JBoss Cache Users' Guide

A clustered,
transactional cache

Release 3.2.0 Malagueta

=Y 7= o Vii

I. Introduction t0 JBOSS CaACREc..uiiiiii e 1
I @ T YT PP 3
1.1. What is JBOSS CaChE? ... 3
1.1.1. And what is POJO CacCh@?cccovuiiiiiiiiiiiiii e 3

1.2. SUMMATY Of FEALUIES ...couuiiiiiiiii ettt 3
1.2.1. Caching ODJECESciviiiiii i e 3

1.2.2. Local and clustered MOdeSccuuieiiiiiiiiiiii e 4

1.2.3. Clustered caches and transactionsccccoeveiiiinieiiiiinneciin e, 4

1.2.4. Thread Safelyccouuiiiiii e 5

I N = To [T =T 0 =T o £ PPN 5

I o= o 1 P 5

2. USBI AP e 7
A A o B O 1= 1= 7

2.2. Instantiating and Starting the Cacheccoooiiiiiii i 9

2.3. Caching and RetrieVing Dataccoeuuiiieiiiiiiieiiiiiecee e 10
2.3.1. Organizing Your Data and Using the Node Structure 11

2.4, The FON ClasSS ettt e e e e e e e 11

2.5. Stopping and Destroying the Cachec..ccoivviiiiiiii i, 12

AT O Tor o L= T Y/ [To [13

2.7. Adding a Cache Listener - registering for cache eventscccocceeeennnn. 13
2.7.1. Synchronous and Asynchronous Notificationsccccceeeeeiiiiineenns 16

2.8. USiNg Cache LOAUEIScoviieiiiiiiii e e e 16

2.9. Using EVICtioN POHCIESccouuiiiiiiiii e 17

G T 10 1 To [U1 2= Lo I 19
3.1. Configuration OVEIVIEWccuuuiiiiiiieiiiii ettt ettt e enees 19

3.2. Creating a Confi gUrati ON iiiiiieeii e e e e e e e e e 19
3.2.1. Parsing an XML-based Configuration Fileccccoeiiiiiiiiniiiiinnnne. 19

3.2.2. Validating Configuration Filescccoooviiiiiii i, 19

3.2.3. Programmatic Configurationcccooeeiiiiiiiiiiiiiine e 20

3.2.4. Using an IOC FrameworkKcccoceuiiiiiiieiiiieiii e v 20

3.3. Composition of a Confi gurati on ODJECTccovviiiiiiiiiiiiiii e 21

3.4. Dynamic RecoNfigUIationcioviiiiiiiieiii i e e e e 22
3.4.1. Overriding the Configuration via the Option APlcccooiiiiiiiinieien, 22

4, BatChing APl o 25
s O 11 Yo [o 1 o o P 25

4.2. Configuring batChingc..oiiiiiiii e 25

4.3, BAtChiNG AP ..o 25

5. Deploying JB0OSS CaCheccoouiiiiiiii e 27
5.1. Standalone Use/Programatic Deploymentcooveviiiiiieiiiiinieiiiiineeeciiee 27

5.2. Via JBoss Microcontainer (JBOSS AS 5.X) c.uuiiivuiiiiiieiiiieiiiieeiieeei e e e e e 27

5.3. Automatic binding to JNDI in JBOSS AScouiiiiiiiiieiei e 27

5.4. Runtime Management INfOrmationcooveiiiiiiiiieei e 27
5.4.1. JB0SS CacChe MBEANScceuuiiiiiieiiiieeii e 28

JBoss Cache Users' Guide

5.4.2. Registering the CacheJmxWrapper with the MBeanServer 28
5.4.3. JB0SS Cache StatiStiCSoveieuiiiiiiiiiiieiie e 31
5.4.4. Receiving JMX Notificationsccooeviiiiiiiiiii e, 31
5.4.5. Accessing Cache MBeans in a Standalone Environment using the
JIR T oY 1Y o1 I =T 11 PPN 33
6. Version Compatibility and Interoperabilityccoooiiiiiiiiii e, 35
6.1. AP compatibDilityc..oeeeeiii i 35
6.2. Wire-level interoperabilityoiiiiiiiiiii e 35
6.3. Compatibility MatriXoevuieiiiie e 35
[1. JBOSS Cache ArChItECIUMEiieiiii e e e e 37
AN e 1 11 C=To] AU = TSR 39
7.1. Data Structures Within The Cachecoooiiiiiiiiii e 39
7.2, SPLINTEITACES ..oeeiiiiiii et 40
7.3. Method Invocations ON NOGESovuuiiiiiiiiiiee e 42
S T O [01 (=] o= (o] = PPN 42
7.3.2. Commands and ViSItOrSiviiuiiiiiiieii e 43
7.3.3. INVOCALIONCONIEXES ...uiiiiiiieeeiiii e 43
7.4. Managers FOr SUDSYSIEMSciiiiiiiiiiiii e 44
T4 L RPCMANAGET et ans 44
7.4.2. BUAAYMAENAGET .. .cciiiiiiiiiii ettt 44
7.4.3. CacheLoaderManagerccccvuuieiiiieii e e e e eaeas 44
7.5. Marshalling And Wire FOIMALScoouuiiiiiiiiiiiiii e 44
7.5.1. The Marshaller INterfaceooveiiiiiiiiiii e 45
7.5.2. VersionAwareMarshallercooooiiiiiiiiii e 46
7.6. Class Loading and REQIONScciviiiiiiieiiii e e e e 46
8. Cache Modes and CIUSTEIING ...iceuuuiiiiiiii e 47
8.1. Cache Replication MOUESccuuiiiiiiiiiiie e a7
8.1.1. LOCAlI MOUE ...eniiiieii et e 47
8.1.2. Replicated CaChesoviiiiiiiii e a7
8.2, INVAIIALION ...eeiiii e 51
8.3, State TraNSTEr ... 51
8.3.1. State Transfer TYPES ..o 51
8.3.2. Byte array and streaming based state transfercccocccoeveine. 51
8.3.3. Full and partial state transfercccooooiiiiiiiii 52
8.3.4. Transient ("in-memory") and persistent state transfer 53
8.3.5. Non-Blocking State Transferccoooviviiiiiiiiiie e 54
8.3.6. Configuring State Transferccooviiiiiiiii e, 54
LS I O T o = I T- o =T 55
9.1. The CachelLoader Interface and Lifecycleccoeeviiiiiiiiiiiiii e, 56
9.2, CONFIQUIALIONiiiiti ettt e eeaeens 57
9.2.1. Singleton Store Configurationcc.cceveiiiieiii e 59
9.3. Shipped IMpIeMENtAtIONSiiiiiiieiii e 60
9.3.1. File system based cache loaderscccooeiviiiiiiiiiiiii e, 60
9.3.2. Cache loaders that delegate to other cachesc.cccoviiiiiiiiiiannnnn. 61

9.3.3. IDBCCAChELOAUET ...ucviieiiiiiiee e 61

9.3.4. S3CAChELOAUET .. .cvieiei e 65
9.3.5. TcpDelegatingCacheLoadercvevviiiiiiiiiiiccie e, 67
9.3.6. Transforming Cache Loadersccouoiiiiiiiiniiiiiiicce e 68
9.4, CaChe PasSIVALIONuuiiiiiiiiiei i 69
9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled 69
1S IR 1 - 1 (=T o | =1 P 70
9.5.1. Local Cache With StOrecccuiviiiiiiii e 71
9.5.2. Replicated Caches With All Caches Sharing The Same Store 71
9.5.3. Replicated Caches With Only One Cache Having A Store 72
9.5.4. Replicated Caches With Each Cache Having Its Own Store 73
9.5.5. Hierarchical Cachescc.ooiiiiiiiiiii e 74
9.5.6. Multiple Cache LOAdErScc.viviiiiiii i 75
O Vo] 4 o] o P 79
0 R 7= o | o P 79
10.1.1. Collecting StatiStICSc.uuuiiiieiiieiiii e 79
10.1.2. Determining Which Nodes to EVICtcccoveiiiiiiiiiiiiec e, 79
10.1.3. How Nodes are EVICtedcc.uiviiuiiiiiiiiiiee e 80
10.1.4. EVICtion threadscoooiiiiiiiiiiii e 80
10.2. EVICHON REGIONSiiiiiiieieiiii ettt ettt e e e 80
10.2.1. ReSIAENE NOUESieiiiiiiiiiii et e 80
10.3. Configuring EVICHONcoouuiiiiiii i 81
10.3.1. Basic Configurationccocveuieiiiiiiiii e ee e e e e e 81
10.3.2. Programmatic Configurationccoiiieiiiiiniiiiieece e 82
10.4. Shipped EVICtION POLICIEScvuiiciiiiiiii e e 83
10.4.1. LRUAIgorithm - Least Recently Usedccccooviiiiiiiiiiiiiinecieii, 83
10.4.2. FIFOAIgorithm - First In, First Outccooeviiiiiinc e 83
10.4.3. MRUAIgorithm - Most Recently Usedccccooviiiiiiiieiiiinecei, 83
10.4.4. LFUAIgorithm - Least Frequently Usedcccoovvviiiiiiciiinecieee, 84
10.4.5. ExpirationAIgOritimoooiiiiiii e 84

10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs
1 = T T To [T 85
11. Transactions and CONCUITENCY ...ciuuuiiiuneeeiieeiiee e ee e e e e e e e e e e e e e aeanas 87
R 0] [od 0 ¢ (=] o o oL PP 87
11.1.1. Multi-Version Concurrency Control (MVCC)ccoocvveieviiiiiiiieeiiee, 87
11.1.2. Pessimistic and Optimistic Locking Schemesccccooocviiiiiinnnnn. 90
T2.2. JTA SUPPOIT <ottt eaeens 91
[ll. JBoss Cache Configuration RefErenCeso 93
12. Configuration REFEIENCESccuuiiiiii i 95
12.1. Sample XML Configuration File ... 95
12.2.1. XML ValIdAtionc.uuniiiiiiiiecis e 100
12.2. Configuration File Quick Referencecccooiiiiiiiiiiiii, 100
13, IMX REFEIENCES ..cvniiiieii ettt e e e ea s 129
13.1. JB0SS Cache StatiStiCScceuuiieeiiiiiieii e 129

JBoss Cache Users' Guide

13.2. IMX MBean Notifications

vi

Preface

This is the official JBoss Cache Users' Guide. Along with its accompanying documents (an FAQ,
a tutorial and a whole set of documents on POJO Cache), this is freely available on the JBoss
Cache documentation website [http://www.jboss.org/jbosscache].

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional
cache. POJO Cache, also a part of the JBoss Cache distribution, is documented separately.
(POJO Cacheis a cache that deals with Plain Old Java Objects, complete with object relationships,
with the ability to cluster such POJOs while maintaining their relationships. Please see the POJO
Cache documentation for more information about this.)

This book is targeted at developers wishing to use JBoss Cache as either a standalone in-memory
cache, a distributed or replicated cache, a clustering library, or an in-memory database. It is
targeted at application developers who wish to use JBoss Cache in their code base, as well as
"OEM" developers who wish to build on and extend JBoss Cache features. As such, this book is
split into two major sections - one detailing the "User" APl and the other going much deeper into
specialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation
and understanding of transactions and concurrent programming is necessary. No prior knowledge
of JBoss Application Server is expected or required.

For further discussion, use the user forum available on the JBoss Cache website. [http://
www.jboss.org/jbosscache] We also provide a mechanism for tracking bug reports and feature
requests on the JBoss Cache JIRA issue tracker [http://jira.jboss.com/jira/browse/JBCACHE].

If you are interested in the development of JBoss Cache or in translating this documentation
into other languages, we'd love to hear from you. Please post a message on the JBoss Cache
user forum [http://www.jboss.org/jbosscache] or contact us by using the JBoss Cache developer
mailing list [https://lists.jboss.org/mailman/listinfo/jbosscache-dev].

This book is specifically targeted at the JBoss Cache release of the same version number. It may
not apply to older or newer releases of JBoss Cache. It is important that you use the documentation
appropriate to the version of JBoss Cache you intend to use.

| always appreciate feedback, suggestions and corrections, and these should be directed to the
developer mailing list [https://lists.jboss.org/mailman/listinfo/jposscache-dev] rather than direct
emails to any of the authors. We hope you find this book useful, and wish you happy reading!

Manik Surtani, October 2008

Vii

http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

viii

Part |. Introduction to JBoss Cache

This section covers what developers would need to quickly start using JBoss Cache in their
projects. It covers an overview of the concepts and API, configuration and deployment information.

Chapter 1.

Overview

1.1. What is JBoss Cache?

JBoss Cache is a tree-structured, clustered, transactional cache. It can be used in a standalone,
non-clustered environment, to cache frequently accessed data in memory thereby removing
data retrieval or calculation bottlenecks while providing "enterprise" features such as JTA [http://
java.sun.com/products/jta] compatibility, eviction and persistence.

JBoss Cache is also a clustered cache, and can be used in a cluster to replicate state providing
a high degree of failover. A variety of replication modes are supported, including invalidation and
buddy replication, and network communications can either be synchronous or asynchronous.

When used in a clustered mode, the cache is an effective mechanism of building high availability,
fault tolerance and even load balancing into custom applications and frameworks. For example,
the JBoss Application Server [http://www.jboss.org/projects/jbossas/] and Red Hat's Enterprise
Application Platform [http://www.jboss.com] make extensive use of JBoss Cache to cluster
services such as HTTP and EJB [http://java.sun.com/products/ejb/] sessions, as well as providing
a distributed entity cache for JPA [http://en.wikipedia.org/wiki/Java_Persistence_API].

JBoss Cache can - and often is - used outside of JBoss AS, in other Java EE environments such
as Spring, Tomcat, Glassfish, BEA WebLogic, IBM WebSphere, and even in standalone Java
programs thanks to its minimal dependency set.

1.1.1. And what is POJO Cache?

POJO Cache is an extension of the core JBoss Cache API. POJO Cache offers additional
functionality such as:

* maintaining object references even after replication or persistence.

« fine grained replication, where only modified object fields are replicated.

» "API-less" clustering model where POJOs are simply annotated as being clustered.

POJO Cache has a complete and separate set of documentation, including a Users' Guide,
FAQ and tutorial all available on the JBoss Cache documentation website [http://www.jboss.org/
jbosscache]. As such, POJO Cache will not be discussed further in this book.

1.2. Summary of Features

1.2.1. Caching objects

JBoss Cache offers a simple and straightforward API, where data - simple Java objects - can be
placed in the cache. Based on configuration options selected, this data may be one or all of:

http://java.sun.com/products/jta
http://java.sun.com/products/jta
http://java.sun.com/products/jta
http://www.jboss.org/projects/jbossas/
http://www.jboss.org/projects/jbossas/
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com
http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache

Chapter 1. Overview

« cached in-memory for efficient, thread-safe retrieval.

replicated to some or all cache instances in a cluster.
« persisted to disk and/or a remote, in-memory cache cluster ("far-cache").

« garbage collected from memory when memory runs low, and passivated to disk so state isn't
lost.
In addition, JBoss Cache offers a rich set of enterprise-class features:

being able to participate in JTA [http://java.sun.com/products/jta] transactions (works with most
Java EE compliant transaction managers).

attach to JMX consoles and provide runtime statistics on the state of the cache.
 allow client code to attach listeners and receive notifications on cache events.

« allow grouping of cache operations into batches, for efficient replication

1.2.2. Local and clustered modes

The cache is organized as a tree, with a single root. Each node in the tree essentially contains a
map, which acts as a store for key/value pairs. The only requirement placed on objects that are
cached is that they implement j ava. i 0. Seri al i zabl e.

JBoss Cache can be either local or replicated. Local caches exist only within the scope of the
JVM in which they are created, whereas replicated caches propagate any changes to some or all
other caches in the same cluster. A cluster may span different hosts on a network or just different
JVMs on a single host.

1.2.3. Clustered caches and transactions

When a change is made to an object in the cache and that change is done in the context of a
transaction, the replication of changes is deferred until the transaction completes successfully. All
modifications are kept in a list associated with the transaction of the caller. When the transaction
commits, changes are replicated. Otherwise, on a rollback, we simply undo the changes locally
and discard the modification list, resulting in zero network traffic and overhead. For example, if a
caller makes 100 modifications and then rolls back the transaction, nothing is replicated, resulting
in no network traffic.

If a caller has no transaction or batch associated with it, modifications are replicated immediately.
E.g. in the example used earlier, 100 messages would be broadcast for each modification. In this
sense, running without a batch or transaction can be thought of as analogous as running with
auto-commit switched on in JDBC terminology, where each operation is committed automatically
and immediately.

JBoss Cache works out of the box with most popular transaction managers, and even provides
an API where custom transaction manager lookups can be written.

http://java.sun.com/products/jta
http://java.sun.com/products/jta

Thread safety

All of the above holds true for batches as well, which has similar behavior.

1.2.4. Thread safety

The cache is completely thread-safe. It employs multi-versioned concurrency control (MVCC)
to ensure thread safety between readers and writers, while maintaining a high degree of
concurrency. The specific MVCC implementation used in JBoss Cache allows for reader threads to
be completely free of locks and synchronized blocks, ensuring a very high degree of performance
for read-heavy applications. It also uses custom, highly performant lock implementations that
employ modern compare-and-swap techniques for writer threads, which are tuned to multi-core
CPU architectures.

Multi-versioned concurrency control (MVCC) is the default locking scheme since JBoss Cache
3.X. Optimistic and pessimistic locking schemes from older versions of JBoss Cache are still
available but are deprecated in favor of MVCC, and will be removed in future releases. Use of
these deprecated locking schemes are strongly discouraged.

The JBoss Cache MVCC implementation only supports READ_COMMITTED and
REPEATABLE_READ isolation levels, corresponding to their database equivalents. See the
section on transactions and concurrency for details on MVCC.

1.3. Requirements

JBoss Cache requires a Java 5.0 (or newer) compatible virtual machine and set of libraries, and
is developed and tested on Sun's JDK 5.0 and JDK 6.

There is a way to build JBoss Cache as a Java 1.4.x compatible binary using JBossRetro [http://
www.jboss.org/community/docs/DOC-10738] to retroweave the Java 5.0 binaries. However, Red
Hat Inc. does not offer professional support around the retroweaved binary at this time and the
Java 1.4.x compatible binary is not in the binary distribution. See this wiki [http://www.jboss.org/
community/docs/DOC-10263] page for details on building the retroweaved binary for yourself.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies on JGroups [http://
www.jgroups.org], and Apache's commons-logging [http://jakarta.apache.org/commons/logging/].
JBoss Cache ships with all dependent libraries necessary to run out of the box, as well as several
optional jars for optional features.

1.4. License

JBoss Cache is an open source project, using the business and OEM-friendly OSl-approved
[http://www.opensource.org/] LGPL license. [http://www.gnu.org/copyleft/lesser.html] Commercial
development support, production support and training for JBoss Cache is available through JBoss,
a division of Red Hat Inc. [http://www.jboss.com]

http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10738
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jgroups.org
http://www.jgroups.org
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com

Chapter 2.

User API

2.1. API Classes

The Cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed
and optionally started using the CacheFact ory. The CacheFact ory allows you to create a Cache
either from a Conf i gur at i on object or an XML file. The cache organizes data into a tree structure,
made up of nodes. Once you have a reference to a Cache, you can use it to look up Node objects
in the tree structure, and store data in the tree.

Chapter 2. User API

[Public AP ||

CarheFactory (:j
rorg.jbozz.cache)

+oreateCached Cache

+oreateCachel start [hoolean) Cache

+oreateCachel confighileMName | String 1 - Cache

+oreateCachel confighileMame | String, stardt hoolean) Cache
+oreateCachel configuration | Configuration » Cache

+oreateCachel configuration | Corfiguration, start hoolean o Cache

i

z
I

Default Cache Factory
rorg.jbozz.cache)

Cache ()
(org.jbozz. cache)

< s getter==4getConfigurations | Configuration

< s getter==4getlootsy Mode

+addCackhelistenaryl Cackhelistener) vaid

+addCachelistenars ragion Fgh, | Cachelistenery voild
+removeCachelistenery) Cachelistepner) void
+removeCachelisteners region (Fgn, 1. Cackelisterner) void

< getter==4getCackhelistenerssy et

< s getter==4getCachelistonerss ragion (Fgr o Sat

+pltsfagn D Egr, ey D Olject walye | Ohjact b - Ohbyjact
+pitEorExternalRezds fgr D Fgr, key - Ohject valye - Ohject ¥ woid
+pltsfagrn CFgr, data D Map) ovoid

+remaovel fgr D Egr, key D Ohject ¥ Ohjact

+removehloder faor Fgn ko void

< getter==4getl fan Fgr, key D Oljeact ¥ Ohjact

+eavicts fagr D Fgr, Fecursive D hoolean } o voild

< s getter==4getRegions fgr - Egr, createlfAbsant " boolean) - Begion
+oregtaly vold

+5tantn Cvoid

+5tops void

+destrowiy woid

< s getter==4getinvocatiohContextsy [lnvocatiohContaxt

< setter = satlnvacationContexty oty lnvocatiohContext b o vold
< getterz==4getl ocalAddressn Address

< getter==4getMembearsny o List

+ovel hodeToMove - Fgr, rewParent " Egr ko vold

< s getter==4getVarsions | String

Instantiating and Starting the Cache

Note that the diagram above only depicts some of the more popular APl methods. Reviewing the
javadoc for the above interfaces is the best way to learn the API. Below, we cover some of the
main points.

2.2. Instantiating and Starting the Cache

An instance of the Cache interface can only be created via a CacheFact ory. This is unlike JBoss
Cache 1.x, where an instance of the old Tr eeCache class could be directly instantiated.

The CacheFact ory provides a number of overloaded methods for creating a Cache, but they all

fundamentally do the same thing:

» Gain access to a Confi gur ati on, either by having one passed in as a method parameter or by
parsing XML content and constructing one. The XML content can come from a provided input
stream, from a classpath or filesystem location. See the chapter on Configuration for more on
obtaining a Confi gur ati on.

* Instantiate the Cache and provide it with a reference to the Confi gur ati on.
* Optionally invoke the cache's creat e() and start () methods.

Here is an example of the simplest mechanism for creating and starting a cache, using the default
configuration values:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache();

In this example, we tell the CacheFact or y to find and parse a configuration file on the classpath:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache("cache-configuration.xml");

In this example, we configure the cache from a file, but want to programatically change a
configuration element. So, we tell the factory not to start the cache, and instead do it ourselves:

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache("/opt/configurations/cache-configuration.xml", false);
Configuration config = cache.getConfiguration();

Chapter 2. User API

config.setClusterName(this.getClusterName());

/I Have to create and start cache before using it
cache.create();
cache.start();

2.3. Caching and Retrieving Data

Next, lets use the Cache API to access a Node in the cache and then do some simple reads and
writes to that node.

