Ticket Monster Tutorial

Marius Bogoevici, Pete Muir, Burr Sutter

What is TicketMonster?

TicketMonster is an example application that focuses on Java EE6 - JSF 2, JPA 2, CDI and JAX-RS
along with HTML5, jQuery Mobile, JSF and GWT. It is a moderately complex application that
demonstrates how to build modern web applications optimized for mobile & desktop. TicketMonster
is representative of an online ticketing broker - providing access to events (e.g. concerts,
shows, etc) with an online booking application.
Apart from being a demo, TicketMonster provides an already existing application structure that
you can use as a starting point for your app. You could try out your use cases,
test your own ideas, or, contribute improvements back to the community.
[image: gfx/octocat_social.png]

Fork us on GitHub!
The accompanying tutorials walk you through the various tools & technologies needed to build TicketMonster on your own. Alternatively you can download TicketMonster as a completed application and import it into your favorite IDE.
Before we dive into the code, let’s discuss the requirements for the application.

1. Use cases

We have grouped the current use cases in two major categories: end user oriented, and
administrative.
1.1. What can end users do?

The end users of the application want to attend some cool events. They will try
to find shows, create bookings, or cancel bookings. The use cases are:
	
look for current events;

	
look for venues;

	
select shows (events taking place at specific venues) and choose a performance time;

	
book tickets;

	
view current bookings;

	
cancel bookings;

Figure 1. End user use cases
[image: gfx/ticket-monster-user-use-cases.png]

1.2. What can administrators do?

Administrators are more concerned the operation of the business. They will manage the master data:
information about venues, events and shows, and will want to see how many tickets have been sold.
The use cases are:
	
add, remove and update events;

	
add, remove and update venues (including venue layouts);

	
add, remove and update shows and performances;

	
monitor ticket sales for current shows;

Figure 2. Administration use cases
[image: gfx/ticket-monster-administration-use-cases.png]

2. Architecture

Figure 3. TicketMonster architecture
[image: gfx/ticket-monster-architecture.png]

The application uses Java EE 6 services to provide business logic and persistence, utilizing
technologies such as CDI, EJB 3.1 and JAX-RS, JPA 2. These services back the user-facing booking
process, which is implemented using HTML5 and JavaScript, with support for mobile devices
through jQuery Mobile.
The administration site is centered around CRUD use cases, so instead of
writing everything manually, the business layer and UI are generated by Forge,
using EJB 3.1, CDI and JSF. For a better user experience, Richfaces UI components are used.
Monitoring sales requires staying in touch with the latest changes on the server side, so this
part of the application will be developed in GWT and showcases Errai’s support for real-time
updates via client-server CDI eventing.

3. How can you run it?

Before building and running TicketMonster, you must generate the administration site with Forge. See the tutorial for details.
3.1. Building TicketMonster

TicketMonster can be built from Maven, by runnning the following Maven command:
mvn clean package
If you want to run the Arquillian tests as part of the build, you can enable one of the two available Arquillian profiles.
For running the tests in an already running application server instance, use the arq-jbossas-remote profile.
mvn clean package -Parq-jbossas-remote
If you want the test runner to start an application server instance, use the arq-jbossas-managed profile. You must set up the JBOSS_HOME property to point to the server location, or update the src/main/test/resources/arquillian.xml file.
mvn clean package -Parq-jbossas-managed
If you intend to deploy into OpenShift, you can use the postgresql-openshift profile:
mvn clean package -Ppostgresql-openshift

3.2. Running TicketMonster

You can run TicketMonster into a local JBoss AS7 instance or on OpenShift.
Running TicketMonster locally

First, start JBoss Enterprise Application Platform 6 or JBoss AS 7 with the Web Profile.
	
Open a command line and navigate to the root of the JBoss server directory.

	
The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

Then, deploy TicketMonster.
	
Make sure you have started the JBoss Server as described above.

	
Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy
(You can use the `arq-jbossas-remote` profile for running tests as well)

	
This will deploy target/ticket-monster.war to the running instance of the server.

	
Now you can see the application running at http://localhost:8080/ticket-monster.

Running TicketMonster in OpenShift

First, create an OpenShift project.
	
Make sure that you have an OpenShift domain and you have created an application using the jbossas-7 cartridge (for more details, get started [here](https://openshift.redhat.com/app/getting_started)). If you want to use PostgreSQL, add the postgresql-8.4 cartridge too.

	
Ensure that the Git repository of the project is checked out.

Then, build and deploy it.
	
Build TicketMonster using either:

	
the default profile (with H2 database support)

mvn clean package

	
the postgresql-openshift profile (with PostgreSQL support) if the PostgreSQL cartrdige is enabled in OpenShift.

mvn clean package -Ppostgresql-openshift

	
Copy the target/ticket-monster.war`file in the OpenShift Git repository(located at `<root-of-openshift-application-git-repository>).

cp target/ticket-monster.war <root-of-openshift-application-git-repository>/deployments/ROOT.war

	
Navigate to <root-of-openshift-application-git-repository> folder

	
Remove the existing src folder and pom.xml file.

git rm -r src
 git rm pom.xml

	
Add the copied file to the repository, commit and push to Openshift

git add deployments/ROOT.war
git commit -m "Deploy TicketMonster"
git push

	
Now you can see the application running at at http://<app-name>-<domain-name>.rhcloud.com

4. Learn more

The example is accompanied by a series of tutorials that will walk you through the process of
creating the TicketMonster application from end to end.
After reading this series you will understand how to:
	
set up your project;

	
define the persistence layer of the application;

	
design and implement the business layer and expose it to the front-end via RESTful endpoints;

	
implement a mobile-ready front-end using HTML 5, JSON, JavaScript and jQuery Mobile;

	
develop a JSF-based administration interface rapidly using JSF and JBoss Forge;

	
thoroughly test your project using JUnit and Arquillian;

Throughout the series, you will be shown how to achieve these goals using JBoss Developer Studio.

Part I. Introduction & Getting Started

Chapter 1. Purpose and Target Audience

The target audience for this tutorial are those individuals who do not yet have a great deal of experience with:
	
Eclipse + JBoss Tools (JBoss Developer Studio)

	
JBoss Enterprise Application 6 or JBoss AS 7

	
Java EE 6 features like JAX-RS

	
HTML5 & jQuery for building an mobile web front-end.

This tutorial sets the stage for the creation of TicketMonster - our sample application that illustrates how to bring together the best features of Java EE 6 + HTML5 + JBoss to create a rich, mobile-optimized and dynamic application.
TicketMonster is developed as an open source application, and you can find it at github.
If you prefer to watch instead of read, a large portion of this content is also covered in video form.
In this tutorial, we will cover the following topics:
	
Working with JBoss Developer Studio (Eclipse + JBoss Tools)

	
Creating of a Java EE 6 project via a Maven archetype

	
Leveraging m2e and m2e-wtp

	
Using Forge to create a JPA entity

	
Using Hibernate Tools

	
Database Schema Generation

	
Deployment to a local JBoss Server

	
Adding a JAX-RS endpoint

	
Adding a jQuery Mobile client

	
Using the Mobile BrowserSim

Figure 1.1. JBoss Developer Studio 5 with Mobile BrowserSim
[image: gfx/introduction/jbds5_mobile_browsersim.png]

Chapter 2. Installation

The first order of business is to get your development environment setup and JBoss Developer Studio v5 installed. JBoss Developer Studio is Eclipse Indigo (3.7.2) for Java EE Developers plus select JBoss Tools and is available for free. Visit http://www.jboss.org/developer to download it. You may also choose to install JBoss Tools 3.3 into your existing Eclipse Indigo for Java EE Developers. This document uses screenshots depicting JBoss Developer Studio.
You must have a Java Development Kit (JDK) installed, either v6 or v7 will work - whilst a JVM runtime will work for most use cases, for a developer environment it is normally best to have the full JDK. System requirements for JBoss Developer Studio are listed in the online documentation.
Tip
If you prefer to see JBoss Developer studio being installed,
then check out this video.
To see JBoss Tools being intalled into Eclipse Indigo, see
this video.

The JBoss Developer Studio installer has a (very long!) name such as jbdevstudio-product-universal-5.0.0.v201204301418M-H119.jar
where the latter portion of the file name relates to build date and version information and the text near the front related to the target operating system. The "universal" installer is for any operating system. To launch the installer you may simply be able to double-click on the .jar file name or you may need to issue the following from the operating system command line:
java -jar jbdevstudio-product-universal-5.0.0.v201204301418M-H119.jar
We recommend using the "universal" installer as it handles Windows, Mac OS X and Linux - 32-bit and 64-bit versions.
Note
Even if you are installing on a 64-bit OS, you may still wish
to use the 32-bit JVM for the JBoss Developer Studio (or
Eclipse + JBoss Tools). Only the 32-bit version provides the
Visual Page Editor - a split-pane editor that gives you a
glimpse of what your HTML/XHTML (JSF, JSP, etc) will look like.
Also, the 32-bit version uses less memory than the 64-bit
version. You may still run your application server in 64-bit
JVMs if needed to insure compatibility with the production
environment whilst keeping your IDE in 32-bit mode.

Figure 2.1. Installation Wizard, Step 1 of 9
[image: gfx/introduction/installer_wizard_page1.png]

The rest of the steps are fairly self explanatory. If you run into trouble, please consult the videos above as they explore a few troubleshooting tips related to JRE/JDK setup.
Please make sure to say Yes to the prompt that says "Will you allow JBoss Tools team to receive anonymous usage statistics for this Eclipse instance with JBoss Tools?". This information is very helpful to us when it comes to prioritizing our QA efforts in terms of operating system platforms. More information concerning our usage tracking can be found at http://www.jboss.org/tools/usage
You can skip the step in the installation wizard that allows you to install JBoss Enterprise Application Platform 6 or JBoss AS 7 as we will do this in the next step.

Chapter 3. Creating a new Java EE 6 project with Maven

Tip
For a deeper dive into the world of Maven and how it is used with
JBoss Developer Studio 5 and JBoss Enterprise Application
Platform 6 (or JBoss Tools 3.3 and JBoss AS 7) review
link: this video.

Now that everything is properly installed, configured, running and verified to work, let’s build something "from scratch".
We recommend that you switch to the JBoss Perspective if you have not already.
Tip
If you close JBoss Central, it is only a click away - simply
click on the JBoss icon in the Eclipse toolbar - it is normally
the last icon, on the last row - assuming you are in the JBoss
Perspective.

First, select Create Projects → Java EE Web Project in JBoss Central. Under the covers, this uses a Maven archetype which creates a Java EE 6 web application (.war), based around Maven. The project can be built outside of the IDE, and in continuous integration solutions like Hudson/Jenkins.
Figure 3.1. JBoss Central
[image: gfx/introduction/jboss_dev_studio_jboss_central.png]

You will be prompted with a dialog box that verifies that JBoss Developer Studio is configured correctly. If you are in a brand new workspace, the application server will not be configured yet and you will notice the lack of a check mark on the server/runtime row.
Figure 3.2. New Project Wizard
[image: gfx/introduction/new_project_wizard.png]

Note
There are several ways to add JBoss Enterprise Application
Platform 6 or JBoss AS 7 to JBoss Developer Studio. The
Install… button on the new project wizard is probably the
easiest, but you can use any of the methods you are familiar
with!

To add JBoss Enterprise Application Platform or JBoss AS 7, click on the Install… button, or if you have not yet downloaded and unzipped the server, click on the Download and Install… button.
Caution
The download option only works with the community application
server.

Selecting Install… will pop up the JBoss Runtime Detection section of Preferences. You can always get back to this dialog by selecting Preferences → JBoss Tools → JBoss Tools Runtime Detection.
Figure 3.3. JBoss Tools Runtime Detection
[image: gfx/introduction/jboss_tools_runtime_detection.png]

Select the Add button which will take you to a file browser dialog where you should locate your unzipped JBoss server.
Figure 3.4. Runtime Open Dialog
[image: gfx/introduction/runtime_open_dialog.png]

Select Open and JBoss Developer Studio will pop up the Searching for runtimes… window.
Figure 3.5. Searching for runtimes window
[image: gfx/introduction/searching_for_runtimes_dialog.png]

Simply select OK. You should see the added runtime in the Paths list.
Figure 3.6. JBoss Tools Runtime Detection Completed
[image: gfx/introduction/jboss_tools_runtime_detection_after.png]

Select OK to close the Preferences dialog, and you will be returned to the New Project Example dialog, with the the server/runtime found.
Figure 3.7. JBoss AS 7.0/7.1 or EAP 6 Found
[image: gfx/introduction/as_eap_found.png]

Select Next.
Figure 3.8. New Project Wizard Step 2
[image: gfx/introduction/new_project_example_step_2.png]

The default Project name is jboss-javaee6-webapp. If this field appears blank, it is because your workspace already contains a "jboss-javaee6-webapp" in which case just provide another name for your project.
The Target Runtime allows you to choose between JBoss Enterprise Application Platform and JBoss AS 7. If it is left empty, JBoss AS 7 will be elected.
Select Finish.
JBoss Tools/JBoss Developer Studio will now generate the template project and import it into the workspace. You will see it pop up into the Project Explorer and a message that asks if you would like to review the readme file.
Figure 3.9. New Project Wizard Step 3
[image: gfx/introduction/prompt_for_readme.png]

Select Finish

Chapter 4. Exploring the newly generated project

Using the Project Explorer, open up the generated project, and double-click on the pom.xml.
The generated project is a Maven-based project with a pom.xml in its root directory.
Figure 4.1. Project Explorer
[image: gfx/introduction/newly_generated_project_explorer.png]

JBoss Developer Studio and JBoss Tools include m2e and m2e-wtp. m2e is the Maven Eclipse plug-in and provides a graphical editor for editing pom.xml files, along with the ability to run maven goals directly from within Eclipse. m2e-wtp allows you to deploy your Maven-based project directly to any Web Tools Project (WTP) compliant application server. This means you can drag & drop, use Run As → Run on Server and other mechanisms to have the IDE deploy your application.
The pom.xml editor has several tabs along its bottom edge.
Figure 4.2. pom.xml Editor Tabs
[image: gfx/introduction/pom_xml_tabs.png]

For this tutorial, we do not need to edit the pom.xml as it already provides the Java EE 6 APIs that we will need (e.g. JPA, JAX-RS, CDI). You should spend some time exploring the Dependencies and the pom.xml (source view) tabs.
One key element to make note of is <jboss.bom.version>1.0.0.M6</jboss.bom.version> which establishes if this project uses JBoss Enterprise Application Platform or JBoss AS dependencies. The BOM (Bill of Materials) specifies the versions of the Java EE (and other) APIs defined in the dependency section.
If you are using JBoss Enterprise Application Platform 6 and you selected that as your Target Runtime, you will find a -redhat-1 suffix on the version string.
Caution
The specific version (e.g. 1.0.0.M6) is very likely to change,
so do not be surprised if the version is slightly different.

Figure 4.3. Project Explorer Java Packages
[image: gfx/introduction/project_explorer_java_packages.png]

Using the Project Explorer, drill-down into src/main/java under Java Resources.
The initial project includes the following Java packages:
	
.controller

	
 contains the backing beans for #{newMember} and #{memberRegistration} in the JSF page index.xhtml

	
.data

	
 contains a class which uses @Produces and @Named to return the list of members for index.xhtml

	
.model

	
 contains the JPA entity class, a POJO annotated with @Entity, annodated with Bean Validation (JSR 303) constraints

	
.rest

	
 contains the JAX-RS endpoints, POJOs annotated with @Path

	
.service

	
 handles the registration transaction for new members

	
.util

	
 contains Resources.java which sets up an alias for @PersistenceContext to be injectable via @Inject

Now, let’s explore the resources in the project.
Figure 4.4. Project Explorer Resources
[image: gfx/introduction/project_explorer_resources.png]

Under src you will find:
	
main/resources/import.sql

	
 contains insert statements that provides initial database data. This is particularly useful when hibernate.hbm2dll.auto=create-drop is set in persistence.xml. hibernate.hbm2dll.auto=create-drop causes the schema to be recreated each time the application is deployed.

	
main/resources/META-INF/persistence.xml

	
 establishes that this project contains JPA entities and it identifies the datasource, which is deployed alongside the project. It also includes the hibernate.hbm2dll.auto property set to create-drop by default.

	
test/java/test

	
 provides the .test package that contains MemberRegistrationTest.java, an Arquillian based test that runs both fomm within JBoss Developer Studio via Run As → JUnit Test and at the command line:

mvn test –Parq-jbossas-remote

	
src/main/webapp

	
 contains index.xhtml, the JSF-based user interface for the sample application. If you double-click on that file you will see Visual Page Editor allows you to visually navigate through the file and see the source simultaneously. Changes to the source are immediately reflected in the visual pane.

Figure 4.5. Visual Page Editor
[image: gfx/introduction/visual_page_editor.png]

In src/main/webapp/WEB-INF, you will find three key files:
	
beans.xml

	
 is an empty file that indicates this is a CDI capable EE6 application

	
faces-config.xml

	
 is an empty file that indicates this is a JSF capable EE6 application

	
jboss-javaee6-webapp-ds.xml

	
 when deployed, creates a new datasource within the JBoss container

Chapter 5. Adding a new entity using Forge

There are several ways to add a new JPA entity to your project:
	
Starting from scratch

	
 Right-click on the .model package and select New → Class. JPA entities are annotated POJOs so starting from a simple class is a common approach.

	
Reverse Engineering

	
 Right-click on the "model" package and select New → JPA Entities from Tables. For more information on this technique see this video

	
Using Forge

	
 to create a new entity for your project using a CLI (we will explore this in more detail below)

	
Reverse Engineering with Forge

	
 Forge has a Hibernate Tools plug-in that allows you to script the conversion of RDBMS schema into JPA entities. For more information on this technique see this video.

For the purposes of this tutorial, we will take advantage of Forge to add a new JPA entity. This requires the least keystrokes, and we do not yet have a RDBMS schema to reverse engineer. There is also an optional section for adding an entity using New → Class.
Right-click on the .model package in the Project Explorer and select Show In → Forge Console.
Figure 5.1. Show In Forge Console
[image: gfx/introduction/show_in_forge_console.png]

Tip
Alternative methods to activate Forge include:
	
Window → Show View → Forge Console

	
Ctrl 4 (Windows) or Cmd 4 (Mac).

Note: the Show In method will issue a "pick-up" command to switch you to the
right location within your project.

The first time you start Forge, you will be prompted with a Forge Not Running dialog, select Yes.
Figure 5.2. Show Forge Not Running
[image: gfx/introduction/forge_is_not_running.png]

Tip
If you are not prompted you can always start Forge using the green arrow (or
stop via the red square) in the Forge Console tab.
Figure 5.3. Show Forge Start/Stop
[image: gfx/introduction/forge_console_tab.png]

Figure 5.4. Show Forge Console
[image: gfx/introduction/forge_console.png]

Forge is a command-oriented rapid application development tool that allows you to enter commands that generate classes and code. It will automatically update the IDE for you. A key feature is "content assist" or "tab completion", activated by pressing tab.
To generate an entity, use these commands:
entity --named Event --package org.jboss.tools.examples.model
field string --named name
validation setup
constraint NotNull --onProperty name
constraint Size --onProperty name --min 5 --max 50 --message "Must be > 5 and < 50"
field string --named description
constraint Size --onProperty description --min 20 --max 1000 --message "Must be > 20 and < 1000"
field boolean --named major
field string --named picture
Let’s work through this, step by step.
At the [jboss-jbossee6-webapp] model $ prompt, type en and hit the tab key on your keyboard. entity will fill in. Hit tab again and entity --named will appear. Type in Event and add a space — Forge can not anticipate the name of your new entity!
Hit tab again and select --package. Now, hit tab 5 times to fill in org.jboss.tools.examples. Since there are multiple entries underneath examples, Forge will display those options. Type in m and hit tab to select model.
Now hit the Enter/Return key to watch the command execute. The Event entity will be generated into the "model" package and open up inside of Eclipse.
Figure 5.5. Forge new entity
[image: gfx/introduction/forge_event_entity.png]

Figure 5.6. Event Entity
[image: gfx/introduction/forge_event_entity_created.png]

Note
@Entity public class is placed on the same line as `
import java.lang.Override` by Forge. Using the formatter your IDE provides on
the entity will make this look more like you would expect!

Forge has automatically changed the context of the CLI to Event.java, and typing ls will provide a listing of the fields and methods.
Figure 5.7. Forge ls
[image: gfx/introduction/forge_ls.png]

Now that the base Event entity has been created, let’s add the fields and their JSR 303 Bean Validation constraints.
This next step involves adding a name property for the Event entity so that an event could hold data like "Rock Concert".
Type fie and hit tab to fill in field, if you hit tab again, Forge will list out the possible field types. Type in s and hit tab, Forge will respond with string. Hit tab again to get --named and type in name.
You should end up with the command field string --named name, to execute it, press enter. This will add a private String name; field, and the appropriate accessor and mutator (getter and setter) methods. You should also notice that the toString method is tweaked to include name as well.
Figure 5.8. @Column name
[image: gfx/introduction/forge_added_name.png]

From this point forward, we will assume you have the basics of using Forge’s interactive command line. The remaining commands to run are:
validation setup
constraint NotNull --onProperty name
constraint Size --onProperty name --min 5 --max 50 --message "Must be > 5 and < 50"
field string --named description
constraint Size --onProperty description --min 20 --max 1000 --message "Must be > 20 and < 1000"
field boolean --named major
field string --named picture
The easiest way to see the results of Forge operating on the Event.java JPA Entity is to use the Outline View of JBoss Developer Studio. It is normally on the right-side of the IDE when using the JBoss Perspective.
Figure 5.9. Outline View
[image: gfx/introduction/outline_of_event.png]

Chapter 6. Reviewing persistence.xml & updating import.sql

By default, the entity classes generate the database schema, and is controlled by src/main/resources/persistence.xml.
The two key settings are the <jta-data-source> and the hibernate.hbm2ddl.auto property. The datasource maps to the datasource defined in src\main\webapp\jboss-javaee6-webapp–ds.xml.
The hibernate.hbm2ddl.auto=create-drop property indicates that all database tables will be dropped when an application is undeployed, or redeployed, and created when the application is deployed.
The import.sql file contains SQL statements that will inject sample data into your initial database structure. Add the following insert statements:
insert into Event (id, name, description, major, picture, version) values (1, 'Shane''s Sock Puppets', 'This critically acclaimed masterpiece...', true, 'http://dl.dropbox.com/u/65660684/640px-Carnival_Puppets.jpg', 1);
insert into Event (id, name, description, major, picture, version) values (2, 'Rock concert of the decade', 'Get ready to rock...', true, 'http://dl.dropbox.com/u/65660684/640px-Weir%2C_Bob_(2007)_2.jpg', 1);

Chapter 7. Adding a new entity using JBoss Developer Studio

Alternatively, we can add an entity with JBoss Developer Studio or JBoss Tools.
First, right-click on the .model package and select New → Class. Enter the class name as Venue - our concerts & shows happen at particular stadiums, concert halls and theaters.
First, add some private fields representing the entities properties, which translate to the columns in the database table.
package org.jboss.tools.examples.model;

public class Venue {
 private Long id;
 private String name;
 private String description;
 private int capacity;
}
Now, right-click on the editor itself, and from the pop-up, context menu select Source → Generate Getters and Setters.
Figure 7.1. Generate Getters and Setters Menu
[image: gfx/introduction/generate_getters_setters.png]

This will create accessor and mutator methods for all your fields, making them accessible properties for the entity class.
Figure 7.2. Generate Getters and Setters Dialog
[image: gfx/introduction/getter_setter_dialog.png]

Click Select All and then OK.
Figure 7.3. Venue.java with gets/sets
[image: gfx/introduction/venue_after_getters_setters.png]

Now, right-click on the editor, from the pop-up context menu select Source → Generate Hibernate/JPA Annotations.
If you are prompted to save Venue.java, simply select OK.
Figure 7.4. Save Modified Resources
[image: gfx/introduction/save_modified_resources.png]

The Hibernate: add JPA annotations wizard will start up. First, verify that Venue is the class you are working on.
Figure 7.5. Hibernate: add JPA annotations
[image: gfx/introduction/hibernate_add_jpa_annotations.png]

Select Next.
The next step in the wizard will provide a sampling of the refactored sources – describing the basic changes that are being made to Venue.
Figure 7.6. Hibernate: add JPA annotations Step 2
[image: gfx/introduction/hibernate_add_jpa_annotations_step2.png]

Select Finish.
Now you may wish to add the Bean Validation constraint annotations, such as @NotNull to the fields.

Chapter 8. Deployment

At this point, if you have not already deployed the application, right click on the project name in the Project Explorer and select Run As → Run on Server. If needed, this will startup the application server instance, compile & build the application and push the application into the JBOSS_HOME/standalone/deployments directory. This directory is scanned for new deployments, so simply placing your war in the directory will cause it to be deployed.
Caution
If you have been using another application server or web server
such as Tomcat, shut it down now to avoid any port conflicts.

Figure 8.1. Run As → Run on Server
[image: gfx/introduction/run_as_run_on_server.png]

Now, deploy the h2console webapp. You can read how to do this in the h2console quickstart.
The Run As → Run on Server option will also launch the internal Eclipse browser with the appropriate URL so that you can immediately begin interacting with the application.
Figure 8.2. Eclipse Browser after Run As → Run on Server
[image: gfx/introduction/result_run_on_server.png]

Now, go to http://localhost:8080/h2console to start up the h2 console.
Figure 8.3. h2console in browser
[image: gfx/introduction/h2console_in_browser.png]

Use jdbc:h2:mem:jboss-javaee6-webapp as the JDBC URL (this is defined in src/main/webapp/WEB-INF/jboss-javaee6-webapp-ds.xml), sa as the username and sa as the password.
Click Connect
You will see both the EVENT table, the VENUE table and the MEMBER tables have been added to the H2 schema.
And if you enter the SQL statement: select * from event and select the Run (Ctrl-Enter) button, it will display the data you entered in the import.sql file in a previous step. With these relatively simple steps, you have verified that your new EE 6 JPA entities have been added to the system and deployed successfully, creating the supporting RDBMS schema as needed.
Figure 8.4. h2console Select * from Event
[image: gfx/introduction/h2console_select_from_event.png]

Chapter 9. Adding a JAX-RS RESTful web service

The goal of this section of the tutorial is to walk you through the creation of a POJO with the JAX-RS annotations.
Right-click on the .rest package, select New → Class from the context menu, and enter EventService as the class name.
Figure 9.1. New Class EventService
[image: gfx/introduction/new_class_eventservice.png]

Select Finish.
Replace the contents of the class with this sample code:
package org.jboss.tools.examples.rest;

@Path("/events")
@RequestScoped
public class EventService {
 @Inject
 private EntityManager em;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<Event> getAllEvents() {
 final List<Event> results =
 em.createQuery(
 "select e from Event e order by e.name").getResultList();
 return results;
 }
}
This class is a JAX-RS endpoint that returns all Events.
Figure 9.2. EventService after Copy and Paste
[image: gfx/introduction/event_service_copy_paste.png]

You’ll notice a lot of errors, relating to missing imports. The easiest way to solve this is to right-click inside the editor and select Source → Organize Imports from the context menu.
Figure 9.3. Source → Organize → Imports
[image: gfx/introduction/source_organize_imports.png]

Some of the class names are not unique. Eclipse will prompt you with any decisions around what class is intended. Select the following:
	
javax.ws.rs.core.MediaType

	
org.jboss.tools.examples.Event

	
javax.ws.rs.Produces

	
java.util.List

	
java.inject.Inject

	
java.enterprise.context.RequestScoped

The following screenshots illustrate how you handle these decisions. The Figure description indicates the name of the class you should select.
Figure 9.4. javax.ws.rs.core.MediaType
[image: gfx/introduction/organize_imports_1.png]

Figure 9.5. org.jboss.tools.examples.Event
[image: gfx/introduction/organize_imports_2.png]

Figure 9.6. javax.ws.rs.Produces
[image: gfx/introduction/organize_imports_3.png]

Figure 9.7. java.util.List
[image: gfx/introduction/organize_imports_4.png]

Figure 9.8. javax.inject.Inject
[image: gfx/introduction/organize_imports_5.png]

Figure 9.9. javax.enterprise.context.RequestScoped
[image: gfx/introduction/organize_imports_6.png]

You should end up with these imports:
import java.util.List;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.persistence.EntityManager;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.tools.examples.model.Event;
Once these import statements are in place you should have no more compilation errors. When you save EventService.java, you will see it listed in JAX-RS REST Web Services in the Project Explorer.
Figure 9.10. Project Explorer JAX-RS Services
[image: gfx/introduction/project_explorer_jax_rs_services.png]

This feature of JBoss Developer Studio and JBoss Tools provides a nice visual indicator that you have successfully configured your JAX-RS endpoint.
You should now redeploy your project via Run As → Run on Server, or by right clicking on the project in the Servers tab and select Full Publish.
Figure 9.11. Full Publish
[image: gfx/introduction/full_publish.png]

Using a browser, visit http://localhost:8080/jboss-javaee6-webapp/rest/events to see the results of the query, formatted as JSON (JavaScript Object Notation).
Figure 9.12. JSON Response
[image: gfx/introduction/json_event_results.png]

Note
The rest prefix is setup in a file called JaxRsActivator.java which contains
a small bit of code that sets up the application for JAX-RS endpoints.

