Ticket Monster Tutorial

Ticket Monster Tutorial

Ticket Monster Tutorial

Contents

I Introduction & Getting Started

1 Purpose and Target Audience

2 Installation

3 Creating a new Java EE 6 project with Maven

4 Exploring the newly generated project

5 Adding a new entity using Forge

6 Reviewing persistence.xml & updating import.sql
7 Adding a new entity using JBoss Developer Studio
8 Deployment

9 Adding a JAX-RS RESTful web service

10 Adding a jQuery Mobile client application

11 Conclusion

II Building the persistence layer with JPA2 and Bean Validation
12 What will you learn here?
13 Your first entity

14 Database design & relationships
14.1 Mediaitems o o i i e e e e e e e
142 EVents o o e e e e
14.3 Shows e e

14.4 Performances e e e e e

15

21

27

28

35

40

49

58

59

60

61

75

Ticket Monster Tutorial iii
145 Venue o o e e e e 83
14.6 SeCtiOns o o o e e e e 88
14.7 Booking, Ticket & Seat L e e e e 88

15 Connecting to the database 90

16 Populating test data 92

17 Conclusion 93

III Building The Business Services With JAX-RS 94

18 What Will You Learn Here? 95

19 Business Services And Their Relationships 96

20 Preparations 97

21 Internal Services 98
21.1 TheMediaManager oo ittt et e e e e e e e 98
21.2 The Seat Allocation SErvice o i e e e e e 102
21.3 Booking Monitor Service e e e e e e 105

22 JAX-RS Services 107
22.1 Initializing JAX-RS e 107
22.2 A Base Service For Read Operations e 107
22.3 Retrieving VENUES o ot e e e e e e 111
224 Retrieving EVENts o e e e e e e e 112
22.5 Creating and deleting bookings L. 113

23 Testing the services 118
23.1 A Basic Deployment Class L 118
23.2 Writing RESTful service tests o o o i e e e e e e e e 119
23.3 Running the testS o o e e e e e e e e e e e e e e 123

23.3.1 Executing tests from the command line 124
23.3.2 Running Arquillian tests from within Eclipse o . 124
IV Building The User UI Using HTMLS 126
24 What Will You Learn Here? 127

Ticket Monster Tutorial iv
25 First, the basics 128
25.1 Client-side MVC Support o o e e e e 128
252 Modularity e e e e e e e 129
253 Templating L. e 129
25.4 Mobile and desktop VErsions oo e e e e e e e 130
26 Setting up the structure 131
27 Displaying Events 135
27.1 The Eventmodel e e 135
27.2 The Events collection i e e e e 135
27.3 The EventsView VIEW L L o e e e e e e 136
27.4 ROULING o e 138
28 Viewing a single event 141
29 Creating Bookings 147
30 Mobile view 156
30.1 Setting up the StruCtUIe o o e e e e e e e e e e e e e e e e 156
30.2 Thelanding page o o e e e e e e e e e e e 158
30.3 The @VENLS VIEW o o v i v i e 159
30.4 Displaying an individual event e e 161
30.5 Booking ticketS L e e e e e e e e e e e 165
31 Device detection 173
32 More Resources 174
V Building the Administration UI using Forge 175
33 What Will You Learn Here? 176
34 Setting up Forge 177
34.1 JBoss Enterprise Application Platform 6 L 177
342 TBOSS AS 7 o o o o e e 177
34.3 Required Forge Plugins e e 177
35 Getting started with Forge 178
36 Generating the CRUD UI 180
36.1 Updatethe project o o o o e e e e e 180
36.2 Scaffold the view from the JPA entities L e 182

Ticket Monster Tutorial \

37 Test the CRUD UI 183
38 Make some changes to the Ul 184
VI Building The Statistics Dashboard Using GWT And Errai 187
39 What Will You Learn Here? 188
40 Module definition 189
41 Host page 190
42 Enabling Errai 191
43 Preparing the wire objects 192
44 The EntryPoint 193

45 The widgets 196

Ticket Monster Tutorial Vi

What is TicketMonster?

TicketMonster is an example application that focuses on Java EE6 - JSF 2, JPA 2, CDI and JAX-RS along with HTMLS, jQuery
Mobile, JSF and GWT. It is a moderately complex application that demonstrates how to build modern web applications optimized
for mobile & desktop. TicketMonster is representative of an online ticketing broker - providing access to events (e.g. concerts,
shows, etc) with an online booking application.

Apart from being a demo, TicketMonster provides an already existing application structure that you can use as a starting point
for your app. You could try out your use cases, test your own ideas, or, contribute improvements back to the community.

(tm1)

Fork us on GitHub!

The accompanying tutorials walk you through the various tools & technologies needed to build TicketMonster on your own.
Alternatively you can download TicketMonster as a completed application and import it into your favorite IDE.

Before we dive into the code, let’s discuss the requirements for the application.

Use cases

We have grouped the current use cases in two major categories: end user oriented, and administrative.

What can end users do?

The end users of the application want to attend some cool events. They will try to find shows, create bookings, or cancel bookings.
The use cases are:

* look for current events;

* look for venues;

* select shows (events taking place at specific venues) and choose a performance time;
* book tickets;

* view current bookings;

* cancel bookings;

http://github.com/jboss-jdf/ticket-monster

Ticket Monster Tutorial Vii

Select Event

User

Reserve
Seats

Figure 1: End user use cases

What can administrators do?

Administrators are more concerned the operation of the business. They will manage the master data: information about venues,
events and shows, and will want to see how many tickets have been sold. The use cases are:

* add, remove and update events;
¢ add, remove and update venues (including venue layouts);
¢ add, remove and update shows and performances;

* monitor ticket sales for current shows;

Ticket Monster Tutorial viii

Manage
Venues

Administrator

Manage
Layout

Figure 2: Administration use cases

Ticket Monster Tutorial ix

Architecture
—
4 Ty
User Front-end (HTMLS)
Admin Front-end Eﬂ;}snl'::;]c[;?j
Classic Ul Mobile UI (JSF, Forge) (GWT. Errai)
" T i |
: ' Forge I
Business Layer (CDI, EJB, JAX-RS) ! Seafold :
— -mll
.
Persistence (JPA)

Figure 3: TicketMonster architecture

The application uses Java EE 6 services to provide business logic and persistence, utilizing technologies such as CDI, EJB 3.1
and JAX-RS, JPA 2. These services back the user-facing booking process, which is implemented using HTML5 and JavaScript,
with support for mobile devices through jQuery Mobile.

The administration site is centered around CRUD use cases, so instead of writing everything manually, the business layer and Ul
are generated by Forge, using EJB 3.1, CDI and JSF. For a better user experience, Richfaces Ul components are used.

Monitoring sales requires staying in touch with the latest changes on the server side, so this part of the application will be
developed in GWT and showcases Errai’s support for real-time updates via client-server CDI eventing.

How can you run it?

Before building and running TicketMonster, you must generate the administration site with Forge. See the tutorial for details.

Building TicketMonster

TicketMonster can be built from Maven, by runnning the following Maven command:

mvn clean package

If you want to run the Arquillian tests as part of the build, you can enable one of the two available Arquillian profiles.
For running the tests in an already running application server instance, use the arg-jbossas-remote profile.

mvn clean package -Parg-jbossas-remote

AdminJSF.html

Ticket Monster Tutorial

If you want the test runner to start an application server instance, use the arg-jbossas-managed profile. You must set up the

JBOSS_HOME property to point to the server location, or update the src/main/test/resources/arquillian.xml
file.

mvn clean package -Parg-jbossas-managed

If you intend to deploy into OpenShift, you can use the postgresgl—-openshift profile:

mvn clean package -Ppostgresqgl-openshift

Running TicketMonster

You can run TicketMonster into a local JBoss AS7 instance or on OpenShift.

Running TicketMonster locally
First, start JBoss Enterprise Application Platform 6 or JBoss AS 7 with the Web Profile.

1. Open a command line and navigate to the root of the JBoss server directory.

2. The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

Then, deploy TicketMonster.

1. Make sure you have started the JBoss Server as described above.

2. Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy
(You can use the ‘arg-jbossas-remote' profile for running tests as well)

3. This will deploy target/ticket-monster.war to the running instance of the server.

4. Now you can see the application running at http://localhost:8080/ticket-monster.

Running TicketMonster in OpenShift

First, create an OpenShift project.

1. Make sure that you have an OpenShift domain and you have created an application using the jbossas—7 cartridge (for

more details, get started [here](https://openshift.redhat.com/app/getting_started)). If you want to use PostgreSQL, add the
postgresqgl-8. 4 cartridge too.

2. Ensure that the Git repository of the project is checked out.
Then, build and deploy it.

1. Build TicketMonster using either:

* the default profile (with H2 database support)

http://openshift.com
http://localhost:8080/ticket-monster
https://openshift.redhat.com/app/getting_started

Ticket Monster Tutorial Xi

mvn clean package

* the postgresgl-openshi ft profile (with PostgreSQL support) if the PostgreSQL cartrdige is enabled in OpenShift.

mvn clean package -Ppostgresgl-openshift

2. Copythetarget/ticket-monster.war file in the OpenShift Git repository(located at <root

cp target/ticket-monster.war <root-of-openshift-application-git-repository>/ <«
deployments/ROOT.war
3. Navigate to <root-of-openshift-application-git-repository> folder

4. Remove the existing src folder and pom. xm1 file.

git rm -r src
git rm pom.xml

5. Add the copied file to the repository, commit and push to Openshift

git add deployments/ROOT.war
git commit -m "Deploy TicketMonster"
git push

6. Now you can see the application running at at http://<app-name>-<domain-name>.rhcloud.com

Learn more

The example is accompanied by a series of tutorials that will walk you through the process of creating the TicketMonster
application from end to end.

After reading this series you will understand how to:

* set up your project;

* define the persistence layer of the application;

* design and implement the business layer and expose it to the front-end via RESTful endpoints;
* implement a mobile-ready front-end using HTML 5, JSON, JavaScript and jQuery Mobile;

* develop a JSF-based administration interface rapidly using JSF and JBoss Forge;

* thoroughly test your project using JUnit and Arquillian;

Throughout the series, you will be shown how to achieve these goals using JBoss Developer Studio.

Ticket Monster Tutorial 1/198

Part 1

Introduction & Getting Started

Ticket Monster Tutorial 2/198

Chapter 1

Purpose and Target Audience

The target audience for this tutorial are those individuals who do not yet have a great deal of experience with:

* Eclipse + JBoss Tools (JBoss Developer Studio)
* JBoss Enterprise Application 6 or JBoss AS 7
* Java EE 6 features like JAX-RS

* HTMLS & jQuery for building an mobile web front-end.

This tutorial sets the stage for the creation of TicketMonster - our sample application that illustrates how to bring together the
best features of Java EE 6 + HTMLS + JBoss to create a rich, mobile-optimized and dynamic application.

TicketMonster is developed as an open source application, and you can find it at github.
If you prefer to watch instead of read, a large portion of this content is also covered in video form.

In this tutorial, we will cover the following topics:

* Working with JBoss Developer Studio (Eclipse + JBoss Tools)
* Creating of a Java EE 6 project via a Maven archetype

* Leveraging m2e and m2e-wtp

» Using Forge to create a JPA entity

» Using Hibernate Tools

» Database Schema Generation

* Deployment to a local JBoss Server

* Adding a JAX-RS endpoint

* Adding a jQuery Mobile client

* Using the Mobile BrowserSim

https://github.com/jboss-jdf/ticket-monster
http://docs.jboss.org/tools/movies/

Ticket Monster Tutorial

3/198

- e Q- Qur | Oy |8 @ |50 | @ g~ RO -
] w & | [- w - # 3

Project Explor 5 i Paciage Expl U4, moss Ceneral 83

£ hiop [T RN .00

i. lBoss Central
Avars B-wwhapy

= Creats Prajeces -

F 2 Dynacis Web Prafect
L2 v FE Wiek Prodeot
[
¥+ B D plorgreent 0
F 3§ Web Bevources o A
&% A Content
¥ T8 Lywy RESources = Fraject Examples g

W gre imainfava

0.iboss inols.examples controller B JBoss Quickstarts

0.ib03s 100ls enamples dat

3
v 3 jboss 100ls. examples mode * Documentation
* LN Even java Mew and Bogbewgrihy s B
LY. Aeference Feweioper Forum
Lav.
¢ FAL Wy
v o). Bod pled.fest
0 SEpeEnLasLy [EEeT (T,
= Lerlings

O LT il Gemming Started . B Sofreare /Update

i poliience. xm

Fropertes | ¥56 Servers

o] walslybice xm

[impertag ak=a3=7.1.1Fina ¥ wed]
L i SeLtiiava Bt jpvareb-vebapp [Staed, Symchresized]
F e
rg.jboas tooly axamples test i FURATS
¥ [F] MembarBegistrationTess, java ® = Sver Detaild

B sro fiestfresources
F B Libraries
F By brvasonps Resouroes

el Resources

£ Cpenisift Exploner

12:34 PM
[y Mobile Template

Fikaddlbail BOBD/ [Badi- Evaseb-aiE

Rock concert af the decade e

Shane's Sock Puppets e

Figure 1.1: JBoss Developer Studio 5 with Mobile BrowserSim

Ticket Monster Tutorial 4/198

Chapter 2

Installation

The first order of business is to get your development environment setup and JBoss Developer Studio v5 installed. JBoss
Developer Studio is Eclipse Indigo (3.7.2) for Java EE Developers plus select JBoss Tools and is available for free. Visit
http://www.jboss.org/developer to download it. You may also choose to install JBoss Tools 3.3 into your existing Eclipse Indigo
for Java EE Developers. This document uses screenshots depicting JBoss Developer Studio.

You must have a Java Development Kit (JDK) installed, either v6 or v7 will work - whilst a JVM runtime will work for most use
cases, for a developer environment it is normally best to have the full JDK. System requirements for JBoss Developer Studio are
listed in the online documentation.

Tip
If you prefer to see JBoss Developer studio being installed, then check out this video.
To see JBoss Tools being intalled into Eclipse Indigo, see this video.

The JBoss Developer Studio installer has a (very long!) name such as jbdevstudio-product-universal-5.0.0.v2012043(
where the latter portion of the file name relates to build date and version information and the text near the front related to the

target operating system. The "universal" installer is for any operating system. To launch the installer you may simply be able to
double-click on the .jar file name or you may need to issue the following from the operating system command line:

java —-jar jbdevstudio-product-universal-5.0.0.v201204301418M-H119. jar

We recommend using the "universal" installer as it handles Windows, Mac OS X and Linux - 32-bit and 64-bit versions.

Note

Even if you are installing on a 64-bit OS, you may still wish to use the 32-bit JVM for the JBoss Developer Studio (or Eclipse +
JBoss Tools). Only the 32-bit version provides the Visual Page Editor - a split-pane editor that gives you a glimpse of what your
HTML/XHTML (JSF, JSP, etc) will look like. Also, the 32-bit version uses less memory than the 64-bit version. You may still run
your application server in 64-bit JVMs if needed to insure compatibility with the production environment whilst keeping your IDE
in 32-bit mode.

http://www.jboss.org/developer
http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/5.0.Beta/html/Getting_Started_Guide/minimumrequirements.html
http://vimeo.com/39606090
http://vimeo.com/39743315

Ticket Monster Tutorial 5/198

B8 0 |Boss Developer Studic 5.0.0.Beta3

Introduction

Step lofl 9

(o Please reéad the r'|1II|::'.~.'|r|'='| information
Iz mstaller will gunde you through the mstallatvon of JHoss i'l'-l_"n,']rl]rl,'r Stuchvo =000, Betad,
It 15 strongly recommendesd that you quit all programs before continaing with this installation

Chek the " MNext button 1o procested o the next screen, [voar wanl 10 chanpe somelhung on i preveous screen, chck
! 3 . 13
he *Previous® bution

¥ ol iy slap s mstallateon at any me by chicking the "Uwit”™ butlon

RS by Red Hat

Mext | Chuit

Figure 2.1: Installation Wizard, Step 1 of 9

The rest of the steps are fairly self explanatory. If you run into trouble, please consult the videos above as they explore a few
troubleshooting tips related to JRE/JDK setup.

Please make sure to say Yes to the prompt that says "Will you allow JBoss Tools team to receive anonymous usage statistics for
this Eclipse instance with JBoss Tools?". This information is very helpful to us when it comes to prioritizing our QA efforts in
terms of operating system platforms. More information concerning our usage tracking can be found at http://www.jboss.org/-
tools/usage

You can skip the step in the installation wizard that allows you to install JBoss Enterprise Application Platform 6 or JBoss AS 7
as we will do this in the next step.

http://www.jboss.org/tools/usage
http://www.jboss.org/tools/usage

Ticket Monster Tutorial 6/198

Chapter 3

Creating a new Java EE 6 project with Maven

Tip
For a deeper dive into the world of Maven and how it is used with JBoss Developer Studio 5 and JBoss Enterprise Application
Platform 6 (or JBoss Tools 3.3 and JBoss AS 7) review link: this video.

Now that everything is properly installed, configured, running and verified to work, let’s build something "from scratch".

We recommend that you switch to the JBoss Perspective if you have not already.

Tip
If you close JBoss Central, it is only a click away - simply click on the JBoss icon in the Eclipse toolbar - it is normally the last
icon, on the last row - assuming you are in the JBoss Perspective.

First, select Create Projects — Java EE Web Project in JBoss Central. Under the covers, this uses a Maven archetype which
creates a Java EE 6 web application (.war), based around Maven. The project can be built outside of the IDE, and in continuous
integration solutions like Hudson/Jenkins.

http://vimeo.com/39796236

Ticket Monster Tutorial

7/198

|#-_, JBass Central ﬁ.““x___

an"
) @K
= f o B

<) This week in JBoss [$th of May 2018 6 days ago by
Mark Lictle

Before we skart, let me say Mappy 5%ar Wars Day! 5o
after last week's G350 foqus, this week we have a lot
breadth to cowver. Let's L ‘;lllighl. i

= ’CL Sexrch JBodd Community

= Mews

A This week in JBoss (26th of April 2012 2 weeks
ago by Mark Little

There's a |01 'gfilir'll; an in the workd lﬂf]!ﬂlii- and in
wpemt like mact af it hannened in the lack wesk! Sn

Wy

1

= Blogs

<) Using JBess A&dmin iFhone app together with JBoss
Tools 13 kowrs age by Max Rydahl Andersen

This marning | woke up to an email stating that
Christos Vasilakis had created an iPhone app ta
manage JBoss AS 7 tervers froam wour phane, he...

o Moving mae-wip project 10 Eclipse 1 month ago &by
Max Bydahl Andersen

Over the last 2+ years we have dane a lot of work ar
helnine imnrovinn Mayen intemratenn for Friinges im 2 ek

{_ JBoss Central
= Create Projects 4
% Dynamic Wed Project £33 OpenShift Application
S0 java EEWeb Project (=% bawa EE Project
B nraus project & RichFaces Projecs
A7 Spring MVC Project @) GWT Web Project
= Project Examples ‘e W H >
F JEess JQuickstarts
* [MeCUmEnTATian
Mew and Moteworthy User Forum
Reference Develaper Farum
FAQ Wiki
Screencasts lssiee Tragker
= LSettings
H Show On S1artup
. Getting Started | % Software/Update

Figure 3.1: JBoss Central

You will be prompted with a dialog box that verifies that JBoss Developer Studio is configured correctly. If you are in a brand new
workspace, the application server will not be configured yet and you will notice the lack of a check mark on the server/runtime

Trow.

Ticket Monster Tutorial 8/198

= HENE] Mew Project Example |
Java CE Web Praject ﬂ
Thii b your propedt! I & dample, deplopable Maven 3 profedt o hellp you gt wour fool in the dooar [I-' .

1

Descripiion |

Thiz i your profect? 1T 3 lample, deplopable Maeen § projedt fo helip you get your Toot i the door Sewloping with
Jarea FE 6 on [Bodi A5 7.

This @adecn i etud 1 Bk 50 0O Creabe & Compdiant Ures EE & application wting 155 2.0, CDI 1.0, EJE 3.1, JPA 2.0 and
Bean Validation 1.0

i inglugdes a perilitence unit and iome lample periience and tremaction code to hellp you gt your Teef wed with
dalabiie SOOFLT IR eAMEFRNLE LvE.

PFroject vize K,

Requirersnts

Type Beacripiion Figargd P
Insiall,,
perverfruntese | This profect example reguines. Boss AS 7.007.1 or ARG | [l
Divaigiim This project example requires m2e >»= 1.0 -
4 = DCrirevibinged arad Beritall...
Lo o™ Thily jpErofst evample neguines mIsgipae-—wip »= 0.13.1. =
g oy This peoject example mequines JBEoas Maven Tools, =
|
||
|
|
|
|
|
|
|
F - . -
ki < Bark L LI Canped Finish

Figure 3.2: New Project Wizard

Note
There are several ways to add JBoss Enterprise Application Platform 6 or JBoss AS 7 to JBoss Developer Studio. The Install. ..
button on the new project wizard is probably the easiest, but you can use any of the methods you are familiar with!

To add JBoss Enterprise Application Platform or JBoss AS 7, click on the Install... button, or if you have not yet downloaded
and unzipped the server, click on the Download and Install... button.

Caution
The download option only works with the community application server.

Selecting Install... will pop up the JBoss Runtime Detection section of Preferences. You can always get back to this dialog by
selecting Preferences — JBoss Tools — JBoss Tools Runtime Detection.

Ticket Monster Tutorial

9/198

W

) eype FlEr LexE

k Ceneral
B AL
Flode Recommenders
F Data Mansgemsent
E Farge
FreeMarker Editor
FCoogle
F Help
HOL editor
* Insiall f Update
P Java
F |xva EE
F Java Persisfence
F JarvaSoript
¥ JBoss Tools
B COH (Cantext and Depers
JBoss Central
JBsai Minven Inbegration
JBs% Pories
JBoss Tools Runbme Det
Praject Exzmples
Remote Debug
Usage Reparting
EWieh
b JRekel
F Mawem
B Wylym
B Plug=in Development
Project Archives
F Rersate Syitemi
* Report Design
¥ R fDebisg
ELenmr
FTeam
T rmdinal
¥ Usage Data Collector

@

JBpss Toals Runtime Detection . r T

 Pescrigtion
Each path oa this liss will be acmomatically scanned for nontimes when

2 new workipace s creaved o if selected at every Eclipse sartup.
Chick Edit 1o configure rubes Fhicers for the seanch.

Faths _
Fath Ewidy $LAFT
Edi..
Eemne
Search...
Dowmiload....
] Avgilable rustirme deteciors
Type Link
B JBass as Link
™ Seam Link

[mestore Defaults | [Apply

)

[cancel | (S

Figure 3.3: JBoss Tools Runtime Detection

Select the Add button which will take you to a file browser dialog where you should locate your unzipped JBoss server.

Ticket Monster Tutorial 10/198

— .

Azl a e pash
[« o[22 = &) m || @~ [@liboss-as-7.1.0Fmal 3] [}
= — —_—
FAVORITIS Ath * il jedibens? = O5_Seore
[Oropbox | 3ubwersion * [l jbdibeta3 . : :nﬂunr r
AT 13 i] F
Py Applications | L * [l jboss-tap-6.0 w [l bursdies E
=] Desktop wiminfo §ll jboss-eap-6.0-quickstas + | COPTNLIxE
ﬂ Doswntoads “Lautharity Bl jboas-eap-._ n-reposiiory & docs il
[Dexumens androtd-sdks 3 R ——— L =
cade = jbots—eage-. ukckstarts.zip ¥ Jboss-modules.jar
m bare Deskton " jboas-—eap-. 0.ERY-src.zip LICENSE 1t
EHARED Drgamests i Jbods-eap-6.0.0. 025, xip & moduled .
Dl " [l jbots-wik-2.0.0,023 - & READMEna
ONICTS Drapbox r [bads -k, ERE-bin, o B seamclaboe *
ﬁ sibagriurfer EAPGDLOLERE o Jegds-wilk- RY-dema,Tip 8 welcome-conzes "
B TR — VN ® B iboss-nfk- n-reposmpry_*
| New Folder | | Cancel | [Dpansd

Figure 3.4: Runtime Open Dialog

Select Open and JBoss Developer Studio will pop up the Searching for runtimes... window.

1 new runtime found. Press OK (o create the runtimes with a checlmark,

Searching runtimes is fnished.
M Wersion Type | Locaion
M jboss-as-7.1.1Final 7.1 A5 fUsers/burr fgettingstarted fjboss, .

i Hice already created runtimes

[cancel | [

Figure 3.5: Searching for runtimes window

Simply select OK. You should see the added runtime in the Paths list.

Ticket Monster Tutorial 11/198

B I . N,

" type filter text) JEoss Tools Runtime Detection 1- .-
FGeneral
> Ant _ Description

»Code Recommenders Each path on this list will be automatically scanned for runtimes when
¥ Data Management a new workspace is created or if selected at every Eclipse startup.

kForge Click Edit to configure rules /filters for the search.
FreeMarker Editor

FCoogle Paths
*Help Path Every sta

HOL editor fUsers/burr/gettingstarted /jboss-as-7.1.... [}

Finstall /Update
Flava Edit...
* Java EE
P Java Persistence
F lavascript
¥)Boss Tools
FCOH (Context and Depent
JBoss Central
JBoss Maven integration Drovwnilosad. ..
JBoss Portlet
Jboss Taols Runtime Dev Available runtime detectors
Project Examples - -
Remate Debug Type Link
Usage Reporting B JBoss AS Link
el M Seam Link
E |Rebel
I Maven
B Bbylyn
FMug-in Development
Project Archives
FHemote Systems
FReport Design
FRun/Debug
FSereer
FTeam
Termirnal

F e e Em i

@ [Cancel | (m0E)

| Restore Defaults | | Apply

Figure 3.6: JBoss Tools Runtime Detection Completed

Select OK to close the Preferences dialog, and you will be returned to the New Project Example dialog, with the the server/run-
time found.

Ticket Monster Tutorial 12/198

Java EE Web Project

—
This is your project! It a sample, deployable Maven 3 project to help you get your foot in the door... r
- e

Description:

This is your preject! It's a sample, deployable Maven 3 project to help you get your foat in the dogr developing with
Java EE 6 on |Boss AS T,

This project is setup to allow you to oreate a compliant Java EE & application using J5F 2.0, CDI 1.0, EJB 3.1, JPA 2.0 and
Bean Validation 1.0,

It includes a persistence unit and some sample persistence and transaction code o help you get your feet wet with
database access in EATEFEriSE |Java.

Propect size: 200K

_ Requirements
Type Description Found?
S e frungimse [install...]
in This ject example reguires m2e >= 1.0,
peag i et E] | Download and Install... |
plugin This project example reguires m2eclipse-waip >= 0.13.1.]
plugin This project example requires JBoss Maven Tools. =

@ < Back __Cancel | [Finish

Figure 3.7: JBoss AS 7.0/7.1 or EAP 6 Found

Select Next.

Ticket Monster Tutorial 13/198

8 nNno Mew Project Example

Java EE Web Project] i

This is your project! It's a sample, deplovable Maven 3 project to help you get your foot in the door..,

Project name [ihqn-jaﬂuﬁ-ﬂrhlpp -[:]

Package org. jboss.tools.examples L

Target Runtime

E Use default Warkspace location

Lo atian: - Browese. ..

Add projectis) 1o wWorking set

Working set: - More,

7 < Back Next > Cangel . Fimish |

Figure 3.8: New Project Wizard Step 2

The default Project name is jboss-javaee6-webapp. If this field appears blank, it is because your workspace already
contains a "jboss-javaee6-webapp" in which case just provide another name for your project.

The Target Runtime allows you to choose between JBoss Enterprise Application Platform and JBoss AS 7. If it is left empty,
JBoss AS 7 will be elected.

Select Finish.

JBoss Tools/JBoss Developer Studio will now generate the template project and import it into the workspace. You will see it pop
up into the Project Explorer and a message that asks if you would like to review the readme file.

Ticket Monster Tutorial

14 /198

Select Finish

Java EE Web Project —
‘Java EE Web Project’ Project is now ready

Show the Quick Fix dialeg
Eﬂm'ﬂ‘b&m—jm&ﬁnmhinp;rudm.nﬂ' for further instructions

Figure 3.9: New Project Wizard Step 3

Ticket Monster Tutorial 15/198

Chapter 4

Exploring the newly generated project

Using the Project Explorer, open up the generated project, and double-click on the pom . xm1.

The generated project is a Maven-based project with a pom. xm1 in its root directory.

800 || JBoss - jboss-javaseb-webapp/pom.xml - |Boss Developer Studio - [Users/burr/gettingstarted/v
wh O Q| Q- | H G- | GrE- @ L |0 RO L&+ 0d
\(Praject Ex EE 2 Package E. = D. 1: JBoss Central M_ =0
B~ Overview

v ?;}I]hn“-]av.trrﬁ—mh.app
P A0 1ad-WS Web Services Artifact T Froject
b 0 A -RS REST Web Services

Group Id org.jboss.tools.examples Mame m
¥ Sq Deployment Descriptor: jboss-)avaed _] e H
B gl Web Resources Artifact Md: + jboss-javaee6-webapp URL
F &b JPA Content Version 0.0, 1-SNAPSHOT | Deseription: | A starter Java
v [7
1 Java Resouroes Packaging: war E] on Jioss AS T

¥ (3 srcfmain/java jhoss=javaee

¥ [org.jboss.tools.examples.conti F Parent

[
£ org.jboss.tools examples.data
I £ org.jboss.ools examples.mads = Properties
B org.jboss nools examples.rest .
<0 project.build. sourceEncoding @ UTF-§ Create...