/I Let's get a hold of the root node.
Node rootNode = cache.getRoot();

/I Remember, JBoss Cache stores data in a tree structure.
/I All nodes in the tree structure are identified by Fgn objects.
Fgn peterGriffinFgn = Fgn.fromString("/griffin/peter");

/I Create a new Node
Node peterGiriffin = rootNode.addChild(peterGriffinFgn);

/I let's store some data in the node
peterGriffin.put("isCartoonCharacter”, Boolean. TRUE);
peterGriffin.put(“favoriteDrink", new Beer());

/Il some tests (just assume this code is in a JUnit test case)
assertTrue(peterGriffin.get("isCartoonCharacter"));
assertEquals(peterGriffinFqgn, peterGriffin.getFgn());
assertTrue(rootNode.hasChild(peterGriffinFqgn));

Set keys = new HashSet();
keys.add("isCartoonCharacter");
keys.add("favoriteDrink");

assertEquals(keys, peterGriffin.getKeys());

/I let's remove some data from the node
peterGriffin.remove("favoriteDrink");

assertNull(peterGriffin.get("favoriteDrink");

10

Organizing Your Data and Using the Node
Structure
/l'let's remove the node altogether
rootNode.removeChild(peterGriffinFqn);

assertFalse(rootNode.hasChild(peterGriffinFgn));

The Cache interface also exposes put/get/remove operations that take an Fgn as an argument,
for convenience:

Fgn peterGriffinFgn = Fgn.fromString("/griffin/peter");

cache.put(peterGriffinFgn, "isCartoonCharacter”, Boolean. TRUE);
cache.put(peterGriffinFqn, "favoriteDrink", new Beer());

assertTrue(peterGriffin.get(peterGriffinFqn, "isCartoonCharacter"));
assertTrue(cache.getRootNode().hasChild(peterGriffinFgn));

cache.remove(peterGriffinFgn, "favoriteDrink");
assertNull(cache.get(peterGriffinFgn, "favoriteDrink");
cache.removeNode(peterGriffinFqn);

assertFalse(cache.getRootNode().hasChild(peterGriffinFqn));

2.3.1. Organizing Your Data and Using the Node Structure

A Node should be viewed as a named logical grouping of data. A node should be used to contain
data for a single data record, for example information about a particular person or account. It
should be kept in mind that all aspects of the cache - locking, cache loading, replication and
eviction - happen on a per-node basis. As such, anything grouped together by being stored in a
single node will be treated as a single atomic unit.

2.4. The rn Class

The previous section used the Fgn class in its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fgn) encapsulates a list of names which represent a path to a particular
location in the cache's tree structure. The elements in the list are typically Stri ngs but can be
any Obj ect or a mix of different types.

11

Chapter 2. User API

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache.
Reading the documentation on each API call that makes use of Fgn will tell you whether the API
expects a relative or absolute Fqgn.

The Fgn class provides are variety of factory methods; see the javadoc for all the possibilities. The
following illustrates the most commonly used approaches to creating an Fgn:

/I Create an Fgn pointing to node 'Joe' under parent node 'Smith'
/I under the ‘people’ section of the tree

/I Parse it from a String
Fgn abc = Fgn.fromString("/people/Smith/Joe/");

/I Here we want to use types other than String
Fgn acctFgn = Fgn.fromElements("accounts”, "NY", new Integer(12345));

Note that
Fgn f = Fgn.fromElements("a", "b", "c");
is the same as

Fagn f = Fgn.fromString("/a/b/c");

2.5. Stopping and Destroying the Cache

It is good practice to stop and destroy your cache when you are done using it, particularly if it is a
clustered cache and has thus used a JGroups channel. Stopping and destroying a cache ensures
resources like network sockets and maintenance threads are properly cleaned up.

cache.stop();
cache.destroy();

12

Cache Modes

Not also that a cache that has had st op() invoked on it can be started again with a new call to
start () . Similarly, a cache that has had destroy() invoked on it can be created again with a
new call to creat e() (and then started again with a start () call).

2.6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured to operate
affects the cluster-wide behavior of any put or renove operation, so we'll briefly mention the
various modes here.

JBoss Cache modes are denoted by the or g. j boss. cache. confi g. Confi gurati on. CacheMode
enumeration. They consist of:

* LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't communicate
with other caches in a cluster.

« REPL_SYNC - synchronous replication. Replicated caches replicate all changes to the other
caches in the cluster. Synchronous replication means that changes are replicated and the caller
blocks until replication acknowledgements are received.

« REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above, replicated caches
replicate all changes to the other caches in the cluster. Being asynchronous, the caller does not
block until replication acknowledgements are received.

« INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every
time data is changed in a cache other caches in the cluster receive a message informing
them that their data is now stale and should be evicted from memory. This reduces replication
overhead while still being able to invalidate stale data on remote caches.

* INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation
messages to be broadcast asynchronously.

See the chapter on Clustering for more details on how cache mode affects behavior. See the
chapter on Configuration for info on how to configure things like cache mode.

2.7. Adding a Cache Listener - registering for cache
events

JBoss Cache provides a convenient mechanism for registering notifications on cache events.

Object myListener = new MyCachelListener();
cache.addCacheListener(myListener);

13

Chapter 2. User API

Similar methods exist for removing or querying registered listeners. See the javadocs on the Cache
interface for more details.

Basically any public class can be used as a listener, provided it is annotated with the
@acheli st ener annotation. In addition, the class needs to have one or more methods annotated
with one of the method-level annotations (in the or g. j boss. cache. noti fi cati ons. annot ati on
package). Methods annotated as such need to be public, have a void return type, and accept a
single parameter of type or g. j boss. cache. noti fi cati ons. event . Event or one of its subtypes.

e @acheSt art ed - methods annotated such receive a notification when the cache is started.
Methods need to accept a parameter type which is assignable from CacheSt ar t edEvent .

* @acheSt opped - methods annotated such receive a notification when the cache is stopped.
Methods need to accept a parameter type which is assignable from CacheSt oppedEvent .

* @odeCr eat ed - methods annotated such receive a notification when a node is created. Methods
need to accept a parameter type which is assignable from NodeCr eat edEvent .

* @lodeRenoved - methods annotated such receive a notification when a node is removed.
Methods need to accept a parameter type which is assignable from NodeRenovedEvent .

e @odeMdi fi ed - methods annotated such receive a notification when a node is modified.
Methods need to accept a parameter type which is assignable from NodeModi f i edEvent .

* @lodeMved - methods annotated such receive a notification when a node is moved. Methods
need to accept a parameter type which is assignable from NodeMovedEvent .

* @lodeVi si t ed - methods annotated such receive a notification when a node is started. Methods
need to accept a parameter type which is assignable from NodeVi si t edEvent .

* @lodeLoaded - methods annotated such receive a notification when a node is loaded from
a CachelLoader . Methods need to accept a parameter type which is assignable from
NodelLoadedEvent .

* @lodeEvi cted - methods annotated such receive a notification when a node is evicted
from memory. Methods need to accept a parameter type which is assignable from
NodeEvi ct edEvent .

e @lodel nval i dat ed - methods annotated such receive a notification when a node is evicted
from memory due to a remote invalidation event. Methods need to accept a parameter type
which is assignable from Nodel nval i dat edEvent .

*« @odeActi vat ed - methods annotated such receive a notification when a node is activated.
Methods need to accept a parameter type which is assignable from NodeAct i vat edEvent .

e @lodePassi vat ed - methods annotated such receive a notification when a node is passivated.
Methods need to accept a parameter type which is assignable from NodePassi vat edEvent .

e @ransactionRegi stered - methods annotated such receive a notification when the
cache registers a javax.transaction. Synchronization with a registered transaction

14

Adding a Cache Listener - registering for cache

events
manager. Methods need to accept a parameter type which is assignable from

Transact i onRegi st eredEvent .

e @ransact i onConpl et ed - methods annotated such receive a notification when the cache
receives a commit or rollback call from a registered transaction manager. Methods need to
accept a parameter type which is assignable from Tr ansact i onConpl et edEvent .

e @i ewChanged - methods annotated such receive a notification when the group structure of
the cluster changes. Methods need to accept a parameter type which is assignable from
Vi ewChangedEvent .

» @acheBl ocked - methods annotated such receive a notification when the cluster requests that
cache operations are blocked for a state transfer event. Methods need to accept a parameter
type which is assignable from CacheBl ockedEvent .

e @acheUnbl ocked - methods annotated such receive a notification when the cluster requests
that cache operations are unblocked after a state transfer event. Methods need to accept a
parameter type which is assignable from CacheUnbl ockedEvent .

e @uddyG oupChanged - methods annotated such receive a natification when a node changes its
buddy group, perhaps due to a buddy falling out of the cluster or a newer, closer buddy joining.
Methods need to accept a parameter type which is assignable from Buddy G oupChangedEvent .

Refer to the javadocs on the annotations as well as the Event subtypes for details of what is
passed in to your method, and when.

Example:

@CachelListener
public class MyListener

{

@CacheStarted
@CacheStopped
public void cacheStartStopEvent(Event e)
{
switch (e.getType())
{
case CACHE_STARTED:
System.out.printin("Cache has started");
break;
case CACHE_STOPPED:
System.out.printin("Cache has stopped");
break;

15

Chapter 2. User API

@NodeCreated
@NodeRemoved
@NodeVisited
@NodeModified
@NodeMoved
public void logNodeEvent(NodeEvent ne)
{
log("An event on node " + ne.getFgn() + " has occured");
}
}

2.7.1. Synchronous and Asynchronous Notifications

By default, all notifications are synchronous, in that they happen on the thread of the caller which
generated the event. As such, it is good practise to ensure cache listener implementations don't
hold up the thread in long-running tasks. Alternatively, you could set the CacheLi st ener. sync()
attribute to f al se, in which case you will not be notified in the caller's thread. See the configuration
reference on tuning this thread pool and size of blocking queue.

2.8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of nodes to disk
or to remote cache clusters, and allow for passivation when caches run out of memory. In
addition, cache loaders allow JBoss Cache to perform 'warm starts', where in-memory state
can be preloaded from persistent storage. JBoss Cache ships with a number of cache loader
implementations.

e org.jboss. cache. | oader. Fi | eCacheLoader - a basic, filesystem based cache loader that
persists data to disk. Non-transactional and not very performant, but a very simple solution.
Used mainly for testing and not recommended for production use.

* org.jboss.cache. | oader. JDBCCacheLoader - uses a JDBC connection to store data.
Connections could be created and maintained in an internal pool (uses the c3p0 pooling library)
or from a configured DataSource. The database this CachelLoader connects to could be local
or remotely located.

e org.jboss. cache. | oader. Bdbj eCacheLoader - uses Oracle's BerkeleyDB file-based
transactional database to persist data. Transactional and very performant, but potentially
restrictive license.

e org.jboss. cache. | oader. JdbnCacheLoader - an open source alternative to the BerkeleyDB.

16

Using Eviction Policies

e org.jboss. cache. | oader.tcp. TcpCacheLoader - uses a TCP socket to "persist" data to a
remote cluster, using a "far cache" pattern [http://www.jboss.org/community/docs/DOC-10292].

e org.jboss. cache. | oader. d ust eredCacheLoader - used as a "read-only" cache loader,
where other nodes in the cluster are queried for state. Useful when full state transfer is too
expensive and it is preferred that state is lazily loaded.

These cache loaders, along with advanced aspects and tuning issues, are discussed in the

chapter dedicated to cache loaders.

2.9. Using Eviction Policies

Eviction policies are the counterpart to cache loaders. They are necessary to make sure the cache
does not run out of memory and when the cache starts to fill, an eviction algorithm running in a
separate thread evicts in-memory state and frees up memory. If configured with a cache loader,
the state can then be retrieved from the cache loader if needed.

Eviction policies can be configured on a per-region basis, so different subtrees in the cache could
have different eviction preferences. JBoss Cache ships with several eviction policies:

e org.jboss. cache. evi ction. LRUPol i cy - an eviction policy that evicts the least recently used
nodes when thresholds are hit.

e org.jboss. cache. eviction. LFUPol i cy - an eviction policy that evicts the least frequently
used nodes when thresholds are hit.

e org.jboss. cache. evi cti on. MRUPol i cy - an eviction policy that evicts the most recently used
nodes when thresholds are hit.

e org.jboss. cache. eviction. Fl FOPol i cy - an eviction policy that creates a first-in-first-out
gueue and evicts the oldest nodes when thresholds are hit.

e org.jboss. cache. evi ction. ExpirationPolicy - an eviction policy that selects nodes for
eviction based on an expiry time each node is configured with.

e org.jboss. cache. eviction. El ement Si zePol i cy - an eviction policy that selects nodes for
eviction based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the chapter

dedicated to eviction policies.

17

http://www.jboss.org/community/docs/DOC-10292
http://www.jboss.org/community/docs/DOC-10292

18

Chapter 3.

Configuration

3.1. Configuration Overview

The or g. j boss. cache. confi g. Confi gurati on class (along with its component parts) is a Java
Bean that encapsulates the configuration of the Cache and all of its architectural elements (cache
loaders, evictions policies, etc.)

The Confi gurati on exposes numerous properties which are summarized in the configuration
reference section of this book and many of which are discussed in later chapters. Any time you
see a configuration option discussed in this book, you can assume that the Confi gur ati on class
or one of its component parts exposes a simple property setter/getter for that configuration option.

3.2. Creating A Configuration

As discussed in the User API section, before a Cache can be created, the CacheFact ory must
be provided with a Confi gurati on object or with a file name or input stream to use to parse a
Conf i gur ati on from XML. The following sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cache is via an XML file. The JBoss Cache
distribution ships with a number of configuration files for common use cases. It is recommended
that these files be used as a starting point, and tweaked to meet specific needs.

The simplest example of a configuration XML file, a cache configured to run in LOCAL mode,
looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlIns="urn:jboss:jbosscache-core:config:3.2">
</jbosscache>

This file uses sensible defaults for isolation levels, lock acquisition timeouts, locking modes, etc.
Another, more complete, sample XML file is included in the configuration reference section of this
book, along with a handy look-up table explaining the various options.

3.2.2. Validating Configuration Files

By default JBoss Cache will validate your XML configuration file against an XML schema
and throw an exception if the configuration is invalid. This can be overridden with the -

19

Chapter 3. Configuration

Dj bosscache. confi g. val i dat e=f al se JVM parameter. Alternately, you could specify your own
schema to validate against, using the - Oj bosscache. confi g. schemaLocat i on=ur| parameter.

By default though, configuration files are validated against the JBoss Cache configuration schema,
which is included in the j bosscache-core.jar or on http://ww.jboss. org/jbosscache/
j bosscache- confi g- 3. 0. xsd. Most XML editing tools can be used with this schema to ensure
the configuration file you create is correct and valid.

3.2.3. Programmatic Configuration

In addition to the XML-based configuration above, the Configuration can be built up
programatically, using the simple property mutators exposed by Configuration and its
components. When constructed, the Confi gur ati on object is preset with JBoss Cache defaults
and can even be used as-is for a quick start.

Configuration config = new Configuration();
config.setTransactionManagerLookupClass(
GenericTransactionManagerLookup.class.getName());
config.setlsolationLevel(lsolationLevel. READ _COMMITTED);
config.setCacheMode(CacheMode.LOCAL);
config.setLockAcquisitionTimeout(15000);

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use
of XML-based configuration. However, if your application requires it, there is no reason not to use
XML-based configuration for most of the attributes, and then access the Confi gur ati on object
to programatically change a few items from the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running,
except those annotated as @ynani ¢ . Dynamic properties are also marked as such in the
configuration reference table. Attempting to change a non-dynamic property will result in a
Confi gur ati onException .

3.2.4. Using an I0C Framework

The Configuration class and its component parts are all Java Beans that expose all config
elements via simple setters and getters. Therefore, any good 10C framework such as Spring,
Google Guice, JBoss Microcontainer, etc. should be able to build up a Confi gurati on from an
XML file in the framework’'s own format. See the deployment via the JBoss micrcontainer section
for an example of this.

20

Composition of a Confi gur ati on Object

3.3. Composition of a configuration Object

A Confi gur ati on is composed of a number of subobjects:

1 Configuration

1
0.1 0. 0.1,
BuddyReplicationConfig EvictionConfig CachelLoaderConfig
1 1 1
1 1.% 1.5
Buddyl ocatorConfig EvictionRegionConfig IndividualCachelLoaderCo
1
EvictionPolicyConfiq

Following is a brief overview of the components of a Confi gur ati on . See the javadoc and the
linked chapters in this book for a more complete explanation of the configurations associated with
each component.

e Configuration :top level object in the hierarchy; exposes the configuration properties listed
in the configuration reference section of this book.

e BuddyRepl i cati onConfi g: onlyrelevantif buddy replication is used. General buddy replication
configuration options. Must include a:

e BuddyLocat or Confi g : implementation-specific configuration object for the BuddyLocat or
implementation being used. What configuration elements are exposed depends on the needs
of the BuddyLocat or implementation.

e EvictionConfig:onlyrelevantif eviction is used. General eviction configuration options. Must
include at least one:

e Evi ctionRegi onConfi g : one for each eviction region; names the region, etc. Must include a:

21

Chapter 3. Configuration

e EvictionAl gorithnConfig : implementation-specific configuration object for the
Evi cti onAl gori t hmimplementation being used. What configuration elements are exposed
depends on the needs of the Evi cti onAl gori t hmimplementation.

e CacheLoader Config : only relevant if a cache loader is used. General cache loader
configuration options. Must include at least one:

e I ndi vi dual CacheLoader Config : implementation-specific configuration object for the
CacheLoader implementation being used. What configuration elements are exposed depends
on the needs of the CacheLoader implementation.

* RuntinmeConfig : exposes to cache clients certain information about the cache's runtime
environment (e.g. membership in buddy replication groups if buddy replication is used.)
Also allows direct injection into the cache of needed external services like a JTA
Transact i onManager or a JGroups Channel Factory .

3.4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running is supported,
by programmatically obtaining the Confi gur ati on object from the running cache and changing
values. E.g.,

Configuration liveConfig = cache.getConfiguration();
liveConfig.setLockAcquisitionTimeout(2000);

A complete listing of which options may be changed dynamically is in the configuration reference
section. An or g. j boss. cache. confi g. Confi gur ati onExcepti on will be thrown if you attempt
to change a setting that is not dynamic.

3.4.1. Overriding the Configuration via the Option API

The Option API allows you to override certain behaviours of the cache on a per invocation basis.
This involves creating an instance of or g. j boss. cache. confi g. Opti on, setting the options you
wish to override on the Opt i on object and passing it in the | nvocat i onCont ext before invoking
your method on the cache.

E.g., to force a write lock when reading data (when used in a transaction, this provides semantics
similar to SELECT FOR UPDATE in a database)

/I first start a transaction
cache.getlnvocationContext().getOptionOverrides().setForceWriteLock(true);

22

Overriding the Configuration via the Option API

Node n = cache.getNode(Fgn.fromString("/a/b/c"));
/ make changes to the node
/[l commit transaction

E.g., to suppress replication of a put call in a REPL_SYNC cache:

Node node = cache.getChild(Fgn.fromString("/a/b/c"));
cache.getlnvocationContext().getOptionOverrides().setLocalOnly(true);
node.put(“localCounter”, new Integer(2));

See the javadocs on the Opt i on class for details on the options available.

23

24

Chapter 4.

Batching API

4.1. Introduction

The batching API, introduced in JBoss Cache 3.x, is intended as a mechanism to batch the way

calls are replicated independent of JTA transactions.

This is useful when you want to batch up replication calls within a scope finer than that of any

ongoing JTA transactions.

4.2. Configuring batching

To use batching, you need to enable invocation batching in your cache configuration, either on

the Confi gur ati on object:

Configuration.setinvocationBatchingEnabled(true);

or in your XML file:

<invocationBatching enabled="true"/>

By default, invocation batching is disabled. Note that you do not have to have a transaction

manager defined to use batching.

4.3. Batching API

Once you have configured your cache to use batching, you use it by calling st art Bat ch() and

endBat ch() on Cache. E.g.,

Cache cache = getCache();

/I not using a batch

cache.put("/a",

key", "value"); // will replicate immediately

/I using a batch
cache.startBatch();

25

Chapter 4. Batching API

cache.put("/a", "key", "value");
cache.put("/b", "key", "value");
cache.put("/c", "key", "value");

cache.endBatch(true); // This will now replicate the modifications since the batch was started.

cache.startBatch();

cache.put("/a", "key", "value");
cache.put("/b", "key", "value");
cache.put("/c", "key", "value");

cache.endBatch(false); // This will "discard" changes made in the batch

26

Chapter 5.

Deploying JBoss Cache

5.1. Standalone Use/Programatic Deployment

When used in a standalone Java program, all that needs to be done is to instantiate the cache
using the CacheFact ory and a Conf i gur ati on instance or an XML file, as discussed in the User
API and Configuration chapters.

The same techniques can be used when an application running in an application server
wishes to programatically deploy a cache rather than relying on an application server's
deployment features. An example of this would be a webapp deploying a cache via a
j avax. servl et. Servl et Cont ext Li st ener.

After creation, you could share your cache instance among different application components either
by using an 10C container such as Spring, JBoss Microcontainer, etc., or by binding it to JNDI,
or simply holding a static reference to the cache.

If, after deploying your cache you wish to expose a management interface to it in JMX, see the
section on Programatic Registration in JIMX.

5.2. Via JBoss Microcontainer (JBoss AS 5.x)

For detailed information on how to deploy JBoss Cache instances this way, please check
section "11.2. Deploying Your Own JBoss Cache Instance" and more specifically, section
"11.2.3. Deployment Via a -jboss-beans.xml File" in the JBoss Application Server 5 Clustering
Guide [http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/
5.0/draft/en-US/pdf/Clustering_Guide.pdf].

5.3. Automatic binding to JNDI in JBoss AS

Although access to cache instances bound to JNDI is not possible, JBoss Application
Server 5 binds a CacheManager to JNDI which can be looked up and from where cache
instances can be retrieved. Further detailed information can be found in section "11.2.1.
Deployment Via the CacheManager Service" in the JBoss Application Server 5 Clustering
Guide [http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/
5.0/draft/en-US/pdf/Clustering_Guide.pdf].

5.4. Runtime Management Information

JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that can
be used to analyze cache operations. JBoss Cache can also broadcast cache events as MBean
notifications for handling via IMX monitoring tools.