Chapter 10. Adding a jQuery Mobile client application

Now, it is time to add a HTML5, jQuery based client application that is optimized for the mobile web experience.
There are numerous JavaScript libraries that help you optimize the end-user experience on a mobile web browser. We have found that jQuery Mobile is one of the easier ones to get started with but as your skills mature, you might investigate solutions like Sencha Touch, Zepto or Jo. This tutorial focuses on jQuery Mobile as the basis for creating the UI layer of the application.
The UI components interact with the JAX-RS RESTful services (e.g. EventService.java).
Tip
For more information on building HTML5 + REST applications with JBoss technologies, check
out Aerogear.

These next steps will guide you through the creation of a file called mobile.html that provides a mobile friendly version of the application, using jQuery Mobile.
First, using the Project Explorer, navigate to src/main/webapp, and right-click on webapp, and choose New HTML file.
Figure 10.1. New HTML File
[image: gfx/introduction/new_html_file.png]

Caution
The New HTML File Wizard starts off with your target location being
m2e-wtp/web-resources, this is an incorrect location and it is a bug,
JBIDE-11472.
It is possible it may already be corrected by the time you read through this
document.

Change directory to jboss-javaee6-webapp/src/main/webapp and enter name the file mobile.html.
Figure 10.2. New HTML File src/main/webapp
[image: gfx/introduction/new_html_file_correct_location.png]

Select Next.
On the Select HTML Template page of the New HTML File wizard, select HTML5 jQuery Mobile Page. This template will get you off to a fast start using jQuery Mobile.
Figure 10.3. Select HTML5 jQuery Mobile Template
[image: gfx/introduction/select_html_template.png]

Select Finish.
The document must start with <!DOCTYPE html> as this identifies the page as HTML 5 based. For this particular phase of the tutorial, we are not introducing a bunch of HTML 5 specific concepts like the new form fields (type=email), websockets or the new CSS capabilities. For now, we simply wish to get our mobile application completed as soon as possible. The good news is that jQuery and jQuery Mobile make the consumption of a RESTful endpoint very simple.
You might notice that in the Visual Page Editor, the visual portion is not that attractive, this is because the majority of jQuery Mobile magic happens at runtime and our visual page editor simply displays the HTML without embellishment.
Visit http://localhost:8080/jboss-javaee6-webapp/mobile.html.
Note
Note: Normally HTML files are deployed automatically, if you find it missing,
just use Full Publish or Run As Run on Server as demonstrated in previous steps.

As soon as the page loads, you will be prompted with an alert box with "Ready to Go". This alert box is generated from JavaScript that is associated with the pageinit event.
Figure 10.4. jQuery Mobile Template
[image: gfx/introduction/jquery_mobile_template.png]

One side benefit of using a HTML5 + jQuery-based front-end to your application is that it allows for fast turnaround in development. Simply edit the HTML file, save the file and refresh your browser.
Now the secret sauce to connecting your front-end to your back-end is simply editing the pageinit JavaScript event and including an invocation of the previously created Events JAX-RS service.
Insert the following block of code directly below the alert()
 $.getJSON("rest/events", function(events) {
 // console.log("returned are " + results);
 var listOfEvents = $("#listOfItems");
 listOfEvents.empty();
 $.each(events, function(index, event) {
 // console.log(event.name);
 listOfEvents.append("" + event.name + "");
 });
 listOfEvents.listview("refresh");
 });
Note:
	
using $.getJSON("rest/events") to hit the EventService.java

	
a commented out // console.log, causes problems in IE

	
Getting a reference to listOfItems which is declared in the HTML using an id attribute

	
Calling .empty on that list - removing the exiting One, Two, Three items

	
For each event - based on what is returned in step 1

	
another commented out // console.log

	
append the found event to the UL in the HTML

	
refresh the listOfItems

Note
You may find the .append("...") syntax unattractive, embedding HTML inside
of the JS .append method, this can be corrected using various JS templating
techniques.

The result is ready for the average mobile phone. Simply refresh your browser to see the results.
Figure 10.5. jQuery Mobile REST Results
[image: gfx/introduction/jquery_mobile_results.png]

JBoss Developer Studio and JBoss Tools includes BrowerSim to help you better understand what your mobile application will look like. Look for a "phone" icon in the toolbar, visible in the JBoss Perspective.
Figure 10.6. Mobile BrowserSim icon in Eclipse Toolbar
[image: gfx/introduction/mobile_browsersim_in_toolbar.png]

Note
The BrowserSim tool takes advantage of a locally installed Safari (Mac & Windows)
on your workstation. It does not package a whole browser by itself. You will
need to install Safari on Windows to leverage this feature – but that is more
economical than having to purchase a MacBook to quickly look at your mobile-web
focused application!

Figure 10.7. Mobile BrowserSim
[image: gfx/introduction/mobile_browsersim.png]

The Mobile BrowserSim has a Devices menu, on Mac it is in the top menu bar and on Windows it is available via right-click as a pop-up menu. This menu allows you to change user-agent and dimensions of the browser, plus change the orientation of the device.
Figure 10.8. Mobile BrowserSim Devices Menu
[image: gfx/introduction/mobile_browsersim_devices_menu.png]

Figure 10.9. Mobile BrowserSim on Windows 7
[image: gfx/introduction/mobile_browsersim_windows_menu.png]

You can also add your own custom device/browser types.
Figure 10.10. Mobile BrowserSim Custom Devices Window
[image: gfx/introduction/mobile_browsersim_custom_devices.png]

Under the File menu, you will find a View Page Source option that will open up the mobile-version of the website’s source code inside of JBoss Developer Studio. This is a very useful feature for learning how other developers are creating their mobile web presence.
Figure 10.11. Mobile BrowserSim View Source
[image: gfx/introduction/mobile_browsersim_bofa_source.png]

Chapter 11. Conclusion

This concludes our introduction to building HTML5 Mobile Web applications using Java EE 6 with Forge and JBoss Developer Studio. At this point, you should feel confident enough to tackle any of the additional exercises to learn how the TicketMonster sample application is constructed.

Part II. Building the persistence layer with JPA2 and Bean Validation

Chapter 12. What will you learn here?

You have set up your project successfully. Now it is time to begin working on the TicketMonster
application, and the first step is adding the persistence layer. After reading this guide,
you’ll understand what design and implementation choices to make. Topics covered include:
	
RDBMS design using JPA entity beans

	
How to validate your entities using Bean Validation

	
How to populate test data

	
Basic unit testing using JUnit

We’ll round out the guide by revealing the required, yet short and sweet, configuration.
The tutorial will show you how to perform all these steps in JBoss Developer Studio, including
screenshots that guide you through. For those of you who prefer to watch and learn, the included
videos show you how we performed all the steps.
TicketMonster contains 14 entities, of varying complexity. In this tutorial we’ll classify
the entities, and walk through designing and creating one of each group.

Chapter 13. Your first entity

The simplest kind of entities are often those representing lookup tables. TicketCategory is a classic lookup table that defines the ticket types available (e.g. Adult, Child, Pensioner). A ticket category has one property - description.
What’s in a name?
Using a consistent naming scheme for your entities can help another developer get up
to speed with your code base. We’ve named all our lookup tables XXXCategory to allow
us to easily spot them.

Let’s start by creating a JavaBean to represent the ticket category:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

public class TicketCategory {

 /* Declaration of fields */

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 */
 private String description;

 /* Boilerplate getters and setters */

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Override
 public String toString() {
 return description;
 }
}

We’re going to want to keep the ticket category in collections (for example, to present it as part of drop down in the UI), so it’s important that we properly implement equals() and hashCode(). At this point, we need to define a property (or group of properties) that uniquely identifies the ticket category. We refer to these properties as the "entity’s natural identity".
Defining an entity’s natural identity
Using an ORM introduces additional constraints on object identity. Defining the
properties that make up an entity’s natural identity can be tricky, but is very
important. Using the object’s identity, or the synthetic identity (database generated
primary key) identity can introduce unexpected bugs into your application, so you
should always ensure you use a natural identity. You can read more about the issue at
https://community.jboss.org/wiki/EqualsAndHashCode.

For ticket category, the choice of natural identity is easy and obvious - it must be the one property, description that the entity has! Having identified the natural identity, adding an equals() and hashCode() method is easy. In Eclipse, choose Source → Generate hashCode() and equals()…
Figure 13.1. Generate hashCode() and equals() in Eclipse
[image: gfx/eclipse-generate-hashcode-equals.png]

Now, select the properties to include:
Figure 13.2. Generate hashCode() and equals() in Eclipse
[image: gfx/eclipse-generate-hashcode-equals-2.png]

Now that we have a JavaBean, let’s proceed to make it an entity. First, add the @Entity annotation to the class:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 ...

}

And, add the synthetic id:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 ...

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 ...

}

As we decided that our natural identifier was the description, we should introduce a unique constraint on the property:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 ...

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 */
 @Column(unique = true)
 private String description;

 ...
}

It’s very important that any data you place in the database is of the highest quality - this data is probably one of your organisations most valuable assets! To ensure that bad data doesn’t get saved to the database by mistake, we’ll use Bean Validation to enforce constraints on our properties.
What is Bean Validation?
Bean Validation (JSR 303) is a Java EE specification which:
	
provides a unified way of declaring and defining constraints on an object model.

	
defines a runtime engine to validate objects

Bean Validation includes integration with other Java EE specifications, such as JPA.
Bean Validation constraints are automatically applied before data is persisted to the
database, as a last line of defence against bad data.

The description of the ticket category should not be empty for two reasons. Firstly, an empty ticket category description is no use to a person trying to book a ticket - it doesn’t convey any information. Secondly, as the description forms the natural identity, we need to make sure the property is always populated.
Let’s add the Bean Validation constraint @NotEmpty:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 ...

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 * <p>
 * The description must not be null and must be one or more characters, the Bean Validation constraint <code>@NotEmpty</code>
 * enforces this.
 * </p>
 *
 */
 @Column(unique = true)
 @NotEmpty
 private String description;

 ...
}

And that is our first entity! Here is the complete entity:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java.

/**
 * <p>
 * A lookup table containing the various ticket categories. E.g. Adult, Child, Pensioner, etc.
 * </p>
 */
@Entity
public class TicketCategory {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 * <p>
 * The description must not be null and must be one or more characters, the Bean Validation constraint <code>@NotEmpty</code>
 * enforces this.
 * </p>
 *
 */
 @Column(unique = true)
 @NotEmpty
 private String description;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 /* toString(), equals() and hashCode() for TicketCategory, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 TicketCategory that = (TicketCategory) o;

 if (description != null ? !description.equals(that.description) : that.description != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 return description != null ? description.hashCode() : 0;
 }

 @Override
 public String toString() {
 return description;
 }
}

TicketMonster contains another lookup tables, EventCategory. It’s pretty much identical to TicketCategory, so we leave it as an exercise to the reader to investigate, and understand. If you are building the application whilst following this tutorial, copy the source over from the TicketMonster example.

Chapter 14. Database design & relationships

First, let’s understand the the entity design.
An Event may occur at any number of venues, on various days and at various times. The intersection between an event and a venue is a Show, and each show can have a Performance which is associated with a date and time.
Venues are a separate grouping of entities, which, as mentioned, intersect with events via shows. Each venue consists of groupings of seats, each known as a Section.
Every section, in every show is associated with a ticket category via the TicketPriceCategory entity.
Users must be able to book tickets for performances. A Booking is associated with a performance, and contains a collection of tickets.
Finally, both events and venues can have "media items", such as images or videos attached.
Figure 14.1. Entity-Relationship Diagram
[image: gfx/database-design.png]

14.1. Media items

Storing large binary objects, such as images or videos in the database isn’t advisable (as it can lead to performance issues), and playback of videos can also be tricky, as it depends on browser capabilities. For TicketMonster, we decided to make use of existing services to host images and videos, such as YouTube or Flickr. All we store in the database is the URL the application should use to access the media item, and the type of the media item (note that the URL forms a media items natural identifier). We need to know the type of the media item in order to render the media correctly in the view layer.
In order for a view layer to correctly render the media item (e.g. display an image, embed a media player), it’s likely that special code has had to have been added. For this reason we represent the types of media that TicketMonster understands as a closed set, unmodifiable at runtime. An enum is perfect for this!
Luckily, JPA has native support for enums, all we need to do is add the @Enumerated annotation:
src/main/java/org/jboss/jdf/example/ticketmonster/model/MediaItem.java.

 ...

 /**
 * <p>
 * The type of the media, required to render the media item corectly.
 * </p>
 *
 * <p>
 * The media type is a closed set - as each different type of media requires support coded into the view layers, it
 * cannot be expanded upon without rebuilding the application. It is therefore represented by an enumeration. We instruct
 * JPA to store the enum value using it's String representation, so that we can later reorder the enum members, without
 * changing the data. Of course, this does mean we can't change the names of media items once the app is put into
 * production.
 * </p>
 */
 @Enumerated(STRING)
 private MediaType mediaType;

 ...

@Enumerated(STRING) or @Enumerated(ORDINAL)?
JPA can store an enum value using it’s ordinal (position in the list of declared enums)
or it’s STRING (the name it is given). If you choose to store an ordinal, you musn’t alter
the order of the list. If you choose to store the name, you musn’t change the enum name.
The choice is yours!

The rest of MediaItem shouldn’t present a challenge to you. If you are building the application whilst following this tutorial, copy both MediaItem and MediaType from the TicketMonster project.

14.2. Events

In Chapter 13, Your first entity we saw how to build simple entites with properties, identify and apply constraints using Bean Validation, identify the natural id and add a synthetic id. From now on we’ll assume you know how to build simple entities - for each new entity that we build, we will start with it’s basic structure and properties filled in.
So, here is our starting point for Event:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java.

@Entity
public class Event {

 /* Declaration of fields */

 /**
 * The synthetic ID of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the name must not be null.
 * <code>@Size</code> — the name must be at least 5 characters and no more than 50 characters. This allows for
 * better formatting consistency in the view layer.
 *
 */
 @Column(unique = true)
 @NotNull
 @Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50 characters")
 private String name;

 /**
 * <p>
 * A description of the event.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the description must not be null.
 * <code>@Size</code> — the name must be at least 20 characters and no more than 1000 characters. This allows for
 * better formatting consistency in the view layer, and also ensures that event organisers provide at least some description
 * - a classic example of a business constraint.
 *
 */
 @NotNull
 @Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000 characters")
 private String description;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 /* toString(), equals() and hashCode() for Event, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Event event = (Event) o;

 if (name != null ? !name.equals(event.name) : event.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 return name != null ? name.hashCode() : 0;
 }

 @Override
 public String toString() {
 return name;
 }
}

First, let’s add a media item to Event. As multiple events (or venues) could share the same media item, we’ll model the relationship as many-to-one - many events can reference the same media item.
Relationships supported by JPA
JPA can model four types of relationship between entities - one-to-one, one-to-many,
many-to-one and many-to-many. A relationship may be bi-directional (both sides of the
relationship know about each other) or uni-directional (only one side knows about the
relationship).
Many database models are hierarchical (parent-child), as is TicketMonster’s. As a result,
you’ll probably find you mostly use one-to-many and many-to-one relationships, which
allow building parent-child models.

Creating a many-to-one relationship is very easy in JPA. Just add the @ManyToOne annotation to the field. JPA will take care of the rest. Here’s the property for Event:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java.

 ...

 /**
 * <p>
 * A media item, such as an image, which can be used to entice a browser to book a ticket.
 * </p>
 *
 * <p>
 * Media items can be shared between events, so this is modeled as a <code>@ManyToOne</code> relationship.
 * </p>
 *
 * <p>
 * Adding a media item is optional, and the view layer will adapt if none is provided.
 * </p>
 *
 */
 @ManyToOne
 private MediaItem mediaItem;

 ...

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem picture) {
 this.mediaItem = picture;
 }

 ...

There is no need for a media item to know who references it (in fact, this would be a poor design, as it would reduce the reusability of MediaItem), so we can leave this as a uni-directional relationship.
An event will also have a category. Once again, many events can belong to the same event category, and there is no need for an event category to know what events are in it. To add this relationship, we add the eventCategory property, and annotate it with @ManyToOne, just as we did for MediaItem.
And that’s Event created. Here is the full source:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java.

/**
 * <p>
 * Represents an event, which may have multiple performances with different dates and venues.
 * </p>
 *
 * <p>
 * Event's principle members are it's relationship to {@link EventCategory} - specifying the type of event it is - and
 * {@link MediaItem} - providing the ability to add media (such as a picture) to the event for display. It also contains
 * meta-data about the event, such as it's name and a description.
 * </p>
 *
 */
@Entity
public class Event {

 /* Declaration of fields */

 /**
 * The synthetic ID of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the name must not be null.
 * <code>@Size</code> — the name must be at least 5 characters and no more than 50 characters. This allows for
 * better formatting consistency in the view layer.
 *
 */
 @Column(unique = true)
 @NotNull
 @Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50 characters")
 private String name;

 /**
 * <p>
 * A description of the event.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the description must not be null.
 * <code>@Size</code> — the name must be at least 20 characters and no more than 1000 characters. This allows for
 * better formatting consistency in the view layer, and also ensures that event organisers provide at least some description
 * - a classic example of a business constraint.
 *
 */
 @NotNull
 @Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000 characters")
 private String description;

 /**
 * <p>
 * A media item, such as an image, which can be used to entice a browser to book a ticket.
 * </p>
 *
 * <p>
 * Media items can be shared between events, so this is modeled as a <code>@ManyToOne</code> relationship.
 * </p>
 *
 * <p>
 * Adding a media item is optional, and the view layer will adapt if none is provided.
 * </p>
 *
 */
 @ManyToOne
 private MediaItem mediaItem;

 /**
 * <p>
 * The category of the event
 * </p>
 *
 * <p>
 * Event categories are used to ease searching of available of events, and hence this is modeled as a relationship
 * </p>
 *
 * <p>
 * The Bean Validation constraint <code>@NotNull</code> indicates that the event category must be specified.
 */
 @ManyToOne
 @NotNull
 private EventCategory category;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem picture) {
 this.mediaItem = picture;
 }

 public EventCategory getCategory() {
 return category;
 }

 public void setCategory(EventCategory category) {
 this.category = category;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 /* toString(), equals() and hashCode() for Event, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Event event = (Event) o;

 if (name != null ? !name.equals(event.name) : event.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 return name != null ? name.hashCode() : 0;
 }

 @Override
 public String toString() {
 return name;
 }
}

14.3. Shows

A show is an event at a venue. It consists of a set of performances of the show. A show also contains the list of ticket prices available.
Let’s start building Show. Here’s is our starting point:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java.

/**
 * <p>
 * A show is an instance of an event taking place at a particular venue. A show can have multiple performances.
 * </p>
 */
@Entity
public class Show {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Event event;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Venue venue;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Event getEvent() {
 return event;
 }

 public void setEvent(Event event) {
 this.event = event;
 }

 public Venue getVenue() {
 return venue;
 }

 public void setVenue(Venue venue) {
 this.venue = venue;
 }

 /* toString(), equals() and hashCode() for Show, using the natural identity of the object */
 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Show show = (Show) o;

 if (event != null ? !event.equals(show.event) : show.event != null)
 return false;
 if (venue != null ? !venue.equals(show.venue) : show.venue != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = event != null ? event.hashCode() : 0;
 result = 31 * result + (venue != null ? venue.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return event + " at " + venue;
 }
}

If you’ve been paying attention, you’ll notice that there is a problem here. We’ve identified that the natural identity of this entity is formed of two properties - the event and the venue, and we’ve correctly coded the equals() and hashCode() methods (or had them generated for us!). However, we haven’t told JPA that these two properties, in combination, must be unique. As there are two properties involved, we can no longer use the @Column annotation (which operates on a single property/table column), but now must use the class level @Table annotation (which operates on the whole entity/table). Change the class definition to read:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java.

...

@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show {

 ...
}

You’ll notice that JPA requires us to use the column names, rather than property names here. The column names used in the @UniqueConstraint annotation are those generated by default for properties called event and venue.
Now, let’s add the set of performances to the event. Unlike previous relationships we’ve seen, the relationship between a show and it’s performances is bi-directional. We chose to model this as a bi-directional relationship in order to improve the generated database schema (otherwise you end with complicated mapping tables which makes updates to collections hard). Let’s add the set of performances:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java.

 ...

 /**
 * <p>
 * The set of performances of this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship. Collection members
 * are fetched eagerly, so that they can be accessed even after the entity has become detached.
 * This relationship is bi-directional (a performance knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this.
 * </p>
 *
 */
 @OneToMany(fetch=EAGER, mappedBy = "show", cascade = ALL)
 @OrderBy("date")
 private Set<Performance> performances = new HashSet<Performance>();

 ...

 public Set<Performance> getPerformances() {
 return performances;
 }

 public void setPerformances(Set<Performance> performances) {
 this.performances = performances;

 ...

As the relationship is bi-directional, we specify the mappedBy attribute on the @OneToMany annotation, which informs JPA to create a bi-directional relationship. The value of the attribute is name of property which forms the other side of the relationship - in this case, not unsuprisingly show!
As Show is the owner of Performance (and without a show, a performance cannot exist), we add the cascade = ALL attribute to the @OneToMany annotation. As a result, any persistence operation that occurs on a show, will be propagated to it’s performances. For example, if a show is removed, any associated performances will be removed as well.
When retrieving a show, we will also retrieve its associated performances by adding the fetch = EAGER attribute to the @OneToMany annotation. This is a design decision which required careful consideration. In general,
you should favour the default lazy initialization of collections: their content should be accessible on demand. However, in this case
we intend to marshal the contents of the collection and pass it across the wire in the JAX-RS layer, after the entity has become
detached, and cannot initialize its members on demand.
We’ll also need to add the set of ticket prices available for this show. Once more, this is a bi-directional relationship, owned by the show. It looks just like the set of performances.
Here’s the full source for Show:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java.

/**
 * <p>
 * A show is an instance of an event taking place at a particular venue. A show can have multiple performances.
 * </p>
 *
 * <p>
 * A show contains a set of performances, and a set of ticket prices for each section of the venue for this show.
 * </p>
 *
 * <p>
 * The event and venue form the natural id of this entity, and therefore must be unique. JPA requires us to use the class level
 * <code>@Table</code> constraint.
 * </p>
 *
 */
@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show implements Serializable {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Event event;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Venue venue;

 /**
 * <p>
 * The set of performances of this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship. TODO Explain EAGER fetch.
 * This relationship is bi-directional (a performance knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this. We cascade all persistence operations to the set of performances, so, for example if a show
 * is removed, then all of it's performances will also be removed.
 * </p>
 *
 * <p>
 * Normally a collection is loaded from the database in the order of the rows, but here we want to make sure that
 * performances are ordered by date - we let the RDBMS do the heavy lifting. The
 * <code>@OrderBy<code> annotation instructs JPA to do this.
 * </p>
 */
 @OneToMany(fetch = EAGER, mappedBy = "show", cascade = ALL)
 @OrderBy("date")
 private Set<Performance> performances = new HashSet<Performance>();

 /**
 * <p>
 * The set of ticket prices available for this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * Collection members are fetched eagerly, so that they can be accessed even after the
 * entity has become detached. This relationship is bi-directional (a ticket price category
 * knows which show it is part of), and the <code>mappedBy</code> attribute establishes this.
 * We cascade all persistence operations to the set of performances, so, for example if a show
 * is removed, then all of it's ticket price categories are also removed.
 * </p>
 */
 @OneToMany(mappedBy = "show", cascade = ALL, fetch = EAGER)
 private Set<TicketPriceCategory> priceCategories = new HashSet<TicketPriceCategory>();

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Event getEvent() {
 return event;
 }

 public void setEvent(Event event) {
 this.event = event;
 }

 public Set<Performance> getPerformances() {
 return performances;
 }

 public void setPerformances(Set<Performance> performances) {
 this.performances = performances;
 }

 public Venue getVenue() {
 return venue;
 }

 public void setVenue(Venue venue) {
 this.venue = venue;
 }

 public Set<TicketPriceCategory> getPriceCategories() {
 return priceCategories;
 }

 public void setPriceCategories(Set<TicketPriceCategory> priceCategories) {
 this.priceCategories = priceCategories;
 }

 /* toString(), equals() and hashCode() for Show, using the natural identity of the object */
 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Show show = (Show) o;

 if (event != null ? !event.equals(show.event) : show.event != null)
 return false;
 if (venue != null ? !venue.equals(show.venue) : show.venue != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = event != null ? event.hashCode() : 0;
 result = 31 * result + (venue != null ? venue.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return event + " at " + venue;
 }
}

14.4. Performances

Finally, let’s create the Performance class, which represents an instance of a Show. Performance is pretty straightforward. It contains the date and time of the performance, and the show of which it is a performance. Together, the show, and the date and time, make up the natural identity of the performance. Here’s the source for Performance:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Performance.java.

/**
 * <p>
 * A performance represents a single instance of a show.
 * </p>
 *
 * <p>
 * The show and date form the natural id of this entity, and therefore must be unique. JPA requires us to use the class level
 * <code>@Table</code> constraint.
 * </p>
 *
 */
@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "date", "show_id" }))
public class Performance {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The date and start time of the performance.
 * </p>
 *
 * <p>
 * A Java {@link Date} object represents both a date and a time, whilst an RDBMS splits out Date, Time and Timestamp.
 * Therefore we instruct JPA to store this date as a timestamp using the <code>@Temporal(TIMESTAMP)</code> annotation.
 * </p>
 *
 * <p>
 * The date and time of the performance is required, and the Bean Validation constraint <code>@NotNull</code> enforces this.
 * </p>
 */
 @Temporal(TIMESTAMP)
 @NotNull
 private Date date;

 /**
 * <p>
 * The show of which this is a performance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The show of which this is a performance is required, and the Bean Validation constraint <code>@NotNull</code> enforces
 * this.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Show show;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public void setShow(Show show) {
 this.show = show;
 }

 public Show getShow() {
 return show;
 }

 public Date getDate() {
 return date;
 }

 public void setDate(Date date) {
 this.date = date;
 }

 /* equals() and hashCode() for Performance, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Performance that = (Performance) o;

 if (date != null ? !date.equals(that.date) : that.date != null)
 return false;
 if (show != null ? !show.equals(that.show) : that.show != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = date != null ? date.hashCode() : 0;
 result = 31 * result + (show != null ? show.hashCode() : 0);
 return result;
 }
}

Of interest here is the storage of the date and time.
A Java Date represents "a specific instance in time, with millisecond precision" and is the recommended construct for representing date and time in the JDK. A RDBMS’s DATE type typically has day precision only, and uses the DATETIME or TIMESTAMP types to represent an instance in time, and often only to second precision.
As the mapping between Java date and time, and database date and time isn’t straightforward, JPA requires us to use the @Temporal annotation on any property of type Date, and to specify whether the Date should be stored as a date, a time or a timestamp (date and time).

14.5. Venue

Now, let’s build out the entities to represent the venue.
We start by adding an entity to represent the venue. A venue needs to have a name, a description, a capacity, an address, an associated media item and a set sections in which people can sit.
src/main/java/org/jboss/jdf/example/ticketmonster/model/Venue.java.

