JBoss Cache User Guide

A clustered,
transactional cache

Release 2.2.0 Poblano

=Y 7= o Vii

I. Introduction t0 JBOSS CaACREc..uiiiiii e 1
I @ T YT PP 3
1.1. What is JBOSS CaChE? ... 3
1.1.1. And what is Pojo Cache?c.ccooiiiiiiiiii e 3

1.2. SUMMATY Of FEALUIES ...couuiiiiiiiii ettt 3

I N =0 [T =T 0 =T o £ PPN 4

I o= o 1 P 5

2. USBI AP e e 7
A A o B O 1= 1= 7

2.2. Instantiating and Starting the Cachecccooiiiiiiii i 9

2.3. Caching and Retrieving Dataocoeuuiiiiiiiiiiieiiiiiecei e 10

2.4, ThE FON ClaSS ouuiiiiiiiii e e e e e e e e e e 11

2.5. Stopping and Destroying the Cachecccooiiiiiiii 12

2.6. CACNE MOUES . ..oeiiiiiiiei e e 13

2.7. Adding a Cache Listener - registering for cache eventscccccoveevinnnnnen. 13

2.8. USINg Cache LOAUEISciviieiiii it e s 16

2.9. Using EVICtioN POICIESocuuniiiiiiiiecii e 16

G T 10 1 To [U1 2= Lo I 19
3.1. ConfiQuration OVEIVIEWccuuuiiiiiiieiiiii ettt e e e e enees 19

3.2. Creating @ Confi gUrati ON ieiiiieei e e e e e e e 19
3.2.1. Parsing an XML-based Configuration Fileccccoiiiiiiiiniiiiinnnnn. 19

3.2.2. Programmatic Configurationc.ccoeieviiieiiiieciii e 21

3.2.3. Using an IOC Frameworkcocoeuuiiiiiiiiiieiiii e 22

3.3. Composition of a Confi gurati on ObJECtc.vviiiiiiiiiiiiiiic e 22

3.4. Dynamic RecCONfIQUIAtIONuuiiiiiiiiiiiiiii e 24

3.5. Overriding the Configuration Via the Option APlccooooiiiiiiiiiiee, 24

4. Deploying JBOSS CACNEiiiiii e 27
4.1. Standalone Use / Programatic Deploymentcccoeevviieiiiiiiiin e, 27

4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.X)oceevvvneeees 27

4.3. Via JBoss Microcontainer (JBOSS AS 5.X) .uiivuieiiiiieiiieeiiiieeie e eei e e 28

4.4, Binding to JNDI iN JBOSS AS ...ttt 31

4.5. Runtime Management INformationcoooeviiiiiin i 32
4.5.1. JB0SS CaChe MBEANScccuuiiiiiiiiiiieiii e 32

4.5.2. Registering the CacheJmxWrapper with the MBeanServer 32

4.5.3. JB0SS Cache StatiStiCSc.ueieiniiiiiiii e 36

4.5.4. Receiving JIMX NOtIficationscoeviiiiiiiiiiiii e, 37

4.5.5. Accessing Cache MBeans in a Standalone Environment 39

5. Version Compatibility and Interoperabilitycccoooviiiiiiiiii e 41
5.1. Compatibility MALIXoooeiriieiiii e 41

[I. JIBOSS CaChe ArChItECIUIEuiiiiiii e et eeaae s 43
oI AN o] V1 (=T o] AU = PP 45
6.1. Data Structures Within The Cacheooooiiiiiiiiiii e 45

6.2, SPI INtEITACES ..oeniiiieii e 46

JBoss Cache User Guide

6.3. Method INvocations ON NOGESccevviiieiiiiiie e 48
6.3.1. INTEICEPLOIS ..ovniit et 48
6.3.2. MethOdCallSuieiiiiiiec e 50
6.3.3. INVOCAtIONCONIEXESuiiieieii e e e 50

6.4. Managers FOr SUDSYSIEMSiiiiiiiii i e 51
6.4.1. RPCMEANAGET .. ceuniiiiieiiiee ittt 51
6.4.2. BUAAYMANAGETuiiiiieiiiiee et e e e e eeas 51
6.4.3. CacheLoaderManAQErc.uuiiiiiiiiieiiii et 51

6.5. Marshalling And Wire FOIMALScoevviiiiiiieii e e e 51
6.5.1. The Marshaller Interfacecooviiiiiiiiiii e 52
6.5.2. VersionAwareMarshallercoooviiiiiiiiiii e 53
6.5.3. CacheMarshaller200cooiiiiiiiii e 53

6.6. Class Loading and REQIONScoiviiiiiiieiii e e aaes 53

A 1T 1 0=] o Lo PP PP UOPPPTRPPPPIN 55

7.1. Cache Replication MOAESccouuiiiiiiiiiii e 55
4000 T I Yo=Y o o [PP 55
7.1.2. Replicated CaChesccooviiiiiiiii e 55

72 191 7- T -1 (o o PP 60

7.3, State TraNSTEI ... 60
7.3.1. State Transfer TYPES ..o 60
7.3.2. Byte array and streaming based state transfercco.ccoeveine. 60
7.3.3. Full and partial state transfercooooiiiiiiiii 61
7.3.4. Transient ("in-memory") and persistent state transfer 62
7.3.5. Configuring State Transferoi i, 63

T 0= Tod 1= I o T To [T PP 65

8.1. The CacheLoader Interface and Lifecyclecccooooiiiiiiiiiiii 66

I O] 01T 81 r-\1 4o] o I 67
8.2.1. Singleton Store Configurationcccoveveiiiiiiiiiiieee e 70

8.3. Shipped IMpIEMENLALIONScovviiiii e 71
8.3.1. File system based cache loadersc.cooeeeiiiiiiiiiiiiiiii e 71
8.3.2. Cache loaders that delegate to other cachescccoeevviiiinnennnnn. 72
8.3.3. IDBCCACNELOAAENceeieeiiieei et 72
8.3.4. S3CACNELOAUET ...t 76
8.3.5. TcpDelegatingCacheLoadercooevuniiiiiiiiieieiiie e 78
8.3.6. Transforming Cache Loaderscooovvviiiiiiciiii e, 79

8.4. Cache PasSIVatiONcooiuiiiiii e 80
8.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled 80

8.5, SHIAIEGIES ...ttt e e 81
8.5.1. Local Cache With StOrecoviiiiiiiiiiiiiiiieeein e 82
8.5.2. Replicated Caches With All Caches Sharing The Same Store 82
8.5.3. Replicated Caches With Only One Cache Having A Store 83
8.5.4. Replicated Caches With Each Cache Having Its Own Store 84
8.5.5. Hierarchical Cachesccouiiiiiiiiiiiii e 85
8.5.6. Multiple Cache LOAErSocovuiiiiiiiiiieeiii e 86

9. EVICHION POLICIES oiiniiiiii i ens 89

9.1. Configuring EVICtioN POIICIESiiiiiiiiiiiiiii e 89
9.1.1. Basic Configurationcccouuiiiiiiieiiiiceie e 89
9.1.2. EVICHON REQIONSiiiiiiiiiiiiiie ettt 90
9.1.3. ReSIAENt NOUES ...ovviiiiiiiieeei et 90
9.1.4. Programmatic Configurationccooeeiiiiiiiiiiiiiiiee e 91
9.2. Shipped EVICtion POHCIEScc.uiiiiiii e 92
9.2.1. LRUPolicy - Least Recently Usedcccuiiiiiiiiiiiiiiiiiccii e 92
9.2.2. FIFOPolicy - First In, First OULtccoviiiiiiiiieei e 92
9.2.3. MRUPolicy - Most Recently Usedcccouuiiiiiiiiiiiiiiiecc e 92
9.2.4. LFUPolicy - Least Frequently Usedcccooeveiiiiiiiiiiiiicc e, 93
9.2.5. EXPIratioNPOIICYuuiiiiiiiieiiiii e 93

9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in
= T 1o o = P 94
9.3. Writing Your Own EViction POIICIEScccoviiiiiiiiii e 94
9.3.1. Eviction Policy Plugin DeSIgNcoeiiiuiiiiiiiiieiiiii e 94
9.3.2. Interfaces to Implementcooiiiiiiii i 95
10. Transactions and CONCUITENCY ...cceuuuuiiiiii et e et e et e e ettt e e e e e e eai e eees 97
10.1. CONCUITENT ACCESS ..euiieieeneiiieti ettt ettt ettt e e e e e e e e e enaeenns 97
0 0 O o o <P 97
10.1.2. PesSimIStiC 10CKINGoivvnieiiicii e 97
10.1.3. OptimIStiC LOCKING ...ccvvviiiiiii e 929
10.2. Transactional SUPPOITceuniiiiiei e e e e e 101
[ll. JBoss Cache Configuration REfErENCESccoiviiiiiiiiiii e 105
11. Configuration REfErENCEScovviiiiiii e 107
11.1. Sample XML Configuration Filecccouiiiiiiiiiiiii e 107
11.2. Reference table of XML attributesccooooviiiiiiiiiiii i 110
12, IMX REFEIENCES ..ot e e e eaneas 117
12.1. JB0OSS CaChe STAtISHICS ...vuiiiiiiiieeiiiii e 117
12.2. IMX MBean NOtIifiCatioNSc..iiiiiiiiiei e 118

vi

Preface

This is the official JBoss Cache user guide. Along with its accompanying documents (an FAQ, a
tutorial and a whole set of documents on PojoCache), this is freely available on the JBoss Cache
documentation site. [http://labs.jboss.com/jbosscache]

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional
cache. Pojo Cache, also a part of the JBoss Cache distribution, is documented separately. (Pojo
Cache is a cache that deals with Plain Old Java Objects, complete with object relationships, with
the ability to cluster such pojos while maintaining their relationships. Please see the Pojo Cache
documentation for more information about this.)

This book is targeted at both developers wishing to use JBoss Cache as a clustering and caching
library in their codebase, as well as people who wish to "OEM" JBoss Cache by building on and
extending its features. As such, this book is split into two major sections - one detailing the "User"
API and the other going much deeper into specialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation
and understanding of transactions and concurrent threads is necessary. No prior knowledge of
JBoss Application Server is expected or required.

For further discussion, use the user forum [http://jboss.org/
index.html?module=bb&op=main&c=29] linked on the JBoss Cache website. [http://
labs.jboss.com/jbosscache] We also provide a mechanism for tracking bug reports and feature
requests on the JBoss Cache JIRA issue tracker. [http://jira.jpboss.com/jira/browse/JBCACHE]
If you are interested in the development of JBoss Cache or in translating this documentation
into other languages, we'd love to hear from you. Please post a message on the user forum
[http://jboss.org/index.html?module=bb&op=main&c=29] or contact us by using the JBoss Cache
developer mailing list. [https://lists.jboss.org/mailman/listinfo/jbosscache-dev]

This book is specifically targeted at the JBoss Cache release of the same version number. It may
not apply to older or newer releases of JBoss Cache. Itis important that you use the documentation
appropriate to the version of JBoss Cache you intend to use.

Vii

http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://jboss.org/index.html?module=bb&op=main&c=29
http://jboss.org/index.html?module=bb&op=main&c=29
http://jboss.org/index.html?module=bb&op=main&c=29
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://jboss.org/index.html?module=bb&op=main&c=29
http://jboss.org/index.html?module=bb&op=main&c=29
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

viii

Part |. Introduction to JBoss Cache

This section covers what developers would need to quickly start using JBoss Cache in their
projects. It covers an overview of the concepts and API, configuration and deployment information.

Chapter 1.

Overview

1.1. What is JBoss Cache?

JBoss Cache is a tree-structured, clustered, transactional cache. It is the backbone for many
fundamental JBoss Application Server clustering services, including - in certain versions -
clustering JNDI, HTTP and EJB sessions.

JBoss Cache can also be used as a standalone transactional and clustered caching library or
even an object oriented data store. It can even be embedded in other enterprise Java frameworks
and application servers such as BEA WebLogic or IBM WebSphere, Tomcat, Spring, Hibernate,
and many others. It is also very commonly used directly by standalone Java applications that do
not run from within an application server, to maintain clustered state.

1.1.1. And what is Pojo Cache?

Pojo Cache is an extension of the core JBoss Cache API. Pojo Cache offers additional functionality
such as:

* maintaining object references even after replication or persistence.
« fine grained replication, where only modified object fields are replicated.
« "API-less" clustering model where pojos are simply annotated as being clustered.

Pojo Cache has a complete and separate set of documentation, including a user guide, FAQ and
tutorial and as such, Pojo Cache is not discussed further in this book.

1.2. Summary of Features

JBoss Cache offers a simple and straightforward API, where data (simple Java objects) can be
placed in the cache and, based on configuration options selected, this data may be one or all of:

« replicated to some or all cache instances in a cluster.
* persisted to disk and/or a remote cluster ("far-cache").

» garbage collected from memory when memory runs low, and passivated to disk so state isn't
lost.
In addition, JBoss Cache offers a rich set of enterprise-class features:

e being able to participate in JTA transactions (works with Java EE compliant
TransactionManagers).

- attach to JMX servers and provide runtime statistics on the state of the cache.

 allow client code to attach listeners and receive notifications on cache events.

Chapter 1. Overview

A cache is organised as a tree, with a single root. Each node in the tree essentially contains a
Map, which acts as a store for key/value pairs. The only requirement placed on objects that are
cached is that they implementj ava. i 0. Seri al i zabl e . Note that this requirement does not exist
for Pojo Cache.

JBoss Cache can be either local or replicated. Local trees exist only inside the JVM in which they
are created, whereas replicated trees propagate any changes to some or all other trees in the
same cluster. A cluster may span different hosts on a network or just different JVMs on a single
host.

When a change is made to an object in the cache and that change is done in the context of a
transaction, the replication of changes is deferred until the transaction commits successfully. All
modifications are kept in a list associated with the transaction for the caller. When the transaction
commits, we replicate the changes. Otherwise, (on a rollback) we simply undo the changes locally
resulting in zero network traffic and overhead. For example, if a caller makes 100 modifications
and then rolls back the transaction, we will not replicate anything, resulting in no network traffic.

If a caller has no transaction associated with it (and isolation level is not NONE - more about this
later), we will replicate right after each modification, e.g. in the above case we would send 100
messages, plus an additional message for the rollback. In this sense, running without a transaction
can be thought of as analogous as running with auto-commit switched on in JDBC terminology,
where each operation is committed automatically.

JBoss Cache works out of the box with most popular transaction managers, and even provides
an AP| where custom transaction manager lookups can be written.

The cache is also completely thread-safe. It uses a pessimistic locking scheme for nodes in
the tree by default, with an optimistic locking scheme as a configurable option. With pessimistic
locking, the degree of concurrency can be tuned using a number of isolation levels, corresponding
to database-style transaction isolation levels, i.e., SERIALIZABLE, REPEATABLE_READ,
READ_COMMITTED, READ_UNCOMMITTED and NONE. Concurrency, locking and isolation
levels will be discussed later.

1.3. Requirements

JBoss Cache requires Java 5.0 (or newer).

However, there is a way to build JBoss Cache as a Java 1.4.x compatible binary using
JBossRetro [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro] to retroweave the Java 5.0
binaries. However, Red Hat Inc. does not offer professional support around the retroweaved binary
at this time and the Java 1.4.x compatible binary is not in the binary distribution. See this wiki [http:/
/wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJaval.4] page for details on building the
retroweaved binary for yourself.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies on JGroups [http://
www.jgroups.org] , and Apache's commons-logging [http://jakarta.apache.org/commons/logging/
] . JBoss Cache ships with all dependent libraries necessary to run out of the box.

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://www.jgroups.org
http://www.jgroups.org
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/

License

1.4. License

JBoss Cache is an open source product, using the business and OEM-friendly OSlI-approved
[http://www.opensource.org/] LGPL license. [http://www.gnu.org/copyleft/lesser.html] Commercial
development support, production support and training for JBoss Cache is available through JBoss,
a division of Red Hat Inc. [http://www.jboss.com] JBoss Cache is a part of JBoss Professional
Open Source JEMS [http://www.jboss.comindex] (JBoss Enterprise Middleware Suite).

http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com
http://www.jboss.comindex
http://www.jboss.comindex

Chapter 2.

User API

2.1. API Classes

The Cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed
and optionally started using the CacheFact ory . The CacheFact or y allows you to create a Cache
either from a Conf i gur at i on object or an XML file. Once you have a reference to a Cache , you
can use it to look up Node objects in the tree structure, and store data in the tree.

Chapter 2. User API

[Public AP ||

CarheFactory (:j
rorg.jbozz.cache)

+oreateCached Cache

+oreateCachel start [hoolean) Cache

+oreateCachel confighileMName | String 1 - Cache

+oreateCachel confighileMame | String, stardt hoolean) Cache
+oreateCachel configuration | Configuration » Cache

+oreateCachel configuration | Corfiguration, start hoolean o Cache

i

z
I

Default Cache Factory
rorg.jbozz.cache)

Cache ()
(org.jbozz. cache)

< s getter==4getConfigurations | Configuration

< s getter==4getlootsy Mode

+addCackhelistenaryl Cackhelistener) vaid

+addCachelistenars ragion Fgh, | Cachelistenery voild
+removeCachelistenery) Cachelistepner) void
+removeCachelisteners region (Fgn, 1. Cackelisterner) void

< getter==4getCackhelistenerssy et

< s getter==4getCachelistonerss ragion (Fgr o Sat

+pltsfagn D Egr, ey D Olject walye | Ohjact b - Ohbyjact
+pitEorExternalRezds fgr D Fgr, key - Ohject valye - Ohject ¥ woid
+pltsfagrn CFgr, data D Map) ovoid

+remaovel fgr D Egr, key D Ohject ¥ Ohjact

+removehloder faor Fgn ko void

< getter==4getl fan Fgr, key D Oljeact ¥ Ohjact

+eavicts fagr D Fgr, Fecursive D hoolean } o voild

< s getter==4getRegions fgr - Egr, createlfAbsant " boolean) - Begion
+oregtaly vold

+5tantn Cvoid

+5tops void

+destrowiy woid

< s getter==4getinvocatiohContextsy [lnvocatiohContaxt

< setter = satlnvacationContexty oty lnvocatiohContext b o vold
< getterz==4getl ocalAddressn Address

< getter==4getMembearsny o List

+ovel hodeToMove - Fgr, rewParent " Egr ko vold

< s getter==4getVarsions | String

Instantiating and Starting the Cache

Reviewing the javadoc for the above interfaces is the best way to learn the API. Below we cover
some of the main points.

2.2. Instantiating and Starting the Cache

An instance of the Cache interface can only be created via a CacheFact ory . (This is unlike JBoss
Cache 1.x, where an instance of the old Tr eeCache class could be directly instantiated.)

CacheFact ory provides a number of overloaded methods for creating a Cache , but they all do
the same thing:

« Gain accessto a Confi gur ati on, either by having one passed in as a method parameter, or by
parsing XML content and constructing one. The XML content can come from a provided input
stream or from a classpath or filesystem location. See the chapter on Configuration for more
on obtaining a Confi guration.

« Instantiate the Cache and provide it with a reference to the Confi gurati on .
« Optionally invoke the cache's create() and start () methods.

An example of the simplest mechanism for creating and starting a cache, using the default
configuration values:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache();

Here we tell the CacheFact ory to find and parse a configuration file on the classpath:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache("cache-configuration.xml");

Here we configure the cache from a file, but want to programatically change a configuration
element. So, we tell the factory not to start the cache, and instead do it ourselves:

CacheFactory factory = new DefaultCacheFactory();

Cache cache = factory.createCache("cache-configuration.xml", false);
Configuration config = cache.getConfiguration();
config.setClusterName(this.getClusterName());

Chapter 2. User API

/I Have to create and start cache before using it
cache.create();
cache.start();

2.3. Caching and Retrieving Data

Next, let's use the Cache API to access a Node in the cache and then do some simple reads and
writes to that node.

/I Let's get ahold of the root node.
Node rootNode = cache.getRoot();

/l Remember, JBoss Cache stores data in a tree structure.
/I All nodes in the tree structure are identified by Fgn objects.
Fgn peterGriffinFgn = Fgn.fromString("/griffin/peter");

/I Create a new Node
Node peterGriffin = rootNode.addChild(peterGriffinFqgn);

/' let's store some data in the node
peterGriffin.put(“isCartoonCharacter", Boolean.TRUE);
peterGriffin.put(“favouriteDrink", new Beer());

/I some tests (just assume this code is in a JUnit test case)
assertTrue(peterGriffin.get("isCartoonCharacter"));
asserteEquals(peterGriffinFgn, peterGriffin.getFqn());
assertTrue(rootNode.hasChild(peterGriffinFgn));

Set keys = new HashSet();
keys.add("isCartoonCharacter");
keys.add("favouriteDrink");

assertEquals(keys, peterGriffin.getKeys());

/I let's remove some data from the node
peterGriffin.remove("favouriteDrink");

assertNull(peterGriffin.get("favouriteDrink");

/Il let's remove the node altogether

10

The Fgn Class

rootNode.removeChild(peterGriffinFgn);

assertFalse(rootNode.hasChild(peterGriffinFgn));

The Cache interface also exposes put/get/remove operations that take an Fgn as an argument:

Fgn peterGriffinFgn = Fgn.fromString("/griffin/peter");

cache.put(peterGriffinFgn, "isCartoonCharacter”, Boolean. TRUE);
cache.put(peterGriffinFgn, "favouriteDrink", new Beer());

assertTrue(peterGriffin.get(peterGriffinFqn, "isCartoonCharacter"));
assertTrue(cache.getRootNode().hasChild(peterGriffinFgn));

cache.remove(peterGriffinFgn, "favouriteDrink");
assertNull(cache.get(peterGriffinFgn, "favouriteDrink™);
cache.removeNode(peterGriffinFqn);

assertFalse(cache.getRootNode().hasChild(peterGriffinFqn));

2.4. The eqn Class

The previous section used the Fgn class in its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fgn) encapsulates a list of names which represent a path to a particular
location in the cache's tree structure. The elements in the list are typically Stri ng s but can be
any Obj ect or a mix of different types.

