader (see chapter on Cache Loaders) would cause remote caches to
refer to the shared cache loader to retrieve modified data. The benefit of this is twofold: network traffic is minim-
ised as invalidation messages are very small compared to replicating updated data, and also that other caches in the
cluster look up modified datain alazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a transaction, upon suc-
cessful commit. This is usually more efficient as invalidation messages can be optimised for the transaction as a
whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication, synchronous invalida-
tion blocks until all caches in the cluster receive invalidation messages and have evicted stale data while asyn-
chronous invalidation works in a 'fire-and-forget' mode, where invalidation messages are broadcast but doesn't
block and wait for responses.

7.3. State Transfer

Sate Transfer refers to the process by which a JBoss Cache instance prepares itself to begin providing a service by
acquiring the current state from another cache instance and integrating that state into its own state.

7.3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related to state transfer. First, in the
context of particular state transfer implementation, the underlying plumbing, there are two starkly different state
transfer types: byte array and streaming based state transfer. Second, state transfer can be full or partial state trans-
fer depending on a subtree being transferred. Entire cache tree transfer represents full transfer while transfer of a
particular subtree represents partial state transfer. And finally state transfer can be "in-memory" and "persistent”
transfer depending on a particular use of cache.

7.3.2. Byte array and streaming based state transfer

Release 2.0.0 Habanero 43

Clustering

Byte array based transfer was a default and only transfer methodology for cache in all previous releases up to 2.0.
Byte array based transfer loads entire state transferred into a byte array and sends it to a state receiving member.
Major limitation of this approach is that the state transfer that is very large (>1GB) would likely result in
OutOfMemoryException. Streaming state transfer provides an InputStream to a state reader and an OutputStream
to a state writer. OutputStream and I nputStream abstractions enable state transfer in byte chunks thus resulting in
smaller memory requirements. For example, if application state is represented as a tree whose aggregate size is
1GB, rather than having to provide a 1GB byte array streaming state transfer transfers the state in chunks of N
bytes where N is user configurable.

Byte array and streaming based state transfer are completely APl transparent, interchangeable, and statically con-
figured through a standard cache configuration XML file. Refer to JGroups documentation on how to change from
one type of transfer to another.

7.3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be done at various
times, depending on how the cache is used. "Full" state transfer refers to the transfer of the state related to the entire
tree -- i.e. the root node and all nodes below it. A "partia" state transfer is one where just a portion of the tree is
transferred -- i.e. anode at a given Fgn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following times:

1. Initia state transfer. This occurs when the cache is first started (as part of the processing of thestart () meth-
od). Thisis a full state transfer. The state is retrieved from the cache instance that has been operational the
longest. S|f thereis any problem receiving or integrating the state, the cache will not start.

Initial state transfer will occur unless;

a The cache's I nactiveOnStartup property is true . This property is used in conjunction with region-
based marshalling.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partid state transfer following region activation. When region-based marshalling is used, the application needs
to register a specific class loader with the cache. This class loader is used to unmarshall the state for a specific
region (subtree) of the cache.

After registration, the application calls cache. get Regi on(fqgn, true).activate() , which initiates a partial
state transfer of the relevant subtree's state. The request is first made to the oldest cache instance in the cluster.
However, if that instance responds with no state, it is then requested from each instance in turn until one either
provides state or all instances have been queried.

Typically when region-based marshalling is used, the cache's | nacti venSt art up property is set to true .
This suppressesinitial state transfer, which would fail due to the inability to deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead, when a cache in-
stance joins the cluster, it becomes the buddy of one or more other instances, and one or more other instances
become its buddy. Each time an instance determines it has a new buddy providing backup for it, it pushesit's

5The|8H££§‘3p§F&¥ﬁgIQaI:n§i p%égl,ggwag;hl@ﬁm %@fh@@é@r&%ﬁ%ﬁ new buddy is dightly different from other forms

Release 2.0.0 Habanero 44

Clustering

of state transfer, which are based on a"pull" approach (i.e. recipient asks for and receives state). However, the
process of preparing and integrating the state is the same.

This "push” of state upon buddy group formation only occurs if the I nacti veOnSt art up property is set to
false . Ifitistrue , state transfer anongst the buddies only occurs when the application activates the region
on the various members of the group.

Partial state transfer following a region activation call is slightly different in the buddy replication case as
well. Instead of requesting the partial state from one cache instance, and trying all instances until one re-
sponds, with buddy replication the instance that is activating a region will request partial state from each in-
stance for which it is serving as a backup.

7.3.4. Transient ("in-memory") and persistent state transfer

The state that is acquired and integrated can consist of two basic types:

1

"Transient" or "in-memory" state. This consists of the actual in-memory state of another cache instance - the
contents of the various in-memory nodes in the cache that is providing state are serialized and transferred; the
recipient deserializes the data, creates corresponding nodes in its own in-memory tree, and populates them
with the transferred data.

"In-memory" state transfer is enabled by setting the cache's Fet chl nMenorySt at e configuration attribute to
true.

"Persistent” state. Only applicable if a non-shared cache loader is used. The state stored in the state-provider
cache's persistent store is deserialized and transferred; the recipient passes the data to its own cache loader,
which persistsit to the recipient's persistent store.

"Persistent” state transfer is enabled by setting a cache loader's f et chPer si st ent St at e attribute to true . If
multiple cache loaders are configured in a chain, only one can have this property set to true; otherwise you
will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same persistent store that
provides the datawill just end up receiving it. Therefore, if a shared cache loader is used, the cache will not al-
low a persistent state transfer even if a cacheloader hasf et chPersi stent State SettOtrue .

Which of these types of state transfer is appropriate depends on the usage of the cache.

If awrite-through cache loader is used, the current cache state is fully represented by the persistent state. Data
may have been evicted from the in-memory state, but it will still be in the persistent store. In this case, if the
cache loader is not shared, persistent state transfer is used to ensure the new cache has the correct state. In-
memory state can be transferred as well if the desire isto have a"hot" cache -- one that has all relevant datain
memory when the cache begins providing service. (Note that the <cachel oader ><pr el oad> element in the
CacheLoader Conf i g configuration parameter can be used as well to provide a "warm" or "hot" cache without
requiring an in-memory state transfer. This approach somewhat reduces the burden on the cache instance
providing state, but increases the load on the persistent store on the recipient side.)

If a cache loader is used with passivation, the full representation of the state can only be obtained by combin-
ing the in-memory (i.e. non-passivated) and persistent (i.e. passivated) states. Therefore an in-memory state

Release 2.0.0 Habanero 45

Clustering

transfer is necessary. A persistent state transfer is necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used to cache data that
can also be found in a persistent store, e.g. a database), whether or not in-memory state should be transferred
depends on whether or not a"hot" cache is desired.

7.3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are configured with the
same settings for persistent and transient state. Thisis because byte array based transfers, when requested, rely only
on the requester's configuration while stream based transfers rely on both the requester and sender's configuration,
and thisis expected to be identical.

Release 2.0.0 Habanero 46

Cache Loaders

JBoss Cache can use a Cacheloader to back up the in-memory cache to a backend datastore. If JBoss Cache is con-
figured with a cache loader, then the following features are provided:

* Whenever a cache element is accessed, and that element is not in the cache (e.g. due to eviction or due to server
restart), then the cache loader transparently loads the element into the cache if found in the backend store.

* Whenever an element is modified, added or removed, then that modification is persisted in the backend store
viathe cache loader. If transactions are used, all modifications created within atransaction are persisted. To this

end, the CacheLoader takes part in the two phase commit protocol run by the transaction manager, although it
does not do so explicitly.

8.1. The CachelLoader Interface and Lifecycle

Release 2.0.0 Habanero 47

Cache Loaders

[Can:heLn:nader’]J

Cacheloader O
forg.jbozz.cache. loader)

< SsatterE= st onfigl config CindividuzlCacheloaderCanfig o vold
< <getter==4getConfigs lndividuzlCachel ordarCantig

< <sebterEEdsetCaclhel o CrelhaiB)l y D vaid

< cgetter=r=+getChildrenMamessfgr - Fqn o hat

< getter==4getl name D Fgi o Map

t+axistsi hame Fgk o boolean

LR rame D Ege, ey D Olject, walue D Dliect o Okiact
+ramaovel fgn D Fgr, key D Dbject p o Okject

+removel fqr o Fge b oweid

+removelatal fqr o Fgr ok ovaid

oo b Obiect D waid

+rollzacks tx - Ohject ;owoid

HoadErtirebtatel o | OkjactOutputhitrezm ¢ o vaid
+atoreERtiveStatel s | Qljectinputhitream 3 o void

+Hlogditatel spbtres D Fgr, o5) OljactQuputitream 3 void
Larorebtatel subtres Fgr, s ODhjectinputitrezm 3 vold

< <setterE=4setRegichManzgert maneger RegionManager y | vold
+oreatady Cvaold

+5rat wald

+atopl vold

+destroviy vold

+puti hame Fgh, aitributes Map)

Lol madifications (List

Foreparel iy | Olyject modifications [List ane_phasea boolean)

Figure 8.1. The CachelL oader interface

The interaction between JBoss Cache and a CacheLoader implementation is as follows. When CachelLoader Con-
figuration (see below) is non-null, an instance of each configured CacheLoader is created when the cacheis cre-
ated, and started when the cache is started.

CacheLoader . create() and CachelLoader.start () are called when the cache is started. Correspondingly, st op()
and destroy() are called when the cache is stopped.

Next, set Confi g() and set Cache() are called. The latter can be used to store a reference to the cache, the former
is used to configure this instance of the cacheLoader . For example, here a database cache loader could establish a
connection to the database.

The cacheLoader interface has a set of methods that are called when no transactions are used: get () , put () , re-
nove() and renoveDat a() : they get/set/remove the value immediately. These methods are described as javadoc
comments in the interface.

Then there are three methods that are used with transactions. prepare() , commit () and rol | back() . The pre-
par e() method is called when atransaction is to be committed. It has a transaction object and alist of modfications
as argument. The transaction object can be used as a key into a hashmap of transactions, where the values are the
lists of modifications. Each modification list has a number of Mdi fi cati on elements, which represent the changes

Release 2.0.0 Habanero 48

Cache Loaders

made to a cache for a given transaction. When prepar e() returns successfully, then the cache loader must be able
to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the right time.