27

http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf
http://jboss.org/file-access/default/members/jbossclustering/freezone/docs/cluster_guide/5.0/draft/en-US/pdf/Clustering_Guide.pdf

Chapter 5. Deploying JBoss Cache

5.4.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments
JMX server to allow access to the cache instance via JMX. This MBean is the
org. j boss. cache. j nx. CacheJnxW apper . It is a StandardMBean, so its MBean interface is
org. j boss. cache. j nx. CacheJnxW apper MBean. This MBean can be used to:

» Get a reference to the underlying Cache.
» Invoke create/start/stop/destroy lifecycle operations on the underlying Cache.
« Inspect various details about the cache's current state (humber of nodes, lock information, etc.)

* See numerous details about the cache's configuration, and change those configuration items
that can be changed when the cache has already been started.
See the CacheJmxW apper MBean javadoc for more details.

If a CacheJnxW apper is registered, JBoss Cache also provides MBeans for several other internal
components and subsystems. These MBeans are used to capture and expose statistics related
to the subsystems they represent. They are hierarchically associated with the CacheJnmxW apper
MBean and have service names that reflect this relationship. For example, a replication interceptor
MBean for the j boss. cache: servi ce=Tontat O ust eri ngCache instance will be accessible
through the service named |boss. cache: service=Tontat O usteringCache, cache-
i nterceptor=Replicationlnterceptor.

5.4.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxW apper is registered in JMX depends on how you are
deploying your cache.

5.4.2.1. Programatic Registration

Simplest way to do this is to create your Cache and pass it to the JmxRegi st rati onManager
constructor.

CacheFactory factory = new DefaultCacheFactory();

// Build but don't start the cache

/Il (although it would work OK if we started it)

Cache cache = factory.createCache("cache-configuration.xml");

MBeanServer server = getMBeanServer(); // however you do it
ObjectName on = new ObjectName("jboss.cache:service=Cache");

JmxRegistrationManager jmxManager = new JmxRegistrationManager(server, cache, on);
jmxManager.registerAllIMBeans();

28

Registering the CacheJmxWrapper with the
MBeanServer

... use the cache
... on application shutdown

jmxManager.unregisterAlIMBeans();
cache.stop();

5.4.2.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x)

CacheJmxW apper is a POJO, so the microcontainer has no problem creating one. The
trick is getting it to register your bean in JMX. This can be done by specifying the
org. j boss. aop. m crocont ai ner. aspect s. j nx. JMXannotation on the CacheJnxW apper bean:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmIns="urn:jboss:bean-deployer:2.0">

<!-- First we create a Configuration object for the cache -->
<bean name="ExampleCacheConfig"
class="org.jboss.cache.config.Configuration">

... build up the Configuration
</bean>

<!-- Factory to build the Cache. -->
<bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">
<constructor factoryClass="org.jboss.cache.DefaultCacheFactory"
factoryMethod="getInstance" />
</bean>

<l-- The cache itself -->
<bean name="ExampleCache" class="org.jboss.cache.Cachelmpl">

<constructor factoryMethod="createnewlnstance">
<factory bean="DefaultCacheFactory"/>
<parameter><inject bean="ExampleCacheConfig"/></parameter>
<parameter>false</parameter>

</constructor>

29

Chapter 5. Deploying JBoss Cache

</bean>

<I-- JMX Management -->
<bean name="ExampleCacheJmxWrapper" class="org.jboss.cache.jmx.CacheJmxWrapper">

exposedinterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
registerDirectly=true)</annotation>

<constructor>
<parameter><inject bean="ExampleCache"/></parameter>
</constructor>

</bean>

</deployment>

As discussed in the Programatic Registration section, CacheJnxW apper can do the work of
building, creating and starting the Cache if it is provided with a Confi gurati on. With the
microcontainer, this is the preferred approach, as it saves the boilerplate XML needed to create
the CacheFactory.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="urn:jboss:bean-deployer:2.0">
<!I-- First we create a Configuration object for the cache -->
<bean name="ExampleCacheConfig"
class="org.jboss.cache.config.Configuration">
... build up the Configuration

</bean>

<bean name="ExampleCache" class="org.jboss.cache.jmx.CacheJmxWrapper">

30

JBoss Cache Statistics

exposedinterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
registerDirectly=true)</annotation>

<constructor>
<parameter><inject bean="ExampleCacheConfig"/></parameter>
</constructor>

</bean>

</deployment>

5.4.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and various other components,
and exposes these statistics through a set of MBeans. Gathering of statistics is
enabled by default; this can be disabled for a specific cache instance through the
Conf i gur ati on. set ExposeManagenent St ati stics() setter. Note that the majority of the
statistics are provided by the Cachemgntlnterceptor, so this MBean is the most
significant in this regard. If you want to disable all statistics for performance reasons,
you set Confi guration. set ExposeManagenent Stati stics(fal se) and this will prevent the
CacheMgnt I nt er cept or from being included in the cache's interceptor stack when the cache is
started.

If a CacheJnxW apper is registered with JMX, the wrapper also ensures that an MBean is

registered in JIMX for each interceptor and component that exposes statistics. ! Management tools
can then access those MBeans to examine the statistics. See the section in the JMX Reference
chapter pertaining to the statistics that are made available via JIMX.

5.4.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier in the User
API chapter. Users can alternatively utilize the cache's management information infrastructure
to receive these events via JMX notifications. Cache events are accessible as notifications by
registering a Not i fi cati onLi st ener for the CacheJmxW apper .

See the section in the JMX Reference chapter pertaining to JMX notifications for a list of
notifications that can be received through the CacheJmxW apper .

The following is an example of how to programmatically receive cache notifications when running
in a JBoss AS environment. In this example, the client uses a filter to specify which events are
of interest.

! Note that if the CacheJmxW apper is not registered in JMX, the interceptor MBeans will not be registered either.
The JBoss Cache 1.4 releases included code that would try to "discover" an MBeanSer ver and automatically register
the interceptor MBeans with it. For JBoss Cache 2.x we decided that this sort of "discovery" of the IMX environment was
beyond the proper scope of a caching library, so we removed this functionality.

31

Chapter 5. Deploying JBoss Cache

MyListener listener = new MyListener();
NotificationFilterSupport filter = null;

Il get reference to MBean server
Context ic = new InitialContext();
MBeanServerConnection server = (MBeanServerConnection)ic.lookup("jmx/invoker/
RMIAdaptor");

/I get reference to CacheMgmtinterceptor MBean
String cache_service = "jboss.cache:service=TomcatClusteringCache";
ObjectName mgmt_name = new ObjectName(cache_service);

/I configure a filter to only receive node created and removed events

filter = new NotificationFilterSupport();

filter.disableAllTypes();
filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_CREATED);
filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_REMOVED);

/ register the listener with a filter
/I leave the filter null to receive all cache events
server.addNotificationListener(mgmt_name, listener, filter, null);

...

/I on completion of processing, unregister the listener
server.removeNotificationListener(mgmt_name, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MyListener implements NotificationListener, Serializable

{

public void handleNotification(Notification notification, Object handback)

{

String message = notification.getMessage();
String type = notification.getType();
Object userData = notification.getUserData();

System.out.printin(type + ": " + message);

32

Accessing Cache MBeans in a Standalone
Environment using the j consol e Utility
if (userData == null)
{

System.out.printin("notification data is null");

}

else if (userData instanceof String)

{

System.out.printin("notification data: " + (String) userData);

}

else if (userData instanceof Object([])
{
Object[] ud = (Object[]) userData;
for (Object data : ud)

{
System.out.printin("notification data: " + data.toString());
}
}
else
{
System.out.printin("notification data class: " + userData.getClass().getName());
}
}
}

Note that the JBoss Cache management implementation only listens to cache events after a client
registers to receive MBean notifications. As soon as no clients are registered for notifications, the
MBean will remove itself as a cache listener.

5.4.5. Accessing Cache MBeans in a Standalone Environment
using the jconsol e Utility
JBoss Cache MBeans are easily accessed when running cache instances in an application server

that provides an MBean server interface such as JBoss JMX Console. Refer to your server
documentation for instructions on how to access MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a non-server
environment using your JDK's j consol e tool. When running a standalone cache outside of an
application server, you can access the cache's MBeans as follows.

1. Set the system property - Dcom sun. managenent . j nxr enot e when starting the JVM where the
cache will run.

2. Once the JVM is running, start the j consol e utility, located in your JDK's / bi n directory.

33

Chapter 5. Deploying JBoss Cache

3. When the utility loads, you will be able to select your running JVM and connect to it. The JBoss
Cache MBeans will be available on the MBeans panel.

Note that the j consol e utility will automatically register as a listener for cache notifications when
connected to a JVM running JBoss Cache instances.

34

Chapter 6.

Version Compatibility and
Interoperability

6.1. APl compatibility

Within a major version, releases of JBoss Cache are meant to be compatible and interoperable.
Compatible in the sense that it should be possible to upgrade an application from one version to
another by simply replacing jars. Interoperable in the sense that if two different versions of JBoss
Cache are used in the same cluster, they should be able to exchange replication and state transfer
messages. Note however that interoperability requires use of the same JGroups version in all
nodes in the cluster. In most cases, the version of JGroups used by a version of JBoss Cache
can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. On the other
hand, JBoss Cache 2.1.x will be API and binary compatible with 2.0.x.

We have made best efforts, however, to keep JBoss Cache 3.x both binary and APl compatible
with 2.x. Still, it is recommended that client code is updated not to use deprecated methods,
classes and configuration files.

6.2. Wire-level interoperability

A configuration parameter, Conf i gur at i on. set Repl i cati onVer si on(), is available and is used
to control the wire format of inter-cache communications. They can be wound back from more
efficient and newer protocols to "compatible" versions when talking to older releases. This
mechanism allows us to improve JBoss Cache by using more efficient wire formats while still
providing a means to preserve interoperability.

6.3. Compatibility Matrix

A compatibility matrix [http://www.jboss.org/jbosscache/compatibility/index.html] is maintained on
the JBoss Cache website, which contains information on different versions of JBoss Cache,
JGroups and JBoss Application Server.

35

http://www.jboss.org/jbosscache/compatibility/index.html
http://www.jboss.org/jbosscache/compatibility/index.html

36

Part Il. JBoss Cache Architecture

This section digs deeper into the JBoss Cache architecture, and is meant for developers wishing
to use the more advanced cache features,extend or enhance the cache, write plugins, or are just
looking for detailed knowledge of how things work under the hood.

Chapter 7.

Architecture

7.1. Data Structures Within The Cache

A Cache consists of a collection of Node instances, organised in a tree structure. Each Node
contains a Map which holds the data objects to be cached. It is important to note that the structure
is a mathematical tree, and not a graph; each Node has one and only one parent, and the root
node is denoted by the constant fully qualified name, Fgn. ROOT.

s N

N /NG

Figure 7.1. Data structured as a tree

In the diagram above, each box represents a JVM. You see 2 caches in separate JVMs, replicating
data to each other.

Any modifications (see API chapter) in one cache instance will be replicated to the other cache.
Naturally, you can have more than 2 caches in a cluster. Depending on the transactional settings,
this replication will occur either after each modification or at the end of a transaction, at commit
time. When a new cache is created, it can optionally acquire the contents from one of the existing
caches on startup.

39

Chapter 7. Architecture

7.2. SPI Interfaces

In addition to Cache and Node interfaces, JBoss Cache exposes more powerful CacheSPI and
NodeSPI interfaces, which offer more control over the internals of JBoss Cache. These interfaces
are not intended for general use, but are designed for people who wish to extend and enhance
JBoss Cache, or write custom | nt er cept or or CachelLoader instances.

40

SPI Interfaces

T

[5P1)
o

Nade

forg.jbosz.cache)
M

:

NodeSFl ()
rorg.jbozz.cache)

< getterz=tgetChildrenloadediy [hoolean

S satterEEtestChildrenlogded! loaded [boolean ;o woid

< getterz=tgetDatal crdedsy boolean

< satterEateetDatal cadeds dataloaded [boslean ;o void
SagetterEz=tgetached [Cachesll

S getterEzEtgetvyCregte CRilD wame [Okject tx - GlobalTransaction - Modesbl
< getterz=tgetlocksy D Modelook

o satterEetaatbgnl FLREge 1 vaid

< getter=stgetChildrenMapDivectsy | Map

< agetter==tisDeleteds D hoglean

+arkd sDelateds marker D boolean o void

+arkA sDelareds marker [boolean, Fecursive [boglean ;o vaid
+addChilds hadeMam e Okject, rodeToAdd [MNode » o waid
+anintletailss sk o StringBuffer, indant [int o woid

+ganints sk Srringluffer, indent Dint o void
< satter s tratWersion wersion [Dataversion 3 vaid
< getterE==tgetersions [Dataversion
< getterz=tgetChildrenbivectsy D het s
+rem ove ChildrenDivecty D wold s
< getterz=tgetChildrenlivecty includeMarkedd sDeletad boglean o Set 5
< getterzEtgetChildDire sty childMam e - Okject - NodesiRl s
+addChildDivecty childMame - Far i Modes Bl s
<agetterzEtgetChildire sty childMam e Fge ko MadesFEl s
+remaweChildDirest fan D Fgr y o wald s
+remaweChildDirecty childMame - Object o waid s
+ramawelivecti ey [Okject » - Okjact +H
+gaDire sty kay Olyjact walie [Oklject 3 Okject s
< getterz=tgetDatalivectsy [Map 5
S getterzEtgetlirect key [Dkjiact ¥ Qkjact ks
+olearlratalirectsy | wold s
agetter=etgetieysDirectsy Sat +H
< agetterzstgetChildrenMamesDivectsy D Set +H
< getterz=tgetParentsy [Modeshl s
+aartChildrenMaplivecty children - Magp » s
+arANDpacts date - Mag +ad
igure 7.2. SPI Interfaces lf_

(org.jbodz.cache)

Caches Pl O

Chapter 7. Architecture

The CacheSPI interface cannot be created, but is injected into I nt er cept or and CachelLoader
implementations by the set Cache(CacheSPI cache) methods on these interfaces. CacheSPI
extends Cache so all the functionality of the basic API is also available.

Similarly, a NodeSPI interface cannot be created. Instead, one is obtained by performing
operations on CacheSPI, obtained as above. For example, Cache.getRoot() : Node is
overridden as CacheSPI . get Root () : NodeSPI .

It is important to note that directly casting a Cache or Node to its SPI counterpart is not
recommended and is bad practice, since the inheritace of interfaces it is not a contract that
is guaranteed to be upheld moving forward. The exposed public APIs, on the other hand, is
guaranteed to be upheld.

7.3. Method Invocations On Nodes

Since the cache is essentially a collection of nodes, aspects such as clustering, persistence,
eviction, etc. need to be applied to these nodes when operations are invoked on the cache as
a whole or on individual nodes. To achieve this in a clean, modular and extensible manner, an
interceptor chain is used. The chain is built up of a series of interceptors, each one adding an
aspect or particular functionality. The chain is built when the cache is created, based on the
configuration used.

It is important to note that the NodeSPI offers some methods (such as the xxxDi r ect () method
family) that operate on a node directly without passing through the interceptor stack. Plugin authors
should note that using such methods will affect the aspects of the cache that may need to be
applied, such as locking, replication, etc. To put it simply, don't use such methods unless you
really know what you're doing!

7.3.1. Interceptors

JBoss Cache essentially is a core data structure - an implementation of Dat aCont ai ner -
and aspects and features are implemented using interceptors in front of this data structure. A
Commandl nt er cept or is an abstract class, interceptor implementations extend this.

Conmandl nt er cept or implements the Vi sit or interface so it is able to alter commands in a
strongly typed manner as the command makes its way to the data structure. More on visitors and
commands in the next section.

Interceptor implementations are chained together in the InterceptorChain class, which
dispatches a command across the chain of interceptors. A special interceptor, the
Cal I I nt er cept or, always sits at the end of this chain to invoke the command being passed up
the chain by calling the command's pr ocess() method.

JBoss Cache ships with several interceptors, representing different behavioral aspects, some of
which are:

e Txlnterceptor - looks for ongoing transactions and registers with transaction managers to
participate in synchronization events

42

Commands and Visitors

e Replicationlnterceptor -replicates state across a cluster using the RpcManager class

e CacheLoader | nterceptor - loads data from a persistent store if the data requested is not
available in memory

The interceptor chain configured for your cache instance can be obtained and inspected by calling

CacheSPI . get | nt er cept or Chai n(), which returns an ordered Li st of interceptors in the order

in which they would be encountered by a command.

7.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending
Commandl nt er cept or and overriding the relevant vi si t XXX() methods based on the commands
you are interested in intercepting. There are other abstract interceptors you could extend instead,
such as the Pr ePost Pr ocessi ngCommandlI nt er cept or and the Ski pCheckChai nedl nt er cept or.
Please see their respective javadocs for details on the extra features provided.

The custom interceptor will need to be added to the interceptor chain by using the
Cache. addl nt er cept or () methods. See the javadocs on these methods for details.

Adding custom interceptors via XML is also supported, please see the XML configuration
reference for details.

7.3.2. Commands and Visitors

Internally, JBoss Cache uses a command/visitor pattern to execute API calls. Whenever a
method is called on the cache interface, the Cachel nvocat i onDel egat e, which implements the
Cache interface, creates an instance of Vi si t abl eCommand and dispatches this command up a
chain of interceptors. Interceptors, which implement the Vi si t or interface, are able to handle
Vi si t abl eCommands they are interested in, and add behavior to the command.

Each command contains all knowledge of the command being executed such as parameters
used and processing behavior, encapsulated in a process() method. For example, the
RenmpbveNodeConmand is created and passed up the interceptor chain when Cache. r emoveNode()
is called, and RenoveNodeConmand. process() has the necessary knowledge of how to remove
a node from the data structure.

In addition to being visitable, commands are also replicable. The JBoss Cache marshallers know
how to efficiently marshall commands and invoke them on remote cache instances using an
internal RPC mechanism based on JGroups.

7.3.3. InvocationContexts

I nvocat i onCont ext holds intermediate state for the duration of a single invocation, and is set up
and destroyed by the | nvocat i onCont ext | nt er cept or which sits at the start of the interceptor
chain.

I nvocationContext , as its name implies, holds contextual information associated
with a single cache method invocation. Contextual information includes associated

43

Chapter 7. Architecture

javax. transaction. Transacti on or org.jboss. cache. transaction. d obal Transacti on ,
method invocation origin (I nvocati onCont ext . i sOri gi nLocal ())aswell as Opti on overrides
, and information around which nodes have been locked, etc.

The I nvocat i onCont ext can be obtained by calling Cache. get | nvocat i onCont ext () .

7.4. Managers For Subsystems

Some aspects and functionality is shared by more than a single interceptor. Some of these have
been encapsulated into managers, for use by various interceptors, and are made available by the
CacheSPI interface.

7.4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches,
and encapsulates the JGroups channel used.

7.4.2. BuddyManager

This class manages buddy groups and invokes group organization remote calls to organize a
cluster of caches into smaller sub-groups.

7.4.3. CachelLoaderManager

Sets up and configures cache loaders. This class wraps individual CachelLoader instances in
delegating classes, such as Si ngl et onSt or eCacheLoader or AsyncCacheloader , or may add
the CachelLoader to a chain using the Chai ni ngCachelLoader .

7.5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing to an
bj ect Qut put St r eamduring replication. Over various releases in the JBoss Cache 1.x.x series
this approach was gradually deprecated in favor of a more mature marshalling framework. In the
JBoss Cache 2.x.x series, this is the only officially supported and recommended mechanism for
writing objects to datastreams.

44

The Marshaller Interface

[Marshallerﬂ

J - T T —|From org.jgroups.blocks
RpcDispatcher.Marshaller

Mazrshaller Cj

+objectToOkjectStragms ok - Ohject olt | Objact QU pUtSiream »
+okjectErom OljectStreamoin | DhjectinputStream ¥ Ohjact
+objectEromStreamyois [lnputStream b Ohljact

+objectToOkjectStregms ok - Ohject out - OhjactQutpltitream, Fagiok - Fgr

Fi)
o
I

AbstrartMarshaller
forgjboss.cache.marshally [

VersionAwareMarshaller CacheMarshaller 200
(org.jbozz . cache marzhall) T rorg.jbozz cache marzhal

Delegates 1o
CachemMarzhaller
200 for streams
that have uzed
verzion 200.

Figure 7.3. The Marshaller interface

7.5.1. The Marshaller Interface

The Marshal | er interface extends RpcDi spat cher. Marshal | er from JGroups. This interface
has two main implementations - a delegating Versi onAwar eMarshal l er and a concrete
CacheMar shal | er 300 .

The marshaller can be obtained by calling CacheSPI . get Marshal | er (), and defaults to the
Ver si onAwar eMar shal | er. Users may also write their own marshallers by implementing the

45

Chapter 7. Architecture

Mar shal | er interface or extending the Abstract Marshal | er class, and adding it to their
configuration by using the Confi gurati on. set Marshal | er G ass() setter.

7.5.2. VersionAwareMarshaller

As the name suggests, this marshaller adds a version short to the start of any stream
when writing, enabling similar Ver si onAwar eMar shal | er instances to read the version short
and know which specific marshaller implementation to delegate the call to. For example,
CacheMar shal | er 200 is the marshaller for JBoss Cache 2.0.x. JBoss Cache 3.0.x ships with
CacheMar shal | er 300 with an improved wire protocol. Using a Ver si onAwar eMar shal | er helps
achieve wire protocol compatibility between minor releases but still affords us the flexibility to
tweak and improve the wire protocol between minor or micro releases.

7.6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the application tend
to put instances of objects specific to their application in the cache (or in an Htt pSessi on
object) which would require replication. It is common for application servers to assign separate
d assLoader instances to each application deployed, but have JBoss Cache libraries referenced
by the application server's Cl assLoader .

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a
concept called regions. A region is a portion of the cache which share a common class loader (a
region also has other uses - see eviction policies).

A region is created by using the Cache. get Regi on(Fgn fqn, bool ean creat el f Not Exi sts)
method, and returns an implementation of the Regi on interface. Once aregion is obtained, a class
loader for the region can be set or unset, and the region can be activated/deactivated. By default,
regions are active unless the | nacti veOnSt ar t up configuration attribute is set to t r ue.

46

Chapter 8.

Cache Modes and Clustering

This chapter talks about aspects around clustering JBoss Cache.

8.1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the
cache can be configured to replicate changes, or to invalidate changes. A detailed discussion on
this follows.

8.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. The
dependency on the JGroups library is still there, although a JGroups channel is not started.

8.1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in the cluster.
Replication can either happen after each modification (no transactions or batches), or at the end
of a transaction or batch.

Replication can be synchronous or asynchronous. Use of either one of the options is application
dependent. Synchronous replication blocks the caller (e.g. on a put ()) until the modifications
have been replicated successfully to all nodes in a cluster. Asynchronous replication performs
replication in the background (the put () returns immediately). JBoss Cache also offers a
replication queue, where modifications are replicated periodically (i.e. interval-based), or when
the queue size exceeds a number of elements, or a combination thereof. A replication queue can
therefore offer much higher performance as the actual replication is performed by a background
thread.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires
acknowledgments from all nodes in a cluster that they received and applied the modification
successfully (round-trip time). However, when a synchronous replication returns successfully, the
caller knows for sure that all modifications have been applied to all cache instances, whereas this
is not be the case with asynchronous replication. With asynchronous replication, errors are simply
written to a log. Even when using transactions, a transaction may succeed but replication may
not succeed on all cache instances.