¥ B} org.jboss.tools.examples, serv boe b oy
Lpjx Q55 00m version ¢ 1000,
¥ 3 org.jboss. ools.examples,util ! Femaone
B (H src fmain fresources

Inception:

B CH e frestfjava

I [osp frestfresources b Modules g] g e b Organization

I B Libraries

" b SCM

b B JavaScript Resources
> g Deployed Resources b l5sue Management

w porm, sl

%‘ read me.md b Continuous Integration
ESsr
- = —_— Cverview | Dependencies | Dependency Hierarchy | Effective POM | pom.xml

[* problems [Properties | 40 Servers 22 €3 OpenShift Explorer |
k- :i,;",',;l:-oii-az.-?.l.l Final [Stopped]

Figure 4.1: Project Explorer

JBoss Developer Studio and JBoss Tools include m2e and m2e-wtp. m2e is the Maven Eclipse plug-in and provides a graphical

Ticket Monster Tutorial 16/198

editor for editing pom. xm1 files, along with the ability to run maven goals directly from within Eclipse. m2e-wtp allows you
to deploy your Maven-based project directly to any Web Tools Project (WTP) compliant application server. This means you can
drag & drop, use Run As — Run on Server and other mechanisms to have the IDE deploy your application.

The pom. xm1 editor has several tabs along its bottom edge.

Overview | Dependencies | Dependency Hierarchy | Effective POM | pom.xml
rf Problems | T Properties +id Servers &4

:Ezljhuss—as -7.1.1.Final [Stopped, Synchronized]

Figure 4.2: pom.xml Editor Tabs

For this tutorial, we do not need to edit the pom.xml as it already provides the Java EE 6 APIs that we will need (e.g. JPA,
JAX-RS, CDI). You should spend some time exploring the Dependencies and the pom.xml (source view) tabs.

One key element to make note of is <jboss.bom.version>1.0.0.M6</jboss.bom.version> which establishes if
this project uses JBoss Enterprise Application Platform or JBoss AS dependencies. The BOM (Bill of Materials) specifies the
versions of the Java EE (and other) APIs defined in the dependency section.

If you are using JBoss Enterprise Application Platform 6 and you selected that as your Target Runtime, you will find a ~-redhat-1
suffix on the version string.

Caution
The specific version (e.g. 1.0.0.M6) is very likely to change, so do not be surprised if the version is slightly different.

Ticket Monster Tutorial

17/198

: —
|._|i‘| Project Explor &3 B Package Expl \I
==

TI':"] boss-javaeeb-webapp

b AP JAX-WS Web Services
b A8 |AX-RS REST Web Services
b * Ceployment Descriptor: jboss-javaeeb-webs
b |1l Web Resources
P ¢ JPA Content
Tfﬁjava Resources
¥ & src/main/java
[2 _[-E org.jboss.tools.examples.contraoller
[2 EE org.jboss.tools.examples.data
[EE org.jboss.tools.examples.model
[EE org.jboss.tools.examples.rest
[EH org.jboss. tools.examples.service
> EE org.jboss.tools.examples.util
F 2 src/main/resources
> i #src/test/java
b 3 src/test/resources
b = Libraries
b = JavaScript Resources
> I::; Deployed Resources

| pom.xml
«'cﬂ} readme.md

B = src
b = target

Figure 4.3: Project Explorer Java Packages

Using the Project Explorer, drill-down into src/main/ java under Java Resources.

The initial project includes the following Java packages:

.controller

contains the backing beans for # { newMember} and # {memberRegistration} inthe JSF page index.xhtml

.data

contains a class which uses @Produces and @Named to return the list of members for index.xhtml

.model

contains the JPA entity class, a POJO annotated with @Ent ity, annodated with Bean Validation (JSR 303) constraints

.rest

contains the JAX-RS endpoints, POJOs annotated with @Path

Ticket Monster Tutorial 18/198

.service
handles the registration transaction for new members

.util
contains Resources.java which sets up an alias for @PersistenceContext to be injectable via @Inject

Now, let’s explore the resources in the project.

T?ﬁjava Resources
» i#src/main/java
¥ 3 src/main/resources
¥ = META-INF
¥ persistence.xmi
[E] import.sgl
¥ i #sre/test/java
T_EE org.jboss.tools.examples.test
[m MemberBegistrationTest.java
b B src/test/resources
b = Libraries
b = JavaScript Resources
> I:;Deplwed Resources

E] pom.xml
@readme.md

W = src
¥ = main
b i=-java
b (= resources
¥ [=webapp
i index. htmil
i index. xhtml

P [resources
b = WEB-INF
> =-test
b (=-target

Figure 4.4: Project Explorer Resources

Under src you will find:

main/resources/import.sql
contains insert statements that provides initial database data. This is particularly useful when hibernate.hbm2dll.auto=cr

issetinpersistence.xml. hibernate.hbm2dll.auto=create—-drop causes the schema to be recreated each
time the application is deployed.

Ticket Monster Tutorial 19/198

main/resources/META-INF/persistence.xml
establishes that this project contains JPA entities and it identifies the datasource, which is deployed alongside the project.
It also includes the hibernate.hbm2dll.auto property set to create—drop by default.

test/java/test
provides the . test package that contains MemberRegistrationTest . java, an Arquillian based test that runs both
fomm within JBoss Developer Studio via Run As — JUnit Test and at the command line:

mvn test -Parg-jbossas-remote

src/main/webapp
contains index.xhtml, the JSF-based user interface for the sample application. If you double-click on that file you will
see Visual Page Editor allows you to visually navigate through the file and see the source simultaneously. Changes to the
source are immediately reflected in the visual pane.

A =1
p=Enforces annctation-based constraints defined on the sodel
ch:panelirid columns="3" columnClasses="titlelall™

zh:outputlabel For="no=e® value="Nase: /=
<h:inputText id="name” value="F{nendember. nomel™ />
<h:message For="nome” errorllass="invalid "/ >

<h:outputlabel For="esail”™ value="Ematl:" /=
<h:inputText id="email” value="#{nesMember.email} /=
<h:message for="email” errorClass="inval id"/ >

<h:outputlabel for="phoneNumber”™ value="Phone &:"/>
<h:inputText id="phoneNusber”™ value="#{nenMesber, phonelus
<h:message Fors"phonelusber® errorllass="iavalid />

adbhrnanol ey ds
- -

= |- Font Name - — | |- Font Size - - .

Member Reglstratian
Enforces annciation-based consirants dofinad on tha model class.

Mame: ;ﬂ_newemher.n.lme} . » Ermor Massagn
ndir. o -
Ermapi: O #inewhMember.email} O + Ervor Messago
L O }
Tm-l #{newhle mber. phoneNumbs e [Erfee Matt s
uixcomposition » uixdefine = h:form = hpanelGrid = | hinputText X

Visual fSource . Source [Preview .

Figure 4.5: Visual Page Editor

In src/main/webapp/WEB-INF, you will find three key files:

beans.xml
is an empty file that indicates this is a CDI capable EE6 application

Ticket Monster Tutorial 20/198

faces—-config.xml
is an empty file that indicates this is a JSF capable EE6 application

jboss—-javaee6-webapp—-ds.xml
when deployed, creates a new datasource within the JBoss container

Ticket Monster Tutorial 21/198

Chapter 5

Adding a new entity using Forge

There are several ways to add a new JPA entity to your project:

Starting from scratch
Right-click on the . model package and select New — Class. JPA entities are annotated POJOs so starting from a simple
class is a common approach.

Reverse Engineering
Right-click on the "model" package and select New — JPA Entities from Tables. For more information on this technique
see this video

Using Forge
to create a new entity for your project using a CLI (we will explore this in more detail below)

Reverse Engineering with Forge
Forge has a Hibernate Tools plug-in that allows you to script the conversion of RDBMS schema into JPA entities. For more
information on this technique see this video.

For the purposes of this tutorial, we will take advantage of Forge to add a new JPA entity. This requires the least keystrokes, and
we do not yet have a RDBMS schema to reverse engineer. There is also an optional section for adding an entity using New —
Class.

Right-click on the .model package in the Project Explorer and select Show In — Forge Console.

M: Package Exp|)| & JBoss Central W jBoss-avaeeb-webapp/pom i index.xh

=k “| web XML 3.0 Editor
F 1 Web Resources
B A AN -WE Web Services . = perties Editor
B &b JPA Content New >
T':"-"'_I.J'.ra Rédourdes Co Into =t mapping
¥ B src/main java M=MAME | I WE, TS DA
b & org.jboss.tools.examples.cor_ OPen Type Hierarchy ind -
b i org jboss.tools.examples. da AL INGEGEGEEER L L & Forge Console .
if org.boss.topls.examples.mg T Properties

* Copy £

¥ I Member.iava

Figure 5.1: Show In Forge Console

https://vimeo.com/39608294
https://vimeo.com/39608326

Ticket Monster Tutorial 22/198

Tip
Alternative methods to activate Forge include:

* Window — Show View — Forge Console
» Ctrl 4 (Windows) or Cmd 4 (Mac).

Note: the Show In method will issue a "pick-up" command to switch you to the right location within your project.

The first time you start Forge, you will be prompted with a Forge Not Running dialog, select Yes.

(- HaNa Forge Mot Running

1 Farge is not running. Do you want 1o $1art the Forge runtime?

Figure 5.2: Show Forge Not Running

Tip
If you are not prompted you can always start Forge using the green arrow (or stop via the red square) in the Forge Console tab.

- —

Figure 5.3: Show Forge Start/Stop

i* problems | T Properties | 4% Servers | £33 Openshift Explorer | B Console M = W &g =0
|

N A R T
EEEAYTEEE SN A/,
Al e, e

Fl
F

[na project] workspacel? § pick-up Sflsers/burrfgettingstorted/workspacel?/jboss-jovaeeb-webapp/src/mains jovas
orgd jbossstoolslexamples/model

Picked up type =zDirectoryResources: model

1 . " 1 model §

Figure 5.4: Show Forge Console

Forge is a command-oriented rapid application development tool that allows you to enter commands that generate classes and

code. It will automatically update the IDE for you. A key feature is "content assist" or "tab completion", activated by pressing
tab.

To generate an entity, use these commands:

Ticket Monster Tutorial 23/198

entity —-named Event --package org.jboss.tools.examples.model
field string —--named name
validation setup

constraint NotNull —--onProperty name

constraint Size --onProperty name --min 5 —--max 50 —--message "Must be > 5 and < <&
50"

field string —--named description

constraint Size --onProperty description --min 20 --max 1000 —--message "Must be > <+

20 and < 1000"
field boolean --named major
field string ——-named picture

Let’s work through this, step by step.

At the [Jboss—-Jjbossee6-webapp] model $ prompt, type en and hit the tab key on your keyboard. entity will fill
in. Hit tab again and entity --named will appear. Type in Event and add a space — Forge can not anticipate the name of
your new entity!

Hit tab again and select ——package. Now, hit tab 5 times to fill in org. jboss.tools.examples. Since there are multiple
entries underneath examples, Forge will display those options. Type in m and hit tab to select mode 1.

Now hit the Enter/Return key to watch the command execute. The Event entity will be generated into the "model" package and
open up inside of Eclipse.

"® | problems | [Properties | 5 Servers | £F Openshift Explorer | B Console M I =

[ro project] workspacel? § pick-up flsers/burr/gettingstarted/workspocel?/jboss-javaeeb-webapps/sro/mains javas
org/ jboss/toolssexamples/ model
Picked up type <DirectoryRescurces=: model

[L 1w 1] madel § entity --nomed Event --packoge org.jboss.tools.examples,
contralle data model Fest service util
Libo: rvaeeh-y 1 model 5 entity --nomed Event --packoge org.jboss.tools.exomples.model

Created BEntity [org.jboss.tools. examples. model . Event]

Picked wp type <JovaoResocurcex: org.)boss.tools.exomples.model.Event

Wrote /lsersfburrfgettingstarted/workspacel?/jboss-javaceb-webapp/are/maind javasorgs/ jboss tool s/enampless
model /Event. java

[rwaeeh-y] Ewent.jawa §

Figure 5.5: Forge new entity

Ticket Monster Tutorial

24/198

[Project Explor B ¥ Package Expl =0

o -
»
¥ (= jboss-javaeeb-webapp
F A 1AX-WS Web Services
B P AX-RS REST Web Services
[.'!'*- Deployment Descriptor: jbosi-javaceb-webd
k) Web Reiources
F & IPA Content
¥ Java Resources
¥ (Bsrc/main/java
b [org.jboss.toals.examples, controller
F i org jboss.tools.examples. data
¥ 1 org.jboss tools.examples. model
.4 Jlk Event.java
F [J] Member.java
F [org.jboss.tools.examples. rest
F i org.jboss.tools.examples service

B H3 nrn e frnle avamndec kil

v, JBoss Central

i@ Java EE & Starter Ap L1 Eventjava B 4

package org.jboss.tools.examples.model;

4 @ import javex.persistence.Entity; |

BTd

private EieneratedValue(strategy = GenerationType. AUTD)
#lolumniname = “id", updatable = false, nullable - false)
Long id = null;

EVersion

privote Blolumn{name = “version®)

int version = @;

public Long getId{) {
return this.id;

}

public void setld{finmal Long ud) {
this.id = id;

Figure 5.6: Event Entity

Note

@Entity public class is placed on the same line as * import java.lang.Override’ by Forge. Using the formatter your
IDE provides on the entity will make this look more like you would expect!

Forge has automatically changed the context of the CLI to Event . java, and typing 1s will provide a listing of the fields and

methods.

public: :getVersion()
public: :setld(final Long id)
rtoString(d

public:

[! " 1 Event. jawva

® Problems | T Properties | 45 Servers | £3 Openshift Explorer | B Console m

L 5 "OTH R] Event,java 5 1S

'i._.'.g._l

orivate raid; privake IIWErS1ON;

[rethods]

public: :equals{(bject that) public: :getId()

aublic: ihashCodel)
oublic: :setVersion{final int version)

Figure 5.7: Forge 1s

Now that the base Event entity has been created, let’s add the fields and their JSR 303 Bean Validation constraints.

This next step involves adding a name property for the Event entity so that an event could hold data like "Rock Concert".

Type f£ie and hit tab to fill in £ie1d, if you hit tab again, Forge will list out the possible field types. Type in s and hit tab, Forge
will respond with string. Hit tab again to get ——named and type in name. You should end up with the command field
string —--named name, to execute it, press enter. This will add a private String name; field, and the appropriate
accessor and mutator (getter and setter) methods. You should also notice that the toString method is tweaked to include name as
well.

Ticket Monster Tutorial 25/198

A LR i MR RS L

B java "
¥ 1% Java Resources return id.hashCodel);

¥ 05 gre/main/java }
E M org.jboess.tools.examples. oontroller return super . hashlade();
* B org.boss. tools.examples. data 1
v .H org.|boss. tools.examples, model
..L‘- Event_java Blolumn
L4 J\ Member_java private String nome;

F fH org.jboss. ool s.examples.rest

ublic Strin etMame() {
k {8 org.|boss.tools.examples. service a4 P

return this.name;

F B org.jboss.tools.examples, util }
¥ ¥ wre/main/resources
¥ = META-INF public vold setMosme(final String nome) {
i persistence.xmi this.name = name;
& imporsql]

¥ i3 src/test/java & public String toString() {

= S5tring result = 77

F] MemberRegistrationTest. java if (neme 1= null BA& [nose. triml). isEmpiy(})
F B sre ftestfresources reiult 4= nome:
b B Libraries return result;

kB JavaScript Resources }}

v ‘{-] org.jboss tools. examples. test

Figure 5.8: @Column name

From this point forward, we will assume you have the basics of using Forge’s interactive command line. The remaining com-
mands to run are:

validation setup

constraint NotNull —--onProperty name
constraint Size —--onProperty name —--min 5 —--max 50 —--message "Must be > 5 and < <
50"

field string —--named description

constraint Size --onProperty description --min 20 --max 1000 —--message "Must be > <+
20 and < 1000"

field boolean --named major

field string ——-named picture

The easiest way to see the results of Forge operating on the Event . java JPA Entity is to use the Outline View of JBoss
Developer Studio. It is normally on the right-side of the IDE when using the JBoss Perspective.

Ticket Monster Tutorial

26/198

o= Outline E3 e Pa]ett:| = =)
AR e T

8 org.jboss.ools.examples.model
» . F import declarations
Tﬂ Event

id : Long
wersion - (nt
getld() : Long
setid(Long) : void
getversion(© int
setVersion(int) : void
« tquali(Object) : boolean
a hashCode() : int
name : String
getMame() : String
setMame{String) : woid
description : 5tring
getDiescription() : String
setDescription(String) | void
major : beolean
getMajor]) : boolean
setMajorboolean) : woid
plcture - String
getPicture]) : String
setPicture(String) @ void
& toString(© Swring

Figure 5.9: Outline View

Ticket Monster Tutorial 27 /198

Chapter 6

Reviewing persistence.xml & updating import.sql

By default, the entity classes generate the database schema, and is controlled by src/main/resources/persistence.xml.

The two key settings are the <jta-data-source> and the hibernate.hbm2ddl.auto property. The datasource maps
to the datasource defined in src\main\webapp\ jboss—javaee6-webapp—ds.xml.

The hibernate.hbm2ddl.auto=create—-drop property indicates that all database tables will be dropped when an ap-
plication is undeployed, or redeployed, and created when the application is deployed.

The import . sql file contains SQL statements that will inject sample data into your initial database structure. Add the follow-
ing insert statements:

insert into Event (id, name, description, major, picture, version) values (1, '
Shane’’s Sock Puppets’, ’"This critically acclaimed masterpiece...’, true, "http
://dl.dropbox.com/u/65660684/640px—Carnival_Puppets.jpg’, 1);

insert into Event (id, name, description, major, picture, version) values (2, ' <«
Rock concert of the decade’, ’'Get ready to rock...’, true, ’"http://dl.dropbox. <
com/u/65660684/640px-Weir%2C_Bob_(2007)_2.3pg’, 1);

Ticket Monster Tutorial 28/198

Chapter 7

Adding a new entity using JBoss Developer Stu-
dio

Alternatively, we can add an entity with JBoss Developer Studio or JBoss Tools.

First, right-click on the .model package and select New — Class. Enter the class name as Venue - our concerts & shows
happen at particular stadiums, concert halls and theaters.

First, add some private fields representing the entities properties, which translate to the columns in the database table.

package org. jboss.tools.examples.model;

public class Venue {
private Long id;
private String name;
private String description;
private int capacity;

Now, right-click on the editor itself, and from the pop-up, context menu select Source — Generate Getters and Setters.

Ticket Monster Tutorial

29/198

@ G- | -a- | PLde @ m 4§

| &,

1) jboss-javaceB-webagp
package org.)bos:

public cless Wem
private Long
private Stri
private Stri
private int i

B

* problems | 7] Propertie
» {2, jboss-as-7.1.1.Final

This will create accessor and mutator methods for all your fields, making them accessible properties for the entity class.

PR Q B
7 Undo Typing #Z

Revert File
[] Sawve 5
Open Declaration F3
Open Type Hierarchy F4
Open Call Hierarchy ~%H
Show in Breadcrumb HB
Quick Qutline H0
Quick Type Hierarchy HT
Open With (3
Show In EW [2
Cut X
Copy =5
Copy Qualified Name
Paste Y
Quick Fix 1
Source S [3
Refactor T 3
Local History [
References (3
Declarations (3
oo Add to Snippets...
Run As >
Debug As 3
Profile As *
% Mark as Deployable
Validate
Team

[L LAY &

=

E'::Jlnss'rjjm EE

. I Ei " = |:| E% \“‘_“I = U"‘.

| A paleme i not
available.

Toggle Comment
Remowve Block Comment
Cenerate Element Comment

Correct Indentation
Format
Format Element

Add Import
Organize Impaorts
Sort Members...
Clean Up...

Generate Hibernate /JPA annotations...
Override fimplement Methods...

3/
i 41
)

2
{+¥EF

i+ #M
1+ #0

r Generate Cetters and Setters...

Figure 7.1: Generate Getters and Setters Menu

Ticket Monster Tutorial 30/198

g iy
M » = description

g >
M » = name

[Allow setters for final fields (remove 'final’ modifier from fields if necessary)

Insertion poini:

| After ‘capacity :

Sart by:

| Fields in getter/semer pairs 3

_ Access modifier :
(=) public) provected () default () private

() final [synchronized

[_] Generate method comments

The format of the getters /setters may be configured on the Code Templates preference page.

i Bofg selected.

@

!
!

Figure 7.2: Generate Getters and Setters Dialog

Click Select All and then OK.

Ticket Monster Tutorial 31/198

IFQ jboss-javaeeb-webapp cif) index.xhteml r"'!:':l wib.oml 4 "1 =
pockage org,jboss.tools. examples.model;

public claoss Venue

private Leng id;

private S5tring nome;

private String description;

private int copacity;

- public Long getld() {

return id;

1

public wveid sekld{long id} {
this.id = id;

}

public Skring getNa=me() {
return name;

}

public void setMome{String nome) {
this.noae = nome;

}

public 5&kring getDescription() {
return description;

}

public void setDescripkion{String description) {
this.description = descriptiong

}

public int getlapocity() {
return capacity;

}

public void setlapacity(int capocity) {
this.capacity = capacity;

]

H

Figure 7.3: Venue.java with gets/sets

Now, right-click on the editor, from the pop-up context menu select Source — Generate Hibernate/JPA Annotations.

If you are prompted to save Venue . java, simply select OK.

Ticket Monster Tutorial 32/198

Some modified resources must be saved before this operation,

[] Verwe java

[Abways save all madified resources automatically prior to refactoring

@ [cancel | ok

Figure 7.4: Save Modified Resources

The Hibernate: add JPA annotations wizard will start up. First, verify that Venue is the class you are working on.

Ticket Monster Tutorial 33/198

Hibernate: add JPA annotations to the related set of entities

The following classes will be changed

S Class !
org.jboss.tools. examples. model VY,

e
L

Preferred location of Annotations: | Fields

Default string length (255 by default): _ 255 |
Enable optimistic locking: O

@ | <Back || mNet> | [cancel | [Finishe

Figure 7.5: Hibernate: add JPA annotations

Select Next.

The next step in the wizard will provide a sampling of the refactored sources — describing the basic changes that are being made
to Venue.

Ticket Monster Tutorial

34/198

Hibernate: add |PA annotations to the related set of entities

The following changes are necessary to perferm the refactoring.

%

Changes to be performed

8 4|

'..'..‘ Vinue.java = jboss-javaeet-webapp farc/main/java forg /iboss ftool s fexamples imddel

=
pa
ST

[J] venue java

Forl YN

Original Source

Refactored Source

public class Venue {

private Lomg 1d;

return id;

1

this.id = id;
1

return nome;

}

private String naome;
private String description;
private int capacity;
public Long getId{) {

public woid setld{Long 1d} {

public S5tring getMame() {

import javax.persistence.Entity;
import jovax.persistence.Generated
import javax.persistence.Ild;

BEntity

5

public class Venue { [

eld .
BGeneratedValue

private Long id;

private 3tring name;

private 5tring description;
private int capacity;

public Long getId() {

return id;

Next > | Cancel

[Finish |

Figure 7.6: Hibernate: add JPA annotations Step 2

Select Finish.

Now you may wish to add the Bean Validation constraint annotations, such as @NotNul1 to the fields.

Ticket Monster Tutorial 35/198

Chapter 8

Deployment

At this point, if you have not already deployed the application, right click on the project name in the Project Explorer and
select Run As — Run on Server. If needed, this will startup the application server instance, compile & build the application
and push the application into the JBOSS_HOME/standalone/deployments directory. This directory is scanned for new
deployments, so simply placing your war in the directory will cause it to be deployed.

() Caution
If you have been using another application server or web server such as Tomcat, shut it down now to avoid any port
conflicts.

Ticket Monster Tutorial 36/198

e I Lonnmecticn prafle

.w My . p. =.J Marme: Database: Sta

B A8 AX-WE Web Servi

b W A0-BS REST Web Lo Into use this file to load seed dota into the da
["'_?'-]Dtpln\'rncm Besc - Hesber (id, name, esail, phone_number) wali
b Web Resources Show In ki - Event (id, name, description, mojor, picku
o R Bt i Copy ser Event (id, nome, description, major, pictu
TEJJ.‘-'.I Resources e .
vi®srcimanfiva| B Copy Qualified Name
5 Paste ®Y

kI8 org.jboss.tg

F) venue jat Import
ki orgjbossto Export
ki org.jboss.a
B orgbossia Y Refresh F5

¥ (Ssrcfmain/resst Close Project

¥=META-INF | Close Unrelated Projects
i PErEISTEn

l.“'. validatiot &, Mark as Deployable
Elimportsal | yaligate

¥ B s ivesyjava , ,
i Show in Remote Systemns view
¥ 8 org.jboss.a L

Ik i org.jboss.to # Delete =
¥ M orgjbossta Build Path E
BV Eventiav Refactor CET 2

* [f) Member,
[3
=

» [} Member w3 1 Run on Server xR
BB e et/ resou) Debug As L Bl 2 Java Applet HXA
> i Libearies Profile As 713 Java Application X®X) |
b B JavaScript Resoure Team [Ju 4 JUnit Test YT
e ETh Maaies o e s csa R R " [T [

Figure 8.1: Run As — Run on Server

Now, deploy the h2console webapp. You can read how to do this in the h2console quickstart.

The Run As — Run on Server option will also launch the internal Eclipse browser with the appropriate URL so that you can
immediately begin interacting with the application.

http://www.jboss.org/jdf/stage/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial 37/198

--_I:l:_ perilitengs. oml I_:l impar.sql ﬂ Lwva FF 6 Saarter Ap EE _“-; =)

- _{r"" hetp: § flocalbost OB boss - javaeef-webappindex, o f v | = n

Welcome to JBoss!

You have successfully deployed a Java EE & web application.

Your application can run on:

JIFES [NTERPRISE _
APPLICATION PLATFORM E;j JBoss Application Server
[Supparted) [Camimunily
Mamber Re-plgtrason

Eridcmas annolaiorcbased aonedta nde dafired o0 Ba mode’ Clans

Regustier

* problems | 7 Properties B servers B £3 Openskift Explorer | B Console | - Forge Cons
Tamms-n--? 1.1.Final [Started, Synchronized)
|"'- bosi-javacef-vwebapp [Sarted, Synchrosined|
,; Fileie1i
B o Semeer Deraily
| XML Configuration

Figure 8.2: Eclipse Browser after Run As — Run on Server

Now, go to http://localhost:8080/h2console to start up the h2 console.

http://localhost:8080/h2console

Ticket Monster Tutorial 38/198

~ L F = il o '
0 jossoes-webape ([imporsol | hmiflonitensaotiin >~ O

(e B ¢ | hup/ flecalthost 8080/ h2consolefoonsole/login.spfisessionid=f2g | [-

English :| Preferences Tools Help

Saved Settings: : Ceneric H2 [Embedded)

Seting Name: " Ganeric H2 (Embedded) Save | Remaove
Driver Class: oeg h2 Driver

JOBC LRL: jdbeh2 memibossdavacebwobapp

User Name: sa

Password:

Connect| | Test Connechon

Figure 8.3: h2console in browser

Use jdbc:h2:mem: jboss—-javaee6-webapp as the JDBC URL (this is defined in src/main/webapp/WEB-INF/jboss—7J
sa as the username and sa as the password.

Click Connect
You will see both the EVENT table, the VENUE table and the MEMBER tables have been added to the H2 schema.

And if you enter the SQL statement: select % from event and select the Run (Ctrl-Enter) button, it will display the data
you entered in the import . sql file in a previous step. With these relatively simple steps, you have verified that your new EE
6 JPA entities have been added to the system and deployed successfully, creating the supporting RDBMS schema as needed.

Ticket Monster Tutorial

39/198

%) Jboss=javaceb-webapp

r& persistence.xml r import.sql

<

E @ EVENT

® [MEMBER

® [VENUE

=) INFORMATION_SCHEMA
E 33 Sequences

= {fff Users

(D) H2 1.3.161 (2011-10-28)

51 | & | Ao commit g 7 | Maxrows: (1000) © M | . |Autocomplets [Normal ¢ ()

[] Jdbeh2:mem;jboss-javaeet-wat 'Run {ﬂu'liEnhr]] [clnar| S0 statement

W 7 | hip://localhost:B0BO/h2console/console /login.dofjsessionid=f2071292 LceGe2d32 v | [.

select ® from avent

select ® from event;
D |DESCRIPTION MAJOR |INAME PICTURE
1 |This critically TRUE | Shanea’s |htipsidl dropbox.comfubsE606.84 8
acclaimed Sock |Camival_Puppeis.|pg
2 |Gelreadyio TRUE |Rock |hipuadldropbox.comiuGS660684/6
rock... concert Weir'2C_Bob_(2007)_2 jpg
of thi
decade
(2 rows, T ms)

Figure 8.4: h2console Select * from Event

Ticket Monster Tutorial 40/ 198

Chapter 9

Adding a JAX-RS RESTful web service

The goal of this section of the tutorial is to walk you through the creation of a POJO with the JAX-RS annotations.

Right-click on the . rest package, select New — Class from the context menu, and enter Event Service as the class name.