/**
 * <p>
 * Represents a single venue
 * </p>
 *
 */
@Entity
public class Venue {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * The name must not be null and must be one or more characters, the Bean Validation
 * constraint <code>@NotEmpty</code> enforces this.
 * </p>
 */
 @Column(unique = true)
 @NotEmpty
 private String name;

 /**
 * The address of the venue
 */
 @Embedded
 private Address address = new Address();

 /**
 * A description of the venue
 */
 private String description;

 /**
 * <p>
 * A set of sections in the venue
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * Collection members are fetched eagerly, so that they can be accessed even after the
 * entity has become detached. This relationship is bi-directional (a section knows which
 * venue it is part of), and the <code>mappedBy</code> attribute establishes this. We
 * cascade all persistence operations to the set of performances, so, for example if a venue
 * is removed, then all of it's sections will also be removed.
 * </p>
 */
 @OneToMany(cascade = ALL, fetch = EAGER, mappedBy = "venue")
 private Set<Section> sections = new HashSet<Section>();

 /**
 * The capacity of the venue
 */
 private int capacity;

 /**
 * An optional media item to entice punters to the venue. The <code>@ManyToOne</code> establishes the relationship.
 */
 @ManyToOne
 private MediaItem mediaItem;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem description) {
 this.mediaItem = description;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public Set<Section> getSections() {
 return sections;
 }

 public void setSections(Set<Section> sections) {
 this.sections = sections;
 }

 public int getCapacity() {
 return capacity;
 }

 public void setCapacity(int capacity) {
 this.capacity = capacity;
 }

 /* toString(), equals() and hashCode() for Venue, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Venue venue = (Venue) o;

 if (address != null ? !address.equals(venue.address) : venue.address != null)
 return false;
 if (name != null ? !name.equals(venue.name) : venue.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = name != null ? name.hashCode() : 0;
 result = 31 * result + (address != null ? address.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return name;
 }
}

In creating this entity, we’ve followed all the design and implementation decisions previously discussed, with one new concept. Rather than add the properties for street, city, postal code etc. to this object, we’ve extracted them into the Address object, and included it in the Venue object using composition. This would allow us to reuse the Address object in other places (such as a customer’s address).
A RDBMS doesn’t have a similar concept to composition, so we need to choose whether to represent the address as a separate entity, and create a relationship between the venue and the address, or whether to map the properties from Address to the table for the owning entity, in this case Venue. It doesn’t make much sense for an address to be a full entity - we’re not going to want to run queries against the address in isolation, nor do we want to be able to delete or update an address in isolation - in essence, the address doesn’t have a standalone identity outside of the object into which it is composed.
To embed the Address into Venue we add the @Embeddable annotation to the Address class. However, unlike a full entity, there is no need to add an identifier. Here’s the source for Address:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Address.java.

/**
 * <p>
 * A reusable representation of an address.
 * </p>
 *
 * <p>
 * Addresses are used in many places in an application, so to observe the DRY principle, we model Address as an embeddable
 * entity. An embeddable entity appears as a child in the object model, but no relationship is established in the RDBMS..
 * </p>
 */
@Embeddable
public class Address {

 /* Declaration of fields */
 private String street;
 private String city;
 private String country;

 /* Declaration of boilerplate getters and setters */

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }

 /* toString(), equals() and hashCode() for Address, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Address address = (Address) o;

 if (city != null ? !city.equals(address.city) : address.city != null)
 return false;
 if (country != null ? !country.equals(address.country) : address.country != null)
 return false;
 if (street != null ? !street.equals(address.street) : address.street != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = street != null ? street.hashCode() : 0;
 result = 31 * result + (city != null ? city.hashCode() : 0);
 result = 31 * result + (country != null ? country.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return street + ", " + city + ", " + country;
 }
}

14.6. Sections

A venue consists of a number of seating sections. Each seating section has a name, a description, the number of rows in the section, and the number of seats in a row. It’s natural identifier is the name of section combined with the venue (a venue can’t have two sections with the same name). Section doesn’t introduce any new concepts, so go ahead and copy the source in, if you are building the application whilst following this tutorial.

14.7. Booking, Ticket & Seat

There aren’t many new concepts to explore in Booking, Ticket and Seat, so if you are following along with the tutorial, you should copy in the Booking, Ticket and Seat classes.
Once the user has selected an event, identified the venue, and selected a performance, they have the opportunity to request a number of seats in a given section, and select the category of tickets required. Once they chosen their seats, and entered their email address, a Booking is created.
A booking consists of the date the booking was created, an email address (as TicketMonster doesn’t yet have fully fledged user management), a set of tickets and the associated performance. The set of tickets shows us how to create a uni-directional one-to-many relationship:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java.

 ...

 /**
 * <p>
 * The set of tickets contained within the booking. The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The set of tickets is eagerly loaded because FIXME . All operations are cascaded to each ticket, so for example if a
 * booking is removed, then all associated tickets will be removed.
 * </p>
 *
 * <p>
 * This relationship is uni-directional, so we need to inform JPA to create a foreign key mapping. The foreign key mapping
 * is not visible in the {@link Ticket} entity despite being present in the database.
 * </p>
 *
 */
 @OneToMany(fetch = EAGER, cascade = ALL)
 @JoinColumn @NotEmpty
 @Valid
 private Set<Ticket> tickets = new HashSet<Ticket>();

 ...

We add the @JoinColumn annotation, which sets up a foreign key in Ticket, but doesn’t expose the booking on Ticket. This prevents the use of messy mapping tables, whilst preserving the integrity of the entity model.
A ticket embeds the seat allocated, and contains a reference to the category under which it was sold. It also contains the price at which it was sold.

Chapter 15. Connecting to the database

In this example, we are using the in-memory H2 database, which is very easy to set up on JBoss AS. JBoss AS allows you deploy a datasource inside your application’s WEB-INF directory. You can locate the source in src/main/webapp/WEB-INF/ticket-monster-ds.xml:
src/main/webapp/WEB-INF/ticket-monster-ds.xml.

<datasources xmlns="http://www.jboss.org/ironjacamar/schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.org/ironjacamar/schema http://docs.jboss.org/ironjacamar/schema/datasources_1_0.xsd">
 <!-- The datasource is bound into JNDI at this location. We reference
 this in META-INF/persistence.xml -->
 <datasource jndi-name="java:jboss/datasources/TicketMonsterDS"
 pool-name="ticket-monster" enabled="true" use-java-context="true">
 <connection-url>jdbc:h2:mem:ticket-monster;DB_CLOSE_ON_EXIT=FALSE</connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
</datasources>

The datasource configures an H2 in-memory database, called ticket-monster, and registeres a datasource in JNDI at the address:
java:jboss/datasources/TicketMonsterDS
Now we need to configure JPA to use the datasource. This is done in src/main/resources/META-INF/persistence.xml:
src/main/resources/persistence.xml.

<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="primary">
 <!-- If you are running in a production environment, add a managed
 data source, this example data source is just for development and testing! -->
 <!-- The datasource is deployed as WEB-INF/ticket-monster-ds.xml, you
 can find it in the source at src/main/webapp/WEB-INF/ticket-monster-ds.xml -->
 <jta-data-source>java:jboss/datasources/TicketMonsterDS</jta-data-source>
 <properties>
 <!-- Properties for Hibernate -->
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="false" />
 </properties>
 </persistence-unit>
</persistence>

As our application has only one datasource, and hence one persistence unit, the name given to the persistence unit doesn’t really matter. We call ours primary, but you can change this as you like. We tell JPA about the datasource bound in JNDI.
Hibernate includes the ability to generate tables from entities, which here we have configured. We don’t recommend using this outside of development. Updates to databases in production should be done manually.

Chapter 16. Populating test data

Whilst we develop our application, it’s useful to be able to populate the database with test data. Luckily, Hibernate makes this easy. Just add a file called import.sql onto the classpath of your application (we keep it in src/main/resources/import.sql). In it, we just write standard sql statements suitable for the database we are using. To do this, you need to know the generated column and table names for your entities. The best way to work these out is to look at the h2console.
The h2console is included in the JBoss AS quickstarts, along with instructions on how to use it. For more information, see http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Chapter 17. Conclusion

You now have a working data model for your TicketMonster application, our next tutorial will show you how to create the business services layer or something like that - it seems to end abruptly.

Part III. Building The Business Services With JAX-RS

Chapter 18. What Will You Learn Here?

We’ve just defined the domain model of the application and created its persistence layer. Now we need to define the services that implement the business logic of the application and expose them to the front-end. After reading this, you’ll understand how to design the business layer and what choices to make while developing it. Topics covered include:
	
Encapsulating business logic in services and integrating with the persistence tier

	
Using CDI for integrating individual services

	
Integration testing using Arquillian

	
Exposing RESTful services via JAX-RS

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through.

Chapter 19. Business Services And Their Relationships

TicketMonster’s business logic is implemented by a number of classes, with different responsibilities:
	
managing media items

	
allocating tickets

	
handling information on ticket availability

	
remote access through a RESTful interface

The services are consumed by various other layers of the application:
	
the media management and ticket allocation services encapsulate complex functionality, which in turn is exposed externally by RESTful services that wrap them

	
RESTful services are mainly used by the HTML5 view layer

	
the ticket availability service is used by the Errai-based view layer

Where to draw the line?
A business service is an encapsulated, reusable logical component that groups
together a number of well-defined cohesive business operations. Business services
perform business operations, and may coordinate infrastructure services such as
persistence units, or even other business services as well. The boundaries drawn
between them should take into account whether the newly created services represent
, potentially reusable components.

As you can see, some of the services are intended to be consumed within the business layer of the application, while others provide an external interface as JAX-RS services. We will start by implementing the former, and we’ll finish up with the latter. During this process, you will
discover how CDI, EJB and JAX-RS make it easy to define and wire together our services.

Chapter 20. Preparations

The first step for setting up our service architecture is to enable CDI in the deployment by creating a beans.xml file in the WEB-INF folder of the web application.
src/main/webapp/WEB-INF/beans.xml.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

If you used the Maven archetype
If you used the Maven archetype to create the project, this file will exist already
in the project - it is added automatically.

You may wonder why the file is empty! Whilst beans.xml can specify various deployment-time configuration (e.g. activation of interceptors,
decorators or alternatives), it can also act as a marker file, telling the container to enable CDI for the deployment (which it doesn’t do, unless beans.xml is present).
Contexts and Dependency Injection (CDI)
As it’s name suggests, CDI is the contexts and dependency injection standard for Java
EE. By enabling CDI in your application, deployed classes become managed components
and their lifecycle and wiring becomes the responsibility of the Java EE server.
In this way, we can reduce coupling between components, which is a requirement o a
well-designed architecture. Now, we can focus on implementing the responsibilities of
the components and describing their dependencies in a declarative fashion. The
runtime will do the rest for you: instantiating and wiring them together, as well as
disposing of them as needed.

Chapter 21. Internal Services

We begin by implementing some helper services.

21.1. The Media Manager

First, lets add support for managing media items, such as images. The persistence layer siimply stores URLs, referencing media items stored by online services. The URL look like http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg.
Now, we could use the URLs in our application, and retrieve these media items from the provider. However, we would prefer to cache these media items in order to improve application performance and increase resilience to external failures - this will allow us to run the application
successfully even if the provider is down. The MediaManager is a good illustration of a business service; it performs the retrieval and caching of media objects, encapsulating the operation from the rest of the application.
We begin by creating MediaManager:
src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java.

/**
 * <p>
 * The media manager is responsible for taking a media item, and returning either the URL
 * of the cached version (if the application cannot load the item from the URL), or the
 * original URL.
 * </p>
 *
 * <p>
 * The media manager also transparently caches the media items on first load.
 * </p>
 *
 * <p>
 * The computed URLs are cached for the duration of a request. This provides a good balance
 * between consuming heap space, and computational time.
 * </p>
 *
 */
public class MediaManager {

 /**
 * Locate the tmp directory for the machine
 */
 private static final File tmpDir;

 static {
 tmpDir = new File(System.getProperty("java.io.tmpdir"),
 "org.jboss.jdf.examples.ticket-monster");
 if (tmpDir.exists()) {
 if (tmpDir.isFile())
 throw new IllegalStateException(tmpDir.getAbsolutePath()
 + " already exists, and is a file. Remove it.");
 } else {
 tmpDir.mkdir();
 }
 }

 /**
 * A request scoped cache of computed URLs of media items.
 */
 private final Map<MediaItem, MediaPath> cache;

 public MediaManager() {

 this.cache = new HashMap<MediaItem, MediaPath>();
 }

 /**
 * Load a cached file by name
 *
 * @param fileName
 * @return
 */
 public File getCachedFile(String fileName) {
 return new File(tmpDir, fileName);
 }

 /**
 * Obtain the URL of the media item. If the URL h has already been computed in this
 * request, it will be looked up in the request scoped cache, otherwise it will be
 * computed, and placed in the request scoped cache.
 */
 public MediaPath getPath(MediaItem mediaItem) {
 if (cache.containsKey(mediaItem)) {
 return cache.get(mediaItem);
 } else {
 MediaPath mediaPath = createPath(mediaItem);
 cache.put(mediaItem, mediaPath);
 return mediaPath;
 }
 }

 /**
 * Compute the URL to a media item. If the media item is not cacheable, then, as long
 * as the resource can be loaded, the original URL is returned. If the resource is not
 * available, then a placeholder image replaces it. If the media item is cachable, it
 * is first cached in the tmp directory, and then path to load it is returned.
 */
 private MediaPath createPath(MediaItem mediaItem) {
 if (!mediaItem.getMediaType().isCacheable()) {
 if (checkResourceAvailable(mediaItem)) {
 return new MediaPath(mediaItem.getUrl(), false, mediaItem.getMediaType());
 } else {
 return createCachedMedia(Reflections.getResource("not_available.jpg").toExternalForm(), IMAGE);
 }
 } else {
 return createCachedMedia(mediaItem);
 }
 }

 /**
 * Check if a media item can be loaded from it's URL, using the JDK URLConnection classes.
 */
 private boolean checkResourceAvailable(MediaItem mediaItem) {
 URL url = null;
 try {
 url = new URL(mediaItem.getUrl());
 } catch (MalformedURLException e) {
 }

 if (url != null) {
 try {
 URLConnection connection = url.openConnection();
 if (connection instanceof HttpURLConnection) {
 return ((HttpURLConnection) connection).getResponseCode() == HttpURLConnection.HTTP_OK;
 } else {
 return connection.getContentLength() > 0;
 }
 } catch (IOException e) {
 }
 }
 return false;
 }

 /**
 * The cached file name is a base64 encoded version of the URL. This means we don't need to maintain a database of cached
 * files.
 */
 private String getCachedFileName(String url) {
 return Base64.encodeToString(url.getBytes(), false);
 }

 /**
 * Check to see if the file is already cached.
 */
 private boolean alreadyCached(String cachedFileName) {
 File cache = getCachedFile(cachedFileName);
 if (cache.exists()) {
 if (cache.isDirectory()) {
 throw new IllegalStateException(cache.getAbsolutePath() + " already exists, and is a directory. Remove it.");
 }
 return true;
 } else {
 return false;
 }
 }

 /**
 * To cache a media item we first load it from the net, then write it to disk.
 */
 private MediaPath createCachedMedia(String url, MediaType mediaType) {
 String cachedFileName = getCachedFileName(url);
 if (!alreadyCached(cachedFileName)) {
 URL _url = null;
 try {
 _url = new URL(url);
 } catch (MalformedURLException e) {
 throw new IllegalStateException("Error reading URL " + url);
 }

 try {
 InputStream is = null;
 OutputStream os = null;
 try {
 is = new BufferedInputStream(_url.openStream());
 os = new BufferedOutputStream(getCachedOutputStream(cachedFileName));
 while (true) {
 int data = is.read();
 if (data == -1)
 break;
 os.write(data);
 }
 } finally {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 }
 } catch (IOException e) {
 throw new IllegalStateException("Error caching " + mediaType.getDescription(), e);
 }
 }
 return new MediaPath(cachedFileName, true, mediaType);
 }

 private MediaPath createCachedMedia(MediaItem mediaItem) {
 return createCachedMedia(mediaItem.getUrl(), mediaItem.getMediaType());
 }

 private OutputStream getCachedOutputStream(String fileName) {
 try {
 return new FileOutputStream(getCachedFile(fileName));
 } catch (FileNotFoundException e) {
 throw new IllegalStateException("Error creating cached file", e);
 }
 }

}

The service delegates to a number of internal methods that do the heavy lifting, but exposes a simple API, to the external observer it simply converts the MediaItem entities into MediaPath data structures, that can be used by the application to load the binary data of the media item. The service will retrieve and cache the data locally in the filesystem, if possible (e.g. streamed videos aren’t cachable!).
src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaPath.java.

public class MediaPath {

 private final String url;
 private final boolean cached;
 private final MediaType mediaType;

 public MediaPath(String url, boolean cached, MediaType mediaType) {
 this.url = url;
 this.cached = cached;
 this.mediaType = mediaType;
 }

 public String getUrl() {
 return url;
 }

 public boolean isCached() {
 return cached;
 }

 public MediaType getMediaType() {
 return mediaType;
 }

}

The service can be injected by type into the components that depend on it. However, in order to make it available to JSF vuews, we add a @Named annotation, which means the bean can be referenced as mediaManager as well.
We should also control the lifecycle of this service. The MediaManager stores request-specific state, so should be scoped to the web request, the CDI @RequestScoped is perfect.
src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java.

 ...
@Named
@RequestScoped
public class MediaManager {
 ...
}

21.2. The Seat Allocation Service

The seat allocation service finds free seats at booking time, in a given section of the venue. It is a good example of how a service can coordinate infrastructure services (using the injected persistence unit to get access to the ServiceAllocation instance) and domain objects (by invoking the allocateSeats method on a concrete allocation instance).
Isolating this functionality in a service class makes it possible to write simpler, self-explanatory code in the layers above and opens the possibility of replacing this code at a later date with a more advanced implementation (for example one using an in-memory cache).
src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java.

@SuppressWarnings("serial")
public class SeatAllocationService implements Serializable {

 @Inject
 EntityManager entityManager;

 public AllocatedSeats allocateSeats(Section section, Performance performance, int seatCount, boolean contiguous) {
 SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section, performance);
 List<Seat> seats = sectionAllocation.allocateSeats(seatCount, contiguous);
 return new AllocatedSeats(sectionAllocation, seats);
 }

 public void deallocateSeats(Section section, Performance performance, List<Seat> seats) {
 SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section, performance);
 for (Seat seat : seats) {
 if (!seat.getSection().equals(section)) {
 throw new SeatAllocationException("All seats must be in the same section!");
 }
 sectionAllocation.deallocate(seat);
 }
 }

 private SectionAllocation retrieveSectionAllocationExclusively(Section section, Performance performance) {
 SectionAllocation sectionAllocationStatus = (SectionAllocation) entityManager.createQuery(
 "select s from SectionAllocation s where " +
 "s.performance.id = :performanceId and " +
 "s.section.id = :sectionId")
 .setParameter("performanceId", performance.getId())
 .setParameter("sectionId", section.getId())
 .getSingleResult();
 entityManager.lock(sectionAllocationStatus, LockModeType.PESSIMISTIC_WRITE);
 return sectionAllocationStatus;
 }
}

Next, we define the AllocatedSeats class that we use for storing seat reservations for a booking, before they are made persistent.
src/main/java/org/jboss/jdf/example/ticketmonster/service/AllocatedSeats.java.

public class AllocatedSeats {

 private final SectionAllocation sectionAllocation;

 private final List<Seat> seats;

 public AllocatedSeats(SectionAllocation sectionAllocation, List<Seat> seats) {
 this.sectionAllocation = sectionAllocation;
 this.seats = seats;
 }

 public SectionAllocation getSectionAllocation() {
 return sectionAllocation;
 }

 public List<Seat> getSeats() {
 return seats;
 }

 public void markOccupied() {
 sectionAllocation.markOccupied(seats);
 }
}

21.3. Booking Monitor Service

The last service that we create provides data about the current shows and their ticket availability status. It is accessed remotely by Errai through a dedicated RPC mechanism, which requires us to define and implement a service interface. We begin by adding the interface first, using the @Remote annotation from Errai to indicate its purpose.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/BookingMonitorService.java.

/**
 * A service used by the booking monitor for retrieving status information.
 *
 * Errai's @Remote annotation indicates that the Service implementation can
 * be used as an RPC endpoint and that this interface can be used on the
 * client for type safe method invocation on this endpoint.
 */
@Remote
public interface BookingMonitorService {

 /**
 * Lists all active {@link Show}s (shows with future performances).
 *
 * @return list of shows found.
 */
 public List<Show> retrieveShows();

 /**
 * Constructs a map of performance IDs to the total number of sold tickets.
 *
 * @return map of performance IDs to the total number of sold tickets.
 */
 public Map<Long, Long> retrieveOccupiedCounts();
}

After doing so, we create the service implementation, using the @Service annotation to indicate that it should be exposed externally by Errai.
src/main/java/org/jboss/jdf/example/ticketmonster/service/BookingMonitorServiceImpl.java.

/**
 * Implementation of {@link BookingMonitorService}.
 *
 * Errai's @Service annotation exposes this service as an RPC endpoint.
 */
@ApplicationScoped
@Service
@SuppressWarnings("unchecked")
public class BookingMonitorServiceImpl implements BookingMonitorService {

 @Inject
 private EntityManager entityManager;

 @Override
 public List<Show> retrieveShows() {
 Query showQuery = entityManager.createQuery(
 "select DISTINCT s from Show s JOIN s.performances p " +
 "WHERE p.date > current_timestamp");
 return showQuery.getResultList();
 }

 @Override
 public Map<Long, Long> retrieveOccupiedCounts() {
 Map <Long, Long> occupiedCounts = new HashMap<Long, Long>();

 Query occupiedCountsQuery = entityManager.createQuery(
 "select s.performance.id, SUM(s.occupiedCount) from SectionAllocation s " +
 "where s.performance.date > current_timestamp GROUP BY s.performance.id");

 List<Object[]> results = occupiedCountsQuery.getResultList();
 for (Object[] result : results) {
 occupiedCounts.put((Long) result[0], (Long) result[1]);
 }

 return occupiedCounts;
 }
}

Implement an interface or not?
You will find yourself very often facing a dilemma: add an interface for a service or
not? As you have seen so far and will continue to see next, most of the services in
TicketMonster do not implement interfaces, except wherever it is a requirement of the
framework in use (e.g. Errai in this case). In Java EE 6 the requirements for business
services to implement interfaces have been relaxed significantly, therefore unless
there are valid reasons for creating an abstraction (such as multiple possible
implementations), we skipped adding interfaces to our services.

Chapter 22. JAX-RS Services

The majority of services in the application are JAX-RS web services. They are critical part of the design, as they next service is used for provide communication with the HTML5 view layer. The JAX-RS services range from simple CRUD to processing bookings and media items.
To pass data across the wire we use JSON as the data marshalling format, as it is less verbose and easier to process than XML by the JavaScript client-side framework.

22.1. Initializing JAX-RS

To activate JAX-RS we add the class below, which instructs the container to look for JAX-RS annotated classes and install them as endpoints.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/JaxRsActivator.java.

@ApplicationPath("/rest")
public class JaxRsActivator extends Application {
 /* class body intentionally left blank */
}

All the JAX-RS services are mapped relative to the /rest path, as defined by the @ApplicationPath annotation.

22.2. A Base Service For Read Operations

Most of the JAX-RS service must provide both a (filtered) list of entities or individual entity (e.g. events, venues and bookings). Instead of duplicating the implementation into each individual service we create a base service class and wire the helper objects in.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java.

/**
 * <p>
 * A number of RESTful services implement GET operations on a particular type of entity. For
 * observing the DRY principle, the generic operations are implemented in the <code>BaseEntityService</code>
 * class, and the other services can inherit from here.
 * </p>
 *
 * <p>
 * Subclasses will declare a base path using the JAX-RS {@link Path} annotation, for example:
 * </p>
 *
 * <pre>
 * <code>
 * @Path("/widgets")
 * public class WidgetService extends BaseEntityService<Widget> {
 * ...
 * }
 * </code>
 * </pre>
 *
 * <p>
 * will support the following methods:
 * </p>
 *
 * <pre>
 * <code>
 * GET /widgets
 * GET /widgets/:id
 * GET /widgets/count
 * </code>
 * </pre>
 *
 * <p>
 * Subclasses may specify various criteria for filtering entities when retrieving a list of them, by supporting
 * custom query parameters. Pagination is supported by default through the query parameters <code>first</code>
 * and <code>maxResults</code>.
 * </p>
 *
 * <p>
 * The class is abstract because it is not intended to be used directly, but subclassed by actual JAX-RS
 * endpoints.
 * </p>
 *
 */
public abstract class BaseEntityService<T> {

 @Inject
 private EntityManager entityManager;

 private Class<T> entityClass;

 public BaseEntityService() {}

 public BaseEntityService(Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 public EntityManager getEntityManager() {
 return entityManager;
 }

}

Now we add a method to retrieve all entities of a given type:
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java.

public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for retrieving all entities of a given type. Supports the query parameters
 * <code>first</code>
 * and <code>maxResults</code> for pagination.
 * </p>
 *
 * @param uriInfo application and request context information (see {@see UriInfo} class
 * information for more details)
 * @return
 */
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<T> getAll(@Context UriInfo uriInfo) {
 return getAll(uriInfo.getQueryParameters());
 }

 public List<T> getAll(MultivaluedMap<String, String> queryParameters) {
 final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
 Root<T> root = criteriaQuery.from(entityClass);
 Predicate[] predicates = extractPredicates(queryParameters, criteriaBuilder, root);
 criteriaQuery.select(criteriaQuery.getSelection()).where(predicates);
 criteriaQuery.orderBy(criteriaBuilder.asc(root.get("id")));
 TypedQuery<T> query = entityManager.createQuery(criteriaQuery);
 if (queryParameters.containsKey("first")) {
 Integer firstRecord = Integer.parseInt(queryParameters.getFirst("first"))-1;
 query.setFirstResult(firstRecord);
 }
 if (queryParameters.containsKey("maxResults")) {
 Integer maxResults = Integer.parseInt(queryParameters.getFirst("maxResults"));
 query.setMaxResults(maxResults);
 }
 return query.getResultList();
 }

 /**
 * <p>
 * Subclasses may choose to expand the set of supported query parameters (for adding more filtering
 * criteria) by overriding this method.
 * </p>
 * @param queryParameters - the HTTP query parameters received by the endpoint
 * @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker
 * @param root @{link Root} used by the invoker
 * @return a list of {@link Predicate}s that will added as query parameters
 */
 protected Predicate[] extractPredicates(MultivaluedMap<String, String> queryParameters,
 CriteriaBuilder criteriaBuilder, Root<T> root) {
 return new Predicate[]{};
 }

}

The newly added method ‘getAll` is annotated with @GET which instructs JAX-RS to call it when a GET HTTP requests on the JAX-RS’ endpoint base URL /rest/<entityRoot> is performed. But remember, this is not a true JAX-RS endpoint. It is an abstract class and it is not mapped to a path. The classes that extend it are JAX-RS endpoints, and will have to be mapped to a path, and are able to process requests.
The @Produces annotation defines that the response sent back by the server is in JSON format. The JAX-RS implementation will automatically convert the result returned by the method (a list of entities) into JSON format.
As well as configuring the marshaling strategy, the annotation affects content negotiation and method resolution. If the client requests JSON content specifically, this method will be invoked.
Note
Even though it is not shown in this example, you may have multiple methods that
handle a specific URL and HTTP method, whilst consuming and producing different types
of content (JSON, HTML, XML or others).