The comi t () method tells the cache loader to commit the transaction, and the r ol | back() method tells the cache
loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract implementations
would need to fulfil.

8.2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define severa cache load-
ers, in a chain. The impact is that the cache will look at all of the cache loaders in the order they've been con-
figured, until it finds a valid, non-null element of data. When performing writes, all cache loaders are written to
(except if thei gnor eMbdi fi cati ons element has been set to t r ue for a specific cache loader. See the configuration
section below for details.

<I-- Cache | oader config block -->
<attri bute name="CachelLoader Confi gurati on">
<confi g>

<I-- if passivation is true, only the first cache | oader is used; the rest are ignored -->
<passi vat i on>f al se</ passi vati on>
<l-- comma delinmted FQNs to preload -->
<pr el oad>/ </ pr el oad>
<l-- are the cache | oaders shared in a cluster? -->
<shar ed>f al se</ shar ed>

<I-- we can now have mnul tiple cache | oaders, which get chained -->
<l-- the 'cachel oader' el enent nmay be repeated -->
<cachel oader >

<cl ass>or g. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<l-- properties to pass in to the cache | oader -->
<properties>
cache. jdbc. driver=com nysql .jdbc. Driver
cache. jdbc. url =j dbc: mysql : //1 ocal host : 3306/ bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
cache. j dbc. sql - concat =concat (1, 2)
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>

<I-- only one cache |oader in the chain may set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>

<I'-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>

<I-- if set to true, purges the contents of this cache |oader when the cache starts up

Release 2.0.0 Habanero 49

Cache Loaders

Defaults to false. -->
<pur geOnSt art up>f al se</ purgeOnSt art up>

<I-- defines the cache | oader as a singleton store where only the coordinator of the
cluster will store nodifications. -->
<si ngl et onSt or e>
<I-- if true, singleton store functionality is enabled, defaults to false -->

<enabl ed>f al se</ enabl ed>

<I-- inplenentation class for singleton store functionality which nust extend
org.j boss. cache. | oader. Abst r act Del egati ngCacheLoader. Default inplenentation
i s org.jboss. cache. | oader. Si ngl et onSt or eCachelLoader -->

<cl ass>org. j boss. cache. | oader. Si ngl et onSt or eCachelLoader </ cl ass>

<l-- properties and default values for the default singleton store functionality
i mpl enentation -->

<properties>
pushsSt at evhenCoor di nat or =t r ue
pushSt at eWhenCoor di nat or Ti meout =20000

</ properties>

</ si ngl et onSt or e>
</ cachel oader >

</ config>
</attribute>

Thecl ass element defines the class of the cache loader implementation. (Note that, because of a bug in the proper-
ties editor in JBoss AS, backslashes in variables for Windows filenames might not get expanded correctly, so re-
place="false" may be necessary). Note that an implementation of cache loader hasto have an empty constructor.

Theproperti es element defines a configuration specific to the given implementation. The filesystem-based imple-
mentation for example defines the root directory to be used, whereas a database implementation might define the
database URL, name and password to establish a database connection. This configuration is passed to the cache
loader implementation via CachelLoader . set Confi g(Properti es) . Note that backspaces may have to be escaped.

prel oad allows us to define alist of nodes, or even entire subtrees, that are visited by the cache on startup, in order
to preload the data associated with those nodes. The default (/") loads the entire data available in the backend store
into the cache, which is probably not a good idea given that the data in the backend store might be large. As an ex-
ample, /a, /product/catal ogue loads the subtrees/a and/ product/ cat al ogue into the cache, but nothing else.
Anything else isloaded lazily when accessed. Prel oading makes sense when one anticipates using el ements under a
given subtree frequently. .

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache when joining a cluster.
Only one configured cache loader may set this property to true; if more than one cache loader does so, a configura-
tion exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run on a separate thread so
writes return immediately. If thisis set to true, an instance of or g. j boss. cache. | oader . AsyncCacheLoader iSCOn-
structed with an instance of the actual cache loader to be used. The AsyncCachelLoader then delegates all requests
to the underlying cache loader, using a separate thread if necessary. See the Javadocs on AsyncCacheLoader for
more details. If unspecified, the async element defaultstof al se .

Note on using the async element: there is always the possibility of dirty reads since all writes are performed asyn-
chronoudly, and it is thus impossible to guarantee when (and even if) a write succeeds. This needs to be kept in

Release 2.0.0 Habanero 50

Cache Loaders

mind when setting the async element to true.

i gnor eModi fi cati ons determines whether write methods are pushed down to the specific cache loader. Situations
may arise where transient application data should only reside in a file based cache loader on the same server as the
in-memory cache, for example, with afurther shared JDBCCacheLoader used by al serversin the network. Thisfea-
ture allows you to write to the 'local’ file cache loader but not the shared JDBCCacheLoader . This property defaults
tofal se , SOwrites are propagated to all cache loaders configured.

pur geOnSt at up empties the specified cache loader (if i gnorembdifications is fal se) when the cache loader
starts up.

shar ed indicates that the cache loader is shared among different cache instances, for example where all instancesin
a cluster use the same JDBC settings t talk to the same remote, shared database. Setting thisto t rue prevents re-
peated and unnecessary writes of the same data to the cache loader by different cache instances. Default value is
fal se.

8.2.1. Singleton Store Configuration

si ngl et onSt or e element enables modifications to be stored by only one node in the cluster, the coordinator. Es-
sentialy, whenever any data comes in to some node it is always replicated so as to keep the caches' in-memory
states in sync; the coordinator, though, has the sole responsibility of pushing that state to disk. This functionality
can be activated setting the enabl ed subelement to true in all nodes, but again only the coordinator of the cluster
will store the modifications in the underlying cache loader as defined in cachel oader element. You cannot define a
cache loader as shar ed and with si ngl et onSt or e enabled at the same time. Default value for enabl ed iSfal se .

Optionally, within the si ngl et onSt or e element, you can define acl ass element that specifies the implementation
class that provides the singleton store functionality. This class must extend
org.j boss. cache. | oader. Abst r act Del egat i ngCachelLoader , and if absent, it defaults to
org.j boss. cache. | oader. Si ngl et onSt or eCachelLoader .

The properties subelement defines properties that allow changing the behaivour of the class providing the
singleton store functionality. By default, pushSt at ewhenCoor di nat or and pushsSt at ewhenCoor di nat or Ti meout
properties have been defined, but more could be added as required by the user-defined class providing singleton
store functionality.

pushSt at eWhenCoor di nat or alows the in-memory state to be pushed to the cache store when a hode becomes the
coordinator, as aresult of the new election of coordinator due to a cluster topology change. This can be very useful
in situations where the coordinator crashes and there's a gap in time until the new coordinator is elected. During
thistime, if this property was set to f al se and the cache was updated, these changes would never be persisted. Set-
ting this property to t rue would ensure that any changes during this process also get stored in the cache loader.
Y ou would also want to set this property to t r ue if each node's cache loader is configured with a different location.
Default valueistrue .

pushsSt at eWhenCoor di nat or Ti neout iSonly relevant if pushst at eWwhenCoor di nat or iStrue in which case, setsthe
maximum number of milliseconds that the process of pushing the in-memory state to the underlying cache loader
should take, reporting a Pushst at eExcept i on if exceeded. Default value is 20000.

Note on using the si ngl et onSt ore element: setting up a cache loader as a singleton and using cache passivation
(viaevictions) can lead to undesired effects. If anodeis to be passivated as a result of an eviction, while the cluster
isin the process of electing a new coordinator, the data will be lost. This is because no coordinator is active at that

Release 2.0.0 Habanero 51

Cache Loaders

time and therefore, none of the nodes in the cluster will store the passivated node. A new coordinator is elected in
the cluster when either, the coordinator |eaves the cluster, the coordinator crashes or stops responding.

8.3. Shipped Implementations

The currently available implementations shipped with JBoss Cache are as follows.

8.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilise the file system as a data store. They all require that the
<cachel oader ><pr oper t i es> configuration element contains al ocat i on property, which maps to a directory to be
used as a persistent store. (e.g., | ocat i on=/t np/ myDat aSt or e). Used mainly for testing and not recommended for
production use.

* FileCacheLoader , Whichisasimple filesystem-based implementation. By default, this cache loader checks for
any potential character portability issuesin the location or tree node names, for example invalid characters, pro-
ducing warning messages. These checks can be disabled adding check. character. portabil ity property to
the <pr oper ti es> element and setting it to f al se (e.g., check. character. portability=fal se).

The FileCachel oader has some severe limitations which restrict it's use in a production environment, or if used
in such an environment, it should be used with due care and sufficient understanding of these limitations.

* Dueto the way the FileCachel oader represents a tree structure on disk (directories and files) traversal isin-
efficient for deep trees.

« Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do not implement
proper file locking and can cause data corruption.

» Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt to write to the
samefile.

* File systems are inherently not transactional, so when attempting to use your cache in a transactional con-

text, failures when writing to the file (which happens during the commit phase) cannot be recovered.
Asarule of thumb, it is recommended that the FileCachel oader not be used in a highly concurrent, transaction-
a or stressful environment, and it's use is restricted to testing.

e Bdbj eCacheLoader , Which is acache loader implementation based on the Oracle/Sleepycat's BerkeleyDB Java
Edition[1] .

e JdbnCacheLoader , which is a cache loader implementation based on the JDBM engine [2] , afast and free a-
ternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based implementation, and
provides transactional guarantees, but requires a commercial license if distributed with an application (see ht-
tp://www.oracle.com/database/berkel ey-db/index.html for details).

8.3 AnSrRsheloadersdhatdelrgatig,to other caches

[2] http://jdbm.sourceforge.net/

Release 2.0.0 Habanero 52

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/

Cache Loaders

e Local Del egat i ngCacheLoader , which enables loading from and storing to another local (same VM) cache.

e dusteredCacheLoader , which allows querying of other caches in the same cluster for in-memory data via the
same clustering protocols used to replicate data. Writes are not 'stored' though, as replication would take care of
any updates needed. Y ou need to specify a property called ti meout , along value telling the cache loader how
many milliseconds to wait for responses from the cluster before assuming a null value. For example, ti meout =
3000 would use atimeout value of 3 seconds.