Ticket Monster Tutorial

41/198

a8 mnn Mew Java Class

Select Finish.

Replace the contents

Java Class
Crisate & meww Jawa Class.

source folder: .|hu-1.': =javaeeb-webappd arc ! maingjava Brerwrie,,
Package: ang. jboss tools. examples. rest Brorwae...
_ | Enclesing myps Browie
Hame IEﬂnl:erceI]
modifiers: (=} public () defauti private protected
absitract | | final static
Superclass Java. lamg. Oisjecn | Browie.. |
Iengstace s Add..,
R mave

Whilch method stubs would you like o create?

| pisblic static wobd maln{Sring[] args)

|| Constructars lram supenclass
E Inkerited abskract methads
D oy want io add comments? ffliﬂiﬁﬂlﬂl't emplates and delagl valye Piere)

|| Generate comments

Concel | (e

Figure 9.1: New Class EventService

of the class with this sample code:

package org.jboss.tools.examples.rest;

@Path ("/events")
@RequestScoped

public class EventService {

@Inject
private

QGET

EntityManager em;

@Produces (MediaType .APPLICATION_JSON)
public List<Event> getAllEvents () {

final List<Event> results =
em.createQuery (

"select e from Event e order by e.name").getResultList ();

return results;

Ticket Monster Tutorial 42/198

This class is a JAX-RS endpoint that returns all Events.

e P — o

'-':, JEoss Central =0
package org.jbess.tools,exasples, resk;

o EathCAeventst) &
8 FRraugsticpped =
public class EventService f
a8 Blniest =
& private Enfifatonaasr e =
i = BGET =
a BProduses(Medialyoe APPLICATION.JS0ND =
a8 public List<Evenk> getAllEvents() { =
& final List<Ewent> results = gp.createfuery(“select & fre=

return results;

H

L
P , — -
I_;_, Markers | [T] Properties | #% Servers EZ H__E Data Source Explorer | 7 Snippets | [

L a,ﬂ:-ﬂ-:.!.-li-?. 1.1.Firnkl [Started, Synchronized]
:"gjbﬁn-ja:-'.lteﬁ-wtbann [Srarted, SynchroniBed]
F L EML Conliguraticn
T4 Filesers
B = Server Details

Figure 9.2: EventService after Copy and Paste

You’ll notice a lot of errors, relating to missing imports. The easiest way to solve this is to right-click inside the editor and select
Source — Organize Imports from the context menu.

Ticket Monster Tutorial 43/198

En.p';' Qualified Kame
Faste "y
ik Fi x1
n;¢ : ST 1099/t Comment x/
Refacior TRT . Remowe Block Comment ok 11
Local History p Generate Element Comment W
Lorrect Indenialion 1|
References - i B
Declarations =

Format Element
= o Add o Shippetd...

Add Impart M
T RunAs -
Debug As * Sort Members...
ra Profile As = Clean Up...

. BT R T Y (S
Figure 9.3: Source — Organize — Imports

Some of the class names are not unique. Eclipse will prompt you with any decisions around what class is intended. Select the
following:

* javax.ws.rs.core.MediaType

* org.jboss.tools.examples.Event
* javax.ws.rs.Produces

* java.util.List

* java.inject.Inject

* java.enterprise.context.RequestScoped

The following screenshots illustrate how you handle these decisions. The Figure description indicates the name of the class you
should select.

i E LB Drganize Imports

Chooae Eypee bo import: Pape & ol

W5 javaawe. Pagedirribunes Media Type

oy
@ <hack | [cance Firuah

Figure 9.4: javax.ws.rs.core.MediaType

Ticket Monster Tutorial 44 /198

Chooae type to import: Page 2 of

0 jarvaawa.Ewenl

E JEwas eeterpide. event Byt

ﬂ' org.jboit ageillian, iore Al Dvend

0 org.jbors. anguiliian, core s pievent. Evend

L] oPQ. b, bosnd earmgdes el Evemt

ﬂ' erg m e dom. evenls. B

(#) [<sack | (OMSMEN | Cancel | | Finan

Figure 9.5: org.jboss.tools.examples.Event

Chaoue type fo Imgssrt: Page Bof b

|'E jvas ennerprise.inject Froduces |

IE:I [< mask |E| Cancel | Finish

Figure 9.6: javax.ws.rs.Produces

Ticket Monster Tutorial

45/198

Choose type 1o Irmport: Page 4 of §

|@ v et LS |

@ [<ma | [eseassd] | cawe | Finish

Figure 9.7: java.util.List

OO OrOANERIMPOUS

CFaae Type 15 | SHain: Page 5 of &

E. g foost arguillisn core ag_ansotation. Injeo

@ | cBack | [Semmtsas] | Cancel | Finiish

Figure 9.8: javax.inject.Inject

Ticket Monster Tutorial

46/198

- NgNs] Organize Imports

Chosie Type b irmporn Fage G ol 6

B javavencerpeise.comer RegueiScoped

i) i

urvan fpges. bean Begue s aped

:?: < Rack Npxt > Cangel : Finish]

Figure 9.9: javax.enterprise.context.RequestScoped

You should end up with these imports:

import

import
import
import
import
import
import
import

import

java.util.List;

javax.
javax.
.persistence.EntityManager;
LWS.
.WS.

javax
javax
javax
javax
javax

enterprise.context.RequestScoped;
inject.Inject;

.WS.
.WS.

rs.
rs.

rs

GET;
Path;

.Produces;
rs.

core.MediaType;

org.jboss.tools.examples.model.Event;

Once these import statements are in place you should have no more compilation errors. When you save Event Service. java,
you will see it listed in JAX-RS REST Web Services in the Project Explorer.

Ticket Monster Tutorial 47 /198

T Project Explor Eé"‘x%__l! Package Bxpl | = D1|[L sioss Central m__

= R package org.jboss, tools, exemples.rest;

— L
.,
(| 1
¥ = jboss- javaee b-webapp —import jova.util.list;
F A LAX-WS Web Services
¥ A9 1ax-RS REST Web Services import jevax.enterprise.context.RequestScoped;

B & CET frestjevents import jevax.inject.Inject;

B & GET frestfrmermbers import jovas.persistence, EntityManager;

b & GET frestjmembers f{id-[0-9][0-9)*] import jovax.ws.rs.GET;

import jovax.ws.rs. Path;
import jovox.ws.rs.Produces;
import jovox. ws.ri.core. MediaType;

» 5 Deployment Descriptor: jboss-javaees -web
b Web Resaurces
F 4 IPA Content

¥ 3% Java Resources import org.jboss.tools.exenples . model . Event;
¥ (B gre/maing java
Fm arg.jboss tocls.examples.controller BPath(" fevents -:'l

BfequestScoped
public closs EventService {
= Flnject
private Entitydansger es;

F B3 org.jboss.toods.examples.data
¥ [org.jboss.toelsexamples.model
* [1) Event.java
L] F_ Member.java

F LI Venue java BGET
¥ [org.jboss. ool examples.rest #Produces(MediaType . APPLICATION_J50W)
 [1] EventService. java public List<Event> getAllEvents() {

Figure 9.10: Project Explorer JAX-RS Services

This feature of JBoss Developer Studio and JBoss Tools provides a nice visual indicator that you have successfully configured
your JAX-RS endpoint.

You should now redeploy your project via Run As — Run on Server, or by right clicking on the project in the Servers tab and
select Full Publish.

[L Markers [1 Properties W Data Source Eu:pltmér..l

¥ &L [boss-as-7.1.1.Final [5

M 3
| jboss-javaces-weba S =

F .!, :TL Caonfiguration i Start
L Filesets
[Server Details ™ Stop
Restart
H Remowe =
% Incremental Publish

) Full Publish

elected (% Explore

Properties |

Figure 9.11: Full Publish

Using a browser, visit http://localhost:8080/jboss-javaee6-webapp/rest/events to see the results of the query, formatted as JSON
(JavaScript Object Notation).

http://localhost:8080/jboss-javaee6-webapp/rest/events

Ticket Monster Tutorial 48 /198

(o poss Cenval ({1 evesericesoe | O

- & o |hitp:) flocalhost-8080/jboss-javaeeb-webapp/restfevent v | .

St

[{"id":2,"version”:1,"name” : "Rock concert of the
decada”™ , "description” : "Gat ready to
rock...","major” tkruae, "pictura” : "hetp: f/d]l . dropbox. com/u/S6
5660684/640px-Weirs2C Bob_(2007) 2.ipg"},
{"id":1,"version":1, "name" : "Shane's Sock
Puppets” ; "description”:"This critically acclaimed
mastarpiece..."”,"major” strue, "picture”: "http://dl.dropbox.
com/uSE656606B4/640px-Carnival Puppets.jpg”}]

Figure 9.12: JSON Response

Note
The rest prefix is setup in a file called JaxRsActivator. java which contains a small bit of code that sets up the

application for JAX-RS endpoints.

Ticket Monster Tutorial 49/198

Chapter 10

Adding a jQuery Mobile client application

Now, it is time to add a HTMLS, jQuery based client application that is optimized for the mobile web experience.

There are numerous JavaScript libraries that help you optimize the end-user experience on a mobile web browser. We have found
that jQuery Mobile is one of the easier ones to get started with but as your skills mature, you might investigate solutions like
Sencha Touch, Zepto or Jo. This tutorial focuses on jQuery Mobile as the basis for creating the UI layer of the application.

The UI components interact with the JAX-RS RESTful services (e.g. EventService. java).

Tip
For more information on building HTML5 + REST applications with JBoss technologies, check out Aerogear.

These next steps will guide you through the creation of a file called mobile.html that provides a mobile friendly version of
the application, using jQuery Mobile.

First, using the Project Explorer, navigate to src/main/webapp, and right-click on webapp, and choose New HTML file.

e | a8 7 Praject... % .
. Golnto Ele
Folder
Show In TEW e i SQL File 1
e i
Copy = & JPA ORM Mapping File

 Copy Qualified Mame

« [Paste ®V

Figure 10.1: New HTML File

Caution

The New HTML File Wizard starts off with your target location being m2e-wtp/web-resources, this is an incorrect
location and it is a bug, JBIDE-11472.

It is possible it may already be corrected by the time you read through this document.

Change directory to jboss—javaee6-webapp/src/main/webapp and enter name the file mobile.html.

http://www.jboss.org/aerogear
https://issues.jboss.org/browse/JBIDE-11472

Ticket Monster Tutorial

50/198

8na

HTML
Create a new HTHML Ale.

Enter or select the parent folder:

New HTML File

Jboss=javaceb-webapp/srcfmainiwebapp

f o
¥ = jboss-javacefi-webapp
= sertings
¥ [Eesr
T = main
b java
F = resources
¥ | -webapp
b = resources
B = WEB-IMF
F [Test
¥ [E-target
F [classes
¥ =2 mie=wip

| S

File name: | mobile.htmi

[Advanced > |

@ < Back

I_I Mext = J [Cancel

Figure 10.2: New HTML File src/main/webapp

Select Next.

On the Select HTML Template page of the New HTML File wizard, select HTMLS5 jQuery Mobile Page. This template will

get you off to a fast start using jQuery Mobile.

Ticket Monster Tutorial 51/198

ano Blew HTRL File
Select HTML Template -

2

Select a termplate ad initial content in the HTML page.

IE‘ Use HTML Template

Templates:

Mame Description

Facelets XHTML Page Facelets XHTML Page Template

New Facelet Compasition Page Creates a new Facelet page for use with...
Wew Facelet Footer Creabes a foober for use with the Facelet
Wew Facelet Header Creates a header for use with the Facele
Mew Facelet Template Creates a basic header/content ffooter F..,
Mo HTRML File (4.01 framecet) heml 4.01 framedst

Now HTML File (4.01 strict) htrnl 4,01 strict

Mew HTML File (4.01 wansitional) himl 4.01 transitonal

Mew HTML File (5) humil 5

Py s

<IDOCTYPE himls

zhtml><head>

<title=]0uery Mobile Template</trikles
cmeta http-equive"(ontent-Type” content="text himl; charset=utf-)
ameta nome="viewport”

content="widthadavico-width, initial-scale=], wser-scalables

Templates are 'Mew HTML' ternplates found In the HTML Templates preference page.

{?} | < Back Next > | Cancel | [Finish j

Figure 10.3: Select HTMLS jQuery Mobile Template

Select Finish.

The document must start with <!DOCTYPE html> as this identifies the page as HTML 5 based. For this particular phase of
the tutorial, we are not introducing a bunch of HTML 5 specific concepts like the new form fields (type=email), websockets or
the new CSS capabilities. For now, we simply wish to get our mobile application completed as soon as possible. The good news
is that jQuery and jQuery Mobile make the consumption of a RESTful endpoint very simple.

You might notice that in the Visual Page Editor, the visual portion is not that attractive, this is because the majority of jQuery
Mobile magic happens at runtime and our visual page editor simply displays the HTML without embellishment.

Visit http://localhost:8080/jboss-javaee6-webapp/mobile.html.

Note
Note: Normally HTML files are deployed automatically, if you find it missing, just use Full Publish or Run As Run on Server as
demonstrated in previous steps.

http://localhost:8080/jboss-javaee6-webapp/mobile.html

Ticket Monster Tutorial

52/198

As soon as the page loads, you will be prompted with an alert box with "Ready to Go". This alert box is generated from JavaScript

that is associated with the pageinit event.

T

o jQuery Mobile Templa 52 i JawREALtivanor. java 1 obile. b

= hratp: Floscalhioes - BB [baoes 3= jevaeeb-we bapip imodele homl

One

Two

Thiroe

Figure 10.4: jQuery Mobile Template

-

jQuery Mobile

www.jboss.org/developer

One side benefit of using a HTMLS5 + jQuery-based front-end to your application is that it allows for fast turnaround in develop-

ment. Simply edit the HTML file, save the file and refresh your browser.

Now the secret sauce to connecting your front-end to your back-end is simply editing the pageinit JavaScript event and including

an invocation of the previously created Events JAX-RS service.
Insert the following block of code directly below the alert()

$.getJSON ("rest/events", function (events) {
// console.log("returned are " + results);
var listOfEvents = $("#1listOfItems");
listOfEvents.empty () ;
$.each (events, function (index, event) {
// console.log (event.name) ;
listOfEvents.append ("" + event.name + "");
}) i
listOfEvents.listview ("refresh");

})i
Note:

e using $.getJSON ("rest/events") tohitthe EventService. java
* acommented out // console.log, causes problems in IE

* Getting a reference to 1istOfItems which is declared in the HTML using an id attribute

Ticket Monster Tutorial 53/198

* Calling . empty on that list - removing the exiting One, Two, Three items

* For each event - based on what is returned in step 1

¢ another commented out // console.log
¢ append the found event to the UL in the HTML

e refreshthe l1istOfItems

Note

You may find the . append ("<1i>...") syntax unattractive, embedding HTML inside of the JS .append method, this can
be corrected using various JS templating techniques.

The result is ready for the average mobile phone. Simply refresh your browser to see the results.

3]

o Oy Mobile Templa 4 _.| JaxRLAZEWEEST, | ve ¥ sl i, B]
B o | BEn g et alhesr BORD B - vaeeb-wer Bagn mekele Rl - == n
jGuery Mobile
Rock concert of the decade (3]
Shane's Sock Puppets [3]

www.jboss.org/developer

Figure 10.5: jQuery Mobile REST Results

JBoss Developer Studio and JBoss Tools includes BrowerSim to help you better understand what your mobile application will
look like. Look for a "phone" icon in the toolbar, visible in the JBoss Perspective.

JBoss Developer Studio File Edit Navigate 5Search Project Run Window Help

800 JBass - JBoss Central - [Boss Developer Studio - fUsers/burr/ gettingstarted
B0-Qr | Q- [HE-|G-6- @ - 0o |5

@S- DE] e

Figure 10.6: Mobile BrowserSim icon in Eclipse Toolbar

Ticket Monster Tutorial 54 /198

Note
The BrowserSim tool takes advantage of a locally installed Safari (Mac & Windows) on your workstation. It does not package a

whole browser by itself. You will need to install Safari on Windows to leverage this feature — but that is more economical than
having to purchase a MacBook to quickly look at your mobile-web focused application!

* Browsersim File Devices

12:34 PM
Chsary Mobile Templats

g flecalhost-BOED/ boss-javaeet-wel

Rock concert of the decade

Shane's Sock Puppets

Figure 10.7: Mobile BrowserSim

The Mobile BrowserSim has a Devices menu, on Mac it is in the top menu bar and on Windows it is available via right-click as
a pop-up menu. This menu allows you to change user-agent and dimensions of the browser, plus change the orientation of the

device.

Ticket Monster Tutorial 55/198

File

E

Desktop (Default User-Agent)
Apple iPad 2

v Apple iPhone 3
Apple iIPhone 4
RIM BlackBerry Bald Touch 9900
Samsung Galaxy 5
samsung Galaxy 5 I
Samsung Galaxy Tab 10.1
More...

[
(%]

B:

EOED/jh + Use Skins
- Turn Left
Turn Right

Figure 10.8: Mobile BrowserSim Devices Menu

Desktop (Defaul User-fgend)

Apple iPad 2
il JBosa 12:34 P

amazoncom

@ ApplePhone 3
Apple Phone 4

RIM ElackBerry Bold Towch 500

Semaung Galary 5

- . Samaung Galay 51

Search Amazon.com

- Ssmaung Galary Tab 10.1
Muore.

- \r ¥ | e Skins

BElLY. Sercnoww Tirrs Left

Tusrm Raghit

Dipen s delaul Bicwier

Exit

for iPhane

Figure 10.9: Mobile BrowserSim on Windows 7

You can also add your own custom device/browser types.

Ticket Monster Tutorial 56/198

anb Divetes

Mame Widch Heigh User-Agens skin Add
Desktop (De 1024 TER DEFAIILT Mone .

Apple (Pad 2 | P6E Mozilla/5.0 (... |iPhone 4 Edit
Apple iPhone 3 320 4B0 Mozillaf5.0 0., iPhone 3

Apple iPhone 4 640 GED Mozillaf5.0 (... iPFhone 4 I Remove
RIM BlackBer... &40 B0 Mozillaf5.0 0., Androld

Samsung Gal... 480 00 Mozillaf5.0 (.. Android pwar A
samsung Gal,.. S8 g0 Mozillafs. 0 0. Android

Samsung Gal... B L2B0 Marillafs. 00 Android

I Load Defaults

E Cancel

Figure 10.10: Mobile BrowserSim Custom Devices Window

Under the File menu, you will find a View Page Source option that will open up the mobile-version of the website’s source code
inside of JBoss Developer Studio. This is a very useful feature for learning how other developers are creating their mobile web
presence.

Ticket Monster Tutorial

577198

aill JBoas 12:34 PM

Bankof America S

Maobile Banking Sign In

Locations:

What is Mobile Banking?

Regular Site Access

2 8- s % a =] 5 & il

o408 = hatp: | Fesstar amazroe. oo T Ly e hankola s 5

C= S en USS TS mobi Le

Eimport url eween U5/ styl

L T FEABOON (& Tl S0

GO E d & EFE S DC TP E M= 1 S04, [

= lass= outtan fm &
WA RLM LHTML M M i
K
oUrce | Preview
1 Properies | vis Servers G Openthift Exploner D Conzole £ g~ Forge Lonsode

inal [Boss Application Server Starup Configuration] fSystem /Libraryflavai levavirealMachines /16,0,
- " g

olidotionkmlPorser] (MSC service thread 1

kel Parser] (M50 service

hibernate.validator.

ernate.val idato idati

5
rEE . wal Qi , a0 | dakiamks | Par | (M5 s&rvice this
hibernote.validotor. sl VolidotionkmlPorser] (MSC service
boss . web] (MSC service thread 1-11) JRASQIEZ18: Re tering web o
i [[Dep laysant hoanfer-threads 13 JEASYLASES

iboss. resteasy. cdi.(dilnjectorFactory] (http-lecalhosk-127.8.8.1-8

Figure 10.11: Mobile BrowserSim View Source

Ticket Monster Tutorial 58/198

Chapter 11

Conclusion

This concludes our introduction to building HTMLS Mobile Web applications using Java EE 6 with Forge and JBoss Developer
Studio. At this point, you should feel confident enough to tackle any of the additional exercises to learn how the TicketMonster
sample application is constructed.

Ticket Monster Tutorial 59/198

Part 11

Building the persistence layer with JPA2 and
Bean Validation

Ticket Monster Tutorial 60/198

Chapter 12

What will you learn here?

You have set up your project successfully. Now it is time to begin working on the TicketMonster application, and the first step
is adding the persistence layer. After reading this guide, you’ll understand what design and implementation choices to make.
Topics covered include:

* RDBMS design using JPA entity beans

* How to validate your entities using Bean Validation

* How to populate test data

* Basic unit testing using JUnit

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included videos show you how we performed all the steps.

TicketMonster contains 14 entities, of varying complexity. In this tutorial we’ll classify the entities, and walk through designing
and creating one of each group.

Ticket Monster Tutorial 61/198

Chapter 13

Your first entity

The simplest kind of entities are often those representing lookup tables. TicketCategory is a classic lookup table that defines
the ticket types available (e.g. Adult, Child, Pensioner). A ticket category has one property - description.

What’s in a name?
Using a consistent naming scheme for your entities can help another developer get up to speed with your code base. We've
named all our lookup tables XXXCategory to allow us to easily spot them.

Let’s start by creating a JavaBean to represent the ticket category:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

public class TicketCategory {
/* Declaration of fields =/

/%%

* <p>

* The description of the of ticket category.
* </p>

*

*/

private String description;
/* Boilerplate getters and setters x/

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

@Override
public String toString() {
return description;

}

We’re going to want to keep the ticket category in collections (for example, to present it as part of drop down in the UI), so it’s
important that we properly implement equals () and hashCode (). At this point, we need to define a property (or group of
properties) that uniquely identifies the ticket category. We refer to these properties as the "entity’s natural identity".

Ticket Monster Tutorial 62/198

Defining an entity’s natural identity

Using an ORM introduces additional constraints on object identity. Defining the properties that make up an entity’s natural
identity can be tricky, but is very important. Using the object’s identity, or the synthetic identity (database generated primary
key) identity can introduce unexpected bugs into your application, so you should always ensure you use a natural identity. You
can read more about the issue at https://community.jboss.org/wiki/EqualsAndHashCode.

For ticket category, the choice of natural identity is easy and obvious - it must be the one property, description that the entity has!
Having identified the natural identity, adding an equals () and hashCode () method is easy. In Eclipse, choose Source —
Generate hashCode() and equals(). ..

icketCatege i

icketPriceC e E0verride
enue.java Open F3 Ppublic String toString() {
itor.client Open With > 1 return description;
ce Open Type Hierarchy F4
Show In TEW >
tingMonito| =
resources | =1 COPY ®C
isources 2 Copy Qualified Name
Vlibrary 2 [Paste nv
sendencies 3¢ Delete ®
= Remove from Context L0381
s Build Path >
* Source S [Format
4 Refactor ®T » i
Organize Imports 030
art £ Import... Sort Members...
/pes 4 Export... Clean Up...
References » Generate Hibernate/JPA annotations
Declarations » Override/Implement Methods...
Generate Getters and Setters...
" Refresh #R | Generate Delegate Methods...

Assign Working Sets... Generate hashCode() and equals()...

- Generate toStrina()...

Figure 13.1: Generate hashCode() and equals() in Eclipse

Now, select the properties to include:

Generate hashCode() and equals()

Select the fields to include in the hashCode() and equals() methods:

[o description | selectall |

| Deselect All |

Insertion point:

| Last member 3

|| Generate method comments

"] Use 'instanceaf' to compare types
| Use blocks in 'if' statements

i 1of1selected.

(‘?j | Cancel | | 0K

Figure 13.2: Generate hashCode() and equals() in Eclipse

https://community.jboss.org/wiki/EqualsAndHashCode

Ticket Monster Tutorial 63/198

Now that we have a JavaBean, let’s proceed to make it an entity. First, add the @Ent ity annotation to the class:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

And, add the synthetic id:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java
@Entity

public class TicketCategory {

/x Declaration of fields «*/

/[**
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

/+ Boilerplate getters and setters =/

public Long getId() {
return id;

public void setId(Long id) {
this.id = id;

As we decided that our natural identifier was the description, we should introduce a unique constraint on the property:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity

public class TicketCategory {

/x Declaration of fields «*/

* <p>
* The description of the of ticket category.
* </p>

* <p>
* The description forms the natural id of the ticket category, and so must be unique.
* </p>

Ticket Monster Tutorial 64 /198

@Column (unique = true)
private String description;

It’s very important that any data you place in the database is of the highest quality - this data is probably one of your organisations
most valuable assets! To ensure that bad data doesn’t get saved to the database by mistake, we’ll use Bean Validation to enforce
constraints on our properties.

What is Bean Validation?
Bean Validation (JSR 303) is a Java EE specification which:

+ provides a unified way of declaring and defining constraints on an object model.
+ defines a runtime engine to validate objects

Bean Validation includes integration with other Java EE specifications, such as JPA. Bean Validation constraints are automati-
cally applied before data is persisted to the database, as a last line of defence against bad data.

The description of the ticket category should not be empty for two reasons. Firstly, an empty ticket category description is no
use to a person trying to book a ticket - it doesn’t convey any information. Secondly, as the description forms the natural identity,
we need to make sure the property is always populated.

Let’s add the Bean Validation constraint @NotEmpty:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields =*/

/[**
* <p>

*

The description of the of ticket category.
* </p>

* <p>
* The description forms the natural id of the ticket category, and so must be unique.
* </p>

* <p>
* The description must not be null and must be one or more characters, the Bean <
Validation constraint <code>@NotEmpty</code>
* enforces this.
* </p>
*
*/
@Column (unique = true)
@NotEmpty
private String description;

And that is our first entity! Here is the complete entity:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

Ticket Monster Tutorial

65/198

[**

* <p>

* A lookup table containing the various ticket categories.

ete.

* </p>

*/

@Entity
public class TicketCategory {

/+ Declaration of fields =*/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

/[**
* <p>

* The description of the of ticket category.

* </p>

* <p>

E.g. Adult, Child, Pensioner, <>

* The description forms the natural id of the ticket category, and so must be unique.

* </p>

* <p>

* The description must not be null and must be one or more characters, the Bean <

Validation constraint <code>@NotEmpty</code>

* enforces this.

* </p>

*

*/
@Column (unique = true)
@NotEmpty
private String description;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getDescription() {
return description;

public void setDescription(String description)

this.description = description;

{

/+ toString (), equals() and hashCode () for TicketCategory, using the natural identity <+

of the object x/

@Override
public boolean equals (Object o) {

Ticket Monster Tutorial 66 /198

if (this == o)
return true;
if (o == null || getClass() != o.getClass())

return false;

TicketCategory that = (TicketCategory) o;
if (description != null ? !description.equals(that.description) : that.description <
!'= null)

return false;

return true;

@Override
public int hashCode () {
return description != null ? description.hashCode() : 0;

@Override
public String toString () {
return description;

TicketMonster contains another lookup tables, EventCategory. It’s pretty much identical to TicketCategory, so we
leave it as an exercise to the reader to investigate, and understand. If you are building the application whilst following this
tutorial, copy the source over from the TicketMonster example.

Ticket Monster Tutorial 67 /198

Chapter 14

Database design & relationships

First, let’s understand the the entity design.

An Event may occur at any number of venues, on various days and at various times. The intersection between an event and a
venue is a Show, and each show can have a Per formance which is associated with a date and time.

Venues are a separate grouping of entities, which, as mentioned, intersect with events via shows. Each venue consists of groupings
of seats, each known as a Section.

Every section, in every show is associated with a ticket category via the TicketPriceCategory entity.

Users must be able to book tickets for performances. A Booking is associated with a performance, and contains a collection of
tickets.

Finally, both events and venues can have "media items", such as images or videos attached.

Ticket Monster Tutorial

68 /198

14.1

Media items

Figure 14.1: Entity-Relationship Diagram

MediaType Administration
—F

EventCategory Medialtem Address

Event <t Show = Venue
T — T —
Booking Performance — SectionAllocation Section
Ticket .
TicketPriceCategory TicketCategory
Seat

Storing large binary objects, such as images or videos in the database isn’t advisable (as it can lead to performance issues), and
playback of videos can also be tricky, as it depends on browser capabilities. For TicketMonster, we decided to make use of
existing services to host images and videos, such as YouTube or Flickr. All we store in the database is the URL the application
should use to access the media item, and the type of the media item (note that the URL forms a media items natural identifier).
We need to know the type of the media item in order to render the media correctly in the view layer.

In order for a view layer to correctly render the media item (e.g. display an image, embed a media player), it’s likely that special
code has had to have been added. For this reason we represent the types of media that TicketMonster understands as a closed set,
unmodifiable at runtime. An enum is perfect for this!

Luckily, JPA has native support for enums, all we need to do is add the @Enumerated annotation:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Medialtem.java

/ x %

*

3+

*

<p>
The type of the media,
</p>

required to render the media item corectly.

Ticket Monster Tutorial 69/198

*

*

*/

<p>

The media type is a closed set - as each different type of media requires <
support coded into the view layers, it

cannot be expanded upon without rebuilding the application. It is therefore <>
represented by an enumeration. We instruct

JPA to store the enum value using it’s String representation, so that we can later <
reorder the enum members, without

changing the data. Of course, this does mean we can’t change the names of media <+
items once the app is put into

production.