Subclasses can also override the extractPredicates method and add own support for additional query parameters to GET /rest/<entityRoot> which can act as filter criteria.
The getAll method supports retrieving a range of entities, which is especially useful when we need to handle very large sets of data, and use pagination. In those cases, we need to support counting entities as well, so we add a method that retrieves the entity count:
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java.

public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for counting all entities of a given type
 * </p>
 *
 * @param uriInfo application and request context information (see {@see UriInfo} class information for more details)
 * @return
 */
 @GET
 @Path("/count")
 @Produces(MediaType.APPLICATION_JSON)
 public Map<String, Long> getCount(@Context UriInfo uriInfo) {
 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<Long> criteriaQuery = criteriaBuilder.createQuery(Long.class);
 Root<T> root = criteriaQuery.from(entityClass);
 criteriaQuery.select(criteriaBuilder.count(root));
 Predicate[] predicates = extractPredicates(uriInfo.getQueryParameters(), criteriaBuilder, root);
 criteriaQuery.where(predicates);
 Map<String, Long> result = new HashMap<String, Long>();
 result.put("count", entityManager.createQuery(criteriaQuery).getSingleResult());
 return result;
 }

}

We use the @Path annotation to map the new method to a sub-path of /rest/<entityRoot>. Now all the JAX-RS endpoints that subclass BaseEntityService will be able to get entity counts from '/rest/<entityRoot>/count. Just like getAll, this method also delegates to extractPredicates, so any customizations done there by subclasses
Next, we add a method for retrieving individual entities.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java.

 ...
public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for retrieving individual entity instances.
 * </p>
 * @param id entity id
 * @return
 */
 @GET
 @Path("/{id:[0-9][0-9]*}")
 @Produces(MediaType.APPLICATION_JSON)
 public T getSingleInstance(@PathParam("id") Long id) {
 final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
 Root<T> root = criteriaQuery.from(entityClass);
 Predicate condition = criteriaBuilder.equal(root.get("id"), id);
 criteriaQuery.select(criteriaBuilder.createQuery(entityClass).getSelection()).where(condition);
 return entityManager.createQuery(criteriaQuery).getSingleResult();
 }
}

This method is similar to getAll and getCount, and we use the @Path annotation to map it to a sub-path of /rest/<entityRoot>. The annotation attribute identifies the expected format of the URL (here, the last segment has to be a number) and binds a portion of the URL to a variable (here named id). The @PathParam annotation allows the value of the variable to be passed as amethod argument. Data conversion is performed automatically.
Now, all the JAX-RS endpoints that subclass BaseEntityService will get two operations for free:
	
GET /rest/<entityRoot>

	
retrieves all entities of a given type

	
GET /rest/<entityRoot>/<id>

	
retrieves an entity with a given id

22.3. Retrieving Venues

Adding support for retrieving venues is now extremely simple. All we do is extend the base class, passing the entity type to the superclass constructor.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/VenueService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Venue}s. Inherits the actual
 * methods from {@link BaseEntityService}.
 * </p>
 */
@Path("/venues")
/**
 * <p>
 * This is a stateless service, so a single shared instance can be used in this case.
 * </p>
 */
@Stateless
public class VenueService extends BaseEntityService<Venue> {

 public VenueService() {
 super(Venue.class);
 }

}

We add the @Path annotation to the class, to indicate that this is a JAX-RS resource which can serve URLs starting with /rest/venues.
We define this service (along with all the other JAX-RS services) as an EJB (see how simple is that in Java EE 6!) to benefit from automatic transaction enrollment.
Now, we can retrieve venues from URLs like /rest/venues or rest/venues/1.

22.4. Retrieving Events

Just like VenueService, EventService is a direct subclass of BaseEntityService with the added twist that it supports querying events by category. We can use URLs like /rest/events?category=1 to retrieve all concerts, for example (1 is the category id of concerts).
This is done by overriding the extractPredicates method to handle any query parameters (in this case, the category parameter).
src/main/java/org/jboss/jdf/example/ticketmonster/rest/EventService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Event}s. Inherits the actual
 * methods from {@link BaseEntityService}, but implements additional search
 * criteria.
 * </p>
 */
@Path("/events")
/**
 * <p>
 * This is a stateless service, we declare it as an EJB for transaction demarcation
 * </p>
 */
@Stateless
public class EventService extends BaseEntityService<Event> {

 public EventService() {
 super(Event.class);
 }

 /**
 * <p>
 * We override the method from parent in order to add support for additional search
 * criteria for events.
 * </p>
 * @param queryParameters - the HTTP query parameters received by the endpoint
 * @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker
 * @param root @{link Root} used by the invoker
 * @return
 */
 @Override
 protected Predicate[] extractPredicates(
 MultivaluedMap<String, String> queryParameters,
 CriteriaBuilder criteriaBuilder,
 Root<Event> root) {
 List<Predicate> predicates = new ArrayList<Predicate>() ;

 if (queryParameters.containsKey("category")) {
 String category = queryParameters.getFirst("category");
 predicates.add(criteriaBuilder.equal(root.get("category").get("id"), category));
 }

 return predicates.toArray(new Predicate[]{});
 }
}

The ShowService and BookingService follow the same pattern and we leave the implementation as an exercise to the reader (knowing that its contents can always be copied over to the appropriate folder).
Of course, we also want to change data with our services - we want to create and delete bookings as well!

22.5. Creating and deleting bookings

To create a booking, we add a new method, which handles POST requests to /rest/bookings. This is not a simple CRUD method, as the client does not send a booking, but a booking request. It is the responsibility of the service to process the request, reserve the seats and return the full booking details to the invoker.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Booking}s. Inherits the GET
 * methods from {@link BaseEntityService}, and implements additional REST methods.
 * </p>
 */
@Path("/bookings")
/**
 * <p>
 * This is a stateless service, we declare it as an EJB for transaction demarcation
 * </p>
 */
@Stateless
public class BookingService extends BaseEntityService<Booking> {

 @Inject
 SeatAllocationService seatAllocationService;

 @Inject @Created
 private Event<Booking> newBookingEvent;

 public BookingService() {
 super(Booking.class);
 }

 /**
 * <p>
 * Create a booking. Data is contained in the bookingRequest object
 * </p>
 * @param bookingRequest
 * @return
 */
 @SuppressWarnings("unchecked")
 @POST
 /**
 * <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the support
 * {@link BookingRequest} class.
 */
 @Consumes(MediaType.APPLICATION_JSON)
 public Response createBooking(BookingRequest bookingRequest) {
 try {
 // identify the ticket price categories in this request
 Set<Long> priceCategoryIds = bookingRequest.getUniquePriceCategoryIds();

 // load the entities that make up this booking's relationships
 Performance performance = getEntityManager().find(Performance.class, bookingRequest.getPerformance());

 // As we can have a mix of ticket types in a booking, we need to load all of them that are relevant,
 // id
 Map<Long, TicketPrice> ticketPricesById = loadTicketPrices(priceCategoryIds);

 // Now, start to create the booking from the posted data
 // Set the simple stuff first!
 Booking booking = new Booking();
 booking.setContactEmail(bookingRequest.getEmail());
 booking.setPerformance(performance);
 booking.setCancellationCode("abc");

 // Now, we iterate over each ticket that was requested, and organize them by section and category
 // we want to allocate ticket requests that belong to the same section contiguously
 Map<Section, Map<TicketCategory, TicketRequest>> ticketRequestsPerSection
 = new TreeMap<Section, java.util.Map<TicketCategory, TicketRequest>>(SectionComparator.instance());
 for (TicketRequest ticketRequest : bookingRequest.getTicketRequests()) {
 final TicketPrice ticketPrice = ticketPricesById.get(ticketRequest.getTicketPrice());
 if (!ticketRequestsPerSection.containsKey(ticketPrice.getSection())) {
 ticketRequestsPerSection
 .put(ticketPrice.getSection(), new HashMap<TicketCategory, TicketRequest>());
 }
 ticketRequestsPerSection.get(ticketPrice.getSection()).put(
 ticketPricesById.get(ticketRequest.getTicketPrice()).getTicketCategory(), ticketRequest);
 }

 // Now, we can allocate the tickets
 // Iterate over the sections, finding the candidate seats for allocation
 // The process will acquire a write lock for a given section and performance
 // Use deterministic ordering of sections to prevent deadlocks
 Map<Section, AllocatedSeats> seatsPerSection =
 new TreeMap<Section, org.jboss.jdf.example.ticketmonster.service.AllocatedSeats>(SectionComparator.instance());
 List<Section> failedSections = new ArrayList<Section>();
 for (Section section : ticketRequestsPerSection.keySet()) {
 int totalTicketsRequestedPerSection = 0;
 // Compute the total number of tickets required (a ticket category doesn't impact the actual seat!)
 final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = ticketRequestsPerSection.get(section);
 // calculate the total quantity of tickets to be allocated in this section
 for (TicketRequest ticketRequest : ticketRequestsByCategories.values()) {
 totalTicketsRequestedPerSection += ticketRequest.getQuantity();
 }
 // try to allocate seats

 AllocatedSeats allocatedSeats =
 seatAllocationService.allocateSeats(section, performance, totalTicketsRequestedPerSection, true);
 if (allocatedSeats.getSeats().size() == totalTicketsRequestedPerSection) {
 seatsPerSection.put(section, allocatedSeats);
 } else {
 failedSections.add(section);
 }
 }
 if (failedSections.isEmpty()) {
 for (Section section : seatsPerSection.keySet()) {
 // allocation was successful, begin generating tickets
 // associate each allocated seat with a ticket, assigning a price category to it
 final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = ticketRequestsPerSection.get(section);
 AllocatedSeats allocatedSeats = seatsPerSection.get(section);
 allocatedSeats.markOccupied();
 int seatCounter = 0;
 // Now, add a ticket for each requested ticket to the booking
 for (TicketCategory ticketCategory : ticketRequestsByCategories.keySet()) {
 final TicketRequest ticketRequest = ticketRequestsByCategories.get(ticketCategory);
 final TicketPrice ticketPrice = ticketPricesById.get(ticketRequest.getTicketPrice());
 for (int i = 0; i < ticketRequest.getQuantity(); i++) {
 Ticket ticket =
 new Ticket(allocatedSeats.getSeats().get(seatCounter + i), ticketCategory, ticketPrice.getPrice());
 // getEntityManager().persist(ticket);
 booking.getTickets().add(ticket);
 }
 seatCounter += ticketRequest.getQuantity();
 }
 }
 // Persist the booking, including cascaded relationships
 booking.setPerformance(performance);
 booking.setCancellationCode("abc");
 getEntityManager().persist(booking);
 newBookingEvent.fire(booking);
 return Response.ok().entity(booking).type(MediaType.APPLICATION_JSON_TYPE).build();
 } else {
 Map<String, Object> responseEntity = new HashMap<String, Object>();
 responseEntity.put("errors", Collections.singletonList("Cannot allocate the requested number of seats!"));
 return Response.status(Response.Status.BAD_REQUEST).entity(responseEntity).build();
 }
 } catch (ConstraintViolationException e) {
 // If validation of the data failed using Bean Validation, then send an error
 Map<String, Object> errors = new HashMap<String, Object>();
 List<String> errorMessages = new ArrayList<String>();
 for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {
 errorMessages.add(constraintViolation.getMessage());
 }
 errors.put("errors", errorMessages);
 // A WebApplicationException can wrap a response
 // Throwing the exception causes an automatic rollback
 throw new WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
 } catch (Exception e) {
 // Finally, handle unexpected exceptions
 Map<String, Object> errors = new HashMap<String, Object>();
 errors.put("errors", Collections.singletonList(e.getMessage()));
 // A WebApplicationException can wrap a response
 // Throwing the exception causes an automatic rollback
 throw new WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
 }
 }

 /**
 * Utility method for loading ticket prices
 * @param priceCategoryIds
 * @return
 */
 private Map<Long, TicketPrice> loadTicketPrices(Set<Long> priceCategoryIds) {
 List<TicketPrice> ticketPrices = (List<TicketPrice>) getEntityManager()
 .createQuery("select p from TicketPrice p where p.id in :ids")
 .setParameter("ids", priceCategoryIds).getResultList();
 // Now, map them by id
 Map<Long, TicketPrice> ticketPricesById = new HashMap<Long, TicketPrice>();
 for (TicketPrice ticketPrice : ticketPrices) {
 ticketPricesById.put(ticketPrice.getId(), ticketPrice);
 }
 return ticketPricesById;
 }
}

We won’t get into the details of the inner workings of the method - it implements a fairly complex algorithm - but we’d like to draw attention to a few particular items.
We use the @POST annotation to indicate that this method is executed on inbound HTTP POST requests. When implementing a set of RESTful services, it is important that the semantic of HTTP methods are observed in the mappings. Creating new resources (e.g. bookings) is typically associated with HTTP POST invocations. The @Consumes annotation indicates that the type of the request content is JSON and identifies the correct unmarshalling strategy, as well as content negotiation.
The BookingService delegates to the SeatAllocationService to find seats in the requested section, the required SeatAllocationService instance is initialized and supplied by the container as needed. The only thing that our service does is to specify the dependency in form
of an injection point - the field annotated with @Inject.
We would like other parts of the application to be aware of the fact that a new booking has been created, therefore we use the CDI to fire an event. We do so by injecting an Event<Booking> instance into the service (indicating that its payload will be a booking). In order to individually identify this event as referring to event creation, we use a CDI qualifier, which we need to add:
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Created.java.

/**
 * {@link Qualifier} to mark a Booking as new (created).
 */
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Created {

}

What are qualifiers?
CDI uses a type-based resolution mechanism for injection and observers. In order to
distinguish between implementations of an interface, you can use qualifiers, a type
of annotations, to disambiguate. Injection points and event observers can use
qualifiers to narrow down the set of candidates

We also need allow the removal of bookings, so we add a method:
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java.

@Singleton
public class BookingService extends BaseEntityService<Booking> {
 ...

 @Inject @Cancelled
 private Event<Booking> cancelledBookingEvent;
 ...
 /**
 * <p>
 * Delete a booking by id
 * </p>
 * @param id
 * @return
 */
 @DELETE
 @Path("/{id:[0-9][0-9]*}")
 public Response deleteBooking(@PathParam("id") Long id) {
 Booking booking = getEntityManager().find(Booking.class, id);
 if (booking == null) {
 return Response.status(Response.Status.NOT_FOUND).build();
 }
 getEntityManager().remove(booking);
 cancelledBookingEvent.fire(booking);
 return Response.ok().build();
 }
}

We use the @DELETE annotation to indicate that it will be executed as the result of an HTTP DELETE request (again, the use of the DELETE HTTP verb is a matter of convention).
We need to notify the other components of the cancellation of the booking, so we fire an event, with a different qualifier.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Cancelled.java.

/**
 * {@link Qualifier} to mark a Booking as cancelled.
 */
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Cancelled {

}

The other services, including the MediaService that handles media items follow roughly the same patterns as above, so we leave them as an exercise to the reader.

Chapter 23. Testing the services

We’ve now finished implementing the services and there is a significant amount of functionality in the application. Before taking any step forward, you need to make sure the services work correctly: we need to test them.
Testing enterprise services be a complex task as the implementation is based on services provided by a container: dependency injection, access to infrastructure services such as persistence, transactions etc.. Unit testing frameworks, whilst offering a valuable infrastructure for running tests, do not provide these capabilities.
One of the traditional approaches has been the use of mocking frameworks to simulate what will happen in the runtime environment. While certainly providing a solution mocking brings its own set of problems (e.g. the additional effort required to provide a proper simulation or the risk of introducing errors in the test suite by incorrectly implemented mocks.
Fortunately, Arquillian provides the means to testing your application code within the container, with access to all the services and container features. In this section we will show you how to create a few Arquillian tests for your business services.
What to test?
A common asked question is: how much application functionality should we test? The
truth is, you can never test too much. That being said, resources are always limited
and tradeoffs are part of an engineer’s work. Generally speaking, trivial
functionality (setters/getters/toString methods) is a big concern compared to the
actual business code, so you probably want to focus your efforts on the business
code. Testing should include individual parts (unit testing), as well as
aggregates (integration testing).

23.1. A Basic Deployment Class

In order to create Arquillian tests, we need to define the deployment. The code under test, as well as its dependencies is packaged and deployed in the container.
Much of the deployment contents is common for all tests, so we create a helper class with a method that creates the base deployment with all the general content.
src/test/java/org/jboss/jdf/ticketmonster/test/TicketMonsterDeployment.java.

public class TicketMonsterDeployment {

 public static WebArchive deployment() {
 return ShrinkWrap
 .create(WebArchive.class, "test.war")
 .addPackage(Resources.class.getPackage())
 .addAsResource("META-INF/test-persistence.xml", "META-INF/persistence.xml")
 .addAsResource("import.sql")
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml")
 // Deploy our test datasource
 .addAsWebInfResource("test-ds.xml");
 }
}

Arquillian uses Shrinkwrap to define the contents of the deployment.

23.2. Writing RESTful service tests

For testing our JAX-RS RESTful services, we need to add the corresponding application classes to the deployment. Since we need to do that for each test we create, we abide by the DRY principles and create a utility class.
src/test/java/org/jboss/jdf/ticketmonster/test/rest/RESTDeployment.java.

public class RESTDeployment {

 public static WebArchive deployment() {
 return TicketMonsterDeployment.deployment()
 .addPackage(Booking.class.getPackage())
 .addPackage(BaseEntityService.class.getPackage())
 .addPackage(MockMultivaluedMap.class.getPackage())
 .addClass(SeatAllocationService.class)
 .addClass(MediaPath.class)
 .addClass(MediaManager.class);
 }

}

Now, we create the first test to validate the proper retrieval of individual events.
src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java.

@RunWith(Arquillian.class)
public class VenueServiceTest {

 @Deployment
 public static WebArchive deployment() {
 return RESTDeployment.deployment();
 }

 @Inject
 private VenueService venueService;

 @Test
 public void testGetVenueById() {

 // Test loading a single venue
 Venue venue = venueService.getSingleInstance(1l);
 assertNotNull(venue);
 assertEquals("Roy Thomson Hall", venue.getName());
 }

}

In the class above we specify the deployment, and we define the test method. The test supports CDI injection - one of the strengths of Arquillian is the ability to inject the object being tested.
Now, we test a more complicated use cases, query parameters for pagination.
src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java.

...
@RunWith(Arquillian.class)
public class VenueServiceTest {

 ...

 @Test
 public void testPagination() {

 // Test pagination logic
 MultivaluedMap<String, String> queryParameters = new MockMultivaluedMap<String, String>();

 queryParameters.add("first", "2");
 queryParameters.add("maxResults", "1");

 List<Venue> venues = venueService.getAll(queryParameters);
 assertNotNull(venues);
 assertEquals(1, venues.size());
 assertEquals("BMO Field", venues.get(0).getName());
 }

}

We add another test method (testPagination), which tests the retrieval of all venues, passing the
search criteria as parameters. We use a Map to simulate the passing of query parameters.
Now, we test more advanced use cases such as the creation of a new booking. We do so by adding a new test for bookings
src/test/java/org/jboss/jdf/ticketmonster/test/rest/BookingServiceTest.java.

@RunWith(Arquillian.class)
public class BookingServiceTest {

 @Deployment
 public static WebArchive deployment() {
 return RESTDeployment.deployment();
 }

 @Inject
 private BookingService bookingService;

 @Inject
 private ShowService showService;

 @Test
 @InSequence(1)
 public void testCreateBookings() {
 BookingRequest br = createBookingRequest(1l, 0, 0, 1, 3);
 bookingService.createBooking(br);

 BookingRequest br2 = createBookingRequest(2l, 1, 2, 4, 9);
 bookingService.createBooking(br2);

 BookingRequest br3 = createBookingRequest(3l, 0, 0, 1);
 bookingService.createBooking(br3);
 }

 @Test
 @InSequence(10)
 public void testGetBookings() {
 checkBooking1();
 checkBooking2();
 checkBooking3();
 }

 private void checkBooking1() {
 Booking booking = bookingService.getSingleInstance(1l);
 assertNotNull(booking);
 assertEquals("Roy Thomson Hall", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Rock concert of the decade", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 // Test the ticket requests created

 assertEquals(3 + 2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("A @ 219.5 (Adult)");
 requiredTickets.add("A @ 219.5 (Adult)");
 requiredTickets.add("D @ 149.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");

 checkTickets(requiredTickets, booking);
 }

 private void checkBooking2() {
 Booking booking = bookingService.getSingleInstance(2l);
 assertNotNull(booking);
 assertEquals("Sydney Opera House", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Rock concert of the decade", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 assertEquals(3 + 2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("S2 @ 197.75 (Adult)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");

 checkTickets(requiredTickets, booking);
 }

 private void checkBooking3() {
 Booking booking = bookingService.getSingleInstance(3l);
 assertNotNull(booking);
 assertEquals("Roy Thomson Hall", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Shane's Sock Puppets", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 assertEquals(2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("B @ 199.5 (Adult)");
 requiredTickets.add("D @ 149.5 (Adult)");
 requiredTickets.add("B @ 199.5 (Adult)");

 checkTickets(requiredTickets, booking);
 }

 @Test
 @InSequence(10)
 public void testPagination() {

 // Test pagination logic
 MultivaluedMap<String, String> queryParameters = new MockMultivaluedMap<String, String>();

 queryParameters.add("first", "2");
 queryParameters.add("maxResults", "1");

 List<Booking> bookings = bookingService.getAll(queryParameters);
 assertNotNull(bookings);
 assertEquals(1, bookings.size());
 assertEquals("Roy Thomson Hall", bookings.get(0).getPerformance().getShow().getVenue().getName());
 assertEquals("Shane's Sock Puppets", bookings.get(0).getPerformance().getShow().getEvent().getName());
 }

 @Test
 @InSequence(20)
 public void testDelete() {
 bookingService.deleteBooking(2l);
 checkBooking1();
 checkBooking3();
 try {
 bookingService.getSingleInstance(2l);
 } catch (Exception e) {
 if (e.getCause() instanceof NoResultException) {
 return;
 }
 }
 fail("Expected NoResultException did not occur.");
 }

 private BookingRequest createBookingRequest(Long showId, int performanceNo, int... ticketPriceNos) {
 Show show = showService.getSingleInstance(showId);

 Performance performance = new ArrayList<Performance>(show.getPerformances()).get(performanceNo);

 BookingRequest bookingRequest = new BookingRequest(performance, "bob@acme.com");

 List<TicketPrice> possibleTicketPrices = new ArrayList<TicketPrice>(show.getTicketPrices());
 int i = 1;
 for (int index : ticketPriceNos) {
 bookingRequest.addTicketRequest(new TicketRequest(possibleTicketPrices.get(index), i));
 i++;
 }

 return bookingRequest;
 }

 private void checkTickets(List<String> requiredTickets, Booking booking) {
 List<String> bookedTickets = new ArrayList<String>();
 for (Ticket t : booking.getTickets()) {
 bookedTickets.add(new StringBuilder().append(t.getSeat().getSection()).append(" @ ").append(t.getPrice()).append(" (").append(t.getTicketCategory()).append(")").toString());
 }
 System.out.println(bookedTickets);
 for (String requiredTicket : requiredTickets) {
 Assert.assertTrue("Required ticket not present: " + requiredTicket, bookedTickets.contains(requiredTicket));
 }
 }

}

First we test booking creation in a test method of its own (testCreateBookings). Then, we test that the previously created bookings
are retrieved correctly (testGetBookings and testPagination). Finally, we test that deletion takes place correctly (testDelete).
The other tests in the application follow roughly the same pattern and are left as an exercise to the reader.

23.3. Running the tests

If you have followed the instructions in the introduction and used the Maven archetype to generate the project structure, you should have two profiles already defined in your application.
/pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 ...
 <profile>
 <!-- An optional Arquillian testing profile that executes tests
 in your JBoss AS instance -->
 <!-- This profile will start a new JBoss AS instance, and execute
 the test, shutting it down when done -->
 <!-- Run with: mvn clean test -Parq-jbossas-managed -->
 <id>arq-jbossas-managed</id>
 <dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-arquillian-container-managed</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 </profile>

 <profile>
 <!-- An optional Arquillian testing profile that executes tests
 in a remote JBoss AS instance -->
 <!-- Run with: mvn clean test -Parq-jbossas-remote -->
 <id>arq-jbossas-remote</id>
 <dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-arquillian-container-remote</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 </profile>

 </profiles>
</project>

If you haven’t used the archetype, or the profiles don’t exist, create them.
Each profile defines a different Arquillian container. In both cases the tests execute in an application server instance. In one case (arq-jbossas-managed) the server instance is started and stopped by the test suite, whils in the other (arq-jbossas-remote), the test suite expects an already started server instance.
Once these profiles are defined, we can execute the tests in two ways:
	
from the command-line build

	
from an IDE

23.3.1. Executing tests from the command line

You can now execute the test suite from the command line by running the Maven build with the appropriate target and profile, as in one of the following examples.
After ensuring that the JBOSS_HOME environment variable is set to a valid JBoss AS7 installation directory), you can run the following command:
mvn clean test -Parq-jbossas-managed
Or, after starting a JBoss AS7 instance, you can run the following command
mvn clean test -Parq-jbossas-remote
These tests execute as part of the Maven build and can be easily included in an automated build and test harness.

23.3.2. Running Arquillian tests from within Eclipse

Running the entire test suite as part of the build is an important part of the development process - you may want to make sure that everything is working fine before releasing a new milestone, or just before committing new code. However, running the entire test suite all the time
can be a productivity drain, especially when you’re trying to focus on a particular problem. Also, when debugging, you don’t want to leave the comfort of your IDE for running the tests.
Running Arquillian tests from JBoss Developer Studio or JBoss tools is very simple as Arquillian builds on JUnit (or TestNG).
First enable one of the two profiles in the project. In Eclipse, open the project properties, and from the Maven tab, add the profile as shown in the picture below.
Figure 23.1. Update Maven profiles in Eclipse
[image: gfx/eclipse-maven-profile-update.png]

The project configuration will be updated automatically.
Now, you can click right on one of your test classes, and select Run As → JUnit Test.
The test suite will run, deploying the test classes to the application server, executing the tests and finally producing the much coveted green bar.
Figure 23.2. Running the tests
[image: gfx/eclipse-green-bar.png]

Part IV. Building The User UI Using HTML5

Chapter 24. What Will You Learn Here?

We’ve just implemented the business services of our application, and exposed them through RESTful endpoints. Now we need to implement a flexible user interface that can be easily used with both desktop and mobile clients. After reading this tutorial, you will understand our front-end design and the choices that we made in its implementation. Topics covered include:
	
Creating single-page applications using HTML5, JavaScript and JSON

	
Using JavaScript frameworks for invoking RESTful endpoints and manipulating page content

	
Feature and device detection

	
Implementing a version of the user interface that is optimized for mobile clients using JavaScript frameworks such as jQuery mobile

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through.

Chapter 25. First, the basics

In this tutorial, we will build a single-page application. All the necessary code: HTML, CSS and JavaScript is retrieved within a single page load. Rather than refreshing the page every time the user changes a view, the content of the page will be redrawn by manipulating the DOM in JavaScript. The application uses REST calls to retrieve data from the server.
Figure 25.1. Single page application
[image: gfx/single-page-app.png]

25.1. Client-side MVC Support

Because this is a moderately complex example, which involves multiple views and different types of data, we will use a client-side MVC framework to structure the application, which provides amongst others:
	
routing support within the single page application;

	
event-driven interaction between views and data;

	
simplified CRUD invocations on RESTful services.

In this application we use the client-side MVC framework "backbone.js".
Figure 25.2. Backbone architecture
[image: gfx/backbone-usage.png]

25.2. Modularity

In order to provide good separation of concerns, we split the JavaScript code into modules. Ensuring that all the modules of the application are loaded properly at runtime becomes a complex task, as the application size increases. To conquer this complexity, we use the Asynchronous Module Definition mechanism as implemented by the "require.js" library.
Asynchronous Module Definition
The Asynchronous Module Definition (AMD) API specifies a mechanism for defining modules such that the module, and its dependencies, can be asynchronously loaded. This is particularly well suited for the browser where synchronous loading of modules incurs performance, usability, debugging, and cross-domain access problems.

25.3. Templating

Instead of manipulating the DOM directly, and mixing up HTML with the JavaScript code, we create HTML markup fragments separately as templates which are applied when the application views are rendered.
In this application we use the templating support provided by "underscore.js".

25.4. Mobile and desktop versions

The page flow and structure, as well as feature set, are slightly different for mobile and desktop therefore we will build two variants of the single-page-application, one for desktop and one for mobile. As the application variants are very similar, we will cover the desktop version of the application first, and then we will explain what is different in the mobile version.