8.3.3. JIDBCCacheLoader

JBossCache is distributed with a JIDBC-based cache loader implementation that stores/|oads nodes' state into arela-
tional database. The implementing classisor g. j boss. cache. | oader . JDBCCacheLoader .

The current implementation uses just one table. Each row in the table represents one node and contains three
columns:

e column for Fgn (which is also aprimary key column)
» column for node contents (attribute/value pairs)
e column for parent Fgn

Fgn 's are stored as strings. Node content is stored as a BLOB. WARNING: JBoss Cache does not impose any limit-
ations on the types of objects used in Fgn but this implementation of cache loader requires Fgn to contain only ob-
jects of typej ava. | ang. String . Another limitation for Fgn is its length. Since Fqn is a primary key, its default
column type is VARCHAR which can store text values up to some maximum length determined by the database in use.

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCachel oader [3] for configuration tips with specific database
systems.

8.3.3.1. JIDBCCacheLoader configuration

8.3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

e cache.jdbc.table.name - the name of the table. The default value is 'jbosscache’.
¢ cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is 'jbosscache pk'.

» cache.jdbc.table.create - can be true or false. Indicates whether to create the table during startup. If true, the ta-
bleiscreated if it doesn't already exist. The default valueistrue.

» cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown. The default
valueistrue.

» cache.jdbc.fgn.column - FQN column name. The default valueis 'fgn'.

[3] http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCachel oader

Release 2.0.0 Habanero 53

http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader

Cache Loaders

« cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)".
¢ cache.jdbc.node.column - node contents column name. The default value is 'node.

« cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must specify a valid
binary datatype for the database being used.

8.3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can specify the INDI name
of the DataSource you want to use.

e cache.jdbc.datasource - INDI name of the DataSource. The default valueisj ava: / Def aul t DS .

8.3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access using a JDBC
driver.

e cache.jdbc.driver - fully qualified JDBC driver name.
« cache.jdbc.url - URL to connect to the database.
e cache.jdbc.user - user name to connect to the database.

» cache.jdbc.password - password to connect to the database.

8.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server standalone using
the c3p0:JDBC DataSources/Resource Pools library. In order to enableit, just edit the following property:

« cache.jdbc.connection.factory - Connection factory class name. If not set, it defaults to standard non-pooled im-
plementation. To enable c3p0 pooling, just set the connection factory class for c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties section but don't forget to start the prop-
erty name with 'c3p0.". To find alist of available properties, please check the c3p0 documentation for the c3p0 lib-
rary version distributed in c3p0:JDBC DataSources/Resource Pools [4] . Also, in order to provide quick and easy
way to try out different pooling parameters, any of these properties can be set via a System property overriding any
values these properties might have in the JBoss Cache XML configuration file, for example:
Dc3p0. maxPool Si ze=20 . If a c3p0 property is not defined in either the configuration file or as a System property,
default value, asindicated in the c3p0 documentation, will apply.

8.3.3.1.5. Configuration example

Below is an example of a IDBCCachel oader using Oracle as database. The Cachel oaderConfiguration XML ele-
ment contains an arbitrary set of properties which define the database-related configuration.

[4] http://sourceforge.net/projects/c3p0

Release 2.0.0 Habanero 54

http://sourceforge.net/projects/c3p0

Cache Loaders

<attribute name="CachelLoader Confi gurati on">

<confi g>

<passi vati on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>

<cachel oader >

<cl ass>or g. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc
cache. j dbc
cache. j dbc
cache. j dbc
cache. j dbc
cache. j dbc

cache. j dbc.
cache. j dbc.
cache. j dbc.
cache. j dbc.
cache. j dbc.
cache. j dbc.
cache. j dbc.
cache. j dbc.

</ properties>

. tabl e. name=j bosscache

.tabl e.create=true
.tabl e. drop=true

.tabl e. pri mar ykey=j bosscache_pk
.fgn. col um=f gn

.fgn. type=var char (255)
node. col utm=node
node. t ype=bl ob

par ent . col utm=par ent

dri ver=oracle.jdbc. Oracl eDriver
url =j dbc: oracl e: t hi n: @ ocal host : 1521: JBOSSDB
user =SCOTT

passwor d=TI GER

sql - concat =concat (1, 2)

<async>f al se</ async>
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>

<pur geOnSt art
</ cachel oader >
</ confi g>
</attribute>

Asan aternative to configuring the entire JDBC connection, the name of an existing data source can be given:

up>f al se</ purgeOnSt art up>

<attri bute name="CachelLoader Confi gurati on">

<confi g>

<passi vati on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>

<cachel oader >

<cl ass>or g. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc
</ properties>

. dat asour ce=j ava: / Def aul t DS

<async>f al se</ async>

<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<pur geOnSt art up>f al se</ purgeOnStart up>

</ cachel oader >
</ confi g>
</attribute>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

Release 2.0.0 Habanero

55

Cache Loaders

<attri bute name="CachelLoader Confi gurati on">
<confi g>
<passi vati on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc. t abl e. nane=j bosscache
cache. j dbc. tabl e. create=true
cache. jdbc. tabl e. drop=true
cache. j dbc. tabl e. pri mar ykey=j bosscache_pk
cache. j dbc. f gn. col um=f gn
cache. jdbc. fgn. t ype=var char (255)
cache. j dbc. node. col utTm=node
cache. j dbc. node. t ype=bl ob
cache. j dbc. par ent. col um=par ent
cache. jdbc. driver=oracle.jdbc. Oracl eDriver
cache. jdbc. url =j dbc: oracl e: thi n: @ocal host: 1521: JBOSSDB
cache. j dbc. user =SCOTT
cache. j dbc. passwor d=TI GER
cache. j dbc. sql - concat =concat (1, 2)
cache. j dbc. connecti on. f act ory=org. j boss. cache. | oader. C3p0Connecti onFact ory
¢3p0. maxPool Si ze=20
¢3p0. checkout Ti neout =5000
</ properties>

<async>f al se</ async>
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi ficati ons>
<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

8.3.4. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which could reside (a) in
the same address space, (b) in a different process on the same host, or (c) in adifferent process on a different host.

A TcpDelegatingCachel oader talks to aremote or g. j boss. cache. | oader . t cp. TcpCacheSer ver , Which can be a
standalone process started on the command line, or embedded as an MBean inside JBoss AS. The TcpCacheSer ver

has a reference to another JBoss Cache instance, which it can create itself, or which is given to it (e.g. by JBoss, us-
ing dependency injection).

The TcpDelegatingCachel oader is configured with the host and port of the remote TcpCacheServer, and uses this
to communicate to it.

The configuration looks as follows:

<attribute name="CachelLoader Confi gurati on">
<confi g>
<cachel oader >
<cl ass>org. j boss. cache. | oader. TcpDel egat i ngCachelLoader </ cl ass>

Release 2.0.0 Habanero 56

Cache Loaders

<properties>
host =myRenot eSer ver
port =7500
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBoss Cache will delegate all load and store requests to the remote TcpCacheServer
running on nyRenot eSer ver : 7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all delegating to the
same TcpCacheServer instance. The TcpCacheServer might itself delegate to a database via JDBCCachel oader,
but the point here is that - if we have 5 nodes all accessing the same dataset - they will load the data from the Tcp-
CacheServer, which has do execute one SQL statement per unloaded data set. If the nodes went directly to the data-
base, then we'd have the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in front
of the DB (assuming that a network round trip is faster than a DB access (which usualy also include a network
round trip)).

To dleviate single point of failure, we could configure several cache loaders. The first cache loader is a Clustered-
Cachel oader, the second a TcpDelegatingCachel oader, and the last a JDBCachel oader, effectively defining our
cost of accessto a cache in increasing order.

8.3.5. Transforming Cache Loaders

The way cached data is written to Fi | eCachelLoader and JDBCCachelLoader based cache stores has changed in
JBoss Cache 2.0 in such way that these cache loaders now write and read data using the same marhalling frame-
work used to replicate data accross the network. Such change is trivial for replication purpouses as it just requires
the rest of the nodes to understand this format. However, changing the format of the datain cache stores brings up a
new problem: how do users, which have their data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss
Cache 2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader implementations called
org.j boss. cache. | oader. Transf or m ngFi | eCachelLoader and
org. j boss. cache. | oader . Tr ansf or mi ngJDBCCacheLoader located within the optional jbosscache-cacheload-
er-migration.jar file. These are one-off cache loaders that read data from the cache store in JBoss Cache 1.x.x
format and write data to cache stores in JBoss Cache 2.0 format.

Theideaisfor usersto modify their existing cache configuration file(s) momentarily to use these cache |oaders and
for them to create a small Java application that creates an instance of this cache, recursively reads the entire cache
and writes the data read back into the cache. Once the data is transformed, users can revert back to their original
cache configuration file(s). In order to help the users with this task, a cache loader migration example has been con-
structed which can be located under the exanpl es/ cachel oader - mi grat i on directory within the JBoss Cache dis-
tribution. This example, called exanpl es. Transf or nSt or e , is independent of the actual data stored in the cache as
it writes back whatever it was read recursively. It is highly recommended that anyone interested in porting their
data run this example first, which contains ar eadne. t xt file with detailed information about the example itself,
and also use it as base for their own application.

Release 2.0.0 Habanero 57

Cache Loaders

8.4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to a secondary data
store (e.g., file system, database) on eviction. Cache Activation is the process of restoring an object from the data
store into the in-memory cache when it's needed to be used. In both cases, the configured cache loader will be used
to read from the data store and write to the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a naotification that the
node is being passivated will be emitted to the cache listeners and the node and its children will be stored in the
cache loader store. When a user attempts to retrieve a node that was evicted earlier, the node is loaded (lazy |oaded)
from the cache loader store into memory. When the node and its children have been loaded, they're removed from
the cache loader and a notification is emitted to the cache listeners that the node has been activated.

To enable cache passivation/activation, you can set passi vat i on to true. The default isf al se . When passivation is
used, only the first cache loader configured is used and al others are ignored.

8.5. Strategies

This section discusses different patterns of combining different cache loader types and configuration options to
achieve specific outcomes.

