
1

Frequently Asked Questions

about POJO Cache
Ben Wang

Scott Marlow

Jason Greene

Release 3.0.0

November 2008

These are frequently asked questions regarding POJO Cache.

General Information

Q: What is POJO Cache?

A: POJO Cache is a fine-grained field-level replicated and transactional

POJO (plain old Java object) cache. By POJO, we mean that the cache: 1)

automatically manages object mapping and relationship for a client under

both local and replicated cache mode, 2) provides support for inheritance

relationship between "aspectized" POJOs. By leveraging the dynamic AOP in

JBossAop, it is able to map a complex object into the cache store, preserve

and manage the object relationship behind the scene. During replication mode,

it performs fine-granularity (i.e., on a per-field basis) update, and thus has the

potential to boost cache performance and minimize network traffic.

From a user perspective, once your POJO is managed by the cache, all cache

operations are transparent. Therefore, all the usual in-VM POJO method

semantics are still preserved, providing ease of use. For example, if a POJO

has been put in POJO Cache (by calling attach , for example), then any POJO

get/set method will be intercepted by POJO Cache to provide the data from the

cache.

Q: What is the relationship between Core Cache and POJO Cache?

A: Cores Cache is a traditional generic distributed cache system. POJO Cache

uses Core Cache as the underlying distributed state system to achieve object

caching. As a result, all the replication aspects are configured with the Cache

configuration XML. Additionally, POJO Cache also has API to expose the

Cache interface (via getCache() API).

Q: What is the difference between Core Cache and POJO Cache?

Frequently Asked Questions ab...

2

A: Think of POJO Cache as a Cache on steroids. :-) Seriously, both are cache

stores-- one is a generic cache and the other other one POJO Cache.

However, while Cache only provides pure object reference storage (e.g.,

put(FQN fqn, Object key, Object value)), POJO Cache goes beyond

that and performs fine-grained field level replication object mapping and

relationship management for a user behind the scenes. As a result, if you have

complex object systems that you would like to cache, you can have POJO

Cache manage it for you. You simply treat your object systems as they are

residing in-memory, e.g., use your regular POJO methods without worrying

about cache management.

Q: How does POJO Cache work then?

A: POJO Cache uses the JBoss AOP project to perform field level interception.

This allows POJO Cache to monitor changes to your object model, and react

accordingly.

Q: What's changed between 1.x and 2.x release then?

A: Starting in 2.0 release, we have a separate library for POJO Cache,

pojocache.jar that is extra to the core jboss-cache.jar . Since we uses

Cache as a delegate, user will need to have a regular xml to configure the core

Cache functionality (e.g., replication and locking aspect). In addition, there is

also the pojocache-aop.xml that specifies the POJO Cache interceptor stack

(that can be left as default).

Additionally, here are the changed features:

• New APIs. It replaces putObject, removeObject, and get with attach,

detach, and find .

• New POJO based events that a user can subscribe to.

• New configuration pojocache-aop.xml specifically for POJO Cache, in

addition to the regular cache-service.xml for the delegating Cache.

• New package namespace (org.jboss.cache.pojo) for POJO Cache. The

previous org.jboss.cache.aop space has been deprecated.

Q: How do you use POJO Cache?

A: In order to use POJO Cache, you will need to:

• Annotate your POJOt with @Replicable.

• Instrument your POJO. This can be done at load-time using special JVM

arguments (prefered), or at compile time using the AOP precompiler tool

(aopc). See the user guide for more specific details on instrumentation.

3

Q: What is the JDK version required to run POJO Cache 3.x?

A: POJO Cache 3.x requires Java 5 or newer.

Q: Can I run POJO Cache as a standalone mode?

A: Yes, same as the Core Cache library, you can run POJO Cache either as a

standalone or inside an application server.

Q: What is the JBoss AS recommended version to run POJO Cache 3.x?

A: POJO Cache can be run either in AS4.0.5 (and up) and 5.0. But either way, it

will require JDK5.0 though.