Chapter 26. Setting up the structure

Before we start developing the user interface, we need to set up the general application structure and add the JavaScript libraries. First, we create the directory structure:
Figure 26.1. File structure for our web application
[image: gfx/ui-file-structure.png]

We put stylesheets in resources/css folder, images in resources/img, and HTML view templates in resources/templates. resources/js contains the JavaScript code, split between resource/js/lib - which contains the libraries used by the application and resources/js/app which contains the application code. The latter will contain the application modules, in subsequent subdirectories, for models, collections, routers and views.
The first step in implementing our solution is adding the stylesheets and JavaScript libraries to the resources/css and resources/js/lib:
	
require.js

	
 AMD support, along with the plugins:

	
text - for loading text files, in our case the HTML templates

	
order - for enforcing load ordering if necessary

	
jQuery

	
 general purpose library for HTML traversal and manipulation

	
Underscore

	
 JavaScript utility library (and a dependency of Backbone)

	
Backbone

	
 Client-side MVC framework

	
Bootstrap

	
 UI components and stylesheets for page structuring

Now, we create the main page of the application (which is the URL loaded by the browser):
src/main/webapp/desktop-index.html.

<!DOCTYPE html>
<html>
<head>
 <title>Ticket Monster</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0;">

 <link type="text/css" rel="stylesheet" href="resources/css/screen.css"/>
 <link rel="stylesheet" href="resources/css/bootstrap.css" type="text/css" media="all"/>
 <link rel="stylesheet" href="resources/css/custom.css" type="text/css" media="all">

 <link href='http://fonts.googleapis.com/css?family=Rokkitt' rel='stylesheet' type='text/css'>
 <script data-main="resources/js/main-desktop" src="resources/js/libs/require.js"></script>

 <!-- Add JavaScript library for IE6-8 support of HTML5 elements -->
 <!--[if lt IE 9]>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
 <![endif]-->

</head>
<body>

<!--
 The main layout of the page - contains the menu and the 'content' <div/> in which all the
 views will render the content.
-->
<div id="logo"><div class="wrap"><h1>Ticket Monster</h1></div></div>
<div id="container">
 <div id="menu">
 <div class="navbar">
 <div class="navbar-inner">
 <div class="container">
 <ul class="nav">
 About
 Events
 Venues
 Bookings
 Monitor
 Administration

 </div>
 </div>
 </div>
 </div>
 <div id="content" class="container-fluid">
 </div>
</div>

<footer style="">
 <div style="text-align: center;"></div>
</footer>

</body>
</html>

As you can see, the page does not contain much. It loads the custom stylesheet of the application, as well as the one required by Bootstrap, sets up instructions for loading the application scripts and defines the general structure of the page.
The actual HTML code of the page contains a menu definition which will be present on all the pages, as well as an empty element named content, which is the placeholder for the application views. When a view is displayed, it will apply a template and populate the content element.
The JavaScript code of the page is loaded by require.js, according to the module definition contained in resources/js/main-desktop.js:
src/main/webapp/resources/js/main-desktop.js.

/**
 * Shortcut alias definitions - will come in handy when declaring dependencies
 * Also, they allow you to keep the code free of any knowledge about library
 * locations and versions
 */
require.config({
 paths: {
 jquery:'libs/jquery-1.7.1',
 underscore:'libs/underscore',
 text:'libs/text',
 order:'libs/order',
 bootstrap: 'libs/bootstrap',
 utilities: 'app/utilities',
 router
 }
});

// Backbone is not AMD-ready, so a individual module is declared
define("backbone", [
 // the order plugin is used to ensure that the modules are loaded in the right order
 'order!jquery',
 'order!underscore',
 'order!libs/backbone'], function(){
 return Backbone;
});

// Now we declare all the dependencies
require([
 'order!jquery',
 'order!underscore',
 'order!backbone',
 'text',
 'order!bootstrap',
], function(){
 console.log('all loaded')
});

The module loads all the utility libraries. Later on, when we will have written the application code, it will be loaded here as well.

Chapter 27. Displaying Events

The first use case that we implement is event navigation. The users will be able to view the list of events and select the one that they want to attend. After doing so, they will select a venue, and will be able to choose a performance date and time.

27.1. The Event model

We a Backbone model for holding event data. Nearly all domain entities (booking, event, venue) are represented by a corresponding Backbone model:
src/main/webapp/resources/js/app/models/event.js.

/**
 * Module for the Event model
 */
define([
 'backbone' // depends and imports Backbone
], function (Backbone) {
 /**
 * The Event model class definition
 * Used for CRUD operations against individual events
 */
 var Event = Backbone.Model.extend({
 urlRoot:'rest/events' // the URL for performing CRUD operations
 });
 // export the Event class
 return Event;
});

The Event model can perform CRUD operations against the REST services we defined earlier.
Backbone Models
Backbone models contain data as well as much of the logic surrounding
it: conversions, validations, computed properties, and access control.
They also perform CRUD operations with the REST service.

27.2. The Events collection

We define a Backbone collection for handling groups of events (like the events list):
src/main/webapp/resources/js/app/collections/events.js.

/**
 * Module for the Events collection
 */
define([
 // Backbone and the collection element type are dependencies
 'backbone',
 'app/models/event'
], function (Backbone, Event) {
 /**
 * Here we define the Bookings collection
 * We will use it for CRUD operations on Bookings
 */
 var Events = Backbone.Collection.extend({
 url:"rest/events", // the URL for performing CRUD operations
 model: Event,
 id:"id", // the 'id' property of the model is the identifier
 comparator:function (model) {
 return model.get('category').id;
 }
 });
 return Events;
});

By mapping the model and collection to a REST endpoint you can perform CRUD operations without having to invoke the services explicitly. You will see how that works a bit later.
Backbone Collections
Collections are ordered sets of models. They can handle events which are
fired as a result of a change to a individual member, and can perform
CRUD operations for syncing up contents against RESTful services.

27.3. The EventsView view

Now that we have implemented the data components of the example, we need to create the view that displays them.
src/main/webapp/resources/js/app/views/desktop/events.js.

define([
 'backbone',
 'utilities',
 'text!../../../../templates/desktop/events.html'
], function (
 Backbone,
 utilities,
 eventsTemplate) {

 var EventsView = Backbone.View.extend({
 events:{
 "click a":"update"
 },
 render:function () {
 var categories = _.uniq(
 _.map(this.model.models, function(model){
 return model.get('category')
 }), false, function(item){
 return item.id
 });
 utilities.applyTemplate($(this.el), eventsTemplate, {categories:categories, model:this.model})
 $(this.el).find('.item:first').addClass('active');
 $(".collapse").collapse()
 $("a[rel='popover']").popover({trigger:'hover'});
 return this;
 },
 update:function () {
 $("a[rel='popover']").popover('hide')
 }
 });

 return EventsView;
});

The view is attached to a DOM element (the el property). When the render method is invoked, it manipulates the DOM and renders the view. We could have achieved this by writing these instructions directly in the method, but that would make it hard to change the page design later on. Instead, we create a template and apply it, thus separating the HTML view code from the view implementation.
src/main/webapp/resources/templates/desktop/events.html.

<div class="row-fluid">
 <div class="span3">
 <div id="itemMenu">

 <%
 _.each(categories, function (category) {
 %>
 <div class="accordion-group">
 <div class="accordion-heading">
 <a class="accordion-toggle"
 data-target="#category-<%=category.id%>-collapsible" data-toggle="collapse"
 data-parent="#itemMenu"><%= category.description %>
 </div>
 <div id="category-<%=category.id%>-collapsible" class="collapse in accordion-body">
 <div id="category-<%- category.id%>" class="accordion-inner">

 <%
 _.each(model.models, function (model) {
 if (model.get('category').id == category.id) {
 %>
 <p><a href="#events/<%- model.attributes.id%>" rel="popover"
 data-content="<%- model.attributes.description%>"
 data-original-title="<%- model.attributes.name%>"><%=model.attributes.name%></p>
 <% }
 });
 %>
 </div>
 </div>
 </div>
 <% }); %>
 </div>
 </div>

 <div id='itemSummary' class="span9">
 <div class="row-fluid">
 <div class="span11">
 <div id="eventCarousel" class="carousel">
 <!-- Carousel items -->
 <div class="carousel-inner">
 <%_.each(model.models, function(model) { %>
 <div class="item">
 <img src='rest/media/<%=model.attributes.mediaItem.id%>'/>

 <div class="carousel-caption">
 <h4><%=model.attributes.name%></h4>

 <p><%=model.attributes.description%></p>
 <a class="btn btn-danger" href="#events/<%=model.id%>">Book tickets
 </div>
 </div>
 <% }) %>
 </div>
 <!-- Carousel nav -->
 ‹
 ›
 </div>
 </div>
 </div>
 </div>
</div>

As well as applying the template and preparing the data that will be used to fill it in (the categories and model entries in the map), the render method also performs the JavaScript calls that are required to initialize the UI components (in this case the Bootstrap carousel and popover).
A view can also listen to events fired by the children of it’s root element (el). In this case, the update method is configured to listen to clicks on anchors. The configuration occurs within the events property of the class.
Now that the views are in place, we need to add a routing rule to the application. We create the router and add our first routes.

27.4. Routing

We will continue by defining a router which provides bookmarkable URLs for the various locations in our application.
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 'jquery',
 'underscore',
 'backbone',
 'utilities',
 'app/collections/events',
 'app/views/desktop/events',
],function ($,
 _,
 Backbone,
 utilities,
 Events,
 EventsView) {

 /**
 * The Router class contains all the routes within the application -
 * i.e. URLs and the actions that will be taken as a result.
 *
 * @type {Router}
 */

 var Router = Backbone.Router.extend({
 routes:{
 "":"events", // listen to #events
 "events":"events" // listen to #events
 },
 events:function () {
 //initialize the events collection
 var events = new Events();
 // create an events view
 var eventsView = new EventsView({model:events, el:$("#content")});
 // render the view when the collection elements are fetched from the
 // RESTful service
 events.bind("reset",
 function () {
 utilities.viewManager.showView(eventsView);
 }).fetch();
 });

 // Create a router instance
 var router = new Router();

 // Begin routing
 Backbone.history.start();

 return router;
});

Remember, this is a single page application. You can either navigate using urls such as http://localhost:8080/ticket-monster/desktop-index.html#events or using relative urls (from within the application, this being exactly what the main menu does). The fragment after the hash sign represents the url within the single page, on which the router will act.
The routes property maps urls to controller function. In the example above, we have two controller functions.
events handles the #events fragment and will retrieve the events in our application via a REST call. We don’t manually perform the REST call as it is triggered the by invocation of fetch on the Events collection, as discussed earlier.
The reset event on the collection is invoked when the data from the server is received, and the collection is populated. This triggers the rendering of the events view (which is bound to the #content div).
The whole process is event orientated - the models, views and controllers interact through events.
Once the router has been defined, all that remains is to cause it to be loaded by the main module definition. Because the router depends on all the other components (models, collections and views) of the application, directly or indirectly, it is the only component that is explicitly loaded in the main-desktop definition, which we change as follows:
src/main/webapp/resources/js/main-desktop.js.

require.config({
 paths: {
 jquery:'libs/jquery-1.7.1',
 underscore:'libs/underscore',
 text:'libs/text',
 order:'libs/order',
 bootstrap: 'libs/bootstrap',
 utilities: 'app/utilities',
 router:'app/router/desktop/router'
 }
});

 ...

// Now we declare all the dependencies
require([
 'order!jquery',
 'order!underscore',
 'order!backbone',
 'text',
 'order!bootstrap',
 'router'
], function(){
 console.log('all loaded')
});

Chapter 28. Viewing a single event

With the events list view now in place, we can add a view to display the details of each individual event, allowing the user to select a venue and performance time.
We already have the models in place so all we need to do is to create the additional view and expand the router. First, we’ll implement the view:
src/main/webapp/resources/js/app/views/desktop/event-detail.js.

define([
 'backbone',
 'utilities',
 'require',
 'text!../../../../templates/desktop/event-detail.html',
 'text!../../../../templates/desktop/media.html',
 'text!../../../../templates/desktop/event-venue-description.html',
 'bootstrap'
], function (
 Backbone,
 utilities,
 require,
 eventDetailTemplate,
 mediaTemplate,
 eventVenueDescriptionTemplate) {

 var EventDetail = Backbone.View.extend({

 events:{
 "click input[name='bookButton']":"beginBooking",
 "change select[id='venueSelector']":"refreshShows",
 "change select[id='dayPicker']":"refreshTimes"
 },

 render:function () {
 $(this.el).empty()
 utilities.applyTemplate($(this.el), eventDetailTemplate, this.model.attributes);
 $("#bookingOption").hide();
 $("#venueSelector").attr('disabled', true);
 $("#dayPicker").empty();
 $("#dayPicker").attr('disabled', true)
 $("#performanceTimes").empty();
 $("#performanceTimes").attr('disabled', true)
 var self = this
 $.getJSON("rest/shows?event=" + this.model.get('id'), function (shows) {
 self.shows = shows
 $("#venueSelector").empty().append("<option value='0' selected>Select a venue</option>");
 $.each(shows, function (i, show) {
 $("#venueSelector").append("<option value='" + show.id + "'>" + show.venue.address.city + " : " + show.venue.name + "</option>")
 });
 $("#venueSelector").removeAttr('disabled')
 })
 return this;
 },
 beginBooking:function () {
 require("router").navigate('/book/' + $("#venueSelector option:selected").val() + '/' + $("#performanceTimes").val(), true)
 },
 refreshShows:function (event) {
 event.stopPropagation();
 $("#dayPicker").empty();

 var selectedShowId = event.currentTarget.value;

 if (selectedShowId != 0) {
 var selectedShow = _.find(this.shows, function (show) {
 return show.id == selectedShowId
 });
 this.selectedShow = selectedShow;
 utilities.applyTemplate($("#eventVenueDescription"), eventVenueDescriptionTemplate, {venue:selectedShow.venue});
 var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function (performance) {
 return (new Date(performance.date).withoutTimeOfDay()).getTime()
 }), function (item) {
 return item
 }));
 utilities.applyTemplate($("#venueMedia"), mediaTemplate, selectedShow.venue)
 $("#dayPicker").removeAttr('disabled')
 $("#performanceTimes").removeAttr('disabled')
 _.each(times, function (time) {
 var date = new Date(time)
 $("#dayPicker").append("<option value='" + date.toYMD() + "'>" + date.toPrettyStringWithoutTime() + "</option>")
 });
 this.refreshTimes()
 $("#bookingWhen").show(100)
 } else {
 $("#bookingWhen").hide(100)
 $("#bookingOption").hide()
 $("#dayPicker").empty()
 $("#venueMedia").empty()
 $("#eventVenueDescription").empty()
 $("#dayPicker").attr('disabled', true)
 $("#performanceTimes").empty()
 $("#performanceTimes").attr('disabled', true)
 }

 },
 refreshTimes:function () {
 var selectedDate = $("#dayPicker").val();
 $("#performanceTimes").empty()
 if (selectedDate) {
 $.each(this.selectedShow.performances, function (i, performance) {
 var performanceDate = new Date(performance.date);
 if (_.isEqual(performanceDate.toYMD(), selectedDate)) {
 $("#performanceTimes").append("<option value='" + performance.id + "'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" + performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")
 }
 })
 }
 $("#bookingOption").show()
 }

 });

 return EventDetail;
});

This view is more complex than the global events view, as portions of the page need to be updated when the user chooses a venue.
Figure 28.1. On the event details page some fragments are re-rendered when the user selects a venue
[image: gfx/ui-event-details.png]

The view responds to three different events:
	
changing the current venue triggers a reload of the venue details and the venue image, as well as the performance times. The application retrieves the performance times through a REST call.

	
changing the day of the performance causes the performance time selector to reload.

	
once the venue and performance date and time have been selected, the user can navigate to the booking page.

The corresponding templates for the three fragments rendered above are:
src/main/webapp/resources/templates/desktop/event-detail.html.

<div class="row-fluid" xmlns="http://www.w3.org/1999/html">
 <h2 class="page-header special-title light-font"><%=name%></h2>
</div>
<div class="row-fluid">
 <div class="span4 well">
 <div class="row-fluid"><h3 class="page-header span6">What?</h3>
 <img width="100" src='rest/media/<%=mediaItem.id%>'/></div>
 <div class="row-fluid">
 <p> </p>

 <div class="span12"><%= description %></div>
 </div>
 </div>
 <div class="span4 well">
 <div class="row-fluid"><h3 class="page-header span6">Where?</h3>
 <div class="span6" id='venueMedia'/>
 </div>
 <div class='row-fluid'><select id='venueSelector'/>
 <div id="eventVenueDescription"/>
 </div>
 </div>
 <div id='bookingWhen' style="display: none;" class="span2 well">
 <h3 class="page-header">When?</h3>
 <select class="span2" id="dayPicker"/>
 <select class="span2" id="performanceTimes"/>

 <div id='bookingOption'><input name="bookButton" class="btn btn-primary" type="button"
 value="Order tickets"></div>
 </div>
</div>

src/main/webapp/resources/templates/desktop/event-venue-description.html.

<address>
 <p><%= venue.description %></p>
 <p>Address:</p>
 <p><%= venue.address.street %></p>
 <p><%= venue.address.city %>, <%= venue.address.country %></p>
</address>

Now that the view exists, we add it to the router:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/models/event',
 ...,
 'app/views/desktop/event-detail'
],function (
 ...
 Event,
 ...
 EventDetailView) {

 var Router = Backbone.Router.extend({
 routes:{
 ...
 "events/:id":"eventDetail",
 },
 ...
 eventDetail:function (id) {
 var model = new Event({id:id});
 var eventDetailView = new EventDetailView({model:model, el:$("#content")});
 model.bind("change",
 function () {
 utilities.viewManager.showView(eventDetailView);
 }).fetch();
 });
});

As you can see, this is very similar to the previous view and route, except that now the application can accept URLs (e.g. http://localhost:8080/ticket-monster/desktop-index#events/1). This URL can be entered directly into the browser, or it can be navigated to as a relative path (e.g. #events/1) from within the applicaton.
With this in place, all that remains is to implement the final view of this use case, creating the bookings.

Chapter 29. Creating Bookings

The user has chosen the event, the venue and the performance time, and must now create the booking. Users can select one of the available sections for the show’s venue, and then enter the number of tickets requiredfor each category available for this show (Adult, Child, etc.). They then add the tickets to the current order, which causes the summary view to be updated. Users can also remove tickets from the order. When the order is complete, they enter their contact information (e-mail address) and submit the order to the server.
First, we add the new view:
src/main/webapp/resources/js/app/views/desktop/create-booking.js.

define([
 'backbone',
 'utilities',
 'require',
 'text!../../../../templates/desktop/booking-confirmation.html',
 'text!../../../../templates/desktop/create-booking.html',
 'text!../../../../templates/desktop/ticket-categories.html',
 'text!../../../../templates/desktop/ticket-summary-view.html',
 'bootstrap'
],function (
 Backbone,
 utilities,
 require,
 bookingConfirmationTemplate,
 createBookingTemplate,
 ticketEntriesTemplate,
 ticketSummaryViewTemplate){

 var TicketCategoriesView = Backbone.View.extend({
 id:'categoriesView',
 events:{
 "keyup input":"onChange"
 },
 render:function () {
 if (this.model != null) {
 var ticketPrices = _.map(this.model, function (item) {
 return item.ticketPrice;
 });
 utilities.applyTemplate($(this.el), ticketEntriesTemplate, {ticketPrices:ticketPrices});
 } else {
 $(this.el).empty();
 }
 return this;
 },
 onChange:function (event) {
 var value = event.currentTarget.value;
 var ticketPriceId = $(event.currentTarget).data("tm-id");
 var modifiedModelEntry = _.find(this.model, function (item) {
 return item.ticketPrice.id == ticketPriceId
 });
 // update model
 if ($.isNumeric(value) && value > 0) {
 modifiedModelEntry.quantity = parseInt(value);
 }
 else {
 delete modifiedModelEntry.quantity;
 }
 // display error messages
 if (value.length > 0 &&
 (!$.isNumeric(value) // is a non-number, other than empty string
 || value <= 0 // is negative
 || parseFloat(value) != parseInt(value))) { // is not an integer
 $("#error-input-"+ticketPriceId).empty().append("Please enter a positive integer value");
 $("#ticket-category-fieldset-"+ticketPriceId).addClass("error")
 } else {
 $("#error-input-"+ticketPriceId).empty();
 $("#ticket-category-fieldset-"+ticketPriceId).removeClass("error")
 }
 // are there any outstanding errors after this update?
 // if yes, disable the input button
 if (
 $("div[id^='ticket-category-fieldset-']").hasClass("error") &&
 !_.isUndefined(modifiedModelEntry.quantity)) {
 $("input[name='add']").attr("disabled", true)
 } else {
 $("input[name='add']").removeAttr("disabled")
 }
 }
 });

 var TicketSummaryView = Backbone.View.extend({
 tagName:'tr',
 events:{
 "click i":"removeEntry"
 },
 render:function () {
 var self = this;
 utilities.applyTemplate($(this.el), ticketSummaryViewTemplate, this.model.bookingRequest);
 },
 removeEntry:function () {
 this.model.bookingRequest.tickets.splice(this.model.index, 1);
 }
 });

 var CreateBookingView = Backbone.View.extend({

 events:{
 "click input[name='submit']":"save",
 "change select[id='sectionSelect']":"refreshPrices",
 "keyup #email":"updateEmail",
 "change #email":"updateEmail",
 "click input[name='add']":"addQuantities",
 "click i":"updateQuantities"
 },
 render:function () {

 var self = this;
 $.getJSON("rest/shows/" + this.model.showId, function (selectedShow) {

 self.currentPerformance = _.find(selectedShow.performances, function (item) {
 return item.id == self.model.performanceId;
 });

 var id = function (item) {return item.id;};
 // prepare a list of sections to populate the dropdown
 var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'), id), true, id);
 utilities.applyTemplate($(self.el), createBookingTemplate, {
 sections:sections,
 show:selectedShow,
 performance:self.currentPerformance});
 self.ticketCategoriesView = new TicketCategoriesView({model:{}, el:$("#ticketCategoriesViewPlaceholder") });
 self.ticketSummaryView = new TicketSummaryView({model:self.model, el:$("#ticketSummaryView")});
 self.show = selectedShow;
 self.ticketCategoriesView.render();
 self.ticketSummaryView.render();
 $("#sectionSelector").change();
 });
 return this;
 },
 refreshPrices:function (event) {
 var ticketPrices = _.filter(this.show.ticketPrices, function (item) {
 return item.section.id == event.currentTarget.value;
 });
 var ticketPriceInputs = new Array();
 _.each(ticketPrices, function (ticketPrice) {
 ticketPriceInputs.push({ticketPrice:ticketPrice});
 });
 this.ticketCategoriesView.model = ticketPriceInputs;
 this.ticketCategoriesView.render();
 },
 save:function (event) {
 var bookingRequest = {ticketRequests:[]};
 var self = this;
 bookingRequest.ticketRequests = _.map(this.model.bookingRequest.tickets, function (ticket) {
 return {ticketPrice:ticket.ticketPrice.id, quantity:ticket.quantity}
 });
 bookingRequest.email = this.model.bookingRequest.email;
 bookingRequest.performance = this.model.performanceId
 $("input[name='submit']").attr("disabled", true)
 $.ajax({url:"rest/bookings",
 data:JSON.stringify(bookingRequest),
 type:"POST",
 dataType:"json",
 contentType:"application/json",
 success:function (booking) {
 this.model = {}
 $.getJSON('rest/shows/performance/' + booking.performance.id, function (retrievedPerformance) {
 utilities.applyTemplate($(self.el), bookingConfirmationTemplate, {booking:booking, performance:retrievedPerformance })
 });
 }}).error(function (error) {
 if (error.status == 400 || error.status == 409) {
 var errors = $.parseJSON(error.responseText).errors;
 _.each(errors, function (errorMessage) {
 $("#request-summary").append('<div class="alert alert-error">×Error! ' + errorMessage + '</div>')
 });
 } else {
 $("#request-summary").append('<div class="alert alert-error">×Error! An error has occured</div>')
 }
 $("input[name='submit']").removeAttr("disabled");
 })

 },
 addQuantities:function () {
 var self = this;
 _.each(this.ticketCategoriesView.model, function (model) {
 if (model.quantity != undefined) {
 var found = false;
 _.each(self.model.bookingRequest.tickets, function (ticket) {
 if (ticket.ticketPrice.id == model.ticketPrice.id) {
 ticket.quantity += model.quantity;
 found = true;
 }
 });
 if (!found) {
 self.model.bookingRequest.tickets.push({ticketPrice:model.ticketPrice, quantity:model.quantity});
 }
 }
 });
 this.ticketCategoriesView.model = null;
 $('option:selected', 'select').removeAttr('selected');
 this.ticketCategoriesView.render();
 this.updateQuantities();
 },
 updateQuantities:function () {
 // make sure that tickets are sorted by section and ticket category
 this.model.bookingRequest.tickets.sort(function (t1, t2) {
 if (t1.ticketPrice.section.id != t2.ticketPrice.section.id) {
 return t1.ticketPrice.section.id - t2.ticketPrice.section.id;
 }
 else {
 return t1.ticketPrice.ticketCategory.id - t2.ticketPrice.ticketCategory.id;
 }
 });

 this.model.bookingRequest.totals = _.reduce(this.model.bookingRequest.tickets, function (totals, ticketRequest) {
 return {
 tickets:totals.tickets + ticketRequest.quantity,
 price:totals.price + ticketRequest.quantity * ticketRequest.ticketPrice.price
 };
 }, {tickets:0, price:0.0});

 this.ticketSummaryView.render();
 this.setCheckoutStatus();
 },
 updateEmail:function (event) {
 if ($(event.currentTarget).is(':valid')) {
 this.model.bookingRequest.email = event.currentTarget.value;
 $("#error-email").empty();
 } else {
 $("#error-email").empty().append("Please enter a valid e-mail address");
 delete this.model.bookingRequest.email;
 }
 this.setCheckoutStatus();
 },
 setCheckoutStatus:function () {
 if (this.model.bookingRequest.totals != undefined
 && this.model.bookingRequest.totals.tickets > 0
 && this.model.bookingRequest.email != undefined
 && this.model.bookingRequest.email != '') {
 $('input[name="submit"]').removeAttr('disabled');
 }
 else {
 $('input[name="submit"]').attr('disabled', true);
 }
 }
 });

 return CreateBookingView;
});

The code above may be surprising! After all, we said that we were going to add a single view, but instead, we added three! This view makes use of two subviews (TicketCategoriesView and TicketSummaryView) for re-rendering parts of the main view. Whenever the user changes the current section, the list of available tickets is updated. Whenever the user adds the tickets to the booking, the booking summary is re-rendered. Changes in quantities or the target email may enable or disable the submission button - the booking is validated whenever changes to it are made. We do not create separate modules for the subviews, since they are not referenced outside the module itself.
The booking submission is handled by the save method which constructs a JSON object, as required by a POST to http://localhost:8080/ticket-monster/rest/bookings, and performs the AJAX call. In case of a successful response, a confirmation view is rendered. On failure, a warning is displayed and the user may continue to edit the form.
The corresponding templates for the views above are shown below:
src/main/webapp/resources/templates/desktop/booking-confirmation.html.

<div class="row-fluid">
 <h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>
</div>
<div class="row-fluid">
 <div class="span5 well">
 <h4 class="page-header">Checkout information</h4>
 <p>Email: <%= booking.contactEmail %></p>
 <p>Event: <%= performance.event.name %></p>
 <p>Venue: <%= performance.venue.name %></p>
 <p>Date: <%= new Date(booking.performance.date).toPrettyString() %></p>
 <p>Created on: <%= new Date(booking.createdOn).toPrettyString() %></p>
 </div>
 <div class="span5 well">
 <h4 class="page-header">Ticket allocations</h4>
 <table class="table table-striped table-bordered" style="background-color: #fffffa;">
 <thead>
 <tr>
 <th>Ticket #</th>
 <th>Category</th>
 <th>Section</th>
 <th>Row</th>
 <th>Seat</th>
 </tr>
 </thead>
 <tbody>
 <% $.each(_.sortBy(booking.tickets, function(ticket) {return ticket.id}), function (i, ticket) { %>
 <tr>
 <td><%= ticket.id %></td>
 <td><%=ticket.ticketCategory.description%></td>
 <td><%=ticket.seat.section.name%></td>
 <td><%=ticket.seat.rowNumber%></td>
 <td><%=ticket.seat.number%></td>
 </tr>
 <% }) %>
 </tbody>
 </table>
 </div>
</div>
<div class="row-fluid" style="padding-bottom:30px;">
 <div class="span2">Home</div>
</div>

src/main/webapp/resources/templates/desktop/create-booking.html.