8.5.1. Local Cache With Store
Thisis the simplest case. We have a JBoss Cache instance, whose cache mode is LocAL , therefore no replication is
going on. The cache loader simply loads non-existing elements from the store and stores modifications back to the

store. When the cache is started, depending on the prel oad element, certain data can be preloaded, so that the
cacheis partly warmed up.

8.5.2. Replicated Caches With All Caches Sharing The Same Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

Release 2.0.0 Habanero 58

Cache Loaders

< repLication | ™ %

CACHE CACHE

CACHELOADER CACHELOADER

h“‘h—q__“—m___ /
—
T
N
STORE \

Both nodes have a cache loader that accesses a common shared backend store. This could for example be a shared
filesystem (using the FileCachel.oader), or a shared database. Because both nodes access the same store, they don't
necessarily need state transfer on startup. 6 Rather, the Fet chl nMeror ySt at e attribute could be set to false, result-
ing in a'cold cache, that gradually warms up as elements are accessed and loaded for the first time. This would
mean that individual cachesin a cluster might have different in-memory state at any given time (largely depending
on their preloading and eviction strategies).

= 4

Figure 8.2. 2 nodes sharing a backend store

When storing a value, the writer takes care of storing the change in the backend store. For example, if hodel made
change C1 and node2 C2, then nodel would tell its cache loader to store C1, and node2 would tell its cache |oader
to store C2.

8.5.3. Replicated Caches With Only One Cache Having A Store

b0t course they can enable state transfer, if they want to have awarm or hot cache after startup.

Release 2.0.0 Habanero 59

Cache Loaders

< REPLICATION >
CACHE CACHE
CACHELOADER
/""‘
*__,-'-
STORE

Figure 8.3. 2 nodes but only one accesses the backend store

Thisisasimilar caseto the previous one, but here only one node in the cluster interacts with a backend store viaits
cache loader. All other nodes perform in-memory replication. The idea here is all application state is kept in
memory in each node, with the existence of multiple caches making the data highly available. (This assumes that a
client that needs the data is able to somehow fail over from one cache to another.) The single persistent backend
store then provides a backup copy of the datain case all cachesin the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronously, that is not on the caller's
thread, in order not to slow down the cluster by accessing (for example) a database. This is a hon-issue when using
asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a single point of failure.
Furthermore, if the cluster is restarted, the cache with the cache loader must be started first (easy to forget). A solu-
tion to the first problem is to configure a cache loader on each node, but set the si ngl et onSt or e configuration to
true. With this kind of setup, one but only one node will always be writing to a persistent store. However, this
complicates the restart problem, as before restarting you need to determine which cache was writing before the
shutdown/failure and then start that cache first.

8.5.4. Replicated Caches With Each Cache Having Its Own Store

Release 2.0.0 Habanero 60

Cache Loaders

REPLICATION

CACHE CACHE

CACHELOADER CACHELOADER

'

STORE STORE

Figure 8.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the cluster and (b) per-
sisted using the cache loader. This means that all datastores have exactly the same state. When replicating changes
synchronously and in a transaction, the two phase commit protocol takes care that all maodifications are replicated
and persisted in each datastore, or noneis replicated and persisted (atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement recovery. When used with a trans-
action manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. Thisis always a full state transfer, overwrit-
ing any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed. During this time, it will not
alow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using | oadEntireState() . It then sends back
that state to the new node.

4. The new node then tells its cache loader to store that state in its store, overwriting the old state. This is the
CachelLoader . storeEntireState() method

5. Asanoption, the transient (in-memory) state can be transferred as well during the state transfer.

6. Thenew node now has the same state in its backend store as everyone else in the cluster, and modifications re-
ceived from other nodes will now be persisted using the local cache loader.

Release 2.0.0 Habanero 61

Cache Loaders

8.5.5. Hierarchical Caches

If you need to set up a hierarchy within asingle VM, you can use the Local Del egat i ngCachelLoader . Thistype of
hierarchy can currently only be set up programmatically.

Hierarchical caches could also be set up spanning more than one VM or server, using the TcpDel egat i ngCachel-
oader .

I wEpiication | ™
CACHE CACHE
TCP DELEGATING TCP DELEGATING
CACHELOADER CACHELDADER
v v
TCP TCP
ik

TCP CACHE SERVER

CACHE

CACHELOADER

' 1

STORE

Figure 8.5. TCP deegating cache loader

Release 2.0.0 Habanero 62

Cache Loaders

8.5.6. Multiple Cache Loaders

You can set up more than one cache loader in a chain. Internally, a delegating Chai ni ngCacheLoader is used, with
references to each cache loader you have configured. Use cases vary depending on the type of cache loaders used
in the chain. One example is using a filesystem based cache |oader, colocated on the same host as the VM, used as
an overflow for memory. This ensures data is available relatively easily and with low cost. An additional remote
cache loader, such asaTcpDel egat i ngCacheLoader provides resilience between server restarts.

Release 2.0.0 Habanero 63

Cache Loaders

— e o A —— o o o o o - e s = .

SERVER1

CACHE

SERVER2

T T ——— e]

T

(-

]

FILESYSTEM BASED k

CACHELOADER

TCP DELEGATING
CACHELOADER

b

LOCAL FILE
STORE

]

T R . L.
- repLication | ™

| [
1 [

1 1 | cache
I I
FILESYSTEM BASED I I
CACHELDADER I I

|
TCP DELEGATING | '
CACHELDADER : :
1 [
1 [
LOCAL FILE
STORE 1 1
I I
I I
| I
TCP TCP
r-===®= == = "= 4 & - = 1

TCP CACHE SERVER

CACHE

CACHELOADER

DATABASE
3TORE

SERVER 2

Release 2.0.0 Habanero

64

Cache Loaders

Figure 8.6. M ultiple cache loadersin a chain

Release 2.0.0 Habanero

65

Eviction Policies

Eviction policies control JBoss Cache's memory management by managing how many nodes are alowed to be
stored in memory and their life spans. Memory constraints on servers mean cache cannot grow indefinitely, so
policies need to be in place to restrict the size of the cache. Eviction policies are most often used alongside cache
loaders.

9.1. Configuring Eviction Policies

9.1.1. Basic Configuration

The basic eviction policy configuration element looks like:

<attribute name="EvictionConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds">3</attri bute>

<I-- This defaults to 200000 if not specified -->
<attribute name="event QueueSi ze">100000</ attri but e>

<l-- Nanme of the DEFAULT eviction policy class. -->
<attribute name="policyC ass">org.jboss. cache. evi ction. LRUPol i cy</attri bute>

<l-- Cache w de default -->
<regi on nanme="/_default ">

<attribute name="nmaxNodes">100</attri bute>
</regi on>

<l-- override policy used for this region -->

<regi on nane="/org/jboss/data" policyd ass="org.jboss. cache. evi cti on. MRUPol i cy" >
<attri bute name="naxNodes">250</attri bute>

</ regi on>

<I-- W expect a lot of events for this region
so override the default event queue size -->
<regi on nane="/org/jboss/test/data" event QueueSi ze="500000">
<attri bute name="naxNodes">60000</attri bute>
</ regi on>

</ confi g>
</attribute>

Release 2.0.0 Habanero 66

Eviction Policies

e wakelUpl nt erval Seconds - thisrequired parameter defines how often the eviction thread runs

e event QueueSi ze - this optional parameter defines the size of the queue which holds eviction events. If your
eviction thread does not run often enough, you may need to increase this. This can be overridden on a per-
region basis.

* policyd ass - thisis required, unless you set individual policyClass attributes on each and every region. This
defines the eviction policy to use if oneis not defined for aregion.

9.1.2. Eviction Regions

The concept of regions and the Regi on class were visited earlier when talking about marshalling. Regions also have
another use, in that they are used to define the eviction policy used within the region. In addition to using a region-
specific configuration, you can also configure a default, cache-wide eviction policy for nodes that do not fall into
predefined regions or if you do not wish to define specific regions. It is important to note that when defining re-
gions using the configuration XML file, al elements of the Fgn that defines the region arej ava. | ang. Stri ng ob-
jects.

Looking at the eviction configuration snippet above, we see that a default region, _defaul t _ , holds attributes
which apply to nodes that do not fall into any of the other regions defined.

For each region, you can define parameters which affect how the policy which applies to the region chooses to
evict nodes. In the example above, the LRUPol i cy allows amaxNodes parameter which defines how many nodes can
exist in the region before it chooses to start evicting nodes. See the javadocs for each policy for a list of allowed
parameters.

9.1.2.1. Overlapping Eviction Regions

It's possible to define regions that overlap. In other words, one region can be defined for /a/b/c , and another
defined for /a/b/c/d (which isjust the d subtree of the /a/b/c sub-tree). The algorithm, in order to handle scenarios
like this consistently, will always choose the first region it encounters. In this way, if the algorithm needed to de-
cide how to handle /a/b/c/d/e, it would start from there and work its way up the tree until it hits the first defined re-
gion - inthiscase/a/b/c/d .

9.1.3. Programmatic Configuration

Configuring eviction using the Confi guration object entals the use of the
org. j boss. cache. confi g. Evi cti onConfi g bean, which is passed into Confi guration. set Evi cti onConfig() .
See the chapter on Configuration for more on building a Conf i gur ati on programatically.

The use of simple POJO beans to represent all elements in a cache's configuration also makes it fairly easy to pro-
gramatically add eviction regions after the cache is started . For example, assume we had an existing cache con-
figured via XML with the EvictionConfig element shown above. Now at runtime we wished to add a new eviction
region named "/org/jboss/fifo", using LRUPol i cy but a different number of maxNodes :

Fgn fgn = Fgn.fronBtring("/org/jboss/fifo");

/'l Create a configuration for an LRUPolicy

Release 2.0.0 Habanero 67

Eviction Policies

LRUConf i guration I ruc = new LRUConfi guration();
I ruc. set MaxNodes(10000) ;

/Il Create the region and set the config
Regi on regi on = cache. get Regi on(fqgn, true);
regi on. set Evi cti onPol i cy(lruc);

9.2. Shipped Eviction Policies

9.2.1. LRUPolicy - Least Recently Used

org. j boss. cache. evi cti on. LRUPol i cy controls both the node lifetime and age. This policy guarantees a constant
order (0 (1)) for adds, removals and lookups (visits). It has the following configuration parameters:

* maxNodes - Thisisthe maximum number of nodes allowed in this region. O denotes no limit.

e timeTolLi veSeconds - The amount of time a node is not written to or read (in seconds) before the node is swept
away. 0 denotes no limit.

e maxAgeSeconds - Lifespan of a hode (in seconds) regardiess of idle time before the node is swept away. 0 de-
notes no limit.