8.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a
transaction commits. This results in minimizing replication traffic since a single modification is
broadcast rather than a series of individual modifications, and can be a lot more efficient than
not using transactions. Another effect of this is that if a transaction were to roll back, nothing is
broadcast across a cluster.

47

Chapter 8. Cache Modes and Cl...

Depending on whether you are running your cluster in asynchronous or synchronous mode,
JBoss Cache will use either a single phase or two phase commit [http://en.wikipedia.org/wiki/
Two-phase_commit_protocol] protocol, respectively.

8.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call,
which instructs remote caches to apply the changes to their local in-memory state and commit
locally. Remote errors/rollbacks are never fed back to the originator of the transaction since the
communication is asynchronous.

8.1.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache
broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote
caches then acquire local locks on their in-memory state and apply the modifications. Once all
remote caches respond to the prepare call, the originator of the transaction broadcasts a commit.
This instructs all remote caches to commit their data. If any of the caches fail to respond to the
prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are
asynchronous. This is because Sun's JTA specification [http://java.sun.com/products/jta/] does
not specify how transactional resources should deal with failures at this stage of a transaction; and
other resources participating in the transaction may have indeterminate state anyway. As such, we
do away with the overhead of synchronous communication for this phase of the transaction. That
said, they can be forced to be synchronous using the SyncConmi t Phase and SyncRol | backPhase
configuration attributes.

8.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster. Instead,
each instance picks one or more 'buddies' in the cluster, and only replicates to these specific
buddies. This greatly helps scalability as there is no longer a memory and network traffic impact
every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used
by a servlet container to store HTTP session data. One of the pre-requisites to buddy replication
working well and being a real benefit is the use of session affinity , more casually known as sticky
sessions in HTTP session replication speak. What this means is that if certain data is frequently
accessed, it is desirable that this is always accessed on one instance rather than in a round-robin
fashion as this helps the cache cluster optimize how it chooses buddies, where it stores data, and
minimizes replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

48

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Replicated Caches

8.1.2.2.1. Selecting Buddies

[BuddyReplication 1|

Buddylocator
(org.jbozz.cache. buddyreplica

< wgetter=4getConfigs BuddvlocatorConfig
+init config D BuddvlocetorConfig o vold
HoceteRuddiess buddyPoolMay - Map <k -=Address V-=5tring=, currertMembershin

.r_'“lt_

1
MextMember BuddyLoc
rorg.jbosz.cache buddyrep

Figure 8.1. BuddyLocator

Buddy Replication uses an instance of a BuddyLocator which contains the logic used to
select buddies in a network. JBoss Cache currently ships with a single implementation,
Next Menber BuddyLocat or , which is used as a default if no implementation is provided. The
Next Menber BuddyLocat or selects the next member in the cluster, as the name suggests, and
guarantees an even spread of buddies for each instance.

The Next Menber BuddyLocat or takes in 2 parameters, both optional.

» nunBuddi es - specifies how many buddies each instance should pick to back its data onto. This
defaults to 1.

i gnoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different
physical host. If not able to do so though, it will fall back to co-located instances. This defaults
totrue.

8.1.2.2.2. BuddyPools

Also known as replication groups , a buddy pool is an optional construct where each instance
in a cluster may be configured with a buddy pool name. Think of this as an 'exclusive club
membership' where when selecting buddies, BuddyLocat or s that support buddy pools would
try and select buddies sharing the same buddy pool name. This allows system administrators a
degree of flexibility and control over how buddies are selected. For example, a sysadmin may put
two instances on two separate physical servers that may be on two separate physical racks in

49

Chapter 8. Cache Modes and Cl...

the same buddy pool. So rather than picking an instance on a different host on the same rack,
BuddyLocat or s would rather pick the instance in the same buddy pool, on a separate rack which
may add a degree of redundancy.

8.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the
cache (directly or indirectly, via some other service such as HTTP session replication) is able to
redirect the request to any other random cache instance in the cluster. This is where a concept
of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache
does not contain this information, it asks other instances in the cluster for the data. In other words,
data is lazily transferred, migrating only when other nodes ask for it. This strategy prevents a
network storm effect where lots of data is pushed around healthy nodes because only one (or a
few) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances
to check in the backup data they store for other caches. This means that even if a cache containing
your session dies, other instances will still be able to access this data by asking the cluster to
search through their backups for this data.

Once located, this data is transferred to the instance which requested it and is added to this
instance's data tree. The data is then (optionally) removed from all other instances (and backups)
so that if session affinity is used, the affinity should now be to this new cache instance which has
just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration
properties pertain to data gravitation.

e dataG avit ati onRenmoveOnFi nd - forces all remote caches that own the data or hold backups
for the data to remove that data, thereby making the requesting cache the new data owner. This
removal, of course, only happens after the new owner finishes replicating data to its buddy. If
set to f al se an evict is broadcast instead of a remove, so any state persisted in cache loaders
will remain. This is useful if you have a shared cache loader configured. Defaults to t r ue .

* dataG avitationSearchBackupTrees - Asks remote instances to search through their
backups as well as main data trees. Defaults to t r ue . The resulting effect is that if this is t r ue
then backup nodes can respond to data gravitation requests in addition to data owners.

e autoDat aGravi t ati on - Whether data gravitation occurs for every cache miss. By default this
is set to f al se to prevent unnecessary network calls. Most use cases will know when it may
need to gravitate data and will pass in an Opt i on to enable data gravitation on a per-invocation
basis. If aut oDat aGravi t ati on ist rue this Opti on is unnecessary.

8.1.2.2.4. Configuration
See the configuration reference section for details on configuring buddy replication.

50

Invalidation

8.2. Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a
cache other caches in the cluster receive a message informing them that their data is now stale
and should be evicted from memory. Invalidation, when used with a shared cache loader (see
chapter on cache loaders) would cause remote caches to refer to the shared cache loader to
retrieve modified data. The benefit of this is twofold: network traffic is minimized as invalidation
messages are very small compared to replicating updated data, and also that other caches in the
cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions or batches), or at the end
of a transaction or batch, upon successful commit. This is usually more efficient as invalidation
messages can be optimized for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication,
synchronous invalidation blocks until all caches in the cluster receive invalidation messages and
have evicted stale data while asynchronous invalidation works in a 'fire-and-forget' mode, where
invalidation messages are broadcast but doesn't block and wait for responses.

8.3. State Transfer

State Transfer refers to the process by which a JBoss Cache instance prepares itself to begin
providing a service by acquiring the current state from another cache instance and integrating
that state into its own state.

8.3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related to state
transfer. First, in the context of particular state transfer implementation, the underlying plumbing,
there are two starkly different state transfer types: byte array and streaming based state transfer.
Second, state transfer can be full or partial state transfer depending on a subtree being transferred.
Entire cache tree transfer represents full transfer while transfer of a particular subtree represents
partial state transfer. And finally state transfer can be "in-memory" and "persistent" transfer
depending on a particular use of cache.

8.3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache in all previous
releases up to 2.0. Byte array based transfer loads entire state transferred into a byte array and
sends it to a state receiving member. Major limitation of this approach is that the state transfer
that is very large (>1GB) would likely result in OutOfMemoryException. Streaming state transfer
provides an InputStream to a state reader and an OutputStream to a state writer. OutputStream
and InputStream abstractions enable state transfer in byte chunks thus resulting in smaller
memory requirements. For example, if application state is represented as a tree whose aggregate
size is 1GB, rather than having to provide a 1GB byte array streaming state transfer transfers the
state in chunks of N bytes where N is user configurable.

51

Chapter 8. Cache Modes and Cl...

Byte array and streaming based state transfer are completely API transparent, interchangeable,
and statically configured through a standard cache configuration XML file. Refer to JGroups
documentation on how to change from one type of transfer to another.

8.3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be
done at various times, depending on how the cache is used. "Full" state transfer refers to the
transfer of the state related to the entire tree -- i.e. the root node and all nodes below it. A "partial”
state transfer is one where just a portion of the tree is transferred -- i.e. a node at a given Fgn
and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following
times:

1. Initial state transfer. This occurs when the cache is first started (as part of the processing of the
start () method). This is a full state transfer. The state is retrieved from the cache instance

that has been operational the longest. Yifthereis any problem receiving or integrating the state,
the cache will not start.

Initial state transfer will occur unless:

a. The cache's | nacti veOnSt art up property ist r ue . This property is used in conjunction with
region-based marshalling.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. When region-based marshalling is used, the
application needs to register a specific class loader with the cache. This class loader is used
to unmarshall the state for a specific region (subtree) of the cache.

After registration, the application calls cache. get Regi on(fqn, true).activate() , which
initiates a partial state transfer of the relevant subtree's state. The request is first made to the
oldest cache instance in the cluster. However, if that instance responds with no state, it is then
requested from each instance in turn until one either provides state or all instances have been
queried.

Typically when region-based marshalling is used, the cache's | nacti veOnSt art up property
is set to true . This suppresses initial state transfer, which would fail due to the inability to
deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,
when a cache instance joins the cluster, it becomes the buddy of one or more other instances,
and one or more other instances become its buddy. Each time an instance determines it has a
new buddy providing backup for it, it pushes its current state to the new buddy. This "pushing" of
state to the new buddy is slightly different from other forms of state transfer, which are based on
a "pull" approach (i.e. recipient asks for and receives state). However, the process of preparing
and integrating the state is the same.

52

Transient ("in-memory") and persistent state

transfer

This "push" of state upon buddy group formation only occurs if the I nacti veOnStartup

property is settof al se . Ifitistrue, state transfer amongst the buddies only occurs when the
application activates the region on the various members of the group.

Partial state transfer following a region activation call is slightly different in the buddy replication
case as well. Instead of requesting the partial state from one cache instance, and trying all
instances until one responds, with buddy replication the instance that is activating a region will
request partial state from each instance for which it is serving as a backup.

8.3.4. Transient ("in-memory") and persistent state transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient” or "in-memory" state. This consists of the actual in-memory state of another cache
instance - the contents of the various in-memory nodes in the cache that is providing state are
serialized and transferred; the recipient deserializes the data, creates corresponding nodes in
its own in-memory tree, and populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's FetchlnMenoryState
configuration attribute to t r ue .

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in the
state-provider cache's persistent store is deserialized and transferred; the recipient passes the
data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's f et chPersi stentState
attribute to t rue . If multiple cache loaders are configured in a chain, only one can have this
property set to true; otherwise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same
persistent store that provides the data will just end up receiving it. Therefore, if a shared cache
loader is used, the cache will not allow a persistent state transfer even if a cache loader has
fetchPersistentState settotrue.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If a write-through cache loader is used, the current cache state is fully represented by the
persistent state. Data may have been evicted from the in-memory state, but it will still be in the
persistent store. In this case, if the cache loader is not shared, persistent state transfer is used
to ensure the new cache has the correct state. In-memory state can be transferred as well if
the desire is to have a "hot" cache -- one that has all relevant data in memory when the cache
begins providing service. (Note that the <pr el oad> element in the <I oader s> configuration
element can be used as well to provide a "warm" or "hot" cache without requiring an in-memory
state transfer. This approach somewhat reduces the burden on the cache instance providing
state, but increases the load on the persistent store on the recipient side.)

53

Chapter 8. Cache Modes and Cl...

2. If a cache loader is used with passivation, the full representation of the state can only be
obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)
states. Therefore an in-memory state transfer is necessary. A persistent state transfer is
necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used
to cache data that can also be found in a persistent store, e.g. a database), whether or not
in-memory state should be transferred depends on whether or not a "hot" cache is desired.

8.3.5. Non-Blocking State Transfer

New in JBoss Cache 3.1.0, Non-Blocking State Transfer (NBST) allows senders to generate and
stream state while not stopping handling their "work as usual" transactions. This is particularly
important if there is a large volume of state, where generation and streaming of the state can take
some time and can cause ongoing transactions on the sender to time out and fail.

To achieve this, NBST should be enabled (see configuration reference), and you need
to be using MVCC as a node locking scheme. In addition, you need to use JGroups'
STREAMING_STATE_TRANSFER protocol in your cluster properties.

8.3.6. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are
configured with the same settings for persistent and transient state. This is because byte array
based transfers, when requested, rely only on the requester's configuration while stream based
transfers rely on both the requester and sender's configuration, and this is expected to be identical.

54

Chapter 9.

Cache Loaders

JBoss Cache can use a CachelLoader to back up the in-memory cache to a backend datastore. If
JBoss Cache is configured with a cache loader, then the following features are provided:

« Whenever a cache elementis accessed, and that element is not in the cache (e.g. due to eviction
or due to server restart), then the cache loader transparently loads the element into the cache
if found in the backend store.

« Whenever an element is modified, added or removed, then that modification is persisted in the
backend store via the cache loader. If transactions are used, all modifications created within
a transaction are persisted. To this end, the CacheLoader takes part in the two phase commit
protocol run by the transaction manager, although it does not do so explicitly.

55

Chapter 9. Cache Loaders

9.1. The CachelLoader Interface and Lifecycle

[CacheLDader]J

Cacheloader
forg.jbozz.cache. loader)

< setter =4 satConfigl config DlndividuglCachel oaderCondig d o void
< s getter==4+getConfigs D lndividuslCachel caderContig

< setterzmdsetCacher oo CachelSPl)y i void

< s getter==4getChildrenlamesifgn (Fgr p o Sat

< getter==4gets hame Fgn o Map

+axistsr wame Fgn o boolean

+plts vame D Ege, key D Object value D Olject ¥ Ohlyjact
+remaovel fgr D Egr, key D Ohject ¥ Ohjact

+remaovelfgn CFgr o void

+removelDatal fan Fgr by o void

Loty Dhbyject ¥ waid

+rolbacks tx o Object ¥ o vaoid

+HlogdErtireStatel o5 | OljectOutpitSiream ¥ o voild
+storeERtiveStateris | ObjectinputStream ¥ void

+HloadStater subtres Fgr, os5 | OljectOutpatStream b void
+storebtatel subtres Fgr, s | DljectinpidSiream ¥ o voild

< s setter =4 sotRagionManageri makager | BegichMarnager) void
+oregtaly vold

+5tantn Cvoid

+5tops void

+destrowiy woid

+plts vame D Fgh, attributes D Map)

+plte modifications CList

+preparel iy [Okject modifications [List, one_phase bhoolean)

Figure 9.1. The CacheLoader interface

The interaction between JBoss Cache and a CachelLoader implementation is as follows.
When CachelLoader Confi gurati on (see below) is non-null, an instance of each configured
CachelLoader is created when the cache is created, and started when the cache is started.

CacheLoader. create() and CachelLoader.start() are called when the cache is started.
Correspondingly, st op() and destroy() are called when the cache is stopped.

Next, set Confi g() and set Cache() are called. The latter can be used to store a reference to the
cache, the former is used to configure this instance of the CacheLoader . For example, here a
database cache loader could establish a connection to the database.

The CacheLoader interface has a set of methods that are called when no transactions are used:
get () ,put() ,renove() andrenoveDat a() : they get/set/remove the value immediately. These
methods are described as javadoc comments in the interface.

56

Configuration

Then there are three methods that are used with transactions: prepare() , commit() and
rol | back() . The prepare() method is called when a transaction is to be committed. It has a
transaction object and a list of modfications as argument. The transaction object can be used
as a key into a hashmap of transactions, where the values are the lists of modifications. Each
modification list has a number of Modi fi cati on elements, which represent the changes made
to a cache for a given transaction. When pr epar e() returns successfully, then the cache loader
must be able to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the
right time.

The commi t () method tells the cache loader to commit the transaction, and the rol | back()
method tells the cache loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract
implementations would need to fulfill.

9.2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define
several cache loaders, in a chain. The impact is that the cache will look at all of the cache loaders in
the order they've been configured, until it finds a valid, non-null element of data. When performing
writes, all cache loaders are written to (except if the i gnor eModi fi cati ons element has been set
to t r ue for a specific cache loader. See the configuration section below for details.

<l-- Cache loader config block -->
<!-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loaders passivation="false" shared="false">
<preload>
<l-- Fgns to preload -->
<node fgn="/some/stuff"/>
</preload>
<!I-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loader class="org.jboss.cache.loader.JDBCCachelLoader" async="false"
fetchPersistentState="true"
ignoreModifications="false" purgeOnStartup="false">
<properties>
cache.jdbc.driver=com.mysq|.jdbc.Driver
cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb
cache.jdbc.user=root
cache.jdbc.password=
</properties>

57

Chapter 9. Cache Loaders

</loader>
</loaders>

The cl ass element defines the class of the cache loader implementation. (Note that, because of
a bug in the properties editor in JBoss AS, backslashes in variables for Windows filenames might
not get expanded correctly, so replace="false" may be necessary). Note that an implementation
of cache loader has to have an empty constructor.

The properties element defines a configuration specific to the given implementation. The
filesystem-based implementation for example defines the root directory to be used, whereas
a database implementation might define the database URL, name and password to establish
a database connection. This configuration is passed to the cache loader implementation via
Cacheloader . set Confi g(Properti es) . Note that backspaces may have to be escaped.

pr el oad allows us to define a list of nodes, or even entire subtrees, that are visited by the cache
on startup, in order to preload the data associated with those nodes. The default ("/*) loads the
entire data available in the backend store into the cache, which is probably not a good idea given
that the data in the backend store might be large. As an example, /a, /product/cat al ogue
loads the subtrees / a and / pr oduct / cat al ogue into the cache, but nothing else. Anything else
is loaded lazily when accessed. Preloading makes sense when one anticipates using elements
under a given subtree frequently. .

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache when
joining a cluster. Only one configured cache loader may set this property to true; if more than one
cache loader does so, a configuration exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run
on a separate thread so writes return immediately. If this is set to true, an instance of
org. j boss. cache. | oader. AsyncCachelLoader is constructed with an instance of the actual
cache loader to be used. The AsyncCachelLoader then delegates all requests to the underlying
cache loader, using a separate thread if necessary. See the Javadocs on AsyncCacheLoader for
more details. If unspecified, the async element defaults to f al se .

Note on using the async element: there is always the possibility of dirty reads since all writes
are performed asynchronously, and it is thus impossible to guarantee when (and even if) a write
succeeds. This needs to be kept in mind when setting the async element to true.

i gnor eModi fi cati ons determines whether write methods are pushed down to the specific cache
loader. Situations may arise where transient application data should only reside in a file based
cache loader on the same server as the in-memory cache, for example, with a further shared
JDBCCachelLoader used by all servers in the network. This feature allows you to write to the 'local’
file cache loader but not the shared JDBCCacheLoader . This property defaults to f al se , so writes
are propagated to all cache loaders configured.

pur geOnSt at up empties the specified cache loader (if i gnor eMbdi fi cati ons is fal se) when
the cache loader starts up.

58

Singleton Store Configuration

shar ed indicates that the cache loader is shared among different cache instances, for example
where all instances in a cluster use the same JDBC settings t talk to the same remote, shared
database. Setting this to t r ue prevents repeated and unnecessary writes of the same data to the
cache loader by different cache instances. Default value is f al se .

9.2.1. Singleton Store Configuration

<loaders passivation="false" shared="true">
<preload>
<node fqn="/a/b/c"/>
<node fqn="/f/r/s"/>
</preload>

<!I-- we can now have multiple cache loaders, which get chained -->
<loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="false"
ignoreModifications="false" purgeOnStartup="false">
<properties>
cache.jdbc.datasource=java:/DefaultDS
</properties>
<singletonStore enabled="true"
class="org.jboss.cache.loader.SingletonStoreCachelLoader">
<properties>
pushStateWhenCoordinator=true
pushStateWhenCoordinatorTimeout=20000
</properties>
</singletonStore>
</loader>
</loaders>

si ngl et onSt or e element enables modifications to be stored by only one node in the cluster, the
coordinator. Essentially, whenever any data comes in to some node it is always replicated so as
to keep the caches' in-memory states in sync; the coordinator, though, has the sole responsibility
of pushing that state to disk. This functionality can be activated setting the enabl ed subelement
to true in all nodes, but again only the coordinator of the cluster will store the modifications in
the underlying cache loader as defined in | oader element. You cannot define a cache loader as
shar ed and with si ngl et onSt or e enabled at the same time. Default value for enabl ed is f al se .

Optionally, within the si ngl et onSt or e element, you can define a cl ass element that specifies
the implementation class that provides the singleton store functionality. This class must extend
org. j boss. cache. | oader. Abstract Del egati ngCacheLoader , and if absent, it defaults to
org.j boss. cache. | oader. Si ngl et onSt or eCachelLoader .

59

Chapter 9. Cache Loaders

The properties subelement defines properties that allow changing the behavior of the
class providing the singleton store functionality. By default, pushSt at ewhenCoor di nat or and
pushSt at eWhenCoor di nat or Ti neout properties have been defined, but more could be added as
required by the user-defined class providing singleton store functionality.

pushSt at ewhenCoor di nat or allows the in-memory state to be pushed to the cache store when
a node becomes the coordinator, as a result of the new election of coordinator due to a cluster
topology change. This can be very useful in situations where the coordinator crashes and there's
a gap in time until the new coordinator is elected. During this time, if this property was set to
f al se and the cache was updated, these changes would never be persisted. Setting this property
to t rue would ensure that any changes during this process also get stored in the cache loader.
You would also want to set this property to t r ue if each node's cache loader is configured with
a different location. Default value is t r ue .

pushSt at eWhenCoor di nat or Ti neout is only relevant if pushSt at ewhenCoor di nat or iS true in
which case, sets the maximum number of milliseconds that the process of pushing the in-memory
state to the underlying cache loader should take, reporting a PushSt at eExcept i on if exceeded.
Default value is 20000.

Note on using the si ngl et onSt or e element: setting up a cache loader as a singleton and using
cache passivation (via evictions) can lead to undesired effects. If a node is to be passivated as a
result of an eviction, while the cluster is in the process of electing a new coordinator, the data will
be lost. This is because no coordinator is active at that time and therefore, none of the nodes in
the cluster will store the passivated node. A new coordinator is elected in the cluster when either,
the coordinator leaves the cluster, the coordinator crashes or stops responding.

9.3. Shipped Implementations
The currently available implementations shipped with JBoss Cache are as follows.

9.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilize the file system as a data store. They
all require that the <I oader ><pr oper ti es> configuration element contains a | ocat i on property,
which maps to a directory to be used as a persistent store. (e.g., | ocati on=/t np/ myDat aSt or e).