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache.
Reading the documentation on each API call that makes use of Fgn will tell you whether the API
expects a relative or absolute Fgn .

The Fqn class provides are variety of constructors; see the javadoc for all the possibilities. The
following illustrates the most commonly used approaches to creating an Fgn:

/I Create an Fgn pointing to node 'Joe’ under parent node 'Smith'
/I under the 'people' section of the tree

11

Chapter 2. User API

/I Parse it from a String
Fgn<String> abc = Fgn.fromString("/people/Smith/Joe/");

/I Build it directly. Marginally more efficient to construct than parsing
String[] strings = new String[] { "people”, "Smith", "Joe" };
Fgn<String> abc = new Fgn<String>(strings);

/I Here we want to use types other than String
Object[] objs = new Object[]{ "accounts”, "NY", new Integer(12345) };
Fgn<Object> acctFgn = new Fqn<Object>(objs);

Note that

Fgn<String> f = new Fgn<String>("/a/b/c");
is not the same as

Fgn<String> f = Fgn.fromString("/a/b/c");

The former will result in an Fgn with a single element, called "/a/b/c" which hangs directly under
the cache root. The latter will result in a 3 element Fgn, where "c" idicates a child of "b", which is
a child of "a", and "a" hangs off the cache root. Another way to look at it is that the "/" separarator
is only parsed when it forms part of a String passed in to Fgn. f rontt ri ng() and not otherwise.

The JBoss Cache API in the 1.x releases included many overloaded convenience methods that
took a string in the / a/ b/ ¢ format in place of an Fgn . In the interests of APl simplicity, no such
convenience methods are available in the JBC 2.x API.

2.5. Stopping and Destroying the Cache

It is good practice to stop and destroy your cache when you are done using it, particularly if it is a
clustered cache and has thus used a JGroups channel. Stopping and destroying a cache ensures
resources like the JGroups channel are properly cleaned up.

cache.stop();
cache.destroy();

12

Cache Modes

Not also that a cache that has had st op() invoked on it can be started again with a new call to
start () . Similarly, a cache that has had destroy() invoked on it can be created again with a
new call to creat e() (and then started again with a start () call).

2.6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured to operate
affects the cluster-wide behavior of any put or renove operation, so we'll briefly mention the
various modes here.

JBoss Cache modes are denoted by the or g. j boss. cache. confi g. Confi gurati on. CacheMbde
enumeration. They consist of:

* LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't communicate
with other caches in a cluster. Therefore their contents don't need to be Serializable; however,
we recommend making them Serializable, allowing you the flexibility to change the cache mode
at any time.

* REPL_SYNC - synchronous replication. Replicated caches replicate all changes to the other
caches in the cluster. Synchronous replication means that changes are replicated and the caller
blocks until replication acknowledgements are received.

« REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above, replicated caches
replicate all changes to the other caches in the cluster. Being asynchronous, the caller does not
block until replication acknowledgements are received.

* INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every
time data is changed in a cache other caches in the cluster receive a message informing
them that their data is now stale and should be evicted from memory. This reduces replication
overhead while still being able to invalidate stale data on remote caches.

* INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation
messages to be broadcast asynchronously.

See the chapter on Clustering for more details on how the cache's mode affects behavior. See
the chapter on Configuration for info on how to configure things like the cache's mode.

2.7. Adding a Cache Listener - registering for cache
events

JBoss Cache provides a convenient mechanism for registering notifications on cache events.

Object myListener = new MyCachelListener();
cache.addCachelListener(myListener);

13

Chapter 2. User API

Similar methods exist for removing or querying registered listeners. See the javadocs on the Cache
interface for more details.

Basically any public class can be used as a listener, provided it is annotated with the
@acheli st ener annotation. In addition, the class needs to have one or more methods annotated
with one of the method-level annotations (in the or g. j boss. cache. noti fi cati ons. annot ati on
package). Methods annotated as such need to be public, have a void return type, and accept a
single parameter of type or g. j boss. cache. noti fi cati ons. event . Event or one of its subtypes.

e @acheSt art ed - methods annotated such receive a notification when the cache is started.
Methods need to accept a parameter type which is assignable from CacheSt art edEvent .

e @acheSt opped - methods annotated such receive a notification when the cache is stopped.
Methods need to accept a parameter type which is assignable from CacheSt oppedEvent .

* @lodeCr eat ed - methods annotated such receive a notification when a node is created. Methods
need to accept a parameter type which is assignable from NodeCr eat edEvent .

+ @lodeRenoved - methods annotated such receive a notification when a node is removed.
Methods need to accept a parameter type which is assignable from NodeRenovedEvent .

* @lodeMdi fi ed - methods annotated such receive a notification when a node is modified.
Methods need to accept a parameter type which is assignable from NodeMdi f i edEvent .

* @lodeMved - methods annotated such receive a notification when a node is moved. Methods
need to accept a parameter type which is assignable from NodeMovedEvent .

* @lodeVi si t ed - methods annotated such receive a notification when a node is started. Methods
need to accept a parameter type which is assignable from NodeVi si t edEvent .

* @lodeLoaded - methods annotated such receive a notification when a node is loaded from
a CachelLoader . Methods need to accept a parameter type which is assignable from
NodelLoadedEvent .

e @lodeEvi cted - methods annotated such receive a notification when a node is evicted
from memory. Methods need to accept a parameter type which is assignable from
NodeEvi ct edEvent .

* @lodeActi vat ed - methods annotated such receive a notification when a node is activated.
Methods need to accept a parameter type which is assignable from NodeAct i vat edEvent .

e @lodePassi vat ed - methods annotated such receive a notification when a node is passivated.
Methods need to accept a parameter type which is assignable from NodePassi vat edEvent .

e @ransactionRegi stered - methods annotated such receive a notification when the
cache registers a javax.transaction. Synchroni zati on with a registered transaction

14

Adding a Cache Listener - registering for cache
events
manager. Methods need to accept a parameter type which is assignable from

Transact i onRegi st eredEvent .

e @ransacti onConpl et ed - methods annotated such receive a notification when the cache
receives a commit or rollback call from a registered transaction manager. Methods need to
accept a parameter type which is assignable from Tr ansact i onConpl et edEvent .

e @i ewChanged - methods annotated such receive a notification when the group structure of
the cluster changes. Methods need to accept a parameter type which is assignable from
Vi ewChangedEvent .

e @acheBl ocked - methods annotated such receive a notification when the cluster requests that
cache operations are blocked for a state transfer event. Methods need to accept a parameter
type which is assignable from CacheBl ockedEvent .

e @acheUnbl ocked - methods annotated such receive a notification when the cluster requests
that cache operations are unblocked after a state transfer event. Methods need to accept a
parameter type which is assignable from CacheUnbl ockedEvent .

Refer to the javadocs on the annotations as well as the Event subtypes for details of what is
passed in to your method, and when.

Example:

@CachelListener
public class MyListener

{

@CacheStarted
@CacheStopped
public void cacheStartStopEvent(Event e)
{
switch (e.getType())
{
case Event.Type.CACHE_STARTED:
System.out.printin("Cache has started");
break;
case Event.Type.CACHE_STOPPED:
System.out.printin("Cache has stopped");
break;

@NodeCreated
@NodeRemoved

15

Chapter 2. User API

@NodeVisited
@NodeModified
@NodeMoved
public void logNodeEvent(NodeEvent ne)
{
log("An event on node " + ne.getFgn() + " has occured");
}
}

2.8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of nodes to disk
or to remote cache clusters, and allow for passivation when caches run out of memory. In
addition, cache loaders allow JBoss Cache to perform 'warm starts', where in-memory state
can be preloaded from persistent storage. JBoss Cache ships with a number of cache loader
implementations.

e org.jboss. cache. | oader. Fi | eCacheLoader - a basic, filesystem based cache loader that
persists data to disk. Non-transactional and not very performant, but a very simple solution.
Used mainly for testing and not recommended for production use.

e org.jboss. cache. | oader. JDBCCacheLoader - uses a JDBC connection to store data.
Connections could be created and maintained in an internal pool (uses the c3p0 pooling library)
or from a configured DataSource. The database this CachelLoader connects to could be local
or remotely located.

e org.jboss. cache. | oader. Bdbj eCacheLoader - uses Oracle's BerkeleyDB file-based
transactional database to persist data. Transactional and very performant, but potentially
restrictive license.

e org.jboss. cache. | oader. JdbnCacheLoader - an upcoming open source alternative to the
BerkeleyDB.

e org.jboss. cache. | oader.tcp. TcpCacheLoader - uses a TCP socket to "persist" data to a
remote cluster, using a "far cache" pattern. !

e org.jboss. cache. | oader. d ust eredCacheLoader - used as a "read-only" CachelLoader,
where other nodes in the cluster are queried for state.

These CachelLoaders, along with advanced aspects and tuning issues, are discussed in the
chapter dedicated to CachelLoaders .

2.9. Using Eviction Policies

Eviction policies are the counterpart to CachelLoaders. They are necessary to make sure the cache
does not run out of memory and when the cache starts to fill, the eviction algorithm running in

16

Using Eviction Policies

a separate thread offloads in-memory state to the CachelLoader and frees up memory. Eviction
policies can be configured on a per-region basis, so different subtrees in the cache could have
different eviction preferences. JBoss Cache ships with several eviction policies:

e org.jboss. cache. evi ction. LRUPol i cy - an eviction policy that evicts the least recently used
nodes when thresholds are hit.

e org.jboss. cache. eviction. LFUPol i cy - an eviction policy that evicts the least frequently
used nodes when thresholds are hit.

e org.jboss. cache. evi cti on. MRUPol i cy - an eviction policy that evicts the most recently used
nodes when thresholds are hit.

e org.jboss. cache. eviction. Fl FOPol i cy - an eviction policy that creates a first-in-first-out
gueue and evicts the oldest nodes when thresholds are hit.

e org.jboss. cache. eviction. ExpirationPolicy - an eviction policy that selects nodes for
eviction based on an expiry time each node is configured with.

e org.jboss. cache. evi ction. El enent Si zePol i cy - an eviction policy that selects nodes for
eviction based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the chapter

dedicated to eviction policies. .

17

18

Chapter 3.

Configuration

3.1. Configuration Overview

The or g. j boss. cache. confi g. Confi gur ati on class (along with its component parts) is a Java
Bean that encapsulates the configuration of the Cache and all of its architectural elements (cache
loaders, evictions policies, etc.)

The Confi guration exposes numerous properties which are summarized in the configuration
reference section of this book and many of which are discussed in later chapters. Any time you
see a configuration option discussed in this book, you can assume that the Confi gur ati on class
or one of its component parts exposes a simple property setter/getter for that configuration option.

3.2. Creating a configuration

As discussed in the User API section , before a Cache can be created, the CacheFact ory must
be provided with a Confi gur ati on object or with a file name or input stream to use to parse a
Conf i gur ati on from XML. The following sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cache is via an XML file. The JBoss Cache
distribution ships with a number of configuration files for common use cases. It is recommended
that these files be used as a starting point, and tweaked to meet specific needs.

Here is a simple example configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<server>

<mbean code="org.jboss.cache.jmx.CacheJmxWrapper"
name="jboss.cache:service=Cache">

<!-- Configure the TransactionManager -->

19

Chapter 3. Configuration

<attribute name="TransactionManagerLookupClass">
org.jboss.cache.transaction.GenericTransactionManagerLookup
</attribute>

<!I-- Node locking level : SERIALIZABLE
REPEATABLE_READ (default)
READ_COMMITTED
READ_UNCOMMITTED
NONE ->
<attribute name="IsolationLevel">READ_ COMMITTED</attribute>

<l-- Lock parent before doing node additions/removes -->
<attribute name="LockParentForChildinsertRemove">true</attribute>

<!I-- Valid modes are LOCAL (default)
REPL_ASYNC
REPL_SYNC
INVALIDATION_ASYNC
INVALIDATION_SYNC -->
<attribute name="CacheMode">LOCAL</attribute>

<!-- Max number of milliseconds to wait for a lock acquisition -->
<attribute name="LockAcquisitionTimeout">15000</attribute>

<l-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionConfig">
<config>
<attribute name="wakeUplntervalSeconds">5</attribute>
<attribute name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<!-- Cache wide default -->
<region name="/_default_">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>
</region>
</config>
</attribute>
</mbean>
</server>

Another, more complete, sample XML file is included in the configuration reference section of this
book, along with a handy look-up table explaining the various options.

20

Programmatic Configuration

For historical reasons, the format of the JBoss Cache configuraton file follows that of a JBoss AS
Service Archive (SAR) deployment descriptor (and still can be used as such inside JBoss AS).
Because of this dual usage, you may see elements in some configuration files (such as depends
or cl asspat h) that are not relevant outside JBoss AS. These can safely be ignored.

Here's how you tell the CacheFact ory to create and start a cache by finding and parsing a
configuration file on the classpath:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache("cache-configuration.xml");

3.2.2. Programmatic Configuration

In addition to the XML-based configuration above, the Configuration can be built up
programatically, using the simple property mutators exposed by Configuration and its
components. When constructed, the Confi gur ati on object is preset with JBoss Cache defaults
and can even be used as-is for a quick start.

Following is an example of programatically creating a Confi gur ati on configured to match the
one produced by the XML example above, and then using it to create a Cache :

Configuration config = new Configuration();

String tmlc = GenericTransactionManagerLookup.class.getName();
config.setTransactionManagerLookupClass(tmlc);
config.setlsolationLevel(lsolationLevel. READ _COMMITTED);
config.setCacheMode(CacheMode.LOCAL);
config.setLockParentForChildinsertRemove(true);
config.setLockAcquisitionTimeout(15000);

EvictionConfig ec = new EvictionConfig();
ec.setWakeuplntervalSeconds(5);
ec.setDefaultEvictionPolicyClass(LRUPolicy.class.getName());

EvictionRegionConfig erc = new EvictionRegionConfig();
erc.setRegionName("_default_");

LRUConfiguration Iru = new LRUConfiguration();
Iru.setMaxNodes(5000);
Iru.setTimeToLiveSeconds(1000);

21

Chapter 3. Configuration

erc.setEvictionPolicyConfig(Iru);

List<EvictionRegionConfig> ercs = new ArrayList<EvictionRegionConfig>();
ercs.add(erc);
ec.setEvictionRegionConfigs(erc);

config.setEvictionConfig(ec);

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use
of XML-based configuration. However, if your application requires it, there is no reason not to use
XML-based configuration for most of the attributes, and then access the Confi gur ati on object
to programatically change a few items from the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running,
except those annotated as @ynani ¢ . Dynamic properties are also marked as such in the
configuration reference table. Attempting to change a non-dynamic property will result in a
Confi gurati onException.

3.2.3. Using an I0C Framework
The Configuration class and its component parts are all Java Beans that expose all config
elements via simple setters and getters. Therefore, any good I0C framework should be able to

build up a Confi gurati on from an XML file in the framework's own format. See the deployment
via the JBoss micrcontainer section for an example of this.

3.3. Composition of a configuration Object

A Confi gurati on is composed of a number of subobjects:

22

Composition of a Confi gur ati on Object

1 Configuration

0.1
CachelLoaderConfig

1

1.*%

IndividualCachelLoaderCo

1
0.1 0.
BuddyReplicationConfig EvictionConfig

1 1

1 1.5

Buddyl_ocatorConfig EvictionRegionConfig
1
EvictionPolicyConfig

Following is a brief overview of the components of a Confi gur ati on . See the javadoc and the
linked chapters in this book for a more complete explanation of the configurations associated with

each component.

e Configuration :top level object in the hierarchy; exposes the configuration properties listed

in the configuration reference section of this book.

BuddyRepl i cati onConfi g: only relevantif buddy replication is used. General buddy replication
configuration options. Must include a:

BuddyLocat or Confi g : implementation-specific configuration object for the BuddyLocat or
implementation being used. What configuration elements are exposed depends on the needs
of the BuddyLocat or implementation.

Evi cti onConfi g : only relevant if eviction is used. General eviction configuration options. Must
include at least one:

Evi cti onRegi onConfi g : one for each eviction region; names the region, etc. Must include a:

Evi cti onPol i cyConfi g : implementation-specific configuration object for the Evi cti onPol i cy
implementation being used. What configuration elements are exposed depends on the needs
of the Evi cti onPol i cy implementation.

23

Chapter 3. Configuration

e CacheLoader Config : only relevant if a cache loader is used. General cache loader
configuration options. Must include at least one:

I ndi vi dual CacheLoader Config : implementation-specific configuration object for the
CacheLoader implementation being used. What configuration elements are exposed depends
on the needs of the CacheLoader implementation.

* RuntinmeConfig : exposes to cache clients certain information about the cache's runtime
environment (e.g. membership in buddy replication groups if buddy replication is used.)
Also allows direct injection into the cache of needed external services like a JTA
Transact i onManager or a JGroups Channel Factory .

3.4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running is supported,
by programmatically obtaining the Confi gur ati on object from the running cache and changing
values. E.g.,

Configuration liveConfig = cache.getConfiguration();
liveConfig.setLockAcquisitionTimeout(2000);

A complete listing of which options may be changed dynamically is in the configuration reference
section. An or g. j boss. cache. confi g. Confi gurati onExcepti on will be thrown if you attempt
to change a setting that is not dynamic.

3.5. Overriding the Configuration Via the Option API

The Option API allows you to override certain behaviours of the cache on a per invocation basis.
This involves creating an instance of or g. j boss. cache. confi g. Opti on, setting the options you
wish to override on the Opt i on object and passing it in the | nvocat i onCont ext before invoking
your method on the cache.

E.g., to override the default node versioning used with optimistic locking:

DataVersion v = new MyCustomDataVersion();
cache.getlnvocationContext().getOptionOverrides().setDataVersion(v);
Node ch = cache.getRoot().addChild(Fgn.fromString("/a/b/c"));

E.g., to suppress replication of a put call in a REPL_SYNC cache:

24

Overriding the Configuration Via the Option API

Node node = cache.getChild(Fgn.fromString("/a/b/c"));
cache.getlnvocationContext().getOptionOverrides().setLocalOnly(true);
node.put("localCounter”, new Integer(2));

See the javadocs on the Opt i on class for details on the options available.

25

26

Chapter 4.

Deploying JBoss Cache

4.1. Standalone Use / Programatic Deployment

When used in a standalone Java program, all that needs to be done is to instantiate the cache
using the CacheFact ory and a Conf i gur at i on instance or an XML file, as discussed in the User
APl and Configuration chapters.

The same techniques can be used when an application running in an application server
wishes to programatically deploy a cache rather than relying on an application server's
deployment features. An example of this would be a webapp deploying a cache via a
j avax. servl et. Servl et Cont ext Li st ener .

If, after deploying your cache you wish to expose a management interface to it in JIMX, see the
section on Programatic Registration in JMX .

4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x
and 4.x)

If JBoss Cache is run in JBoss AS then the cache can be deployed as an MBean simply by copying
a standard cache configuration file to the server's depl oy directory. The standard format of JBoss
Cache's standard XML configuration file (as shown in the Configuration Reference) is the same
as a JBoss AS MBean deployment descriptor, so the AS's SAR Deployer has no trouble handling
it. Also, you don't have to place the configuration file directly in depl oy ; you can package it along
with other services or JEE components in a SAR or EAR.

In AS 5, if you're using a server config based on the standard al | config, then that's all you need to
do; all required jars will be on the classpath. Otherwise, you will need to ensure j bosscache. j ar
andj groups-al | .jar are on the classpath. You may need to add other jars if you're using things
like JdbnCacheLoader . The simplest way to do this is to copy the jars from the JBoss Cache
distribution's | i b directory to the server config's | i b directory. You could also package the jars
with the configuration file in Service Archive (.sar) file or an EAR.

It is possible to deploy a JBoss Cache 2.0 instance in JBoss AS 4.x (at least in 4.2.0.GA; other
AS releases are completely untested). However, the significant APl changes between the JBoss
Cache 2.x and 1.x releases mean none of the standard AS 4.x clustering services (e.g. http session
replication) that rely on JBoss Cache will work with JBoss Cache 2.x. Also, be aware that usage
of JBoss Cache 2.x in AS 4.x is not something the JBoss Cache developers are making any
significant effort to test, so be sure to test your application well (which of course you're doing
anyway.)

Note in the example the value of the nbean element's code attribute:
org. j boss. cache. j nx. CacheJnxW apper . This is the class JBoss Cache uses to handle JMX
integration; the Cache itself does not expose an MBean interface. See the JBoss Cache MBeans
section for more on the CacheJnxW apper .

27

Chapter 4. Deploying JBoss Cache

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a JMX proxy
can be used to get a reference to the cache:

MBeanServer server = MBeanServerLocator.locateJBoss();
ObjectName on = new ObjectName("jboss.cache:service=Cache");
CacheJmxWrapperMBean cacheWrapper =
(CacheJmxWrapperMBean) MBeanServerinvocationHandler.newProxyInstance(server, on,
CacheJmxWrapperMBean.class, false);
Cache cache = cacheWrapper.getCache();
Node root = cache.getRoot(); / etc etc

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current
JVM. The javax.nanagenent. MBeanServer|nvocati onHandl er class' newProxyl nst ance
method creates a dynamic proxy implementing the given interface and uses JMX to dynamically
dispatch methods invoked against the generated interface to the MBean. The name used to look
up the MBean is the same as defined in the cache's configuration file.