9.2.2. FIFOPolicy - First In, First Out
org.j boss. cache. evi ction. FI FOPol i cy controls the eviction in a proper first in first out order. This policy guar-

antees a constant order (0 (1)) for adds, removals and lookups (visits). It has the following configuration para-
meters:

* maxNodes - Thisisthe maximum number of nodes allowed in this region. O denotes no limit.

9.2.3. MRUPolicy - Most Recently Used

org.j boss. cache. evi cti on. MRUPol i cy controls the eviction in based on most recently used algorithm. The most
recently used nodes will be the first to evict with this policy. This policy guarantees a constant order (0 (1)) for
adds, removals and lookups (visits). It has the following configuration parameters:

* maxNodes - Thisisthe maximum number of nodes allowed in this region. O denotes no limit.

9.2.4. LFUPolicy - Least Frequently Used

org.j boss. cache. evi ction. LFUPol i cy controls the eviction in based on least frequently used algorithm. The |east
frequently used nodes will be the first to evict with this policy. Node usage starts at 1 when a node is first added.
Each time it is visted, the node usage counter increments by 1. This number is used to determine which nodes are
least frequently used. LFU is also a sorted eviction algorithm. The underlying EvictionQueue implementation and

Release 2.0.0 Habanero 68

Eviction Policies

algorithm is sorted in ascending order of the node visits counter. This class guarantees a constant order (0 (1))
for adds, removal and searches. However, when any number of nodes are added/visited to the queue for a given
processing pass, a single quasilinear (O (n * 1og n)) operation is used to resort the queue in proper LFU order.
Similarly if any nodes are removed or evicted, asingle linear (O (n)) pruning operation is necessary to clean up
the EvictionQueue. LFU has the following configuration parameters:

* maxNodes - Thisisthe maximum number of nodes allowed in this region. O denotes no limit.

* ninNodes - Thisisthe minimum number of nodes allowed in this region. This value determines what the evic-
tion queue should prune down to per pass. e.g. If minNodesis 10 and the cache grows to 100 nodes, the cache
is pruned down to the 10 most frequently used nodes when the eviction timer makes a pass through the eviction
algorithm.

9.2.5. ExpirationPolicy

org. j boss. cache. evi cti on. Expi rati onPol i cy iSapolicy that evicts nodes based on an absolute expiration time.
The expiration time is indicated using the or g. j boss. cache. Node. put () method, using a String key expi rati on
and the absolute time as aj ava. | ang. Long object, with a value indicated as milliseconds past midnight January
1st, 1970 UTC (the samerelative time as provided by j ava. | ang. System current Ti meM I i s()).

This policy guarantees a constant order (0 (1)) for adds and removals. Internally, a sorted set (TreeSet) contain-
ing the expiration time and Fgn of the nodes is stored, which essentially functions as a heap.

This policy has the following configuration parameters:

e expirationKeyNane - Thisis the Node key hame used in the eviction algorithm. The configuration default is
expiration.

* maxNodes - Thisisthe maximum number of nodes allowed in this region. O denotes no limit.

The following listing shows how the expiration date isindicated and how the policy is applied:

Cache cache = Defaul t CacheFactory. creat eCache();
Fgn fgnl = Fgn.fronString("/ node/1");
Long future = new Long(SystemcurrentTimeMIIlis() + 2000);

/Il sets the expiry time for a node
cache. get Root (). addChi | d(fqgnl). put (ExpirationConfi guration. EXPl RATI ON_KEY, future);

assert True(cache. get Root () . hasChi I d(fgnl));
Thr ead. sl eep(5000) ;

[/l after 5 seconds, expiration conpletes
assert Fal se(cache. get Root (). hasChi |l d(fqnl));

Note that the expiration time of nodes is only checked when the region manager wakes up every wakeUpl nt er -
val Seconds , SO eviction may happen afew seconds later than indicated.

9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a

Release 2.0.0 Habanero 69

Eviction Policies

node

org. j boss. cache. evi cti on. El ement Si zePol i cy controls the eviction in based on the number of key/value pairs
in the node. Nodes The most recently used nodes will be the first to evict with this policy. It has the following con-
figuration parameters:

* maxNodes - Thisisthe maximum number of nodes allowed in this region. 0 denotes no limit.

* maxEl ement sPer Node - Thisisthe trigger number of attributes per node for the node to be selected for eviction.
0 denotes no limit.

9.3. Writing Your Own Eviction Policies

9.3.1. Eviction Policy Plugin Design

The design of the JBoss Cache eviction policy framework is based on an Evi cti onl nt ercept or to handle cache
events and relay them back to the eviction policies. During the cache start up, an Evi cti onl nt er cept or Will be ad-
ded to the cache interceptor stack if the eviction policy is specified. Then whenever a node is added, removed,
evicted, or visited, the Evi cti onl nt er cept or Will maintain state statistics and information will be relayed to each
individual eviction region.

Thereis asingle eviction thread (timer) that will run at a configured interval. This thread will make calls into each
of the policy providers and inform it of any aggregated adds, removes and visits (gets) events to the cache during
the configured interval. The eviction thread is responsible for kicking off the eviction policy processing (a single
pass) for each configured eviction cache region.

9.3.2. Interfaces to implement

In order to implement an eviction policy, the following interfaces must be implemented:

® org.jboss.cache.eviction. EvictionPolicy
® org.jboss.cache. eviction. EvictionAlgorithm
® org.jboss.cache. eviction. Evicti onQueue

® org.jboss.cache.config. EvictionPolicyConfig
When compounded together, each of these interface implementations define al the underlying mechanics neces-
sary for a complete eviction policy implementation.

Note that:

e ThekEvictionPolicyConfig implementation should maintain getter and setter methods for whatever configura-
tion properties the policy supports (e.g. for LRUConf i gur ati on among othersthereisaint get MaxNodes() and
aset MaxNodes(i nt)). When the "EvictionConfig" section of an XML configuration is parsed, these properties
will be set by reflection.

Release 2.0.0 Habanero 70

Eviction Policies

Alternatively, the implementation of anew eviction policy provider can be simplified by extending BaseEvi cti on-
Pol i cy and BaseEvi ctionAl gorithm. Or for properly sorted EvictionAlgorithms (sorted in eviction order - see
LFUAI gori t hm) extending BaseSor t edEvi ct i onAl gori t hmand implementing Sort edEvi ct i onQueue takes care of
most of the common functionality available in a set of eviction policy provider classes

Note that:

* The BaseEvi cti onAl gori t hmclass maintains a processing structure. It will process the ADD, REMOVE, and
VISIT events queued by the region first. It also maintains an collection of items that were not properly evicted
during the last go around because of held locks. That list is pruned. Finally, the EvictionQueue itself is pruned
for entries that should be evicted based upon the configured eviction rules for the region.

e The BaseSort edEvi cti onAl gorithmclass will maintain a boolean through the algorithm processing that will
determine if any new nodes were added or visited. This allows the Algorithm to determine whether to resort the
eviction queue items (in first to evict order) or to skip the potentially expensive sorting if there have been no
changes to the cache in this region.

e The Sort edEvi cti onQueue interface defines the contract used by the BaseSor t edEvi cti onAl gori t hmabstract
classthat is used to resort the underlying queue. Again, the queue sorting should be sorted in first to evict order.
The first entry in the list should evict before the last entry in the queue. The last entry in the queue should be
the last entry that will require eviction.

Release 2.0.0 Habanero 71

Transactions and Concurrency

10.1. Concurrent Access

JBoss Cache is athread safe caching API, and uses its own efficient mechanisms of controlling concurrent access.
It uses a pessimistic locking scheme by default for this purpose. Optimistic locking may alternatively be used, and
is discussed |ater.

10.1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/a/b/c", alock will be acquired
for nodes "a’', "b" and "c". When the same transaction wants to access "/a/b/c/d", since we aready hold locks for
"a', "b" and "c", we only need to acquire alock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or threads (no transac-
tion associated with the call). Regardless, a transaction or a thread is internally transformed into an instance of
d obal Transacti on , which is used as a globally unique identifier for modifications across a cluster. E.g. when we
run a two-phase commit protocol across the cluster, the d obal Transacti on uniquely identifies a unit of work
across acluster.

Locks can be read or write locks. Write locks serialize read and write access, whereas read-only locks only serialize
read access. When a write lock is held, no other write or read locks can be acquired. When aread lock is held, oth-
ers can acquire read locks. However, to acquire write locks, one has to wait until all read locks have been released.
When scheduled concurrently, write locks always have precedence over read locks. Note that (if enabled) read
locks can be upgraded to write locks.

Using read-write locks helps in the following scenario: consider a tree with entries "/a/lb/n1" and "/a/lb/n2". With
write-locks, when Tx1 accesses "/a/b/nl", Tx2 cannot access "/a/b/n2" until Tx1 has completed and released its
locks. However, with read-write locks this is possible, because Tx1 acquires read-locks for "/a/lb" and a read-write
lock for "/alb/n1". Tx2 is then able to acquire read-locks for "/a/b" aswell, plus aread-write lock for "/a/b/n2". This
allows for more concurrency in accessing the cache.

10.1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user. Instead, a transaction
isolation level which provides different locking behaviour is configurable.

10.1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database ACID isolation levels. A

Release 2.0.0 Habanero 72

Transactions and Concurrency

user can configure an instance-wide isolation level of NONE, READ_UNCOMMITTED, READ_COMMITTED,
REPEATABLE_READ, or SERIALIZABLE. REPEATABLE_READ isthe default isolation level used.

1. NONE. No transaction support is needed. There is no locking at this level, e.g., users will have to manage the
dataintegrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive. Note that this level
doesn't prevent the so-called "dirty read" where data modified in Tx1 can be read in Tx2 before Tx1 commits.
In other words, if you have the following sequence,

Tx1 Tx2

using thisisolation level will not prevent Tx2 read operation. Implementations typically use an exclusive lock
for writes while reads don't need to acquire alock.