* Fi | eCacheLoader , which is a simple filesystem-based implementation. By default, this cache
loader checks for any potential character portability issues in the location or tree node names,
for example invalid characters, producing warning messages. These checks can be disabled
adding check. character. portability property to the <properties> element and setting it
tofal se (e.g., check. character. portability=false).

The FileCachelLoader has some severe limitations which restrict its use in a production
environment, or if used in such an environment, it should be used with due care and sufficient
understanding of these limitations.

» Due to the way the FileCacheLoader represents a tree structure on disk (directories and files)
traversal is inefficient for deep trees.

60

Cache loaders that delegate to other caches

» Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do
not implement proper file locking and can cause data corruption.

» Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt
to write to the same file.

» File systems are inherently not transactional, so when attempting to use your cache in a
transactional context, failures when writing to the file (which happens during the commit
phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCachelLoader not be used in a highly

concurrent, transactional or stressful environment, and its use is restricted to testing.

* Bdbj eCachelLoader , which is a cache loader implementation based on the Oracle/Sleepycat's
BerkeleyDB Java Edition [http://www.oracle.com/database/berkeley-db/index.html] .

« JdbnCacheLoader , which is a cache loader implementation based on the JDBM engine [http:/
/idbm.sourceforge.net/] , a fast and free alternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if
distributed with an application (see http://www.oracle.com/database/berkeley-db/index.html for
details).

9.3.2. Cache loaders that delegate to other caches

e Local Del egati ngCacheLoader , which enables loading from and storing to another local (same
JVM) cache.

e O usteredCacheLoader , which allows querying of other caches in the same cluster for in-
memory data via the same clustering protocols used to replicate data. Writes are not 'stored’
though, as replication would take care of any updates needed. You need to specify a property
called ti nmeout , a long value telling the cache loader how many milliseconds to wait for
responses from the cluster before assuming a null value. For example, ti neout = 3000 would
use a timeout value of 3 seconds.

9.3.3. JDBCCachelLoader

JBossCache is distributed with a JDBC-based cache loader implementation that
stores/loads nodes' state into a relational database. The implementing class is
org.j boss. cache. | oader. JDBCCachelLoader .

The current implementation uses just one table. Each row in the table represents one node and
contains three columns:

 column for Fgn (which is also a primary key column)
 column for node contents (attribute/value pairs)

 column for parent Fgn

61

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/

Chapter 9. Cache Loaders

Fgns are stored as strings. Node content is stored as a BLOB. WARNING: JBoss Cache does not
impose any limitations on the types of objects used in Fgn but this implementation of cache loader
requires Fgn to contain only objects of type j ava. | ang. Stri ng . Another limitation for Fgn is its
length. Since Fgn is a primary key, its default column type is VARCHAR which can store text values
up to some maximum length determined by the database in use.

See this wiki page [http://www.jboss.org/community/docs/DOC-10864] for configuration tips with
specific database systems.

9.3.3.1. JIDBCCacheLoader configuration

9.3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

« cache.jdbc.table.name - the name of the table. Can be prepended with schema name for the
given table: { schenma_nane} . {t abl e_nane} . The default value is 'jbosscache'.

« cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is
'ijbosscache_pk'.

« cache.jdbc.table.create - can be true or false. Indicates whether to create the table during
startup. If true, the table is created if it doesn't already exist. The default value is true.

 cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown.
The default value is true.

« cache.jdbc.fgn.column - FQN column name. The default value is 'fgn'.
 cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)'".
« cache.jdbc.node.column - node contents column name. The default value is 'node’'.

« cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must
specify a valid binary data type for the database being used.

9.3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can
specify the INDI nhame of the DataSource you want to use.

» cache.jdbc.datasource - INDI name of the DataSource. The default value isj ava: / Def aul t DS.
9.3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access
using a JDBC driver.

» cache.jdbc.driver - fully qualified JDBC driver name.

« cache.jdbc.url - URL to connect to the database.

62

http://www.jboss.org/community/docs/DOC-10864
http://www.jboss.org/community/docs/DOC-10864

JDBCCacheLoader

« cache.jdbc.user - user name to connect to the database.

 cache.jdbc.password - password to connect to the database.
9.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server
standalone using the c3p0:JDBC DataSources/Resource Pools library. In order to enable it, just
edit the following property:

« cache.jdbc.connection.factory - Connection factory class name. If not set, it defaults to standard
non-pooled implementation. To enable c3p0 pooling, just set the connection factory class for
c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties section but don't
forget to start the property name with 'c3p0.". To find a list of available properties, please check the
¢3p0 documentation for the c3p0 library version distributed in c3p0:JDBC DataSources/Resource
Pools [http://sourceforge.net/projects/c3p0] . Also, in order to provide quick and easy way to try out
different pooling parameters, any of these properties can be set via a System property overriding
any values these properties might have in the JBoss Cache XML configuration file, for example:
- Dc3p0. maxPool Si ze=20 . If a c3p0 property is not defined in either the configuration file or as a
System property, default value, as indicated in the ¢c3p0 documentation, will apply.

9.3.3.1.5. Configuration example

Below is an example of a JDBCCacheLoader using Oracle as database. The
CachelLoaderConfiguration XML element contains an arbitrary set of properties which define the
database-related configuration.

<loaders passivation="false" shared="false">
<preload>
<node fgqn="/some/stuff"/>
</preload>
<!I-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
ignoreModifications="false" purgeOnStartup="false">
<properties>
cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true
cache.jdbc.table.drop=true
cache.jdbc.table.primarykey=jbosscache_pk
cache.jdbc.fgn.column=fgn
cache.jdbc.fgn.type=VARCHAR(255)
cache.jdbc.node.column=node

63

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0

Chapter 9. Cache Loaders

cache.jdbc.node.type=BLOB
cache.jdbc.parent.column=parent
cache.jdbc.driver=oracle.jdbc.OracleDriver
cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
cache.jdbc.user=SCOTT
cache.jdbc.password=TIGER
</properties>
</loader>
</loaders>

As an alternative to configuring the entire JDBC connection, the name of an existing data source
can be given:

<loaders passivation="false" shared="false">
<preload>
<node fgn="/some/stuff"/>
</preload>
<!I-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
ignoreModifications="false" purgeOnStartup="false">
<properties>
cache.jdbc.datasource=java:/DefaultDS
</properties>
</loader>
</loaders>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

<loaders passivation="false" shared="false">
<preload>
<node fqn="/some/stuff"/>
</preload>
<!l-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
ignoreModifications="false" purgeOnStartup="false">
<properties>
cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true

64

S3CachelLoader

cache.jdbc.table.drop=true
cache.jdbc.table.primarykey=jbosscache_pk
cache.jdbc.fgn.column=fgn
cache.jdbc.fgn.type=VARCHAR(255)
cache.jdbc.node.column=node
cache.jdbc.node.type=BLOB
cache.jdbc.parent.column=parent
cache.jdbc.driver=oracle.jdbc.OracleDriver
cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
cache.jdbc.user=SCOTT
cache.jdbc.password=TIGER
cache.jdbc.connection.factory=org.jboss.cache.loader.C3p0ConnectionFactory
c3p0.maxPoolSize=20
c3p0.checkoutTimeout=5000
</properties>
</loader>
</loaders>

9.3.4. S3CacheLoader

The S3CachelLoader uses the Amazon S3 [http://aws.amazon.com/] (Simple Storage Solution) for
storing cache data. Since Amazon S3 is remote network storage and has fairly high latency, it is
really best for caches that store large pieces of data, such as media or files. But consider this cache
loader over the JDBC or file system based cache loaders if you want remotely managed, highly
reliable storage. Or, use it for applications running on Amazon's EC2 (Elastic Compute Cloud).

If you're planning to use Amazon S3 for storage, consider using it with JBoss Cache. JBoss Cache
itself provides in-memory caching for your data to minimize the amount of remote access calls,
thus reducing the latency and cost of fetching your Amazon S3 data. With cache replication, you
are also able to load data from your local cluster without having to remotely access it every time.

Note that Amazon S3 does not support transactions. If transactions are used in your application
then there is some possibility of state inconsistency when using this cache loader. However, writes
are atomic, in that if a write fails nothing is considered written and data is never corrupted.

Data is stored in keys based on the Fgn of the Node and Node data is serialized as a java.util. Map
using the CacheSPI . get Mar shal | er () instance. Read the javadoc on how data is structured and
stored. Data is stored using Java serialization. Be aware this means data is not readily accessible
over HTTP to non-JBoss Cache clients. Your feedback and help would be appreciated to extend
this cache loader for that purpose.

With this cache loader, single-key operations such as Node.renpve(bject) and
Node. put (Obj ect, Ohj ect) are the slowest as data is stored in a single Map instance. Use bulk
operations such as Node. r epl aceAl | (Map) and Node. cl ear Dat a() for more efficiency. Try the
cache. s3. opti ni ze option as well.

65

http://aws.amazon.com/
http://aws.amazon.com/

Chapter 9. Cache Loaders

9.3.4.1. Amazon S3 Library

The S3 cache loader is provided with the default distribution but requires a library to access the
service at runtime. This runtime library may be obtained through a Sourceforge Maven Repository.
Include the following sections in your pom.xml file:

<repository>
<id>e-xml.sourceforge.net</id>
<url>http://e-xml.sourceforge.net/maven2/repository</url>
</repository>

<dependency>
<groupld>net.noderunner</groupld>
<artifactld>amazon-s3</artifactld>
<version>1.0.0.0</version>
<scope>runtime</scope>
</dependency>

If you do not use Maven, you can still download the amazon-s3 library by navigating the repository
or through this URL [http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/
1.0.0.0/amazon-s3-1.0.0.0.jar].

9.3.4.2. Configuration

At a minimum, you must configure your Amazon S3 access key and secret access key. The
following configuration keys are listed in general order of utility.

* cache. s3. accessKeyl d - Amazon S3 Access Key, available from your account profile.

* cache. s3. secret AccessKey - Amazon S3 Secret Access Key, available from your account
profile. As this is a password, be careful not to distribute it or include this secret key in built
software.

* cache. s3. secur e - The default isf al se: Traffic is sent unencrypted over the public Internet.
Set to t r ue to use HTTPS. Note that unencrypted uploads and downloads use less CPU.

» cache. s3. bucket - Name of the bucket to store data. For different caches using the same
access key, use a different bucket name. Read the S3 documentation on the definition of a
bucket. The default value isj boss- cache.

e cache. s3. cal | i ngFor mat - One ofPATH,SUBDOMAI N, or VANI TY. Read the S3 documentation
on the use of calling domains. The default value iSSUBDOVAI N.

66

http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar

TcpDelegatingCachelLoader

e cache. s3. opti nmi ze - The defaultisf al se. If true, put (Map) operations replace the data stored
at an Fgn rather than attempt to fetch and merge. (This option is fairly experimental at the
moment.)

e cache. s3. par ent Cache - The default ist r ue. Set this value to f al se if you are using multiple
caches sharing the same S3 bucket, that remove parent nodes of nodes being created in other
caches. (This is not a common use case.)

JBoss Cache stores nodes in a tree format and automatically creates intermediate parent nodes
as necessary. The S3 cache loader must also create these parent nodes as well to allow for
operations such as get Chi | dr enNanes to work properly. Checking if all parent nodes exists for
every put operation is fairly expensive, so by default the cache loader caches the existence
of these parent nodes.

* cache. s3. 1 ocati on - This choses a primary storage location for your data to reduce loading
and retrieval latency. Set to EU to store data in Europe. The default isnul | , to store data in the
United States.

9.3.5. TcpDelegatingCachelLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which
could reside (a) in the same address space, (b) in a different process on the same host, or (c) in
a different process on a different host.

A TcpDelegatingCacheLoader talks to a remote
org. j boss. cache. | oader. tcp. TcpCacheServer , which can be a standalone process started
on the command line, or embedded as an MBean inside JBoss AS. The TcpCacheServer has a
reference to another JBoss Cache instance, which it can create itself, or which is given to it (e.qg.
by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDel egat i ngCacheLoader transparently handles reconnects if
the connection to the TcpCacheServer is lost.

The TcpDelegatingCachelLoader is configured with the host and port of the remote
TcpCacheServer, and uses this to communicate to it. In addition, 2 new optional parameters are
used to control transparent reconnecting to the TcpCacheServer. The ti neout property (defaults
to 5000) specifies the length of time the cache loader must continue retrying to connect to the
TcpCacheServer before giving up and throwing an exception. The r econnect Wi t Ti me (defaults
to 500) is how long the cache loader should wait before attempting a reconnect if it detects a
communication failure. The last two parameters can be used to add a level of fault tolerance to
the cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

<loaders passivation="false" shared="false">
<preload>

67

Chapter 9. Cache Loaders

<node fgn="/"/>
</preload>
<I-- if passivation is true, only the first cache loader is used; the rest are ignored -->
<loader class="org.jboss.cache.loader.TcpDelegatingCachelLoader">
<properties>
host=myRemoteServer
port=7500
timeout=10000
reconnectWaitTime=250
</properties>
</loader>
</loaders>

This means this instance of JBoss Cache will delegate all load and store requests to the remote
TcpCacheServer running on nyRenot eSer ver : 7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all
delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to
a database via JDBCCachelLoader, but the point here is that - if we have 5 nodes all accessing
the same dataset - they will load the data from the TcpCacheServer, which has do execute one
SQL statement per unloaded data set. If the nodes went directly to the database, then we'd have
the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in front of
the DB (assuming that a network round trip is faster than a DB access (which usually also include
a network round trip)).

To alleviate single point of failure, we could configure several cache loaders. The first cache
loader is a ClusteredCachelLoader, the second a TcpDelegatingCachelLoader, and the last a
JDBCacheloader, effectively defining our cost of access to a cache in increasing order.

9.3.6. Transforming Cache Loaders

The way cached data is written to Fi | eCacheLoader and JDBCCachelLoader based cache stores
has changed in JBoss Cache 2.0 in such way that these cache loaders now write and read data
using the same marhalling framework used to replicate data across the network. Such change is
trivial for replication purposes as it just requires the rest of the nodes to understand this format.
However, changing the format of the data in cache stores brings up a new problem: how do users,
which have their data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss Cache
2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader
implementations called org.jboss. cache. | oader. Transform ngFi | eCacheLoader and
org.j boss. cache. | oader. Tr ansf or m ngJDBCCachelLoader located within the optional
jbosscache-cacheloader-migration.jar file. These are one-off cache loaders that read data from
the cache store in JBoss Cache 1.x.x format and write data to cache stores in JBoss Cache 2.0
format.

68

Cache Passivation

The idea is for users to modify their existing cache configuration file(s) momentarily to use these
cache loaders and for them to create a small Java application that creates an instance of this
cache, recursively reads the entire cache and writes the data read back into the cache. Once the
data is transformed, users can revert back to their original cache configuration file(s). In order
to help the users with this task, a cache loader migration example has been constructed which
can be located under the exanpl es/ cachel oader - mi gr at i on directory within the JBoss Cache
distribution. This example, called exanpl es. Tr ansf or nSt or e , is independent of the actual data
stored in the cache as it writes back whatever it was read recursively. It is highly recommended
that anyone interested in porting their data run this example first, which contains ar eadne. t xt file
with detailed information about the example itself, and also use it as base for their own application.

9.4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to
a secondary data store (e.g., file system, database) on eviction. Cache Activation is the process
of restoring an object from the data store into the in-memory cache when it's needed to be used.
In both cases, the configured cache loader will be used to read from the data store and write to
the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a
notification that the node is being passivated will be emitted to the cache listeners and the node
and its children will be stored in the cache loader store. When a user attempts to retrieve a node
that was evicted earlier, the node is loaded (lazy loaded) from the cache loader store into memory.
When the node and its children have been loaded, they're removed from the cache loader and a
natification is emitted to the cache listeners that the node has been activated.

To enable cache passivation/activation, you can set passi vat i on to true. The default is f al se .
When passivation is used, only the first cache loader configured is used and all others are ignored.

9.4.1. Cache Loader Behavior with Passivation Disabled vs.
Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don't use eviction, what's in the persistent store is
basically a copy of what's in memory. If you do use eviction, what's in the persistent store is
basically a superset of what's in memory (i.e. it includes nodes that have been evicted from
memory).

When passivation is enabled, there is a direct relationship between eviction and the cache loader.
Writes to the persistent store via the cache loader only occur as part of the eviction process. Data
is deleted from the persistent store when the application reads it back into memory. In this case,
what's in memory and what's in the persistent store are two subsets of the total information set,
with no intersection between the subsets.

69

Chapter 9. Cache Loaders

Following is a simple example, showing what state is in RAM and in the persistent store after each
step of a 6 step process:

1. Insert /A

2. Insert /B

3. Eviction thread runs, evicts /A
4. Read /A

5. Eviction thread runs, evicts /B
6. Remove /B

When passivation is disabled:

1) Memory: /A Disk: /A

2) Memory: /A, /B Disk: /A, /B
3) Memory: /B Disk: /A, /B

4) Memory: /A, /B Disk: /A, /B
5) Memory: /A Disk: /A, /B

6) Memory: /A Disk: /A

When passivation is enabled:

1) Memory: /A Disk:
2) Memory: /A, /B Disk:
3) Memory: /B Disk: /A
4) Memory: /A, /B Disk:
5) Memory: /A Disk: /B
6) Memory: /A Disk:

9.5. Strategies

This section discusses different patterns of combining different cache loader types and
configuration options to achieve specific outcomes.

70

Local Cache With Store

9.5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode is LOCAL ,
therefore no replication is going on. The cache loader simply loads non-existing elements from
the store and stores modifications back to the store. When the cache is started, depending on the
pr el oad element, certain data can be preloaded, so that the cache is partly warmed up.

9.5.2. Replicated Caches With All Caches Sharing The Same
Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

N repiication ™
CACHE CACHE
CACHELOADER CACHELOADER
STORE

Figure 9.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store. This could for
example be a shared filesystem (using the FileCachelLoader), or a shared database. Because

both nodes access the same store, they don't necessarily need state transfer on startup. ! Rather,
the Fet chl nMenor y St at e attribute could be set to false, resulting in a 'cold' cache, that gradually
warms up as elements are accessed and loaded for the first time. This would mean that individual
caches in a cluster might have different in-memory state at any given time (largely depending on
their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For
example, if nodel made change C1 and node2 C2, then nodel would tell its cache loader to store
C1, and node2 would tell its cache loader to store C2.

10f course they can enable state transfer, if they want to have a warm or hot cache after startup.

71

Chapter 9. Cache Loaders

9.5.3. Replicated Caches With Only One Cache Having A Store

< REPLICATION >
CACHE CACHE
CACHELOADER
-—"---.r
—
STORE

Figure 9.3. 2 nodes but only one accesses the backend store

This is a similar case to the previous one, but here only one node in the cluster interacts with a
backend store via its cache loader. All other nodes perform in-memory replication. The idea here is
all application state is kept in memory in each node, with the existence of multiple caches making
the data highly available. (This assumes that a client that needs the data is able to somehow fail
over from one cache to another.) The single persistent backend store then provides a backup
copy of the data in case all caches in the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronously, that
is not on the caller's thread, in order not to slow down the cluster by accessing (for example) a
database. This is a non-issue when using asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a
single point of failure. Furthermore, if the cluster is restarted, the cache with the cache loader must
be started first (easy to forget). A solution to the first problem is to configure a cache loader on each
node, but set the si ngl et onSt or e configuration to t r ue. With this kind of setup, one but only one
node will always be writing to a persistent store. However, this complicates the restart problem,
as before restarting you need to determine which cache was writing before the shutdown/failure
and then start that cache first.

72

Replicated Caches With Each Cache Having Its
Own Store

9.5.4. Replicated Caches With Each Cache Having Its Own
Store

REPLICATION

CACHE CACHE

CACHELOADER CACHELOADER

STORE STORE

Figure 9.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the
cluster and (b) persisted using the cache loader. This means that all datastores have exactly the
same state. When replicating changes synchronously and in a transaction, the two phase commit
protocol takes care that all modifications are replicated and persisted in each datastore, or none
is replicated and persisted (atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement recovery. When
used with a transaction manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is always a full state
transfer, overwriting any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed. During this
time, it will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using | oadEntireState() . It
then sends back that state to the new node.

73

Chapter 9. Cache Loaders

4. The new node then tells its cache loader to store that state in its store, overwriting the old state.
This is the CachelLoader . st oreEnti reSt at e() method

5. As an option, the transient (in-memory) state can be transferred as well during the state transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster, and
modifications received from other nodes will now be persisted using the local cache loader.

9.5.5. Hierarchical Caches

If you need to set up a hierarchy within a single JVM, you can use the
Local Del egati ngCacheLoader . This type of hierarchy can currently only be set up
programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server, using the
TcpDel egat i ngCachelLoader .

74

Multiple Cache Loaders

€ eeptication | ™
CACHE CACHE
TCP DELEGATING TCP DELEGATING
CACHELOADER CACHELODADER
v L
TCP TCP
bk

TCP CACHE SERVER

CACHE

CACHELOADER

[3

STORE

Figure 9.5. TCP delegating cache loader

9.5.6. Multiple Cache Loaders

You can set up more than one cache

loader in a chain. Internally, a delegating

Chai ni ngCacheLoader is used, with references to each cache loader you have configured. Use
cases vary depending on the type of cache loaders used in the chain. One example is using a

75

Chapter 9. Cache Loaders

filesystem based cache loader, co-located on the same host as the JVM, used as an overflow for
memory. This ensures data is available relatively easily and with low cost. An additional remote
cache loader, such as a TcpDel egat i ngCacheLoader provides resilience between server restarts.

76

Multiple Cache Loaders

SERVERA1

L B IR SR ——————] —

SERVERZ

—-— e e e e — — — — — — = =

|
|
|
|
|
| T I L.|.
: < repLioaTion | ™
| 1 |
| | |
1 | cacHE | 1 | cacHe
| 1 | .
I J FILESYSTEM BASED I I FILESYSTEM BASED k
|] CACHELOADER I I CACHELODADER .
|
' f TCP DELEGATING | ' TCP DELEGATING
: III." CACHELOADER , : CACHELDADER
[; k i | I «
| | | .
. LOCAL FILE ; : LOCAL FILE
I STORE ! I STORE
| l | _
[1 I
L o e e e e e e e e e e e e = J L o e e e e e e e e e =
TCP TCP
r—--=—-—m=—="="==m=m = = 4 & - = |
| TCP CACHE SERVER I
| I
I I
| I
| I
I I
| I
| I
I I
| |
1 | cache :
I I
I CACHELDADER :
| I
I I
| I
| I
I I
| I
Figure 9.6. Multiple cache Iba in |
I DATABASE I
I STORE |
| I 77

SERVER3

78

Chapter 10.