</p>

@Enumerated (STRING)
private MediaType mediaType;

@Enumerated(STRING) or @Enumerated(ORDINAL)?

JPA can store an enum value using it's ordinal (position in the list of declared enums) or it's STRING (the name it is given). If
you choose to store an ordinal, you musn't alter the order of the list. If you choose to store the name, you musn’t change the
enum name. The choice is yours!

The rest of MediaItem shouldn’t present a challenge to you. If you are building the application whilst following this tutorial,
copy both MediaItem and MediaType from the TicketMonster project.

14.2

Events

In Chapter 13 we saw how to build simple entites with properties, identify and apply constraints using Bean Validation, identify
the natural id and add a synthetic id. From now on we’ll assume you know how to build simple entities - for each new entity that
we build, we will start with it’s basic structure and properties filled in.

So, here is our starting point for Event:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

@Entity

public class Event {

/+ Declaration of fields =/

/ * %
* The synthetic ID of the object.
*/

@Id

@GeneratedValue (strategy = IDENTITY)
private Long id;

<p>
The name of the event.
</p>

<p>

The name of the event forms it’s natural identity and cannot be shared between <
events.

</p>

Ticket Monster Tutorial 70/198

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more <
than 50 characters. This allows for

* better formatting consistency in the view layer.

*
x/
@Column (unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event’s name must contain between 5 and 50 <>
characters")

private String name;

/ x %
* <p>
* A description of the event.
* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

*x <code>@NotNull</code> — the description must not be null.

* <code>@Size</code> — the name must be at least 20 characters and no more <
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event <
organisers provide at least some description

* — a classic example of a business constraint.
*
x/
@NotNull
@Size(min = 20, max = 1000, message = "An event’s name must contain between 20 and 1000 <«

characters")
private String description;
/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public String getDescription() {
return description;

Ticket Monster Tutorial 71/198

public void setDescription(String description) {
this.description = description;

/+ toString (), equals() and hashCode () for Event, using the natural identity of the <
object */

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;

@Override
public int hashCode () {
return name != null ? name.hashCode() : 0;
}
@Override

public String toString () {
return name;

First, let’s add a media item to Event. As multiple events (or venues) could share the same media item, we’ll model the
relationship as many-to-one - many events can reference the same media item.

Relationships supported by JPA

JPA can model four types of relationship between entities - one-to-one, one-to-many, many-to-one and many-to-many. A
relationship may be bi-directional (both sides of the relationship know about each other) or uni-directional (only one side knows
about the relationship).

Many database models are hierarchical (parent-child), as is TicketMonster’s. As a result, you'll probably find you mostly use
one-to-many and many-to-one relationships, which allow building parent-child models.

Creating a many-to-one relationship is very easy in JPA. Just add the @ManyToOne annotation to the field. JPA will take care
of the rest. Here’s the property for Event:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

/[**
* <p>
* A media item, such as an image, which can be used to entice a browser to book a <>
ticket.
* </p>

* <p>
* Media items can be shared between events, so this is modeled as a <code>@ManyToOne</ <
code> relationship.

Ticket Monster Tutorial 72/198

* </p>

* <p>
* Adding a media item is optional, and the view layer will adapt if none is provided.
* </p>
*
*/
@ManyToOne
private Medialtem medialtem;

public Medialtem getMedialItem() {
return medialtem;

public void setMedialtem(Medialtem picture) {
this.medialtem = picture;

There is no need for a media item to know who references it (in fact, this would be a poor design, as it would reduce the reusability
of MediaItem), so we can leave this as a uni-directional relationship.

An event will also have a category. Once again, many events can belong to the same event category, and there is no need for an
event category to know what events are in it. To add this relationship, we add the eventCategory property, and annotate it
with @ManyToOne, just as we did for MediaItemn.

And that’s Event created. Here is the full source:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

[**
*

*

* X

<p>

Represents an event, which may have multiple performances with different dates and <
venues.

</p>

<p>

Event’s principle members are it’s relationship to {@link EventCategory} - specifying <>
the type of event it is - and

{@link MedialItem} - providing the ability to add media (such as a picture) to the event <
for display. It also contains

* meta-data about the event, such as it’s name and a description.

*

*

*/

</p>

@Entity
public class Event {

/* Declaration of fields */

/ x %
* The synthetic ID of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

/[**
* <p>
* The name of the event.

Ticket Monster Tutorial 73/198

* </p>

* <p>

* The name of the event forms it’s natural identity and cannot be shared between <+
events.

* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more <
than 50 characters. This allows for

* better formatting consistency in the view layer.

*
*/
@Column (unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event’s name must contain between 5 and 50 <
characters")

private String name;

/ x %
* <p>
* A description of the event.
* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the description must not be null.</1li>

* <code>@Size</code> — the name must be at least 20 characters and no more <
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event <+
organisers provide at least some description

* — a classic example of a business constraint.
*
*/
@NotNull
@Size(min = 20, max = 1000, message = "An event’s name must contain between 20 and 1000 <«

characters")
private String description;

/ x %
* <p>
* A media item, such as an image, which can be used to entice a browser to book a <
ticket.
* </p>

* <p>

* Media items can be shared between events, so this is modeled as a <code>@ManyToOne</ <=
code> relationship.

* </p>

* <p>
* Adding a media item is optional, and the view layer will adapt if none is provided.
* </p>

Ticket Monster Tutorial 74/198

*/
@ManyToOne
private Medialtem medialtem;

/[**
* <p>
* The category of the event
* </p>

* <p>

* Event categories are used to ease searching of available of events, and hence this <
is modeled as a relationship

* </p>

* <p>
* The Bean Validation constraint <code>@NotNull</code> indicates that the event <
category must be specified.
*/
@ManyToOne
@NotNull
private EventCategory category;

/+ Boilerplate getters and setters «/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public Medialtem getMediaItem() {
return medialtem;

public void setMedialtem(Medialtem picture) {
this.medialtem = picture;

public EventCategory getCategory () {
return category;

public void setCategory (EventCategory category) {
this.category = category;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

Ticket Monster Tutorial 75/198

/+ toString (), equals() and hashCode () for Event, using the natural identity of the <
object */

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;

@Override
public int hashCode () {
return name != null ? name.hashCode() : 0;
}
@Override

public String toString() {
return name;

14.3 Shows

A show is an event at a venue. It consists of a set of performances of the show. A show also contains the list of ticket prices
available.

Let’s start building Show. Here’s is our starting point:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

[x*
* <p>
* A show is an instance of an event taking place at a particular venue. A show can have <+
multiple performances.
* </p>
*/
@Entity
public class Show {

/* Declaration of fields x/

/[*
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

/ x %

* <p>

Ticket Monster Tutorial 76 /198

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping <+
establishes this relationship.
* </p>

* <p>
* The <code>@NotNull</code> Bean Validation constraint means that the event must be <+
specified.
* </p>
*/
@ManyToOne
@NotNull
private Event event;

/[*x
* <p>
* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping <+
establishes this relationship.
* </p>

* <p>
* The <code>@NotNull</code> Bean Validation constraint means that the event must be <+
specified.
* </p>
*/
@ManyToOne
@NotNull
private Venue venue;

/* Boilerplate getters and setters x/

public Long getId() {
return id;

public void setId(Long id) {
this.id = id;

public Event getEvent () {
return event;

public void setEvent (Event event) {
this.event = event;

public Venue getVenue () {
return venue;

public void setVenue (Venue venue) {
this.venue = venue;

/+ toString (), equals() and hashCode () for Show, using the natural identity of the <
object x/
@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Ticket Monster Tutorial 77 /198

Show show = (Show) o;

if (event != null ? !event.equals(show.event) : show.event != null)
return false;

if (venue != null ? !venue.equals(show.venue) : show.venue != null)
return false;

return true;

@Override
public int hashCode () {
int result = event != null ? event.hashCode () : 0;
result = 31 * result + (venue != null ? venue.hashCode () : 0);

return result;

@Override
public String toString () {
return event + " at " + venue;

If you’ve been paying attention, you’ll notice that there is a problem here. We’ve identified that the natural identity of this entity
is formed of two properties - the event and the venue, and we’ve correctly coded the equals () and hashCode () methods (or
had them generated for us!). However, we haven’t told JPA that these two properties, in combination, must be unique. As there
are two properties involved, we can no longer use the @Column annotation (which operates on a single property/table column),
but now must use the class level @Table annotation (which operates on the whole entity/table). Change the class definition to
read:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

@Entity
@Table (uniqueConstraints = @UniqueConstraint (columnNames = { "event_id", "venue_id" }))
public class Show {

You’ll notice that JPA requires us to use the column names, rather than property names here. The column names used in the
@UniqueConstraint annotation are those generated by default for properties called event and venue.

Now, let’s add the set of performances to the event. Unlike previous relationships we’ve seen, the relationship between a show
and it’s performances is bi-directional. We chose to model this as a bi-directional relationship in order to improve the generated
database schema (otherwise you end with complicated mapping tables which makes updates to collections hard). Let’s add the
set of performances:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/[**

* <p>

* The set of performances of this show.
</p>

*

*

<p>
The <code>@OneToMany<code> JPA mapping establishes this relationship. Collection <«
members

*

Ticket Monster Tutorial 78/198

* are fetched eagerly, so that they can be accessed even after the entity has become <>
detached.
* This relationship is bi-directional (a performance knows which show it is part of), <«
and the <code>mappedBy</code>
* attribute establishes this.
* </p>
*
*/
@OneToMany (fetch=EAGER, mappedBy = "show", cascade = ALL)
@OrderBy ("date")
private Set<Performance> performances = new HashSet<Performance> () ;

public Set<Performance> getPerformances () {
return performances;

public void setPerformances (Set<Performance> performances) {
this.performances = performances;

As the relationship is bi-directional, we specify the mappedBy attribute on the @0neToMany annotation, which informs JPA to
create a bi-directional relationship. The value of the attribute is name of property which forms the other side of the relationship -
in this case, not unsuprisingly show!

As Show is the owner of Performance (and without a show, a performance cannot exist), we add the cascade = ALL
attribute to the @OneToMany annotation. As a result, any persistence operation that occurs on a show, will be propagated to it’s
performances. For example, if a show is removed, any associated performances will be removed as well.

When retrieving a show, we will also retrieve its associated performances by adding the fetch = EAGER attribute to the
@OneToMany annotation. This is a design decision which required careful consideration. In general, you should favour the
default lazy initialization of collections: their content should be accessible on demand. However, in this case we intend to
marshal the contents of the collection and pass it across the wire in the JAX-RS layer, after the entity has become detached, and
cannot initialize its members on demand.

We’ll also need to add the set of ticket prices available for this show. Once more, this is a bi-directional relationship, owned by
the show. It looks just like the set of performances.

Here’s the full source for Show:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/ %%
* <p>
* A show is an instance of an event taking place at a particular venue. A show can have <
multiple performances.
* </p>

* <p>

* A show contains a set of performances, and a set of ticket prices for each section of <
the venue for this show.

* </p>

* <p>
* The event and venue form the natural id of this entity, and therefore must be unique. <+
JPA requires us to use the class level
* <code>@Table</code> constraint.
* </p>
*
*/
@Entity

Ticket Monster Tutorial 79/198

@Table (uniqueConstraints = QUniqueConstraint (columnNames = { "event_id", "venue_id" }))
public class Show implements Serializable {

/* Declaration of fields =*/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

/ x %

* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping <>
establishes this relationship.

</p>

*

*

<p>

The <code>@NotNull</code> Bean Validation constraint means that the event must be <«
specified.
* </p>
x/

@ManyToOne

@NotNull

private Event event;

*

/ x %

* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping <>
establishes this relationship.

</p>

*

*

<p>

The <code>@NotNull</code> Bean Validation constraint means that the event must be <«
specified.
* </p>
*/

@ManyToOne

@NotNull

private Venue venue;

*

/[**
* <p>
* The set of performances of this show.
* </p>

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship. TODO Explain <
EAGER fetch.

* This relationship is bi-directional (a performance knows which show it is part of), <«
and the <code>mappedBy</code>

* attribute establishes this. We cascade all persistence operations to the set of <
performances, so, for example if a show

* is removed, then all of it’s performances will also be removed.

* </p>

* <p>

* Normally a collection is loaded from the database in the order of the rows, but here <«
we want to make sure that

* performances are ordered by date - we let the RDBMS do the heavy lifting. The

* <code>@OrderBy<code> annotation instructs JPA to do this.

Ticket Monster Tutorial 80/198

* </p>

*/

@OneToMany (fetch = EAGER, mappedBy = "show", cascade = ALL)
@OrderBy ("date")
private Set<Performance> performances = new HashSet<Performance> () ;

/ x %
* <p>
* The set of ticket prices available for this show.
* </p>

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship.

x Collection members are fetched eagerly, so that they can be accessed even after the
* entity has become detached. This relationship is bi-directional (a ticket price <>

category

* knows which show it is part of), and the <code>mappedBy</code> attribute establishes <
this.

* We cascade all persistence operations to the set of performances, so, for example if <«
a show

* 1s removed, then all of it’s ticket price categories are also removed.

* </p>

*/

@OneToMany (mappedBy = "show", cascade = ALL, fetch = EAGER)

private Set<TicketPriceCategory> priceCategories = new HashSet<TicketPriceCategory> () ;
/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public Event getEvent () {
return event;

public void setEvent (Event event) {
this.event = event;

public Set<Performance> getPerformances() {
return performances;

public void setPerformances (Set<Performance> performances) {
this.performances = performances;

public Venue getVenue () {
return venue;

public void setVenue (Venue venue) {
this.venue = venue;

public Set<TicketPriceCategory> getPriceCategories () {
return priceCategories;

Ticket Monster Tutorial 81/198

public void setPriceCategories (Set<TicketPriceCategory> priceCategories) {
this.priceCategories = priceCategories;

/+ toString (), equals() and hashCode () for Show, using the natural identity of the <
object */
@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Show show = (Show) o;

if (event != null ? !event.equals(show.event) : show.event != null)
return false;

if (venue != null ? !venue.equals (show.venue) : show.venue != null)

return false;

return true;

@Override
public int hashCode () {
int result = event != null ? event.hashCode() : 0;
result = 31 x result + (venue != null ? venue.hashCode() : 0);

return result;

@Override
public String toString () {
return event + " at " + venue;

14.4 Performances

Finally, let’s create the Per formance class, which represents an instance of a Show. Performance is pretty straightforward. It
contains the date and time of the performance, and the show of which it is a performance. Together, the show, and the date and
time, make up the natural identity of the performance. Here’s the source for Performance:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Performance.java

/ %%
* <p>
* A performance represents a single instance of a show.
* </p>
*
* <p>
* The show and date form the natural id of this entity, and therefore must be unique. JPA <+

requires us to use the class level
* <code>@Table</code> constraint.
* </p>
*
*/
@Entity
@Table (uniqueConstraints = @UniqueConstraint (columnNames = { "date", "show_id" }))

Ticket Monster Tutorial 82/198

public class Performance {
/* Declaration of fields x/

/[**
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

* <p>
* The date and start time of the performance.
* </p>

* <p>
* A Java {@link Date} object represents both a date and a time, whilst an RDBMS splits ¢
out Date, Time and Timestamp.
* Therefore we instruct JPA to store this date as a timestamp using the <code> <
@Temporal (TIMESTAMP) </code> annotation.
* </p>

* <p>
* The date and time of the performance is required, and the Bean Validation constraint <
<code>@NotNull</code> enforces this.
* </p>
*/
@Temporal (TIMESTAMP)
@NotNull
private Date date;

/ x %
* <p>
* The show of which this is a performance. The <code>@ManyToOne<code> JPA mapping <
establishes this relationship.
* </p>

* <p>
* The show of which this is a performance is required, and the Bean Validation <>
constraint <code>@NotNull</code> enforces
* this.
* </p>
*/
@ManyToOne
@NotNull
private Show show;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public void setShow (Show show) {
this.show = show;

Ticket Monster Tutorial

83/198

public Show getShow ()
return show;

public Date getDate()
return date;

{

{

public void setDate (Date date) {

this.date = date;

/+ equals () and hashCode () for Performance, using the natural identity of the object =x/

@Override

public boolean equals (Object o) {

if (this == o)
return true;

if (o == null ||
return false;

Performance that

getClass () != o.getClass())

(Performance) o;

if (date != null ? !date.equals(that.date) : that.date != null)
return false;
if (show != null ? !show.equals(that.show) : that.show != null)
return false;
return true;
}
@QOverride
public int hashCode () {
int result = date != null ? date.hashCode () : 0;
result = 31 x result + (show != null ? show.hashCode() : 0);

return result;

Of interest here is the storage of the date and time.

A Java Date represents "a specific instance in time, with millisecond precision" and is the recommended construct for represent-
ing date and time in the JDK. A RDBMS’s DATE type typically has day precision only, and uses the DATETIME or TIMESTAMP
types to represent an instance in time, and often only to second precision.

As the mapping between Java date and time, and database date and time isn’t straightforward, JPA requires us to use the
@Temporal annotation on any property of type Date, and to specify whether the Date should be stored as a date, a time

or a timestamp (date and time).

14.5 Venue

Now, let’s build out the entities to represent the venue.

We start by adding an entity to represent the venue. A venue needs to have a name, a description, a capacity, an address, an
associated media item and a set sections in which people can sit.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Venue.java

/ %%
* <p>

* Represents a single venue

Ticket Monster Tutorial

84/198

* </p>
*
*/
@Entity
public class Venue {

/+ Declaration of fields =*/

/ x %
* The synthetic id of the object.
*/

@Id

@GeneratedValue (strategy = IDENTITY)

private Long id;

/ x %
* <p>
* The name of the event.
* </p>

* <p>

* The name of the event forms it’s natural identity and cannot be shared between <+

events.
* </p>

* <p>

* The name must not be null and must be one or more characters,

x constraint <code>@NotEmpty</code> enforces this.

* </p>

*/
@Column (unique = true)
@NotEmpty
private String name;

/ x %

* The address of the venue
*/

@Embedded

private Address address = new Address();

/ x %
* A description of the venue
*/

private String description;

/[**
* <p>
* A set of sections in the venue
* </p>

* <p>
* The <code>@OneToMany<code> JPA

* Collection members are fetched

which

the Bean Validation

mapping establishes this relationship.
eagerly, so that they can be accessed even after the
* entity has become detached. This relationship is bi-directional (a section knows

P

* venue it is part of), and the <code>mappedBy</code> attribute establishes this. We

* cascade all persistence operations to the set of performances,

venue

* 1s removed, then all of it’s sections will also be removed.

* </p>
*/
@OneToMany (cascade = ALL, fetch =

EAGER, mappedBy

"venue")

so, for example if

a 5

Ticket Monster Tutorial 85/198

private Set<Section> sections = new HashSet<Section> () ;

/ x %
* The capacity of the venue
x/

private int capacity;

/[*
* An optional media item to entice punters to the venue. The <code>@ManyToOne</code> <+
establishes the relationship.
*/
@ManyToOne
private Medialtem medialtem;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public Address getAddress() {
return address;

public void setAddress (Address address) {
this.address = address;

public Medialtem getMediaItem() {
return medialtem;

public void setMedialtem(Medialtem description) {
this.medialtem = description;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

public Set<Section> getSections() {
return sections;

public void setSections (Set<Section> sections) {
this.sections = sections;

Ticket Monster Tutorial 86/198

public int getCapacity () {
return capacity;

public void setCapacity (int capacity) {
this.capacity = capacity;

/* toString (), equals() and hashCode() for Venue, using the natural identity of the <+
object x/

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Venue venue = (Venue) o;

if (address !'= null ? !address.equals (venue.address) : venue.address != null)
return false;

if (name != null ? !name.equals(venue.name) : venue.name != null)

return false;

return true;

@Override
public int hashCode () {
int result = name != null ? name.hashCode () : 0;
result = 31 x result + (address != null ? address.hashCode() : 0);

return result;

@Override
public String toString () {
return name;

In creating this entity, we’ve followed all the design and implementation decisions previously discussed, with one new concept.
Rather than add the properties for street, city, postal code etc. to this object, we’ve extracted them into the Address object, and
included it in the Venue object using composition. This would allow us to reuse the Address object in other places (such as a
customer’s address).

A RDBMS doesn’t have a similar concept to composition, so we need to choose whether to represent the address as a separate
entity, and create a relationship between the venue and the address, or whether to map the properties from Address to the table
for the owning entity, in this case Venue. It doesn’t make much sense for an address to be a full entity - we’re not going to want
to run queries against the address in isolation, nor do we want to be able to delete or update an address in isolation - in essence,
the address doesn’t have a standalone identity outside of the object into which it is composed.

To embed the Address into Venue we add the @Embeddable annotation to the Address class. However, unlike a full
entity, there is no need to add an identifier. Here’s the source for Address:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Address.java

/ %%
* <p>
* A reusable representation of an address.

Ticket Monster Tutorial 87/198

*

</p>

<p>
* Addresses are used in many places in an application, so to observe the DRY principle, we <>
model Address as an embeddable
* entity. An embeddable entity appears as a child in the object model, but no relationship
is established in the RDBMS..
* </p>
*/
@Embeddable
public class Address {

/+ Declaration of fields =/
private String street;
private String city;
private String country;

/+ Declaration of boilerplate getters and setters */

public String getStreet () {
return street;

public void setStreet (String street) {
this.street = street;

public String getCity () {
return city;

public void setCity (String city) {
this.city = city;

public String getCountry () {
return country;

public void setCountry (String country) {
this.country = country;

/+ toString (), equals() and hashCode () for Address, using the natural identity of the <+
object =/

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Address address = (Address) o;

if (city != null ? !city.equals(address.city) : address.city != null)
return false;

if (country != null ? !country.equals (address.country) : address.country != null)
return false;

if (street != null ? !street.equals(address.street) : address.street != null)

return false;

Ticket Monster Tutorial 88/198

return true;

@Override

public int hashCode () {
int result = street != null ? street.hashCode() : 0;
result = 31 % result + (city != null ? city.hashCode() : 0);
result = 31 * result + (country != null ? country.hashCode() : 0);

return result;

@Override
public String toString () {
return street + ", " + city + ", " + country;

14.6 Sections

A venue consists of a number of seating sections. Each seating section has a name, a description, the number of rows in the
section, and the number of seats in a row. It’s natural identifier is the name of section combined with the venue (a venue can’t
have two sections with the same name). Section doesn’t introduce any new concepts, so go ahead and copy the source in, if
you are building the application whilst following this tutorial.

14.7 Booking, Ticket & Seat

There aren’t many new concepts to explore in Booking, Ticket and Seat, so if you are following along with the tutorial,
you should copy in the Booking, Ticket and Seat classes.

Once the user has selected an event, identified the venue, and selected a performance, they have the opportunity to request a
number of seats in a given section, and select the category of tickets required. Once they chosen their seats, and entered their
email address, a Booking is created.

A booking consists of the date the booking was created, an email address (as TicketMonster doesn’t yet have fully fledged
user management), a set of tickets and the associated performance. The set of tickets shows us how to create a uni-directional
one-to-many relationship:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java

/[**
* <p>
* The set of tickets contained within the booking. The <code>@OneToMany<code> JPA <>
mapping establishes this relationship.
* </p>

* <p>

* The set of tickets is eagerly loaded because FIXME . All operations are cascaded to <
each ticket, so for example if a

* booking is removed, then all associated tickets will be removed.

* </p>

* <p>

* This relationship is uni-directional, so we need to inform JPA to create a foreign <>
key mapping. The foreign key mapping

* 1s not visible in the {@link Ticket} entity despite being present in the database.

* </p>

Ticket Monster Tutorial 89/198

*

*/

@OneToMany (fetch = EAGER, cascade = ALL)
@JoinColumn @NotEmpty

@valid

private Set<Ticket> tickets = new HashSet<Ticket>();

We add the @ JoinColumn annotation, which sets up a foreign key in Ticket, but doesn’t expose the booking on Ticket. This
prevents the use of messy mapping tables, whilst preserving the integrity of the entity model.

A ticket embeds the seat allocated, and contains a reference to the category under which it was sold. It also contains the price at
which it was sold.

Ticket Monster Tutorial 90/198

Chapter 15

Connecting to the database

In this example, we are using the in-memory H2 database, which is very easy to set up on JBoss AS. JBoss AS allows you deploy a
datasource inside your application’s WEB—INF directory. You can locate the source in src/main/webapp/WEB-INF/ticket-mor

src¢/main/webapp/WEB-INF/ticket-monster-ds.xml

<datasources xmlns="http://www.jboss.org/ironjacamar/schema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www. jboss.org/ironjacamar/schema http://docs. jboss.org/ ¢
ironjacamar/schema/datasources_1_0.xsd">
<!-- The datasource is bound into JNDI at this location. We reference
this in META-INF/persistence.xml —->
<datasource jndi-name="java:jboss/datasources/TicketMonsterDS"
pool-name="ticket-monster" enabled="true" use-java-context="true">
<connection-url>jdbc:h2:mem:ticket-monster;DB_CLOSE_ON_EXIT=FALSE</connection-url>
<driver>h2</driver>
<security>
<user-name>sa</user-name>
<password>sa</password>
</security>
</datasource>
</datasources>

The datasource configures an H2 in-memory database, called ticket-monster, and registeres a datasource in JNDI at the address:

java: jboss/datasources/TicketMonsterDS

Now we need to configure JPA to use the datasource. Thisisdonein src/main/resources/META-INF/persistence.xml:
src¢/main/resources/persistence.xml

<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.0rg/2001/ «
XMLSchema—-instance"
xsi:schemalocation="
http://Jjava.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="primary">

<!-— If you are running in a production environment, add a managed

data source, this example data source is just for development and testing! —--—>
<!-— The datasource is deployed as WEB-INF/ticket-monster-ds.xml, you

can find it in the source at src/main/webapp/WEB-INF/ticket-monster-ds.xml —->
<jta-data-source>java: jboss/datasources/TicketMonsterDS</jta-data-source>
<properties>

<!-- Properties for Hibernate —-->

<property name="hibernate.hbm2ddl.auto" value="create—-drop" />

Ticket Monster Tutorial 91/198

<property name="hibernate.show_sqgl" value="false" />
</properties>
</persistence-unit>
</persistence>

As our application has only one datasource, and hence one persistence unit, the name given to the persistence unit doesn’t really
matter. We call ours primary, but you can change this as you like. We tell JPA about the datasource bound in JNDI.

Hibernate includes the ability to generate tables from entities, which here we have configured. We don’t recommend using this
outside of development. Updates to databases in production should be done manually.

Ticket Monster Tutorial 92/198

Chapter 16

Populating test data

Whilst we develop our application, it’s useful to be able to populate the database with test data. Luckily, Hibernate makes this

easy. Just add a file called import . sql onto the classpath of your application (we keepitin src/main/resources/import.sql
In it, we just write standard sql statements suitable for the database we are using. To do this, you need to know the generated
column and table names for your entities. The best way to work these out is to look at the h2console.

The h2console is included in the JBoss AS quickstarts, along with instructions on how to use it. For more information, see
http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial 93/198

Chapter 17

Conclusion

You now have a working data model for your TicketMonster application, our next tutorial will show you how to create the
business services layer or something like that - it seems to end abruptly.

Ticket Monster Tutorial 94 /198

Part 111

Building The Business Services With JAX-RS

Ticket Monster Tutorial 95/198

Chapter 18

What Will You Learn Here?

We’ve just defined the domain model of the application and created its persistence layer. Now we need to define the services that
implement the business logic of the application and expose them to the front-end. After reading this, you’ll understand how to
design the business layer and what choices to make while developing it. Topics covered include:

» Encapsulating business logic in services and integrating with the persistence tier
* Using CDI for integrating individual services
* Integration testing using Arquillian

» Exposing RESTful services via JAX-RS

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial 96/198

Chapter 19

Business Services And Their Relationships

TicketMonster’s business logic is implemented by a number of classes, with different responsibilities:

* managing media items
* allocating tickets
* handling information on ticket availability

* remote access through a RESTful interface
The services are consumed by various other layers of the application:

* the media management and ticket allocation services encapsulate complex functionality, which in turn is exposed externally by
RESTful services that wrap them

» RESTHful services are mainly used by the HTMLS view layer

* the ticket availability service is used by the Errai-based view layer

Where to draw the line?

A business service is an encapsulated, reusable logical component that groups together a number of well-defined cohesive
business operations. Business services perform business operations, and may coordinate infrastructure services such as
persistence units, or even other business services as well. The boundaries drawn between them should take into account
whether the newly created services represent , potentially reusable components.

As you can see, some of the services are intended to be consumed within the business layer of the application, while others
provide an external interface as JAX-RS services. We will start by implementing the former, and we’ll finish up with the latter.
During this process, you will discover how CDI, EJB and JAX-RS make it easy to define and wire together our services.

Ticket Monster Tutorial 97/198

Chapter 20

Preparations

The first step for setting up our service architecture is to enable CDI in the deployment by creating a beans . xml file in the
WEB-INF folder of the web application.

src/main/webapp/WEB-INF/beans.xml

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

If you used the Maven archetype
If you used the Maven archetype to create the project, this file will exist already in the project - it is added automatically.

You may wonder why the file is empty! Whilst beans . xm1 can specify various deployment-time configuration (e.g. activation
of interceptors, decorators or alternatives), it can also act as a marker file, telling the container to enable CDI for the deployment
(which it doesn’t do, unless beans . xml is present).