Q: Can I pre-compile objects used in POJO Cache, so that I don't have to provide

an AOP descriptor?

A: Yes. The AOP library included with POJO Cache has a pre-compiler called

aopc that can be used to instrument objects in advance. However, this is not

the recommended approach, since your classes become tied to a specific AOP

version. See the instrumentation chapter in the user guide for more information.

Q: In the POJO Cache 2.x and 3.x releases, do I still need annoc ?

A: No. POJO Cache 2.x and 3.x requires JDK 5, and recommends load-time

instrumentation. Alternatively the offline aopc tool may be used.

Q: How do I use aopc on multiple module directories?

A: In aopc, you specify the src path for a specific directory. To pre-compile

multiple ones, you will need to invoke aopc multiple times.

Q: Does POJO Cache provide a listener/event model for catching changes?

A: Yes. See the javadoc for PojoCache.addListener() and @PojoCacheListener.

Q: What's in the pojocaches-aop.xml configuration?

A: These descriptors are necessary for instrumentation. However, you typically

do not need to touch them since they include a rule which matches the classes

with an @Replicable annotation. Therefore, all you need to do, is just annotate

your class with @Replicable. Advanced users may decide to customize them

with special AOP prepare statements that match classes which do not have

@Replicable.

Q: What's the difference between jboss-aop.xml pojocache-aop.xml ?

A: pojocache-aop.xml is essentially a jboss-aop.xml , except it is used

specifically for POJO Cache. The analogy is similar to JBoss' own MBean

service file jboss-service.xml , for example. So in our documentation, we will

use these two terms interchangeably.

Frequently Asked Questions ab...

4

Q: Can I use annotations instead of editing the AOP XML descriptors?

A: Yes, in release 2.0 and 3.0, we recommend you use the @Replicable

annotation, and don't bother with editing the AOP files.

Q: Is there a problem with using a custom AOP descriptor over the provided

annotations?

A: The only real benefit to a custom AOP descriptor is if you can't easily add the

annotation to the class source (it's not under your control).

Q: What are the @org.jboss.cache.pojo.annotation.Transient and

@org.jboss.cache.pojo.annotation.Serializable field level annotations?

A: In 2.0, we also offer two additional field-level annotations. The first one,

@org.jboss.cache.pojo.Transient , when applied has the same effect

as declaring a field transient . POJO Cache won't put this field under

management.

The second one, @org.jboss.cache.pojo.Serializable when applied, will

cause POJO Cache to treat the field as a Serializable object even when it is

@org.jboss.cache.pojo.Replicable .

Q: Why do you recommend load-time over compile-time instrumentation?

A: The major problem with compile-time instrumentation is that it adds a binary

dependency on your class files to whatever version of JBoss AOP that was

used to run aopc. Once this has been done, the class may not work with a

future version of JBoss AOP (although the AOP team tries to ensure binary

compatibility across minor revisions). Load-time doesn't have this problem

since the class is instrumented only in memory, and only when it is loaded.

Q: Is it possible to store the same object multiple times but with different Fqn

paths? Like /foo/byName and /foo/byId ?

A: Yes, you can use POJO Cache to do that. It supports the notion of multiple

object references. POJO Cache manages the unique object through

association of the dynamic cache interceptor.

Q: Do I have to instrument my objects?

A: You can also attach objects that implement Serializable. However, you

lose field-level replication and object identity preservation. This is really

only supported as a compatibility measure. It is definately worth useing

instrumentation.

Q: Will POJO Cache intercept changes made from Java Reflection?

A: Yes and No. Since POJO Cache intercepts field changes, any method of an

object that has been annotated with @Replicable will be handled properly when

5

called with reflection. However, modifying fields using reflection is not currently

supported.

Q: When I declare my POJO to be "aspectized", what happens to the fields with

transient, static, and final modifiers?

A: POJO Cache currently will ignore the fields with these modifiers. That is, it

won't put these fields into the cache (and thus no replication either).

Q: What are those keys such as JBoss:internal:class and PojoInstance ?

A: They are for internal use only. Users should ignore these keys and values in

the node hashmap.