Eviction

Eviction controls JBoss Cache's memory management by restricting how many nodes are allowed
to be stored in memory, and for how long. Memory constraints on servers mean caches cannot
grow indefinitely, so eviction needs to occur to prevent out of memory errors. Eviction is most
often used alongside cache loaders.

10.1. Design

Eviction in JBoss Cache is designed around four concepts:

1. Collecting statistics

2. Determining which nodes to evict

3. How nodes are evicted

* 4. Eviction threads.

In addition, Regions play a key role in eviction, as eviction is always configured on a per-region
basis so that different subtrees in the cache can have different eviction characteristics.

10.1.1. Collecting Statistics

This is done on the caller's thread whenever anyone interacts with the cache. If eviction is enabled,
an Evi cti onl nt er cept or is added to the interceptor chain and events are recorded in an event
queue. Events are denoted by the Evi cti onEvent class. Event queues are held on specific
Regions so each region has its own event queue.

This aspect of eviction is not configurable, except that the Evi ct i onl nt er cept or is either added
to the interceptor chain or not, depending on whether eviction is enabled.

10.1.2. Determining Which Nodes to Evict

An EvictionAl gorithm implementation processes the eviction queue to decide which
nodes to evict. JBoss Cache ships with a number of implementations, including
FI FOAl gori t hm LRUAI gorit hm LFUAI gorithm etc. Each implementation has a corresponding
Evi cti onAl gori t hnConfi g implementation with configuration details for the algorithm.

Custom Evi cti onAl gori t hmimplementations can be provided by implementing the interface or
extending one of the provided implementations.

Algorithms are executed by calling its process() method and passing in the event queue to
process. This is typically done by calling Regi on. pr ocessEvi cti onQueues(), which will locate
the Algorithm assigned to the region.

79

Chapter 10. Eviction

10.1.3. How Nodes are Evicted

Once the EvictionAl gorithm decides which nodes to evict, it uses an implementation of
Evi cti onActi onPol i cy to determine how to evict nodes. This is configurable on a per-region
basis, and defaults to Def aul t Evi cti onActi onPol i cy, which invokes Cache. evi ct () for each
node that needs to be evicted.

JBoss Cache also ships with RenbveOnEvi ct Acti onPol i cy, which calls Cache. r enbveNode()
for each node that needs to be evicted, instead of Cache. evi ct ().

Custom Evi cti onActi onPol i cy implementations can be used as well.

10.1.4. Eviction threads

By default, a single cache-wide eviction thread is used to periodically iterate through registered
regions and call Regi on. processEvi cti onQueues() on each region. The frequency with which
this thread runs can be configured using the wakeUpl nterval attribute in the eviction
configuration element, and defaults to 5000 milliseconds if not specified.

The eviction thread can be disabled by setting wakeUpl nt er val to 0. This can be useful if you
have your own periodic maintenance thread running and would like to iterate through regions and
call Regi on. processEvi cti onQueues() yourself.

10.2. Eviction Regions

The concept of regions and the Regi on class were visited earlier when talking about marshalling.
Regions are also used to define the eviction behavior for nodes within that region. In addition to
using a region-specific configuration, you can also configure default, cache-wide eviction behavior
for nodes that do not fall into predefined regions or if you do not wish to define specific regions.
It is important to note that when defining regions using the configuration XML file, all elements of
the Fgn that defines the region are St ri ng objects.

For each region, you can define eviction parameters.

It's possible to define regions that overlap. In other words, one region can be defined for / a/ b/
¢, and another defined for / a/ b/ c/ d (which is just the d subtree of the / a/ b/ ¢ sub-tree). The
algorithm, in order to handle scenarios like this consistently, will always choose the first region
it encounters. In this way, if the algorithm needed to decide how to handle node / a/ b/ c/ d/ e, it
would start from there and work its way up the tree until it hits the first defined region - in this
case/alb/c/d.

10.2.1. Resident Nodes

Nodes marked as resident (using Node. set Resi dent () API) will be ignored by the eviction
policies both when checking whether to trigger the eviction and when proceeding with the actual
eviction of nodes. E.g. if a region is configured to have a maximum of 10 nodes, resident nodes

80

Configuring Eviction

won't be counted when deciding whether to evict nodes in that region. In addition, resident nodes
will not be considered for eviction when the region's eviction threshold is reached.

In order to mark a node as resident the Node. set Resi dent () API should be used. By default,
the newly created nodes are not resident. The r esi dent attribute of a node is neither replicated,
persisted nor transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add "noise" to an
eviction policy. E.g.,:

Map lotsOfData = generateData();

Fgn abc = Fgn.fromString("/a/b/c");
Fgn ab = abc.getParent();
Fgn a = ab.getParent();

cache.put(abc, lotsOfData);
cache.getRoot().getChild(a).setResident(true);
cache.getRoot().getChild(ab).setResident(true);

In this example, the nodes / a and / a/ b are paths which exist solely to support the existence of
node / a/ b/ ¢ and don't hold any data themselves. As such, they are good candidates for being
marked as resident. This would lead to better memory management as no eviction events would
be generated when accessing / a and/ a/ b.

N.B. when adding attributes to a resident node, e.g. cache. put ("/a", "k", "v") inthe above
example, it would make sense to mark the nodes as non-resident again and let them be considered
for eviction..

10.3. Configuring Eviction

10.3.1. Basic Configuration

The basic eviction configuration element looks like:

<eviction wakeUpInterval="500" eventQueueSize="100000">
<default algorithmClass="org.jboss.cache.eviction.LRUAIlgorithm">
<property name="maxNodes" value="5000" />

81

Chapter 10. Eviction

<property name="timeToLive" value="1000" />
</default>
</eviction>

e wakeUpl nterval - this required parameter defines how often the eviction thread runs, in
milliseconds.

« event QueueSi ze - this optional parameter defines the size of the bounded queue which holds
eviction events. If your eviction thread does not run often enough, you may find that the event
qgueue fills up. It may then be necessary to get your eviction thread to run more frequently, or
increase the size of your event queue. This configuration is just the default event queue size,
and can be overridden in specific eviction regions. If not specified, this defaults to 200000.

e al gorithnCl ass - this is required, unless you set individual al gori t hnQ ass attributes on each
and every region. This defines the default eviction algorithm to use if one is not defined for a
region.

« Algorithm configuration attributes - these are specific to the algorithm specified in
al gori t hnd ass. See the section specific to the algorithm you are interested in for details.

10.3.2. Programmatic Configuration

Configuring eviction using the Configuration object entails the use of
the org. j boss. cache. config. Evicti onConfig bean, which is passed into
Confi guration. set Evi cti onConfi g(). See the chapter on Configuration for more on building
a Confi gur ati on programatically.

The use of simple POJO beans to represent all elements in a cache's configuration also makes it
fairly easy to programatically add eviction regions after the cache is started. For example, assume
we had an existing cache configured via XML with the EvictionConfig element shown above. Now
at runtime we wished to add a new eviction region named "/org/jboss/fifo", using LRUAI gori t hm
but a different number of nexNodes:

Fgn fgn = Fgn.fromString("/org/jboss/fifo");

/I Create a configuration for an LRUPolicy
LRUAIlgorithmConfig Iruc = new LRUAIgorithmConfig();
Iruc.setMaxNodes(10000);

/I Create an eviction region config
EvictionRegionConfig erc = new EvictionRegionConfig(fgn, Iruc);

/I Create the region and set the config

82

Shipped Eviction Policies

Region region = cache.getRegion(fgn, true);
region.setEvictionRegionConfig(erc);

10.4. Shipped Eviction Policies

This section details the different algorithms shipped with JBoss Cache, and the various
configuration parameters used for each algorithm.

10.4.1. LRUAIgorithm - Least Recently Used

org. j boss. cache. evi cti on. LRUAl gori t hmcontrols both the node lifetime and age. This policy
guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

e tineTolLi ve - The amount of time a node is not written to or read (in milliseconds) before the
node is swept away. 0 denotes immediate expiry, -1 denotes no limit.

« maxAge - Lifespan of a node (in milliseconds) regardless of idle time before the node is swept
away. 0 denotes immediate expiry, -1 denotes no limit.

* m nTi meToLi ve - the minimum amount of time a node must be allowed to live after being
accessed before itis allowed to be considered for eviction. 0 denotes that this feature is disabled,
which is the default value.

10.4.2. FIFOAIgorithm - First In, First Out

org. j boss. cache. evi cti on. FI FOAl gori t hm controls the eviction in a proper first in first out
order. This policy guarantees a constant order (O (1)) for adds, removals and lookups (visits).
It has the following configuration parameters:

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

e mi nTi meTolLi ve - the minimum amount of time a node must be allowed to live after being
accessed before itis allowed to be considered for eviction. 0 denotes that this feature is disabled,
which is the default value.

10.4.3. MRUAIgorithm - Most Recently Used

org.j boss. cache. evi cti on. MRUAI gor i t hmcontrols the eviction in based on most recently used
algorithm. The most recently used nodes will be the first to evict with this policy. This policy
guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

83

Chapter 10. Eviction

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

e m nTi meToLi ve - the minimum amount of time a node must be allowed to live after being
accessed before itis allowed to be considered for eviction. 0 denotes that this feature is disabled,
which is the default value.

10.4.4. LFUAIlgorithm - Least Frequently Used

org. j boss. cache. evi cti on. LFUAl gori t hmcontrols the eviction in based on least frequently
used algorithm. The least frequently used nodes will be the first to evict with this policy. Node
usage starts at 1 when a node is first added. Each time it is visited, the node usage counter
increments by 1. This number is used to determine which nodes are least frequently used. LFU
is also a sorted eviction algorithm. The underlying EvictionQueue implementation and algorithm
is sorted in ascending order of the node visits counter. This class guarantees a constant order (
O (1)) for adds, removal and searches. However, when any number of nodes are added/visited
to the queue for a given processing pass, a single quasilinear (O (n * |og n)) operation is
used to resort the queue in proper LFU order. Similarly if any nodes are removed or evicted, a
single linear (O (n)) pruning operation is necessary to clean up the EvictionQueue. LFU has
the following configuration parameters:

* maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

* mi nNodes - This is the minimum number of nodes allowed in this region. This value determines
what the eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache
grows to 100 nodes, the cache is pruned down to the 10 most frequently used nodes when the
eviction timer makes a pass through the eviction algorithm.

e mi nTi meTolLi ve - the minimum amount of time a node must be allowed to live after being
accessed before itis allowed to be considered for eviction. 0 denotes that this feature is disabled,
which is the default value.

10.4.5. ExpirationAlgorithm

org. j boss. cache. evi ction. Expirati onAl gorithm is a policy that evicts nodes based
on an absolute expiration time. The expiration time is indicated using the
org. j boss. cache. Node. put () method, using a String key expi r at i on and the absolute time as
aj ava. | ang. Long object, with a value indicated as milliseconds past midnight January 1st, 1970
UTC (the same relative time as provided by j ava. | ang. System current TimeM | i s()).

This policy guarantees a constant order (O (1)) for adds and removals. Internally, a sorted
set (TreeSet) containing the expiration time and Fgn of the nodes is stored, which essentially
functions as a heap.

This policy has the following configuration parameters:

84

ElementSizeAlgorithm - Eviction based on
number of key/value pairs in a node
e expirationkKeyName - This is the Node key name used in the eviction algorithm. The

configuration default is expi rati on .

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

The following listing shows how the expiration date is indicated and how the policy is applied:

Cache cache = DefaultCacheFactory.createCache();
Fagn fqnl = Fgn.fromString("/node/1");
Long future = new Long(System.currentTimeMillis() + 2000);

/Il sets the expiry time for a node
cache.getRoot().addChild(fgnl).put(ExpirationConfiguration.EXPIRATION_KEY, future);

assertTrue(cache.getRoot().hasChild(fgnl));
Thread.sleep(5000);

/[after 5 seconds, expiration completes
assertFalse(cache.getRoot().hasChild(fgnl));

Note that the expiration time of nodes is only checked when the region manager wakes up every
wakeUpl nt er val Seconds , SO eviction may happen a few seconds later than indicated.

10.4.6. ElementSizeAlgorithm - Eviction based on number of
key/value pairs in a node
org. j boss. cache. evi cti on. El ement Si zeAl gorit hm controls the eviction in based on the

number of key/value pairs in the node. Nodes The most recently used nodes will be the first to
evict with this policy. It has the following configuration parameters:

« maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

« maxEl enent sPer Node - This is the trigger number of attributes per node for the node to be
selected for eviction. 0 denotes immediate expiry, -1 denotes no limit.

* m nTi meToLi ve - the minimum amount of time a node must be allowed to live after being
accessed before itis allowed to be considered for eviction. 0 denotes that this feature is disabled,
which is the default value.

85

86

Chapter 11.

Transactions and Concurrency

11.1. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. It uses an innovative implementation of multi-versioned concurrency control
(MVCC [http://len.wikipedia.org/wiki/Multiversion_concurrency_control]) as the default locking
scheme. Versions of JBoss Cache prior to 3.x offered Optimistic and Pessimistic Locking
schemes, both of which are now deprecated in favor of MVCC.

11.1.1. Multi-Version Concurrency Control (MVCC)

MVCC [http://en.wikipedia.org/wiki/Multiversion_concurrency_control] is a locking scheme
commonly used by modern database implementations to control fast, safe concurrent access to
shared data.

11.1.1.1. MVCC Concepts

MVCC is designed to provide the following features for concurrent access:

+ Readers that don't block writers

» Writers that fail fast

and achieves this by using data versioning and copying for concurrent writers. The theory is that
readers continue reading shared state, while writers copy the shared state, increment a version id,
and write that shared state back after verifying that the version is still valid (i.e., another concurrent
writer has not changed this state first).

This allows readers to continue reading while not preventing writers from writing, and repeatable
read semantics are maintained by allowing readers to read off the old version of the state.

11.1.1.2. MVCC Implementation

JBoss Cache's implementation of MVCC is based on a few features:

* Readers don't acquire any locks
* Only one additional version is maintained for shared state, for a single writer

 All writes happen sequentially, to provide fail-fast semantics

The extremely high performance of JBoss Cache's MVCC implementation for reading threads is
achieved by not requiring any synchronization or locking for readers. For each reader thread, the
MVCCLocKki ngl nt er cept or wraps state in a lightweight container object, which is placed in the

87

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Chapter 11. Transactions and ...

thread's | nvocat i onCont ext (or Tr ansact i onCont ext if running in a transaction). All subsequent
operations on the state happens via the container object. This use of Java references allows for
repeatable read semantics even if the actual state changes simultaneously.

Writer threads, on the other hand, need to acquire a lock before any writing can commence.
Currently, we use lock striping to improve the memory performance of the cache, and the size of
the shared lock pool can be tuned using the concurrencyLevel attribute of the | ocki ng element.
See the configuration reference for details. After acquiring an exclusive lock on an Fqgn, the writer
thread then wraps the state to be modified in a container as well, just like with reader threads,
and then copies this state for writing. When copying, a reference to the original version is still
maintained in the container (for rollbacks). Changes are then made to the copy and the copy is
finally written to the data structure when the write completes.

This way, subsequent readers see the new version while existing readers still hold a reference
to the original version in their context.

If a writer is unable to acquire the write lock after some time, a Ti neout Exception is
thrown. This lock acquisition timeout defaults to 10000 millis and can be configured using the
I ockAcqui si tionTi meout attribute of the | ocki ng element. See the configuration reference for
details.

11.1.1.2.1. Isolation Levels

JBoss Cache 3.x supports two isolation levels: REPEATABLE_READ and READ_COMMITTED,
which correspond in semantic to database-style isolation levels [http://en.wikipedia.org/wiki/
Isolation_level]. Previous versions of JBoss Cache supported all 5 database isolation levels, and
if an unsupported isolation level is configured, it is either upgraded or downgraded to the closest
supported level.

REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions
of JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant
performance benefit over REPEATABLE_READ.

11.1.1.2.2. Concurrent Writers and Write-Skews

Although MVCC forces writers to obtain a write lock, a phenomenon known as write skews may
occur when using REPEATABLE_READ:

88

http://en.wikipedia.org/wiki/Isolation_level
http://en.wikipedia.org/wiki/Isolation_level
http://en.wikipedia.org/wiki/Isolation_level

Multi-Version Concurrency Control (MVCC)

Transaction 1

Begin transaction

Read Node
IA (value = 1)
hald ref in context

Acquire exclusive lock
on lA (to start writing)

Copy /A for wrltl.nﬂ

—

S

Update /A
(value = value +1)

Release exclusive lock
on A

¥
End transaction

—

Transaction 2

Begin tran

Read M
TA (walu
haold ref in

{A s copied using
the reference held
in the contaxt.

= Acquire
on /A [t

I -
Copy /A

Upd
(value =

This happens when concurrent transactions performing a read and then a write, based on the
value that was read. Since reads involve holding on to the reference to the state in the transaction
context, a subsequent write would work off that original state read, which may now be stale.

89

Chapter 11. Transactions and ...

The default behavior with dealing with a write skew is to throw a Dat aVer si oni ngExcepti on,
when it is detected when copying state for writing. However, in most applications, a write skew
may not be an issue (for example, if the state written has no relationship to the state originally read)
and should be allowed. If your application does not care about write skews, you can allow them
to happen by setting the wr i t eSkewCheck configuration attribute to f al se. See the configuration
reference for details.

Note that write skews cannot happen when using READ_COMMITTED since threads always work
off committed state.

11.1.1.3. Configuring Locking

Configuring MVCC involves using the <l ocki ng /> configuration tag, as follows:

<locking
isolationLevel="REPEATABLE_READ"
lockAcquisitionTimeout="10234"
nodelLockingScheme="mvcc"
writeSkewCheck="false"
concurrencylLevel="1000" />

* nodelLocki ngSchene - the node locking scheme used. Defaults to MVCC if not provided,
deprecated schemes such as pessi i sti c oropti m sti ¢c may be used but is not encouraged.

e isol ationLevel -transaction isolation level. Defaults to REPEATABLE_READ if not provided.
e writeSkewCheck - defaults to t r ue if not provided.
e concurrencylLevel - defaults to 500 if not provided.

* | ockAcqui si tionTi meout - only applies to writers when using MVCC. Defaults to 10000 if not
provided.

11.1.2. Pessimistic and Optimistic Locking Schemes

From JBoss Cache 3.x onwards, pessimistic and optimistic locking schemes are deprecated
in favor of MVCC. It is recommended that existing applications move off these legacy locking
schemes as support for them will eventually be dropped altogether in future releases.

Documentation for legacy locking schemes are not included in this user guide, and if necessary,
can be referenced in previous versions of this document, which can be found on the JBoss Cache
website [http://www.jboss.org/jbosscache].

90

http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache

JTA Support

11.2. JTA Support

JBoss Cache can be configured to use and participate in JTA [http://java.sun.com/javaee/
technologies/jta/] compliant transactions. Alternatively, if transaction support is disabled, it is
equivalent to using autocommit in JDBC calls, where modifications are potentially replicated after
every change (if replication is enabled).

What JBoss Cache does on every incoming call is:

1. Retrieve the current j avax. t ransacti on. Transact i on associated with the thread

2. If not already done, register a j avax. transacti on. Synchroni zati on with the transaction
manager to be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's
j avax. transaction. Transact i onManager . This is usually done by configuring the cache with
the class name of an implementation of the Tr ansacti onManager Lookup interface. When the
cache starts, it will create an instance of this class and invoke its get Tr ansact i onManager ()
method, which returns a reference to the Tr ansact i onManager .

[TranzactionLookup 1|

TransactionManeger Logkuy [j
rorg.jboss. cache)

< < getter==4getTransectionManagers | TransactionManager
i) oy

T T
I I

JBos s Trans actionManager Lc
| (org.jboss.cache)

| <-=Cconstructor==+|BossTranzactionhansz
| <= getter=>=4+getTranzactionManagerd ;T

I
Generic TransactionManager Lookup
(org.jbozz.cache)

<< getter>=>+getTranzactionManagerd : TranzactionManager
-dolookups{ :void

JBoss Cache ships with JBossTr ansact i onManager Lookup and
Generi cTransact i onManager Lookup. The JBossTransacti onManager Lookup is able to

91

http://java.sun.com/javaee/technologies/jta/
http://java.sun.com/javaee/technologies/jta/
http://java.sun.com/javaee/technologies/jta/

Chapter 11. Transactions and ...

bind to a running JBoss AS instance and retrieve a Transacti onManager while
the GenericTransacti onManager Lookup is able to bind to most popular Java EE
application servers and provide the same functionality. A dummy implementation -
DummyTr ansact i onManager Lookup - is also provided for unit tests. Being a dummy, this is
not recommended for production use a it has some severe limitations to do with concurrent
transactions and recovery.

An alternative to configuring a Transacti onManager Lookup is to programatically inject a
reference to the Tr ansact i onManager into the Confi gur ati on object's Runt i neConf i g element:

TransactionManager tm = getTransactionManager(); // magic method
cache.getConfiguration().getRuntimeConfig().setTransactionManager(tm);

Injecting the Transact i onManager is the recommended approach when the Confi guration is
built by some sort of IOC container that already has a reference to the Tr ansact i onManager .

When the transaction commits, we initiate either a one- two-phase commit protocol. See replicated
caches and transactions for details.

92

Part Ill. JBoss Cache
Configuration References

This section contains technical references for easy looking up.

Chapter 12.

Configuration References

12.1. Sample XML Configuration File

This is what a typical XML configuration file looks like. It is recommended that you use one of
the configurations shipped with the JBoss Cache distribution and tweak according to your needs
rather than write one from scratch.

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="urn:jboss:jbosscache-core:config:3.2">

SIBS
isolation levels supported: READ_COMMITTED and REPEATABLE_READ
nodelLockingSchemes: mvcc, pessimistic (deprecated), optimistic (deprecated)
==
<locking
isolationLevel="REPEATABLE_READ"
lockParentForChildinsertRemove="false"
lockAcquisitionTimeout="20000"
nodeLockingScheme="mvcc"
writeSkewCheck="false"
useLockStriping="true"
concurrencylLevel="500"/>

<l--
Used to register a transaction manager and participate in ongoing transactions.
-->
<transaction
transactionManagerLookupClass="org.jboss.cache.transaction.GenericTransactionManagerLookup"
syncRollbackPhase="false"
syncCommitPhase="false"/>

SIES
Used to register JMX statistics in any available MBean server
==
<jmxStatistics
enabled="false"/>

95

Chapter 12. Configuration Ref...