Contexts and Dependency Injection (CDI)

As it's name suggests, CDlI is the contexts and dependency injection standard for Java EE. By enabling CDI in your application,
deployed classes become managed components and their lifecycle and wiring becomes the responsibility of the Java EE server.
In this way, we can reduce coupling between components, which is a requirement o a well-designed architecture. Now, we can
focus on implementing the responsibilities of the components and describing their dependencies in a declarative fashion. The
runtime will do the rest for you: instantiating and wiring them together, as well as disposing of them as needed.

Ticket Monster Tutorial 98/198

Chapter 21

Internal Services

We begin by implementing some helper services.

21.1 The Media Manager

First, lets add support for managing media items, such as images. The persistence layer siimply stores URLSs, referencing media
items stored by online services. The URL look like http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall Toronto.jpg.

Now, we could use the URLSs in our application, and retrieve these media items from the provider. However, we would prefer to
cache these media items in order to improve application performance and increase resilience to external failures - this will allow
us to run the application successfully even if the provider is down. The MediaManager is a good illustration of a business
service; it performs the retrieval and caching of media objects, encapsulating the operation from the rest of the application.

We begin by creating MediaManager:
src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java

[**
* <p>
* The media manager is responsible for taking a media item, and returning either the URL
* 0of the cached version (if the application cannot load the item from the URL), or the
* original URL.
* </p>

* <p>
The media manager also transparently caches the media items on first load.
</p>

<p>
The computed URLs are cached for the duration of a request. This provides a good balance
* between consuming heap space, and computational time.

* </p>
*
*/
public class MediaManager {
/ * %
* Locate the tmp directory for the machine
*/

private static final File tmpDir;

static {
tmpDir = new File (System.getProperty ("java.io.tmpdir"),
"org. jboss. jdf.examples.ticket-monster") ;

http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg

Ticket Monster Tutorial 99/198

if (tmpDir.exists()) {
if (tmpDir.isFile())
throw new IllegalStateException (tmpDir.getAbsolutePath ()

+ " already exists, and is a file. Remove it
")
} else {
tmpDir.mkdir () ;
}
}
/[x
* A request scoped cache of computed URLs of media items.
*/

private final Map<Medialtem, MediaPath> cache;
public MediaManager () {

this.cache = new HashMap<MedialItem, MediaPath>();

/ x %
* Load a cached file by name
*
* (@param fileName
* @return
x/
public File getCachedFile (String fileName) {
return new File (tmpDir, fileName);

/[**
* Obtain the URL of the media item. If the URL h has already been computed in this
* request, it will be looked up in the request scoped cache, otherwise it will be
* computed, and placed in the request scoped cache.
*/
public MediaPath getPath (MediaItem mediaItem) {
if (cache.containsKey (medialtem)) {
return cache.get (medialtem);
} else {
MediaPath mediaPath = createPath (medialtem) ;
cache.put (medialtem, mediaPath);
return mediaPath;

/[**
* Compute the URL to a media item. If the media item is not cacheable, then, as long
* as the resource can be loaded, the original URL is returned. If the resource is <>
not
* available, then a placeholder image replaces it. If the media item is cachable, <
it
* is first cached in the tmp directory, and then path to load it is returned.
*/
private MediaPath createPath (MedialItem medialItem) {
if (!medialtem.getMediaType ().isCacheable()) {

if (checkResourceAvailable (medialtem)) {

return new MediaPath (medialtem.getUrl (), false, medialtem.getMediaType());
} else {

return createCachedMedia (Reflections.getResource ("not_available. jpg").

toExternalForm(), IMAGE);

} else {

Ticket Monster Tutorial 100/ 198

return createCachedMedia (medialtem) ;

/[**

* Check if a media item can be loaded from it’s URL, using the JDK URLConnection <=
classes.

x/

private boolean checkResourceAvailable (MediaItem medialItem) {
URL url = null;
try {
url = new URL (medialtem.getUrl());
} catch (MalformedURLException e) {
}

if (url !'= null) {
try {

URLConnection connection = url.openConnection();

if (connection instanceof HttpURLConnection) {
return ((HttpURLConnection) connection).getResponseCode () =

HttpURLConnection.HTTP_OK;

} else {

return connection.getContentLength () > 0;

Il
T

}
} catch (IOException e) {
}
}

return false;

/[**
* The cached file name is a base64 encoded version of the URL. This means we don’t <
need to maintain a database of cached
x files.
x/
private String getCachedFileName (String url) {
return Baseb64.encodeToString(url.getBytes (), false);

/[**
* Check to see if the file is already cached.
*/
private boolean alreadyCached(String cachedFileName) {
File cache = getCachedFile (cachedFileName) ;
if (cache.exists()) {
if (cache.isDirectory()) {
throw new IllegalStateException (cache.getAbsolutePath() + " already exists, <
and is a directory. Remove it.");
}
return true;
} else {
return false;

/ x %
+ To cache a media item we first load it from the net, then write it to disk.
*/
private MediaPath createCachedMedia (String url, MediaType mediaType) {
String cachedFileName = getCachedFileName (url);
if (!alreadyCached(cachedFileName)) {
URL _url = null;

Ticket Monster Tutorial 101/198

try {
_url = new URL(url);
} catch (MalformedURLException e) {
throw new IllegalStateException ("Error reading URL " + url);

try {
InputStream is = null;
OutputStream os = null;
try {
is = new BufferedInputStream(_url.openStream());
os = new BufferedOutputStream(getCachedOutputStream (cachedFileName)) ;
while (true) {
int data = is.read();
if (data == -1)
break;
os.write (data);
}
} finally {
if (is !'= null)
is.close();
if (os != null)

os.close();

}
} catch (IOException e) {
throw new IllegalStateException ("Error caching " + mediaType.getDescription <«

(), e);

}
return new MediaPath (cachedFileName, true, mediaType);

private MediaPath createCachedMedia (MedialItem medialItem) {
return createCachedMedia (medialtem.getUrl (), medialtem.getMediaType());

private OutputStream getCachedOutputStream(String fileName) ({

try {
return new FileOutputStream(getCachedFile (fileName)) ;

} catch (FileNotFoundException e) {
throw new IllegalStateException("Error creating cached file", e);

The service delegates to a number of internal methods that do the heavy lifting, but exposes a simple API, to the external
observer it simply converts the MediaItem entities into MediaPath data structures, that can be used by the application to
load the binary data of the media item. The service will retrieve and cache the data locally in the filesystem, if possible (e.g.

streamed videos aren’t cachable!).

src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaPath.java

public class MediaPath {

private final String url;
private final boolean cached;
private final MediaType mediaType;

public MediaPath(String url, boolean cached, MediaType mediaType) {

this.url = url;
this.cached = cached;

Ticket Monster Tutorial 102/198

this.mediaType = mediaType;

public String getUrl () {
return url;

public boolean isCached() {
return cached;

public MediaType getMediaType () {
return mediaType;

The service can be injected by type into the components that depend on it. However, in order to make it available to JSF vuews,
we add a @Named annotation, which means the bean can be referenced as mediaManager as well.

We should also control the lifecycle of this service. The MediaManager stores request-specific state, so should be scoped to
the web request, the CDI @Request Scoped is perfect.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java
@Named

@RequestScoped

public class MediaManager {

21.2 The Seat Allocation Service

The seat allocation service finds free seats at booking time, in a given section of the venue. It is a good example of how a service
can coordinate infrastructure services (using the injected persistence unit to get access to the ServiceAllocation instance)
and domain objects (by invoking the allocateSeats method on a concrete allocation instance).

Isolating this functionality in a service class makes it possible to write simpler, self-explanatory code in the layers above and
opens the possibility of replacing this code at a later date with a more advanced implementation (for example one using an
in-memory cache).

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

@SuppressWarnings ("serial")
public class SeatAllocationService implements Serializable {

@Inject
EntityManager entityManager;

public AllocatedSeats allocateSeats(Section section, Performance performance, int <&
seatCount, boolean contiguous) {

SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively (section, <4
performance) ;
List<Seat> seats = sectionAllocation.allocateSeats (seatCount, contiguous);

return new AllocatedSeats (sectionAllocation, seats);

public void deallocateSeats (Section section, Performance performance, List<Seat> seats) ¢«

{

Ticket Monster Tutorial 103/198

SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively (section, <4
performance) ;
for (Seat seat : seats) {
if (!seat.getSection() .equals(section)) {
throw new SeatAllocationException("All seats must be in the same section!") <

}

sectionAllocation.deallocate (seat);

private SectionAllocation retrieveSectionAllocationExclusively (Section section, <
Performance performance) {
SectionAllocation sectionAllocationStatus = (SectionAllocation) entityManager. <
createQuery (

Ticket Monster Tutorial 104 /198

entityManager.lock (sectionAllocationStatus, LockModeType.PESSIMISTIC_WRITE) ;
return sectionAllocationStatus;

Next, we define the AllocatedSeats class that we use for storing seat reservations for a booking, before they are made
persistent.

src/main/java/org/jboss/jdf/example/ticketmonster/service/AllocatedSeats.java

public class AllocatedSeats {
private final SectionAllocation sectionAllocation;
private final List<Seat> seats;
public AllocatedSeats (SectionAllocation sectionAllocation, List<Seat> seats) {

this.sectionAllocation = sectionAllocation;
this.seats = seats;

public SectionAllocation getSectionAllocation() {
return sectionAllocation;

public List<Seat> getSeats () {
return seats;

Ticket Monster Tutorial 105/198

public void markOccupied () {
sectionAllocation.markOccupied (seats) ;

21.3 Booking Monitor Service

The last service that we create provides data about the current shows and their ticket availability status. It is accessed remotely by
Errai through a dedicated RPC mechanism, which requires us to define and implement a service interface. We begin by adding
the interface first, using the @Remote annotation from Errai to indicate its purpose.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/BookingMonitorService.java

/ %%
* A service used by the booking monitor for retrieving status information.

*
* Errai’s @Remote annotation indicates that the Service implementation can
* be used as an RPC endpoint and that this interface can be used on the
* client for type safe method invocation on this endpoint.
*/
@Remote
public interface BookingMonitorService {

/ x %
* Lists all active {@link Show}s (shows with future performances) .
*
* @return list of shows found.
x/
public List<Show> retrieveShows();

/[**
* Constructs a map of performance IDs to the total number of sold tickets.

*
* @return map of performance IDs to the total number of sold tickets.
*/

public Map<Long, Long> retrieveOccupiedCounts();

After doing so, we create the service implementation, using the @Service annotation to indicate that it should be exposed
externally by Errai.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/BookingMonitorServiceImpl.java

/ %%
* Implementation of {@link BookingMonitorService}.
*
* Errai’s @Service annotation exposes this service as an RPC endpoint.
*/
@ApplicationScoped
@Service
@SuppressWarnings ("unchecked")
public class BookingMonitorServiceImpl implements BookingMonitorService {

@Inject
private EntityManager entityManager;

@Override
public List<Show> retrieveShows () {

Ticket Monster Tutorial 106/ 198

Query showQuery = entityManager.createQuery (
"select DISTINCT s from Show s JOIN s.performances p " +
"WHERE p.date > current_timestamp");

return showQuery.getResultList ();

@Override
public Map<Long, Long> retrieveOccupiedCounts () {
Map <Long, Long> occupiedCounts = new HashMap<Long, Long>();

Query occupiedCountsQuery = entityManager.createQuery (
"select s.performance.id, SUM(s.occupiedCount) from <=
SectionAllocation s " +
"where s.performance.date > current_timestamp GROUP BY s. <
performance.id");

List<Object[]> results = occupiedCountsQuery.getResultList ();

for (Object[] result : results) {
occupiedCounts.put ((Long) result[0], (Long) result[l]);

return occupiedCounts;

Implement an interface or not?

You will find yourself very often facing a dilemma: add an interface for a service or not? As you have seen so far and will
continue to see next, most of the services in TicketMonster do not implement interfaces, except wherever it is a requirement
of the framework in use (e.g. Errai in this case). In Java EE 6 the requirements for business services to implement interfaces
have been relaxed significantly, therefore unless there are valid reasons for creating an abstraction (such as multiple possible
implementations), we skipped adding interfaces to our services.

Ticket Monster Tutorial 107 /198

Chapter 22

JAX-RS Services

The majority of services in the application are JAX-RS web services. They are critical part of the design, as they next service
is used for provide communication with the HTMLS5 view layer. The JAX-RS services range from simple CRUD to processing
bookings and media items.

To pass data across the wire we use JSON as the data marshalling format, as it is less verbose and easier to process than XML by
the JavaScript client-side framework.

22.1 Initializing JAX-RS

To activate JAX-RS we add the class below, which instructs the container to look for JAX-RS annotated classes and install them
as endpoints.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/JaxRsActivator.java

@ApplicationPath ("/rest")

public class JaxRsActivator extends Application {
/* class body intentionally left blank =/

}

All the JAX-RS services are mapped relative to the /rest path, as defined by the @ApplicationPath annotation.

22.2 A Base Service For Read Operations

Most of the JAX-RS service must provide both a (filtered) list of entities or individual entity (e.g. events, venues and bookings).
Instead of duplicating the implementation into each individual service we create a base service class and wire the helper objects
in.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

/ %%

* <p>

* A number of RESTful services implement GET operations on a particular type of entity. <«
For

* observing the DRY principle, the generic operations are implemented in the <code> <«
BaseEntityService</code>

* class, and the other services can inherit from here.

* </p>

*

* <p>

* Subclasses will declare a base path using the JAX-RS {@link Path} annotation, for <«

example:

Ticket Monster Tutorial 108/ 198

*

</p>

<pre>

<code>

@Path ("/widgets")

public class WidgetService extends BaseEntityService<Widget> {

* % of

*

}

*

x </code>

* </pre>

*

* <p>

* will support the following methods:

* </p>

*

* <pre>

* <code>

* GET /widgets

* GET /widgets/:id

* GET /widgets/count

x </code>

x </pre>

*

* <p>

* Subclasses may specify various criteria for filtering entities when retrieving a ¢
list of them, by supporting

* custom query parameters. Pagination is supported by default through the query <>
parameters <code>first</code>

* and <code>maxResults</code>.

* </p>

*

* <p>

* The class is abstract because it is not intended to be used directly, but subclassed <«
by actual JAX-RS

* endpoints.

* </p>

*

*/

public abstract class BaseEntityService<T> {

@Inject
private EntityManager entityManager;

private Class<T> entityClass;
public BaseEntityService () {}
public BaseEntityService (Class<T> entityClass) {

this.entityClass = entityClass;

public EntityManager getEntityManager () {
return entityManager;

Now we add a method to retrieve all entities of a given type:
src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> ({

Ticket Monster Tutorial 109/198

/ x %
* <p>
* A method for retrieving all entities of a given type. Supports the query <+

parameters

<code>first</code>

and <code>maxResults</code> for pagination.
</p>

*

3+

*

* (@param uriInfo application and request context information (see {@see UrilInfo} <>
class
* information for more details)
* (@return
*/
QGET
@Produces (MediaType .APPLICATION_JSON)
public List<T> getAll (@Context UriInfo urilnfo) {
return getAll (uriInfo.getQueryParameters());

public List<T> getAll (MultivaluedMap<String, String> queryParameters) {
final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder () ;
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
Root<T> root = criteriaQuery.from(entityClass);
Predicate[] predicates = extractPredicates (queryParameters, criteriaBuilder, root);
criteriaQuery.select (criteriaQuery.getSelection()) .where (predicates);
criteriaQuery.orderBy (criteriaBuilder.asc(root.get ("id")));
TypedQuery<T> query = entityManager.createQuery (criteriaQuery);
if (queryParameters.containsKey ("first")) {
Integer firstRecord = Integer.parselnt (queryParameters.getFirst ("first")) <«
-1;
query.setFirstResult (firstRecord) ;
}
if (queryParameters.containsKey ("maxResults")) ({
Integer maxResults = Integer.parselnt (queryParameters.getFirst ("maxResults" <«
))i
query.setMaxResults (maxResults) ;

return query.getResultList ();

/ x %
* <p>
* Subclasses may choose to expand the set of supported query parameters (for <
adding more filtering
* criteria) by overriding this method.
* </p>
* @param queryParameters — the HTTP query parameters received by the endpoint
* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker
* @return a list of {@link Predicate}s that will added as query parameters
*/
protected Predicate[] extractPredicates (MultivaluedMap<String, String> queryParameters,
CriteriaBuilder criteriaBuilder, Root<T> root) <
{

return new Predicate[]{};

Ticket Monster Tutorial 110/198

The newly added method ‘getAll” is annotated with @GET which instructs JAX-RS to call it when a GET HTTP requests on
the JAX-RS’ endpoint base URL /rest/<entityRoot> is performed. But remember, this is not a true JAX-RS endpoint. It is an
abstract class and it is not mapped to a path. The classes that extend it are JAX-RS endpoints, and will have to be mapped to a
path, and are able to process requests.

The @Produces annotation defines that the response sent back by the server is in JSON format. The JAX-RS implementation
will automatically convert the result returned by the method (a list of entities) into JSON format.

As well as configuring the marshaling strategy, the annotation affects content negotiation and method resolution. If the client
requests JSON content specifically, this method will be invoked.

Note
Even though it is not shown in this example, you may have multiple methods that handle a specific URL and HTTP method,
whilst consuming and producing different types of content (JSON, HTML, XML or others).

Subclasses can also override the ext ractPredicates method and add own support for additional query parameters to GET
/rest/<entityRoot> which can act as filter criteria.

The getA11 method supports retrieving a range of entities, which is especially useful when we need to handle very large sets
of data, and use pagination. In those cases, we need to support counting entities as well, so we add a method that retrieves the
entity count:

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> ({

/ * %
* <p>
* A method for counting all entities of a given type
* </p>

* @param uriInfo application and request context information (see {@see UriInfo} class ¢
information for more details)

* @return

*/
QGET

@Path ("/count")

@Produces (MediaType .APPLICATION_JSON)
public Map<String, Long> getCount (@Context UriInfo urilInfo) {

CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder () ;

CriteriaQuery<Long> criteriaQuery = criteriaBuilder.createQuery (Long.class);
Root<T> root = criteriaQuery.from(entityClass);

criteriaQuery.select (criteriaBuilder.count (root));

Predicate[] predicates = extractPredicates (uriInfo.getQueryParameters(), <

criteriaBuilder, root);
criteriaQuery.where (predicates);
Map<String, Long> result = new HashMap<String, Long>();
result.put ("count", entityManager.createQuery(criteriaQuery) .getSingleResult());
return result;

We use the @Path annotation to map the new method to a sub-path of /rest/<entityRoot>. Now all the JAX-RS endpoints
that subclass BaseEntityService will be able to get entity counts from ’/rest/<entityRoot>/count. Just like getAl1, this
method also delegates to extractPredicates, so any customizations done there by subclasses

Next, we add a method for retrieving individual entities.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

Ticket Monster Tutorial 111/198

public abstract class BaseEntityService<T> ({

/ x %
* <p>
* A method for retrieving individual entity instances.
* </p>
* @param id entity id
* @return
*/
QGET
@Path ("/{id:[0-9] [0-9]x}")
@Produces (MediaType .APPLICATION_JSON)
public T getSingleInstance (@PathParam("id") Long id) {
final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery (entityClass);

Root<T> root = criteriaQuery.from(entityClass);
Predicate condition = criteriaBuilder.equal (root.get ("id"), id);
criteriaQuery.select (criteriaBuilder.createQuery (entityClass) .getSelection()) .where <+

(condition) ;
return entityManager.createQuery (criteriaQuery) .getSingleResult () ;

This method is similar to get A11 and get Count, and we use the @Path annotation to map it to a sub-path of /rest/<entityRoot>.
The annotation attribute identifies the expected format of the URL (here, the last segment has to be a number) and binds a por-
tion of the URL to a variable (here named id). The @PathParam annotation allows the value of the variable to be passed as
amethod argument. Data conversion is performed automatically.

Now, all the JAX-RS endpoints that subclass BaseEntityService will get two operations for free:

GET /rest/<entityRoot>
retrieves all entities of a given type

GET /rest/<entityRoot>/<id>
retrieves an entity with a given id

22.3 Retrieving Venues

Adding support for retrieving venues is now extremely simple. All we do is extend the base class, passing the entity type to the
superclass constructor.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/VenueService.java

/ %%
* <p>
* A JAX-RS endpoint for handling {@link Venue}s. Inherits the actual
* methods from {@link BaseEntityService}.
* </p>
x/
@Path ("/venues")
/ x*
* <p>
* This is a stateless service, so a single shared instance can be used in this case.
* </p>
x/
@Stateless

Ticket Monster Tutorial 112/198

public class VenueService extends BaseEntityService<Venue> {

public VenueService () {
super (Venue.class) ;

We add the @Path annotation to the class, to indicate that this is a JAX-RS resource which can serve URLs starting with
/rest/venues.

We define this service (along with all the other JAX-RS services) as an EJB (see how simple is that in Java EE 6!) to benefit from
automatic transaction enrollment.

Now, we can retrieve venues from URLs like /rest /venues or rest /venues/1.

22.4 Retrieving Events

Just like VenueService, EventService is a direct subclass of BaseEntityService with the added twist that it sup-
ports querying events by category. We can use URLs like /rest /events?category=1 to retrieve all concerts, for example
(1 is the category id of concerts).

This is done by overriding the extractPredicates method to handle any query parameters (in this case, the category
parameter).

src/main/java/org/jboss/jdf/example/ticketmonster/rest/EventService.java

/ x %
* <p>
* A JAX-RS endpoint for handling {@link Event}s. Inherits the actual
* methods from {@link BaseEntityService}, but implements additional search
* criteria.
* </p>
x/
@Path ("/events")
/ %%
* <p>
* This is a stateless service, we declare it as an EJB for transaction demarcation
* </p>
x/
@Stateless
public class EventService extends BaseEntityService<Event> {

public EventService () {
super (Event.class) ;

/[**
* <p>
* We override the method from parent in order to add support for additional search
* criteria for events.
* </p>
* (@param queryParameters - the HTTP query parameters received by the endpoint
* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker
* @return
x/
@Override
protected Predicate[] extractPredicates (
MultivaluedMap<String, String> queryParameters,
CriteriaBuilder criteriaBuilder,

Ticket Monster Tutorial 113/198

Root<Event> root) {
List<Predicate> predicates = new ArrayList<Predicate> () ;

if (queryParameters.containsKey ("category")) {
String category = queryParameters.getFirst ("category");
predicates.add(criteriaBuilder.equal (root.get ("category") .get ("id"), category)) <

’

return predicates.toArray (new Predicate[]{});

The ShowService and BookingService follow the same pattern and we leave the implementation as an exercise to the
reader (knowing that its contents can always be copied over to the appropriate folder).

Of course, we also want to change data with our services - we want to create and delete bookings as well!

22.5 Creating and deleting bookings

To create a booking, we add a new method, which handles POST requests to /rest /bookings. This is not a simple CRUD
method, as the client does not send a booking, but a booking request. It is the responsibility of the service to process the request,
reserve the seats and return the full booking details to the invoker.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

/ %%
* <p>
* A JAX-RS endpoint for handling {@link Booking}s. Inherits the GET
* methods from {@link BaseEntityService}, and implements additional REST methods.
* </p>
x/
@Path ("/bookings™")
/ x*
* <p>
* This is a stateless service, we declare it as an EJB for transaction demarcation
* </p>
x/
@Stateless
public class BookingService extends BaseEntityService<Booking> {

@Inject
SeatAllocationService seatAllocationService;

@Inject @Created
private Event<Booking> newBookingEvent;

public BookingService () {
super (Booking.class) ;

* <p>

* Create a booking. Data is contained in the bookingRequest object
* </p>

* @param bookingRequest

* @return

*/

@SuppressWarnings ("unchecked")

@POST

Ticket Monster Tutorial 114 /198

/ x %
* <p> Data is received in JSON format. For easy handling, it will be unmarshalled in <
the support
* {@link BookingRequest} class.
*/
@Consumes (MediaType.APPLICATION_JSON)
public Response createBooking (BookingRequest bookingRequest) {
try {
// identify the ticket price categories in this request
Set<Long> priceCategoryIds = bookingRequest.getUniquePriceCategorylds () ;

// load the entities that make up this booking’s relationships
Performance performance = getEntityManager () .find(Performance.class, <>
bookingRequest.getPerformance());

// As we can have a mix of ticket types in a booking, we need to load all of <+
them that are relevant,

// id

Map<Long, TicketPrice> ticketPricesById = loadTicketPrices (priceCategoryIds);

// Now, start to create the booking from the posted data
// Set the simple stuff first!

Booking booking = new Booking();

booking.setContactEmail (bookingRequest.getEmail ());
booking.setPerformance (performance) ;
booking.setCancellationCode ("abc") ;

// Now, we iterate over each ticket that was requested, and organize them by <+
section and category
// we want to allocate ticket requests that belong to the same section <
contiguously
Map<Section, Map<TicketCategory, TicketRequest>> ticketRequestsPerSection
= new TreeMap<Section, java.util.Map<TicketCategory, TicketRequest>>(<
SectionComparator.instance()) ;
for (TicketRequest ticketRequest : bookingRequest.getTicketRequests()) {
final TicketPrice ticketPrice = ticketPricesByIld.get (ticketRequest.
getTicketPrice());
if (!ticketRequestsPerSection.containsKey (ticketPrice.getSection())) {
ticketRequestsPerSection
.put (ticketPrice.getSection (), new HashMap<TicketCategory, <
TicketRequest>());
}
ticketRequestsPerSection.get (ticketPrice.getSection()) .put (
ticketPricesById.get (ticketRequest.getTicketPrice()). «
getTicketCategory (), ticketRequest);

// Now, we can allocate the tickets
// Iterate over the sections, finding the candidate seats for allocation
// The process will acquire a write lock for a given section and performance
// Use deterministic ordering of sections to prevent deadlocks
Map<Section, AllocatedSeats> seatsPerSection =
new TreeMap<Section, org.jboss.jdf.example.ticketmonster. ¢
service.AllocatedSeats> (SectionComparator.instance()) ;
List<Section> failedSections = new ArraylList<Section>();
for (Section section : ticketRequestsPerSection.keySet ()) {
int totalTicketsRequestedPerSection = 0;
// Compute the total number of tickets required (a ticket category doesn’t <
impact the actual seat!)
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = <+
ticketRequestsPerSection.get (section);
// calculate the total quantity of tickets to be allocated in this section

Ticket Monster Tutorial 115/198

for (TicketRequest ticketRequest : ticketRequestsByCategories.values()) {
totalTicketsRequestedPerSection += ticketRequest.getQuantity();

}
// try to allocate seats

AllocatedSeats allocatedSeats =
seatAllocationService.allocateSeats (section, +—
performance, totalTicketsRequestedPerSection, true <«

)i

if (allocatedSeats.getSeats().size() == totalTicketsRequestedPerSection) {
seatsPerSection.put (section, allocatedSeats);
} else {

failedSections.add (section);

}
if (failedSections.isEmpty()) {
for (Section section : seatsPerSection.keySet ()) {
// allocation was successful, begin generating tickets
// associate each allocated seat with a ticket, assigning a price <
category to it
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = <>
ticketRequestsPerSection.get (section);
AllocatedSeats allocatedSeats = seatsPerSection.get (section);
allocatedSeats.markOccupied() ;
int seatCounter = 0;
// Now, add a ticket for each requested ticket to the booking
for (TicketCategory ticketCategory : ticketRequestsByCategories.keySet <
0) |
final TicketRequest ticketRequest = ticketRequestsByCategories.get (¢+
ticketCategory);
final TicketPrice ticketPrice = ticketPricesById.get (ticketRequest. ¢«
getTicketPrice());
for (int i1 = 0; i < ticketRequest.getQuantity(); i++) {
Ticket ticket =
new Ticket (allocatedSeats. <«
getSeats () .get (seatCounter <
+ 1), ticketCategory, <+
ticketPrice.getPrice());
// getEntityManager () .persist (ticket);
booking.getTickets () .add(ticket) ;

}
seatCounter += ticketRequest.getQuantity();

}

// Persist the booking, including cascaded relationships

booking.setPerformance (performance) ;

booking.setCancellationCode ("abc") ;

getEntityManager () .persist (booking) ;

newBookingEvent.fire (booking) ;

return Response.ok () .entity (booking) .type (MediaType.APPLICATION_JSON_TYPE). ¢
build();

} else {
Map<String, Object> responseEntity = new HashMap<String, Object>();
responseEntity.put ("errors", Collections.singletonList ("Cannot allocate the <

requested number of seats!"));
return Response.status (Response.Status.BAD_REQUEST) .entity (responseEntity). ¢
build();

}
} catch (ConstraintViolationException e) {
// If validation of the data failed using Bean Validation, then send an error
Map<String, Object> errors = new HashMap<String, Object>();
List<String> errorMessages new ArrayList<String>();

Ticket Monster Tutorial 116/198

for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) —
{
errorMessages.add (constraintViolation.getMessage()) ;

}

errors.put ("errors", errorMessages);

// A WebApplicationException can wrap a response

// Throwing the exception causes an automatic rollback

throw new WebApplicationException (Response.status (Response.Status.BAD_REQUEST) . <
entity (errors) .build());

} catch (Exception e) {

// Finally, handle unexpected exceptions

Map<String, Object> errors = new HashMap<String, Object>();

errors.put ("errors", Collections.singletonlList (e.getMessage()));

// A WebApplicationException can wrap a response

// Throwing the exception causes an automatic rollback

throw new WebApplicationException (Response.status (Response.Status.BAD_REQUEST). <>
entity (errors) .build());

/ x %
* Utility method for loading ticket prices
* @param priceCategoryIds
* @return
*/
private Map<Long, TicketPrice> loadTicketPrices (Set<Long> priceCategoryIds) {
List<TicketPrice> ticketPrices = (List<TicketPrice>) getEntityManager ()
.createQuery ("select p from TicketPrice p where p.id in :ids")
.setParameter ("ids", priceCategorylds) .getResultList ();
// Now, map them by id
Map<Long, TicketPrice> ticketPricesById = new HashMap<Long, TicketPrice>();
for (TicketPrice ticketPrice : ticketPrices) {
ticketPricesById.put (ticketPrice.getId(), ticketPrice);
}

return ticketPricesById;

We won’t get into the details of the inner workings of the method - it implements a fairly complex algorithm - but we’d like to
draw attention to a few particular items.