Once the proxy to the CacheJnxW apper is obtained, the get Cache() will return a reference to
the Cache itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services via deployment of a
file whose name ends with - beans. xml . A POJO service is one whose implementation is via a
"Plain Old Java Object”, meaning a simple java bean that isn't required to implement any special
interfaces or extend any particular superclass. A Cache is a POJO service, and all the components
in a Confi guration are also POJOS, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss
AS. JBoss Microcontainer is a sophisticated IOC framework (similar to Spring). A - beans. xni
file is basically a descriptor that tells the IOC framework how to assemble the various beans that
make up a POJO service.

For each configurable option exposed by the Confi gur ati on components, a getter/setter must
be defined in the configuration class. This is required so that JBoss Microcontainer can, in typical
IOC way, call these methods when the corresponding properties have been configured.

The rules for how to deploy the file, how to package it, how to ensure the required jars are on the
classpath, etc. are the same as for a JMX-based deployment .

Following is an example - beans. xni file. If you look in the server/al | / depl oy directory of an
AS 5 installation, you can find several more examples.

28

Via JBoss Microcontainer (JBoss AS 5.x)

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlIns="urn:jboss:bean-deployer:2.0">

<I-- First we create a Configuration object for the cache -->
<bean name="ExampleCacheConfig"
class="org.jboss.cache.config.Configuration">

<!I-- Externally injected services -->
<property name="runtimeConfig">
<bean name="ExampleCacheRuntimeConfig"
class="org.jboss.cache.config.RuntimeConfig">
<property name="transactionManager">
<inject bean="jboss:service=TransactionManager"
property="TransactionManager"/>
</property>
<property name="muxChannelFactory"><inject bean="JChannelFactory"/></property>
</bean>
</property>

<property name="multiplexerStack">udp</property>

<property name="clusterName">Example-EntityCache</property>

<I--

Node locking level : SERIALIZABLE
REPEATABLE_READ (default)
READ_COMMITTED
READ_UNCOMMITTED
NONE

-->

<property name="isolationLevel">REPEATABLE_READ</property>

<l-- Valid modes are LOCAL
REPL_ASYNC
REPL_SYNC
==

<property name="cacheMode">REPL_SYNC</property>

<l-- The max amount of time (in milliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
existing members in a clustered environment

29

Chapter 4. Deploying JBoss Cache

>

<property name="initialStateRetrievalTimeout">15000</property>

<!-- Number of milliseconds to wait until all responses for a
synchronous call have been received.
==

<property name="syncReplTimeout">20000</property>

<I-- Max number of milliseconds to wait for a lock acquisition -->
<property name="lockAcquisitionTimeout">15000</property>

<property name="exposeManagementStatistics">true</property>

<!-- Must be true if any entity deployment uses a scoped classloader -->
<property name="useRegionBasedMarshalling">true</property>

<!l-- Must match the value of "useRegionBasedMarshalling" -->
<property name="inactiveOnStartup">true</property>

<I-- Specific eviction policy configurations. This is LRU -->
<property name="evictionConfig">
<bean name="ExampleEvictionConfig"
class="org.jboss.cache.config.EvictionConfig">
<property name="defaultEvictionPolicyClass">
org.jboss.cache.eviction.LRUPolicy
</property>
<property name="wakeuplntervalSeconds">5</property>
<property name="evictionRegionConfigs">
<list>
<bean name="ExampleDefaultEvictionRegionConfig"
class="org.jboss.cache.config.EvictionRegionConfig">
<property name="regionName">/_default_</property>
<property name="evictionPolicyConfig">
<bean name="ExampleDefaultLRUConfig"
class="org.jboss.cache.eviction.LRUConfiguration">
<property name="maxNodes">5000</property>
<property name="timeToLiveSeconds">1000</property>
</bean>
</property>
</bean>
</list>
</property>
</bean>
</property>

30

Binding to JNDI in JBoss AS

</bean>

<!I-- Factory to build the Cache. -->
<bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">
<constructor factoryClass="org.jboss.cache.DefaultCacheFactory"
factoryMethod="getInstance"/>
</bean>

<I-- The cache itself -->
<bean name="ExampleCache" class="org.jboss.cache.Cache">

<constructor factoryMethod="createCache">
<factory bean="DefaultCacheFactory"/>
<parameter class="org.jboss.cache.config.Configuration"><inject
bean="ExampleCacheConfig"/></parameter>
<parameter class="boolean">false</false>
</constructor>

</bean>

</deployment>

See the JBoss Microcontainer documentation * for details on the above syntax. Basically, each
bean element represents an object; most going to create a Confi gur ati on and its constituent
parts .

An interesting thing to note in the above example is the use of the Runt i meConf i g object. External
resources like a Transacti onvManager and a JGroups Channel Fact ory that are visible to the
microcontainer are dependency injected into the Runt i meConfi g . The assumption here is that in
some other deployment descriptor in the AS, the referenced beans have been described.

4.4. Binding to JNDI in JBoss AS

With the 1.x JBoss Cache releases, a proxy to the cache could be bound into JBoss AS's JNDI
tree using the AS's JRMPPr oxyFact ory service. With JBoss Cache 2.x, this no longer works. An
alternative way of doing a similar thing with a POJO (i.e. non-JMX-based) service like a Cache

is under development by the JBoss AS team 2 That feature is not available as of the time of
this writing, although it will be completed before AS 5.0.0.GA is released. We will add a wiki page
describing how to use it once it becomes available.

lhttp://labs.jboss.com/jbossmc/docs

2http://jira.jboss.com/jira/browse/.JBAS-4456

31

Chapter 4. Deploying JBoss Cache

4.5. Runtime Management Information

JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that can
be used to analyze cache operations. JBoss Cache can also broadcast cache events as MBean
notifications for handling via JMX monitoring tools.

45.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments
JMX server to allow access to the cache instance via JMX. This MBean is the
org.j boss. cache. j nx. CacheJnxW apper . It is a StandardMBean, so it's MBean interface is
org. j boss. cache. j nx. CacheJnmxW apper MBean . This MBean can be used to:

» Get a reference to the underlying Cache .
« Invoke create/start/stop/destroy lifecycle operations on the underlying Cache .
« Inspect various details about the cache's current state (humber of nodes, lock information, etc.)

« See numerous details about the cache's configuration, and change those configuration items
that can be changed when the cache has already been started.
See the CacheJnxW apper MBean javadoc for more details.

It is important to note a significant architectural difference between JBoss Cache 1.x and 2.x. In
1.x, the old TreeCache class was itself an MBean, and essentially exposed the cache's entire
APl via JMX. In 2.x, IMX has been returned to it's fundamental role as a management layer. The
Cache object itself is completely unaware of JMX; instead JMX functionality is added through a
wrapper class designed for that purpose. Furthermore, the interface exposed through JMX has
been limited to management functions; the general Cache APl is no longer exposed through JMX.
For example, it is no longer possible to invoke a cache put or get via the JMX interface.

If a CacheJnxWapper is registered, JBoss Cache also provides MBeans for
each interceptor configured in the cache's interceptor stack. These MBeans
are used to capture and expose statistics related to cache operations. They
are hierarchically associated with the CacheJmxWapper MBean and have service
names that reflect this relationship. For example, a replication interceptor MBean
for the jboss.cache:service=TontatC usteringCache instance will be accessible
through the service named |boss. cache: service=Tontat O usteringCache, cache-

i nterceptor=Replicationlnterceptor .

4.5.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxW apper is registered in JMX depends on how you are
deploying your cache:

4.5.2.1. Programatic Registration

Simplest way to do this is to create your Cache and pass it to the CacheJnxW apper constructor.

32

Registering the CacheJmxWrapper with the
MBeanServer

CacheFactory factory = new DefaultCacheFactory();

// Build but don't start the cache

/I (although it would work OK if we started it)

Cache cache = factory.createCache("cache-configuration.xml", false);

CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(cache);
MBeanServer server = getMBeanServer(); // however you do it
ObjectName on = new ObjectName("jboss.cache:service=TreeCache");
server.registerMBean(wrapper, on);

/I Invoking lifecycle methods on the wrapper results
/l'in a call through to the cache

wrapper.create();

wrapper.start();

... use the cache
... on application shutdown

/I Invoking lifecycle methods on the wrapper results
/l'in a call through to the cache

wrapper.stop();

wrapper.destroy();

Alternatively, build a Confi gur ati on object and pass it to the CacheJnxW apper . The wrapper
will construct the Cache :

Configuration config = buildConfiguration(); // whatever it does

CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(config);
MBeanServer server = getMBeanServer(); // however you do it
ObjectName on = new ObjectName("jboss.cache:service=TreeCache");
server.registerMBean(wrapper, on);

/I Call to wrapper.create() will build the Cache if one wasn't injected
wrapper.create();

wrapper.start();

/I Now that it's built, created and started, get the cache from the wrapper

33

Chapter 4. Deploying JBoss Cache

Cache cache = wrapper.getCache();
... use the cache
... on application shutdown

wrapper.stop();
wrapper.destroy();

4.5.2.2. IMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cache in JBoss AS using a -service.xml file , a CacheJmxW apper is
automatically registered. There is no need to do anything further. The CacheJnxW apper is
accessible from an MBean server through the service name specified in the cache configuration
file's nbean element.

4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

CacheJmxW apper is a POJO, so the microcontainer has no problem creating one. The
trick is getting it to register your bean in JMX. This can be done by specifying the
org. j boss. aop. m crocont ai ner. aspect s. j nx. JMXannotation on the CacheJnxW apper bean:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlIns="urn:jboss:bean-deployer:2.0">

<!I-- First we create a Configuration object for the cache -->
<bean name="ExampleCacheConfig"
class="org.jboss.cache.config.Configuration">

... build up the Configuration
</bean>

<!I-- Factory to build the Cache. -->
<bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">
<constructor factoryClass="org.jboss.cache.DefaultCacheFactory"
factoryMethod="getInstance"/>
</bean>

<!-- The cache itself -->
<bean name="ExampleCache" class="org.jboss.cache.Cachelmpl">

34

Registering the CacheJmxWrapper with the
MBeanServer

<constructor factoryMethod="createnewinstance">
<factory bean="DefaultCacheFactory"/>
<parameter><inject bean="ExampleCacheConfig"/></parameter>
<parameter>false</false>

</constructor>

</bean>

<I-- JMX Management -->
<bean name="ExampleCacheJmxWrapper" class="org.jboss.cache.jmx.CacheJmxWrapper">

exposedinterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
registerDirectly=true)</annotation>

<constructor>
<parameter><inject bean="ExampleCache"/></parameter>
</constructor>

</bean>

</deployment>

As discussed in the Programatic Registration section, CacheJnxW apper can do the work of
building, creating and starting the Cache if it is provided with a Configuration . With the
microcontainer, this is the preferred approach, as it saves the boilerplate XML needed to create
the CacheFactory :

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="urn:jboss:bean-deployer:2.0">
<!I-- First we create a Configuration object for the cache -->
<bean name="ExampleCacheConfig"
class="org.jboss.cache.config.Configuration">

... build up the Configuration

</bean>

35

Chapter 4. Deploying JBoss Cache

<bean name="ExampleCache" class="org.jboss.cache.jmx.CacheJmxWrapper">

exposedinterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
registerDirectly=true)</annotation>

<constructor>
<parameter><inject bean="ExampleCacheConfig"/></parameter>
</constructor>

</bean>

</deployment>

45.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor
MBeans. Gathering of statistics is enabled by default; this can be disabled for a specific cache
instance through the ExposeManagenent St at i st i cs configuration attribute. Note that the majority
of the statistics are provided by the CacheMgnt|nterceptor , so this MBean is the most
significant in this regard. If you want to disable all statistics for performance reasons, you set
ExposeManagenent St ati stics to fal se as this will prevent the CacheMgnt | nt er cept or from
being included in the cache's interceptor stack when the cache is started.

If a CacheJnmxW apper is registered with JMX, the wrapper also ensures that an MBean is

registered in JMX for each interceptor that exposes statistics 3. Management tools can then
access those MBeans to examine the statistics. See the section in the JMX Reference chapter
pertaining to the statistics that are made available via JIMX.

The name under which the interceptor MBeans will be registered is derived by taking the
Obj ect Nanme under which the CacheJmxW apper is registered and adding a cache- i nt er cept or
attribute key whose value is the non-qualified name of the interceptor class. So, for example,
if the CacheJmxW apper were registered under j boss. cache: servi ce=Tr eeCache , the name
of the CacheMynt I ntercept or MBean would be j boss. cache: servi ce=TreeCache, cache-
i nt er cept or=CacheMynt I nt erceptor .

3 Note that if the CacheJnmxW apper is not registered in JMX, the interceptor MBeans will not be registered either.
The JBoss Cache 1.4 releases included code that would try to "discover" an MBeanSer ver and automatically register
the interceptor MBeans with it. For JBoss Cache 2.x we decided that this sort of "discovery" of the IMX environment was
beyond the proper scope of a caching library, so we removed this functionality.

36

Receiving JMX Notifications

Each interceptor's MBean exposes a St ati sti csEnabl ed attribute that can be used to disable
maintenance of statistics for that interceptor. In addition, each interceptor MBean provides the
following common operations and attributes.

e dunpStati stics - returns a Map containing the interceptor's attributes and values.
e reset Statistics - resets all statistics maintained by the interceptor.

e setStatisticsEnabl ed(bool ean) - allows statistics to be disabled for a specific interceptor.

4.5.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier in the User
API chapter. Users can alternatively utilize the cache's management information infrastructure
to receive these events via JMX notifications. Cache events are accessible as notifications by
registering a Not i fi cati onLi st ener for the CacheJmxW apper .

See the section in the JMX Reference chapter pertaining to JMX notifications for a list of
notifications that can be received through the CacheJmxW apper .

The following is an example of how to programmatically receive cache notifications when running
in a JBoss AS environment. In this example, the client uses a filter to specify which events are
of interest.

MyListener listener = new MyListener();
NotificationFilterSupport filter = null;

/I get reference to MBean server
Context ic = new InitialContext();
MBeanServerConnection server = (MBeanServerConnection)ic.lookup(“jmx/invoker/
RMIAdaptor");

Il get reference to CacheMgmtinterceptor MBean
String cache_service = "jboss.cache:service=TomcatClusteringCache";
ObjectName mgmt_name = new ObjectName(cache_service);

/I configure a filter to only receive node created and removed events

filter = new NotificationFilterSupport();

filter.disableAllTypes();
filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_CREATED);
filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_REMOVED);

I register the listener with a filter
/Il leave the filter null to receive all cache events
server.addNotificationListener(mgmt_name, listener, filter, null);

37

Chapter 4. Deploying JBoss Cache

...

/I on completion of processing, unregister the listener
server.removeNotificationListener(mgmt_name, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MyListener implements NotificationListener, Serializable

{

public void handleNotification(Notification notification, Object handback)
{

String message = notification.getMessage();

String type = notification.getType();

Object userData = natification.getUserData();

System.out.printin(type + ": " + message);

if (userData == null)
{

System.out.printIn("notification data is null");

}

else if (userData instanceof String)

{

System.out.printin("notification data: " + (String) userData);

}

else if (userData instanceof Object[])
{
Object[] ud = (Object[]) userData;
for (Object data : ud)
{
System.out.printin("notification data: " + data.toString());
}
}

else

{
System.out.printin("notification data class: " + userData.getClass().getName());
}
}
}

38

Accessing Cache MBeans in a Standalone
Environment

Note that the JBoss Cache management implementation only listens to cache events after a client
registers to receive MBean natifications. As soon as no clients are registered for notifications, the
MBean will remove itself as a cache listener.

4.5.5. Accessing Cache MBeans in a Standalone Environment

JBoss Cache MBeans are easily accessed when running cache instances in an application server
that provides an MBean server interface such as JBoss JMX Console. Refer to your server
documentation for instructions on how to access MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a non-server
environment if the JVM is JDK 5.0 or later. When running a standalone cache in a JDK 5.0
environment, you can access the cache's MBeans as follows.

1. Set the system property - Dcom sun. managenent . j nxr enot e when starting the JVM where the
cache will run.

2. Once the JVM is running, start the JDK 5.0 j consol e utility, located in your JDK's / bi n
directory.

3. When the utility loads, you will be able to select your running JVM and connect to it. The JBoss
Cache MBeans will be available on the MBeans panel.

Note that the j consol e utility will automatically register as a listener for cache natifications when
connected to a JVM running JBoss Cache instances.

The following figure shows cache interceptor MBeans inj consol e . Cache statistics are displayed
for the CacheMgnt | nt er cept or :

39

Chapter 4. Deploying JBoss Cache

R e T o T el

Connection

MBeans

" Summary ' Memory | Threads ' Classes | MBeans | VM |

EP Tree

o=] JMimplementation
& [Jjava.lang
o= (£ java.util logging
¢ [boss.cache
¢ [ClusterTreeCache
@ |Cachemgmtinterceptor|
@@ Callinterceptar
¥ PessimisticLockinterceptar
@ Replicationinterceptor
@@ Tulnterceptor
& Unlockinterceptor
o= [TomeatClusteringCache

attributes | Operations | Notifications | Int
i Name Value
|AverageReadTime 0
|AverageiWriteTime 2
-|ElapsedTime 541
“A\Ewictions 0
HitMissRatio 0.857 142857142857
“IHits fi
| Misses 1
INumberOfAttributes i
ANumberoModes 3
| ReadwriteR atio 0.7
“|StatisticsEnabled true
“|Stores 10
I TimeSinceResat 541

Refresh

Figure 4.1. CacheMgmtinterceptor MBean in jconsole

40

Chapter 5.

Version Compatibility and
Interoperability

Within a major version, releases of JBoss Cache are meant to be compatible and interoperable.
Compatible in the sense that it should be possible to upgrade an application from one version
to another by simply replacing the jars. Interoperable in the sense that if two different versions
of JBoss Cache are used in the same cluster, they should be able to exchange replication and
state transfer messages. Note however that interoperability requires use of the same JGroups
version in all nodes in the cluster. In most cases, the version of JGroups used by a version of
JBoss Cache can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. However,
JBoss Cache 2.1.x will be API and binary compatible with 2.0.x.

A configuration attribute, Repl i cat i onVer si on, is available and is used to control the wire format
of inter-cache communications. They can be wound back from more efficient and newer protocols
to "compatible" versions when talking to older releases. This mechanism allows us to improve
JBoss Cache by using more efficient wire formats while still providing a means to preserve
interoperability.

5.1. Compatibility Matrix

A compatibility matrix [http://labs.jboss.com/portal/jpbosscache/compatibility/index.html] is
maintained on the JBoss Cache website, which contains information on different versions of JBoss
Cache, JGroups and JBoss AS.

41

http://labs.jboss.com/portal/jbosscache/compatibility/index.html
http://labs.jboss.com/portal/jbosscache/compatibility/index.html

42

Part Il. JBoss Cache Architecture

This section digs deeper into the JBoss Cache architecture, and is meant for developers wishing
to extend or enhance JBoss Cache, write plugins or are just looking for detailed knowledge of
how things work under the hood.

Chapter 6.

Architecture

6.1. Data Structures Within The Cache

A Cache consists of a collection of Node instances, organised in a tree structure. Each Node
contains a Map which holds the data objects to be cached. It is important to note that the structure
is a mathematical tree, and not a graph; each Node has one and only one parent, and the root
node is denoted by the constant fully qualitied name, Fgn. ROOT .

The reason for organising nodes as such is to improve concurrent access to data and make
replication and persistence more fine-grained.

s N

N /L

Figure 6.1. Data structured as a tree

In the diagram above, each box represents a JVM. You see 2 caches in separate JVMs, replicating
data to each other. These VMs can be located on the same physical machine, or on 2 different
machines connected by a network link. The underlying group communication between networked
nodes is done using JGroups [http://www.jgroups.org] .

Any modifications (see API chapter) in one cache instance will be replicated to the other cache.
Naturally, you can have more than 2 caches in a cluster. Depending on the transactional settings,

45

http://www.jgroups.org
http://www.jgroups.org

Chapter 6. Architecture

this replication will occur either after each modification or at the end of a transaction, at commit
time. When a new cache is created, it can optionally acquire the contents from one of the existing
caches on startup.

6.2. SPI Interfaces

In addition to Cache and Node interfaces, JBoss Cache exposes more powerful CacheSPI and
NodeSPI interfaces, which offer more control over the internals of JBoss Cache. These interfaces
are not intended for general use, but are designed for people who wish to extend and enhance
JBoss Cache, or write custom | nt er cept or or CacheLoader instances.