<l--
If region based marshalling is used, defines whether new regions are inactive on startup.
=
<startup
regionslinactiveOnStartup="true"/>

=
Used to register JVM shutdown hooks.
hookBehavior: DEFAULT, REGISTER, DONT_REGISTER
==
<shutdown
hookBehavior="DEFAULT"/>

<l--
Used to define async listener notification thread pool size
-->
<listeners
asyncPoolSize="1"
asyncQueueSize="100000"/>

<l--
Used to enable invocation batching and allow the use of Cache.startBatch()/endBatch()
methods.
-->
<invocationBatching
enabled="false"/>

<l--
serialization related configuration, used for replication and cache loading

=

<serialization
objectinputStreamPoolSize="12"
objectOutputStreamPoolSize="14"
version="3.0.0"
marshallerClass="org.jboss.cache.marshall.VersionAwareMarshaller"
uselLazyDeserialization="false"
useRegionBasedMarshalling="false"/>

1B
This element specifies that the cache is clustered.
modes supported: replication (r) or invalidation (i).
-->

<clustering mode="replication" clusterName="JBossCache-cluster">

96

Sample XML Configuration File

SIBS
Defines whether to retrieve state on startup
==

<stateRetrieval timeout="20000" fetchinMemoryState="false"/>

<l--
Network calls are synchronous.
==
<sync replTimeout="20000"/>
<l--
Uncomment this for async replication.
==
<l--<async useReplQueue="true" replQueuelnterval="10000" replQueueMaxElements="500"
serializationExecutorPoolSize="20" serializationExecutorQueueSize="5000000"/>-->

<!-- Uncomment to use Buddy Replication -->
e
<buddy enabled="true" poolName="myBuddyPoolReplicationGroup"
communicationTimeout="2000">
<dataGravitation auto="true" removeOnFind="true" searchBackupTrees="true"/>
<locator class="org.jboss.cache.buddyreplication.NextMemberBuddyLocator">
<properties>
numBuddies = 1
ignoreColocatedBuddies = true
</properties>
</locator>
</buddy>
==

<I--
Configures the JGroups channel. Looks up a JGroups config file on the classpath or
filesystem. udp.xml
ships with jgroups.jar and will be picked up by the class loader.
==
<jgroupsConfig configFile="udp.xml">
<l-- uncomment to define a JGroups stack here

<PING timeout="2000" num_initial_members="3"/>

<MERGE2 max_interval="30000" min_interval="10000"/>

<FD_SOCK/>

<FD timeout="10000" max_tries="5" shun="true"/>

<VERIFY_SUSPECT timeout="1500"/>

<pbcast.NAKACK use_mcast_xmit="false" gc_lag="0"
retransmit_timeout="300,600,1200,2400,4800"

97

Chapter 12. Configuration Ref...

discard_delivered_msgs="true"/>

<UNICAST timeout="300,600,1200,2400,3600"/>

<pbcast.STABLE stability _delay="1000" desired_avg_gossip="50000"
max_bytes="400000"/>

<pbcast.GMS print_local_addr="true" join_timeout="5000" shun="false"

view_bundling="true" view_ack_collection_timeout="5000"/>

<FRAG?2 frag_size="60000"/>

<pbcast.STREAMING_STATE_TRANSFER use_reading_thread="true"/>

<pbcast.FLUSH timeout="0"/>

=

</jgroupsConfig>
</clustering>

<I--
Eviction configuration. Wakeuplinterval defines how often the eviction thread runs, in
milliseconds. 0 means
the eviction thread will never run.
=
<eviction wakeUplInterval="500">
<default algorithmClass="org.jboss.cache.eviction.LRUAIlgorithm"
eventQueueSize="200000">
<property name="maxNodes" value="5000" />
<property name="timeToLive" value="1000" />
</default>
<region name="/org/jboss/datal">
<property name="timeToLive" value="2000" />
</region>
<region name="/org/jboss/data2" algorithmClass="org.jboss.cache.eviction.FIFOAlgorithm"
eventQueueSize="100000">
<property name="maxNodes" value="3000" />
<property name="minTimeToLive" value="4000" />
</region>
</eviction>

<l--

Cache loaders.
If passivation is enabled, state is offloaded to the cache loaders ONLY when evicted. Similarly,
when the state

is accessed again, it is removed from the cache loader and loaded into memory.

Otherwise, state is always maintained in the cache loader as well as in memory.

98

Sample XML Configuration File

Set 'shared' to true if all instances in the cluster use the same cache loader instance, e.g.,
are talking to the
same database.
-->
<loaders passivation="false" shared="false">
<preload>
<node fqn="/org/jboss"/>
<node fqn="/org/tempdata"/>
</preload>

SIBS
we can have multiple cache loaders, which get chained
==
<loader class="org.jboss.cache.loader.JDBCCachelLoader" async="true"
fetchPersistentState="true"
ignoreModifications="true" purgeOnStartup="true">
<properties>
cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true
cache.jdbc.table.drop=true
</properties>
<singletonStore enabled="true"
class="org.jboss.cache.loader.SingletonStoreCachelLoader">
<properties>
pushStateWhenCoordinator=true
pushStateWhenCoordinatorTimeout=20000

</properties>

</singletonStore>

</loader>
</loaders>
<l--

Define custom interceptors. All custom interceptors need to extend

org.jboss.cache.interceptors.base.Commandinterceptor
-->
<I--

<customlnterceptors>
<interceptor position="first"
class="org.jboss.cache.config.parsing.custominterceptors.AaaCustominterceptor">
<property name="attrOne" value="valuel" />
<property name="attrTwo" value="value2" />
</interceptor>
<interceptor position="last"
class="org.jboss.cache.config.parsing.custominterceptors.BbbCustominterceptor"/>

99

Chapter 12. Configuration Ref...

<interceptor index="3"
class="org.jboss.cache.config.parsing.custominterceptors.AaaCustominterceptor"/>
<interceptor before="org.jboss.cache.interceptors.Calllnterceptor”
class="org.jboss.cache.config.parsing.custominterceptors.BbbCustominterceptor"/>
<interceptor after="org.jboss.cache.interceptors.Callinterceptor”
class="org.jboss.cache.config.parsing.custominterceptors.AaaCustominterceptor"/>
</customlnterceptors>
=

</jbosscache>

12.1.1. XML validation

Configuration XML files are validated using an XSD schema. This schema is included in
j bosscache-core.jar and is also available online: http://ww. | boss. org/jbosscache/
j bosscache- confi g- 3. 0. xsd. Most IDEs and XML authoring tools will be able to use this schema
to validate your configuration file as you write it.

JBoss Cache also validates your configuration file when you start up, and will throw
an exception if it encounters an invalid file. You can suppress this behavior by
passing in -Djbosscache.config.validate=false to your JVM when you start up.
Alternatively, you can point the validator to a different schema by passing in -
Dj bosscache. confi g. schemaLocati on=url .

12.2. Configuration File Quick Reference

A list of definitions of each of the XML elements attributes used above, and their bean counterparts
for programmatic configuration. If the description of an attribute states that it is dynamic, that
means it can be changed after the cache is created and started.

Table 12.1. The <j bosscache /> Element

The <j bosscache /> Element

Description This is the root element for the JBoss Cache
configuration file. This is the only mandatory
element in a valid JBoss Cache configuration

file.
Parent none (is root element)
Children <clustering />, <custom nterceptors /

>, <eviction />, <invocationBatching
/>, <jnkStatistics /> <listeners
/>, <l oaders />, <l ocking />,
<serialization />, <shutdown />,

<startup />, <transaction />

Bean Equivalent Confi guration

100

Configuration File Quick Reference

Table 12.2. <j bosscache /> Attributes

<j bosscache /> Attributes

Attribute Bean Field Allowed Description

xmlns - urn:jboss:jbosscachen:jboss:jbosscacheefines the XML
core:config:3.2 core:config:3.2 namespace for
all configuration

entries.
xmins:xsi - http:// http:// Defines the
www.w3.org/ www.w3.org/ XML schema
2001/ 2001/ instance for the
XMLSchema- XMLSchema- configuration.

instance instance

Table 12.3. The <l ocki ng /> Element

The <l ocki ng /> Element

Description This element specifies locking behavior on the
cache.

Parent <j bosscache />

Children

Bean equivalent Confi guration

Table 12.4. <l ocki ng /> Attributes

<l ocki ng /> Attributes

Attribute Bean Field Allowed Default Description

isolationLevel isolationLevel READ_COMMITTEREPEATABLE_REAEE isolation

REPEATABLE_READ level used for
transactions.
lockParentForChildbidat&teFraoChildinserfRismove false Specifies

whether parent
nodes are locked
when inserting
or removing
children. This
can also be
configured on a
per-node basis
(see Node. set LockFor Chi | dl nsertF

lockAcquisitionTitoekAtquisitionTimekut positive long 10000 Length of time,
(dynamic) value in milliseconds,

101

Chapter 12. Configuration Ref...

<l ocki ng /> Attributes

Attribute Bean Field

Allowed Default

Description

that a thread will
try and acquire

a lock. A Ti neout E
is usually thrown
if a lock cannot
be acquired

in this given
timeframe. Can
be overridden on
a per-invocation
basis using Opti o

nodelLockingSchenoeleLockingSche
(deprecated)

writeSkewCheck writeSkewCheck

useLockStriping uselLockStriping

nravcce, mvcc
pessimistic,
optimistic
true, false false
true, false true

Specifies the

node locking

scheme to be
used.

Specifies

whether to check
for write skews.
Only used if nodel,
is mvcc and

i sol ationLevel
is REPEATABLE_RE
See the section
on write

skews for a

more detailed
discussion.

Specifies
whether lock
striping is used.
Only used if nodel,
is mvcce. Lock
striping usually
offers greater
performance and
better memory
usage, although
in certain cases
deadlocks may
occur where
several Fgns

102

Except i on

n. set LockAcqui si

ocki ngSchene

ocki ngSchene

Configuration File Quick Reference

<l ocki ng /> Attributes

Attribute Bean Field Allowed Default Description

map to the same
shared lock. This
can be mitigated
by increasing
your concurrency
level, though the
only concrete
solution is

to disable

lock striping
altogether.

concurrencylLevelconcurrencylLevel Any positive 500 Specifies the

integer; O not number of

allowed. shared locks
to use for write
locks acquired.
Only used if nodeLocki ngSchene
is mvcc. See the
section on JBoss
Cache's MVCC
implementation
for a more
detailed
discussion.

Table 12.5. The <transaction /> Element

The <t ransacti on /> Element

Description This element specifies transactional behavior
on the cache.

Parent <j bosscache />
Children
Bean equivalent Confi guration

Table 12.6. <transaction /> Attributes

<transacti on /> Attributes

Attribute Bean Field Default Description

transactionManageensa&ligprBlassgeA vakdpiiasshat none Specifies the Transact i onManager Lc
is available on implementation

the classpath to use to obtain

103

Chapter 12. Configuration Ref...

<transacti on /> Attributes

Attribute Bean Field

Allowed

Default

Description

a transaction
manager. If not
specified (and a Tr
is not injected
using Runt i meCon
the cache will

not be able to
participate in any
transactions.

syncCommitPhassyncCommitPhase
(dynamic)

syncRollbackPhasyncRollbackPhas
(dynamic)

2 true, false

drue, false

false

false

If enabled,
commit
messages that
are broadcast
around a cluster
are done so
synchronously.
This is usually
of little value
since detecting
a failure in
broadcasting a
commit means
little else can
be done except
log a message,
since some
nodes in a
cluster may
have already
committed and
cannot rollback.

If enabled,
rollback
messages that
are broadcast
around a cluster
are done so
synchronously.
This is usually
of little value
since detecting

104

ansact i onManage

fig.setTransacti

Configuration File Quick Reference

<transacti on /> Attributes

Attribute Bean Field Allowed

Default

Description

a failure in
broadcasting a
rollback means
little else can
be done except
log a message,
since some
nodes in a
cluster may
have already
committed and
cannot rollback.

Table 12.7. The <jmxstatistics /> Element

The <j nxSt ati stics /> Element

Description This element specifies whether cache
statistics are gathered and reported via JMX.

Parent <j bosscache />

Children

Bean equivalent Confi guration

Table 12.8. <jnxstatistics /> Attributes

<jnxStatistics /> Attributes

Attribute Bean Field

Allowed

Default

Description

enabled

exposeManagemerntSetiaties

Controls whether
cache statistics
are gathered
and exposed via
JMX.

true

Table 12.9. The <startup /> Element

The <startup /> Element

Description

Parent

Children

This element specifies behavior when the
cache starts up.

<j bosscache />

Bean equivalent

Confi guration

105

Chapter 12. Configuration Ref...

Table 12.10. <startup /> Attributes

<startup /> Attributes

Attribute Bean Field Allowed Default Description

regionsinactiveOriBéativgOnStartup true, false false If region-based
marshalling is
enabled, this

attribute controls
whether new
regions created
are inactive on
startup.

Table 12.11. The <shut down /> Element

The <shut down /> Element

Description This element specifies behavior when the
cache shuts down.

Parent <j bosscache />
Children
Bean equivalent Confi guration

Table 12.12. <shut down /> Attributes

<shut down /> Attributes

Attribute Bean Field Allowed Default Description
hookBehavior shutdownHookBeh®ESAULT, DONT_REEASIHR, This attribute
REGISTER determines

whether the
cache registers
a JVM shutdown
hook so that it
can clean up
resources if the
JVM is receives
a shutdown
signal. By default
a shutdown hook
is registered if no
MBean server
(apart from the
JDK default)

is detected.

106

Configuration File Quick Reference

<shut down /> Attributes

Attribute

Bean Field

Allowed

Default

Description

REGSTER
forces the cache
to register

a shutdown
hook even if an
MBean server

is detected, and D
forces the cache
NOT to register
a shutdown
hook, even if no
MBean server is
detected.

ONT_REGISTER

Table 12.13. The «listeners /> Element

The <l i steners /> Element

Description This element specifies behavior of registered
cache listeners.

Parent <j bosscache />

Children

Bean equivalent Confi guration

Table 12.14. «<listeners /> Attributes

<listeners /> Attributes

Attribute

Bean Field

asyncPoolSize

listenerAsyncPool

Allowed

Siager

Default

Description

The size of

the threadpool
used to dispatch
events to cache
listeners that
have registered
as asynchronous
listeners. If

this number is
less than 1, all
asynchronous
listeners will

be treated as
synchronous

107

Chapter 12. Configuration Ref...

<listeners /> Attributes

Attribute Bean Field Allowed Default Description

listeners
and notified
synchronously.

asyncQueueSize listenerAsyncQueu@Bsitive integer 50000 The size of the
bounded queue
used by the
async listener
threadpool. Only
considered if
asyncPool Si ze
is greater than 0.
Increase this if
you see a lot of
threads blocking
trying to add
events to this
gueue.

Table 12.15. The <i nvocati onBat chi ng /> Element

The <i nvocat i onBat chi ng /> Element

Description This element specifies behavior of invocation
batching.

Parent <j bosscache />

Children

Bean equivalent Confi guration

Table 12.16. <i nvocati onBat chi ng /> Attributes

<i nvocat i onBat chi ng /> Attributes

Attribute Bean Field Allowed Default Description

enabled invocationBatchingEnabfatke false Whether
invocation
batching is

enabled or not.
See the chapter
on invocation
batching for
details.

108

Configuration File Quick Reference

Table 12.17. The <seri ali zati on /> Element

The <seri al i zati on /> Element

Description This element specifies behavior of object
serialization in JBoss Cache.

Parent <j bosscache />

Children

Bean equivalent Confi guration

Table 12.18. <serialization /> Attributes

<serialization /> Attributes

Attribute Bean Field

Default Description

marshallerClass marshallerClass

A valid class that VersionAwareMarsSgqltmifies the

is available on marshaller to use

the classpath when serializing
and deserializing
objects, either
for replication or
persistence.

uselLazyDeserializaselrazyDeserializ

atioe, false false A mechanism
by which
serialization and
deserialization
of objects is
deferred till
the point in
time in which
they are used
and needed.
This typically
means that any
deserialization
happens using
the thread
context class
loader of the
invocation
that requires
deserialization,
and is an
effective

mechanism

109

Chapter 12. Configuration Ref...

<serialization /> Attributes

Attribute Bean Field Allowed Default Description

to provide
classloader
isolation.

useRegionBasedMaestedioniBasedManshallilsg false An older
(deprecated) mechanism

by which
classloader
isolation was
achieved, by
registering
classloaders on
specific regions.

version replicationVersion Valid JBoss Current version Used by the Ver si onAwar eMar shal |
Cache version in determining
string which version

stream parser to
use by default
when initiating
communications
in a cluster.
Useful when you
need to run a
newer version
of JBoss Cache
in a cluster
containing older
versions, and
can be used to
perform rolling

upgrades.
objectIinputStreandbjedhipeitStreamHRudBize integer 50 Not used at the

moment.
objectOutputStreashjectdbipetStreanfosii@zmteger 50 Not used at the

moment.

Table 12.19. The <eviction /> Element

The <evi ction /> Element

Description This element controls how eviction works in
the cache.
Parent ‘ <j bosscache />

110

Configuration File Quick Reference

The <evi cti on /> Element

Children ‘ <default />, <region />

Bean equivalent ‘ Evi ctionConfig

Table 12.20. <evi ction /> Attributes

<evi ction /> Attributes

Attribute Bean Field Allowed Default Description

wakeUplnterval wakeuplnterval integer 5000 The frequency
with which

the eviction
thread runs, in
milliseconds.
If set to less
than 1, the
eviction thread
never runs and
is effectively
disabled.

Table 12.21. The <default /> Element

The <def aul t /> Element

Description This element defines the default eviction
region.

Parent <eviction />

Children <property />

Bean equivalent Evi cti onRegi onConfi g

Table 12.22. <defaul t /> Attributes

<def aul t /> Attributes

Attribute Bean Field Allowed Default Description
algorithmClass evictionAlgorithmCednfiglid class that none This attribute
is available on needs to be
the classpath specified if this
tag is being

used. Note that if
being configured programmatically,
the eviction
algorithm's
corresponding Evi cti onAl gori t hnx
file should be

111

Chapter 12. Configuration Ref...

<default /> Attributes

Attribute Bean Field Allowed Default Description

used instead.
E.g., where

you would use
LRUAI gori t hmin
XML, you would
use an instance
of LRUAI gori t hnConfi g
programmatically.

actionPolicyClassevictionActionPolicyCladisNdass that DefaultEvictionActiditfeodiiction

is available on action policy

the classpath class, defining
what happens
when a node
needs to be
evicted.

eventQueueSize eventQueueSize | integer 200000 The size of the
(dynamic bounded eviction
event queue.

Table 12.23. The <regi on /> Element

The <regi on /> Element

Description This element defines an eviction region.
Multiple instances of this tag can exist
provided they have unigue nane attributes.

Parent <eviction />
Children <property />
Bean equivalent Evi cti onRegi onConfi g

Table 12.24. <regi on /> Attributes

<regi on /> Attributes

Attribute Bean Field Description

name regionFgn A String that none This should be
could be a unique name
parsed using that defines
Fgn.fromString() this region. See

the chapter

on eviction for
details of eviction
regions.

112

Configuration File Quick Reference

<regi on /> Attributes

Attribute

Bean Field

Allowed

Default

Description

algorithmClass

actionPolicyClassevictionActionPolic

eventQueueSize eventQueueSize

evictionAlgorithm(

(dynamic

Cdnfiglid class that
is available on
the classpath

CyOladisNdass that
is available on
the classpath

integer

This attribute
needs to be
specified if this
tag is being
used. Note that if
being configured p
the eviction
algorithm's
corresponding Evi
file should be
used instead.
E.g., where

you would use
LRUAI gori t hmin
XML, you would
use an instance

none

rogrammatically,

cti onAl gori t hntx

of LRUAI gori t hnConfi g

programmatically.

DefaultEvictionActidifeodiciction
action policy
class, defining
what happens
when a node
needs to be
evicted.

200000 The size of the

bounded eviction

event queue.

Table 12.25. The <property /> Element

The <property /> Element

Description A mechanism of passing in name-value
properties to the enclosing configuration
element.

Parent <default />,<region /> <interceptor /
>

Children

Bean equivalent

Either direct setters or set Properti es()
enclosing bean

113

Chapter 12. Configuration Ref...

Table 12.26. <property /> Attributes

<property /> Attributes

Default

Attribute Bean Field Allowed

name Either direct String
setters or set Properti es()
enclosing bean

value Either direct String

setters or set Properti es()
enclosing bean

none

none

Description

Property name

Property value

Table 12.27. The <l oaders /> Element

The <l oaders /> Element

Description
Parent

Children

Defines any cache loaders.
<j bosscache />

<prel oad />, <l oader />

Bean equivalent

Table 12.28. <l oaders /> Attributes

<l oaders /> Attributes

Attribute Bean Field

CacheLoaderConfig

Default

Description

passivation passivation

true, false

false

If true, cache
loaders are used
in passivation
mode. See

the chapter on
cache loaders
for a detailed
discussion on
this.

shared shared

true, false

false

If true, cache
loaders are used
in shared mode.
See the chapter
on cache loaders
for a detailed
discussion on
this.

114

Configuration File Quick Reference

Table 12.29. The <prel oad /> Element

The <prel oad /> Element

Description Defines preloading of Fgn subtrees when
a cache starts up. This element has no
attributes.

Parent <| oaders />

Children <node />

Bean equivalent CachelLoaderConfig

Table 12.30. The <node /> Element

The <node /> Element

Description

Parent
Children

Bean equivalent

Table 12.31. <node /> Attributes

<node /> Attributes

Attribute Bean Field Allowed

fgn preload String

This element defines a subtree under which
all content will be preloaded from the cache
loaders when the cache starts. Multiple
subtrees can be preloaded, although it only
makes sense to define more than one subtree
if they do not overlap.

<prel oad />

CachelLoaderConfig

Default Description

none An Fgn to
preload. This
should be a

String that can
be parsed with
Fgn.fromString().

When doing this programmatically,

you should
create a single
String containing
all of the Fgns
you wish

to preload,
separated by
spaces, and
pass that into Cack

115

eLoader Config.s

Chapter 12. Configuration Ref...

Table 12.32. The <l oader /> Element

The <l oader /> Element

Description This element defines a cache loader. Multiple
elements may be used to create cache loader
chains.

Parent <l oaders />

Children <properties />, <singletonStore />

Bean equivalent IndividualCachelLoaderConfig

Table 12.33. <l oader /> Attributes

<| oader /> Attributes

Attribute Bean Field Default Description

class className A valid class that none A cache loader
is available on implementation
the classpath to use.

async async true, false false All modifications

to this cache
loader happen
asynchronously,
on a separate
thread.

fetchPersistentStdetchPersistentStatérue, false false When a

cache starts

up, retrieve
persistent state
from the cache
loaders in other
caches in the
cluster. Only one
loader element
may set this to
true. Also, only
makes sense if
the <cl ustering
/ > tag is present.

purgeOnStartup purgeOnStartup | true, false false Purges this
cache loader
when it starts up.

116

Configuration File Quick Reference

Table 12.34. The <properties /> Element

The <properties /> Element

Description This element contains a set of properties that
canberead by ajava.util.Properties
instance. This tag has no attributes, and

the contents of this tag will be parsed by
Properties. | oad().