<div class="row-fluid">
 <div class="span12">
 <h2 class="special-title light-font"><%=show.event.name%>
 <small><%=show.venue.name%>, <%=new Date(performance.date).toPrettyString()%></p></small>
 </h2>
 </div>
</div>
<div class="row-fluid">
 <div class="span6 well">
 <h3 class="page-header">Select tickets</h3>
 <form class="form-horizontal">
 <div id="sectionSelectorPlaceholder">
 <div class="control-group">
 <label class="control-label" for="sectionSelect">Section</label>
 <div class="controls">
 <select id="sectionSelect">
 <option value="-1" selected="true">Choose a section</option>
 <% _.each(sections, function(section) { %>
 <option value="<%=section.id%>"><%=section.name%> - <%=section.description%></option>
 <% }) %>
 </select>
 </div>
 </div>
 </div>
 </form>
 <div id="ticketCategoriesViewPlaceholder"></div>
 </div>
 <div id="request-summary" class="span5 offset1 well">
 <h3 class="page-header">Order summary</h3>
 <div id="ticketSummaryView" class="row-fluid"/>
 <h3 class="page-header">Checkout</h3>
 <div class="row-fluid">
 <form class="form-search">
 <input type='email' id="email" placeholder="Email" required/>
 <input type='button' class="btn btn-primary" name="submit" value="Checkout"
 disabled="true"/>
 <p class="help-block error-notification" id="error-email"></p>
 </form>
 </div>
 </div>
</div>

src/main/webapp/resources/templates/desktop/ticket-categories.html.

<% if (ticketPrices.length > 0) { %>
<form class="form-horizontal">
 <% _.each(ticketPrices, function(ticketPrice) { %>
 <div class="control-group" id="ticket-category-fieldset-<%=ticketPrice.id%>">
 <label class="control-label"><%=ticketPrice.ticketCategory.description%></label>
 <div class="controls">
 <div class="input-append">
 <input class="span2" rel="tooltip" title="Enter value"
 data-tm-id="<%=ticketPrice.id%>"
 placeholder="Number of tickets"
 name="tickets-<%=ticketPrice.ticketCategory.id%>"/>
 @ $<%=ticketPrice.price%>

 <p class="help-block" id="error-input-<%=ticketPrice.id%>"></p>
 </div>
 </div>
 </div>
 <% }) %>
<p> </p>

<div class="control-group">
 <label class="control-label"/>

 <div class="controls">
 <input type="button" class="btn btn-primary" disabled="true" name="add" value="Add tickets"/>
 </div>
</div>
</div>
</form>
<% } %>

src/main/webapp/resources/templates/desktop/ticket-summary-view.html.

<div class="span12">
 <% if (tickets.length>0) { %>
 <table class="table table-bordered table-condensed row-fluid" style="background-color: #fffffa;">
 <thead>
 <tr>
 <th colspan="5">Requested tickets</th>
 </tr>
 <tr>
 <th>Section</th>
 <th>Category</th>
 <th>Quantity</th>
 <th>Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody id="ticketRequestSummary">
 <% _.each(tickets, function (ticketRequest, index, tickets) { %>
 <tr>
 <td><%= ticketRequest.ticketPrice.section.name %></td>
 <td><%= ticketRequest.ticketPrice.ticketCategory.description %></td>
 <td><%= ticketRequest.quantity %></td>
 <td>$<%=ticketRequest.ticketPrice.price%></td>
 <td><i class="icon-trash"/></td>
 </tr>
 <% }); %>
 </tbody>
 </table>
 <p/>
 <div class="row-fluid">
 <div class="span5">Total ticket count: <%= totals.tickets %></div>
 <div class="span5">Total price: $<%=totals.price%></div></div>
 <% } else { %>
 No tickets requested.
 <% } %>
</div>

Finally, once the view is available, we can add it’s corresponding routing rule:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/views/desktop/create-booking',
 ...
],function (
 ...
 CreateBooking
 ...
) {

 var Router = Backbone.Router.extend({
 routes:{
 ...
 "book/:showId/:performanceId":"bookTickets",
 },
 ...
 bookTickets:function (showId, performanceId) {
 var createBookingView =
 new CreateBookingView({
 model:{ showId:showId,
 performanceId:performanceId,
 bookingRequest:{tickets:[]}},
 el:$("#content")
 });
 utilities.viewManager.showView(createBookingView);
 }
});

This concludes the implementation of the booking use case. We started by listing the available events, continued by selecting a venue and performance time, and ended by choosing tickets and completing the order.
The other use cases: a booking starting from venues and vi existing bookings are conceptually similar, so you can just copy the remaining files in the src/main/webapp/resources/js/app/models, src/main/webapp/resources/js/app/collections,
src/main/webapp/resources/js/app/views/desktop and the remainder of src/main/webapp/resources/js/app/routers/desktop/router.js.

Chapter 30. Mobile view

The mobile version of the application uses approximately the same architecture as the desktop version. Any differences are due to the functional changes in the mobile version and the use of jQuery mobile.

30.1. Setting up the structure

The first step in implementing our solution is to copy the CSS and JavaScript libraries to resources/css and resources/js/lib:
	
require.js

	
 AMD support, along with the plugins:

	
text - for loading text files, in our case the HTML templates

	
order - for enforcing load ordering if necessary

	
jQuery

	
 general purpose library for HTML traversal and manipulation

	
Underscore

	
 JavaScript utility library (and a dependency of Backbone)

	
Backbone

	
 Client-side MVC framework

	
jQuery Mobile

	
 user interface system for mobile devices;

(If you have already built the desktop application, some files may already be in place.)
Next, we add the mobile main page.
src/main/webapp/mobile-index.html.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html>
<head>
 <title>Ticket Monster - mobile version</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0"/>

 <link rel="stylesheet" href="resources/css/jquery.mobile-1.1.0.css"/>
 <link rel="stylesheet" href="resources/css/m.screen.css"/>
 <script data-main="resources/js/main-mobile" src="resources/js/libs/require.js"></script>
</head>
<body>

<div id="container" data-role="page" data-ajax="false"></div>

</body>
</html>

As you can see, this page is simple. We just load the stylesheets for the application, and then we use require.js to load the JavaScript code and page fragments. All the pages will render inside the container element, which has a data-role attribute with the page value, as with any jQuery Mobile application.
Now, we add it the module loader.
src/main/webapp/resources/js/main-mobile.js.

/**
 * Shortcut alias definitions - will come in handy when declaring dependencies
 * Also, they allow you to keep the code free of any knowledge about library
 * locations and versions
 */
require.config({
 paths: {
 jquery:'libs/jquery-1.7.1',
 jquerymobile:'libs/jquery.mobile-1.1.0',
 text:'libs/text',
 order: 'libs/order',
 utilities: 'app/utilities',
 router:'app/router/mobile/router'
 }
});

define('underscore',[
 'libs/underscore'
], function(){
 return _;
});

define("backbone", [
 'order!jquery',
 'order!underscore',
 'order!libs/backbone'
], function(){
 return Backbone;
});

// Now we declare all the dependencies
require(['router'],
 function(){
 console.log('all loaded')
});

In this application, we combine Backbone and jQuery Mobile. Each framework has its own strengths; jQuery Mobile provides UI components and touch support, whilst Backbone provides MVC support. There is some overlap between the two, as jQuery Mobile provides its own navigation mechanism which we disable.
In the router code we make customizations in order to get the two frameworks working together - disabling the jQuery Mobile navigation and adding the defaultHandler to the router for handling jQuery Mobile transitions between internal pages (such as the ones generated by a nested listview).
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 'jquery',
 'jquerymobile',
 'underscore',
 'backbone',
 'utilities'
],function ($,
 jqm,
 _,
 Backbone,
 Booking,
 utilities) {

 // prior to creating an starting the router, we disable jQuery Mobile's own routing mechanism
 $.mobile.hashListeningEnabled = false;
 $.mobile.linkBindingEnabled = false;
 $.mobile.pushStateEnabled = false;

 /**
 * The Router class contains all the routes within the application - i.e. URLs and the actions
 * that will be taken as a result.
 *
 * @type {Router}
 */
 var Router = Backbone.Router.extend({
 //no routes added yet
 defaultHandler:function (actions) {
 if ("" != actions) {
 $.mobile.changePage("#" + actions, {transition:'slide', changeHash:false, allowSamePageTransition:true});
 }
 }
 });

 // Create a router instance
 var router = new Router();

 // Begin routing
 Backbone.history.start();

 return router;
});

The router also will also interact with additional libraries and will declare them as its dependencies, rather than specifying
them in the main loader.

30.2. The landing page

The first page in our application is the landing page. First, we add the template for it:
src/main/webapp/resources/templates/mobile/home-view.html.

<div data-role="header">
 <h3>Ticket Monster</h3>
</div>
<div data-role="content" align="center">

 <h4 align="left">Find events</h4>
 <ul data-role="listview">

 By Category

 By Location

</div>

Now we have to add the page to the router:
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 ...
 'text!../templates/mobile/home-view.html'
],function (
 ...
 HomeViewTemplate) {

 ...
 var Router = Backbone.Router.extend({
 routes:{
 "":"home"
 },
 ...
 home:function () {
 utilities.applyTemplate($("#container"), HomeViewTemplate);
 try {
 $("#container").trigger('pagecreate');
 } catch (e) {
 // workaround for a spurious error thrown when creating the page initially
 }
 }
 });
 ...
});

Because jQuery Mobile navigation is disabled, we must tell jQuery Mobile explicitly to enhance the page content in order to create the mobile view. Here, we trigger the jQuery Mobile pagecreate event explicitly to ensure that the page gets the appropriate look and feel.

30.3. The events view

First, we display a list of events (just as in the desktop view). Since mobile interfaces are more constrained, we will just show a simple list view:
src/main/webapp/resources/js/app/views/mobile/events.js.

define([
 'backbone',
 'utilities',
 'text!../../../../templates/mobile/events.html'
], function (
 Backbone,
 utilities,
 eventsView) {

 var EventsView = Backbone.View.extend({
 render:function () {
 var categories = _.uniq(
 _.map(this.model.models, function(model){
 return model.get('category')
 }), false, function(item){
 return item.id
 });
 utilities.applyTemplate($(this.el), eventsView, {categories:categories, model:this.model})
 $(this.el).trigger('pagecreate');
 return this;
 }
 });

 return EventsView;
});

As you can see, the view is very similar to the desktop view, the main difference being the explicit hint to jQuery mobile through the pagecreate event invocation.
Next, we add the template for rendering the view:
src/main/webapp/resources/templates/mobile/events.html.

<div data-role="header">
 <a data-role="button" data-icon="home" href="#">Home
 <h3>Categories</h3>
</div>
<div data-role="content" id='itemMenu'>
 <div id='categoryMenu' data-role='listview' data-filter='true' data-filter-placeholder='Event category name ...'>
 <%
 _.each(categories, function (category) {
 %>

 <%= category.description %>
 <ul id="category-<%=category.id%>">
 <%
 _.each(model.models, function (model) {
 if (model.get('category').id == category.id) {
 %>

 <a href="#events/<%=model.attributes.id%>"><%=model.attributes.name%>

 <% }
 });
 %>

 <% }); %>
 </div>
</div>

And finally, we need to instruct the router to invoke the page:
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 ...
 'app/collections/events',
 ...
 'app/views/mobile/events'
 ...
],function (
 ...,
 Events,
 ...,
 EventsView,
 ...) {

 ...
 var Router = Backbone.Router.extend({
 routes:{
 ...
 "events":"events"
 ...
 },
 ...
 events:function () {
 var events = new Events;
 var eventsView = new EventsView({model:events, el:$("#container")});
 events.bind("reset",
 function () {
 utilities.viewManager.showView(eventsView);
 }).fetch();
 }
 ...
 });
 ...
});

Just as in the case of the desktop application, the list of events will be accessible at #events (i.e. http://localhost:8080/ticket-monster/mobile-index.html#events).

30.4. Displaying an individual event

Now, we create the view to display an event:
src/main/webapp/resources/js/app/views/mobile/event-detail.js.

define(['backbone',
 'utilities',
 'require',
 'text!../../../../templates/mobile/event-detail.html',
 'text!../../../../templates/mobile/event-venue-description.html'
], function (
 Backbone,
 utilities,
 require,
 eventDetail,
 eventVenueDescription) {

 var EventDetailView = Backbone.View.extend({
 events:{
 "click a[id='bookButton']":"beginBooking",
 "change select[id='showSelector']":"refreshShows",
 "change select[id='performanceTimes']":"performanceSelected",
 "change select[id='dayPicker']":'refreshTimes'
 },
 render:function () {
 $(this.el).empty()
 utilities.applyTemplate($(this.el), eventDetail, this.model.attributes)
 $(this.el).trigger('create')
 $("#bookButton").addClass("ui-disabled")
 var self = this;
 $.getJSON("rest/shows?event=" + this.model.get('id'), function (shows) {
 self.shows = shows;
 $("#showSelector").empty().append("<option data-placeholder='true'>Choose a venue ...</option>");
 $.each(shows, function (i, show) {
 $("#showSelector").append("<option value='" + show.id + "'>" + show.venue.address.city + " : " + show.venue.name + "</option>");
 });
 $("#showSelector").selectmenu('refresh', true)
 $("#dayPicker").selectmenu('disable')
 $("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show date ...</option>")
 $("#performanceTimes").selectmenu('disable')
 $("#performanceTimes").empty().append("<option data-placeholder='true'>Choose a show time ...</option>")
 });
 $("#dayPicker").empty();
 $("#dayPicker").selectmenu('disable');
 $("#performanceTimes").empty();
 $("#performanceTimes").selectmenu('disable');
 $(this.el).trigger('pagecreate');
 return this;
 },
 performanceSelected:function () {
 if ($("#performanceTimes").val() != 'Choose a show time ...') {
 $("#bookButton").removeClass("ui-disabled")
 } else {
 $("#bookButton").addClass("ui-disabled")
 }
 },
 beginBooking:function () {
 require('router').navigate('book/' + $("#showSelector option:selected").val() + '/' + $("#performanceTimes").val(), true)
 },
 refreshShows:function (event) {

 var selectedShowId = event.currentTarget.value;

 if (selectedShowId != 'Choose a venue ...') {
 var selectedShow = _.find(this.shows, function (show) {
 return show.id == selectedShowId
 });
 this.selectedShow = selectedShow;
 var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function (performance) {
 return (new Date(performance.date).withoutTimeOfDay()).getTime()
 }), function (item) {
 return item
 }));
 utilities.applyTemplate($("#eventVenueDescription"), eventVenueDescription, {venue:selectedShow.venue});
 $("#detailsCollapsible").show()
 $("#dayPicker").removeAttr('disabled')
 $("#performanceTimes").removeAttr('disabled')
 $("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show date ...</option>")
 _.each(times, function (time) {
 var date = new Date(time)
 $("#dayPicker").append("<option value='" + date.toYMD() + "'>" + date.toPrettyStringWithoutTime() + "</option>")
 });
 $("#dayPicker").selectmenu('refresh')
 $("#dayPicker").selectmenu('enable')
 this.refreshTimes()
 } else {
 $("#detailsCollapsible").hide()
 $("#eventVenueDescription").empty()
 $("#dayPicker").empty()
 $("#dayPicker").selectmenu('disable')
 $("#performanceTimes").empty()
 $("#performanceTimes").selectmenu('disable')
 }

 },
 refreshTimes:function () {
 var selectedDate = $("#dayPicker").val();
 $("#performanceTimes").empty().append("<option data-placeholder='true'>Choose a show time ...</option>")
 if (selectedDate) {
 $.each(this.selectedShow.performances, function (i, performance) {
 var performanceDate = new Date(performance.date);
 if (_.isEqual(performanceDate.toYMD(), selectedDate)) {
 $("#performanceTimes").append("<option value='" + performance.id + "'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" + performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")
 }
 })
 $("#performanceTimes").selectmenu('enable')
 }
 $("#performanceTimes").selectmenu('refresh')
 this.performanceSelected()
 }

 });

 return EventDetailView;
});

Once again, this is very similar to the desktop version. Now we add the page templates:
src/main/webapp/resources/templates/mobile/event-detail.html.

<div data-role="header">
 <h3>Book tickets</h3>
</div>
<div data-role="content">
 <h3><%=name%></h3>
 <img width='100px' src='rest/media/<%=mediaItem.id%>'/>
 <p><%=description%></p>
 <div data-role="fieldcontain">
 <label for="showSelector">Where</label>
 <select id='showSelector' data-mini='true'/>
 </div>

 <div data-role="collapsible" data-content-theme="c" style="display: none;"
 id="detailsCollapsible">
 <h3>Venue details</h3>

 <div id="eventVenueDescription">
 </div>
 </div>

 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup'>
 <legend>When</legend>
 <label for="dayPicker">When:</label>
 <select id='dayPicker' data-mini='true'/>

 <label for="performanceTimes">When:</label>
 <select id="performanceTimes" data-mini='true'/>

 </fieldset>
 </div>

</div>
<div data-role="footer" class="ui-bar ui-grid-c">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 Book
</div>

src/main/webapp/resources/templates/mobile/event-venue-description.html.

<img width="100" src="rest/media/<%=venue.mediaItem.id%>"/></p>
<%= venue.description %>
<address>
 <p>Address:</p>
 <p><%= venue.address.street %></p>
 <p><%= venue.address.city %>, <%= venue.address.country %></p>
</address>

Finally, we add this to the router, explicitly indicating to jQuery Mobile that a transition has to take place after the view is rendered - in order to allow the page to render correctly after it has been invoked from the listview.
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 ...
 'app/model/event',
 ...
 'app/views/mobile/event-detail'
 ...
],function (
 ...,
 Event,
 ...,
 EventDetailView,
 ...) {

 ...
 var Router = Backbone.Router.extend({
 routes:{
 ...
 "events/:id":"eventDetail",
 ...
 },
 ...
 eventDetail:function (id) {
 var model = new Event({id:id});
 var eventDetailView = new EventDetailView({model:model, el:$("#container")});
 model.bind("change",
 function () {
 utilities.viewManager.showView(eventDetailView);
 $.mobile.changePage($("#container"), {transition:'slide', changeHash:false});
 }).fetch();
 }
 ...
 });
 ...
});

Just as the desktop version, the mobile event detail view allows users to choose a venue and a performance time. The next step is to allow the user to book some tickets.

30.5. Booking tickets

The views to book tickets are simpler than the desktop version. Users can select a section and enter the number of tickets for each category however, there is no way to add or remove tickets from an order. Once the form is filled out, the user can only submit it.
First, we create the views:
src/main/webapp/resources/js/app/views/mobile/create-booking.js.

define([
 'backbone',
 'utilities',
 'require',
 'text!../../../../templates/mobile/booking-details.html',
 'text!../../../../templates/mobile/create-booking.html',
 'text!../../../../templates/mobile/confirm-booking.html',
 'text!../../../../templates/mobile/ticket-entries.html',
 'text!../../../../templates/mobile/ticket-summary-view.html'
], function (
 Backbone,
 utilities,
 require,
 bookingDetailsTemplate,
 createBookingTemplate,
 confirmBookingTemplate,
 ticketEntriesTemplate,
 ticketSummaryViewTemplate) {

 var TicketCategoriesView = Backbone.View.extend({
 id:'categoriesView',
 events:{
 "change input":"onChange"
 },
 render:function () {
 var views = {};

 if (this.model != null) {
 var ticketPrices = _.map(this.model, function (item) {
 return item.ticketPrice;
 });
 utilities.applyTemplate($(this.el), ticketEntriesTemplate, {ticketPrices:ticketPrices});
 } else {
 $(this.el).empty();
 }
 $(this.el).trigger('pagecreate');
 return this;
 },
 onChange:function (event) {
 var value = event.currentTarget.value;
 var ticketPriceId = $(event.currentTarget).data("tm-id");
 var modifiedModelEntry = _.find(this.model, function(item) { return item.ticketPrice.id == ticketPriceId});
 if ($.isNumeric(value) && value > 0) {
 modifiedModelEntry.quantity = parseInt(value);
 }
 else {
 delete modifiedModelEntry.quantity;
 }
 }
 });

 var TicketSummaryView = Backbone.View.extend({
 render:function () {
 utilities.applyTemplate($(this.el), ticketSummaryViewTemplate, this.model.bookingRequest)
 }
 });

 var ConfirmBookingView = Backbone.View.extend({
 events:{
 "click a[id='saveBooking']":"save",
 "click a[id='goBack']":"back"
 },
 render:function () {
 utilities.applyTemplate($(this.el), confirmBookingTemplate, this.model)
 this.ticketSummaryView = new TicketSummaryView({model:this.model, el:$("#ticketSummaryView")});
 this.ticketSummaryView.render();
 $(this.el).trigger('pagecreate')
 },
 back:function () {
 require("router").navigate('book/' + this.model.bookingRequest.show.id + '/' + this.model.bookingRequest.performance.id, true)

 }, save:function (event) {
 var bookingRequest = {ticketRequests:[]};
 var self = this;
 _.each(this.model.bookingRequest.tickets, function (collection) {
 _.each(collection, function (model) {
 if (model.quantity != undefined) {
 bookingRequest.ticketRequests.push({ticketPrice:model.ticketPrice.id, quantity:model.quantity})
 };
 })
 });

 bookingRequest.email = this.model.email;
 bookingRequest.performance = this.model.performanceId;
 $.ajax({url:"rest/bookings",
 data:JSON.stringify(bookingRequest),
 type:"POST",
 dataType:"json",
 contentType:"application/json",
 success:function (booking) {
 utilities.applyTemplate($(self.el), bookingDetailsTemplate, booking)
 $(self.el).trigger('pagecreate');
 }}).error(function (error) {
 alert(error);
 });
 this.model = {};
 }
 });

 var CreateBookingView = Backbone.View.extend({

 events:{
 "click a[id='confirmBooking']":"checkout",
 "change select":"refreshPrices",
 "blur input[type='number']":"updateForm",
 "blur input[name='email']":"updateForm"
 },
 render:function () {

 var self = this;

 $.getJSON("rest/shows/" + this.model.showId, function (selectedShow) {
 self.model.performance = _.find(selectedShow.performances, function (item) {
 return item.id == self.model.performanceId;
 });
 var id = function (item) {return item.id;};
 // prepare a list of sections to populate the dropdown
 var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'), id), true, id);

 utilities.applyTemplate($(self.el), createBookingTemplate, { show:selectedShow,
 performance:self.model.performance,
 sections:sections});
 $(self.el).trigger('pagecreate');
 self.ticketCategoriesView = new TicketCategoriesView({model:{}, el:$("#ticketCategoriesViewPlaceholder") });
 self.model.show = selectedShow;
 self.ticketCategoriesView.render();
 $('a[id="confirmBooking"]').addClass('ui-disabled');
 $("#sectionSelector").change();
 });

 },
 refreshPrices:function (event) {
 if (event.currentTarget.value != "Choose a section") {
 var ticketPrices = _.filter(this.model.show.ticketPrices, function (item) {
 return item.section.id == event.currentTarget.value;
 });
 var ticketPriceInputs = new Array();
 _.each(ticketPrices, function (ticketPrice) {
 var model = {};
 model.ticketPrice = ticketPrice;
 ticketPriceInputs.push(model);
 });
 $("#ticketCategoriesViewPlaceholder").show();
 this.ticketCategoriesView.model = ticketPriceInputs;
 this.ticketCategoriesView.render();
 $(this.el).trigger('pagecreate');
 } else {
 $("#ticketCategoriesViewPlaceholder").hide();
 this.ticketCategoriesView.model = new Array();
 this.updateForm();
 }
 },
 checkout:function () {
 this.model.bookingRequest.tickets.push(this.ticketCategoriesView.model);
 this.model.performance = new ConfirmBookingView({model:this.model, el:$("#container")}).render();
 $("#container").trigger('pagecreate');
 },
 updateForm:function () {

 var totals = _.reduce(this.ticketCategoriesView.model, function (partial, model) {
 if (model.quantity != undefined) {
 partial.tickets += model.quantity;
 partial.price += model.quantity * model.ticketPrice.price;
 return partial;
 }
 }, {tickets:0, price:0.0});
 this.model.email = $("input[type='email']").val();
 this.model.bookingRequest.totals = totals;
 if (totals.tickets > 0 && $("input[type='email']").val()) {
 $('a[id="confirmBooking"]').removeClass('ui-disabled');
 } else {
 $('a[id="confirmBooking"]').addClass('ui-disabled');
 }
 }
 });
 return CreateBookingView;
});

The views follow the structure the desktop application, except that the summary view is not rendered inline but after a page
transition.
Next, we create the page fragment templates. First, the actual page:
src/main/webapp/resources/templates/mobile/create-booking.html.

<div data-role="header">
 <h1>Book tickets</h1>
</div>
<div data-role="content">
 <p>
 <h3><%=show.event.name%></h3>
 </p>
 <p>
 <%=show.venue.name%>
 <p>

 <p>
 <small><%=new Date(performance.date).toPrettyString()%></small>
 </p>
 <div id="sectionSelectorPlaceholder">
 <div data-role="fieldcontain">
 <label for="sectionSelect">Section</label>
 <select id="sectionSelect">
 <option value="-1" selected="true">Choose a section</option>
 <% _.each(sections, function(section) { %>
 <option value="<%=section.id%>"><%=section.name%> - <%=section.description%></option>
 <% }) %>
 </select>
 </div>

 </div>
 <div id="ticketCategoriesViewPlaceholder" style="display:none;"/>

 <div class="fieldcontain">
 <label>Contact email</label>
 <input type='email' name='email' placeholder="Email"/>
 </div>
</div>

<div data-role="footer" class="ui-bar">
 Cancel
 Checkout
</div>

Next, the fragment that contains the input form for tickets, which is re-rendered whenever the section is changed:
src/main/webapp/resources/templates/mobile/ticket-entries.html.

<% if (ticketPrices.length > 0) { %>
 <form name="ticketCategories">
 <h4>Select tickets by category</h4>
 <% _.each(ticketPrices, function(ticketPrice) { %>
 <div id="ticket-category-input-<%=ticketPrice.id%>"/>

 <fieldset data-role="fieldcontain">
 <label for="ticket-<%=ticketPrice.id%>"><%=ticketPrice.ticketCategory.description%>($<%=ticketPrice.price%>)</label>
 <input id="ticket-<%=ticketPrice.id%>" data-tm-id="<%=ticketPrice.id%>" type="number" placeholder="Enter value"
 name="tickets"/>
 </fieldset>
 <% }) %>
 </form>
<% } %>

Before submitting the request to the server, the order is confirmed:
src/main/webapp/resources/templates/mobile/confirm-booking.html.

<div data-role="header">
 <h1>Confirm order</h1>
</div>
<div data-role="content">
 <h3><%=show.event.name%></h3>
 <p><%=show.venue.name%></p>
 <p><small><%=new Date(performance.date).toPrettyString()%></small></p>
 <p>Buyer: <emphasis><%=email%></emphasis></p>
 <div id="ticketSummaryView"/>

</div>

<div data-role="footer" class="ui-bar">
 <div class="ui-grid-b">
 <div class="ui-block-a">Cancel</div>
 <div class="ui-block-b">Back</div>
 <div class="ui-block-c">Buy!</div>
 </div>
</div>

The confirmation page contains a summary subview:
src/main/webapp/resources/templates/mobile/ticket-summary-view.html.