Q: What about Collection classes? Do I need to declare them "prepared"?

A: No. Since the Collection classes such as ArrayList are java util classes, aop

by default won't instrument these classes. Instead, POJO Cache will generate

a dynamic class proxy for the Collection classes (upon the attach call is

invoked). The proxy will delegate the operations to a cache interceptor that

implements the actual Collection classes APIs. That is, the system classes

won't be invoked when used in POJO Cache.

Internally, the cache interceptor implements the APIs by direct interaction with

respect to the underlying cache store. Note that this can have implications in

performance for certain APIs. For example, both ArrayList and LinkedList

will have the same implementation. Plan is currently underway to optimize

these APIs.

Q: How do I use List , Set , and Map with POJO Cache?

A: POJO Cache supports all classes that implement List , Set , and Map without

instrumentation. This is done using a dynamic proxy. Here is an example using

ArrayList:

 ArrayList list = new ArrayList();

 list.add("first");

 cache.attach("/list/test", list); // Put the list under the

 cache

 list.add("second"); // Won't work since AOP intercepts the

 dynamic proxy not the original POJO.

 ArrayList myList = (List)cache.find("/list/test"); // we

 are getting a dynamic proxy instead

 myList.add("second"); // it works now

 myList.add("third");

 myList.remove("third");

Frequently Asked Questions ab...

6

Q: What is the proper way of assigning two different keys with Collection class

object?

A: Let's say you want to assign a List object under two different names, you

will need to use the class proxy to insert the second time to ensure both are

managed by the cache. Here is the code snippet.

 ArrayList list = new ArrayList();

 list.add("first");

 cache.attach("/list", list); // Put the list under the aop

 cache

 ArrayList myList = (List)cache.find("/list"); // we are

 getting a dynamic proxy instead

 myList.add("second"); // it works now

 cache.attach("/list_alias", myList); // Note you will need

 to use the proxy here!!

 myList.remove("second");

Q: OK, so I know I am supposed to use proxy when manipulating the Collection

classes once they are managed by the cache. But what happens to POJOs

that share the Collection objects, e.g., a List instance that is shared by two

objects??

A: POJOss that share Collection instance references will be handled by the cache

automatically. That is, when you ask the Cache to manage it, the Cache will

dynamically swap out the regular Collection references with the dynamic proxy

ones. As a result, it is transparent to you.

Q: What happens when my instrumented object contains collections?

A: When an object is passed to attach , it will recursively map the field members

into the cache store as well. If the field member is of a Collection class (e.g.,

List, Set, or Map), POJO Cache will first map the collection into cache. Then, it

will swap out the field reference with an corresponding proxy reference.

This is necessary so that an internal update on the field member will be

intercepted by the cache.

Q: What are the limitations of using Java Collections in POJO Cache?

A: List, Set, and Map are supported; however, these APIs do not stipulate

of constraints like whether a null key or value is allowed. Therefore the

7

behavior of an attached collection may differ slightly from the originals

Java implementation. The behavior implemented by POJO Cache follows

java.util.HashSet for any Set type, java.util.ArrayList for any List type, and

java.util.HashMap for any Map type.s

Passiviation and eviction

Q: Can I use eviction to evict a POJO from the memory?

A: In 2.0 release, we removed the POJO-based eviction policy since it has always

been problematic in earlier release. You can, however, use the standard Core

Cache eviction system to evict the data that backs the POJO.

Q: Is passivation supported?

A: Yes, in order to reduce memory consumption, you can use the passivation

feature that comes with Core Cache. Passivation uses the combination of

eviction and a cache loader such that when the items are old, it will be evicted

from memory and store in a cache store (can be DB or file). Next time, when

the item needs to be accessed again, we will retrieve it from the cache store.

Troubleshooting

Q: I am having problems getting POJO Cache to work, where can I get information

on troubleshooting?

A: Troubleshooting section can be found in the following wiki link

[http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting] .

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting

8

	Frequently Asked Questions about POJO Cache