We use the @POST annotation to indicate that this method is executed on inbound HTTP POST requests. When implementing a
set of RESTful services, it is important that the semantic of HTTP methods are observed in the mappings. Creating new resources
(e.g. bookings) is typically associated with HTTP POST invocations. The @Consumes annotation indicates that the type of the
request content is JSON and identifies the correct unmarshalling strategy, as well as content negotiation.

The BookingService delegates to the SeatAllocationService to find seats in the requested section, the required
SeatAllocationService instance is initialized and supplied by the container as needed. The only thing that our service
does is to specify the dependency in form of an injection point - the field annotated with @Inject.

We would like other parts of the application to be aware of the fact that a new booking has been created, therefore we use the
CDI to fire an event. We do so by injecting an Event <Booking> instance into the service (indicating that its payload will be a
booking). In order to individually identify this event as referring to event creation, we use a CDI qualifier, which we need to add:

src¢/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Created.java

[* %
% {@link Qualifier} to mark a Booking as new (created).
*/
@Qualifier
@Target ({ElementType.FIELD,ElementType.PARAMETER, Element Type .METHOD, ElementType.TYPE})
@Retention (RetentionPolicy.RUNTIME)
public Qinterface Created ({

Ticket Monster Tutorial 117 /198

What are qualifiers?

CDI uses a type-based resolution mechanism for injection and observers. In order to distinguish between implementations
of an interface, you can use qualifiers, a type of annotations, to disambiguate. Injection points and event observers can use
qualifiers to narrow down the set of candidates

We also need allow the removal of bookings, so we add a method:
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

@Singleton
public class BookingService extends BaseEntityService<Booking> {

@Inject @Cancelled
private Event<Booking> cancelledBookingEvent;

* <p>
* Delete a booking by id
* </p>
* @param id
* @return
*/
@DELETE
@Path ("/{id:[0-9][0-9]x}")
public Response deleteBooking (@PathParam("id") Long id) {
Booking booking = getEntityManager () .find(Booking.class, id);
if (booking == null) {
return Response.status (Response.Status.NOT_FOUND) .build() ;
}
getEntityManager () . remove (booking) ;
cancelledBookingEvent.fire (booking);
return Response.ok () .build();

We use the @DELETE annotation to indicate that it will be executed as the result of an HTTP DELETE request (again, the use of
the DELETE HTTP verb is a matter of convention).

We need to notify the other components of the cancellation of the booking, so we fire an event, with a different qualifier.

src¢/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Cancelled.java

/ **
* {@link Qualifier} to mark a Booking as cancelled.
x/
@Qualifier
@Target ({ElementType.FIELD,ElementType.PARAMETER, Element Type .METHOD, ElementType.TYPE})
@Retention (RetentionPolicy.RUNTIME)
public @interface Cancelled {

The other services, including the MediaService that handles media items follow roughly the same patterns as above, so we
leave them as an exercise to the reader.

Ticket Monster Tutorial 118/198

Chapter 23

Testing the services

We’ve now finished implementing the services and there is a significant amount of functionality in the application. Before taking
any step forward, you need to make sure the services work correctly: we need to test them.

Testing enterprise services be a complex task as the implementation is based on services provided by a container: dependency
injection, access to infrastructure services such as persistence, transactions etc.. Unit testing frameworks, whilst offering a
valuable infrastructure for running tests, do not provide these capabilities.

One of the traditional approaches has been the use of mocking frameworks to simulate what will happen in the runtime environ-
ment. While certainly providing a solution mocking brings its own set of problems (e.g. the additional effort required to provide
a proper simulation or the risk of introducing errors in the test suite by incorrectly implemented mocks.

Fortunately, Arquillian provides the means to testing your application code within the container, with access to all the services
and container features. In this section we will show you how to create a few Arquillian tests for your business services.

What to test?

A common asked question is: how much application functionality should we test? The truth is, you can never test too much. That
being said, resources are always limited and tradeoffs are part of an engineer’s work. Generally speaking, trivial functionality
(setters/getters/toString methods) is a big concern compared to the actual business code, so you probably want to focus your
efforts on the business code. Testing should include individual parts (unit testing), as well as aggregates (integration testing).

23.1 A Basic Deployment Class

In order to create Arquillian tests, we need to define the deployment. The code under test, as well as its dependencies is packaged
and deployed in the container.

Much of the deployment contents is common for all tests, so we create a helper class with a method that creates the base
deployment with all the general content.

src/test/java/org/jboss/jdf/ticketmonster/test/TicketMonsterDeployment.java

public class TicketMonsterDeployment ({

public static WebArchive deployment () {
return ShrinkWrap

.create (WebArchive.class, "test.war")
.addPackage (Resources.class.getPackage())
.addAsResource ("META-INF/test-persistence.xml", "META-INF/persistence.xml")
.addAsResource ("import.sqgl")
.addAsWebInfResource (EmptyAsset .INSTANCE, "beans.xml")
// Deploy our test datasource
.addAsWebInfResource ("test-ds.xml") ;

Ticket Monster Tutorial 119/198

Arquillian uses Shrinkwrap to define the contents of the deployment.

23.2 Writing RESTful service tests

For testing our JAX-RS RESTful services, we need to add the corresponding application classes to the deployment. Since we
need to do that for each test we create, we abide by the DRY principles and create a utility class.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/ RESTDeployment.java

public class RESTDeployment {

public static WebArchive deployment () {
return TicketMonsterDeployment .deployment ()

.addPackage (Booking.class.getPackage ())
.addPackage (BaseEntityService.class.getPackage ())
.addPackage (MockMultivaluedMap.class.getPackage ())
.addClass (SeatAllocationService.class)
.addClass (MediaPath.class)
.addClass (MediaManager.class) ;

Now, we create the first test to validate the proper retrieval of individual events.
src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

QRunWith (Arquillian.class)
public class VenueServiceTest {

@Deployment
public static WebArchive deployment () {
return RESTDeployment.deployment () ;

@Inject
private VenueService venueService;

@Test
public void testGetVenueById() {

// Test loading a single venue

Venue venue = venueService.getSingleInstance (11l);
assertNotNull (venue) ;

assertEquals ("Roy Thomson Hall", venue.getName());

In the class above we specify the deployment, and we define the test method. The test supports CDI injection - one of the
strengths of Arquillian is the ability to inject the object being tested.

Now, we test a more complicated use cases, query parameters for pagination.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

QRunWith (Arquillian.class)

Ticket Monster Tutorial

120/198

public class VenueServiceTest {

@Test
public void testPagination() {

// Test pagination logic

MultivaluedMap<String, String> queryParameters =

String>();

queryParameters.add ("first", "2");
queryParameters.add ("maxResults", "1");

new MockMultivaluedMap<String,

List<Venue> venues = venueService.getAll (queryParameters);

assertNotNull (venues) ;
assertEquals (1, venues.size());

assertEquals ("BMO Field", venues.get (0).getName());

P

We add another test method (testPagination), which tests the retrieval of all venues, passing the search criteria as parame-

ters. We use a Map to simulate the passing of query parameters.

Now, we test more advanced use cases such as the creation of a new booking. We do so by adding a new test for bookings

src/test/java/org/jboss/jdf/ticketmonster/test/rest/BookingServiceTest.java

QRunWith (Arquillian.class)
public class BookingServiceTest {

@Deployment
public static WebArchive deployment () {
return RESTDeployment.deployment () ;

@Inject
private BookingService bookingService;

@Inject
private ShowService showService;

@Test

@InSequence (1)

public void testCreateBookings () {
BookingRequest br = createBookingRequest (11,
bookingService.createBooking (br) ;

BookingRequest br2 = createBookingRequest (21,
bookingService.createBooking (br2);

BookingRequest br3 = createBookingRequest (31,
bookingService.createBooking (br3);

@Test

@InSequence (10)

public void testGetBookings () {
checkBookingl () ;
checkBooking2 () ;
checkBooking3 () ;

Ticket Monster Tutorial 121/198
private void checkBookingl () {
Booking booking = bookingService.getSingleInstance (1l1l);
assertNotNull (booking) ;
assertEquals ("Roy Thomson Hall", booking.getPerformance () .getShow().getVenue (). <«
getName ()) ;
assertEquals ("Rock concert of the decade", booking.getPerformance ().getShow().
getEvent () .getName ()) ;
assertEquals ("bob@acme.com", booking.getContactEmail());
// Test the ticket requests created
assertEquals (3 + 2 + 1, booking.getTickets () .size());
List<String> requiredTickets = new ArrayList<String>();
requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add ("D @ 149.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
checkTickets (requiredTickets, booking);
}
private void checkBooking2 () {
Booking booking = bookingService.getSingleInstance (21);
assertNotNull (booking) ;
assertEquals ("Sydney Opera House", booking.getPerformance () .getShow () .getVenue ().
getName ()) ;
assertEquals ("Rock concert of the decade", booking.getPerformance ().getShow().
getEvent () .getName ()) ;
assertEquals ("bob@acme.com", booking.getContactEmail());
assertEquals(3 + 2 + 1, booking.getTickets () .size());
List<String> requiredTickets = new ArrayList<String>();
requiredTickets.add ("S2 @ 197.75 (Adult)");
requiredTickets.add ("S6 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S6 @ 145.0 (Child 0-1l4yrs)");
requiredTickets.add ("S4 @ 145.0 (Child 0-14yrs)");
requiredTickets.add ("S6 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S4 @ 145.0 (Child 0-1l4yrs)");
checkTickets (requiredTickets, booking);
}
private void checkBooking3 () {
Booking booking = bookingService.getSingleInstance (31);
assertNotNull (booking) ;
assertEquals ("Roy Thomson Hall", booking.getPerformance () .getShow().getVenue(). <
getName ()) ;
assertEquals ("Shane’s Sock Puppets", booking.getPerformance () .getShow() .getEvent ().

getName ()) ;

assertEquals ("bob@acme.com", b

assertEquals (2 + 1, booking.ge

List<String> requiredTickets
requiredTickets.add ("B @ 199.
requiredTickets.add ("D @ 149.
requiredTickets.add ("B @ 199.

(G ENC BN,

ooking.getContactEmail ());
tTickets () .size());

new ArrayList<String>();

(Adult)");
(Adult)");
(Adult)");

Ticket Monster Tutorial 122 /198

checkTickets (requiredTickets, booking);

@Test
@InSequence (10)
public void testPagination() {

// Test pagination logic
MultivaluedMap<String, String> queryParameters = new MockMultivaluedMap<String, <+
String>();

queryParameters.add ("first", "2");
queryParameters.add ("maxResults", "1");

List<Booking> bookings = bookingService.getAll (queryParameters);

assertNotNull (bookings) ;

assertEquals (1, bookings.size());

assertEquals ("Roy Thomson Hall", bookings.get (0).getPerformance () .getShow (). ¢

getVenue () .getName ()) ;
assertEquals ("Shane’s Sock Puppets", bookings.get (0).getPerformance () .getShow(). <«
getEvent () .getName ()) ;

@Test

@InSequence (20)

public void testDelete() {
bookingService.deleteBooking (21);
checkBookingl () ;
checkBooking3 () ;
try {

bookingService.getSingleInstance (21);

} catch (Exception e) {

if (e.getCause () instanceof NoResultException) {
return;
}
}
fail ("Expected NoResultException did not occur.");
}
private BookingRequest createBookingRequest (Long showId, int performanceNo, int... <

ticketPriceNos) {
Show show = showService.getSinglelInstance (showId) ;

Performance performance = new ArraylList<Performance> (show.getPerformances()) .get (<
performanceNo) ;

BookingRequest bookingRequest = new BookingRequest (performance, "bobGacme.com");

List<TicketPrice> possibleTicketPrices = new ArrayList<TicketPrice> (show. <
getTicketPrices());
int i = 1;
for (int index : ticketPriceNos) {
bookingRequest .addTicketRequest (new TicketRequest (possibleTicketPrices.get (
index), 1));
i++;

return bookingRequest;

private void checkTickets (List<String> requiredTickets, Booking booking) {

Ticket Monster Tutorial 123/198

List<String> bookedTickets = new ArrayList<String>();

for (Ticket t : booking.getTickets()) {
bookedTickets.add (new StringBuilder () .append(t.getSeat () .getSection()) .append(" <
@ ").append(t.getPrice()) .append (" (") .append(t.getTicketCategory()) .append <+

(")") .toString());
}
System.out.println (bookedTickets) ;
for (String requiredTicket : requiredTickets) {
Assert.assertTrue ("Required ticket not present: " + requiredTicket, <=
bookedTickets.contains (requiredTicket));

First we test booking creation in a test method of its own (testCreateBookings). Then, we test that the previously created
bookings are retrieved correctly (testGetBookings and testPagination). Finally, we test that deletion takes place
correctly (testDelete).

The other tests in the application follow roughly the same pattern and are left as an exercise to the reader.

23.3 Running the tests

If you have followed the instructions in the introduction and used the Maven archetype to generate the project structure, you
should have two profiles already defined in your application.

/pom.xml

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/ ¢
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/ <
maven—-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<profile>

<!-— An optional Arquillian testing profile that executes tests
in your JBoss AS instance —-—>
<!—— This profile will start a new JBoss AS instance, and execute
the test, shutting it down when done ——>
<!-- Run with: mvn clean test -Parg-jbossas-managed -->
<id>arg-jbossas-managed</id>
<dependencies>
<dependency>
<groupIld>org. jboss.as</groupId>
<artifactId>jboss-as-arquillian-container-managed</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
</profile>
<profile>
<!-— An optional Arquillian testing profile that executes tests
in a remote JBoss AS instance ——>
<!--— Run with: mvn clean test -Parg-jbossas-remote —-—>
<id>arg-jbossas-remote</id>
<dependencies>
<dependency>

<groupld>org. jboss.as</groupIld>

Ticket Monster Tutorial 124 /198

<artifactId>jboss-as—-arquillian-container-remote</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
</profile>

</profiles>
</project>
If you haven’t used the archetype, or the profiles don’t exist, create them.

Each profile defines a different Arquillian container. In both cases the tests execute in an application server instance. In one case
(arg-jbossas-managed) the server instance is started and stopped by the test suite, whils in the other (arg-jbossas-remote),
the test suite expects an already started server instance.

Once these profiles are defined, we can execute the tests in two ways:

¢ from the command-line build

e from an IDE

23.3.1 Executing tests from the command line
You can now execute the test suite from the command line by running the Maven build with the appropriate target and profile, as
in one of the following examples.

After ensuring that the JBOSS_HOME environment variable is set to a valid JBoss AS7 installation directory), you can run the
following command:

mvn clean test -Parg-jbossas-managed

Or, after starting a JBoss AS7 instance, you can run the following command

mvn clean test -Parg-jbossas-remote

These tests execute as part of the Maven build and can be easily included in an automated build and test harness.

23.3.2 Running Arquillian tests from within Eclipse

Running the entire test suite as part of the build is an important part of the development process - you may want to make sure that
everything is working fine before releasing a new milestone, or just before committing new code. However, running the entire
test suite all the time can be a productivity drain, especially when you’re trying to focus on a particular problem. Also, when
debugging, you don’t want to leave the comfort of your IDE for running the tests.

Running Arquillian tests from JBoss Developer Studio or JBoss tools is very simple as Arquillian builds on JUnit (or TestNG).

First enable one of the two profiles in the project. In Eclipse, open the project properties, and from the Maven tab, add the profile
as shown in the picture below.

Ticket Monster Tutorial 125/198

800 Properties for ticket-monster
type filter text Maven v B
P Resource
Builders Active Maven Profiles (comma separated):

P CDI (Context and Dependen
Deployment Assembly
Expression Language Valida E‘] Resolve dependencies from Workspace projects
FreeMarker Context

P Coogle
Hibernate Settings
Java Build Path

P Java Code Style

F Java Compiler

P Java Editor
Javadoc Location

P JavaScript

P JEoss Tools Knowledge Base

»JPA
J5F Validation
JSP Fragment

¥ Maven

Lifecycle Mapping
WTP Integration

Iarqqhn;sa;—remnte I

Figure 23.1: Update Maven profiles in Eclipse

The project configuration will be updated automatically.
Now, you can click right on one of your test classes, and select Run As — JUnit Test.

The test suite will run, deploying the test classes to the application server, executing the tests and finally producing the much
coveted green bar.

[2 Markers (ﬁ Properties fﬁ Servers (w Data Source Explorer (u‘j Snippets ME Cnnsulq =g

Finished after 2.461 seconds w2 5 | @, [EE
Runs: 212 8 frors; 0 8 Failures: 0 |
¥ fi.Jorg jboss.idf. test.rest. Test [Runner: JUnit = Failure Trace o=

£ testCetVenueByld (0.064 s)
Pl testPagination (0.082 s)

Figure 23.2: Running the tests

Ticket Monster Tutorial 126 /198

Part IV

Building The User UI Using HTMLS

Ticket Monster Tutorial 127 /198

Chapter 24

What Will You Learn Here?

We’ve just implemented the business services of our application, and exposed them through RESTful endpoints. Now we need
to implement a flexible user interface that can be easily used with both desktop and mobile clients. After reading this tutorial,
you will understand our front-end design and the choices that we made in its implementation. Topics covered include:

* Creating single-page applications using HTMLS5, JavaScript and JSON
* Using JavaScript frameworks for invoking RESTful endpoints and manipulating page content
* Feature and device detection

* Implementing a version of the user interface that is optimized for mobile clients using JavaScript frameworks such as jQuery
mobile

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial 128 /198

Chapter 25

First, the basics

In this tutorial, we will build a single-page application. All the necessary code: HTML, CSS and JavaScript is retrieved within a
single page load. Rather than refreshing the page every time the user changes a view, the content of the page will be redrawn by
manipulating the DOM in JavaScript. The application uses REST calls to retrieve data from the server.

Singe HTMLS 1 REST
page services

Figure 25.1: Single page application

25.1 Client-side MVC Support

Because this is a moderately complex example, which involves multiple views and different types of data, we will use a client-side
MVC framework to structure the application, which provides amongst others:

* routing support within the single page application;
¢ event-driven interaction between views and data;

* simplified CRUD invocations on RESTful services.

In this application we use the client-side MVC framework "backbone.js".

Ticket Monster Tutorial 129/198

o backbone.js

events

user action

: execute

REST
senvice

Figure 25.2: Backbone architecture

25.2 Modularity

In order to provide good separation of concerns, we split the JavaScript code into modules. Ensuring that all the modules of the
application are loaded properly at runtime becomes a complex task, as the application size increases. To conquer this complexity,
we use the Asynchronous Module Definition mechanism as implemented by the "require.js" library.

Asynchronous Module Definition

The Asynchronous Module Definition (AMD) API specifies a mechanism for defining modules such that the module, and its
dependencies, can be asynchronously loaded. This is particularly well suited for the browser where synchronous loading of
modules incurs performance, usability, debugging, and cross-domain access problems.

25.3 Templating

Instead of manipulating the DOM directly, and mixing up HTML with the JavaScript code, we create HTML markup fragments
separately as templates which are applied when the application views are rendered.

Ticket Monster Tutorial 130/198

In this application we use the templating support provided by "underscore.js".

25.4 Mobile and desktop versions

The page flow and structure, as well as feature set, are slightly different for mobile and desktop therefore we will build two
variants of the single-page-application, one for desktop and one for mobile. As the application variants are very similar, we will
cover the desktop version of the application first, and then we will explain what is different in the mobile version.

Ticket Monster Tutorial 131/198

Chapter 26

Setting up the structure

Before we start developing the user interface, we need to set up the general application structure and add the JavaScript libraries.
First, we create the directory structure:

¥ = src
¥ i=-main
¥ i=>webapp
¥ i=-resources
b = css
Pk [=-img
viEjs
¥ [=app
» (= collections
b (= models
¥ = router
b (= desktop
P = mobile
¥ [views
P (= desktop
P (= mobile
P = libs
b =templates

Figure 26.1: File structure for our web application

We put stylesheets in resources/css folder, images in resources/img, and HTML view templates in resources/template
resources/ js contains the JavaScript code, split between resource/js/1ib - which contains the libraries used by the
application and resources/ js/app which contains the application code. The latter will contain the application modules, in
subsequent subdirectories, for models, collections, routers and views.

The first step in implementing our solution is adding the stylesheets and JavaScript libraries to the resources/css and
resources/Jjs/lib:

Ticket Monster Tutorial

132/198

require.js

AMD support, along with the plugins:

* text - for loading text files, in our case the HTML templates

* order - for enforcing load ordering if necessary

JQuery

general purpose library for HTML traversal and manipulation

Underscore

JavaScript utility library (and a dependency of Backbone)

Backbone

Client-side MVC framework

Bootstrap

UI components and stylesheets for page structuring

Now, we create the main page of the application (which is the URL loaded by the browser):

src/main/webapp/desktop-index.html

<!DOCTYPE html>
<html>
<head>

<title>Ticket Monster</title>
<meta http-equiv="Content-Type" content="text/html;
<meta name="viewport" content="width=device-width,

charset=utf-8"/>

initial-scale=1, user-scalable=0;">

<link type="text/css" rel="stylesheet" href="resources/css/screen.css"/>
<link rel="stylesheet" href="resources/css/bootstrap.css" type="text/css" media="all"/>
<link rel="stylesheet" href="resources/css/custom.css" type="text/css" media="all">

<link href='http://fonts.googleapis.com/css?family=Rokkitt’ rel=’stylesheet’ type=’'text <«

in which <«

/css’ >
<script data-main="resources/js/main-desktop" src="resources/js/libs/require.js"></
script>
<!-- Add JavaScript library for IE6-8 support of HTML5 elements —-->
<!-—[if 1t IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<body>
Ll==
The main layout of the page - contains the menu and the ’content’ ¢<div/>
all the
views will render the content.
——>

<div id="logo"><div class="wrap"><hl>Ticket Monster</hl></div></div>
<div id="container">

<div id="menu">
<div class="navbar">
<div class="navbar—-inner">
<div class="container">
<ul class="nav">

About</1i>
Events</1li>
Venues

Ticket Monster Tutorial 133/198

Bookings</1li>
Monitor</1li>
Administration</1li>

</div>
</div>
</div>
</div>
<div id="content" class="container-fluid">
</div>
</div>
<footer style="">
<div style="text-align: center;"><img src="resources/img/dualbrand_as7eap.png" alt=" <
HTML5"/></div>
</footer>
</body>
</html>

As you can see, the page does not contain much. It loads the custom stylesheet of the application, as well as the one required by
Bootstrap, sets up instructions for loading the application scripts and defines the general structure of the page.

The actual HTML code of the page contains a menu definition which will be present on all the pages, as well as an empty element
named content, which is the placeholder for the application views. When a view is displayed, it will apply a template and
populate the content element.

The JavaScript code of the page is loaded by require. js, according to the module definition contained in resources/ js/main—d

src/main/webapp/resources/js/main-desktop.js

/ **
* Shortcut alias definitions - will come in handy when declaring dependencies
* Also, they allow you to keep the code free of any knowledge about library
* locations and versions
*/
require.config ({
paths: {
jquery:’libs/jquery-1.7.1",
underscore:’libs/underscore’,
text:’libs/text’,
order:’libs/order’,
bootstrap: ’libs/bootstrap’,
utilities: ’app/utilities’,
router

1) g

// Backbone is not AMD-ready, so a individual module is declared
define ("backbone", [
// the order plugin is used to ensure that the modules are loaded in the right order
"order! jquery’,
"order!underscore’,
"order!libs/backbone’], function () {
return Backbone;
})i

// Now we declare all the dependencies
require ([
"order! jquery’,
"order!underscore’,
"order!backbone’,
"text’,

Ticket Monster Tutorial 134 /198

"order!bootstrap’,
1, function() {

console.log(’all loaded’)
1) i

The module loads all the utility libraries. Later on, when we will have written the application code, it will be loaded here as well.

Ticket Monster Tutorial 135/198

Chapter 27

Displaying Events

The first use case that we implement is event navigation. The users will be able to view the list of events and select the one that
they want to attend. After doing so, they will select a venue, and will be able to choose a performance date and time.

27.1 The Event model

We a Backbone model for holding event data. Nearly all domain entities (booking, event, venue) are represented by a corre-
sponding Backbone model:

src/main/webapp/resources/js/app/models/event.js

[**
* Module for the Event model
*/
define ([
"backbone’ // depends and imports Backbone
], function (Backbone) {
/ * %
* The Event model class definition
x Used for CRUD operations against individual events
*/
var Event = Backbone.Model.extend ({
urlRoot:’rest/events’ // the URL for performing CRUD operations
}) i
// export the Event class
return Event;
1) i

The Event model can perform CRUD operations against the REST services we defined earlier.

Backbone Models
Backbone models contain data as well as much of the logic surrounding it: conversions, validations, computed properties, and
access control. They also perform CRUD operations with the REST service.

27.2 The Events collection

We define a Backbone collection for handling groups of events (like the events list):

src/main/webapp/resources/js/app/collections/events.js

Ticket Monster Tutorial 136/ 198

[**
* Module for the Events collection
*/
define ([
// Backbone and the collection element type are dependencies
"backbone’,
"app/models/event’
], function (Backbone, Event) {
/ x %
* Here we define the Bookings collection
* We will use it for CRUD operations on Bookings
*/
var Events = Backbone.Collection.extend ({
url:"rest/events", // the URL for performing CRUD operations
model: Event,
id:"id", // the ’"id’ property of the model is the identifier
comparator:function (model) {
return model.get (' category’) .id;

1)
return Events;

1)

By mapping the model and collection to a REST endpoint you can perform CRUD operations without having to invoke the
services explicitly. You will see how that works a bit later.

Backbone Collections
Collections are ordered sets of models. They can handle events which are fired as a result of a change to a individual member,
and can perform CRUD operations for syncing up contents against RESTful services.

27.3 The EventsView view

Now that we have implemented the data components of the example, we need to create the view that displays them.
src¢/main/webapp/resources/js/app/views/desktop/events.js

define ([

"backbone’,

"utilities’,

"text!../../../../templates/desktop/events.html’
1, function (

Backbone,

utilities,

eventsTemplate) {

var EventsView = Backbone.View.extend ({
events: {
"click a":"update"
}I
render: function () {
var categories = _.uniqg(
_.map (this.model.models, function (model) {
return model.get (' category’)
}), false, function (item) {
return item.id
}) i
utilities.applyTemplate ($ (this.el), eventsTemplate, {categories:categories, <+
model :this.model})

Ticket Monster Tutorial 137 /198

S(this.el) .find(’ .item:first’) .addClass (’'active’);
S(".collapse") .collapse ()

S ("a[rel='popover’]") .popover ({trigger:’hover’});
return this;

}o
update: function () {
$("al[rel="popover’]") .popover ('hide’)

})i

return EventsView;

1) i

The view is attached to a DOM element (the e 1 property). When the render method is invoked, it manipulates the DOM and
renders the view. We could have achieved this by writing these instructions directly in the method, but that would make it hard to
change the page design later on. Instead, we create a template and apply it, thus separating the HTML view code from the view

implementation.
src/main/webapp/resources/templates/desktop/events.html

<div class="row—fluid">
<div class="span3">
<div id="itemMenu">

<
_.each(categories, function (category) {
$>

o°

<div class="accordion-group">
<div class="accordion-heading">
<a class="accordion-toggle"
data-target="#category-<%=category.id%$>-collapsible" data-toggle=" <>
collapse"
data-parent="#itemMenu"><%= category.description %>
</div>
<div id="category-<%=category.id%>-collapsible" class="collapse in <
accordion-body">
<div id="category—-<%—- category.id%>" class="accordion—-inner">

<

_.each (model.models, function (model) ({

if (model.get (' category’) .id == category.id) {

%>

<p><a href="#events/<%- model.attributes.id%>" rel="popover"
data-content="<%- model.attributes.description%>"
data-original-title="<%- model.attributes.name%$>"><%=model. <>

attributes.name%></p>

o°

<% }
1) i
</div>

</div>

</div>
<5 1) %>
</div>
</div>

<div id=’itemSummary’ class="span9">
<div class="row-fluid">
<div class="spanll">
<div id="eventCarousel" class="carousel">
<!-- Carousel items —-—>
<div class="carousel-inner">

Ticket Monster Tutorial 138/198

<%_.each (model.models, function (model) { %>
<div class="item">
<img src='rest/media/<%$=model.attributes.medialtem.id%>’'/>

<div class="carousel-caption">
<h4><%=model.attributes.name%></h4>

<p><%=model.attributes.description%$></p>
<a class="btn btn-danger" href="#events/<%$=model.id%>">Book ¢

tickets
</div>
</div>
<% 1) %>
</div>
<!-- Carousel nav —-—>

<a class="carousel-control left" href="#eventCarousel" data-slide="prev <
">glsaquo;

<a class="carousel-control right" href="#eventCarousel" data-slide="
next">›

</div>
</div>
</div>
</div>
</div>

As well as applying the template and preparing the data that will be used to fill it in (the categories and model entries in
the map), the render method also performs the JavaScript calls that are required to initialize the UI components (in this case
the Bootstrap carousel and popover).