<table>
 <thead>
 <tr>
 <th>Section</th>
 <th>Category</th>
 <th>Price</th>
 <th>Quantity</th>
 </tr>
 </thead>
 <tbody>
 <% _.each(tickets, function(ticketRequest) { %>
 <% _.each(ticketRequest, function(model) { %>
 <% if (model.quantity != undefined) { %>
 <tr>
 <td><%= model.ticketPrice.section.name %></td>
 <td><%= model.ticketPrice.ticketCategory.description %></td>
 <td>$<%= model.ticketPrice.price %></td>
 <td><%= model.quantity %></td>
 </tr>
 <% } %>
 <% }) %>
 <% }) %>
 </tbody>
</table>
<div data-theme="c">
 <h4>Totals</h4>
 <p>Total tickets: <%= totals.tickets %></p>
 <p> Total price: $<%= totals.price %></p>
</div>

Finally, we create the page that displays the booking confirmation:
src/main/webapp/resources/templates/mobile/booking-details.html.

<div data-role="header">
 <h1>Booking complete</h1>
</div>
<div data-role="content">
 <table id="confirm_tbl">
 <thead>
 <tr>
 <td colspan="5" align="center">Booking <%=id%></td>
 <tr>
 <tr>
 <th>Ticket #</th>
 <th>Category</th>
 <th>Section</th>
 <th>Row</th>
 <th>Seat</th>
 </tr>
 </thead>
 <tbody>
 <% $.each(_.sortBy(tickets, function(ticket) {return ticket.id}), function (i, ticket) { %>
 <tr>
 <td><%= ticket.id %></td>
 <td><%=ticket.ticketCategory.description%></td>
 <td><%=ticket.seat.section.name%></td>
 <td><%=ticket.seat.rowNumber%></td>
 <td><%=ticket.seat.number%></td>
 </tr>
 <% }) %>
 </tbody>
 </table></div>
<div data-role="footer" class="ui-bar">

 <div class="ui-block-b">Back</div>

</div>

The last step is registering the view with the router:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/views/mobile/create-booking',
 ...
],function (
 ...
 CreateBookingView
 ...) {

 var Router = Backbone.Router.extend({
 routes:{
 ...
 "book/:showId/:performanceId":"bookTickets",
 ...
 },
 ...
 bookTickets:function (showId, performanceId) {
 var createBookingView = new CreateBookingView({
 model:{showId:showId, performanceId:performanceId,
 bookingRequest:{tickets:[]}},
 el:$("#container")
 });
 createBookingView.render();
 },
 ...
);
});

Chapter 31. Device detection

We have created two distinct single-page applications and can point users to any of them easily. But instead of requiring that the user work out which page they want, we should redirect them to the correct page based on the device that they have.
We use Modernizr.js, a JavaScript library that help us detect device capabilities. You can use Modernizer.js for much more thank just desktop vs. mobile detection. It can also identify which features from the HTML5 set are supported by a particular browser at runtime, which is extremely helpful for implementing progressive enhancement in applications.
First step we copy modernizr.js into src/main/webapp/resources/js/libs. Then, we add src/main/webapp/index.html, with the following content:
src/main/webapp/index.html.

<!DOCTYPE html>
<html>
<head>
 <script type="text/javascript" src="resources/js/libs/modernizr-2.0.6.js"></script>

 <!--
 A simple check on the client. For touch devices or small-resolution screens
 show the mobile client. By enabling the mobile client on a small-resolution screen
 we allow for testing outside a mobile device (like for example the Mobile Browser
 simulator in JBoss Tools and JBoss Developer Studio).
 -->
 <script type="text/javascript">
 if (Modernizr.touch || Modernizr.mq("only all and (max-width: 480px)")) {
 location.replace('mobile-index.html')
 } else {
 location.replace('desktop-index.html')
 };
 </script>
</head>
<body>

</body>
</html>

Now we can navigate to http://localhost:8080/ticket-monster/ with either a mobile device or a desktop browser, and be redirected to the appropriate page.

Chapter 32. More Resources

To learn more about writing HTML5 + REST applications with JBoss, take a look at the Aerogear project.

Part V. Building the Administration UI using Forge

Chapter 33. What Will You Learn Here?

You’ve just defined the domain model of your application, and all the entities managed directly by the end-users. Now it’s time to build an administration GUI for the TicketMonster application using JSF and RichFaces. After reading this guide, you’ll understand how to use JBoss Forge to create the views from the entities and how to "soup up" the UI using RichFaces.
We’ll round out the guide by revealing the required, yet short and sweet, configuration.
The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.

Chapter 34. Setting up Forge

34.1. JBoss Enterprise Application Platform 6

If you are using JBoss Enterprise Application Platform 6, Forge is available in JBoss Developer Studio 5 (Beta1 or newer).
To show the Forge Console, navigate to Window → Show View → Other, locate Forge Console and click OK. Then click the Start button in top right corner of the view.

34.2. JBoss AS 7

If you are using JBoss AS 7, you should install JBoss Forge version 1.0.2.Final or higher. Follow the instructions at Installing Forge.
Open a command line and navigate to the root directory of this quickstart.
Launch Forge by typing the following command:
forge

34.3. Required Forge Plugins

Forge comes with a number of built in plugins, including the "scaffold" plugin, which is able to generate a full CRUD UI from JPA entities. The generated UI uses JSF as the view layer, backed by CDI beans. Internally, Forge uses Metawidget to create the CRUD screens.
Forge also includes a powerful plugin management system. The RichFaces plugin isn’t bundled with Forge, but it’s easy to install. First use the forge find-plugin command to locate it
forge find-plugin richfaces
In this case, the plugin is just called richfaces - easy! We can install it using the forge install-plugin command:
forge install-plugin richfaces
This will download, compile and install the RichFaces plugin.

Chapter 35. Getting started with Forge

Forge is a powerful rapid application development (aimed at Java EE 6) and project comprehension tool. It can operate both on projects it creates, and on existing projects, such as TicketMonster. If you want to learn more about Forge …
When you cd into a project with Forge, it inspects the project, and detects what technologies you are using in the project. Let’s see this in action:
project list-facets
Those facets detected are colored green.
Figure 35.1. Output of project list-facets
[image: gfx/forge-project-list-facets.png]

As you can see, Forge has detected all the technologies we are using, such as JPA, JAX-RS, CDI and Bean Validation.

Chapter 36. Generating the CRUD UI

Forge Scripts

Forge supports the execution of scripts. The generation of the CRUD UI is provided
as a Forge script in TicketMonster, so you don’t need to type the commands everytime
you want to regenerate the Admin UI. The script will also prompt you to applyTo run the script:
run admin_layer.fsh

36.1. Update the project

First, we need to add Scaffold to the project. Run:
scaffold setup --targetDir admin
to instruct Forge to generate the css, images and templates used by the scaffolded UI. Forge also adds an error page to be used when a 404 or a 500 error is encountered.
Figure 36.1. Output of scaffold setup
[image: gfx/forge-scaffold-setup.png]

Now, we need to add RichFaces to the project. Run:
richfaces setup
You’ll be prompted for the version of RichFaces to use. Choose version 4.0.0.Final (the default), by pressing Enter.
Figure 36.2. Output of richfaces setup
[image: gfx/forge-richfaces-setup.png]

36.2. Scaffold the view from the JPA entities

You can either scaffold the entities one-by-one, which allows to control which UIs are generated, or you can generate a CRUD UI for all the entities. We’ll do the latter:
scaffold from-entity org.jboss.jdf.example.ticketmonster.model.* --targetDir admin --overwrite

Forge asks us whether we want to overwrite every file - which get’s a bit tedious!
Specifying --overwrite allows Forge to overwrite files without prompt - much better!

We now have a CRUD UI for all the entities used in TicketMonster!

Chapter 37. Test the CRUD UI

Let’s test our UI on our local JBoss AS instance. As usual, we’ll build and deploy using Maven:
mvn clean package jboss-as:deploy

Chapter 38. Make some changes to the UI

Let’s add support for images to the Admin UI. TicketMonster doesn’t provide support for storing images, but allows you to reference images from hosting sites on the internet. TicketMonster caches the images, so you can still use the application when you aren’t connected to the internet.
We’ll use JSF 2’s composite components, which allow to easily create new components.
/src/main/webapp/resources/tm/image.xhtml.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:composite="http://java.sun.com/jsf/composite">
<head>
<title>Cached Image</title>
</head>
<body>

<composite:interface>
 <composite:attribute name="media" type="org.jboss.jdf.example.ticketmonster.services.MediaPath"/>
 <composite:attribute name="id" type="java.lang.String" />
</composite:interface>

<composite:implementation>
 <h:graphicImage value="#{cc.attrs.media.url}" rendered="#{!cc.attrs.media.cached}"/>
 <h:graphicImage value="/rest/media/cache/#{cc.attrs.media.url}" rendered="#{cc.attrs.media.cached}"/>
</composite:implementation>

</body>
</html>

The image composite component encapsulates the rendering of the image, pulling it from the remote location if the item is available and not cached, or pulling it from the cache if otherwise.
Adding this file to /src/main/webapp/resources/tm/ automatically registers the component with JSF, using the namespace xmlns:tm="http://java.sun.com/jsf/composite/tm.
Let’s go ahead and use this component to display the image in src/main/webapp/admin/event/view.xhtml - the page an admin uses to view an event before editing it. Open up the file in JBoss Developer Studio (or your favourite IDE or text editor). Forge has generated an entry in panel grid to display the image URL, so we can just add <tm:image media="#{mediaManager.getPath(eventBean.event.picture)}" /> to the <h:link> with the id eventBeanEventPicture. We need to register the namespace as well, so add xmlns:tm="http://java.sun.com/jsf/composite/tm" to the <ui:composition> tag. You should end up with a file that looks a bit like:
/src/main/webapp/admin/event/view.xhtml.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:tm="http://java.sun.com/jsf/composite/tm"
 template="/resources/scaffold/pageTemplate.xhtml">

 <f:metadata>
 <f:viewParam name="id" value="#{eventBean.id}" />
 <f:event type="preRenderView" listener="#{eventBean.retrieve}" />
 </f:metadata>

 <ui:param name="pageTitle" value="View Event" />

 <ui:define name="header">
 Event
 </ui:define>

 <ui:define name="subheader">
 View existing Event
 </ui:define>

 <ui:define name="footer" />

 <ui:define name="main">
 <h:panelGrid columnClasses="label,component,required"
 columns="3">
 <h:outputLabel for="eventBeanEventName" value="Name:" />
 <h:outputText id="eventBeanEventName"
 value="#{eventBean.event.name}" />
 <h:outputText />
 <h:outputLabel for="eventBeanEventPicture" value="Picture:" />
 <h:link id="eventBeanEventPicture"
 outcome="/admin/mediaItem/view"
 value="#{eventBean.event.picture}">
 <tm:image
 media="#{mediaManager.getPath(eventBean.event.picture)}" />
 <f:param name="id" value="#{eventBean.event.picture.id}" />
 </h:link>
 <h:outputText />
 <h:outputLabel for="eventBeanEventCategory"
 value="Category:" />
 <h:link id="eventBeanEventCategory"
 outcome="/admin/eventCategory/view"
 value="#{eventBean.event.category}">
 <f:param name="id"
 value="#{eventBean.event.category.id}" />

 </h:link>
 <h:outputText />
 <h:outputLabel for="eventBeanEventDescription"
 value="Description:" />
 <h:outputText id="eventBeanEventDescription"
 value="#{eventBean.event.description}" />
 <h:outputText />
 <h:outputLabel value="Major:" />
 <h:outputText
 styleClass="#{eventBean.event.major ? 'boolean-true' : 'boolean-false'}" />
 <h:outputText />
 </h:panelGrid>

 <div class="buttons">
 <h:link value="View All" outcome="search" />
 <h:link value="Edit" outcome="create"
 includeViewParams="true" />
 <h:link value="Create New" outcome="create" />
 </div>
 </ui:define>

</ui:composition>

We can test these changes by running
mvn clean package jboss-as:deploy
as usual.

Part VI. Building The Statistics Dashboard Using GWT And Errai

Chapter 39. What Will You Learn Here?

You’ve just built the administration view, and would like to collect real-time information about ticket sales and attendance. Now it would be good to implement a dashboard that can collect data and receive real-time updates. After reading this tutorial, you will understand our dashboard design and the choices that we made in its implementation. Topics covered include:
	
Adding GWT to your application

	
Setting up CDI server-client eventing using Errai

	
Testing GWT applications

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.
In this tutorial, we will create a booking monitor using Errai and GWT, and add it to the TicketMonster application. It will show live updates on the booking status of all performances and shows. These live updates are powered by CDI events crossing the client-server boundary, a feature provided by the Errai Framework.

Chapter 40. Module definition

The first step is to add a GWT module descriptor (a .gwt.xml file) which defines the GWT module, its dependencies and configures the client source paths. Only classes in these source paths will be compiled to JavaScript by the GWT compiler. Here’s the BookingMonitor.gwt.xml file:
src/main/resources/org/jboss/jdf/example/ticketmonster/BookingMonitor.gwt.xml.

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.6//EN"
 "http://google-web-toolkit.googlecode.com/svn/releases/1.6/distro-source/core/src/gwt-module.dtd">

<!--
 This file declares the Errai/GWT module for the TicketMonster booking monitor,
 which shares the model classes with the user-facing part of the app, but defines
 its own user interface for TicketMonster administrators.
-->

<module rename-to="BookingMonitor">
 <inherits name="org.jboss.errai.common.ErraiCommon"/>
 <inherits name="org.jboss.errai.bus.ErraiBus"/>
 <inherits name="org.jboss.errai.ioc.Container"/>
 <inherits name="org.jboss.errai.enterprise.CDI"/>

 <!-- Model classes that are shared with the rest of the application -->
 <source path="model"/>

 <!-- Classes that are specific to 'booking monitor' features; not shared with rest of app -->
 <source path="monitor"/>

 <!-- Limit the supported browsers for the sake of this demo -->
 <set-property name="user.agent" value="ie8,safari,gecko1_8"/>
</module>

The rename-to attribute specifies the output directory and file name of the resulting JavaScript file. In this case we specified that the BookingMonitor module will be compiled into BookingMonitor/BookingMonitor.nocache.js in the project’s output directory. The module further inherits the required Errai modules, and specifies the already existing model package as source path, as well as a new package named monitor, which will contain all the client source code specific to the booking monitor.

Chapter 41. Host page

In the next step we add a host HTML page which includes the generated JavaScript and all required CSS files for the booking monitor. It further specifies a <div> element with id content which will be used as a container for the booking monitor’s user interface.
src/main/webapp/booking-monitor.html.

<!DOCTYPE html>
<html>
<head>
 <title>Ticket Monster Administration</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <link rel="stylesheet" href="resources/bootstrap/css/bootstrap.css" />
 <link type="text/css" rel="stylesheet" href="resources/css/screen.css" />

 <script type="text/javascript" src="BookingMonitor/BookingMonitor.nocache.js"></script>
</head>

<body>
 <div id="container">
 <div id="menu">
 <div class="navbar">
 <div class="navbar-inner">
 <div class="container">
 JBoss Ticket Monster Booking Monitor
 </div>
 </div>
 </div>
 </div>
 <h3 class="booking-status-header">Booking status</h3>
 <div id="content" class="container-fluid"></div>
 </div>

 <footer>
 <div style="text-align: center;">

 </div>
 </footer>
</body>
</html>

Chapter 42. Enabling Errai

For enabling Errai in our application we will add an ErraiApp.properties marker file. When it is detected inside a JAR or at the top of any classpath, the subdirectories are scanned for deployable components. As such, all Errai application modules in a project must contain an ErraiApp.properties at the root of all classpaths that you wish to be scanned, in this case src/main/resources.
We will also add an ErraiService.properties file, which contains basic configuration for the bus itself. Unlike ErraiApp.properties, there should be at most one ErraiService.properties file on the classpath of a deployed application.
src/main/resources/ErraiService.properties.

#
Request dispatcher implementation (default is SimpleDispatcher)
#
errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

Chapter 43. Preparing the wire objects

One of the strengths of Errai is the ability to use domain objects for communication across the wire. In order for that to be possible, all model classes that are transferred using Errai RPC or Errai CDI need to be annotated with the Errai-specific annotation @Portable. We will begin by annotating the Booking class which used as an the event payload.
src/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java.

...
import org.jboss.errai.common.client.api.annotations.Portable;
...
@Portable
public class Booking implements Serializable {
...
}

You should do the same for the other model classes.

Chapter 44. The EntryPoint

We are set up now and ready to start coding. The first class we need is the EntryPoint into the GWT application. Using Errai, all it takes is to create a POJO and annotate it with @EntryPoint.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java.

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.enterprise.event.Observes;
import javax.inject.Inject;

import org.jboss.errai.bus.client.api.RemoteCallback;
import org.jboss.errai.ioc.client.api.AfterInitialization;
import org.jboss.errai.ioc.client.api.Caller;
import org.jboss.errai.ioc.client.api.EntryPoint;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.BookingMonitorService;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.qualifier.Cancelled;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.qualifier.Created;
import org.jboss.jdf.example.ticketmonster.model.Booking;
import org.jboss.jdf.example.ticketmonster.model.Performance;
import org.jboss.jdf.example.ticketmonster.model.Show;

import com.google.gwt.user.client.ui.RootPanel;

/**
 * The entry point into the TicketMonster booking monitor.
 *
 * The {@code @EntryPoint} annotation indicates to the Errai framework that
 * this class should be instantiated inside the web browser when the web page
 * is first loaded.
 */
@EntryPoint
public class BookingMonitor {
 /**
 * This map caches the number of sold tickets for each {@link Performance} using
 * the performance id as key.
 */
 private static Map<Long, Long> occupiedCounts;

 /**
 * This is the client-side proxy to the {@link BookingMonitorService}.
 * The proxy is generated at build time, and injected into this field when the page loads.
 */
 @Inject
 private Caller<BookingMonitorService> monitorService;

 /**
 * We store references to {@link ShowStatusWidget}s in this map, so we can update
 * these widgets when {@link Booking}s are received for the corresponding {@link Show}.
 */
 private Map<Show, ShowStatusWidget> shows = new HashMap<Show, ShowStatusWidget>();

 /**
 * This method constructs the UI.
 *
 * Methods annotated with Errai's {@link AfterInitialization} are only called once
 * everything is up and running, including the communication channel to the server.
 */
 @AfterInitialization
 public void createAndShowUI() {
 // Retrieve the number of sold tickets for each performance.
 monitorService.call(new RemoteCallback<Map<Long, Long>>() {
 @Override
 public void callback(Map<Long, Long> occupiedCounts) {
 BookingMonitor.occupiedCounts = occupiedCounts;
 listShows();
 }
 }).retrieveOccupiedCounts();
 }

 private void listShows() {
 // Retrieve all shows
 monitorService.call(new RemoteCallback<List<Show>>() {
 @Override
 public void callback(List<Show> shows) {
 // Sort based on event name
 Collections.sort(shows, new Comparator<Show>() {
 @Override
 public int compare(Show s0, Show s1) {
 return s0.getEvent().getName().compareTo(s1.getEvent().getName());
 }
 });

 // Create a show status widget for each show
 for (Show show : shows) {
 ShowStatusWidget sw = new ShowStatusWidget(show);
 BookingMonitor.this.shows.put(show, sw);
 RootPanel.get("content").add(sw);
 }
 }
 }).retrieveShows();
 }

}

As soon as Errai has completed its initialization process, the Booking Monitor#createAndShowUI() method is invoked (@AfterInitialization tells Errai to call it). In this case the method will fetch initial data from the server using Errai RPC and construct the user interface. To carry out the remote procedure call, we use an injected Caller for the remote interface BookingMonitorService which is part of the org.jboss.jdf.example.ticketmonster.monitor.client.shared package and whose implementation BookingMonitorServiceImpl has been explained in the previous chapter.
In order for the booking status to be updated in real-time, the class must be notified when a change has occured. If you have built the service layer already, you may remember that the JAX-RS BookingService class will fire CDI events whenever a booking has been created or cancelled. Now we need to listen to those events.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java.

public class BookingMonitor {

 /**
 * Responds to the CDI event that's fired on the server when a {@link Booking} is created.
 *
 * @param booking the create booking
 */
 public void onNewBooking(@Observes @Created Booking booking) {
 updateBooking(booking, false);
 }

 /**
 * Responds to the CDI event that's fired on the server when a {@link Booking} is cancelled.
 *
 * @param booking the cancelled booking
 */
 public void onCancelledBooking(@Observes @Cancelled Booking booking) {
 updateBooking(booking, true);
 }

 // update the UI widget to reflect the new or cancelled booking
 private void updateBooking(Booking booking, boolean cancellation) {
 ShowStatusWidget sw = shows.get(booking.getPerformance().getShow());
 if (sw != null) {
 long count = getOccupiedCountForPerformance(booking.getPerformance());
 count += (cancellation) ? -booking.getTickets().size() : booking.getTickets().size();

 occupiedCounts.put(booking.getPerformance().getId(), count);
 sw.updatePerformance(booking.getPerformance());
 }
 }

 /**
 * Retrieve the sold ticket count for the given {@link Performance}.
 *
 * @param p the performance
 * @return number of sold tickets.
 */
 public static long getOccupiedCountForPerformance(Performance p) {
 Long count = occupiedCounts.get(p.getId());
 return (count == null) ? 0 : count.intValue();
 }

}

The newly created methods onNewBooking and onCancelledBooking are event listeners. They are identified as such by the @Observes annotation applied to their parameters. By using the @Created and @Cancelled qualifiers that we have defined in our application, we narrow down the range of events that they listen.

Chapter 45. The widgets

Next, we will define the widget classes that are responsible for rendering the user interface. First, we will create the widget class for an individual performance.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/PerformanceStatusWidget.java.

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import org.jboss.jdf.example.ticketmonster.model.Performance;

import com.google.gwt.i18n.client.DateTimeFormat;
import com.google.gwt.i18n.client.DateTimeFormat.PredefinedFormat;
import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.Label;

/**
 * A UI component to display the status of a {@link Performance}.
 */
public class PerformanceStatusWidget extends Composite {

 private Label bookingStatusLabel = new Label();

 private HorizontalPanel progressBar = new HorizontalPanel();
 private Label soldPercentLabel;
 private Label availablePercentLabel;

 private Performance performance;
 private long soldTickets;
 private int capacity;

 public PerformanceStatusWidget(Performance performance) {
 this.performance = performance;

 soldTickets = BookingMonitor.getOccupiedCountForPerformance(performance);
 capacity = performance.getShow().getVenue().getCapacity();

 setBookingStatus();
 setProgress();

 HorizontalPanel performancePanel = new HorizontalPanel();
 String date = DateTimeFormat.getFormat(PredefinedFormat.DATE_TIME_SHORT).format(performance.getDate());
 performancePanel.add(new Label(date));
 performancePanel.add(progressBar);
 performancePanel.add(bookingStatusLabel);
 performancePanel.setStyleName("performance-status");
 initWidget(performancePanel);
 }

 /**
 * Updates the booking status (progress bar and corresponding text) of the {@link Performance}
 * associated with this widget based on the number of sold tickets cached in {@link BookingMonitor}.
 */
 public void updateBookingStatus() {
 this.soldTickets = BookingMonitor.getOccupiedCountForPerformance(performance);
 setBookingStatus();
 setProgress();
 }

 private void setBookingStatus() {
 bookingStatusLabel.setText(soldTickets + " of " + capacity + " tickets booked");
 }

 private void setProgress() {
 int soldPercent = Math.round((soldTickets / (float) capacity) * 100);

 if (soldPercentLabel != null) {
 progressBar.remove(soldPercentLabel);
 }

 if (availablePercentLabel != null) {
 progressBar.remove(availablePercentLabel);
 }

 soldPercentLabel = new Label();
 soldPercentLabel.setStyleName("performance-status-progress-sold");
 soldPercentLabel.setWidth(soldPercent + "px");

 availablePercentLabel = new Label();
 availablePercentLabel.setStyleName("performance-status-progress-available");
 availablePercentLabel.setWidth((100 - soldPercent) + "px");

 progressBar.add(soldPercentLabel);
 progressBar.add(availablePercentLabel);
 }
}

A show has multiple performances, so we will create a ShowStatusWidget to contains a PerformanceStatusWidget for each performance.
src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/ShowStatusWidget.java.

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import java.util.Date;
import java.util.HashMap;
import java.util.Map;

import org.jboss.jdf.example.ticketmonster.model.Performance;
import org.jboss.jdf.example.ticketmonster.model.Show;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.VerticalPanel;

/**
 * A UI component to display the status of a {@link Show}.
 */
public class ShowStatusWidget extends Composite {

 private Map<Long, PerformanceStatusWidget> performances = new HashMap<Long, PerformanceStatusWidget>();

 public ShowStatusWidget(Show show) {
 VerticalPanel widgetPanel = new VerticalPanel();
 widgetPanel.setStyleName("show-status");

 Label showStatusHeader = new Label(show.getEvent().getName() + " @ " + show.getVenue());
 showStatusHeader.setStyleName("show-status-header");
 widgetPanel.add(showStatusHeader);

 // Add a performance status widget for each performance of the show
 for (Performance performance : show.getPerformances()) {
 if (performance.getDate().getTime() > new Date().getTime()) {
 PerformanceStatusWidget psw = new PerformanceStatusWidget(performance);
 performances.put(performance.getId(), psw);
 widgetPanel.add(psw);
 }
 }

 initWidget(widgetPanel);
 }

 /**
 * Triggers an update of the {@link PerformanceStatusWidget} associated with
 * the provided {@link Performance}.
 *
 * @param performance
 */
 public void updatePerformance(Performance performance) {
 PerformanceStatusWidget pw = performances.get(performance.getId());
 if (pw != null) {
 pw.updateBookingStatus();
 }
 }
}

This class is has two responsibilities. First, it will to display together all the performances that belong to a given show. Also, it will update its PerformanceStatusWidget children whenever a booking event is received on the client (through the observer method defined above).

OEBPS/gfx/ticket-monster-architecture.png
User Front-end (HTMLS)

Monitoring
Dashboard
(GWT, Errai)

‘Admin Frontend
(USF, Forge)

Business Layer (CDI,

Persistence (JPA)

OEBPS/gfx/introduction/mobile_browsersim_devices_menu.png
Desitop (Default User-Agent)

Apple iPad 2
 Apple iPhone 3
Aople Phone +
RIM BlackBerry Bold Touch 9900
Samsung Galaxy S

Neq Samsung Galaxy S 1
Samsung Galaxy Tab 10.1
More.
1t v Use Skins

050/
Tum Left
Turn Right

OEBPS/gfx/introduction/result_run_on_server.png
4 pestencemt [mvonsal (@ w66 suner a0 517)

8 2 (s o s+ b [

Welcome to JBoss!

You have succssfllyceployed a v EE 6 we sppicton.
Your application can run on:

PLATFORM 21 s nopiicationservers

(Soppered) (Community

(===

. roens [5 pomees 4 s 5§ Ot x| oo & Frecon

" po-sn7 11 e, s
[
» G st
b gt

OEBPS/gfx/ticket-monster-administration-use-cases.png
Manage
Venues

Manage

Administrator Evens -

Manage
_.ausess >\ Layout

Manage
Shows.

Monitor
sales

OEBPS/gfx/introduction/event_service_copy_paste.png
Package org.Joess. ool excaples a5t
epanClsanissd

CAtausiiSsnad

pubtic class EuentService ©

S
private Ensistinaass o

o

Bcauces idiaTome, APPLICATION 50D

P Liatdnts gehTIEventsd)
ol gt renies . creoteunCaelect © =

i

(T U T e]

¥ o7 Ll e, Sychroize]
(YR —
> 6 o Contaraton
Reses
[Y

OEBPS/gfx/introduction/jquery_mobile_template.png
i ooss.orgldeveloper

OEBPS/gfx/introduction/forge_event_entity_created.png
(15 project Explor 5512 rackage ol | =)£ Jhoss Conral | @ jova €6 Stamer p [1) venjava 554

5% | package org.jboss.tools.examples.model;
£ boss-avaces-webazp

> 2 x-S web Serves & @ isport jovax.persistence.Entityi
> BUACCRS REST W Servies

> By0epioyment Descrptor poss-favaces-wets| | & 910
private eCenaratedialue(strategy - GenerationType. AUT0)

b & kG EColummCoam = *1ds updatale » Falses mallable - fatse)
¥ 29ima esaurces Long 6 - matls
v iBscmaniiv Private EotumnCoome - “version’
» 5 rg e ot examplescontolr i
ST —o—
[e — S public tong getté) €
> 3 bert return this i,
» 8 Mermber s »

> 85 g Jooss s xamples est
> 85 orgJooss o xamples seice

S pubLic votd setTCFinal Long i6) [
this.id = id;

OEBPS/gfx/introduction/show_in_forge_console.png
18 packagetxp| = O)(C, soss Genral [{3 jooss-javaceS-webapp/pom. [index.xh

B[] web xmu 3.0 editor
L

» 2 A0CHS e Serices - T
> 60 78 Content New 3
28 Resrces Golnto @ mapoing

v @i e, [rereA

8 0rg o o, exampes.cor_OPEN Type Hierarchy
[T —— % Forgi Consala |

= oo e | Properties

SR —

OEBPS/gfx/introduction/mobile_browsersim.png
@ BrowserSim _File Devices

Qvery Mobte Tampate

Rock concertof the decade

Shane's Sock Puppets

OEBPS/gfx/introduction/forge_console_tab.png

OEBPS/gfx/forge-richfaces-setup.png
[ticket-monster] ticket-monster-1 § richfaces setup
Which version of RichFaces?