3. READ_COMMITTED. Data can be read any time as long as there is no write. This level prevents the dirty
read. But it doesn’t prevent the so-called ‘ non-repeatable read’ where one thread reads the data twice can pro-
duce different results. For example, if you have the following sequence,

Tx1 Tx2
R
wW
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there are only reads,
writes have to wait until there are no more readers holding the lock, and readers are blocked acquiring the lock
until there are no more writers holding the lock. Reads typically release the read-lock when done, so that a
subsequent read to the same data has to re-acquire a read-lock; this leads to nonrepeatable reads, where 2 reads
of the same data might return different values. Note that, the write only applies regardless of transaction state
(whether it has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level prevents "non-
repeatable read" but it does not completely prevent the so-called "phantom read" where new data can be inser-
ted into the tree from another transaction. Implementations typically use a read-write lock. This is the default
isolation level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader can have the lock
at any given time. Locks are released at the end of the transaction. Regarded as very poor for performance and
thread/transaction concurrency.

10.1.2.2. Insertion and Removal of Nodes

Release 2.0.0 Habanero 73

Transactions and Concurrency

By default, before inserting a new node into the tree or removing an existing node from the tree, JBoss Cache will
only attempt to acquire aread lock on the new node's parent node. This approach does not treat child nodes as an
integral part of a parent node's state. This approach allows greater concurrency if nodes are frequently added or re-
moved, but at a cost of lesser correctness. For use cases where greater correctness is necessary, JBoss Cache
provides a configuration option LockPar ent For Chi | dl nsert Renove . If thisisset totrue , insertions and removals
of child nodes require the acquisition of awrite lock on the parent node.

10.1.3. Optimistic Locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads have alot of contention for
access to the data tree, it can be inefficient to lock portions of the tree - for reading or writing - for the entire dura-
tion of atransaction as we do in pessimistic locking. Optimistic locking allows for greater concurrency of threads
and transactions by using a technique called data versioning, explained here. Note that isolation levels (if con-
figured) are ignored if optimistic locking is enabled.

10.1.3.1. Architecture

Optimistic locking treats all method calls as transactional 7 Evenif you do not invoke a call within the scope of an
ongoing transaction, JBoss Cache creates an implicit transaction and commits this transaction when the invocation
completes. Each transaction maintains a transaction workspace, which contains a copy of the data used within the
transaction.

For example, if atransaction calls cache. get Root (). get Chil d(Fgn.fronString("/a/b/c")) ,nodesa bandc
are copied from the main data tree and into the workspace. The data is versioned and al calls in the transaction
work on the copy of the data rather than the actual data. When the transaction commits, its workspace is merged
back into the underlying tree by matching versions. If there is a version mismatch - such as when the actual data
tree has a higher version than the workspace, perhaps if another transaction were to access the same data, change it
and commit before the first transaction can finish - the transaction throws a Rol | backExcept i on when committing
and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very short duration - at
the start of a transaction to build a workspace, and when the transaction commits and has to merge data back into
the tree.

So while optimistic locking may occasionaly fail if version validations fail or may run slightly slower than pessim-
istic locking due to the inevitable overhead and extra processing of maintaining workspaces, versioned data and
validating on commit, it does buy you a near-SERIALIZABLE degree of data integrity while maintaining a very
high level of concurrency.

10.1.3.2. Data Versioning

"Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

Release 2.0.0 Habanero 74

Transactions and Concurrency

[Data‘ufer'sicunsﬂ

Seria”:ahle[j
fjava.io)

i)

T

Data Vers ion D
forg.jboss cache optimistic)

+hewerThan! other | DataWersion » hoolean

N

-

|

Defauht DataVers ion B
forg.jboss.cache.optimistich Thizs isthe

<<Constructors=+DefaultDataversion(default, internal
<< constructors=x>+DefaultDataVersiond version : long) implementation
+incrementd ; Datayersion — = — A of Dataversion
+rewerThani other : DataVersion) ; boolean usedifno
+toString() ; String Dataversion is
+equals{ ather : Object y : boalean sup_phed via the
+hazhCodef) : int Optian API.
<< getter>=>=4getRawt'erzion : long

Optimistic locking makes use of the Dat aver si on interface (and an internal and default Def aul t Dat aVer si on im-
plementation to keep atrack of node versioning. In certain cases, where cached datais an in-memory representation
of data from an external source such as a database, it makes sense to align the versions used in JBoss Cache with
the versions used externally. As such, using the options APl , it is possible to set the Dat aVer si on you wish to use
on a per-invocation basis, allowing you to implement the bat aver si on interface to hold the versioning information
obtained externally before putting your data into the cache.

10.1.3.3. Configuration
Optimistic locking is enabled by using the Nodel ockingScheme XML attribute, and setting it to "OPTIMISTIC":

<l--

Node | ocki ng schene:

OPTIM STIC

PESSI M STI C (defaul t)

-->

<attri bute name="NodelLocki ngSchene" >0OPTI M STI C</ attri but e>

Release 2.0.0 Habanero 75

Transactions and Concurrency

10.2. Transactional Support

JBoss Cache can be configured to use and participate in JTA compliant transactions. Alternatively, if transaction
support is disabled, it is equivalent to setting AutoCommit to on where modifications are potentially 8 replicated
after every change (if replication is enabled).

What JBoss Cache does on every incoming cal is:

1. Retrievethecurrentj avax. transacti on. Transact i on associated with the thread

2. If not already done, register aj avax. transacti on. Synchroni zat i on With the transaction manager to be noti-
fied when a transaction commits or isrolled back.

In order to do this, the cache has to be provided with a reference to environment's
j avax. transaction. Transact i onManager . Thisis usualy done by configuring the cache with the class name of
an implementation of the Tr ansact i onManager Lookup interface. When the cache starts, it will create an instance of
this class and invoke its get Tr ansact i onManager () method, which returns areference to the Tr ansact i onManager

[TranzactionLookup]J

TranszctiochManager Logkup O
{org.jboss.cache)

< SgeiterEEtgetTransactionManagersy | TransactionManager
i Fa

T T
I |

| JBos s TransactionManager Lookup
| forg.jboss.cache)

| <=constructor=>=+|BossTranzactionManagerLookup
I < =getter=>=+getTranzactionManagerd : TranzactionManager

|
Generic TransactionManager Lookup
{org.jbozs. cache)

<= getter=>4+getTransactionManager : TransactionManager
-dologkupsd : waid

JBoss Cache ships with JBossTransacti onManager Lookup and GenericTransacti onManager Lookup . The
JBossTransact i onManager Lookup is able to bind to a running JBoss AS instance and retrieve a Tr ansact i onMan-
ager While the Generi cTransacti onManager Lookup is able to bind to most popular Java EE application servers
and provide the same functionality. A dummy implementation - DurmyTransact i onManager Lookup - iS also
provided, primarily for unit tests. Being a dummy, thisis just for demo and testing purposes and is hot recommen-
ded for production use.

An dternative to configuring aTr ansact i onManager Lookup iSto programatically inject areference to the Tr ansac-
ti onManager intothe Confi gurati on object'sRunt i meConfi g e ement:

8Dependi ng on whether interval-based asynchronous replication is used

Release 2.0.0 Habanero 76

Transactions and Concurrency

Transacti onManager tm = get Transacti onManager(); // magi ¢ net hod
cache. get Confi guration().getRunti neConfig().setTransacti onManager (tn;

Injecting the Tr ansact i onManager is the recommended approach when the Confi gur ati on is built by some sort of
|OC container that already has areference to the TM.

When the transaction commits, we initiate either a one- two-phase commit protocol. See replicated caches and
transactions for details.

Release 2.0.0 Habanero 77

Part lll. JBoss Cache References

This section contains technical references for easy looking up.

Configuration References

11.1. Sample XML Configuration File

Thisiswhat atypical XML configuration file looks like. It is recommended that you use one of the configurations
shipped with the JBoss Cache distribution and tweak according to your needs rather than write one from scratch.

<?xm version="1.0" encodi ng="UTF-8""?>

<l-- -->
<I-- -->
<l-- Sanple JBoss Cache Service Configuration -->
<I-- -->
<l-- oS
<server>
<I-- =
<!'-- Defines JBoss Cache configuration -->
<I-- =
<I-- Note the value of the 'code' attribute has changed since JBC 1.x -->
<nbean code="org.jboss. cache.jnx. CacheJnxW apper" nanme="j boss. cache: servi ce=Cache" >

<l-- Ensure JNDI and the Transacti onManager are started before the
cache. Only works inside JBoss AS; ignored otherw se -->

<depends>j boss: servi ce=Nam ng</ depends>

<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<I-- Configure the Transacti onManager -->
<attribute name="Transacti onManager LookupC ass" >

org. j boss. cache. transacti on. Generi cTransact i onManager Lookup
</attribute>

<I-- Node | ocking level : SERIALIZABLE
REPEATABLE_READ (defaul t)
READ_COWM TTED
READ UNCOWM TTED
NONE -->
<attribute name="Isol ati onLevel ">REPEATABLE READ</ attri but e>

<I'-- Lock parent before doing node additions/renpves -->
<attribute nanme="LockParent For Chi | dl nsert Renove" >t rue</attri bute>

<I-- Valid nodes are LOCAL (default)

REPL_ASYNC

REPL_SYNC

I NVALI DATI ON_ASYNC

I NVALI DATI ON_SYNC -->
<attribute name="CacheMbde" >REPL_ASYNC</ attri but e>

Release 2.0.0 Habanero

79

Configuration References

<l-- Nanme of cluster. Needs to be the sanme for all JBoss Cache nodes in a
cluster in order to find each other

-->

<attribute nanme="C uster Nane" >JBossCache-C uster</attri bute>

<I--Uncoment next three statenents to use the JG oups multipl exer
This configuration is dependent on the JG oups multipl exer being
regi stered in an MBean server such as JBossAS. This type of
dependency injection only works in the AS; outside it's up to
your code to inject a Channel Factory if you want to use one.
-->
<l--
<depends optional -attribute-nanme="Miltipl exer Service"
proxy-type="attribute">j groups. mux: nane=Muil ti pl exer </ depends>
<attribute name="Mil tipl exer Stack">tcp</attribute>