A view can also listen to events fired by the children of it’s root element (e 1). In this case, the update method is configured to
listen to clicks on anchors. The configuration occurs within the event s property of the class.

Now that the views are in place, we need to add a routing rule to the application. We create the router and add our first routes.

27.4 Routing

We will continue by defining a router which provides bookmarkable URLSs for the various locations in our application.

src¢/main/webapp/resources/js/app/router/desktop/router.js

[**
* A module for the router of the desktop application
*/

define ("router", [

! jquery, ’
"underscore’,
"backbone’,

"utilities’,
"app/collections/events’,
"app/views/desktop/events’,

], function (S,
p—
Backbone,
utilities,
Events,
EventsView) {

/x %
* The Router class contains all the routes within the application -
* i.e. URLs and the actions that will be taken as a result.

*

Ticket Monster Tutorial 139/198

* Q@Qtype {Router}
x/
var Router = Backbone.Router.extend ({
routes: {
"w."eyvents", // listen to #events
"events":"events" // listen to #events
}l
events:function () {
//initialize the events collection
var events = new Events();
// create an events view
var eventsView = new EventsView ({model:events, el:$("#content")});
// render the view when the collection elements are fetched from the
// RESTful service
events.bind("reset",
function () {
utilities.viewManager.showView (eventsView) ;
}) .fetch();
}) i

// Create a router instance
var router = new Router();

// Begin routing
Backbone.history.start ();

return router;

1) g

Remember, this is a single page application. You can either navigate using urls suchas http://localhost:8080/ticket-mons:
or using relative urls (from within the application, this being exactly what the main menu does). The fragment after the hash sign
represents the url within the single page, on which the router will act.

The routes property maps urls to controller function. In the example above, we have two controller functions.

events handles the #events fragment and will retrieve the events in our application via a REST call. We don’t manually
perform the REST call as it is triggered the by invocation of fetch on the Events collection, as discussed earlier.

The reset event on the collection is invoked when the data from the server is received, and the collection is populated. This
triggers the rendering of the events view (which is bound to the #content div).

The whole process is event orientated - the models, views and controllers interact through events.

Once the router has been defined, all that remains is to cause it to be loaded by the main module definition. Because the router
depends on all the other components (models, collections and views) of the application, directly or indirectly, it is the only
component that is explicitly loaded in the main-desktop definition, which we change as follows:

src/main/webapp/resources/js/main-desktop.js

require.config({
paths: {

jquery:’libs/jquery-1.7.1",
underscore:’libs/underscore’,
text:’libs/text’,
order:’libs/order’,
bootstrap: ’libs/bootstrap’,
utilities: ’app/utilities’,
router:’app/router/desktop/router’

Ticket Monster Tutorial 140/ 198

// Now we declare all the dependencies
require ([
"order! jquery’,
"order!underscore’,
"order!backbone’,
"text’,
"order!bootstrap’,
"router’
1, function() {
console.log(’all loaded’)
1) i

Ticket Monster Tutorial 141/198

Chapter 28

Viewing a single event

With the events list view now in place, we can add a view to display the details of each individual event, allowing the user to
select a venue and performance time.

We already have the models in place so all we need to do is to create the additional view and expand the router. First, we’ll
implement the view:

src¢/main/webapp/resources/js/app/views/desktop/event-detail.js

define ([
"backbone’,
"utilities’,
"require’,
"text!../../../../templates/desktop/event-detail.html’,
"text!../../../../templates/desktop/media.html’,
"text!../../../../templates/desktop/event-venue—-description.html’,
"bootstrap’

], function (
Backbone,
utilities,
require,
eventDetailTemplate,
mediaTemplate,
eventVenueDescriptionTemplate) {

var EventDetail = Backbone.View.extend ({
events: {
"click input [name='bookButton’]":"beginBooking",
"change select[id=’venueSelector’]":"refreshShows",
"change select[id=’dayPicker’]":"refreshTimes"
}o
render: function () {

S (this.el) .empty ()

utilities.applyTemplate ($ (this.el), eventDetailTemplate, this.model.attributes) ¢
’

$ ("#bookingOption") .hide () ;

S ("#venueSelector") .attr ('disabled’, true);

S ("#dayPicker") .empty () ;

S ("#dayPicker") .attr ('disabled’, true)

S ("#performanceTimes") .empty () ;

S ("#performanceTimes") .attr ('disabled’, true)

var self = this

$.getJSON ("rest/shows?event=" + this.model.get ('id’), function (shows) {
self.shows = shows

Ticket Monster Tutorial 142 /198

$ ("#venueSelector") .empty () .append ("<option value=’0’ selected>Select a <+
venue</option>");
$S.each (shows, function (i, show) {
$ ("#venueSelector") .append ("<option value=’" + show.id + "’>" + show. ¢
venue.address.city + " : " 4+ show.venue.name + "</option>")
1)
S ("#venueSelector") .removeAttr (' disabled’)
1)
return this;
}I

beginBooking: function () {
require ("router") .navigate (’ /book/’ + $("#venueSelector option:selected").val() <«
+ /" + $("#performanceTimes") .val (), true)

by

refreshShows: function (event) ({
event .stopPropagation () ;
S ("#dayPicker") .empty () ;

var selectedShowId = event.currentTarget.value;
if (selectedShowId != 0) {
var selectedShow = _.find(this.shows, function (show) {
return show.id == selectedShowId

}) i

this.selectedShow = selectedShow;

utilities.applyTemplate ($ ("#eventVenueDescription"), <+
eventVenueDescriptionTemplate, {venue:selectedShow.venue});

var times = _.unig(_.sortBy(_.map (selectedShow.performances, function (<+
performance) {
return (new Date (performance.date) .withoutTimeOfDay ()) .getTime ()

}), function (item) {
return item
)i
utilities.applyTemplate ($ ("#venueMedia"), mediaTemplate, selectedShow.venue ¢
)
S ("#dayPicker") .removeAttr (' disabled’)
$("#performanceTimes") .removeAttr (' disabled’)
_.each(times, function (time) {
var date = new Date (time)
$("#dayPicker") .append ("<option value='" + date.toYMD() + "’>" + date. ¢«
toPrettyStringWithoutTime () + "</option>")
1)
this.refreshTimes ()
S ("#bookingWhen") .show (100)
} else {
$ ("#bookingWhen") .hide (100)

S ("#bookingOption") .hide ()
S ("#dayPicker") .empty ()
$ ("#venueMedia") .empty ()
$ ("#eventVenueDescription") .empty ()
$ ("#dayPicker") .attr ('disabled’, true)
$("#performanceTimes") .empty ()
S ("#performanceTimes") .attr ('disabled’, true)
}
}’
refreshTimes: function () {
var selectedDate = $("#dayPicker").val();

S ("#performanceTimes") .empty ()
if (selectedDate) {
$.each (this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date (performance.date);

Ticket Monster Tutorial 143 /198

if (_.isEqual (performanceDate.toYMD (), selectedDate)) ({
S ("#performanceTimes") .append ("<option value='" + performance.id + <+
"’>" + performanceDate.getHours () .toZeroPaddedString(2) + ":" + <&

performanceDate.getMinutes () .toZeroPaddedString (2) + "</option>" <+
)

})
}
S ("#bookingOption") .show ()

return EventDetail;

This view is more complex than the global events view, as portions of the page need to be updated when the user chooses a venue.

Ticket Monster Tutorial 144 /198

i ™
" ~,
Venue image
.
Venue / w
Selector i Venue details
" ~,
Performance times
- y,
Event details
(™
Section
Selector
d ™
Ticket quantity
inputs Ticket Summary
. y.

Create booking

Figure 28.1: On the event details page some fragments are re-rendered when the user selects a venue

The view responds to three different events:

* changing the current venue triggers a reload of the venue details and the venue image, as well as the performance times. The

Ticket Monster Tutorial 145/198

application retrieves the performance times through a REST call.
* changing the day of the performance causes the performance time selector to reload.

* once the venue and performance date and time have been selected, the user can navigate to the booking page.

The corresponding templates for the three fragments rendered above are:
src/main/webapp/resources/templates/desktop/event-detail.html

<div class="row-fluid" xmlns="http://www.w3.0rg/1999/html">
<h2 class="page-header special-title light-font"><%=name%$></h2>
</div>
<div class="row—-fluid">
<div class="span4 well">
<div class="row-fluid"><h3 class="page-header span6">What?</h3>
<img width="100" src='rest/media/<%$=medialtem.id%>’/></div>
<div class="row-fluid">
<p> </p>

<div class="spanl2"><%$= description %></div>
</div>
</div>
<div class="span4 well">
<div class="row-fluid"><h3 class="page-header span6">Where?</h3>
<div class="span6" id=’venueMedia’/>
</div>
<div class=’'row-fluid’ ><select id=’venueSelector’ />
<div id="eventVenueDescription"/>
</div>
</div>
<div id=’bookingWhen’ style="display: none;" class="span2 well">
<h3 class="page-header">When?</h3>
<select class="span2" id="dayPicker"/>
<select class="span2" id="performanceTimes"/>

<div id=’"bookingOption’><input name="bookButton" class="btn btn-primary" type=" <
button"
value="Order tickets"></div>
</div>
</div>

src/main/webapp/resources/templates/desktop/event-venue-description.html

<address>
<p><%= venue.description %></p>
<p>Address:</p>
<p><%= venue.address.street %></p>
<p><%= venue.address.city %>, <%= venue.address.country $></p>
</address>

Now that the view exists, we add it to the router:
src/main/webapp/resources/js/app/router/desktop/router.js

/[x %
* A module for the router of the desktop application
*/

define ("router", [

"app/models/event’,

.7

Ticket Monster Tutorial 146 /198

"app/views/desktop/event-detail’
], function (

Event,
EventDetailView) {

var Router = Backbone.Router.extend ({
routes: {

"events/:id":"eventDetail",
}’

eventDetail: function (id) {
var model = new Event ({id:id});
var eventDetailView = new EventDetailView ({model:model, el:$("#content")});
model .bind ("change",
function () {
utilities.viewManager.showView (eventDetailView) ;
}) .fetch();

1) i

As you can see, this is very similar to the previous view and route, except that now the application can accept URLs (e.g.
http://localhost:8080/ticket-monster/desktop-index#events/1). This URL can be entered directly into
the browser, or it can be navigated to as a relative path (e.g. #events/1) from within the applicaton.

With this in place, all that remains is to implement the final view of this use case, creating the bookings.

Ticket Monster Tutorial 147 /198

Chapter 29

Creating Bookings

The user has chosen the event, the venue and the performance time, and must now create the booking. Users can select one of
the available sections for the show’s venue, and then enter the number of tickets requiredfor each category available for this show
(Adult, Child, etc.). They then add the tickets to the current order, which causes the summary view to be updated. Users can also
remove tickets from the order. When the order is complete, they enter their contact information (e-mail address) and submit the
order to the server.

First, we add the new view:
src/main/webapp/resources/js/app/views/desktop/create-booking.js

define ([
"backbone’,
futilities’,
"require’,

"text!../../../../templates/desktop/booking—-confirmation.html’,
"text!../../../../templates/desktop/create-booking.html’,
"text!../../../../templates/desktop/ticket-categories.html’,
"text!../../../../templates/desktop/ticket-summary-view.html’,

"bootstrap’

], function (
Backbone,
utilities,
require,
bookingConfirmationTemplate,
createBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate) {

var TicketCategoriesView = Backbone.View.extend ({
id:’categoriesView’,
events: {
"keyup input":"onChange"
}I

render:function () {
if (this.model != null) {
var ticketPrices = _.map(this.model, function (item) {

return item.ticketPrice;
1)
utilities.applyTemplate ($(this.el), ticketEntriesTemplate, {ticketPrices: ¢+
ticketPrices});
} else {
$(this.el) .empty () ;
}

return this;

Ticket Monster Tutorial 148 /198
} ’
onChange: function (event) {
var value = event.currentTarget.value;
var ticketPriceId = $(event.currentTarget) .data("tm-id");
var modifiedModelEntry = _.find(this.model, function (item) {
return item.ticketPrice.id == ticketPriceld
1) i
// update model
if ($.isNumeric (value) && value > 0) {
modifiedModelEntry.quantity = parselnt (value);
}
else {
delete modifiedModelEntry.quantity;
}
// display error messages
if (value.length > 0 &&
(!'$.isNumeric(value) // is a non-number, other than empty string
|| value <= 0 // is negative
| | parseFloat (value) != parselnt(value))) { // is not an integer
$("#error—-input-"+ticketPriceld) .empty () .append ("Please enter a positive <=
integer value");
$S("#ticket-category-fieldset-"+ticketPriceld) .addClass ("error")
} else {
$("#error—-input—"+ticketPriceld) .empty();
$("#ticket-category—-fieldset-"+ticketPriceld) .removeClass ("error")
}
// are there any outstanding errors after this update?
// if yes, disable the input button
if (
$("div[id"='ticket-category-fieldset-"]") .hasClass ("error") &&
! _.isUndefined (modifiedModelEntry.quantity)) {
S ("input [name="add’]") .attr ("disabled", true)
} else {
$ ("input [name=’add’]") .removeAttr ("disabled")
}
}
}) i
var TicketSummaryView = Backbone.View.extend ({
tagName:’'tr’,
events: {
"click i":"removeEntry"
} 14
render: function () {
var self = this;
utilities.applyTemplate ($(this.el), ticketSummaryViewTemplate, this.model. <
bookingRequest) ;
} ’
removeEntry:function () {
this.model.bookingRequest.tickets.splice (this.model.index, 1);
}
}) i
var CreateBookingView = Backbone.View.extend ({

events: {
"click input[name=’'submit’]":"save",
"change select[id=’sectionSelect’]":"refreshPrices",
"keyup #email":"updateEmail",
"change #email":"updateEmail",
"click input[name="add’]":"addQuantities",
"click i":"updateQuantities"

Ticket Monster Tutorial 149/198

b
render: function () {

var self = this;
$.getJSON ("rest/shows/" + this.model.showId, function (selectedShow) {

self.currentPerformance = _.find(selectedShow.performances, function (item) ¢«
{
return item.id == self.model.performanceld;

}) i

var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown
var sections = _.unig(_.sortBy(_.pluck (selectedShow.ticketPrices, ’'section’ <
), id), true, id);
utilities.applyTemplate ($(self.el), createBookingTemplate, {
sections:sections,
show:selectedShow,
performance:self.currentPerformance});
self.ticketCategoriesView = new TicketCategoriesView ({model:{}, el:$("# <
ticketCategoriesViewPlaceholder") 1});
self.ticketSummaryView = new TicketSummaryView ({model:self.model, el:$("# <
ticketSummaryvView") });
self.show = selectedShow;
self.ticketCategoriesView.render () ;
self.ticketSummaryView.render () ;
S ("#sectionSelector") .change();
1) i
return this;
s
refreshPrices: function (event) {
var ticketPrices = _.filter (this.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;
1) i
var ticketPricelnputs = new Array();
_.each(ticketPrices, function (ticketPrice) {
ticketPriceInputs.push({ticketPrice:ticketPrice});
1) i
this.ticketCategoriesView.model = ticketPricelnputs;
this.ticketCategoriesView.render () ;
}I
save: function (event) {

var bookingRequest = {ticketRequests:[]};
var self = this;
bookingRequest.ticketRequests = _.map (this.model.bookingRequest.tickets, <

function (ticket) {
return {ticketPrice:ticket.ticketPrice.id, quantity:ticket.quantity}
1)
bookingRequest.email = this.model.bookingRequest.email;
bookingRequest .performance = this.model.performanceId
$ ("input [name='submit’]") .attr ("disabled", true)
$.ajax ({url:"rest/bookings",
data:JSON.stringify (bookingRequest),
type:"POST",
dataType:"json",
contentType:"application/json",
success: function (booking) {
this.model = {}
$.getJSON (' rest/shows/performance/’ + booking.performance.id, function <+
(retrievedPerformance) {
utilities.applyTemplate ($(self.el), bookingConfirmationTemplate, { <«
booking:booking, performance:retrievedPerformance })

150/198

Ticket Monster Tutorial

1)
}}) .error (function (error) {
if (error.status == 400 || error.status == 409) {
var errors = $.parseJSON(error.responseText).errors;
_.each(errors, function (errorMessage) {
S ("#request—-summary") .append (' <div class="alert alert-error">S\timesS <

Error! ’ + errorMessage + ’</div>’)

1) i

} else {
S ("#request-summary") .append (' <div class="alert alert-error">\timesError!

P
</

strong>An error has occured</div>’)

}
$ ("input [name='submit’]") .removeAttr ("disabled") ;

})

}l
addQuantities:function () {

var self = this;
_.each(this.ticketCategoriesView.model, function (model) {

if (model.quantity != undefined) {

var found = false;
_.each(self.model.bookingRequest.tickets, function (ticket) {
if (ticket.ticketPrice.id == model.ticketPrice.id) {

ticket.quantity += model.quantity;

found = true;

)i

if (!found) {
self.model.bookingRequest.tickets.push ({ticketPrice:model. <+

ticketPrice, quantity:model.quantity});

1) i
this.ticketCategoriesView.model = null;
"select’) .removeAttr (' selected’);

S (’option:selected’,
this.ticketCategoriesView.render () ;

this.updateQuantities();

}y
updateQuantities: function () {
// make sure that tickets are sorted by section and ticket category

this.model.bookingRequest.tickets.sort (function (tl, t2) {
if (tl.ticketPrice.section.id != t2.ticketPrice.section.id) {
return tl.ticketPrice.section.id - t2.ticketPrice.section.id;

}
else {
return tl.ticketPrice.ticketCategory.id - t2.ticketPrice.ticketCategory <

.id;

1) i
<_>

_.reduce (this.model.bookingRequest.tickets,

this.model.bookingRequest.totals
function (totals, ticketRequest) {

return {
tickets:totals.tickets + ticketRequest.quantity,

price:totals.price + ticketRequest.quantity » ticketRequest.ticketPrice ¢
.price
i

}, {tickets:0, price:0.0});

this.ticketSummaryView.render () ;

Ticket Monster Tutorial 151/198

this.setCheckoutStatus () ;

b
updateEmail: function (event) {

if ($(event.currentTarget) .is(’:valid’)) {
this.model.bookingRequest.email = event.currentTarget.value;
S ("#error-email") .empty () ;
} else {
S ("#error-email") .empty () .append ("Please enter a valid e-mail address");

delete this.model.bookingRequest.email;
}
this.setCheckoutStatus () ;

}l

setCheckoutStatus:function () {
if (this.model.bookingRequest.totals != undefined
&& this.model.bookingRequest.totals.tickets > 0
&& this.model.bookingRequest.email != undefined
&& this.model.bookingRequest.email != ’") {

$ (/ input [name="submit"]’) .removeAttr ('disabled’);
}
else {

S (/ input [name="submit"]’) .attr (' disabled’, true);

})i

return CreateBookingView;
b i

The code above may be surprising! After all, we said that we were going to add a single view, but instead, we added three! This
view makes use of two subviews (TicketCategoriesView and Ticket SummaryView) for re-rendering parts of the main
view. Whenever the user changes the current section, the list of available tickets is updated. Whenever the user adds the tickets to
the booking, the booking summary is re-rendered. Changes in quantities or the target email may enable or disable the submission
button - the booking is validated whenever changes to it are made. We do not create separate modules for the subviews, since
they are not referenced outside the module itself.

The booking submission is handled by the save method which constructs a JSON object, as required by aPOST tohttp://localho:
and performs the AJAX call. In case of a successful response, a confirmation view is rendered. On failure, a warning is displayed
and the user may continue to edit the form.

The corresponding templates for the views above are shown below:
src/main/webapp/resources/templates/desktop/booking-confirmation.html

<div class="row-fluid">
<h2 class="special-title light-font">Booking #<%$=booking.id%> confirmed!</h2>
</div>
<div class="row-fluid">
<div class="span5 well">
<h4 class="page-header">Checkout information</h4>
<p>Email: <%= booking.contactEmail $%$></p>
<p>Event: <%= performance.event.name $%></p>
<p>Venue: <%= performance.venue.name $></p>
<p>Date: <%= new Date (booking.performance.date) .toPrettyString() % ¢«

></p>
<p>Created on: <%= new Date (booking.createdOn) .toPrettyString() %>
</p>

</div>
<div class="span5 well">
<h4 class="page-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa; <
03>
<thead>
<tr>

Ticket Monster Tutorial

152/198

<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>

</thead>

<tbody>

<% S.each(_.sortBy(booking.tickets, function(ticket) {return ticket

function (i, ticket) { %>

<tr>
<td><%= ticket.id %></td>
<td><%$=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%$=ticket.seat.rowNumber$%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% 1) %>
</tbody>
</table>
</div>
</div>

<div class="row-fluid" style="padding-bottom:30px;">
<div class="span2">Home</div>
</div>

src¢/main/webapp/resources/templates/desktop/create-booking.html

<div class="row-fluid">
<div class="spanl2">
<h2 class="special-title light-font"><%=show.event.name%>

.id}),

<small><%=show.venue.name%>, <%$=new Date (performance.date) .toPrettyString()%$></ <«

p></small>
</h2>
</div>
</div>
<div class="row-fluid">
<div class="span6 well">
<h3 class="page-header">Select tickets</h3>
<form class="form-horizontal">
<div id="sectionSelectorPlaceholder">
<div class="control-group">

<label class="control-label" for="sectionSelect">Section</ <>

label>
<div class="controls">
<select id="sectionSelect">

<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function (section) { %>
<option value="<%=section.id%>"><%=section.name%> - <%=section.

description%></option>
<% }) %>
</select>
</div>
</div>

</div>

</form>

<div id="ticketCategoriesViewPlaceholder"></div>
</div>
<div id="request-summary" class="span5 offsetl well">

<h3 class="page-header">Order summary</h3>

<div id="ticketSummaryView" class="row-fluid"/>

<h3 class="page—header">Checkout</h3>

<

Ticket Monster Tutorial 153/198

<div class="row-fluid">
<form class="form-search">
<input type='email’ id="email" placeholder="Email" required/>
<input type='button’ class="btn btn-primary" name="submit" wvalue="Checkout"

disabled="true"/>

<p class="help-block error-notification" id="error-email"></p>
</form>

</div>

</div>
</div>

src/main/webapp/resources/templates/desktop/ticket-categories.html

<% if (ticketPrices.length > 0) { %>
<form class="form-horizontal">
<% _.each(ticketPrices, function(ticketPrice) { %>
<div class="control-group" id="ticket-category-fieldset-<%=ticketPrice.id%>">
<label class="control-label"><%=ticketPrice.ticketCategory.description%></ <
strong></label>
<div class="controls">
<div class="input-append">
<input class="span2" rel="tooltip" title="Enter value"
data-tm-id="<%=ticketPrice.id%>"
placeholder="Number of tickets"
name="tickets-<%$=ticketPrice.ticketCategory.id%>"/>
@ $<%=ticketPrice.price%>

<p class="help-block" id="error-input-<%$=ticketPrice.id%>"></p>
</div>
</div>
</div>
<% }) %>
<p> </p>

<div class="control-group">
<label class="control-label"/>

<div class="controls">
<input type="button" class="btn btn-primary" disabled="true" name="add" value="Add <
tickets"/>

</div>
</div>
</div>
</form>
<% } %>

src¢/main/webapp/resources/templates/desktop/ticket-summary-view.html

<div class="spanl2">
<% if (tickets.length>0) { %>
<table class="table table-bordered table-condensed row-fluid" style="background-color: <«
#fffffa; ">
<thead>
<tr>
<th colspan="5">Requested tickets</th>
</tr>
<tr>
<th>Section</th>
<th>Category</th>
<th>Quantity</th>
<th>Price</th>
<th></th>

Ticket Monster Tutorial 154 /198

</tr>
</thead>
<tbody id="ticketRequestSummary">
<% _.each(tickets, function (ticketRequest, index, tickets) { %>
<tr>
<td><%= ticketRequest.ticketPrice.section.name %></td>
<td><%= ticketRequest.ticketPrice.ticketCategory.description %></td>
<td><%= ticketRequest.quantity $%$></td>
<td>S$<%$=ticketRequest.ticketPrice.price%></td>
<td><i class="icon-trash"/></td>
</tr>
<5 1) %>
</tbody>
</table>
<p/>
<div class="row-fluid">
<div class="span5">Total ticket count: <%= totals.tickets %></div>
<div class="span5">Total price: $<%$=totals.price%$></div></div>
<% } else { %>
No tickets requested.

<% } %>
</div>

Finally, once the view is available, we can add it’s corresponding routing rule:
src/main/webapp/resources/js/app/router/desktop/router.js

[**
* A module for the router of the desktop application
*/

define ("router", [
"app/views/desktop/create-booking’,
], function (

CreateBooking

var Router = Backbone.Router.extend ({
routes: {

"book/:showId/:performanceId":"bookTickets",
}l

bookTickets:function (showId, performanceld) {
var createBookingView =
new CreateBookingView ({
model:{ showId:showId,

performanceld:performanceld,
bookingRequest: {tickets:[]}},
el:$("#content")

}) i

utilities.viewManager.showView (createBookingView) ;
1) i

This concludes the implementation of the booking use case. We started by listing the available events, continued by selecting a
venue and performance time, and ended by choosing tickets and completing the order.

The other use cases: a booking starting from venues and vi existing bookings are conceptually similar, so you can just copy the re-
maining files in the src/main/webapp/resources/js/app/models, src/main/webapp/resources/js/app/colle

Ticket Monster Tutorial 155/198

src/main/webapp/resources/js/app/views/desktop and the remainder of src/main/webapp/resources/js/a

Ticket Monster Tutorial 156/ 198

Chapter 30

Mobile view

The mobile version of the application uses approximately the same architecture as the desktop version. Any differences are due
to the functional changes in the mobile version and the use of jQuery mobile.

30.1 Setting up the structure

The first step in implementing our solution is to copy the CSS and JavaScript libraries to resources/css and resources/js/1lib:

require.js
AMD support, along with the plugins:

* text - for loading text files, in our case the HTML templates
* order - for enforcing load ordering if necessary

jQuery
general purpose library for HTML traversal and manipulation

Underscore
JavaScript utility library (and a dependency of Backbone)

Backbone
Client-side MVC framework

jQuery Mobile
user interface system for mobile devices;

(If you have already built the desktop application, some files may already be in place.)
Next, we add the mobile main page.
src/main/webapp/mobile-index.html

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE html>
<html>
<head>
<title>Ticket Monster - mobile version</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0"/>

<link rel="stylesheet" href="resources/css/jquery.mobile-1.1.0.css"/>
<link rel="stylesheet" href="resources/css/m.screen.css"/>

Ticket Monster Tutorial 157 /198

<script data-main="resources/Jjs/main-mobile" sre="resources/js/libs/require.js"></
script>
</head>
<body>

<div id="container" data-role="page" data-ajax="false"></div>

</body>
</html>

As you can see, this page is simple. We just load the stylesheets for the application, and then we use require. js to load
the JavaScript code and page fragments. All the pages will render inside the container element, which has a data-role
attribute with the page value, as with any jQuery Mobile application.

Now, we add it the module loader.
src/main/webapp/resources/js/main-mobile.js

[**
* Shortcut alias definitions - will come in handy when declaring dependencies
* Also, they allow you to keep the code free of any knowledge about library
* locations and versions
*/
require.config({
paths: {
jquery:’libs/jquery-1.7.1",
jquerymobile:’1libs/jquery.mobile-1.1.0",
text:’libs/text’,
order: ’libs/order’,
utilities: ’app/utilities’,
router:’app/router/mobile/router’

1)

define (" underscore’, [
"libs/underscore’
1, function () {
return _;

1)

define ("backbone", [
"order! jquery’,
"order!underscore’,
"order!libs/backbone’
], function() {
return Backbone;

1)

// Now we declare all the dependencies
require ([’ router’],
function () {
console.log(’all loaded’)
1)

In this application, we combine Backbone and jQuery Mobile. Each framework has its own strengths; jQuery Mobile provides
UI components and touch support, whilst Backbone provides MVC support. There is some overlap between the two, as jQuery
Mobile provides its own navigation mechanism which we disable.

In the router code we make customizations in order to get the two frameworks working together - disabling the jQuery Mobile
navigation and adding the defaultHandler to the router for handling jQuery Mobile transitions between internal pages (such
as the ones generated by a nested listview).

Ticket Monster Tutorial 158 /198

src¢/main/webapp/resources/js/app/router/mobile/router.js

/[x*
* A module for the router of the desktop application.
*
*/
define ("router", [
" jquery’,
"jquerymobile’,
"underscore’,
"backbone’,
"utilities’
1, function (S,
Jjam,
p—
Backbone,
Booking,
utilities) {

// prior to creating an starting the router, we disable jQuery Mobile’s own routing <+
mechanism

$.mobile.hashlListeningEnabled = false;

$.mobile.linkBindingEnabled = false;

$.mobile.pushStateEnabled = false;

/[**
* The Router class contains all the routes within the application - i.e. URLs and the <
actions
* that will be taken as a result.
*
* @type {Router}
x/
var Router = Backbone.Router.extend ({
//no routes added yet
defaultHandler:function (actions) {
if ("" != actions) {
$.mobile.changePage ("#" + actions, {transition:’slide’, changeHash:false, <
allowSamePageTransition:true});

1)

// Create a router instance
var router = new Router();

// Begin routing
Backbone.history.start ();

return router;

1) i

The router also will also interact with additional libraries and will declare them as its dependencies, rather than specifying them
in the main loader.