1 - [RichFaces 4.0.0.Final]*
2 - [RichFaces 3.3.3.Final]

? Choose an option by typing the number of the selection [+-default] [0]
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
SUCCESS Installed [org.richfaces] successfully.

SUCCESS RichFacesFacet is configured.
Wrote /Users/pmuir/workspace/ticket-monster-1/pom.xml
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/WEB-INF /web.xml

OEBPS/gfx/introduction/jboss_tools_runtime_detection_after.png
 Code Recommenders
»Oua Management
»rorge
Sreebarker Edor
»Google
>
vt edtor
PinstalfUpdate
i
Piwa £
i persistence
>jsasaipt
¥ shoss Tools
DI (Context and Deper
Jposs Cental
Jhoss Maven integration
Jhoss orter
Jhoss Tools Runime Det.
Project Examples
Remate Deug
Usage Reporing
s
»Rebel
»Maven
>t
»Pug.n Development
Project Archves
»aemote ystems.
»ReportDesign
»Run/Debug
Fseer
Terminal

J80ss Tools Runtime Detection B

Description

Each path on this s il be utomaticaly scanned or runtimes when
anew workspace s creaed o f seleced at every Edpse sarup.
Clck et 10 conigure rues/iers for the search.

J——
e e

o x5 h—
e ok

Cosreowas) (—son)

(e] oK

OEBPS/gfx/introduction/h2console_select_from_event.png
) Jooss-javaces-webapp (43 persistencexm | [importsal

=g

© B & [ocamontsom0hzcomsoe corsae g dorsessiona-ra97i29z cesezssz v b [

3| & |@amoonmit % /o | Maxrows: (1000) O W | & Ao compies (omal ¢ @
(0 bcnzmemiboss favaoce6 wet [Run (CutsEnien] Clea] SaL smamant:

@ mevent
© [MEmBER

© [venue

5 C) INFORMATION_SCHEMA
© 3 Sequences

seloct” rom avont

© g usors
© 213181 @0111028)

st fomvont:
10 |DESCRTION [VAIGR |NAVE [PGTURE
T Tscricaly TRUE Shanes e rophos comiu650600840
acsamos o Cawa. Peppos
maserace Purpes
2 Gorosoyn TRUERook i arpooxcomsosossds
o concer Wlek2G_Bob. (2007 2150
oo
ancnce

@rows,Tme)

OEBPS/gfx/ui-file-structure.png
gsrc
v gmain
i
¥ o resources
P s
» zimg
Ve
¥(zapp
» (& collections
¥ (& models
¥ & router.
¥ & desktop
» (& mobile
¥ (& views
¥ & desktop
» (& mobile
> libs
» g5 templates.

OEBPS/gfx/introduction/pom_xml_tabs.png
verview | Dependences | Dependency Hierrchy | Efecive POM pormas | L

[problems [properties | ## servers %X
| b {2 jboss-as-7.1.LFinal [Stopped, Synchronized]

OEBPS/gfx/introduction/organize_imports_3.png

OEBPS/gfx/introduction/project_explorer_jax_rs_services.png
125 project Explor 213 Package Expl

8%
b |
» e s
S st e sevces
¥ Gt s
S —
> 5 Gt resmemben e 0-910-71
> SyDepiormen esror s e
S esoues
[Syvs
B e
" Bcimanion
» [v ons oo cxampes cotler
B v oo cxampes s
B o ot cxamols el
> oo
> Do
> e
7 Trrsmp—
O teSertco s

O£ soss Cenural

Package o73.3boss. tools excmples.Testy

import eve.util List;

Gmpore. jovax.enterprise.context ReguestScoped;
import Jovax.injeck.Injects

ieport. Jovor persistence. Entitybanager;
import. Jovax .75, GET5

Seport Jovax.wera.Path;

Seport Jovon . rs Produces:

(mpare Jevax ma. e core MedioType;

eport. g boss.tools.excmples.model Evers

Pt /events)
SRequestscoped
pubiic closs EventService (
Snject
privete Entitonager ca;

et
EProduces lediaType. APPLICATION JS00)
L Liotetvans catAT Eventsd) €

OEBPS/gfx/single-page-app.png
\ge HTMLS REST
page senvices

OEBPS/gfx/introduction/searching_for_runtimes_dialog.png
Lo - OO~ > 7Y U

e e found, ress OK et h s with 3 checmar.

Seaching s s s
ame o Topetocaon
9 o715 = A e et s

o ety crsed s

OEBPS/gfx/ui-event-details.png
Venue image

[N g

]

Event details

Section
Selector

I

Ticket quantty
inputs

Ticket Summary

Create booking

OEBPS/gfx/introduction/forge_event_entity.png
[0 project] morkspace1? § pick-up /Users/burr/gettingstarted/workspace1?/jooss- jovacet-nebapp/src/main/Saval

Jora/Sboss./tools/examples/model
Picked up type <DirectorsResources: model
[[bore overct neieps] model § entity --nomed Event —-package org.jboss.tools.examples.

controtter data rodel rest serice il
[ocic ovaect ncoors] model 5 entity --named Event --package org.jboss.tools.examples. sodel

(Created BEnticy Torg.jboss. tools. examples model Event]

Picked up type JavaResources: org. Sooss. tonls. exaaples.model Event

[Hrote. /Users/bure/qectingstorted/morkspace 7/ bons- Jovares nebapp/sre/main/jova/org/ $boss/tools/excmples/
[mode1 /Event. jova

[boss- javacet-webaps) Event.jova §

OEBPS/gfx/introduction/mobile_browsersim_bofa_source.png
Mobile Barking Sign In

OEBPS/gfx/introduction/jbds5_mobile_browsersim.png
s 615019 d b ro s
svald -
. _ 7| £ saoss Conra 9

Shane's Sock Puppets
5 conin sarea [§ o]
[Qo115 -

OEBPS/gfx/introduction/new_project_wizard.png
N |

e e i s s st st ol o e i st i
Pttty

P 00

@ Erl = e

OEBPS/gfx/introduction/json_event_results.png
“wersion®:1, "name" s "Rock concert of the
,“doscription’:'Got ready to
ock...", "major" true, "picture s "htep://d1.dropbox.con/u/6

5660684/640px-Weixs2C Bob_(2007) 2.3p"},
scelained

78711, "voraion®s1, "nane:Shana's Sock
Puppets’, ‘description’: 'This criticall

mastorpioce. .., ‘major strus, “picture
com/u/65660684/640px-Carnival_Puppets.3ps’}]

OEBPS/gfx/introduction/organize_imports_5.png

OEBPS/gfx/eclipse-generate-hashcode-equals-2.png
Generate hashCode() and equals()

Select the felds to include in the hashCode(and equalsQ methods:
M o description Select All

[Deselect All |

Insertion point:

[Last member

() Generate method comments
] Use Yinstanceof” to compare types

] Use blacks in ' statements

i 1of 1 selected.

@ Cancel | oK

OEBPS/gfx/forge-project-list-facets.png
[ticket-monster] ticket-monster-1 § project list-facets
forge.spec. jaxrs .webxml
forge.spec. jns

forge.spec. jpa

forge.maven. JavaSourceFacet
forge.spec. jsf
forge.maven.ResourceFacet
forge.spec.validation
forge.spec.cdi
forge.maven.MavenCoreFacet.
forge.maven.MavenDependencyFacet
forge.spec. jta
forge.spec.serviet
forge.spec. jstl
forge.maven.MetadataFacet
forge.spec. jaxrs

forge.spec.ejb

forge.spec. jaxrs .applicationclass
org.richfaces
forge.maven.MavenPluginFacet
faces

forge.api

forge.spec. jaxvs

forge.spec. jsf.api
forge.maven.PackagingFacet.
forge.maven. JavaExecutionFacet
forge.maven. WebResourceFacet
[ticket-monster] ticket-monster-1 § []

OEBPS/gfx/introduction/run_as_run_on_server.png
> v send

» yax s s oo

» Bipioment e
> B sesories

> pacorin,

s hsorcs

v i3cimanion

> oz possia

oo

" oo

> o

> 3 werr,

5 v

> Bosponts

oo

s oo

Y@ scimanesol
A

vt
v o poss.
» [Werbe
> @srciseson
> B s
» Bhmascri Resoure

New [— U
Solta e this file to 10 seed doto into tne da
e N Mesber Cid, nome, st phone_numser) vl
@ Copy. xc

&2 Copy Qualified Name

o Paste v

X Delete ®

Build Path >

Refactor Y

Import >

Export >

£ Refresh 5

Close Project

Close Unrelated Projects

%, Mark a5 Deployable
Valdate
Show in Remote Systems view

51 Run on Server o
Debui As > 52 jaa Avpiet A
rofle As > e spicton X
Team > 4 JunitTest T

OEBPS/gfx/introduction/new_project_example_step_2.png
X 771 .S —

Java EE Web Project
i 1 yourprject 5. sample,deployable Maven 3 roect o el you get yourfot i the door..

e (s

Pacage [ora oss tols.cxampes

iljfl

‘Target Runtime [

 Use et workpace ocaton

o o) Chome)

) A projects) to workingset
Working et 5 [wore

»@ Csta) (o>) [Cuoc] [

OEBPS/gfx/introduction/hibernate_add_jpa_annotations.png
Hibernate: add JPA annotations to the related set of enties
The elming casses wilbe changed

Pefrred ocaon of Annratons:
L —

ensie opimisic locking o

@ s) (o>)N conce] | —

OEBPS/gfx/introduction/getter_setter_dialog.png
anacy
aescrption
i

G o e o el o o s ol W s
o

(it sy B}
st

(s i B

ccess moditer
@piic Opowaed Ouetauk Oprvate
Ot) synewonized

(0 Generate method commerts
“The format of the getrssters may b conigured on the Cose Temiaes preference page.

i 8ot 8 seectd.

@ (o) mo—

OEBPS/gfx/introduction/new_html_file_correct_location.png
L
Creste e T e

v o seect he prent oder.
(Jboss-Javaeeb-webappisrc/main/webapp.]

B oo 1

@ <tk) (o>) (el) (e

OEBPS/gfx/introduction/organize_imports_2.png
[r— ase

@ (o) - (o) (s)

OEBPS/gfx/database-design.png
MediaType
e

Administration

Address
o

Venue

— Wedten
u/ show

Booking

Ticket

Seat

Performance

TicketPriceCategory

SectionAllocation

TicketCategory

OEBPS/gfx/introduction/organize_imports_4.png
@ (o) Em (o) (oo]

OEBPS/gfx/introduction/organize_imports_6.png
@) (e) (o) o)

OEBPS/gfx/introduction/project_explorer_java_packages.png
(25 Project Explor 83 % Package Expl | = O
&~
v i jboss-javaces-webapp
¥ 2 JAX-WS Web Services
» 23 JAX-RS REST Web Services
» aDeployment Descriptor: jboss-javaee6-web:
» [web Resources
» < pA Content
v 28 ava Resourees
v 8 sc/mainjva
» {33 org.jboss.tools.examples.controller
org.jboss.tools.examples.data
» £ org.jboss.tools.examples.model
» £ org.jboss.tools.examples.rest
» £ org.jboss.tools.examples.service
» £ org.jboss.tools.examples.util
> (@ src/main/resources
> @ srcftest/java
> (@ src/test/resources.
» mi Libraries
» mhavaseriot Resources
» (5 Deployed Resources.
sl pomxemt
@ readme.ma
> s
¥ arget

OEBPS/gfx/introduction/select_html_template.png
W VN .~ 1. ——

Select HTML Template
Select a template s il content n the HIML page.

4 Use HTML Template

Templates:
ame Bescripion

Faceers T Page Faceets XHTML Page Tempite

ew Faceet Composiion Page (Creates new Facle page for use wih.
ew Facelet Footer (Creates a footer for use with the Faceiet
ew Fsceet Header Creates headerfo use with the Facee
e Faceet Tempate (Creates basic eader/comtentfooer
New TML File (301 rameset oml 401 frameset

[New TML File (401 stric) onl 401 st

[New HTML File (501 cransiviona) on 401 vanstonal

ew HTML File (5 s

Preve

<I00CTYPE hials

ntml><head

<titesJquery Mobile Templates/titles
<neta hitp-equive Content-Type" contente"text/htal; charsoteutf-
eta nome-viewport”

Content"widthedevice-nidth, initiol-scales

user-scalable-

Templatesare New HTM'templates found i the HIML Tempates preference page.

@ N> | [Gncel) [Emen)

OEBPS/gfx/backbone-usage.png
[backbonels

events user action

OEBPS/gfx/forge-scaffold-setup.png
[ticket-monster] ticket-monster-1 § scaffold setup
INFO Using currently installed scaffold [faces]

-targetDir admin

Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-8' is not supported by the Java runtime.

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/vebapp/resources/scatfold/paginator. xh
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/scaffold/pageTenplate
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/vebapp/admin/index.html

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/admin/index.xhtml

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/error.xhtml

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/add.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/background.gif

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/false.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/favicon.ico

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/forge-10go.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/forge-style.css
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/jboss-community.png
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/remove.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/search.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/true.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/WEB-INF /web.xml

OEBPS/gfx/introduction/newly_generated_project_explorer.png
80 e \JBoss 2 bussiavaes6 webapp/ pom:ml o JBoss Developer Studio 2, [Users burm/ getingstarted

CEN
e
> s web ercs
» o st serves
> Raeolomen esear. oss-favie
> o weources
> 6 pa contnt
v B Rserces
v iBsrmanrioa
5 o oss ot cxames cony
Jres—
v st ks campcs.]
> 8 g oos ot cxamples e
> 8 oo 100 exampls s
» 8 010 1 cxampls
R —
> e
Bucreresouces
i uivares
> Bascrp Resources

Ios- 1%:0-%:|%- #6361]84+ %0]
188w erar]E
(@ project b6 512 Packagee] = O

Croupta: (o ooss i exampies

antactid: . ooss avaeee-webapn

ar =

Verson:
Pacaging:

< propertes

B projectbaldsourcebncodng UTF-5
@ jooss bomversion - 1L0.0M6.

New module cement

ce

=
e
cspon
+ organaston
»son

» tssue Management

+ Contnuous integration

(2. provlems |71 propertes % servers. O Openshift Explorer |

> B boss-a5-7.1.Lnal Stppec)

OEBPS/gfx/introduction/forge_is_not_running.png
800 @ ForgeNotRumning

Forge s no rming. Do you want to st th Fere runtme?

) e—

OEBPS/gfx/introduction/as_eap_found.png
XX T 1 =1~ ——

Java EE Web Project p—r
This i ourprojet 5. sample,depopaie Maven 3 rojct o help youget your foo n he door.. |

Descripon:
i 1 your prJec 153 ample,Gepoyable Naven 3 project 1 i you ek your ot 1 e dor deeloing with
A TE S on oo 5 7

T e 1 et low you 0 crate acompliant o E 6 appication using 5 2.0, COI 1.0, 58 3.1, JPA 2.0
aenalgmon 10

¥ inludes s peristence i snd some same erstenc and arsaction code o el You get yout fctwet it
e ccee nenerpse s

Projecsize: 500

Bequirements

pusin i pojctexampe reures e = 1.0 ©
pugin s et exampie reaures maeclpse-wep >= 0.13.1. 7
pusin i rojctexamlereuies Joss Maven Tools. 7

@ v) (et Foish

OEBPS/gfx/introduction/generate_getters_setters.png
#6036 |PAcE@m]d-lrnoe]

“ &/ Undo Typing

5 Jboss-Javaceb-webapp Revert File
T pockoge org.Joos; I S3VE
Open Declaration
Open Type Hierarchy
Open Call Hierarchy
Show in Breadcrumb
) Quick Outline
Quick Type Hirarchy
Open Wit
Showin

pustc closs Ven

cut
Copy
Copy Qualified Name
Paste

Quick Fix
Sot
Refactor
Local History

References
Declarations.

£ Add to Snippets.

Run A
Debug As
Profle As
4 Mark as Deployable
. pobiems D propeig Validate

> & posas711read TEM

[moss | ¢ sova 2

s
=0 = \7_=0)
us s
- E=2
2 n
.]
B N
,.o
=
L
[
=
i
w0
ToggeCommee x
e e o
T G emen om0
Camse raton -
o s
o Ecmert
Addiapon s
+| G mpons B
3 e
L

Generate HibernateJPA annotations
Overrde/Implement Methods

Bl Generate Getters and Setters.

OEBPS/gfx/introduction/installer_wizard_page1.png
JBoss Developer Studio 5.0.0.8eta3

Introduction

Swp1ofo

2 Piease read he following informtion:

s il will ide you through te nsllon of oss Descloper Studio S.0..Beta

s strongly recommended hat you qut all pro

s beore continsing with thisinsllsion,

(Click the “Next” buto toproceeded t0the et scren. [you wan 0 chan

Vou may stop i nsalation t any e by clicking the “Quit” buton

) (an

OEBPS/gfx/introduction/mobile_browsersim_in_toolbar.png
Jess Developes Ssuio File Edt Novigus, Sesech Project Rua Wiodow lalp

00 JBoss —JBoss CentralJooss Develope Studio— Uses/bur] getngstaried

= 500 (% |§6rGror 98 [p o |5
2@ eer -)C

OEBPS/gfx/introduction/forge_ls.png
publiceigetTd0) Loy
PashCodec

LeterstonCFinel int version): oic

OEBPS/gfx/introduction/runtime_open_dialog.png
* bt

(o) -

OEBPS/gfx/introduction/outline_of_event.png
LA KN 0

o geido Long

o seudtlons) - void

o geversiond - int

o setversontnt - void
© - equalsiObjec) - boslean
o hashCode0 - int

= rame - String

o gettame0 Sirng

o setamesiring void
2 descrption :String
o gedescriptiond Siing.

o seDescrptontSuing) - vold
@ major :boolean

© getMajor0 boslean

o setajortbooiean - void

2 pictre :Sting

o gemcture - String

o seviauresting void

o atosting - Suing

OEBPS/gfx/introduction/new_html_file.png
s

T Goito [3File
{ - Croer |
Sowin RV > gsaLFie
" I Copy =C -
B s e
" i Copy Qualified Name PR ORM Mapping P
il ens -

OEBPS/gfx/introduction/organize_imports_1.png
@ (oo) Eo— (o) ()

OEBPS/gfx/introduction/mobile_browsersim_custom_devices.png
iPhane 3 320

(Ao onane 4 640

o scer
sumsung Gl
sumsung Gl
sumsong Gl

a0

0
pry
0

1280

DT

Wasla/5.0
Meala/50
Mesla/s
Mesla/50
MeslafS0
Mesa/50

e

nones
none s
i
i
i
it

OEBPS/gfx/eclipse-maven-profile-update.png
6006 Properties for ticket-monster

ype filter text Maven Ty v

»Resource
Builders Active Maven Profiles (comma separated):
»CDI (Context and Dependen
Deployment Assembly.
Expression Language Valida | ¥ Resolve dependencies from Workspace projects.
FreeMarker Context
»Google
Hibernate Settings
Java Build Path
»Java Code Style
»Java Compiler
»Java Editor
Javadoc Location
P Javascript
»J8oss Tools Knowledge Base
»IPA
JSF Validation
JP Fragment
¥ Maven
Lifecycle Mapping
WTP Integration

OEBPS/gfx/ticket-monster-user-use-cases.png
User

Reserve
Seats

OEBPS/gfx/introduction/jboss_tools_runtime_detection.png
Cometron R —— e
oo oo

ot tecammerders a0 00 s b ol s s
Yoo e e e o ek oy G s

Ca. e e o v .

oy -

o)

o Com

Voo e
e
el e—
. o

ety o

o e

s

s

[

Rooitnd

s

o (e) (somn)

@

OEBPS/gfx/introduction/prompt_for_readme.png
Java EE Web project >
Java EE Web Project Project is now ready ™~

() Show the Quick Fixdiog
' Show /Jooss-javace6-webapp| readme.md' or furthe Instructions

OEBPS/gfx/introduction/forge_console.png
(22 problems [T properties | # servers (€3 Openshif Explorer | Console

(e project] workspacei7 § pickcup fusers/burr/gettingstarted/narkspacei?/ooss-Sevaees-vebops/src/asins soval
g/ Shoss/ool s/ enamples/madel

Ficked up type <Birectoryhasources: sodel

Eiboss-Sovoree-ebons) odel 3

OEBPS/gfx/introduction/jquery_mobile_results.png
iQuery Mobie

Rock concertof the decade.

‘Shane's Sock Puppots

[T——

OEBPS/gfx/introduction/full_publish.png
2 markers [T3 propertes

T TEEAY I
> & Conturaion

» G sener Deals

ceced

i, B Outa Source Explorer

New =
O surt

" stop

Restart

X Remove ®

#; Incremental Publish

& Explore

Properties. %

OEBPS/gfx/introduction/visual_page_editor.png
“ooEnforces amotation based constraints defined on the model
hipanelGrid columnsa"3" columClasses=-titleCell

hiinputText ide"emol 1" values "#{nendesber- esai1} />
“himessage for-esoil” errorClasse inval id"/

<hioutputlabel forsphoneusber" values"Phone #: />
pUtText ide“phoneNusber” valuen"s (nentlasber. phonchuel
“sage for--phoneNusber” errorClass. (nvalid"/>

(= FontName - +) (-romsie -

OEBPS/gfx/introduction/mobile_browsersim_windows_menu.png
amazoncom

g o e

OEBPS/gfx/eclipse-green-bar.png
[Markers | T properties |41 Servers I Data Source Explorer [Snippets
Finished afer 2,461 seconds

s 212 P— a rares: 0 ——

¥ BFforg Joss Jdf dcketmonster est.rest VenueSenvceTest Ranmer. JUnt = Failre Trace

{EtestGenvenuedyid (0.064 =)
{testpagination (0,082 5

OEBPS/gfx/introduction/project_explorer_resources.png
v $%)Java Resources
» g8 src/main/java
v G src/mainjresources.
¥ (= META-INF
B persistence.xml
[Bimportsal
v Bsrcjestiava
v [org boss.tools.examples.test
> [J] MemberRegistrationTest java.
> G sectestresources,
> EALibraries
» Ehjavascript Resources.
» (5 Deployed Resources
) pomxml
@ readme.md
v
v gmain
> iava
» (& resources
¥ & webspp
i index.huml
it index.xhtmi
» (& resources
¥ (& WEB-INF
> Etest
¥ arget

OEBPS/gfx/introduction/new_class_eventservice.png
e Ie)

P T —)
e e — Coome-)
Ot oe. o

P P []
O O s

D ———
o)

[P ——
[SpE—r———
L —

o o w01 cammers Contre et nd et e .
[Ep——

OEBPS/gfx/octocat_social.png

OEBPS/gfx/introduction/save_modified_resources.png
Some o resources st s saved befoe this operaton.
Tvenseina

(© Aarssove s modbed resurces stomaically por o rfactoning

@ ol) m—

OEBPS/gfx/introduction/hibernate_add_jpa_annotations_step2.png
Hibernate: add JPA annotations to the related set of entities
“The following changes are necessary to perform th refactoring.

(Changes to be performed

3 ¢

src/mainjava/ rg/jboss ools examples model

private String nase;

private String description;

private int capacity;

public Long getId() {
return id;

i
public void setId(long id) {
this.id - i

i

public String gethameQ) {
return nase;

3

1d;

Generatedvalue
private Long 147

private String name;
private String description;
private int capacity;

public Long getid() {

return id;

B veruema 52 40|
(onginasource Refaciored Source
Save persTstence ERETyT
orivate Long Sova persistence. Generated|

<ok

) [Next> | [Ganest

) s

OEBPS/gfx/introduction/jboss_dev_studio_jboss_central.png
. s Cenwal 33 =0
£ Jboss Cenval ~ @sewet e Commariy) @ K.
- Crose project ER— LR
G pmmcwsnroes O opemhitagptanon 5 Tk in o (4h of My 2012) 6 days g0 by
@ lna S Web Project (3 Java EE Project Before we start, let me say Happy Star Wars Day! So

e o e vt o 10
[SEETTT S J—— Hesams oo o e g
Sommamcroes @ ouwn s N
I ek s Q6 LA 2012) 2 wesks
- et amples EL LR e T——
[yr—
s =T
~ ocumenation T
. T o s by Mk R e
Newand ey sezsonn T moin ekt o3 et s
e Do o i g st o 9
gt o A5 7 S o o ot .
m ™
pr— e e < ’ o100 b1
AT
- setings O 3 e e e done o f wrk ¢

W srowon sunun

5 Geningsarted [§ SofwareTUpdee |

OEBPS/gfx/introduction/h2console_in_browser.png
4 ooss-javaces-webapp [mportsal =0

S

ok |

[1) rtroncss Toots Help

Seva s (o i) -
T —.

OmerCiss agrzomer
SOBCURL: gnchzmamboss ovaost wobanp
UsorName:

(Comeet| [TosGomcson

OEBPS/gfx/introduction/source_organize_imports.png
Copy Qualified Name

e

Remos bk o

oy L Gemre e Conment
i 21 comtminsion
pecitons > Format Sement
e

s poien 3 Gant,

OEBPS/gfx/introduction/venue_after_getters_setters.png
B pos-pnetwebaon [ndeatot [wetoont (™

ockage arg. oot teols cxample mdel;

pubtic class Venue
private Long 1d;
Brivate String rom
private String description;
private int capacity;
0 ¢

3
© public String gotheme() (
return nons

3

S public votd setomeCString nase) {
hisnome = rome;

3
S public String getDescription®) {
return Geserition;

3

S public vold setdescriptionCString description) {
his.description - description:

3
S public int getCopacityO)

3
S public vold setCopacityCint copacity)
his-capacity - capocity;

OEBPS/gfx/introduction/forge_added_name.png
'V @wva Resources
i cmain/ia
5 g Jooss s examples conoler
org Jooss o examples daa
v 5 o oos ool exampes. model
> et
> () Memberaa
o foss tois.examples est
org ooss o examples senice
> 88 org Joss tols.cxamples -
¥ B ejminresounces
v
b perssence st
Emoersal
vimscnesa

> @ screstresoures
> miubaris
» mhJavascript Resources.

return id.hashCode();

i
return super hashCodeQO;

3

eCotum

private String nome;

public String gethane() {
return thia.nome;

PUBLLC vold sethome(Final Sering neme) {
s nome - nome;
)

pblic Sering tostring() {
String result -
G Crome 1= UL 8 Iname. im0 E5ERpYO)
Tt oo mome;
return results
IS

OEBPS/gfx/eclipse-generate-hashcode-equals.png
icketCateg¢
cketPriceC.
enue java
tor.client

ingMonito)

Library 2
endencies.

o fsh

r.patch

1
art

pes

New
Eoverride
Open £2 public String toString®)
Open With b rewen description;
Open Type Hierarchy [
Show In W >
Copy %®C
2 Copy Qualified Name
[Paste BV
% Delete =3
Remove from Context (3.
Build Path >
Source SO Format
Refactor x®T > X
Organize Imports %0
i Import... Sort Members...
W4 Export... Clean Up...
References » Generate Hibernate/JPA annotations
Declarations » Override/Implement Methods.
Generate Getters and Setters.
" Refresh ®R | Generate Delegate Methods...

Assign Working Sets... Generate hashCode() and equals()...

N ‘Generate toStrina()...