-->
<l-- JGoups protocol stack properties.
ClusterConfig isn't used if the multiplexer is enabled above.
-->
<attribute name="d usterConfig">
<confi g>
<l-- UDP: if you have a multihonmed machi ne, set the bind_addr
attribute to the appropriate NIC | P address -->
<I-- UDP: On Wndows machi nes, because of the nedia sense feature

being broken with nmulticast (even after disabling nedia sense)
set the | oopback attribute to true -->

<UDP ntast _addr="228.1.2.3" ntast_port="48866"
ip_ttl="64" ip_ntast="true"
ncast _send_buf size="150000" ntast recv_buf_ size="80000"
ucast _send_buf _si ze="150000" ucast _recv_buf _si ze="80000"
| oopback="fal se"/ >

<PI NG ti neout ="2000" num. ni tial _nenbers="3"/>

<MERGE2 mi n_interval ="10000" nax_i nterval ="20000"/ >

<FD shun="true"/>

<FD_SOCK/ >

<VERI FY_SUSPECT ti neout =" 1500"/ >

<pbcast. NAKACK gc_I| ag="50" retransnit_tineout="600, 1200, 2400, 4800"

max_xmt_size="8192"/>

<UNI CAST ti neout =" 600, 1200, 2400", 4800/ >

<pbcast . STABLE desired_avg_gossi p="400000"/ >

<FC max_credits="2000000" nin_threshol d="0.10"/>

<FRAX2 frag_size="8192"/>

<pbcast. GVS joi n_ti neout ="5000" join_retry_ timeout="2000"

shun="true" print_|ocal _addr="true"/>
<pbcast . STATE_TRANSFER/ >
</ confi g>
</attribute>

<l--
The max anount of time (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

-->

<attribute name="StateRetrieval Ti neout”>20000</attri bute>

<l--
Nurmber of milliseconds to wait until all responses for a
synchronous call have been received.

-->

<attribute name="SyncRepl Ti meout">20000</attri bute>

<I-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<attribute name="LockAcqui sitionTi meout">15000</attri bute>

Release 2.0.0 Habanero 80

Configuration References

<I-- Specific eviction policy configurations.

<attribute name="EvictionConfig">
<confi g>

<attribute name="wakeUpl nt erval Seconds" >5</attri bute>

<I-- This defaults to 200000 if not specified -->

<attribute nanme="event QueueSi ze" >200000</ attri but e>

<attribute name="policyd ass">org.jboss. cache. evi cti on. LRUPol i cy</attri bute>

& oc

Cache wi de default
<r egi on nane="

-->
/ _default_">

This is LRU -->

<attribute nanme="naxNodes">5000</attri bute>
name="t i neToLi veSeconds" >1000</ attri but e>

<attribute
</regi on>

<r egi on nane="

<attribute
<attribute
</regi on>

<r egi on nane="

<attribute
<attribute
</regi on>

<regi on nanme="

<attribute
<attribute
</regi on>

<r egi on nane="

<attribute

<attribute

<attribute
</ regi on>

</ confi g>
</attribute>

</ mbean>
</ server>

/orgl/jboss/data">

nanme="nmaxNodes" >5000</ at t ri but e>
name="t i neToLi veSeconds" >1000</ attri but e>

/orgl/jboss/test/data">
name="maxNodes" >5</ attri but e>
name="t i neToLi veSeconds" >4</ attri but e>

/test">

name="nmaxNodes" >10000</ attri but e>
nanme="t i meToLi veSeconds" >4</ attri but e>

/ mxAgeTest " >

name="nmaxNodes" >10000</ attri but e>
nanme="t i meToLi veSeconds" >8</ attri but e>
nanme="nmaxAgeSeconds" >10</ attri but e>

11.2. Reference table of XML attributes

A list of definitions of each of the XML attributes used above. If the description of an attribute states that it is dy-
namic , that means it can be changed after the cache is created and started.

Name

Description

BuddyReplicationConfig

CacheloaderConfig

Cachel oaderConfiguration

An XML element that contains detailed buddy replic-
ation configuration. See section on Buddy Replica-
tion for details.

An XML element that contains detailed cache loader
configuration. See chapter on Cache Loaders for de-
tails.

Deprecated . Use CachelLoader Config .

Release 2.0.0 Habanero

81

Configuration References

CacheMode LOCAL, REPL_SYNC, REPL_ASYNC, INVALID-
ATION_SYNC or INVALIDATION_ASYNC. De-
faults to LOCAL. See the chapter on Clustering for
details.

ClusterConfig The configuration of the underlying JGroups stack.
Ignored if Ml tipl exerService and Miltipl exer -
St ack are used. See the various *-servicexml filesin
the source distribution et ¢/ META- | NF folder for ex-
amples. See the JGroups documentation [1] or the
JGroups wiki page [2] for more information.

ClusterName Name of cluster. Needs to be the same for al nodesin
a cluster in order for them to communicate with each
other.

EvictionPolicyConfig Configuration parameter for the specified eviction

policy. See chapter on eviction policies for details.
This property isdynamic .

ExposeM anagementStatistics Specifies whether interceptors that provide statistics
should have datistics gathering enabled at startup.
Also controls whether a CacheMgnt I nterceptor
(whose sole purpose is gathering statistics) should be
added to the interceptor chain. Default value is true .
See the JBoss Cache Statistics section section for
more details.

FetchinMemoryState Whether or not to acquire the initial in-memory state
from existing members. Allows for hot caches when
enabled. Also see the fetchPersistentState ele-
ment in CacheLoader Confi g . Defaultsto t rue . This
property isdynamic .

I nactiveOnStartup Whether or not the entire tree is inactive upon startup,
only responding to replication messages after ac-
tivat eRegion() is caled to activate one or more
parts of the tree. If true, property Fet chl nMenoryS-
tate isignored. This property should only be set to
true if UseRegi onBasedMar shal 1 i ng isalsotrue .

StateRetrieval Timeout Time in milliseconds to wait for state retrieval. This
should be longer than LockAcqui siti onTi meout as

[1] http://www.jgroups.org
[2] http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Release 2.0.0 Habanero

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Configuration References

IsolationLevel

LockAcquisitionTimeout

LockParentForChildlnsertRemove

MarshallerClass

MultiplexerService

the node providing state may need to wait that long to
acquire necessary read locks on the cache. This prop-
erty is dynamic .

Node locking isolation level : SERIALIZABLE, RE-
PEATABLE_READ (defaullt),
READ_COMMITTED, READ_UNCOMMITTED,
and NONE. Note that thisisignored if Nodel ocking-
Scheme is OPTIMISTIC. Case doesn't matter. See
documentation on Transactions and Concurrency for
more details.

Time in milliseconds to wait for alock to be acquired.
If a lock cannot be acquired an exception will be
thrown. This property is dynamic .

Controls whether inserting or removing a node re-
quires a write lock on the node's parent (when pess-
imistic locking is used) or whether it resultsin an up-
date of the parent node's version (when optimistic
locking is used). The default valueisf al se .

An instance of
org.j boss.cache. narshal | . Marshal ler used to
seridlize data to byte streams. Defaults to
org. j boss. cache. marshal | . Ver si onAwar eMar shal |
er if not specified.

The IMX object name of the service that defines the
JGroups multiplexer. In JBoss AS 5.0 this service is
normally defined in the jgroups-multiplexer.sar. This
XML attribute can only be handled by the JBoss AS
MBean deployment services; if it isincluded in afile
passed to a cacheFact ory the factory's creation of the
cache will fail. Inside JBoss AS, the attribute should
be specified using the "depends optional-attrib-
ute-name" syntax shown in the example above. Inside
the AS if this attribute is defined, an instance of
org. j groups. j nx. JChannel Fact or yMBean Will be in-
jected into the cacheJmxW apper which will use it to
obtain a multiplexed JGroups channel. The configura-
tion of the channel will be that associated with mul -
tipl exer Stack . The d ust er Conf i g attribute will be
ignored.

MultiplexerStack

The name of the JGroups stack to be used with the

Release 2.0.0 Habanero

83

Configuration References

cache cluster. Stacks are defined in the configuration
of the external mul ti pl exer Servi ce discussed above.
In JBoss AS 5 this is normally done in the jgroups-
multiplexer.sar/META-INF/multiplexer-stacks.xml
file. The default stack isudp . This attribute is used in
conjunction with mul ti pl exer Ser vi ce .

NodeL ockingScheme

ReplicationVersion

Repl Queuel nterval

Repl QueueM axElements

May be PESSIMISTIC (defauilt) or OPTIMISTIC.

Tells the cache to serialize cluster traffic in a format
consistent with that used by the given release of
JBoss Cache. Different JBoss Cache versions use dif-
ferent wire formats; setting this attribute tells a cache
from a later release to serialize data using the format
from an earlier release. This alows caches from dif-
ferent releases to interoperate. For example, a 2.1.0
cache could have this value set to "2.0.0", allowing it
to interoperate with a 2.0.0 cache. Valid values are a
dot-separated release number, with any final qualifer
also separated by a dot, e.g. "2.0.0" or "2.0.0.GA".
Vaues that indicate a 1.x release are not supported in
the 2.x series.

Time in milliseconds for elements from the replica-
tion queue to be replicated. Only used if
UseRepl Queue isenabled. This property isdynamic .

Max number of elements in the replication queue un-
til replication kicks in. Only used if UseRepl Queue is
enabled. This property isdynamic .

SyncCommitPhase

SyncRepl Timeout

This option is used to control the behaviour of the
commit part of a 2-phase commit protocol, when us-
ing REPL_SYNC (does not apply to other cache
modes). By default this is set to fal se . There is a
performance penalty to enabling this, especialy when
running in a large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
clustered caches for more information on this. This
property isdynamic .

For synchronous replication: time in milliseconds to
wait until replication acks have been received from
al nodes in the cluster. It is usualy best that this is
greater than LockAcqui sitionTi meout . This prop-

Release 2.0.0 Habanero

Configuration References

SyncRollbackPhase

TransactionManagerL ookupClass

erty is dynamic .

This option is used to control the behaviour of the
rollback part of a 2-phase commit protocol, when us-
ing REPL_SYNC (does not apply to other cache
modes). By default this is set to false . There is a
performance penalty to enabling this, especially when
running in a large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
clustered caches for more information on this. This
property isdynamic .