Parent <l oader />, <singletonStore />,

<l ocator />
Children

Bean equivalent IndividualCachelLoaderConfig.setProperties()

Table 12.35. The <singl etonStore /> Element

The <si ngl et onSt ore /> Element

Description This element configures the enclosing cache
loader as a singleton store cache loader.

Parent <l oader />
Children <properties />
Bean equivalent SingletonStoreConfig

Table 12.36. <singl et onStore /> Attributes

<si ngl etonStore /> Attributes

Attribute Bean Field Allowed Default Description
class className A valid class that SingletonStoreCachfekimagieton
is available on store wrapper
the classpath implementation
to use.
enabled enabled true, false false If true, the

singleton store
cache loader is
enabled.

Table 12.37. The <custoni nterceptors /> Element

The <cust o nt ercept ors /> Element

Description This element allows you to define custom
interceptors for the cache. This tag has no
attributes.

Parent <j bosscache />

117

Chapter 12. Configuration Ref...

The <cust o nt ercept ors /> Element

Children <interceptor />

Bean equivalent None. At runtime, instantiate your own
interceptor and pass it in to the cache using
Cache. addl nterceptor ().

Table 12.38. The <interceptor /> Element

The <i ntercept or /> Element

Description This element allows you configure a custom
interceptor. This tag may appear multiple
times.

Parent <custom nterceptor />

Children <property />

Bean equivalent None. At runtime, instantiate your own
interceptor and pass it in to the cache using
Cache. addl nterceptor ().

Table 12.39. <interceptor /> Attributes

<i nterceptor /> Attributes

Attribute Bean Field Allowed Default Description
class - A valid class that none An

is available on implementation

the classpath of Cormandl nt er cept or.
position - first, last A position at

which to place
this interceptor
in the chain.
First is the first
interceptor
encountered
when an
invocation is
made on the
cache, last is the
last interceptor
before the call

is passed on

to the data
structure. Note
that this attribute
is mutually

118

Configuration File Quick Reference

<i nt er cept or

Attribute

[> Attributes
Bean Field

Allowed

Description

exclusive with
before, after
and i ndex.

before

Fully qualified
class name of an
interceptor

Will place the
new interceptor
directly before
the instance

of the named
interceptor. Note
that this attribute
is mutually
exclusive with
position,after
and i ndex.

after

Fully qualified
class name of an
interceptor

Will place the
new interceptor
directly after

the instance

of the named
interceptor. Note
that this attribute
is mutually
exclusive with
posi tion,

bef or e and

i ndex.

index

Positive integers

A position at
which to place
this interceptor
in the chain, with
0 being the first
position. Note
that this attribute
is mutually
exclusive with
position,

bef ore and

after.

119

Chapter 12. Configuration Ref...

Table 12.40. The <clustering /> Element

The <cl ust eri ng /> Element

Description If this element is present, the cache is started
in clustered mode. Attributes and child
elements define clustering characteristics.

Parent <j bosscache />

Children <stateRetrieval />,<sync />, <async />,

<buddy />, <j groupsConfig />

Bean equivalent Configuration

Table 12.41. <cl ustering /> Attributes

<cl ustering /> Attributes

Attribute Bean Field Allowed Default Description

mode cacheMode replication, replication See the chapter

invalidation, r, i on clustering for
the differences
between
replication and
invalidation.
When using
the bean,
synchronous and
asynchronous
communication
is combined with
clustering mode
to give you the
enumberation Conf i gur ati on. Cache

clusterName clusterName String JBossCache- A cluster name

cluster which is used
to identify the
cluster to join.

Table 12.42. The <sync /> Element

The <sync /> Element

Description If this element is present, all communications
are synchronous, in that whenever a thread
sends a message sent over the wire, it blocks
until it receives an acknowledgement from the

120

Configuration File Quick Reference

The <sync /> Element

recipient. This element is mutually exclusive
with the <async /> element.

Parent <clustering />
Children
Bean equivalent Configuration.setCacheMode()

Table 12.43. <sync /> Attributes

<sync /> Attributes

Attribute Bean Field Allowed Default Description
replTimeout syncReplTimeout | positive integer 15000 This is the
(dynamic) timeout used

to wait for an acknowledgement
when making
a remote call,
after which an
exception is
thrown.

Table 12.44. The <async /> Element

The <async /> Element

Description If this element is present, all communications
are asynchronous, in that whenever a thread
sends a message sent over the wire, it does
not wait for an acknowledgement before
returning. This element is mutually exclusive
with the <sync /> element.

Parent <clustering />
Children
Bean equivalent Configuration.setCacheMode()

Table 12.45. <async /> Attributes

<async /> Attributes

Attribute Bean Field Allowed Default Description

serialization ExecwsernBlixdSr€Executbsiidirgeger 25 In addition

to replication
happening
asynchronously,
even
serialization

121

Chapter 12. Configuration Ref...

<async /> Attributes

Attribute Bean Field

Allowed

Default

Description

of contents

for replication
happens in a
separate thread
to allow the
caller to return
as quickly as
possible. This
setting controls
the size of the
serializer thread
pool. Setting this
to any value less
than 1 means
serialization
does not happen
asynchronously.

serializationExecwerngliratieBEecu

tEagiteueiBiager

50000

This is used to
define the size
of the bounded
queue that holds
tasks for the
serialization
executor. This

is ignored if a
serialization
executor is not
used, such as
when seri al i zat
is less than 1.

useReplQueue useReplQueue

replQueuelntervalreplQueuelnterval

true, false

positive integer

false

5000

If true, this
forces all async
communications
to be queued

up and sent out
periodically as a
batch.

If useRepl Queue
is set to true, this
attribute controls
how often the

122

onExecut or Pool S

Configuration File Quick Reference

<async /> Attributes

Attribute Bean Field Allowed Default Description

asynchronous
thread used

to flush the
replication queue
runs. This should
be a positive
integer which
represents
thread wakeup
time in
milliseconds.

replQueueMaxElenepi@ueueMaxElenpadisive integer 1000 If useRepl Queue
is set to true,
this attribute
can be used to
trigger flushing
of the queue
when it reaches
a specific
threshold.

Table 12.46. The <stateRetrieval /> Element

The <stateRetri eval /> Element

Description This tag controls ho state is retrieved from
neighboring caches when this cache instance
starts.

Parent <clustering />

Children

Bean equivalent Configuration

Table 12.47. <stateRetrieval /> Attributes

<stateRetrieval /> Attributes

Attribute Bean Field Allowed Default Description

fetchinMemoryStaktchinMemoryStatérue, false true If true, this

will cause the
cache to ask
neighboring
caches for state
when it starts

123

Chapter 12. Configuration Ref...

<stateRetrieval /> Attributes

Attribute Bean Field Allowed Default Description

up, so the cache
starts "warm".

timeout stateRetrievalTimequaisitive integer 10000 This is the
maximum
amount of time -
in milliseconds -
to wait for state
from neighboring
caches, before
throwing an
exception and
aborting startup.

nonBlocking useNonBlockingState€rdakfer false This
configuration
switch enables
the Non-Blocking
State Transfer
mechanism, new
in 3.1.0. Note
that this requires
MVCC as a node
locking scheme,
and that STREAMING_STATE_TRAN
is present in the
JGroups stack
used.

Table 12.48. The <buddy /> Element

The <buddy /> Element

Description If this tag is present, then state is not
replicated across the entire cluster. Instead,
buddy replication is used to select cache
instances to maintain backups on. See this
section on buddy replication for details. Note
that this is only used if the clustering mode is
replication,and notifitisinvalidati on.

Parent <clustering />
Children <dataGravitation />, <locator />,
Bean equivalent BuddyReplicationConfig

124

Configuration File Quick Reference

Table 12.49. <buddy /> Attributes

<buddy /> Attributes

Attribute Bean Field Allowed Default Description

enabled enabled true, false false If true, buddy
replication is
enabled.

communicationTirhedddCommunicatipo3itmeaonteger 10000 This is the
maximum

amount of time

- in milliseconds
- to wait for
buddy group
organization
communications
from buddy
caches.

poolName buddyPoolName | String This is used as a
means to identify
cache instances
and provide
hints to the
buddy selection
algorithms. More
information

on the section
on buddy
replication.

Table 12.50. The <dataGravitation /> Element

The <dat aGravi tati on /> Element

Description This tag configures how data gravitation
is conducted. See this section on buddy
replication for details.

Parent <buddy />
Children
Bean equivalent BuddyReplicationConfig

125

Chapter 12. Configuration Ref...

Table 12.51. <dat aGravi tation /> Attributes

<dat aGravi tation /> Attributes

Attribute

auto

Bean Field

autoDataGravitatic

Allowed

irue, false

Default

true

Description

If true, when
aget() is
performed on

a cache and
nothing is found,
a gravitation
from neighboring
caches is
attempted. If this
is false, then
gravitations can
only occur if the Qq
option is
provided.

removeOnFind

dataGravitationRe

searchBackupTreestaGravitationSe

nbiaes @adBéend

aclBdalegpTrees

true

true

If true, when
gravitation
occurs, the
instance that
requests the
gravitation takes
ownership of
the state and
requests that all
other instances
remove the
gravitated state
from memory.

If true, incoming
gravitation
requests will
cause the cache
to search not just
its primary data
structure but its
backup structure
as well.

126

tion. set For ceDal

Configuration File Quick Reference

Table 12.52. The <l ocator /> Element

The <l ocat or /> Element

Description This tag provides a pluggable mechanism for
providing buddy location algorithms.

Parent <buddy />
Children <properties />
Bean equivalent BuddyLocatorConfig

Table 12.53. <l ocator /> Attributes

<l ocat or /> Attributes

Attribute Bean Field Allowed Default Description
class className A valid class that NextMemberBuddyAdaaddyLocat or
is available on implementation
the classpath to use when
selecting
buddies from
the cluster.

Please refer to
BuddyLocat or
javadocs for
details.

Table 12.54. The <j groupsConfig /> Element

The <j groupsConfi g /> Element

Description This tag provides a configuration which
is used with JGroups to create a network
communication channel.

Parent <clustering />

Children A series of elements representing JGroups
protocols (see JGroups documentation
[http://www.jgroups.org/javagroupsnew/
docs/ug.html]). Note that there are no child
elements if any of the element attributes are
used instead. See section on attributes.

Bean equivalent Configuration

127

http://www.jgroups.org/javagroupsnew/docs/ug.html
http://www.jgroups.org/javagroupsnew/docs/ug.html
http://www.jgroups.org/javagroupsnew/docs/ug.html

Chapter 12. Configuration Ref...

Table 12.55. <j groupsConfig /> Attributes

<j groupsConfig /> Attributes

Attribute Bean Field

Allowed

configFile clusterConfig

multiplexerStack muxStackName

A JGroups
configuration file
on the classpath

A valid
multiplexer
stack name that
exists in the
channel factory
passed in to the
Runt i meConfi g

Description

If this attribute

is used, then
any JGroups
elements
representing
protocols within
this tag are
ignored. Instead,
JGroups settings
are read from
the file specified.
Note that this
cannot be used
with the nul ti pl e
attribute.

This can only be
used with the
Runti meConfi g,
where you pass
in a JGroups
Channel Fact ory
instance using Run
If this attribute

is used, then
any JGroups
elements
representing
protocols within
this tag are
ignored. Instead,
the JGroups
channel is
created using the
factory passed
in. Note that

this cannot be
used with the
configFile
attribute.

xer St ack

ti meConfig. setM

128

Chapter 13.

JMX References

13.1. JBoss Cache Statistics

There is a whole wealth of information being gathered and exposed on to JMX for monitoring the
cache. Some of these are detailed below:

Table 13.1. JBoss Cache JMX MBeans

MBean

DataContainerimpl

Attribute/Operation Name

getNumberOfAttributes()

getNumberOfNodes()

Description

Returns the number of
attributes in all nodes in the
data container

Returns the number of nodes
in the data container

printDetails()

Prints details of the data
container

RPCManagerimpl

localAddressString

membersString

String representation of the
local address

String representation of the
cluster view

statisticsEnabled

Whether RPC statistics are
being gathered

replicationCount

replicationFailures

Number of successful
replications

Number of failed replications

successRatio

RPC call success ratio

RegionManagerimpl

dumpRegions()

Dumps a String representation
of all registered regions,
including eviction regions
depicting their event queue
sizes

BuddyManager

numRegions

buddyGroup

Number of registered regions

A String representation of the
cache's buddy group

TransactionTable

buddyGroupslParticipateln

String representations of all
buddy groups the cache
participates in

numberOfRegisteredTransactiofthe number of registered,

ongoing transactions

129

Chapter 13. IMX References

MBean

MVCCLockManager

Attribute/Operation Name

transactionMap

concurrencylLevel

numberOfLocksAvailable

Description

A String representation
of all currently registered
transactions mapped to
internal GlobalTransaction
instances

The configured concurrency
level

Number of locks in the shared
lock pool that are not used

numberOfLocksHeld

Number of locks in the shared
lock pool that are in use

testHashing(String fgn)

Tests the spreading of locks
across Fgns. For a given
(String based) Fqgn, this
method returns the index in the
lock array that it maps to.

ActivationInterceptor

CacheloaderInterceptor

Activations

CachelLoaderLoads

CachelLoaderMisses

Number of passivated nodes
that have been activated.

Number of nodes loaded

through a cache loader.

Number of unsuccessful
attempts to load a node
through a cache loader.

CacheMgmtinterceptor Hits Number of successful attribute

retrievals.

Misses Number of unsuccessful
attribute retrievals.

Stores Number of attribute store
operations.

Evictions Number of node evictions.

NumberOfAttributes Number of attributes currently
cached.

NumberOfNodes Number of nodes currently
cached.

ElapsedTime Number of seconds that the

cache has been running.

TimeSinceReset

Number of seconds since the
cache statistics have been
reset.

130

JBoss Cache Statistics

MBean

Attribute/Operation Name

AverageReadTime

Description

Average time in milliseconds
to retrieve a cache attribute,
including unsuccessful
attribute retrievals.

AverageWriteTime

Average time in milliseconds
to write a cache attribute.

HitMissRatio

Ratio of hits to hits and misses.
A hitis a get attribute operation
that results in an object being
returned to the client. The
retrieval may be from a cache
loader if the entry isn't in the
local cache.

ReadWriteRatio

Ratio of read operations to
write operations. This is the
ratio of cache hits and misses
to cache stores.

CacheStorelnterceptor

InvalidationInterceptor

CachelLoaderStores

Invalidations

Number of nodes written to the
cache loader.

Number of cached nodes that
have been invalidated.

Passivationinterceptor

Passivations

Number of cached nodes that
have been passivated.

TxInterceptor

Prepares

Number of transaction prepare
operations performed by this
interceptor.

Commits

Rollbacks

numberOfSyncsRegistered

Number of transaction commit
operations performed by this
interceptor.

Number of transaction
rollbacks operations
performed by this interceptor.

Number of synchronizations
registered with the transaction
manager pending completion
and removal.

131

Chapter 13. IMX References

13.2. IMX MBean Notifications

The following table depicts the JMX noatifications available for JBoss Cache as well as the cache
events to which they correspond. These are the notifications that can be received through the
CacheJmxW apper MBean. Each notification represents a single event published by JBoss Cache
and provides user data corresponding to the parameters of the event.

Table 13.2. JBoss Cache MBean Notifications

Notification Data CachelListener Event

Notification Type

org.jboss.cache.CacheStarted | String: cache service name @CacheStarted
org.jboss.cache.CacheStopped String: cache service name @CacheStopped
org.jboss.cache.NodeCreated | String: fgn, boolean: isPre, @NodeCreated
boolean: isOriginLocal
org.jboss.cache.NodeEvicted @ String: fgn, boolean: isPre, @NodeEvicted
boolean: isOriginLocal
org.jboss.cache.NodeLoaded | String: fqn, boolean: isPre @NodelLoaded
org.jboss.cache.NodeModifed @ String: fgn, boolean: isPre, @NodeModifed
boolean: isOriginLocal
org.jboss.cache.NodeRemoved String: fgn, boolean: isPre, @NodeRemoved
boolean: isOriginLocal
org.jboss.cache.NodeVisited | String: fgn, boolean: isPre @NodeVisited
org.jboss.cache.ViewChanged | String: view @ViewChanged
org.jboss.cache.NodeActivated String: fgn @NodeActivated
org.jboss.cache.NodeMoved | String: fromFgn, String: toFgn, @NodeMoved
boolean: isPre
org.jboss.cache.NodePassivatedtring: fgn @NodePassivated

132

	JBoss Cache Users' Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1.1. What is JBoss Cache?
	1.1.1. And what is POJO Cache?

	1.2. Summary of Features
	1.2.1. Caching objects
	1.2.2. Local and clustered modes
	1.2.3. Clustered caches and transactions
	1.2.4. Thread safety

	1.3. Requirements
	1.4. License

	Chapter 2. User API
	2.1. API Classes
	2.2. Instantiating and Starting the Cache
	2.3. Caching and Retrieving Data
	2.3.1. Organizing Your Data and Using the Node Structure

	2.4. The Fqn Class
	2.5. Stopping and Destroying the Cache
	2.6. Cache Modes
	2.7. Adding a Cache Listener - registering for cache events
	2.7.1. Synchronous and Asynchronous Notifications

	2.8. Using Cache Loaders
	2.9. Using Eviction Policies

	Chapter 3. Configuration
	3.1. Configuration Overview
	3.2. Creating a Configuration
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Validating Configuration Files
	3.2.3. Programmatic Configuration
	3.2.4. Using an IOC Framework

	3.3. Composition of a Configuration Object
	3.4. Dynamic Reconfiguration
	3.4.1. Overriding the Configuration via the Option API

	Chapter 4. Batching API
	4.1. Introduction
	4.2. Configuring batching
	4.3. Batching API

	Chapter 5. Deploying JBoss Cache
	5.1. Standalone Use/Programatic Deployment
	5.2. Via JBoss Microcontainer (JBoss AS 5.x)
	5.3. Automatic binding to JNDI in JBoss AS
	5.4. Runtime Management Information
	5.4.1. JBoss Cache MBeans
	5.4.2. Registering the CacheJmxWrapper with the MBeanServer
	5.4.2.1. Programatic Registration
	5.4.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)

	5.4.3. JBoss Cache Statistics
	5.4.4. Receiving JMX Notifications
	5.4.5. Accessing Cache MBeans in a Standalone Environment using the jconsole Utility

	Chapter 6. Version Compatibility and Interoperability
	6.1. API compatibility
	6.2. Wire-level interoperability
	6.3. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 7. Architecture
	7.1. Data Structures Within The Cache
	7.2. SPI Interfaces
	7.3. Method Invocations On Nodes
	7.3.1. Interceptors
	7.3.1.1. Writing Custom Interceptors

	7.3.2. Commands and Visitors
	7.3.3. InvocationContexts

	7.4. Managers For Subsystems
	7.4.1. RpcManager
	7.4.2. BuddyManager
	7.4.3. CacheLoaderManager

	7.5. Marshalling And Wire Formats
	7.5.1. The Marshaller Interface
	7.5.2. VersionAwareMarshaller

	7.6. Class Loading and Regions

	Chapter 8. Cache Modes and Clustering
	8.1. Cache Replication Modes
	8.1.1. Local Mode
	8.1.2. Replicated Caches
	8.1.2.1. Replicated Caches and Transactions
	8.1.2.1.1. One Phase Commits
	8.1.2.1.2. Two Phase Commits

	8.1.2.2. Buddy Replication
	8.1.2.2.1. Selecting Buddies
	8.1.2.2.2. BuddyPools
	8.1.2.2.3. Failover
	8.1.2.2.4. Configuration

	8.2. Invalidation
	8.3. State Transfer
	8.3.1. State Transfer Types
	8.3.2. Byte array and streaming based state transfer
	8.3.3. Full and partial state transfer
	8.3.4. Transient ("in-memory") and persistent state transfer
	8.3.5. Non-Blocking State Transfer
	8.3.6. Configuring State Transfer

	Chapter 9. Cache Loaders
	9.1. The CacheLoader Interface and Lifecycle
	9.2. Configuration
	9.2.1. Singleton Store Configuration

	9.3. Shipped Implementations
	9.3.1. File system based cache loaders
	9.3.2. Cache loaders that delegate to other caches
	9.3.3. JDBCCacheLoader
	9.3.3.1. JDBCCacheLoader configuration
	9.3.3.1.1. Table configuration
	9.3.3.1.2. DataSource
	9.3.3.1.3. JDBC driver
	9.3.3.1.4. c3p0 connection pooling
	9.3.3.1.5. Configuration example

	9.3.4. S3CacheLoader
	9.3.4.1. Amazon S3 Library
	9.3.4.2. Configuration

	9.3.5. TcpDelegatingCacheLoader
	9.3.6. Transforming Cache Loaders

	9.4. Cache Passivation
	9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	9.5. Strategies
	9.5.1. Local Cache With Store
	9.5.2. Replicated Caches With All Caches Sharing The Same Store
	9.5.3. Replicated Caches With Only One Cache Having A Store
	9.5.4. Replicated Caches With Each Cache Having Its Own Store
	9.5.5. Hierarchical Caches
	9.5.6. Multiple Cache Loaders

	Chapter 10. Eviction
	10.1. Design
	10.1.1. Collecting Statistics
	10.1.2. Determining Which Nodes to Evict
	10.1.3. How Nodes are Evicted
	10.1.4. Eviction threads

	10.2. Eviction Regions
	10.2.1. Resident Nodes

	10.3. Configuring Eviction
	10.3.1. Basic Configuration
	10.3.2. Programmatic Configuration

	10.4. Shipped Eviction Policies
	10.4.1. LRUAlgorithm - Least Recently Used
	10.4.2. FIFOAlgorithm - First In, First Out
	10.4.3. MRUAlgorithm - Most Recently Used
	10.4.4. LFUAlgorithm - Least Frequently Used
	10.4.5. ExpirationAlgorithm
	10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs in a node

	Chapter 11. Transactions and Concurrency
	11.1. Concurrent Access
	11.1.1. Multi-Version Concurrency Control (MVCC)
	11.1.1.1. MVCC Concepts
	11.1.1.2. MVCC Implementation
	11.1.1.2.1. Isolation Levels
	11.1.1.2.2. Concurrent Writers and Write-Skews

	11.1.1.3. Configuring Locking

	11.1.2. Pessimistic and Optimistic Locking Schemes

	11.2. JTA Support

	Part III. JBoss Cache Configuration References
	Chapter 12. Configuration References
	12.1. Sample XML Configuration File
	12.1.1. XML validation

	12.2. Configuration File Quick Reference

	Chapter 13. JMX References
	13.1. JBoss Cache Statistics
	13.2. JMX MBean Notifications