46

SPI Interfaces

T

[5P1)
o

Nade

forg.jbosz.cache)
M

:

NodeSFl ()
rorg.jbozz.cache)

< getterz=tgetChildrenloadediy [hoolean

S satterEEtestChildrenlogded! loaded [boolean ;o woid

< getterz=tgetDatal crdedsy boolean

< satterEateetDatal cadeds dataloaded [boslean ;o void
SagetterEz=tgetached [Cachesll

S getterEzEtgetvyCregte CRilD wame [Okject tx - GlobalTransaction - Modesbl
< getterz=tgetlocksy D Modelook

o satterEetaatbgnl FLREge 1 vaid

< getter=stgetChildrenMapDivectsy | Map

< agetter==tisDeleteds D hoglean

+arkd sDelateds marker D boolean o void

+arkA sDelareds marker [boolean, Fecursive [boglean ;o vaid
+addChilds hadeMam e Okject, rodeToAdd [MNode » o waid
+anintletailss sk o StringBuffer, indant [int o woid

+ganints sk Srringluffer, indent Dint o void
< satter s tratWersion wersion [Dataversion 3 vaid
< getterE==tgetersions [Dataversion
< getterz=tgetChildrenbivectsy D het s
+rem ove ChildrenDivecty D wold s
< getterz=tgetChildrenlivecty includeMarkedd sDeletad boglean o Set 5
< getterzEtgetChildDire sty childMam e - Okject - NodesiRl s
+addChildDivecty childMame - Far i Modes Bl s
<agetterzEtgetChildire sty childMam e Fge ko MadesFEl s
+remaweChildDirest fan D Fgr y o wald s
+remaweChildDirecty childMame - Object o waid s
+ramawelivecti ey [Okject » - Okjact +H
+gaDire sty kay Olyjact walie [Oklject 3 Okject s
< getterz=tgetDatalivectsy [Map 5
S getterzEtgetlirect key [Dkjiact ¥ Qkjact ks
+olearlratalirectsy | wold s
agetter=etgetieysDirectsy Sat +H
< agetterzstgetChildrenMamesDivectsy D Set +H
< getterz=tgetParentsy [Modeshl s
+aartChildrenMaplivecty children - Magp » s
+arANDpacts date - Mag +ad
igure 6.2. SPI Interfaces lf_

(org.jbodz.cache)

Caches Pl O

Chapter 6. Architecture

The CacheSPI interface cannot be created, but is injected into I nt er cept or and CachelLoader
implementations by the set Cache(CacheSPI cache) methods on these interfaces. CacheSPI
extends Cache so all the functionality of the basic APl is made available.

Similarly, a NodeSPI interface cannot be created. Instead, one is obtained by performing
operations on CacheSPl , obtained as above. For example, Cache. getRoot() : Node is
overridden as CacheSPI . get Root () : NodeSPI .

It is important to note that directly casting a Cache or Node to it's SPI counterpart is not
recommended and is bad practice, since the inheritace of interfaces it is not a contract that
is guaranteed to be upheld moving forward. The exposed public APls, on the other hand, is
guaranteed to be upheld.

6.3. Method Invocations On Nodes

Since the cache is essentially a collection of nodes, aspects such as clustering, persistence,
eviction, etc. need to be applied to these nodes when operations are invoked on the cache as
a whole or on individual nodes. To achieve this in a clean, modular and extensible manner, an
interceptor chain is used. The chain is built up of a series of interceptors, each one adding an
aspect or particular functionality. The chain is built when the cache is created, based on the
configuration used.

It is important to note that the NodeSPI offers some methods (such as the xxxDi rect () method
family) that operate on a node directly without passing through the interceptor stack. Plugin authors
should note that using such methods will affect the aspects of the cache that may need to be
applied, such as locking, replication, etc. Basically, don't use such methods unless you really know
what you're doing!

6.3.1. Interceptors
An | nt er cept or is an abstract class, several of which comprise an interceptor chain. It exposes

an i nvoke() method, which must be overridden by implementing classes to add behaviour to a
call before passing the call down the chain by calling super . i nvoke() .

48

Interceptors

[Interceptnrﬂ

rerceptol
(org.jbozz.cache.interceptars)

<< Constructor==+Interceptard

<< zetter=r=+setMextii: Interceptor) : woid

<< getter=>=+getfextd ; Interceptar

<< zetter==+zetCacherl cache : CachesPl) : woid

+invake! m : MethodCall) : Ohject

<< getter=>=+getstatizticzEnabled : boaolean

<< zetter=>=+zetitatizticzEnabledy enabled : boolean) : waoid
<< getter=>=+getlastd ;. Interceptor

<< zetter=>=+zetlaszt) last ; Interceptor) waoid
+dumpStatisticsd : Map-<k-=5tring, W->=0Ohbject =
+rezetitatizticzd @ waid

<< getter=r=#izActive!tx Tranzaction) . boaolean

<< getter==#izPreparingd tx : Tranzaction) : boaolean

<< getter==#izVWalid{ tx : Tranzaction) : boaolean

<< getter=>=#izOnePhazeZommitPreparetehodd m : MethodZall) : boaolean
+tastringd) : String

Invocation Context
(org.jbozz.cache)

<< Cconstructor>>=~lnvocationZontextd

<< zetter=>+setlocalRaollbackonlky(localRallbackonly - boolean) woid
<< getter=>4+getTranzactiond : Transaction

<< zetter=>+setTranzactiond tranzaction : Tranzaction) : void

<< getter=>+getClobalTransactiond : ClobalTransaction

<< zetter=>+zetClobalTranzactiond globalTranzaction | ClobalTranzaction) woid
<< getter=>+getOptionOverridesd - Option

< zetter=>+setOptionOverridesd optionOwerrides | Option) woid
<< getter=>+iz0riginLocald) : boolean

<< zetter=>+setOriginLocalf originLocal : boolean) : woid
+tostringd - 5tring

<< getter=>+isTxHazMod=d boalean

<< zetter=>+setTxHazModz{ b : boolean) : woid

<< getter=>+izLocalRallbackOnlyd : boolean

+rezetd) i woid

+cloned : InvocationZontext

<< zetter=>=+setitated template | InwocationContext) waid
+equalsi o : Object) : boalean

+hashCoded) :int

<< getter=>+getCachelizstenerBventz) | List<E->=MethodCall=
+addZacheliztenerBvent{ event : MethodCall) : woid
+clearacheliztenerBventsd © void

Figure 6.3. SPI Interfaces

49

Chapter 6. Architecture

JBoss Cache ships with several interceptors, representing different configuration options, some
of which are:

e TxInterceptor - looks for ongoing transactions and registers with transaction managers to
participate in synchronization events

e Replicationlnterceptor -replicates state across a cluster using a JGroups channel

* CacheLoader | nterceptor - loads data from a persistent store if the data requested is not
available in memory

The interceptor chain configured for your cache instance can be obtained and inspected by calling

CacheSPI . get | nt er cept or Chai n() , which returns an ordered Li st of interceptors.

6.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending I nt er cept or
and overriding i nvoke() . The custom interceptor will need to be added to the interceptor chain
by using the CacheSPI . addl nt er cept or () method.

Adding custom interceptors via XML is not supported at this time.

6.3.2. MethodCalls

org. j boss. cache. marshal | . Met hodCal | is a class that encapsulates a
java.lang.refl ection. Method and an Qbject[] representing the method's arguments. It
is an extension of the org.jgroups. bl ocks. Met hodCal | class, that adds a mechanism for
identifying known methods using magic numbers and method ids, which makes marshalling and
unmarshalling more efficient and performant.

This is central to the Interceptor architecture, and is the only parameter passed in to
I nterceptor.invoke() .

6.3.3. InvocationContexts

I nvocat i onCont ext holds intermediate state for the duration of a single invocation, and is set up
and destroyed by the | nvocat i onCont ext | nt er cept or which sits at the start of the chain.

I nvocationContext , as its name implies, holds contextual information associated
with a single cache method invocation. Contextual information includes associated
javax.transaction. Transacti on or org.j boss. cache.transacti on. @ obal Transacti on ,
method invocation origin (1 nvocati onCont ext . i sOri gi nLocal ())aswell as Opti on overrides

The I nvocat i onCont ext can be obtained by calling Cache. get | nvocat i onCont ext () .

50

Managers For Subsystems

6.4. Managers For Subsystems

Some aspects and functionality is shared by more than a single interceptor. Some of these have
been encapsulated into managers, for use by various interceptors, and are made available by the
CacheSPI interface.

6.4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches,
and encapsulates the JGroups channel used.

6.4.2. BuddyManager

This class manages buddy groups and invokes group organisation remote calls to organise a
cluster of caches into smaller sub-groups.

6.4.3. CachelLoaderManager

Sets up and configures cache loaders. This class wraps individual CachelLoader instances in
delegating classes, such as Si ngl et onSt or eCacheLoader or AsyncCacheloader , or may add
the CachelLoader to a chain using the Chai ni ngCachelLoader .

6.5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing to an
bj ect Qut put St r eamduring replication. Over various releases in the JBoss Cache 1.x.x series
this approach was gradually deprecated in favour of a more mature marshalling framework. In the
JBoss Cache 2.x.x series, this is the only officially supported and recommended mechanism for
writing objects to datastreams.

51

Chapter 6. Architecture

[Marshallerﬂ

J - T T —|From org.jgroups.blocks
RpcDispatcher.Marshaller

Mazrshaller Cj

+objectToOkjectStragms ok - Ohject olt | Objact QU pUtSiream »
+okjectErom OljectStreamoin | DhjectinputStream ¥ Ohjact
+objectEromStreamyois [lnputStream b Ohljact

+objectToOkjectStregms ok - Ohject out - OhjactQutpltitream, Fagiok - Fgr

Fi)
o
I

AbstrartMarshaller
forgjboss.cache.marshally [

VersionAwareMarshaller CacheMarshaller 200
(org.jbozz . cache marzhall) T rorg.jbozz cache marzhal

Delegates 1o
CachemMarzhaller
200 for streams
that have uzed
verzion 200.

Figure 6.4. The Marshaller interface

6.5.1. The Marshaller Interface

The Marshal | er interface extends RpcDi spat cher. Marshal | er from JGroups. This interface
has two main implementations - a delegating Versi onAwar eMarshal l er and a concrete
CacheMar shal | er 200 .

The marshaller can be obtained by calling CacheSPI . get Marshal | er () , and defaults to the
Ver si onAwar eMar shal | er . Users may also write their own marshallers by implementing the

52

VersionAwareMarshaller

Mar shal | er interface and adding it to their configuration, by using the Marshal | er C ass
configuration attribute.

6.5.2. VersionAwareMarshaller

As the name suggests, this marshaller adds a version short to the start of any stream
when writing, enabling similar Ver si onAwar eMar shal | er instances to read the version short
and know which specific marshaller implementation to delegate the call to. For example,
CacheMar shal | er 200 , is the marshaller for JBoss Cache 2.0.x. JBoss Cache 2.1.x, say, may ship
with CacheMar shal | er 210 with an improved wire protocol. Using a Ver si onAwar eMar shal | er
helps achieve wire protocol compatibility between minor releases but still affords us the flexibility
to tweak and improve the wire protocol between minor or micro releases.

6.5.2.1. CachelLoaders

Some of the existing cache loaders, such as the JDBCCachelLoader and the Fi | eCacheLoader
relied on persisting data using bj ect Qut put Stream as well, but now, they are using the
Ver si onAwar eMar shal | er to marshall the persisted data to their cache stores.

6.5.3. CacheMarshaller200

This marshaller treats well-known objects that need marshalling - such as Met hodCal | , Fgn ,
Dat aVer si on , and even some JDK objects such as String , List , Bool ean and others as
types that do not need complete class definitions. Instead, each of these well-known types are
represented by a short , which is a lot more efficient.

In addition, reference counting is done to reduce duplication of writing certain objects multiple
times, to help keep the streams small and efficient.

Also, if UseRegi onBasedMar shal | i ng is enabled (disabled by default) the marshaller adds region
information to the stream before writing any data. This region information is in the form of a
St ri ng representation of an Fgqn . When unmarshalling, the Regi onManager can be used to find
the relevant Regi on , and use a region-specific d assLoader to unmarshall the stream. This is
specifically useful when used to cluster state for application servers, where each deployment has
it's own C assLoader . See the section below on regions for more information.

6.6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the application tend
to put instances of objects specific to their application in the cache (or in an Htt pSessi on
object) which would require replication. It is common for application servers to assign separate
O assLoader instances to each application deployed, but have JBoss Cache libraries referenced
by the application server's Cl assLoader .

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a
concept called regions. A region is a portion of the cache which share a common class loader (a
region also has other uses - see eviction policies).

53

Chapter 6. Architecture

A region is created by using the Cache. get Regi on(Fgn fqn, bool ean creat el f Not Exi sts)
method, and returns an implementation of the Regi on interface. Once aregion is obtained, a class
loader for the region can be set or unset, and the region can be activated/deactivated. By default,
regions are active unless the | nacti veOnSt ar t up configuration attribute is setto t r ue .

54

Chapter 7.

Clustering

This chapter talks about aspects around clustering JBoss Cache.

7.1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the
cache can be configured to replicate changes, or to invalidate changes. A detailed discussion on
this follows.

7.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. Therefore
their elements don't need to be serializable - however, we recommend making them serializable,
enabling a user to change the cache mode at any time. The dependency on the JGroups library
is still there, although a JGroups channel is not started.

7.1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in the
cluster. Replication can either happen after each modification (no transactions), or at the end of
a transaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options is application
dependent. Synchronous replication blocks the caller (e.g. on a put ()) until the modifications
have been replicated successfully to all nodes in a cluster. Asynchronous replication performs
replication in the background (the put () returns immediately). JBoss Cache also offers a
replication queue, where modifications are replicated periodically (i.e. interval-based), or when
the queue size exceeds a number of elements, or a combination thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires
acknowledgments from all nodes in a cluster that they received and applied the modification
successfully (round-trip time). However, when a synchronous replication returns successfully, the
caller knows for sure that all modifications have been applied to all cache instances, whereas this
is not be the case with asynchronous replication. With asynchronous replication, errors are simply
written to a log. Even when using transactions, a transaction may succeed but replication may
not succeed on all cache instances.

7.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a
transaction commits. This results in minimising replication traffic since a single modification is
broadcast rather than a series of individual modifications, and can be a lot more efficient than
not using transactions. Another effect of this is that if a transaction were to roll back, nothing is
broadcast across a cluster.

55

Chapter 7. Clustering

Depending on whether you are running your cluster in asynchronous or synchronous mode,
JBoss Cache will use either a single phase or two phase commit [http://en.wikipedia.org/wiki/
Two-phase_commit_protocol] protocol, respectively.

7.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call,
which instructs remote caches to apply the changes to their local in-memory state and commit
locally. Remote errors/rollbacks are never fed back to the originator of the transaction since the
communication is asynchronous.

7.1.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache
broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote
caches then acquire local locks on their in-memory state and apply the modifications. Once all
remote caches respond to the prepare call, the originator of the transaction broadcasts a commit.
This instructs all remote caches to commit their data. If any of the caches fail to respond to the
prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are
asynchronous. This is because Sun's JTA specification [http://java.sun.com/products/jta/] does
not specify how transactional resources should deal with failures at this stage of a transaction; and
other resources participating in the transaction may have indeterminate state anyway. As such, we
do away with the overhead of synchronous communication for this phase of the transaction. That
said, they can be forced to be synchronous using the SyncConmi t Phase and SyncRol | backPhase
configuration attributes.

7.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster. Instead,
each instance picks one or more 'buddies' in the cluster, and only replicates to these specific
buddies. This greatly helps scalability as there is no longer a memory and network traffic impact
every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used
by a servlet container to store HTTP session data. One of the pre-requisites to buddy replication
working well and being a real benefit is the use of session affinity , more casually known as sticky
sessions in HTTP session replication speak. What this means is that if certain data is frequently
accessed, it is desirable that this is always accessed on one instance rather than in a round-robin
fashion as this helps the cache cluster optimise how it chooses buddies, where it stores data, and
minimises replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

56

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Replicated Caches

7.1.2.2.1. Selecting Buddies

[BuddyReplication 1|

Buddyl ecatar
(org.jbozz.cache. buddyreplica

< < getterz=s=+getConfigo | Buddvl ocatorConfig
+inits config Buddvl ocatorConfig b | void
+Hocatefuddiesy buddyPoolMap @ Map<K-=4ddress, W-=5tring=, currentMambearship

.-_"IL

MextMember BuddyLoc
forg.jbozs.cache buddyrep

Figure 7.1. BuddyLocator

Buddy Replication uses an instance of a BuddylLocator which contains the logic used to
select buddies in a network. JBoss Cache currently ships with a single implementation,
Next Menmber BuddyLocat or , which is used as a default if no implementation is provided. The
Next Menber BuddyLocat or selects the next member in the cluster, as the name suggests, and
guarantees an even spread of buddies for each instance.

The Next Menber BuddyLocat or takes in 2 parameters, both optional.

* nunBuddi es - specifies how many buddies each instance should pick to back its data onto. This
defaults to 1.

i gnoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different
physical host. If not able to do so though, it will fall back to colocated instances. This defaults
totrue.

7.1.2.2.2. BuddyPools

Also known as replication groups , a buddy pool is an optional construct where each instance
in a cluster may be configured with a buddy pool name. Think of this as an 'exclusive club
membership' where when selecting buddies, BuddyLocat or s that support buddy pools would
try and select buddies sharing the same buddy pool name. This allows system administrators a
degree of flexibility and control over how buddies are selected. For example, a sysadmin may put
two instances on two separate physical servers that may be on two separate physical racks in
the same buddy pool. So rather than picking an instance on a different host on the same rack,

57

Chapter 7. Clustering

BuddyLocat or s would rather pick the instance in the same buddy pool, on a separate rack which
may add a degree of redundancy.

7.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the
cache (directly or indirectly, via some other service such as HTTP session replication) is able to
redirect the request to any other random cache instance in the cluster. This is where a concept
of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache
does not contain this information, it asks other instances in the cluster for the data. In other words,
data is lazily transferred, migrating only when other nodes ask for it. This strategy prevents a
network storm effect where lots of data is pushed around healthy nodes because only one (or a
few) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances
to check in the backup data they store for other caches. This means that even if a cache containing
your session dies, other instances will still be able to access this data by asking the cluster to
search through their backups for this data.

Once located, this data is transferred to the instance which requested it and is added to this
instance's data tree. The data is then (optionally) removed from all other instances (and backups)
so that if session affinity is used, the affinity should now be to this new cache instance which has
just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration
properties pertain to data gravitation.

» dataGravit ati onRenmbveOnFi nd - forces all remote caches that own the data or hold backups
for the data to remove that data, thereby making the requesting cache the new data owner. This
removal, of course, only happens after the new owner finishes replicating data to its buddy. If
set to f al se an evict is broadcast instead of a remove, so any state persisted in cache loaders
will remain. This is useful if you have a shared cache loader configured. Defaults to t r ue .

e dataG avitationSearchBackupTrees - Asks remote instances to search through their
backups as well as main data trees. Defaults to t r ue . The resulting effect is that if this is t r ue
then backup nodes can respond to data gravitation requests in addition to data owners.

* aut oDat aGr avi t ati on - Whether data gravitation occurs for every cache miss. By default this
is set to f al se to prevent unnecessary network calls. Most use cases will know when it may
need to gravitate data and will pass in an Opt i on to enable data gravitation on a per-invocation
basis. If aut oDat aGravi t ati on is t r ue this Opt i on is unnecessary.

7.1.2.2.4. Configuration

<l-- Buddy Replication config -->

58

Replicated Caches

<attribute name="BuddyReplicationConfig">
<config>

<l-- Enables buddy replication. This is the ONLY mandatory configuration element here. -->
<buddyReplicationEnabled>true</buddyReplicationEnabled>

<!l-- These are the default values anyway -->
<buddyLocatorClass>org.jboss.cache.buddyreplication.NextMemberBuddyLocator</
buddyLocatorClass>

<!l-- numBuddies is the number of backup nodes each node maintains.
ignoreColocatedBuddies means
that each node will *try* to select a buddy on a different physical host. If not able to
do so though,
it will fall back to colocated nodes. -->
<buddyLocatorProperties>
numBuddies = 1
ignoreColocatedBuddies = true
</buddyLocatorProperties>

<!-- A way to specify a preferred replication group. If specified, we try and pick a buddy which
shares
the same pool name (falling back to other buddies if not available). This allows the sysdmin to
hint at backup buddies are picked, so for example, nodes may be hinted topick buddies
on a different
physical rack or power supply for added fault tolerance. -->
<buddyPoolName>myBuddyPoolReplicationGroup</buddyPoolName>

<l-- Communication timeout for inter-buddy group organisation messages (such as assigning
to and
removing from groups, defaults to 1000. -->
<buddyCommunicationTimeout>2000</buddyCommunicationTimeout>

<!-- Whether data is removed from old owners when gravitated to a new owner. Defaults
to true. -->
<dataGravitationRemoveOnFind>true</dataGravitationRemoveOnFind>

<!-- Whether backup nodes can respond to data gravitation requests, or only the data owner is
supposed to respond. Defaults to true. -->
<dataGravitationSearchBackupTrees>true</dataGravitationSearchBackupTrees>

<!l-- Whether all cache misses result in a data gravitation request. Defaults to false, requiring
callers to enable data gravitation on a per-invocation basis using the Options API. -->
<autoDataGravitation>false</autoDataGravitation>

59

Chapter 7. Clustering

</config>
</attribute>

7.2. Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a
cache other caches in the cluster receive a message informing them that their data is now stale
and should be evicted from memory. Invalidation, when used with a shared cache loader (see
chapter on Cache Loaders) would cause remote caches to refer to the shared cache loader to
retrieve modified data. The benefit of this is twofold: network traffic is minimised as invalidation
messages are very small compared to replicating updated data, and also that other caches in the
cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a
transaction, upon successful commit. This is usually more efficient as invalidation messages can
be optimised for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication,
synchronous invalidation blocks until all caches in the cluster receive invalidation messages and
have evicted stale data while asynchronous invalidation works in a 'fire-and-forget' mode, where
invalidation messages are broadcast but doesn't block and wait for responses.

7.3. State Transfer

State Transfer refers to the process by which a JBoss Cache instance prepares itself to begin
providing a service by acquiring the current state from another cache instance and integrating
that state into its own state.