The fully qualified name of a class implementing
TransactionManagerLookup. Default is JBossTrans
actionManagerLookup. There is also an option of
GenericTransactionManagerL ookup for example.

UselnterceptorMbeans

UseRegionBasedMarshalling

Deprecated . Use ExposeManagenent St ati stics .

When unmarshalling replicated data, this option spe-
cifies whether or not to support use of different class-
loaders for different cache regions. This defaults to
fal se if unspecified.

UseReplQueue

For asynchronous replication: whether or not to use a
replication queue. Defaultstof al se .

Release 2.0.0 Habanero

85

12.1. JBoss Cache Statistics

JMX References

The following table describes the statistics currently available and may be collected via IMX.

Table 12.1. JBoss Cache M anagement Statistics

MBean Name Attribute Type Description

Activationlnterceptor Activations long Number of passivated nodes that have
been activated.

Cachel oaderInterceptor Cachel oaderLoads long Number of nodes loaded through a
cache loader.

Cachel oaderinterceptor ~ Cachel oaderMisses long Number of unsuccessful attempts to
load a node through a cache loader.

CacheM gmtlnterceptor Hits long Number of successful attribute retriev-
als.

CacheM gmtlnterceptor Misses long Number of unsuccessful attribute re-
trievals.

CacheM gmitlnterceptor Stores long Number of attribute store operations.

CacheM gmitlnterceptor Evictions long Number of node evictions.

CacheM gmtlnterceptor NumberOf Attributes int Number of attributes currently cached.

CacheM gmtlnterceptor NumberOfNodes int Number of nodes currently cached.

CacheM gmtlnterceptor ElapsedTime long Number of seconds that the cache has
been running.

CacheM gmtlnterceptor TimeSinceReset long Number of seconds since the cache stat-
istics have been reset.

CacheMgmtlnterceptor ~ AverageReadTime long Average time in milliseconds to retrieve
a cache attribute, including unsuccess-
ful attribute retrievals.

CacheM gmtlnterceptor AverageWriteTime long Average time in milliseconds to write a

cache attribute.

Release 2.0.0 Habanero

86

JMX References

MBean Name Attribute Type Description

CacheM gmitl nterceptor HitMissRatio double Ratio of hitsto hits and misses. A hit is
a get attribute operation that results in
an object being returned to the client.
The retrieval may be from a cache |oad-
er if the entry isn't in the local cache.

CacheM gmitlnterceptor ReadWriteRatio double Ratio of read operations to write opera-
tions. Thisis the ratio of cache hits and
misses to cache stores.

CacheStorel nterceptor Cachel oaderStores long Number of nodes written to the cache
loader.

Invalidationlnterceptor Invalidations long Number of cached nodes that have been
invalidated.

Passivationl nterceptor Passivations long Number of cached nodes that have been
passivated.

TxInterceptor Prepares long Number of transaction prepare opera-
tions performed by thisinterceptor.

TxInterceptor Commits long Number of transaction commit opera
tions performed by thisinterceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks opera-

12.2. IMX MBean Notifications

tions performed by thisinterceptor.

The following table depicts the IMX notifications available for JBoss Cache as well as the cache events to which
they correspond. These are the notifications that can be received through the CacheJmxWw apper MBean. Each noti-
fication represents a single event published by JBoss Cache and provides user data corresponding to the parameters

of the event.

Table 12.2. JBoss Cache M Bean Notifications

Notification Type

Notification Data

CachelL istener Event

org.jboss.cache.CacheStarted String : cache service name cacheStarted
org.jboss.cache.CacheStopped String : cache service name cacheStopped
org.jboss.cache.NodeCreated String : fgn NodeCreated
org.jboss.cache.NodeEvicted String : fgn NodeEvicted
org.jboss.cache.Nodel oaded String : fgn Nodel oaded
org.jboss.cache.NodeM odifed String : fgn NodeModifed

Release 2.0.0 Habanero

87

JMX References

Notification Type

Notification Data

Cachel istener Event

org.jboss.cache.NodeRemoved String : fgn NodeRemoved
org.jboss.cache.NodeVisited String : fgn NodeVisited
org.jboss.cache.ViewChange String : view ViewChange
org.jboss.cache.NodeActivate Object[0]=String: fgn NodeActivate
Object[1]=Boolean: pre
org.jboss.cache.NodeEvict Object[0]=String: fgn NodeEvict
Object[1]=Boolean: pre
org.jboss.cache.NodeM odify Object[0]=String: fgn NodeM odify
Object[1]=Boolean: pre
Object[2]=Boolean: isLocal
org.jboss.cache.NodePassivate Object[0]=String: fgn NodePassivate
Object[1]=Boolean: pre
org.jboss.cache.NodeRemove NodeRemove

Object[0]=String: fgn
Object[1]=Boolean: pre
Object[2]=Boolean: isLocal

Release 2.0.0 Habanero

88

	JBoss Cache User Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1.1. What is JBoss Cache?
	1.1.1. And what is Pojo Cache?

	1.2. Summary of Features
	1.3. Requirements
	1.4. License

	Chapter 2. User API
	2.1. API Classes
	2.2. Instantiating and Starting the Cache
	2.3. Caching and Retrieving Data
	2.4. The Fqn Class
	2.5. Stopping and Destroying the Cache
	2.6. Cache Modes
	2.7. Adding a CacheListener
	2.8. Using Cache Loaders
	2.9. Using Eviction Policies

	Chapter 3. Configuration
	3.1. Configuration Overview
	3.2. Creating a Configuration
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Programmatic Configuration
	3.2.3. Using an IOC Framework

	3.3. Composition of a Configuration Object
	3.4. Dynamic Reconfiguration
	3.5. Overriding the Configuration Via the Option API

	Chapter 4. Deploying JBoss Cache
	4.1. Standalone Use / Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)
	4.4. Binding to JNDI in JBoss AS
	4.5. Runtime Management Information
	4.5.1. JBoss Cache MBeans
	4.5.2. Registering the CacheJmxWrapper with the MBeanServer
	4.5.2.1. Programatic Registration
	4.5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

	4.5.3. JBoss Cache Statistics
	4.5.4. Receiving JMX Notifications
	4.5.5. Accessing Cache MBeans in a Standalone Environment

	Chapter 5. Version Compatibility and Interoperability
	5.1. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 6. Architecture
	6.1. Data Structures Within The Cache
	6.2. SPI Interfaces
	6.3. Method Invocations On Nodes
	6.3.1. Interceptors
	6.3.1.1. Writing Custom Interceptors

	6.3.2. MethodCalls
	6.3.3. InvocationContexts

	6.4. Managers For Subsystems
	6.4.1. RpcManager
	6.4.2. BuddyManager
	6.4.3. CacheLoaderManager

	6.5. Marshalling And Wire Formats
	6.5.1. The Marshaller Interface
	6.5.2. VersionAwareMarshaller
	6.5.2.1. CacheLoaders

	6.5.3. CacheMarshaller200

	6.6. Class Loading and Regions

	Chapter 7. Clustering
	7.1. Cache Replication Modes
	7.1.1. Local Mode
	7.1.2. Replicated Caches
	7.1.2.1. Replicated Caches and Transactions
	7.1.2.1.1. One Phase Commits
	7.1.2.1.2. Two Phase Commits

	7.1.2.2. Buddy Replication
	7.1.2.2.1. Selecting Buddies
	7.1.2.2.2. BuddyPools
	7.1.2.2.3. Failover
	7.1.2.2.4. Configuration

	7.2. Invalidation
	7.3. State Transfer
	7.3.1. State Transfer Types
	7.3.2. Byte array and streaming based state transfer
	7.3.3. Full and partial state transfer
	7.3.4. Transient ("in-memory") and persistent state transfer
	7.3.5. Configuring State Transfer

	Chapter 8. Cache Loaders
	8.1. The CacheLoader Interface and Lifecycle
	8.2. Configuration
	8.2.1. Singleton Store Configuration

	8.3. Shipped Implementations
	8.3.1. File system based cache loaders
	8.3.2. Cache loaders that delegate to other caches
	8.3.3. JDBCCacheLoader
	8.3.3.1. JDBCCacheLoader configuration
	8.3.3.1.1. Table configuration
	8.3.3.1.2. DataSource
	8.3.3.1.3. JDBC driver
	8.3.3.1.4. c3p0 connection pooling
	8.3.3.1.5. Configuration example

	8.3.4. TcpDelegatingCacheLoader
	8.3.5. Transforming Cache Loaders

	8.4. Cache Passivation
	8.5. Strategies
	8.5.1. Local Cache With Store
	8.5.2. Replicated Caches With All Caches Sharing The Same Store
	8.5.3. Replicated Caches With Only One Cache Having A Store
	8.5.4. Replicated Caches With Each Cache Having Its Own Store
	8.5.5. Hierarchical Caches
	8.5.6. Multiple Cache Loaders

	Chapter 9. Eviction Policies
	9.1. Configuring Eviction Policies
	9.1.1. Basic Configuration
	9.1.2. Eviction Regions
	9.1.2.1. Overlapping Eviction Regions

	9.1.3. Programmatic Configuration

	9.2. Shipped Eviction Policies
	9.2.1. LRUPolicy - Least Recently Used
	9.2.2. FIFOPolicy - First In, First Out
	9.2.3. MRUPolicy - Most Recently Used
	9.2.4. LFUPolicy - Least Frequently Used
	9.2.5. ExpirationPolicy
	9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a node

	9.3. Writing Your Own Eviction Policies
	9.3.1. Eviction Policy Plugin Design
	9.3.2. Interfaces to implement

	Chapter 10. Transactions and Concurrency
	10.1. Concurrent Access
	10.1.1. Locks
	10.1.2. Pessimistic locking
	10.1.2.1. Isolation levels
	10.1.2.2. Insertion and Removal of Nodes

	10.1.3. Optimistic Locking
	10.1.3.1. Architecture
	10.1.3.2. Data Versioning
	10.1.3.3. Configuration

	10.2. Transactional Support

	Part III. JBoss Cache References
	Chapter 11. Configuration References
	11.1. Sample XML Configuration File
	11.2. Reference table of XML attributes

	Chapter 12. JMX References
	12.1. JBoss Cache Statistics
	12.2. JMX MBean Notifications