7.3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related to state
transfer. First, in the context of particular state transfer implementation, the underlying plumbing,
there are two starkly different state transfer types: byte array and streaming based state transfer.
Second, state transfer can be full or partial state transfer depending on a subtree being transferred.
Entire cache tree transfer represents full transfer while transfer of a particular subtree represents
partial state transfer. And finally state transfer can be "in-memory" and "persistent" transfer
depending on a particular use of cache.

7.3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache in all previous
releases up to 2.0. Byte array based transfer loads entire state transferred into a byte array and
sends it to a state receiving member. Major limitation of this approach is that the state transfer
that is very large (>1GB) would likely result in OutOfMemoryException. Streaming state transfer
provides an InputStream to a state reader and an OutputStream to a state writer. OutputStream

60

Full and partial state transfer

and InputStream abstractions enable state transfer in byte chunks thus resulting in smaller
memory requirements. For example, if application state is represented as a tree whose aggregate
size is 1GB, rather than having to provide a 1GB byte array streaming state transfer transfers the
state in chunks of N bytes where N is user configurable.

Byte array and streaming based state transfer are completely API transparent, interchangeable,
and statically configured through a standard cache configuration XML file. Refer to JGroups
documentation on how to change from one type of transfer to another.

7.3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be
done at various times, depending on how the cache is used. "Full" state transfer refers to the
transfer of the state related to the entire tree -- i.e. the root node and all nodes below it. A "partial”
state transfer is one where just a portion of the tree is transferred -- i.e. a node at a given Fgn
and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following
times:

1. Initial state transfer. This occurs when the cache is first started (as part of the processing of the
start () method). This is a full state transfer. The state is retrieved from the cache instance

that has been operational the longest. Yitthere is any problem receiving or integrating the state,
the cache will not start.

Initial state transfer will occur unless:

a. The cache's| nacti veOnSt ar t up property is t r ue . This property is used in conjunction with
region-based marshalling.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. When region-based marshalling is used, the
application needs to register a specific class loader with the cache. This class loader is used
to unmarshall the state for a specific region (subtree) of the cache.

After registration, the application calls cache. get Regi on(fqgn, true).activate() , which
initiates a partial state transfer of the relevant subtree's state. The request is first made to the
oldest cache instance in the cluster. However, if that instance responds with no state, it is then
requested from each instance in turn until one either provides state or all instances have been
queried.

Typically when region-based marshalling is used, the cache's | nacti veOnSt art up property
is set to true . This suppresses initial state transfer, which would fail due to the inability to
deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,
when a cache instance joins the cluster, it becomes the buddy of one or more other instances,

61

Chapter 7. Clustering

7.

Th

1.

and one or more other instances become its buddy. Each time an instance determines it has a
new buddy providing backup for it, it pushes it's current state to the new buddy. This "pushing" of
state to the new buddy is slightly different from other forms of state transfer, which are based on
a "pull" approach (i.e. recipient asks for and receives state). However, the process of preparing
and integrating the state is the same.

This "push" of state upon buddy group formation only occurs if the | nacti veOnStartup
property is setto f al se . Ifitist r ue , state transfer amongst the buddies only occurs when the
application activates the region on the various members of the group.

Partial state transfer following a region activation call is slightly different in the buddy replication
case as well. Instead of requesting the partial state from one cache instance, and trying all
instances until one responds, with buddy replication the instance that is activating a region will
request partial state from each instance for which it is serving as a backup.

3.4. Transient ("in-memory") and persistent state transfer

e state that is acquired and integrated can consist of two basic types:

"Transient" or "in-memory" state. This consists of the actual in-memory state of another cache
instance - the contents of the various in-memory nodes in the cache that is providing state are
serialized and transferred; the recipient deserializes the data, creates corresponding nodes in
its own in-memory tree, and populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's FetchlnMenoryState
configuration attribute to t r ue .

. "Persistent” state. Only applicable if a non-shared cache loader is used. The state stored in the

state-provider cache's persistent store is deserialized and transferred; the recipient passes the
data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's f et chPersistentState
attribute to true . If multiple cache loaders are configured in a chain, only one can have this
property set to true; otherwise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same
persistent store that provides the data will just end up receiving it. Therefore, if a shared cache
loader is used, the cache will not allow a persistent state transfer even if a cache loader has
fetchPersistentState settotrue.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1.

If a write-through cache loader is used, the current cache state is fully represented by the
persistent state. Data may have been evicted from the in-memory state, but it will still be in
the persistent store. In this case, if the cache loader is not shared, persistent state transfer is
used to ensure the new cache has the correct state. In-memory state can be transferred as
well if the desire is to have a "hot" cache -- one that has all relevant data in memory when

62

Configuring State Transfer

the cache begins providing service. (Note that the <cachel oader ><pr el oad> element in the
CacheLoader Conf i g configuration parameter can be used as well to provide a "warm" or "hot"
cache without requiring an in-memory state transfer. This approach somewhat reduces the
burden on the cache instance providing state, but increases the load on the persistent store
on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can only be
obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)
states. Therefore an in-memory state transfer is necessary. A persistent state transfer is
necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used
to cache data that can also be found in a persistent store, e.g. a database), whether or not
in-memory state should be transferred depends on whether or not a "hot" cache is desired.

7.3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are
configured with the same settings for persistent and transient state. This is because byte array
based transfers, when requested, rely only on the requester's configuration while stream based
transfers rely on both the requester and sender's configuration, and this is expected to be identical.

63

64

Chapter 8.

Cache Loaders

JBoss Cache can use a CachelLoader to back up the in-memory cache to a backend datastore. If
JBoss Cache is configured with a cache loader, then the following features are provided:

« Whenever a cache elementis accessed, and that element is not in the cache (e.g. due to eviction
or due to server restart), then the cache loader transparently loads the element into the cache
if found in the backend store.

« Whenever an element is modified, added or removed, then that modification is persisted in the
backend store via the cache loader. If transactions are used, all modifications created within
a transaction are persisted. To this end, the CacheLoader takes part in the two phase commit
protocol run by the transaction manager, although it does not do so explicitly.

65

Chapter 8. Cache Loaders

8.1. The CacheLoader Interface and Lifecycle

[CacheLDader]J

Cacheloader
forg.jbozz.cache. loader)

< setter =4 satConfigl config DlndividuglCachel oaderCondig d o void
< s getter==4+getConfigs D lndividuslCachel caderContig

< setterzmdsetCacher oo CachelSPl)y i void

< s getter==4getChildrenlamesifgn (Fgr p o Sat

< getter==4gets hame Fgn o Map

+axistsr wame Fgn o boolean

+plts vame D Ege, key D Object value D Olject ¥ Ohlyjact
+remaovel fgr D Egr, key D Ohject ¥ Ohjact

+remaovelfgn CFgr o void

+removelDatal fan Fgr by o void

Loty Dhbyject ¥ waid

+rolbacks tx o Object ¥ o vaoid

+HlogdErtireStatel o5 | OljectOutpitSiream ¥ o voild
+storeERtiveStateris | ObjectinputStream ¥ void

+HloadStater subtres Fgr, os5 | OljectOutpatStream b void
+storebtatel subtres Fgr, s | DljectinpidSiream ¥ o voild

< s setter =4 sotRagionManageri makager | BegichMarnager) void
+oregtaly vold

+5tantn Cvoid

+5tops void

+destrowiy woid

+plts vame D Fgh, attributes D Map)

+plte modifications CList

+preparel iy [Okject modifications [List, one_phase bhoolean)

Figure 8.1. The CacheLoader interface

The interaction between JBoss Cache and a CachelLoader implementation is as follows.
When CachelLoader Confi gurati on (see below) is non-null, an instance of each configured
CachelLoader is created when the cache is created, and started when the cache is started.

CacheLoader. create() and CachelLoader.start() are called when the cache is started.
Correspondingly, st op() and destroy() are called when the cache is stopped.

Next, set Confi g() and set Cache() are called. The latter can be used to store a reference to the
cache, the former is used to configure this instance of the CacheLoader . For example, here a
database cache loader could establish a connection to the database.

The CacheLoader interface has a set of methods that are called when no transactions are used:
get () ,put() ,renove() andrenoveDat a() : they get/set/remove the value immediately. These
methods are described as javadoc comments in the interface.

66

Configuration

Then there are three methods that are used with transactions: prepare() , commit() and
rol | back() . The prepare() method is called when a transaction is to be committed. It has a
transaction object and a list of modfications as argument. The transaction object can be used
as a key into a hashmap of transactions, where the values are the lists of modifications. Each
modification list has a number of Modi fi cati on elements, which represent the changes made
to a cache for a given transaction. When pr epar e() returns successfully, then the cache loader
must be able to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the
right time.

The commi t () method tells the cache loader to commit the transaction, and the rol | back()
method tells the cache loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract
implementations would need to fulfil.

8.2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define
several cache loaders, in a chain. The impact is that the cache will look at all of the cache loaders in
the order they've been configured, until it finds a valid, non-null element of data. When performing
writes, all cache loaders are written to (except if the i gnor eModi fi cati ons element has been set
to t r ue for a specific cache loader. See the configuration section below for details.

<l-- Cache loader config block -->
<attribute name="CachelLoaderConfiguration">
<config>

<!I-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<passivation>false</passivation>
<!I-- comma delimited FQNs to preload -->
<preload>/</preload>
<!-- are the cache loaders shared in a cluster? -->
<shared>false</shared>

<l-- we can now have multiple cache loaders, which get chained -->
<!-- the 'cacheloader' element may be repeated -->
<cacheloader>

<class>org.jboss.cache.loader.JDBCCachelLoader</class>

<l-- properties to pass in to the cache loader -->

67

Chapter 8. Cache Loaders

<properties>
cache.jdbc.driver=com.mysq|.jdbc.Driver
cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb
cache.jdbc.user=root
cache.jdbc.password=
cache.jdbc.sgl-concat=concat(1,2)

</properties>

<!I-- whether the cache loader writes are asynchronous -->
<async>false</async>

<l-- only one cache loader in the chain may set fetchPersistentState to true.
An exception is thrown if more than one cache loader sets this to true. -->
<fetchPersistentState>true</fetchPersistentState>

<l-- determines whether this cache loader ignores writes - defaults to false. -->
<ignoreModifications>false</ignoreModifications>

<!I-- if set to true, purges the contents of this cache loader when the cache starts up.
Defaults to false. -->
<purgeOnStartup>false</purgeOnStartup>

<!I-- defines the cache loader as a singleton store where only the coordinator of the
cluster will store modifications. -->
<singletonStore>
<I-- if true, singleton store functionality is enabled, defaults to false -->
<enabled>false</enabled>

<I-- implementation class for singleton store functionality which must extend
org.jboss.cache.loader.AbstractDelegatingCachelLoader. Default implementation
is org.jboss.cache.loader.SingletonStoreCachelLoader -->

<class>org.jboss.cache.loader.SingletonStoreCachelLoader</class>

<!-- properties and default values for the default singleton store functionality
implementation -->
<properties>
pushStateWhenCoordinator=true
pushStateWhenCoordinatorTimeout=20000
</properties>
</singletonStore>

</cacheloader>

</config>

68

Configuration

</attribute>

The cl ass element defines the class of the cache loader implementation. (Note that, because of
a bug in the properties editor in JBoss AS, backslashes in variables for Windows filenames might
not get expanded correctly, so replace="false" may be necessary). Note that an implementation
of cache loader has to have an empty constructor.

The properties element defines a configuration specific to the given implementation. The
filesystem-based implementation for example defines the root directory to be used, whereas
a database implementation might define the database URL, name and password to establish
a database connection. This configuration is passed to the cache loader implementation via
Cacheloader . set Confi g(Properties) . Note that backspaces may have to be escaped.

pr el oad allows us to define a list of nodes, or even entire subtrees, that are visited by the cache
on startup, in order to preload the data associated with those nodes. The default (/") loads the
entire data available in the backend store into the cache, which is probably not a good idea given
that the data in the backend store might be large. As an example, /a, /product/cat al ogue
loads the subtrees / a and / pr oduct / cat al ogue into the cache, but nothing else. Anything else
is loaded lazily when accessed. Preloading makes sense when one anticipates using elements
under a given subtree frequently. .

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache when
joining a cluster. Only one configured cache loader may set this property to true; if more than one
cache loader does so, a configuration exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run
on a separate thread so writes return immediately. If this is set to true, an instance of
org. j boss. cache. | oader. AsyncCacheLoader is constructed with an instance of the actual
cache loader to be used. The AsyncCachelLoader then delegates all requests to the underlying
cache loader, using a separate thread if necessary. See the Javadocs on AsyncCacheLoader for
more details. If unspecified, the async element defaults to f al se .

Note on using the async element: there is always the possibility of dirty reads since all writes
are performed asynchronously, and it is thus impossible to guarantee when (and even if) a write
succeeds. This needs to be kept in mind when setting the async element to true.

i gnor eModi fi cati ons determines whether write methods are pushed down to the specific cache
loader. Situations may arise where transient application data should only reside in a file based
cache loader on the same server as the in-memory cache, for example, with a further shared
JDBCCachelLoader used by all servers in the network. This feature allows you to write to the 'local’
file cache loader but not the shared JDBCCacheLoader . This property defaults to f al se , so writes
are propagated to all cache loaders configured.

pur geOnsSt at up empties the specified cache loader (if i gnor eModi fi cati ons is fal se) when
the cache loader starts up.

69

Chapter 8. Cache Loaders

shar ed indicates that the cache loader is shared among different cache instances, for example
where all instances in a cluster use the same JDBC settings t talk to the same remote, shared
database. Setting this to t r ue prevents repeated and unnecessary writes of the same data to the
cache loader by different cache instances. Default value is f al se .

8.2.1. Singleton Store Configuration

si ngl et onSt or e element enables modifications to be stored by only one node in the cluster, the
coordinator. Essentially, whenever any data comes in to some node it is always replicated so as
to keep the caches' in-memory states in sync; the coordinator, though, has the sole responsibility
of pushing that state to disk. This functionality can be activated setting the enabl ed subelement
to true in all nodes, but again only the coordinator of the cluster will store the modifications in the
underlying cache loader as defined in cachel oader element. You cannot define a cache loader as
shar ed and with si ngl et onSt or e enabled at the same time. Default value for enabl ed is f al se .

Optionally, within the si ngl et onSt or e element, you can define a cl ass element that specifies
the implementation class that provides the singleton store functionality. This class must extend
org.j boss. cache. | oader . Abst r act Del egat i ngCacheLoader , and if absent, it defaults to
org.j boss. cache. | oader. Si ngl et onSt or eCachelLoader .

The properties subelement defines properties that allow changing the behaivour of the
class providing the singleton store functionality. By default, pushSt at ewhenCoor di nat or and
pushSt at ewhenCoor di nat or Ti neout properties have been defined, but more could be added as
required by the user-defined class providing singleton store functionality.

pushSt at ewhenCoor di nat or allows the in-memory state to be pushed to the cache store when
a node becomes the coordinator, as a result of the new election of coordinator due to a cluster
topology change. This can be very useful in situations where the coordinator crashes and there's
a gap in time until the new coordinator is elected. During this time, if this property was set to
f al se and the cache was updated, these changes would never be persisted. Setting this property
to t rue would ensure that any changes during this process also get stored in the cache loader.
You would also want to set this property to t r ue if each node's cache loader is configured with
a different location. Default value is t r ue .

pushSt at ewhenCoor di nat or Ti neout is only relevant if pushSt at ewhenCoor di nat or is true in
which case, sets the maximum number of milliseconds that the process of pushing the in-memory
state to the underlying cache loader should take, reporting a PushSt at eExcept i on if exceeded.
Default value is 20000.

Note on using the si ngl et onSt or e element: setting up a cache loader as a singleton and using
cache passivation (via evictions) can lead to undesired effects. If a node is to be passivated as a
result of an eviction, while the cluster is in the process of electing a new coordinator, the data will
be lost. This is because no coordinator is active at that time and therefore, none of the nodes in
the cluster will store the passivated node. A new coordinator is elected in the cluster when either,
the coordinator leaves the cluster, the coordinator crashes or stops responding.

70

Shipped Implementations

8.3. Shipped Implementations

The currently available implementations shipped with JBoss Cache are as follows.

8.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilise the file system as a data store. They
all require that the <cachel oader ><pr operti es> configuration element contains a | ocati on
property, which maps to a directory to be used as a persistent store. (e.g., | ocati on=/t np/
nmyDat aSt or e). Used mainly for testing and not recommended for production use.

* Fi |l eCacheLoader , which is a simple filesystem-based implementation. By default, this cache
loader checks for any potential character portability issues in the location or tree node names,
for example invalid characters, producing warning messages. These checks can be disabled
adding check. character. portabil ity property to the <properti es> element and setting it
tof al se (e.g., check. character. portability=fal se).

The FileCachelLoader has some severe limitations which restrict it's use in a production
environment, or if used in such an environment, it should be used with due care and sufficient
understanding of these limitations.

» Due to the way the FileCacheLoader represents a tree structure on disk (directories and files)
traversal is inefficient for deep trees.

» Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do
not implement proper file locking and can cause data corruption.

» Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt
to write to the same file.

» File systems are inherently not transactional, so when attempting to use your cache in a
transactional context, failures when writing to the file (which happens during the commit
phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCachelLoader not be used in a highly

concurrent, transactional or stressful environment, and it's use is restricted to testing.

» Bdbj eCacheLoader , which is a cache loader implementation based on the Oracle/Sleepycat's
BerkeleyDB Java Edition [http://www.oracle.com/database/berkeley-db/index.html] .

« JdbnCacheLoader , which is a cache loader implementation based on the JDBM engine [http:/
/jdbm.sourceforge.net/] , a fast and free alternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if
distributed with an application (see http://www.oracle.com/database/berkeley-db/index.html for
details).

71

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/

Chapter 8. Cache Loaders

8.3.2. Cache loaders that delegate to other caches

* Local Del egat i ngCacheLoader , which enables loading from and storing to another local (same
JVM) cache.

e O usteredCacheLoader , which allows querying of other caches in the same cluster for in-
memory data via the same clustering protocols used to replicate data. Writes are not 'stored’
though, as replication would take care of any updates needed. You need to specify a property
called ti nmeout , a long value telling the cache loader how many milliseconds to wait for
responses from the cluster before assuming a null value. For example, ti neout = 3000 would
use a timeout value of 3 seconds.

8.3.3. JDBCCachelLoader

JBossCache is distributed with a JDBC-based cache loader implementation that
stores/loads nodes' state into a relational database. The implementing class is
org.j boss. cache. | oader. JDBCCachelLoader .

The current implementation uses just one table. Each row in the table represents one node and
contains three columns:

* column for Fgn (which is also a primary key column)
 column for node contents (attribute/value pairs)
 column for parent Fgn

Fgn 's are stored as strings. Node content is stored as a BLOB. WARNING: JBoss Cache does
not impose any limitations on the types of objects used in Fgn but this implementation of cache
loader requires Fqgn to contain only objects of type j ava. | ang. St ri ng . Another limitation for Fgn
is its length. Since Fgn is a primary key, its default column type is VARCHAR which can store text
values up to some maximum length determined by the database in use.

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCachelLoader [http://wiki.jboss.org/wiki/
Wiki.jsp?page=JDBCCachelLoader] for configuration tips with specific database systems.

8.3.3.1. JIDBCCacheLoader configuration

8.3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

« cache.jdbc.table.name - the name of the table. Can be prepended with schema name for the
given table: <schema_name>.<table_name>. The default value is 'jbosscache'.

« cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is
'ljbosscache_pk'.

« cache.jdbc.table.create - can be true or false. Indicates whether to create the table during
startup. If true, the table is created if it doesn't already exist. The default value is true.

72

http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader
http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader
http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader

JDBCCacheLoader

« cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown.
The default value is true.

 cache.jdbc.fgn.column - FQN column name. The default value is 'fqn'.
« cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)'".
» cache.jdbc.node.column - node contents column name. The default value is 'node'.

« cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must
specify a valid binary data type for the database being used.

8.3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can
specify the INDI name of the DataSource you want to use.

 cache.jdbc.datasource - INDI name of the DataSource. The default value isj ava: / Def aul t DS.
8.3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access
using a JDBC driver.

 cache.jdbc.driver - fully qualified JDBC driver name.
» cache.jdbc.url - URL to connect to the database.
« cache.jdbc.user - user name to connect to the database.

« cache.jdbc.password - password to connect to the database.
8.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server
standalone using the c3p0:JDBC DataSources/Resource Pools library. In order to enable it, just
edit the following property:

« cache.jdbc.connection.factory - Connection factory class name. If not set, it defaults to standard
non-pooled implementation. To enable c3p0 pooling, just set the connection factory class for
c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties section but don't
forget to start the property name with 'c3p0.". To find a list of available properties, please check the
¢3p0 documentation for the c3p0 library version distributed in c3p0:JDBC DataSources/Resource
Pools [http://sourceforge.net/projects/c3p0] . Also, in order to provide quick and easy way to try out
different pooling parameters, any of these properties can be set via a System property overriding
any values these properties might have in the JBoss Cache XML configuration file, for example:
- Dc3p0. maxPool Si ze=20 . If a c3p0 property is not defined in either the configuration file or as a
System property, default value, as indicated in the ¢c3p0 documentation, will apply.

73

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0

Chapter 8. Cache Loaders

8.3.3.1.5. Configuration example

Below is an example of a JDBCCacheLoader using Oracle as database. The
CacheLoaderConfiguration XML element contains an arbitrary set of properties which define the
database-related configuration.

<attribute name="CachelLoaderConfiguration">
<config>
<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>
<class>org.jboss.cache.loader.JDBCCachelLoader</class>

<properties>
cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true
cache.jdbc.table.drop=true
cache.jdbc.table.primarykey=jbosscache_pk
cache.jdbc.fgn.column=fgn
cache.jdbc.fgn.type=varchar(255)
cache.jdbc.node.column=node
cache.jdbc.node.type=blob
cache.jdbc.parent.column=parent
cache.jdbc.driver=oracle.jdbc.OracleDriver
cache.jdbc.url=jdbc:oracle:thin: @localhost:1521:JBOSSDB
cache.jdbc.user=SCOTT
cache.jdbc.password=TIGER
cache.jdbc.sgl-concat=concat(1,2)

</properties>

<async>false</async>
<fetchPersistentState>true</fetchPersistentState>
<ignoreModifications>false</ignoreModifications>
<purgeOnStartup>false</purgeOnStartup>
</cacheloader>
</config>
</attribute>

As an alternative to configuring the entire JDBC connection, the name of an existing data source
can be given:

74

JDBCCacheLoader

<attribute name="CachelLoaderConfiguration">
<config>
<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>
<class>org.jboss.cache.loader.JDBCCacheloader</class>

<properties>
cache.jdbc.datasource=java:/DefaultDS
</properties>

<async>false</async>
<fetchPersistentState>true</fetchPersistentState>
<ignoreModifications>false</ignoreModifications>
<purgeOnStartup>false</purgeOnStartup>
</cacheloader>
</config>
</attribute>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

<attribute name="CachelLoaderConfiguration">
<config>
<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>
<class>org.jboss.cache.loader.JDBCCacheloader</class>

<properties>
cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true
cache.jdbc.table.drop=true
cache.jdbc.table.primarykey=jbosscache_pk
cache.jdbc.fgn.column=fgn
cache.jdbc.fgn.type=varchar(255)
cache.jdbc.node.column=node
cache.jdbc.node.type=blob
cache.jdbc.parent.column=parent
cache.jdbc.driver=oracle.jdbc.OracleDriver
cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
cache.jdbc.user=SCOTT
cache.jdbc.password=TIGER

75

Chapter 8. Cache Loaders

cache.jdbc.sqgl-concat=concat(1,2)
cache.jdbc.connection.factory=org.jboss.cache.loader.C3p0ConnectionFactory
c3p0.maxPoolSize=20
c3p0.checkoutTimeout=5000

</properties>

<async>false</async>
<fetchPersistentState>true</fetchPersistentState>
<ignoreModifications>false</ignoreModifications>
<purgeOnStartup>false</purgeOnStartup>
</cacheloader>
</config>
</attribute>

8.3.4. S3CacheLoader

The S3CachelLoader uses the Amazon S3 [http://aws.amazon.com/] (Simple Storage Solution) for
storing cache data. Since Amazon S3 is remote network storage and has fairly high latency, it is
really best for caches that store large pieces of data, such as media or files. But consider this cache
loader over the JDBC or file system based cache loaders if you want remotely managed, highly
reliable storage. Or, use it for applications running on Amazon's EC2 (Elastic Compute Cloud).

If you're planning to use Amazon S3 for storage, consider using it with JBoss Cache. JBoss Cache
itself provides in-memory caching for your data to minimize the amount of remote access calls,
thus reducing the latency and cost of fetching your Amazon S3 data. With cache replication, you
are also able to load data from your local cluster without having to remotely access it every time.

Note that Amazon S3 does not support transactions. If transactions are used in your application
then there is some possibility of state inconsistency when using this cache loader. However, writes
are atomic, in that if a write fails nothing is considered written and data is never corrupted.

Data is stored in keys based on the Fgn of the Node and Node data is serialized as a java.util.Map
using the CacheSPI . get Mar shal | er () instance. Read the javadoc on how data is structured and
stored. Data is stored using Java serialization. Be aware this means data is not readily accessible
over HTTP to non-JBoss Cache clients. Your feedback and help would be appreciated to extend
this cache loader for that purpose.

With this cache loader, single-key operations such as Node.renove(bject) and
Node. put (Obj ect, Obj ect) are the slowest as data is stored in a single Map instance. Use bulk
operations such as Node. r epl aceAl | (Map) and Node. cl ear Dat a() for more efficiency. Try the
cache. s3. opti ni ze option as well.

76

http://aws.amazon.com/
http://aws.amazon.com/

S3CachelLoader

8.3.4.1. Amazon S3 Library

The S3 cache loader is provided with the default distribution but requires a library to access the
service at runtime. This runtime library may be obtained through a Sourceforge Maven Repository.
Include the following sections in your pom.xml file:

<repository>
<id>e-xml.sourceforge.net</id>
<url>http://e-xml.sourceforge.net/maven2/repository</url>
</repository>

<dependency>
<groupld>net.noderunner</groupld>
<artifactld>amazon-s3</artifactld>
<version>1.0.0.0</version>
<scope>runtime</scope>
</dependency>

If you do not use Maven, you can still download the amazon-s3 library by navigating the repository
or through this URL [http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/
1.0.0.0/amazon-s3-1.0.0.0.jar].

8.3.4.2. Configuration

At a minimum, you must configure your Amazon S3 access key and secret access key. The
following configuration keys are listed in general order of utility.

* cache. s3. accessKeyl d - Amazon S3 Access Key, available from your account profile.

* cache. s3. secret AccessKey - Amazon S3 Secret Access Key, available from your account
profile. As this is a password, be careful not to distribute it or include this secret key in built
software.

* cache. s3. secur e - The default isf al se: Traffic is sent unencrypted over the public Internet.
Set to t r ue to use HTTPS. Note that unencrypted uploads and downloads use less CPU.

» cache. s3. bucket - Name of the bucket to store data. For different caches using the same
access key, use a different bucket name. Read the S3 documentation on the definition of a
bucket. The default value is j boss- cache.

e cache. s3. cal | i ngFor mat - One of PATH, SUBDOMAI N, or VANI TY. Read the S3 documentation
on the use of calling domains. The default value is SUBDOVAI N.

77

http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar

Chapter 8. Cache Loaders

e cache. s3. opti m ze - The defaultisf al se. Iftrue, put (Map) operations replace the data stored
at an Fgn rather than attempt to fetch and merge. (This option is fairly experimental at the
moment.)

e cache. s3. parent Cache - The default is t r ue. Set this value to f al se if you are using multiple
caches sharing the same S3 bucket, that remove parent nodes of nodes being created in other
caches. (This is not a common use case.)

JBoss Cache stores nodes in a tree format and automatically creates intermediate parent nodes
as necessary. The S3 cache loader must also create these parent nodes as well to allow for
operations such as get Chi | dr enNanes to work properly. Checking if all parent nodes exists for
every put operation is fairly expensive, so by default the cache loader caches the existence
of these parent nodes.

e cache. s3. | ocati on - This choses a primary storage location for your data to reduce loading
and retrevial latency. Set to EU to store data in Europe. The default is nul |, to store data in
the United States.

8.3.5. TcpDelegatingCachelLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which
could reside (a) in the same address space, (b) in a different process on the same host, or (c) in
a different process on a different host.

A TcpDelegatingCachelLoader talks to a remote
org. j boss. cache. | oader. t cp. TcpCacheServer , which can be a standalone process started
on the command line, or embedded as an MBean inside JBoss AS. The TcpCacheServer has a
reference to another JBoss Cache instance, which it can create itself, or which is given to it (e.g.
by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDelegatingCachelLoader transparently handles reconnects if the
connection to the TcpCacheServer is lost.

The TcpDelegatingCachelLoader is configured with the host and port of the remote
TcpCacheServer, and uses this to communicate to it. In addition, 2 new optional parameters are
used to control transparent reconnecting to the TcpCacheServer. The ti neout property (defaults
to 5000) specifies the length of time the cache loader must continue retrying to connect to the
TcpCacheServer before giving up and throwing an exception. The r econnect Wi t Ti me (defaults
to 500) is how long the cache loader should wait before attempting a reconnect if it detects a
communication failure. The last two parameters can be used to add a level of fault tolerance to
the cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

<attribute name="CachelLoaderConfiguration">

78

Transforming Cache Loaders

<config>
<cacheloader>
<class>org.jboss.cache.loader. TcpDelegatingCachelLoader</class>
<properties>
host=myRemoteServer
port=7500
timeout=10000
reconnectWaitTime=250
</properties>
</cacheloader>
</config>
</attribute>

This means this instance of JBoss Cache will delegate all load and store requests to the remote
TcpCacheServer running on nyRenot eSer ver : 7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all
delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to
a database via JDBCCachelLoader, but the point here is that - if we have 5 nodes all accessing
the same dataset - they will load the data from the TcpCacheServer, which has do execute one
SQL statement per unloaded data set. If the nodes went directly to the database, then we'd have
the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in front of
the DB (assuming that a network round trip is faster than a DB access (which usually also include
a network round trip)).

To alleviate single point of failure, we could configure several cache loaders. The first cache
loader is a ClusteredCachelLoader, the second a TcpDelegatingCachelLoader, and the last a
JDBCacheloader, effectively defining our cost of access to a cache in increasing order.

8.3.6. Transforming Cache Loaders

The way cached data is written to Fi | eCacheLoader and JDBCCachelLoader based cache stores
has changed in JBoss Cache 2.0 in such way that these cache loaders now write and read data
using the same marhalling framework used to replicate data accross the network. Such change is
trivial for replication purpouses as it just requires the rest of the nodes to understand this format.
However, changing the format of the data in cache stores brings up a new problem: how do users,
which have their data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss Cache
2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader
implementations called org.jboss. cache. | oader. Transform ngFi | eCacheLoader and
org.j boss. cache. | oader. Tr ansf or m ngJDBCCachelLoader located within the optional
jbosscache-cacheloader-migration.jar file. These are one-off cache loaders that read data from
the cache store in JBoss Cache 1.x.x format and write data to cache stores in JBoss Cache 2.0
format.

79

Chapter 8. Cache Loaders

The idea is for users to modify their existing cache configuration file(s) momentarily to use these
cache loaders and for them to create a small Java application that creates an instance of this
cache, recursively reads the entire cache and writes the data read back into the cache. Once the
data is transformed, users can revert back to their original cache configuration file(s). In order
to help the users with this task, a cache loader migration example has been constructed which
can be located under the exanpl es/ cachel oader - mi gr at i on directory within the JBoss Cache
distribution. This example, called exanpl es. Tr ansf or nSt or e , is independent of the actual data
stored in the cache as it writes back whatever it was read recursively. It is highly recommended
that anyone interested in porting their data run this example first, which contains ar eadne. t xt file
with detailed information about the example itself, and also use it as base for their own application.

8.4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to
a secondary data store (e.g., file system, database) on eviction. Cache Activation is the process
of restoring an object from the data store into the in-memory cache when it's needed to be used.
In both cases, the configured cache loader will be used to read from the data store and write to
the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a
notification that the node is being passivated will be emitted to the cache listeners and the node
and its children will be stored in the cache loader store. When a user attempts to retrieve a node
that was evicted earlier, the node is loaded (lazy loaded) from the cache loader store into memory.
When the node and its children have been loaded, they're removed from the cache loader and a
natification is emitted to the cache listeners that the node has been activated.

To enable cache passivation/activation, you can set passi vat i on to true. The default is f al se .
When passivation is used, only the first cache loader configured is used and all others are ignored.

8.4.1. Cache Loader Behavior with Passivation Disabled vs.
Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don't use eviction, what's in the persistent store is
basically a copy of what's in memory. If you do use eviction, what's in the persistent store is
basically a superset of what's in memory (i.e. it includes nodes that have been evicted from
memory).

When passivation is enabled, there is a direct relationship between eviction and the cache loader.
Writes to the persistent store via the cache loader only occur as part of the eviction process. Data
is deleted from the persistent store when the application reads it back into memory. In this case,
what's in memory and what's in the persistent store are two subsets of the total information set,
with no intersection between the subsets.

80

Strategies

Following is a simple example, showing what state is in RAM and in the persistent store after each
step of a 6 step process:

1. Insert /A

2. Insert /B

3. Eviction thread runs, evicts /A
4. Read /A

5. Eviction thread runs, evicts /B
6. Remove /B

When passivation is disabled:

1) RAM: /A Disk: /A

2) RAM: /A, /B Disk: /A, /B
3) RAM: /B Disk: /A, /B

4) RAM: /A, /B Disk: /A, /B
5) RAM: /A Disk: /A, /B

6) RAM: /A Disk: /A

When passivation is enabled:

1) RAM: /A Disk:
2) RAM: /A, /B Disk:
3) RAM: /B Disk: /A
4) RAM: /A, /B Disk:
5) RAM: /A Disk: /B
6) RAM: /A Disk:

8.5. Strategies

This section discusses different patterns of combining different cache loader types and
configuration options to achieve specific outcomes.

81

Chapter 8. Cache Loaders

8.5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode is LOCAL ,
therefore no replication is going on. The cache loader simply loads non-existing elements from
the store and stores modifications back to the store. When the cache is started, depending on the
pr el oad element, certain data can be preloaded, so that the cache is partly warmed up.

8.5.2. Replicated Caches With All Caches Sharing The Same
Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

N repiication ™
CACHE CACHE
CACHELOADER CACHELOADER |
STORE

Figure 8.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store. This could for
example be a shared filesystem (using the FileCachelLoader), or a shared database. Because

both nodes access the same store, they don't necessarily need state transfer on startup. ! Rather,
the Fet chl nMenor y St at e attribute could be set to false, resulting in a 'cold' cache, that gradually
warms up as elements are accessed and loaded for the first time. This would mean that individual
caches in a cluster might have different in-memory state at any given time (largely depending on
their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For
example, if nodel made change C1 and node2 C2, then nodel would tell its cache loader to store
C1, and node2 would tell its cache loader to store C2.

10f course they can enable state transfer, if they want to have a warm or hot cache after startup.

82

Replicated Caches With Only One Cache
Having A Store

8.5.3. Replicated Caches With Only One Cache Having A Store

< REPLICATION >
CACHE CACHE
CACHELOADER
-—"---.r
—
STORE

Figure 8.3. 2 nodes but only one accesses the backend store

This is a similar case to the previous one, but here only one node in the cluster interacts with a
backend store via its cache loader. All other nodes perform in-memory replication. The idea here is
all application state is kept in memory in each node, with the existence of multiple caches making
the data highly available. (This assumes that a client that needs the data is able to somehow fail
over from one cache to another.) The single persistent backend store then provides a backup
copy of the data in case all caches in the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronously, that
is not on the caller's thread, in order not to slow down the cluster by accessing (for example) a
database. This is a non-issue when using asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a
single point of failure. Furthermore, if the cluster is restarted, the cache with the cache loader must
be started first (easy to forget). A solution to the first problem is to configure a cache loader on each
node, but set the si ngl et onSt or e configuration to t r ue. With this kind of setup, one but only one
node will always be writing to a persistent store. However, this complicates the restart problem,
as before restarting you need to determine which cache was writing before the shutdown/failure
and then start that cache first.

83

Chapter 8. Cache Loaders

8.5.4. Replicated Caches With Each Cache Having Its Own
Store

REPLICATION

CACHE CACHE

CACHELOADER CACHELOADER

STORE STORE

Figure 8.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the
cluster and (b) persisted using the cache loader. This means that all datastores have exactly the
same state. When replicating changes synchronously and in a transaction, the two phase commit
protocol takes care that all modifications are replicated and persisted in each datastore, or none
is replicated and persisted (atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement recovery. When
used with a transaction manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is always a full state
transfer, overwriting any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed. During this
time, it will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using | oadEntireState() . It
then sends back that state to the new node.

84

Hierarchical Caches

4. The new node then tells its cache loader to store that state in its store, overwriting the old state.
This is the CachelLoader . st oreEnti reSt at e() method

5. As an option, the transient (in-memory) state can be transferred as well during the state transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster, and
modifications received from other nodes will now be persisted using the local cache loader.

8.5.5. Hierarchical Caches

If you need to set up a hierarchy within a single JVM, you can use the
Local Del egati ngCacheLoader . This type of hierarchy can currently only be set up
programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server, using the
TcpDel egat i ngCachelLoader .

85

Chapter 8. Cache Loaders

€ eeptication | ™
CACHE CACHE
TCP DELEGATING TCP DELEGATING
CACHELOADER CACHELODADER
v L
TCP TCP
bk

TCP CACHE SERVER

CACHE

CACHELOADER

[3

STORE

Figure 8.5. TCP delegating cache loader

8.5.6. Multiple Cache Loaders

You can set up more than one cache loader in a chain. Internally, a delegating
Chai ni ngCacheLoader is used, with references to each cache loader you have configured. Use
cases vary depending on the type of cache loaders used in the chain. One example is using a

86

Multiple Cache Loaders

filesystem based cache loader, colocated on the same host as the JVM, used as an overflow for
memory. This ensures data is available relatively easily and with low cost. An additional remote
cache loader, such as a TcpDel egat i ngCacheLoader provides resilience between server restarts.

87

Chapter 8. Cache Loaders

SERVERA1

L B IR SR ——————] —

SERVERZ

—-— e e e e — — — — — — = =

T I L.|.
< repLioaTion | ™
| I
| I
CACHE | 1 | cacHe
| I .
J FILESYSTEM BASED I I FILESYSTEM BASED k
] CACHELOADER I I CACHELODADER .
I
f TCP DELEGATING | ' TCP DELEGATING
III." CACHELOADER , : CACHELDADER
! k4 | I «
v : : -
LOCAL FILE ' I LOCAL FILE
STORE : I STORE
|
1 I
| I
TCP TCP
r—--=—-—m=—="="==m=m = = 4 & - = |

88

Figure 8.6. Multiple cache Iba
I
|
[

TCP CACHE SERVER

CACHE

CACHELOADER

in

DATABASE
STORE

SERVER3

Chapter 9.

Eviction Policies

Eviction policies control JBoss Cache's memory management by managing how many nodes are
allowed to be stored in memory and their life spans. Memory constraints on servers mean cache
cannot grow indefinitely, so policies need to be in place to restrict the size of the cache. Eviction
policies are most often used alongside cache loaders cache loaders .

9.1. Configuring Eviction Policies

9.1.1. Basic Configuration

The basic eviction policy configuration element looks like:

<attribute name="EvictionConfig">
<config>
<attribute name="wakeUplntervalSeconds">3</attribute>

<l-- This defaults to 200000 if not specified -->
<attribute name="eventQueueSize">100000</attribute>

<!I-- Name of the DEFAULT eviction policy class. -->
<attribute name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<l-- Cache wide default -->
<region name="/_default_">

<attribute name="maxNodes">100</attribute>
</region>

<!-- override policy used for this region -->

<region name="/org/jboss/data" policyClass="org.jboss.cache.eviction.LRUPolicy">
<attribute name="maxNodes">250</attribute>
<attribute name="minTimeToLiveSeconds">10</attribute>

</region>

<!I-- We expect a lot of events for this region,
so override the default event queue size -->
<region name="/org/jboss/test/data" eventQueueSize="500000">
<attribute name="maxNodes">60000</attribute>
</region>

89

Chapter 9. Eviction Policies

</config>
</attribute>

* wakeUpl nt er val Seconds - this required parameter defines how often the eviction thread runs

« event QueueSi ze - this optional parameter defines the size of the queue which holds eviction
events. If your eviction thread does not run often enough, you may need to increase this. This
can be overridden on a per-region basis.

e policyd ass - this is required, unless you set individual policyClass attributes on each and
every region. This defines the eviction policy to use if one is not defined for a region.

9.1.2. Eviction Regions

The concept of regions and the Regi on class were visited earlier when talking about marshalling.
Regions also have another use, in that they are used to define the eviction policy used within
the region. In addition to using a region-specific configuration, you can also configure a default,
cache-wide eviction policy for nodes that do not fall into predefined regions or if you do not wish to
define specific regions. It is important to note that when defining regions using the configuration
XML file, all elements of the Fgn that defines the region are j ava. | ang. St ri ng objects.

Looking at the eviction configuration snippet above, we see that a default region, _defaul t _ ,
holds attributes which apply to nodes that do not fall into any of the other regions defined.

For each region, you can define parameters which affect how the policy which applies to the region
chooses to evict nodes. In the example above, the LRUPol i cy allows a maxNodes parameter which
defines how many nodes can exist in the region before it chooses to start evicting nodes. See the
javadocs for each policy for a list of allowed parameters. It also defines a mi nTi neToLi veSeconds
parameter, which defines a minimum time a node must exist in memory before being considered
for eviction.

9.1.2.1. Overlapping Eviction Regions

It's possible to define regions that overlap. In other words, one region can be defined for /a/b/c ,
and another defined for /a/b/c/d (which is just the d subtree of the /a/b/c sub-tree). The algorithm,
in order to handle scenarios like this consistently, will always choose the first region it encounters.
In this way, if the algorithm needed to decide how to handle /a/b/c/d/e , it would start from there
and work its way up the tree until it hits the first defined region - in this case /a/b/c/d .

9.1.3. Resident Nodes

Nodes marked as resident (using Node. set Resi dent () API) will be ignored by the eviction
policies both when checking whether to trigger the eviction and when proceeding with the actual
eviction of nodes. E.g. if a region is configured to have a maximum of 10 nodes, resident nodes

90

Programmatic Configuration

won't be counted when deciding whether to evict nodes in that region. In addition, resident nodes
will not be considered for eviction when the region's eviction threshold is reached.

In order to mark a node as resident the Node. set Resi dent () API should be used. By default,
the newly created nodes are not resident. The r esi dent attribute of a node is neither replicated,
persisted nor transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add "noise" to an
eviction policy. E.g.,:

Map lotsOfData = generateData();
cache.put("/a/b/c", lotsOfData);
cache.getRoot().getChild("/a").setResident(true);
cache.getRoot().getChild("/a/b").setResident(true);

In this example, the nodes / a and / a/ b are paths which exist solely to support the existence of
node / a/ b/ c and don't hold any data themselves. As such, they are good candidates for being
marked as resident. This would lead to better memory management as no eviction events would
be generated when accessing / a and/ a/ b.

N.B. when adding attributes to a resident node, e.g. cache. put ("/a", "k", "v") in the above
example, it would make sense to mark the nodes as non-resident again and let them be considered
for eviction..

9.1.4. Programmatic Configuration

Configuring eviction using the Configuration object entails the use of
the org.j boss. cache. config. Evicti onConfig bean, which is passed into
Confi guration. set Evi cti onConfig() . See the chapter on Configuration for more on building
a Conf i gur ati on programatically.

The use of simple POJO beans to represent all elements in a cache's configuration also makes it
fairly easy to programatically add eviction regions after the cache is started . For example, assume
we had an existing cache configured via XML with the EvictionConfig element shown above. Now
at runtime we wished to add a new eviction region named "/org/jboss/fifo", using LRUPol i cy but
a different number of naxNodes :

Fgn fgn = Fgn.fromString("/org/jboss/fifo");

/I Create a configuration for an LRUPolicy

91

Chapter 9. Eviction Policies

LRUConfiguration Iruc = new LRUConfiguration();
Iruc.setMaxNodes(10000);

/I Create the region and set the config
Region region = cache.getRegion(fgn, true);
region.setEvictionPolicy(lruc);

9.2. Shipped Eviction Policies

9.2.1. LRUPolicy - Least Recently Used

org. j boss. cache. evi cti on. LRUPol i cy controls both the node lifetime and age. This policy
guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

« maxNodes - This is the maximum number of nodes allowed in this region. O denotes no limit.

e tineTolLi veSeconds - The amount of time a node is not written to or read (in seconds) before
the node is swept away. 0 denotes no limit.

* maxAgeSeconds - Lifespan of a node (in seconds) regardless of idle time before the node is
swept away. 0 denotes no limit.

e mi nTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after
being accessed before it is allowed to be considered for eviction. O denotes that this feature is
disabled, which is the default value.

9.2.2. FIFOPolicy - First In, First Out

org. j boss. cache. evi cti on. FI FOPol i cy controls the eviction in a proper first in first out order.
This policy guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has
the following configuration parameters:

* maxNodes - This is the maximum number of nodes allowed in this region. O denotes no limit.

e mi nTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after
being accessed before it is allowed to be considered for eviction. O denotes that this feature is
disabled, which is the default value.

9.2.3. MRUPolicy - Most Recently Used

org.j boss. cache. evi cti on. MRUPol i cy controls the eviction in based on most recently used
algorithm. The most recently used nodes will be the first to evict with this policy. This policy
guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

92

LFUPolicy - Least Frequently Used

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes no limit.

* mi nTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after
being accessed before it is allowed to be considered for eviction. O denotes that this feature is
disabled, which is the default value.

9.2.4. LFUPolicy - Least Frequently Used

org. j boss. cache. evi cti on. LFUPol i cy controls the eviction in based on least frequently used
algorithm. The least frequently used nodes will be the first to evict with this policy. Node usage
starts at 1 when a node is first added. Each time it is visted, the node usage counter increments
by 1. This number is used to determine which nodes are least frequently used. LFU is also a
sorted eviction algorithm. The underlying EvictionQueue implementation and algorithm is sorted
in ascending order of the node visits counter. This class guarantees a constant order (O (1))
for adds, removal and searches. However, when any number of nodes are added/visited to the
queue for a given processing pass, a single quasilinear (O (n * 1og n)) operation is used to
resort the queue in proper LFU order. Similarly if any nodes are removed or evicted, a single linear
(O (n)) pruning operation is necessary to clean up the EvictionQueue. LFU has the following
configuration parameters:

* maxNodes - This is the maximum number of nodes allowed in this region. O denotes no limit.

* mi nNodes - This is the minimum number of nodes allowed in this region. This value determines
what the eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache
grows to 100 nodes, the cache is pruned down to the 10 most frequently used nodes when the
eviction timer makes a pass through the eviction algorithm.

* i nTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after
being accessed before it is allowed to be considered for eviction. O denotes that this feature is
disabled, which is the default value.

9.2.5. ExpirationPolicy

org.j boss. cache. eviction. ExpirationPolicy is a policy that evicts nodes based
on an absolute expiration time. The expiration time is indicated using the
org. j boss. cache. Node. put () method, using a String key expi r at i on and the absolute time as
aj ava. | ang. Long object, with a value indicated as milliseconds past midnight January 1st, 1970
UTC (the same relative time as provided by j ava. | ang. System current TimeM | i s()).

This policy guarantees a constant order (O (1)) for adds and removals. Internally, a sorted
set (TreeSet) containing the expiration time and Fgn of the nodes is stored, which essentially
functions as a heap.

This policy has the following configuration parameters:

e expirationkKeyName - This is the Node key name used in the eviction algorithm. The
configuration default is expi rati on .

93

Chapter 9. Eviction Policies

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes no limit.

The following listing shows how the expiration date is indicated and how the policy is applied:

Cache cache = DefaultCacheFactory.createCache();
Fgn fgnl = Fgn.fromString("/node/1");
Long future = new Long(System.currentTimeMillis() + 2000);

/I sets the expiry time for a node
cache.getRoot().addChild(fgnl).put(ExpirationConfiguration.EXPIRATION_KEY, future);

assertTrue(cache.getRoot().hasChild(fgnl));
Thread.sleep(5000);

/I after 5 seconds, expiration completes
assertFalse(cache.getRoot().hasChild(fgnl));

Note that the expiration time of nodes is only checked when the region manager wakes up every
wakeUpl nt er val Seconds , SO eviction may happen a few seconds later than indicated.

9.2.6. ElementSizePolicy - Eviction based on number of key/
value pairs in a node

org. j boss. cache. evi cti on. El ement Si zePol i cy controls the eviction in based on the number
of key/value pairs in the node. Nodes The most recently used nodes will be the first to evict with
this policy. It has the following configuration parameters:

* maxNodes - This is the maximum number of nodes allowed in this region. O denotes no limit.

* maxEl enent sPer Node - This is the trigger number of attributes per node for the node to be
selected for eviction. 0 denotes no limit.

e mi nTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after
being accessed before it is allowed to be considered for eviction. O denotes that this feature is
disabled, which is the default value.

9.3. Writing Your Own Eviction Policies

9.3.1. Eviction Policy Plugin Design

The design of the JBoss Cache eviction policy framework is based on an Evi cti onl nt er cept or
to handle cache events and relay them back to the eviction policies. During the cache start

94

Interfaces to implement

up, an Evictionlnterceptor will be added to the cache interceptor stack if the eviction
policy is specified. Then whenever a node is added, removed, evicted, or visited, the
Evi cti onl nterceptor will maintain state statistics and information will be relayed to each
individual eviction region.

There is a single eviction thread (timer) that will run at a configured interval. This thread will make
calls into each of the policy providers and inform it of any aggregated adds, removes and visits
(gets) events to the cache during the configured interval. The eviction thread is responsible for
kicking off the eviction policy processing (a single pass) for each configured eviction cache region.

9.3.2. Interfaces to implement

In order to implement an eviction policy, the following interfaces must be implemented:

* org.jboss. cache. eviction. EvictionPolicy
* org.jboss. cache. eviction. EvictionAl gorithm
* org.jboss. cache. eviction. Evi cti onQueue

* org.jboss. cache. config. EvictionPolicyConfig
When compounded together, each of these interface implementations define all the underlying
mechanics necessary for a complete eviction policy implementation.

Note that:

e The Evi ctionPol i cyConfi g implementation should maintain getter and setter methods for
whatever configuration properties the policy supports (e.g. for LRUConf i gur at i on among others
thereisaint get MaxNodes() and a set MaxNodes(i nt)). When the "EvictionConfig" section
of an XML configuration is parsed, these properties will be set by reflection.

Alternatively, the implementation of a new eviction policy provider can be simplified by extending
BaseEvi ctionPol i cy and BaseEvi cti onAl gorithm. Or for properly sorted EvictionAlgorithms
(sorted in eviction order - see LFUAl gori t hm) extending BaseSort edEvi cti onAl gorit hmand
implementing Sor t edEvi ct i onQueue takes care of most of the common functionality available in
a set of eviction policy provider classes

Note that:

« The BaseEvi cti onAl gorit hmclass maintains a processing structure. It will process the ADD,
REMOVE, and VISIT events queued by the region first. It also maintains an collection of items
that were not properly evicted during the last go around because of held locks. That list is
pruned. Finally, the EvictionQueue itself is pruned for entries that should be evicted based upon
the configured eviction rules for the region.

e The BaseSortedEvictionAl gorithm class will maintain a boolean through the algorithm
processing that will determine if any new nodes were added or visited. This allows the Algorithm

95

Chapter 9. Eviction Policies

to determine whether to resort the eviction queue items (in first to evict order) or to skip the
potentially expensive sorting if there have been no changes to the cache in this region.

e The SortedEvictionQueue interface defines the contract wused by the
BaseSort edEvi cti onAl gorit hmabstract class that is used to resort the underlying queue.
Again, the queue sorting should be sorted in first to evict order. The first entry in the list should
evict before the last entry in the queue. The last entry in the queue should be the last entry
that will require eviction.

96

Chapter 10.

Transactions and Concurrency

10.1. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. It uses a pessimistic locking scheme by default for this purpose. Optimistic
locking may alternatively be used, and is discussed later.

10.1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/a/b/c", a lock
will be acquired for nodes "a", "b" and "c". When the same transaction wants to access "/a/b/c/d",
since we already hold locks for "a", "b" and "c", we only need to acquire a lock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or
threads (no transaction associated with the call). Regardless, a transaction or a thread is internally
transformed into an instance of @ obal Transact i on, which is used as a globally unique identifier
for modifications across a cluster. E.g. when we run a two-phase commit protocol across the
cluster, the d obal Transact i on uniquely identifies a unit of work across a cluster.

Locks can be read or write locks. Write locks serialize read and write access, whereas read-only
locks only serialize read access. When a write lock is held, no other write or read locks can be
acquired. When aread lock is held, others can acquire read locks. However, to acquire write locks,
one has to wait until all read locks have been released. When scheduled concurrently, write locks
always have precedence over read locks. Note that (if enabled) read locks can be upgraded to
write locks.

Using read-write locks helps in the following scenario: consider a tree with entries "/a/b/n1" and
"la/b/n2". With write-locks, when Tx1 accesses "/a/b/n1", Tx2 cannot access "/a/b/n2" until Tx1
has completed and released its locks. However, with read-write locks this is possible, because
Tx1 acquires read-locks for "/a/b" and a read-write lock for "/a/b/n1". Tx2 is then able to acquire
read-locks for "/a/b" as well, plus a read-write lock for "/a/b/n2". This allows for more concurrency
in accessing the cache.

10.1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user. Instead,
a transaction isolation level which provides different locking behaviour is configurable.

10.1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database
ACID isolation levels. A user can configure an instance-wide isolation level of NONE,
READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, or SERIALIZABLE.
REPEATABLE_READ is the default isolation level used.

97

Chapter 10. Transactions and ...

1.

NONE. No transaction support is needed. There is no locking at this level, e.g., users will have
to manage the data integrity. Implementations use no locks.

. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive. Note

that this level doesn't prevent the so-called "dirty read" where data modified in Tx1 can be read
in Tx2 before Tx1 commits. In other words, if you have the following sequence,

X1 Tx2

using this isolation level will not prevent Tx2 read operation. Implementations typically use an
exclusive lock for writes while reads don't need to acquire a lock.

. READ_COMMITTED. Data can be read any time as long as there is no write. This level prevents

the dirty read. But it doesn’t prevent the so-called ‘non-repeatable read’ where one thread reads
the data twice can produce different results. For example, if you have the following sequence,

Tx1 Tx2
R
W
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there
are only reads, writes have to wait until there are no more readers holding the lock, and readers
are blocked acquiring the lock until there are no more writers holding the lock. Reads typically
release the read-lock when done, so that a subsequent read to the same data has to re-acquire
a read-lock; this leads to nonrepeatable reads, where 2 reads of the same data might return
different values. Note that, the write only applies regardless of transaction state (whether it has
been committed or not).

. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level

prevents "non-repeatable read" but it does not completely prevent the so-called "phantom
read" where new data can be inserted into the tree from another transaction. Implementations
typically use a read-write lock. This is the default isolation level used.

. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader can

have the lock at any given time. Locks are released at the end of the transaction. Regarded as
very poor for performance and thread/transaction concurrency.

98

Optimistic Locking

10.1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node from the tree,
JBoss Cache will only attempt to acquire a read lock on the new node's parent node. This approach
does not treat child nodes as an integral part of a parent node's state. This approach allows greater
concurrency if nodes are frequently added or removed, but at a cost of lesser correctness. For
use cases where greater correctness is necessary, JBoss Cache provides a configuration option
LockPar ent For Chi | dl nsert Renove . If thisis settot r ue , insertions and removals of child nodes
require the acquisition of a write lock on the parent node.

In addition to the above, in version 2.1.0 and above, JBoss Cache offers the ability to override
this configuration on a per-node basis. See Node. set LockFor Chi | dl nsert Renove() and it's
corresponding javadocs for details.

10.1.3. Optimistic Locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads have a lot of
contention for access to the data tree, it can be inefficient to lock portions of the tree - for reading
or writing - for the entire duration of a transaction as we do in pessimistic locking. Optimistic
locking allows for greater concurrency of threads and transactions by using a technique called
data versioning, explained here. Note that isolation levels (if configured) are ignored if optimistic
locking is enabled.

10.1.3.1. Architecture

Optimistic locking treats all method calls as transactional 1 Evenif you do not invoke a call within
the scope of an ongoing transaction, JBoss Cache creates an implicit transaction and commits this
transaction when the invocation completes. Each transaction maintains a transaction workspace,
which contains a copy of the data used within the transaction.

For example, if a transaction calls cache. get Root (). get Chil d(Fgn.fronString("/alb/c")
) , nodes a, b and ¢ are copied from the main data tree and into the workspace. The data is
versioned and all calls in the transaction work on the copy of the data rather than the actual data.
When the transaction commits, its workspace is merged back into the underlying tree by matching
versions. If there is a version mismatch - such as when the actual data tree has a higher version
than the workspace, perhaps if another transaction were to access the same data, change it and
commit before the first transaction can finish - the transaction throws a Rol | backExcept i on when
committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very
short duration - at the start of a transaction to build a workspace, and when the transaction commits
and has to merge data back into the tree.

So while optimistic locking may occasionally fail if version validations fail or may run slightly
slower than pessimistic locking due to the inevitable overhead and extra processing of maintaining

'Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

99

Chapter 10. Transactions and ...

workspaces, versioned data and validating on commit, it does buy you a near-SERIALIZABLE
degree of data integrity while maintaining a very high level of concurrency.

10.1.3.2. Data Versioning

[DataVerzions l|

Serializable)
fjava.io)

i

T

DataVers it G
rarg.jbozz cache optimiztich

+hawer Than other [DataWersion o boolearn

X
T
I
Defaul DataVers ion Il
rorg.jbozz. cache. optimiztich Thiz iz the
<-=constructor=>=+DefaultDataversiond !jefauItJ inter‘_nal
<< constructor==+DefaultDataVersion{ version : lang) implementation

+incrementd) ; DataWersion — — — — ofDataVersion

+newerThan{ other ; DataYersion) : boaolean uzedif no
+tastringd - String DataVersion is
+equalzf other : Ohject) : boaolean EUF'F'“EC' wia the
+hashCode() :int Cption AP

<= getter=>=+getRaniersion : lang

Optimistic locking makes use of the DataVersion interface (and an internal and default
Def aul t Dat aVer si on implementation to keep a track of node versioning. In certain cases, where
cached data is an in-memory representation of data from an external source such as a database, it
makes sense to align the versions used in JBoss Cache with the versions used externally. As such,
using the options API , it is possible to set the Dat aVer si on you wish to use on a per-invocation
basis, allowing you to implement the Dat aVer si on interface to hold the versioning information
obtained externally before putting your data into the cache.

10.1.3.3. Configuration

Optimistic locking is enabled by using the NodeLockingScheme XML attribute, and setting it to
"OPTIMISTIC":

100

Transactional Support

SIES

Node locking scheme:

OPTIMISTIC

PESSIMISTIC (default)

-->

<attribute name="NodeLockingScheme">OPTIMISTIC</attribute>

It is generally advisable that if you have an eviction policy defined along with optimistic locking,
you define the eviction policy's ni nTi neToLi veSeconds parameter to be slightly greater than the
transaction timeout value set in your transaction manager. This ensures that data versions in the

cache are not evicted while transactions are in progress Z

10.2. Transactional Support

JBoss Cache can be configured to use and participate in JTA compliant transactions. Alternatively,
if transaction support is disabled, it is equivalent to setting AutoCommit to on where modifications

are potentially 3 replicated after every change (if replication is enabled).

What JBoss Cache does on every incoming call is:

1. Retrieve the current j avax. t ransacti on. Transact i on associated with the thread

2. If not already done, register a j avax. transacti on. Synchroni zati on with the transaction
manager to be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's
j avax. transaction. Transact i onManager . This is usually done by configuring the cache with
the class name of an implementation of the Tr ansact i onManager Lookup interface. When the
cache starts, it will create an instance of this class and invoke its get Tr ansact i onManager ()
method, which returns a reference to the Tr ansact i onManager .

2See JBCACHE-1155 [http://jira.jboss.com/jira/browse/JBCACHE-1155]

3Depending on whether interval-based asynchronous replication is used

101

http://jira.jboss.com/jira/browse/JBCACHE-1155
http://jira.jboss.com/jira/browse/JBCACHE-1155

Chapter 10. Transactions and ...

[TranzactionLookup]J

Trans zctioh Managerlookup [j
rorg.jbozz.cache)

< < getter==+getTransectichManagery; TransactionManager
O A

T T
I I

JBos s TransactionManager L
| (org.jboss.cache)

| << constructor>==+|BozzTranzactionMansz
| << getter=>+getTranzactionManagerd T

|
GenericTransactionManager Lookup
rorg.jbozz.cache)

<< getterz==+getTranzactionManager . TranzactionhManager
-dolookup=d void

JBoss Cache ships with JBossTransacti onManager Lookup and
CGeneri cTransacti onManager Lookup . The JBossTransacti onManager Lookup is able to
bind to a running JBoss AS instance and retrieve a Transacti onManager while
the GenericTransacti onManager Lookup is able to bind to most popular Java EE
application servers and provide the same functionality. A dummy implementation -
DummyTr ansact i onManager Lookup - is also provided, primarily for unit tests. Being a dummy, this
is just for demo and testing purposes and is not recommended for production use.

An alternative to configuring a Transacti onManager Lookup is to programatically inject a
reference to the Tr ansact i onManager into the Confi gur at i on object's Runt i meConf i g element:

TransactionManager tm = getTransactionManager(); / magic method
cache.getConfiguration().getRuntimeConfig().setTransactionManager(tm);

Injecting the Transact i onManager is the recommended approach when the Confi guration is
built by some sort of IOC container that already has a reference to the TM.

102

Transactional Support

When the transaction commits, we initiate either a one- two-phase commit protocol. See replicated
caches and transactions for details.

103

104

Part Ill. JBoss Cache
Configuration References

This section contains technical references for easy looking up.

Chapter 11.

Configuration References

11.1. Sample XML Configuration File

This is what a typical XML configuration file looks like. It is recommended that you use one of
the configurations shipped with the JBoss Cache distribution and tweak according to your needs
rather than write one from scratch.

<?xml version="1.0" encoding="UTF-8"?>

<l--

—=>
<l-- ===
<l-- Sample JBoss Cache Service Configuration -->
<I-- -->

<I--

=

<server>

<l--

=

<!I-- Defines JBoss Cache configuration -->

<I--

=

<!I-- Note the value of the 'code" attribute has changed since JBC 1.x -->
<mbean code="org.jboss.cache.jmx.CacheJmxWrapper"
name="jboss.cache:service=Cache">

<!-- Ensure JNDI and the TransactionManager are started before the
cache. Only works inside JBoss AS; ignored otherwise -->

<depends>jboss:service=Naming</depends>

<depends>jboss:service=TransactionManager</depends>

<l-- Configure the TransactionManager -->

<attribute name="TransactionManagerLookupClass">
org.jboss.cache.transaction.GenericTransactionManagerLookup

</attribute>

<!I-- Node locking level : SERIALIZABLE
REPEATABLE_READ (default)

107

Chapter 11. Configuration Ref...

READ_COMMITTED
READ_UNCOMMITTED
NONE =
<attribute name="IsolationLevel">SREPEATABLE_READ</attribute>

<l-- Lock parent before doing node additions/removes -->
<attribute name="LockParentForChildinsertRemove">true</attribute>

<!-- Valid modes are LOCAL (default)
REPL_ASYNC
REPL_SYNC
INVALIDATION_ASYNC
INVALIDATION_SYNC -->
<attribute name="CacheMode">REPL_ASYNC</attribute>

<I-- Name of cluster. Needs to be the same for all JBoss Cache nodes in a
cluster in order to find each other.
==

<attribute name="ClusterName">JBossCache-Cluster</attribute>

<!--Uncomment next three statements to use the JGroups multiplexer.
This configuration is dependent on the JGroups multiplexer being
registered in an MBean server such as JBossAS. This type of
dependency injection only works in the AS; outside it's up to
your code to inject a ChannelFactory if you want to use one.

==

e

<depends optional-attribute-name="MultiplexerService"

proxy-type="attribute">jgroups.mux:name=Multiplexer</depends>
<attribute name="MultiplexerStack">tcp</attribute>
==

<!l-- JGroups protocol stack properties.
ClusterConfig isn't used if the multiplexer is enabled above.
-->
<attribute name="ClusterConfig">
<config>
<!-- UDP: if you have a multihomed machine, set the bind_addr
attribute to the appropriate NIC IP address -->
<!l-- UDP: On Windows machines, because of the media sense feature
being broken with multicast (even after disabling media sense)
set the loopback attribute to true -->
<UDP mcast_addr="228.1.2.3" mcast_port="48866"
ip_ttI="64" ip_mcast="true"

108

Sample XML Configuration File

mcast_send_buf_size="150000" mcast_recv_buf size="80000"
ucast_send_buf_size="150000" ucast_recv_buf size="80000"
loopback="false"/>
<PING timeout="2000" num_initial_members="3"/>
<MERGE2 min_interval="10000" max_interval="20000"/>
<FD shun="true"/>
<FD_SOCK/>
<VERIFY_SUSPECT timeout="1500"/>
<pbcast.NAKACK gc_lag="50" retransmit_timeout="600,1200,2400,4800" />
<UNICAST timeout="600,1200,2400",4800/>
<pbcast.STABLE desired_avg_gossip="400000"/>
<FC max_credits="2000000" min_threshold="0.10"/>
<FRAGZ2 frag_size="8192"/>
<pbcast.GMS join_timeout="5000" shun="true" print_local_addr="true"/>
<pbcast.STATE_TRANSFER/>
</config>
</attribute>

SIBS
The max amount of time (in milliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
existing members in a clustered environment

==

<attribute name="StateRetrievalTimeout">20000</attribute>

<I--
Number of milliseconds to wait until all responses for a
synchronous call have been received.

==

<attribute name="SyncReplTimeout">20000</attribute>

<!-- Max number of milliseconds to wait for a lock acquisition -->
<attribute name="LockAcquisitionTimeout">15000</attribute>

<l-- Shutdown hook behavior. Valid choices are: DEFAULT, REGISTER and
DONT_REGISTER.
If this element is omitted, DEFAULT is used. -->
<attribute name="ShutdownHookBehavior">DEFAULT</attribute>

<l-- Enables or disables lazy unmarshalling. If omitted, the default is that lazy unmarshalling
is enabled. -->

<attribute name="UselLazyDeserialization">true</attribute>

<l-- Specific eviction policy configurations. This is LRU -->

109

Chapter 11. Configuration Ref...

<attribute name="EvictionConfig">
<config>
<attribute name="wakeUplntervalSeconds">5</attribute>
<!-- This defaults to 200000 if not specified -->
<attribute name="eventQueueSize">200000</attribute>
<attribute name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<!-- Cache wide default -->

<region name="/_default_">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>

<region name="/org/jboss/data">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>

<region name="/org/jboss/test/data">
<attribute name="maxNodes">5</attribute>
<attribute name="timeToLiveSeconds">4</attribute>

</region>

<region name="/test">
<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">4</attribute>

</region>

<region name="/maxAgeTest">
<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">8</attribute>
<attribute name="maxAgeSeconds">10</attribute>

</region>

</config>
</attribute>
</mbean>
</server>

11.2. Reference table of XML attributes

A list of definitions of each of the XML attributes used above. If the description of an attribute
states that it is dynamic , that means it can be changed after the cache is created and started.

Name Description

BuddyReplicationConfig An XML element that contains detailed buddy
replication configuration. See section on Buddy
Replication for details.

110

Reference table of XML attributes

CachelLoaderConfig

CachelLoaderConfiguration

CacheMode

ClusterConfig

ClusterName

An XML element that contains detailed cache
loader configuration. See chapter on Cache
Loaders for details.

Deprecated . Use CachelLoader Confi g .

LOCAL, REPL_SYNC, REPL_ASYNC,
INVALIDATION_SYNC or
INVALIDATION_ASYNC. Defaults to LOCAL.
See the chapter on Clustering for details.

The configuration of the underlying JGroups
stack. Ignored if Miltipl exerService
and MiltiplexerStack are used. See
the various *-service.xm| files in
the source distribution etc/ META- I NF
folder for examples. See the JGroups
documentation [http://www.jgroups.org] or the
JGroups wiki page [http://wiki.jboss.org/wiki/
Wiki.jsp?page=JGroups] for more information.
Name of cluster. Needs to be the same for

all nodes in a cluster in order for them to
communicate with each other.

EvictionPolicyConfig

Configuration parameter for the specified
eviction policy. See chapter on eviction policies
for details. This property is dynamic .

ExposeManagementStatistics

FetchinMemoryState

InactiveOnStartup

Specifies whether interceptors that provide
statistics should have statistics gathering
enabled at startup. Also controls whether a
CacheMynt | nt er cept or (whose sole purpose
is gathering statistics) should be added to the
interceptor chain. Default value is true . See
the JBoss Cache Statistics section section for
more details.

Whether or not to acquire the initial
in-memory state from existing members.
Allows for hot caches when enabled. Also
see the fetchPersistentState element in
CachelLoader Confi g . Defaults to t rue . This
property is dynamic .

Whether or not the entire tree is inactive
upon startup, only responding to replication
messages after act i vat eRegi on() is called to
activate one or more parts of the tree. If true,
property Fetchl nMenoryState is ignored.

111

http://www.jgroups.org
http://www.jgroups.org
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Chapter 11. Configuration Ref...

This property should only be set to true if
UseRegi onBasedMar shal | i ngisalsotrue .

StateRetrievalTimeout

IsolationLevel

LockAcquisitionTimeout

Time in milliseconds to wait for state
retrieval. This should be longer than
LockAcqui sitionTi meout as the node
providing state may need to wait that long to
acquire necessary read locks on the cache.
This property is dynamic .

Node locking isolation level
SERIALIZABLE, REPEATABLE_READ
(default), READ_COMMITTED,

READ_UNCOMMITTED, and NONE. Note
that this is ignored if NodelLockingScheme
is OPTIMISTIC. Case doesn't matter.
See documentation on Transactions and
Concurrency for more details.

Time in milliseconds to wait for a lock to
be acquired. If a lock cannot be acquired
an exception will be thrown. This property is
dynamic .

LockParentForChildInsertRemove

Controls whether inserting or removing a node
requires a write lock on the node's parent
(when pessimistic locking is used) or whether
it results in an update of the parent node's
version (when optimistic locking is used). The
default value is f al se .

MarshallerClass

MultiplexerService

An instance of
org.j boss. cache. marshal | . Marshal | er

used to serialize data to
byte streams. Defaults to

org.j boss. cache. marshal | . Ver si onAwar eMa
if not specified.

The JMX object name of the service that
defines the JGroups multiplexer. In JBoss AS
5.0 this service is normally defined in the
jgroups-multiplexer.sar. This XML attribute can
only be handled by the JBoss AS MBean
deployment services; if it is included in a
file passed to a CacheFactory the factory's
creation of the cache will fail. Inside JBoss
AS, the attribute should be specified using
the "depends optional-attribute-name" syntax
shown in the example above. Inside the

ir shal | er

112

Reference table of XML attributes

AS if this attribute is defined, an instance
oforg. j groups. j mx. JChannel Fact or yMBean
will be injected into the CacheJnmxW apper
which will use it to obtain a multiplexed
JGroups channel. The configuration of
the channel will be that associated with
Mul tipl exerStack . The dusterConfig
attribute will be ignored.

MultiplexerStack

The name of the JGroups stack to
be used with the cache cluster. Stacks
are defined in the configuration of the
external Ml tipl exerService discussed
above. In JBoss AS 5 this is normally
done in the jgroups-multiplexer.sar/META-INF/
multiplexer-stacks.xml file. The default stack is
udp . This attribute is used in conjunction with
Mul ti pl exer Servi ce .

NodeLockingScheme

May be PESSIMISTIC (default) or
OPTIMISTIC.

ReplicationVersion

Tells the cache to serialize cluster traffic in
a format consistent with that used by the
given release of JBoss Cache. Different JBoss
Cache versions use different wire formats;
setting this attribute tells a cache from a
later release to serialize data using the format
from an earlier release. This allows caches
from different releases to interoperate. For
example, a 2.1.0 cache could have this value
set to "2.0.0", allowing it to interoperate with a
2.0.0 cache. Valid values are a dot-separated
release number, with any final qualifer also
separated by a dot, e.g. "2.0.0" or "2.0.0.GA".
Values that indicate a 1.x release are not
supported in the 2.x series.

ReplQueuelnterval

Time in milliseconds for elements from the
replication queue to be replicated. Only used
if UseRepl Queue is enabled. This property is
dynamic .

ReplQueueMaxElements

Max number of elements in the replication
gueue until replication kicks in. Only used if
UseRepl Queue is enabled. This property is
dynamic .

113

Chapter 11. Configuration Ref...

SyncCommitPhase

This option is used to control the behaviour of
the commit part of a 2-phase commit protocol,
when using REPL_SYNC (does not apply to
other cache modes). By default this is set
to false . There is a performance penalty
to enabling this, especially when running in
a large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
clustered caches for more information on this.
This property is dynamic .

SyncReplTimeout

SyncRollbackPhase

TransactionManagerLookupClass

For synchronous replication: time in
milliseconds to wait until replication acks have
been received from all nodes in the cluster.
It is usually best that this is greater than
LockAcqui si tionTi meout . This property is
dynamic .

This option is used to control the behaviour of
the rollback part of a 2-phase commit protocol,
when using REPL_SYNC (does not apply to
other cache modes). By default this is set
to false . There is a performance penalty
to enabling this, especially when running in
a large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
clustered caches for more information on this.
This property is dynamic .

The fully qualified name of a class
implementing TransactionManagerLookup.
Default is JBossTransactionManagerLookup.
There is also an option
of GenericTransactionManagerLookup for
example.

UselnterceptorMbeans

Deprecated . Use
ExposeManagenent St ati stics .

UseRegionBasedMarshalling

When unmarshalling replicated data, this
option specifies whether or not to support use
of different classloaders for different cache
regions. This defaults to f al se if unspecified.
<p></p>

DEPRECATED.

This option will disappear in JBoss Cache 3.x.
See UselLazyDeseri al i zat i on instead.

114

Reference table of XML attributes

UseReplQueue

For asynchronous replication: whether or not to
use a replication queue. Defaults to f al se .

ShutdownHookBehavior

An optional parameter that controls whether
JBoss Cache registers a shutdown hook with
the JVM runtime. Allowed values areDEFAULT,
REG STER and DONT_REG STER. REG STER and
DONT_REGQ STER forces or suppresses the
registration of a shutdown hook, respectively,
and DEFAULT registers one if an MBean server
(other than the JDK default) cannot be found
and it is assumed that the cache is running
in a managed environment. The default if
unspecified is, as expected, DEFAULT.

UselLazyDeserialization

ObjectinputStreamPoolSize
ObjectOutputStreamPoolSize

and

An optional parameter that can be used to
enable or disable the use of lazy deserialization
for cached objects. Defaults tof al se, since
it adds a small processing overhead. If lazy
deserialization is disabled, support for implicitly
using context class loaders registered with the
calling thread goes away.

Since JBoss Cache 2.1.0, object input and
output streams - used to serialize and
deserialize RPC calls in a cluster - are pooled
to reduce the overhead of constructing such
streams. They are reused by making use of
special resettable stream implementations.

by default, these stream pools are set
at 50 objects each. You could increase
or decrease the pool size if, while
profiling, you see a lot of threads blocking
on Obj ect StreanPool . get | nput St ream()
orQvj ect St r eanPool . get Qut put St rean() .
In general, having more streams is better than
having fewer than needed. Based on your
application, make sure you have more streams
available than number of threads you expect to
concurrently write to the cache.

115

116

Chapter 12.

JMX References

12.1. JBoss Cache Statistics

The following table describes the statistics currently available and may be collected via JMX.

Table 12.1. JBoss Cache Management Statistics

MBean Name Attribute Type Description

Activationinterceptor | Activations long Number of passivated nodes that
have been activated.

CachelLoaderInterceptorCachelLoaderLoads long Number of nodes loaded through a
cache loader.

CacheLoaderInterceptorCacheLoaderMisses | long Number of unsuccessful attempts
to load a node through a cache
loader.

CacheMgmtinterceptor Hits long Number of successful attribute
retrievals.

CacheMgmtinterceptor, Misses long Number of unsuccessful attribute
retrievals.

CacheMgmtinterceptor| Stores long Number of attribute store
operations.

CacheMgmtinterceptor| Evictions long Number of node evictions.

CacheMgmtinterceptor, NumberOfAttributes int Number of attributes currently
cached.

CacheMgmtinterceptor) NumberOfNodes int Number of nodes currently
cached.

CacheMgmtinterceptor ElapsedTime long Number of seconds that the cache
has been running.

CacheMgmtinterceptor TimeSinceReset long Number of seconds since the
cache statistics have been reset.

CacheMgmtinterceptor| AverageReadTime long Average time in milliseconds to
retrieve a cache attribute, including
unsuccessful attribute retrievals.

CacheMgmtinterceptor, AverageWriteTime long Average time in milliseconds to
write a cache attribute.

CacheMgmtinterceptor HitMissRatio double Ratio of hits to hits and misses. A

hit is a get attribute operation that
results in an object being returned
to the client. The retrieval may be

117

Chapter 12. IMX References

MBean Name Attribute Type Description

from a cache loader if the entry
isn't in the local cache.

CacheMgmtinterceptor ReadWriteRatio double Ratio of read operations to write
operations. This is the ratio of
cache hits and misses to cache
stores.

CacheStorelnterceptor| CachelLoaderStores | long Number of nodes written to the
cache loader.

InvalidationInterceptor | Invalidations long Number of cached nodes that have
been invalidated.

Passivationinterceptor = Passivations long Number of cached nodes that have
been passivated.

TxInterceptor Prepares long Number of transaction prepare
operations performed by this
interceptor.

TxInterceptor Commits long Number of transaction commit
operations performed by this
interceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks
operations performed by this
interceptor.

12.2. IMX MBean Notifications

The following table depicts the JMX noatifications available for JBoss Cache as well as the cache
events to which they correspond. These are the notifications that can be received through the
CacheJmxW apper MBean. Each notification represents a single event published by JBoss Cache
and provides user data corresponding to the parameters of the event.

Table 12.2. JBoss Cache MBean Notifications

Notification Type Notification Data Cachelistener Event
org.jboss.cache.CacheStarted | String : cache service name cacheStarted
org.jboss.cache.CacheStopped String : cache service name cacheStopped
org.jboss.cache.NodeCreated | String : fgn NodeCreated
org.jboss.cache.NodeEvicted @ String : fgn NodeEvicted
org.jboss.cache.NodeLoaded | String : fgn NodeLoaded
org.jboss.cache.NodeModifed | String : fgn NodeModifed
org.jboss.cache.NodeRemoved String : fqn NodeRemoved
org.jboss.cache.NodeVisited @ String : fqn NodeVisited

118

JMX MBean Notifications

Notification Data

Cachelistener Event

Notification Type

org.jboss.cache.ViewChange | String : view ViewChange
org.jboss.cache.NodeActivate | Object[0]=String: fgn NodeActivate
Object[1]=Boolean: pre
org.jboss.cache.NodeEvict Object[0]=String: fgqn NodeEvict
Object[1]=Boolean: pre
org.jboss.cache.NodeModify Object[0]=String: fgn NodeModify
Object[1]=Boolean: pre
Object[2]=Boolean: isLocal
org.jboss.cache.NodePassivate Object[0]=String: fgn NodePassivate
Object[1]=Boolean: pre
org.jboss.cache.NodeRemove NodeRemove

Object[0]=String: fgn
Object[1]=Boolean: pre

Object[2]=Boolean: isLocal

119

120

	JBoss Cache User Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1.1. What is JBoss Cache?
	1.1.1. And what is Pojo Cache?

	1.2. Summary of Features
	1.3. Requirements
	1.4. License

	Chapter 2. User API
	2.1. API Classes
	2.2. Instantiating and Starting the Cache
	2.3. Caching and Retrieving Data
	2.4. The Fqn Class
	2.5. Stopping and Destroying the Cache
	2.6. Cache Modes
	2.7. Adding a Cache Listener - registering for cache events
	2.8. Using Cache Loaders
	2.9. Using Eviction Policies

	Chapter 3. Configuration
	3.1. Configuration Overview
	3.2. Creating a Configuration
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Programmatic Configuration
	3.2.3. Using an IOC Framework

	3.3. Composition of a Configuration Object
	3.4. Dynamic Reconfiguration
	3.5. Overriding the Configuration Via the Option API

	Chapter 4. Deploying JBoss Cache
	4.1. Standalone Use / Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)
	4.4. Binding to JNDI in JBoss AS
	4.5. Runtime Management Information
	4.5.1. JBoss Cache MBeans
	4.5.2. Registering the CacheJmxWrapper with the MBeanServer
	4.5.2.1. Programatic Registration
	4.5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

	4.5.3. JBoss Cache Statistics
	4.5.4. Receiving JMX Notifications
	4.5.5. Accessing Cache MBeans in a Standalone Environment

	Chapter 5. Version Compatibility and Interoperability
	5.1. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 6. Architecture
	6.1. Data Structures Within The Cache
	6.2. SPI Interfaces
	6.3. Method Invocations On Nodes
	6.3.1. Interceptors
	6.3.1.1. Writing Custom Interceptors

	6.3.2. MethodCalls
	6.3.3. InvocationContexts

	6.4. Managers For Subsystems
	6.4.1. RpcManager
	6.4.2. BuddyManager
	6.4.3. CacheLoaderManager

	6.5. Marshalling And Wire Formats
	6.5.1. The Marshaller Interface
	6.5.2. VersionAwareMarshaller
	6.5.2.1. CacheLoaders

	6.5.3. CacheMarshaller200

	6.6. Class Loading and Regions

	Chapter 7. Clustering
	7.1. Cache Replication Modes
	7.1.1. Local Mode
	7.1.2. Replicated Caches
	7.1.2.1. Replicated Caches and Transactions
	7.1.2.1.1. One Phase Commits
	7.1.2.1.2. Two Phase Commits

	7.1.2.2. Buddy Replication
	7.1.2.2.1. Selecting Buddies
	7.1.2.2.2. BuddyPools
	7.1.2.2.3. Failover
	7.1.2.2.4. Configuration

	7.2. Invalidation
	7.3. State Transfer
	7.3.1. State Transfer Types
	7.3.2. Byte array and streaming based state transfer
	7.3.3. Full and partial state transfer
	7.3.4. Transient ("in-memory") and persistent state transfer
	7.3.5. Configuring State Transfer

	Chapter 8. Cache Loaders
	8.1. The CacheLoader Interface and Lifecycle
	8.2. Configuration
	8.2.1. Singleton Store Configuration

	8.3. Shipped Implementations
	8.3.1. File system based cache loaders
	8.3.2. Cache loaders that delegate to other caches
	8.3.3. JDBCCacheLoader
	8.3.3.1. JDBCCacheLoader configuration
	8.3.3.1.1. Table configuration
	8.3.3.1.2. DataSource
	8.3.3.1.3. JDBC driver
	8.3.3.1.4. c3p0 connection pooling
	8.3.3.1.5. Configuration example

	8.3.4. S3CacheLoader
	8.3.4.1. Amazon S3 Library
	8.3.4.2. Configuration

	8.3.5. TcpDelegatingCacheLoader
	8.3.6. Transforming Cache Loaders

	8.4. Cache Passivation
	8.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	8.5. Strategies
	8.5.1. Local Cache With Store
	8.5.2. Replicated Caches With All Caches Sharing The Same Store
	8.5.3. Replicated Caches With Only One Cache Having A Store
	8.5.4. Replicated Caches With Each Cache Having Its Own Store
	8.5.5. Hierarchical Caches
	8.5.6. Multiple Cache Loaders

	Chapter 9. Eviction Policies
	9.1. Configuring Eviction Policies
	9.1.1. Basic Configuration
	9.1.2. Eviction Regions
	9.1.2.1. Overlapping Eviction Regions

	9.1.3. Resident Nodes
	9.1.4. Programmatic Configuration

	9.2. Shipped Eviction Policies
	9.2.1. LRUPolicy - Least Recently Used
	9.2.2. FIFOPolicy - First In, First Out
	9.2.3. MRUPolicy - Most Recently Used
	9.2.4. LFUPolicy - Least Frequently Used
	9.2.5. ExpirationPolicy
	9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a node

	9.3. Writing Your Own Eviction Policies
	9.3.1. Eviction Policy Plugin Design
	9.3.2. Interfaces to implement

	Chapter 10. Transactions and Concurrency
	10.1. Concurrent Access
	10.1.1. Locks
	10.1.2. Pessimistic locking
	10.1.2.1. Isolation levels
	10.1.2.2. Insertion and Removal of Nodes

	10.1.3. Optimistic Locking
	10.1.3.1. Architecture
	10.1.3.2. Data Versioning
	10.1.3.3. Configuration

	10.2. Transactional Support

	Part III. JBoss Cache Configuration References
	Chapter 11. Configuration References
	11.1. Sample XML Configuration File
	11.2. Reference table of XML attributes

	Chapter 12. JMX References
	12.1. JBoss Cache Statistics
	12.2. JMX MBean Notifications