30.2 The landing page

The first page in our application is the landing page. First, we add the template for it:

src¢/main/webapp/resources/templates/mobile/home-view.html

Ticket Monster Tutorial 159/198

<div data-role="header">
<h3>Ticket Monster</h3>
</div>
<div data-role="content" align="center">

<h4 align="left">Find events</h4>
<ul data-role="listview">

<1li>
By Category
</1li>
<1li>
By Location
</1li>

</div>

Now we have to add the page to the router:
src¢/main/webapp/resources/js/app/router/mobile/router.js

/ %%

* A module for the router of the desktop application.
*

*/

define ("router", [

"text!../templates/mobile/home-view.html’
], function (

HomeViewTemplate) {

var Router = Backbone.Router.extend ({

routes: {
nn . "home n
b
home: function () {
utilities.applyTemplate ($ ("#container"), HomeViewTemplate) ;
try {
$ ("#container") .trigger (' pagecreate’) ;

} catch (e) {
// workaround for a spurious error thrown when creating the page initially

Because jQuery Mobile navigation is disabled, we must tell jQuery Mobile explicitly to enhance the page content in order to

create the mobile view. Here, we trigger the jQuery Mobile pagecreate event explicitly to ensure that the page gets the
appropriate look and feel.

30.3 The events view

First, we display a list of events (just as in the desktop view). Since mobile interfaces are more constrained, we will just show a
simple list view:

src/main/webapp/resources/js/app/views/mobile/events.js

Ticket Monster Tutorial 160/ 198

define ([

"backbone’,

"utilities’,

"text!../../../../templates/mobile/events.html’
], function (

Backbone,

utilities,

eventsView) {

var EventsView = Backbone.View.extend ({
render:function () {
var categories = _.uniqg(

_.map (this.model.models, function (model) {
return model.get (' category’)
}), false, function(item) {
return item.id
}) i
utilities.applyTemplate ($ (this.el), eventsView, {categories:categories, model: <>
this.model})
S (this.el) .trigger (' pagecreate’);
return this;

1)

return EventsView;
1) ;

As you can see, the view is very similar to the desktop view, the main difference being the explicit hint to jQuery mobile through
the pagecreate event invocation.

Next, we add the template for rendering the view:
src/main/webapp/resources/templates/mobile/events.html

<div data-role="header">
<a data-role="button" data-icon="home" href="#">Home
<h3>Categories</h3>
</div>
<div data-role="content" id=’itemMenu’>
<div id=’categoryMenu’ data-role=’listview’ data-filter='true’ data-filter-placeholder ¢
=’Event category name ...’'>
<

o\°

_.each(categories, function (category) {
%>
<1li>
<%= category.description $%$>
<ul id="category-<%=category.id%>">
<%
.each (model.models, function (model) {

if (model.get (’category’) .id == category.id) {
%>
<1li>
<a href="#events/<%=model.attributes.id%>"><%=model.attributes.name%></
a>
</1i>
<% }
}) i
%>

</1li>
<% 1) %>
</div>

Ticket Monster Tutorial 161/198

</div>

And finally, we need to instruct the router to invoke the page:
src¢/main/webapp/resources/js/app/router/mobile/router.js

/[x*

* A module for the router of the desktop application.
*

*/

define ("router", [
"app/collections/events’,
"app/views/mobile/events’

1, function (
-7
Events,
.7
EventsView,

9 {

var Router = Backbone.Router.extend ({
routes: {

"events":"events"
bo

events:function () {
var events = new Events;
var eventsView = new EventsView ({model:events, el:$("#container")});
events.bind("reset",
function () {
utilities.viewManager.showView (eventsView) ;
}) .fetch();

1) i

Just as in the case of the desktop application, the list of events will be accessible at #events (i.e. http://localhost:8080/tick

30.4 Displaying an individual event

Now, we create the view to display an event:
src¢/main/webapp/resources/js/app/views/mobile/event-detail.js

define ([’ backbone’,
"utilities’,
"require’,
"text!../../../../templates/mobile/event-detail.html’,
"text!../../../../templates/mobile/event-venue-description.html’
1, function (
Backbone,
utilities,

Ticket Monster Tutorial 162 /198

require,
eventDetail,
eventVenueDescription) {

var EventDetailView = Backbone.View.extend ({

events: {
"click a[id=’bookButton’]":"beginBooking",
"change select[id=’showSelector’]":"refreshShows",
"change select[id='performanceTimes’]":"performanceSelected",
"change select[id="dayPicker’]":’refreshTimes’

}I

render: function () {
S (this.el) .empty ()
utilities.applyTemplate ($(this.el), eventDetail, this.model.attributes)
S (this.el) .trigger (' create’)
S ("#bookButton") .addClass ("ui—-disabled")
var self = this;
$.getJSON ("rest/shows?event=" + this.model.get (’id’), function (shows) {

self.shows = shows;
$ ("#showSelector") .empty () .append ("<option data-placeholder=’true’>Choose a <+
venue ...</option>");

$.each (shows, function (i, show) {
$ ("#showSelector") .append ("<option value='" + show.id + "’>" + show. ¢«
venue.address.city + " : " 4+ show.venue.name + "</option>");

})i
S ("#showSelector") .selectmenu (' refresh’, true)

$ ("#dayPicker") .selectmenu (' disable’)

$ ("#dayPicker") .empty () .append ("<option data-placeholder=’'true’>Choose a <
show date ...</option>")

S ("#performanceTimes") .selectmenu (' disable’)

$ ("#performanceTimes") .empty () .append ("<option data-placeholder='true’> <
Choose a show time ...</option>")

1)

S ("#dayPicker") .empty () ;

$ ("#dayPicker") .selectmenu (’/disable’);

$ ("#performanceTimes") .empty () ;

S ("#performanceTimes") .selectmenu (' disable’);
S (this.el) .trigger (' pagecreate’);
return this;

}I

performanceSelected: function () {

if ($("#performanceTimes").val() != ’"Choose a show time ...’) {
S ("#bookButton") .removeClass ("ui-disabled")
} else {

S ("#bookButton") .addClass ("ui—-disabled")

}o
beginBooking: function () {
require (' router’) .navigate ("book/’ + $("#showSelector option:selected").val() + ¢«
/" + $("#performanceTimes") .val (), true)
}s

refreshShows:function (event) ({

var selectedShowId = event.currentTarget.value;

if (selectedShowId != ’Choose a venue ...") {
var selectedShow = _.find(this.shows, function (show) {
return show.id == selectedShowId

})i
this.selectedShow = selectedShow;
var times = _.unig(_.sortBy(_.map (selectedShow.performances, function (

performance) {

Ticket Monster Tutorial 163 /198

return (new Date (performance.date) .withoutTimeOfDay ()) .getTime ()
}), function (item) {
return item

P
utilities.applyTemplate ($ ("#eventVenueDescription"), eventVenueDescription, <

{venue:selectedShow.venue}) ;
$("#detailsCollapsible") .show ()
$ ("#dayPicker") .removeAttr (' disabled’)
S ("#performanceTimes") .removeAttr (' disabled’)
$ ("#dayPicker") .empty () .append ("<option data-placeholder=’true’>Choose a <
show date ...</option>")
_.each(times, function (time) {
var date = new Date (time)
$ ("#dayPicker") .append ("<option value=’" + date.toYMD() + "’>" + date. ¢
toPrettyStringWithoutTime () + "</option>")
}) i

S ("#dayPicker") .selectmenu (' refresh’)
S ("#dayPicker") .selectmenu (' enable’)
this.refreshTimes ()
} else {
S ("#detailsCollapsible") .hide ()
$ ("#eventVenueDescription") .empty ()
S ("#dayPicker") .empty ()
S ("#dayPicker") .selectmenu (' disable’)
$ ("#performanceTimes") .empty ()
S ("#performanceTimes") .selectmenu (' disable’)
}
}o
refreshTimes:function () {

var selectedDate = $("#dayPicker") .val();
S ("#performanceTimes") .empty () .append ("<option data-placeholder=’true’>Choose a <
show time ...</option>")
if (selectedDate) {
$.each (this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date (performance.date);

if (_.isEqual (performanceDate.toYMD (), selectedDate)) {
S ("#performanceTimes") .append ("<option value='" + performance.id + <+
"’>" + performanceDate.getHours () .toZeroPaddedString(2) + ":" + <«

performanceDate.getMinutes () .toZeroPaddedString (2) + "</option>" <
)

})

S ("#performanceTimes") .selectmenu (' enable’)

}

S ("#performanceTimes") .selectmenu (' refresh’)
this.performanceSelected()

)i

return EventDetailView;
b i
Once again, this is very similar to the desktop version. Now we add the page templates:
src¢/main/webapp/resources/templates/mobile/event-detail.html

<div data-role="header">
<h3>Book tickets</h3>
</div>

Ticket Monster Tutorial 164 /198

<div data-role="content">

<h3><%=name%></h3>

<img width='100px’ srec='rest/media/<%=medialtem.id%>’/>

<p><%=description%></p>

<div data-role="fieldcontain">
<label for="showSelector">Where</label>
<select id=’showSelector’ data-mini=’true’ />

</div>

<div data-role="collapsible" data-content-theme="c" style="display: none;"
id="detailsCollapsible">
<h3>Venue details</h3>

<div id="eventVenueDescription">
</div>
</div>

<div data-role=’fieldcontain’>
<fieldset data-role=’controlgroup’>
<legend>When</legend>
<label for="dayPicker">When:</label>
<select id=’dayPicker’ data-mini=’true’/>

<label for="performanceTimes">When:</label>
<select id="performanceTimes" data-mini=’'true’/>

</fieldset>
</div>

</div>
<div data-role="footer" class="ui-bar ui-grid-c">
<div class="ui-block-a"></div>
<div class="ui-block-b"></div>
<div class="ui-block-c"></div>
<a id=’"bookButton’ class="ui-block-e" data-theme=’'b’ data-role="button" data-icon="
check">Book
</div>

src¢/main/webapp/resources/templates/mobile/event-venue-description.html

<img width="100" src="rest/media/<%=venue.medialtem.id%>"/></p>
<%= venue.description %>
<address>

<p>Address:</p>

<p><%= venue.address.street %></p>

<p><%= venue.address.city %>, <%= venue.address.country $%$></p>
</address>

Finally, we add this to the router, explicitly indicating to jQuery Mobile that a transition has to take place after the view is
rendered - in order to allow the page to render correctly after it has been invoked from the listview.

src/main/webapp/resources/js/app/router/mobile/router.js

[**
* A module for the router of the desktop application.

*
x/
define ("router", [

"app/model/event’,

"app/views/mobile/event-detail’

Ticket Monster Tutorial 165/ 198

], function (

.7

Event,
.7
EventDetailView,
o) {
var Router = Backbone.Router.extend ({
routes: {
"events/:1d":"eventDetail",

}l

eventDetail: function (id) {
var model = new Event ({id:id});
var eventDetailView = new EventDetailView ({model:model, el:$("#container")});
model .bind ("change",
function () {
utilities.viewManager.showView (eventDetailView) ;
$.mobile.changePage ($ ("#container"), {transition:’slide’, changeHash: <
false});
}) .fetch();

1)

Just as the desktop version, the mobile event detail view allows users to choose a venue and a performance time. The next step is
to allow the user to book some tickets.

30.5 Booking tickets

The views to book tickets are simpler than the desktop version. Users can select a section and enter the number of tickets for
each category however, there is no way to add or remove tickets from an order. Once the form is filled out, the user can only
submit it.

First, we create the views:
src¢/main/webapp/resources/js/app/views/mobile/create-booking.js

define ([
"backbone’,
futilities’,
"require’,

"text!../../../../templates/mobile/booking-details.html’,

"text!../../../../templates/mobile/create-booking.html’,

"text!../../../../templates/mobile/confirm-booking.html’,

"text!../../../../templates/mobile/ticket—-entries.html’,

"text!../../../../templates/mobile/ticket-summary-view.html’
], function (

Backbone,

utilities,

require,

bookingDetailsTemplate,
createBookingTemplate,
confirmBookingTemplate,

Ticket Monster Tutorial 166/ 198

ticketEntriesTemplate,
ticketSummaryViewTemplate) {

var TicketCategoriesView = Backbone.View.extend ({
id:’categoriesView’,
events: {
"change input":"onChange"
}I
render: function () {
var views = {};

if (this.model != null) {
var ticketPrices = _.map(this.model, function (item) ({
return item.ticketPrice;
}) i
utilities.applyTemplate ($(this.el), ticketEntriesTemplate, {ticketPrices: ¢+
ticketPrices});
} else {
$(this.el) .empty () ;
}
S (this.el) .trigger (' pagecreate’);
return this;
}I
onChange: function (event) {

var value = event.currentTarget.value;

var ticketPricelId = $(event.currentTarget) .data ("tm-id");

var modifiedModelEntry = _.find(this.model, function(item) { return item.
ticketPrice.id == ticketPricelId});

if ($.isNumeric(value) && value > 0) {
modifiedModelEntry.quantity = parselnt (value);
}
else {
delete modifiedModelEntry.quantity;

1)
var TicketSummaryView = Backbone.View.extend ({
render: function () {

utilities.applyTemplate ($(this.el), ticketSummaryViewTemplate, this.model. <
bookingRequest)

}) i

var ConfirmBookingView = Backbone.View.extend ({

events: {
"click a[id=’saveBooking’]":"save",
"click af[id="goBack’]":"back"

}I

render: function () {

utilities.applyTemplate ($(this.el), confirmBookingTemplate, this.model)
this.ticketSummaryView = new TicketSummaryView ({model:this.model, el:$("# <«
ticketSummaryView") });
this.ticketSummaryView.render () ;
S (this.el) .trigger (' pagecreate’)
}I
back: function () {
require ("router") .navigate ("book/’ + this.model.bookingRequest.show.id + '/’ + <
this.model.bookingRequest.performance.id, true)

}, save:function (event) {
var bookingRequest = {ticketRequests:[]};

Ticket Monster Tutorial

167 /198

1)

var self = this;
_.each (this.model.bookingRequest.tickets, function (collection) {
_.each(collection, function (model) {
if (model.quantity != undefined) {

bookingRequest.ticketRequests.push ({ticketPrice:model.ticketPrice.

id, gquantity:model.quantity})

bookingRequest.email = this.model.email;
bookingRequest .performance = this.model.performanceld;
$.ajax ({url:"rest/bookings",

data:JSON.stringify (bookingRequest),

type:"POST",

dataType:"json",

contentType:"application/json",

success: function (booking) {

utilities.applyTemplate ($ (self.el), bookingDetailsTemplate, booking)

$(self.el) .trigger (' pagecreate’);
}}) .error (function (error) {
alert (error);

1)
this.model = {};

var CreateBookingView = Backbone.View.extend ({

events: {
"click af[id='confirmBooking’]":"checkout",
"change select":"refreshPrices",
"blur input[type='number’]":"updateForm",
"blur input[name=’"email’]":"updateForm"

}I

render: function () {

var self = this;

$.getJSON ("rest/shows/" + this.model.showId, function (selectedShow) {

self.model.performance = _.find(selectedShow.performances, function (item) <+

{
return item.id == self.model.performanceld;
1)
var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown

var sections = _.uniqg(_.sortBy(_.pluck (selectedShow.ticketPrices, ’'section’ <>

), id), true, id);

utilities.applyTemplate ($(self.el), createBookingTemplate, { show: <
selectedShow,
performance:self.model.performance,
sections:sections});

$S(self.el) .trigger (' pagecreate’);

self.ticketCategoriesView = new TicketCategoriesView({model:{}, el:$ ("
ticketCategoriesViewPlaceholder") 1});
self.model.show = selectedShow;

self.ticketCategoriesView.render () ;
$("a[id="confirmBooking"]’) .addClass (‘ui-disabled’);
$("#sectionSelector") .change () ;

<

Ticket Monster Tutorial 168 /198

}I
refreshPrices:function (event) ({
if (event.currentTarget.value != "Choose a section") ({
var ticketPrices = _.filter (this.model.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;
}) i
var ticketPricelInputs = new Array();
_.each(ticketPrices, function (ticketPrice) {
var model = {};
model.ticketPrice = ticketPrice;
ticketPriceInputs.push (model);
}) i
S ("#ticketCategoriesViewPlaceholder") .show () ;
this.ticketCategoriesView.model = ticketPricelnputs;
this.ticketCategoriesView.render () ;
$(this.el) .trigger (' pagecreate’) ;
} else {
$("#ticketCategoriesViewPlaceholder") .hide () ;
this.ticketCategoriesView.model = new Array();
this.updateForm() ;

}I
checkout : function () {
this.model.bookingRequest.tickets.push (this.ticketCategoriesView.model) ;
this.model.performance = new ConfirmBookingView ({model:this.model, el:$("# <«
container") }) .render () ;

$ ("#container") .trigger (' pagecreate’);
}I
updateForm: function () {
var totals = _.reduce (this.ticketCategoriesView.model, function (partial, model ¢
) |
if (model.quantity != undefined) {

partial.tickets += model.quantity;
partial.price += model.quantity x model.ticketPrice.price;
return partial;
}
}, {tickets:0, price:0.0});

this.model.email = $("input[type="email’]") .val();

this.model.bookingRequest.totals = totals;

if (totals.tickets > 0 && $("input[type='email’]").val()) {
$("a[id="confirmBooking"]’) .removeClass ('ui-disabled’);

} else {

S('al[id="confirmBooking"]’) .addClass ('ui-disabled’);

)i

return CreateBookingView;
P

The views follow the structure the desktop application, except that the summary view is not rendered inline but after a page
transition.

Next, we create the page fragment templates. First, the actual page:
src/main/webapp/resources/templates/mobile/create-booking.html

<div data-role="header">
<h1>Book tickets</hl>

</div>

<div data-role="content">
<p>

Ticket Monster Tutorial 169/ 198

<h3><%=show.event .name%></h3>
</p>
<p>

<%=show.venue.name%>
<p>

<p>
<small><%=new Date (performance.date) .toPrettyString()%></small>
</p>
<div id="sectionSelectorPlaceholder">
<div data-role="fieldcontain">
<label for="sectionSelect">Section</label>
<select id="sectionSelect">

<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function(section) { %>
<option value="<%$=section.id%>"><%=section.name%> - <%$=section.description% <
></option>
<% 1) %>
</select>
</div>
</div>

<div id="ticketCategoriesViewPlaceholder" style="display:none;"/>

<div class="fieldcontain">
<label>Contact email</label>
<input type=’'email’ name=’'email’ placeholder="Email"/>
</div>
</div>

<div data-role="footer" class="ui-bar">

Cancel

Checkout
</div>

Next, the fragment that contains the input form for tickets, which is re-rendered whenever the section is changed:
src¢/main/webapp/resources/templates/mobile/ticket-entries.html

<% if (ticketPrices.length > 0) { %>
<form name="ticketCategories">
<h4>Select tickets by category</h4>
<% _.each(ticketPrices, function(ticketPrice) { %>
<div id="ticket-category-input-<%=ticketPrice.id%>"/>

<fieldset data-role="fieldcontain">
<label for="ticket-<%=ticketPrice.id%>"><%$=ticketPrice.ticketCategory.description% <+
> ($<%=ticketPrice.price%>)</label>
<input id="ticket-<%=ticketPrice.id%>" data-tm-id="<%=ticketPrice.id%>" type=" ¢+
number" placeholder="Enter value"
name="tickets"/>
</fieldset>
<% }) %>
</form>
}

Before submitting the request to the server, the order is confirmed:
src/main/webapp/resources/templates/mobile/confirm-booking.html

<div data-role="header">
<hl>Confirm order</hl>
</div>

Ticket Monster Tutorial 170/198

<div data-role="content">
<h3><%=show.event .name%></h3>
<p><%=show.venue.name%></p>
<p><small><%=new Date (performance.date) .toPrettyString()%></small></p>
<p>Buyer: <emphasis><%$=email%></emphasis></p>
<div id="ticketSummaryView"/>

</div>

<div data-role="footer" class="ui-bar">
<div class="ui-grid-b">
<div class="ui-block-a"><a id="cancel" href="#" data-role="button" data-icon="
delete">Cancel</div>
<div class="ui-block-b">Back <«
</div>
<div class="ui-block-c"> ¢
Buy!</div>
</div>
</div>

The confirmation page contains a summary subview:
src/main/webapp/resources/templates/mobile/ticket-summary-view.html

<table>
<thead>
<tr>
<th>Section</th>
<th>Category</th>
<th>Price</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<% _.each(tickets, function (ticketRequest) {
<% _.each(ticketRequest, function (model) { %>
<% if (model.quantity != undefined) { %>
<tr>
<td><%= model.ticketPrice.section.name %></td>
<td><%= model.ticketPrice.ticketCategory.description %></td>
<td>$<%= model.ticketPrice.price %$></td>
<td><%= model.quantity %></td>

%>

</tr>
<% } %>
<% }) %>
<% 1) %>
</tbody>
</table>
<div data-theme="c">
<h4>Totals</h4>

<p>Total tickets: <%= totals.tickets %></p>
<p> Total price: $<%= totals.price %></p>
</div>

Finally, we create the page that displays the booking confirmation:
src/main/webapp/resources/templates/mobile/booking-details.html

<div data-role="header">
<hl>Booking complete</hl>

</div>

<div data-role="content">
<table id="confirm_tbl">

Ticket Monster Tutorial

171/198

<thead>
<tr>

<td colspan="5" align="center">Booking <%$=id%></td>

<tr>

<tr>
<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>

</thead>

<tbody>

<% $.each(_.sortBy(tickets, function(ticket) {return ticket.id}),

ticket) { %>

<tr>
<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name$%></td>
<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>

<% }) %>

</tbody>

</table></div>
<div data-role="footer" class="ui-bar">

<div class="ui-block-b"><a id="back" href="#" data-role="button"

/a></div>

</div>

The last step is registering the view with the router:
src/main/webapp/resources/js/app/router/desktop/router.js

/[x %
* A module for the router of the desktop application
x/
define ("router", [
"app/views/mobile/create-booking’,

1, function (

CreateBookingView

) Ao

var Router = Backbone.Router.extend ({
routes: {

"book/:showId/:performanceId":"bookTickets",

by

bookTickets:function (showId, performanceld) ({
var createBookingView = new CreateBookingView ({

function

model: {showId:showId, performanceld:performanceld,

bookingRequest:{tickets:[]}},
el:$("#container")

1) i

createBookingView.render () ;

(i,

<+

data-icon="back">Back< <

Ticket Monster Tutorial 172/198

Ticket Monster Tutorial 173/198

Chapter 31

Device detection

We have created two distinct single-page applications and can point users to any of them easily. But instead of requiring that the
user work out which page they want, we should redirect them to the correct page based on the device that they have.

We use Modernizr.js, a JavaScript library that help us detect device capabilities. You can use Modernizer.js for much more thank
just desktop vs. mobile detection. It can also identify which features from the HTMLS set are supported by a particular browser
at runtime, which is extremely helpful for implementing progressive enhancement in applications.

First step we copy modernizr. jsinto src/main/webapp/resources/js/libs. Then,weadd src/main/webapp/inde
with the following content:

src/main/webapp/index.html

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript" sre="resources/Jjs/libs/modernizr-2.0.6.3js"></script>

Rll==
A simple check on the client. For touch devices or small-resolution screens
show the mobile client. By enabling the mobile client on a small-resolution ¢«
screen
we allow for testing outside a mobile device (like for example the Mobile <
Browser
simulator in JBoss Tools and JBoss Developer Studio).
——>
<script type="text/javascript">

if (Modernizr.touch || Modernizr.mg("only all and (max-width: 480px)")) {
location.replace ('mobile—-index.html’)
} else {

location.replace (' desktop—-index.html’)
bi
</script>
</head>
<body>

</body>
</html>

Now we can navigatetohttp://localhost:8080/ticket-monster/ with either a mobile device or a desktop browser,
and be redirected to the appropriate page.

Ticket Monster Tutorial 174 /198

Chapter 32

More Resources

To learn more about writing HTMLS5 + REST applications with JBoss, take a look at the Aerogear project.

http://www.jboss.org/aerogear

Ticket Monster Tutorial 175/198

Part V

Building the Administration Ul using Forge

Ticket Monster Tutorial 176 /198

Chapter 33

What Will You Learn Here?

You’ve just defined the domain model of your application, and all the entities managed directly by the end-users. Now it’s time
to build an administration GUI for the TicketMonster application using JSF and RichFaces. After reading this guide, you’ll
understand how to use JBoss Forge to create the views from the entities and how to "soup up" the UI using RichFaces.

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.

Ticket Monster Tutorial 177 /198

Chapter 34

Setting up Forge

34.1 JBoss Enterprise Application Platform 6

If you are using JBoss Enterprise Application Platform 6, Forge is available in JBoss Developer Studio 5 (Betal or newer).

To show the Forge Console, navigate to Window — Show View — Other, locate Forge Console and click OK. Then click the Start
button in top right corner of the view.

34.2 JBoss AS7

If you are using JBoss AS 7, you should install JBoss Forge version 1.0.2.Final or higher. Follow the instructions at Installing
Forge.

Open a command line and navigate to the root directory of this quickstart.
Launch Forge by typing the following command:

forge

34.3 Required Forge Plugins

Forge comes with a number of built in plugins, including the "scaffold" plugin, which is able to generate a full CRUD UI from
JPA entities. The generated Ul uses JSF as the view layer, backed by CDI beans. Internally, Forge uses Metawidget to create the
CRUD screens.

Forge also includes a powerful plugin management system. The RichFaces plugin isn’t bundled with Forge, but it’s easy to
install. First use the forge find-plugin command to locate it

forge find-plugin richfaces

In this case, the plugin is just called richfaces - easy! We can install it using the forge install-plugin command:

forge install-plugin richfaces

This will download, compile and install the RichFaces plugin.

https://docs.jboss.org/author/display/FORGE/Installation
https://docs.jboss.org/author/display/FORGE/Installation
http://metawidget.org/

Ticket Monster Tutorial 178 /198

Chapter 35

Getting started with Forge

Forge is a powerful rapid application development (aimed at Java EE 6) and project comprehension tool. It can operate both on
projects it creates, and on existing projects, such as TicketMonster. If you want to learn more about Forge . ..

When you cd into a project with Forge, it inspects the project, and detects what technologies you are using in the project. Let’s
see this in action:

project list-facets

Those facets detected are colored green.

Ticket Monster Tutorial 179/198

Figure 35.1: Output of project list-facets

As you can see, Forge has detected all the technologies we are using, such as JPA, JAX-RS, CDI and Bean Validation.

Ticket Monster Tutorial 180/ 198

Chapter 36

Generating the CRUD Ul

Forge Scripts

Forge supports the execution of scripts. The generation of the CRUD Ul is provided as a Forge script in TicketMonster, so
you don’t need to type the commands everytime you want to regenerate the Admin Ul The script will also prompt you to
applyTo run the script:

run admin_layer.fsh

36.1 Update the project

First, we need to add Scaffold to the project. Run:

scaffold setup —--targetDir admin

to instruct Forge to generate the css, images and templates used by the scaffolded Ul. Forge also adds an error page to be used
when a 404 or a 500 error is encountered.

Ticket Monster Tutorial 181/198

[ticket-monster] ticket-monster-1 $ scaffold setup --targetDir admin

INFO Using currently installed scaffold [faces]

Warning: The encoding 'UTF-B' is not supported by the Java runtime.

Warning: The encoding 'UTF-B' is not supported by the Java runtime.

Warning: The enceding 'UTF-B' is not supported by the Java runtime.

Warning: The encoding 'UTF-B' is not supported by the Java runtime.

Warning: The encoding 'UTF-B' is not supported by the Java runtime.

Warning: The encoding 'UTF-B' is not supported by the Java runtime.

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/scaffold/paginator.xh
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/scaffold/pageTemplate
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/admin/index.html

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/admin/index.xhtml

Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/error.xhtml

Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/resources/add.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/background.gif
Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/resources/false.png

Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/resources/favicon.ico

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/forge-logo.png
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/forge-style.css
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/jboss-community.png
Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/resources/remove.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/search.png

Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/resources/true.png

Wrote /Users/pmuir/workspace/ticket-monster-1/sre/main/webapp/WEB-INF/web.xml

Figure 36.1: Output of scaffold setup

Now, we need to add RichFaces to the project. Run:

richfaces setup

You’ll be prompted for the version of RichFaces to use. Choose version 4.0.0.Final (the default), by pressing Enter.
[ticket-monster] ticket-monster-1 $ richfaces setup

Which version of RichFaces?

l - [RichFaces 4.0.0.Final]*
2 - [RichFaces 3.3.3.Final]
? Choose an option by typing the number of the selection [*-default] [0]
Warning: The encoding 'UTF-8' is not supported by the Java runtime.
Warning: The encoding 'UTF-B' is not supported by the Java runtime.
SUCCESS Installed [org.richfaces] successfully.
SUCCESS RichFacesFacet is configured.
Wrote /Users/pmuir/workspace/ticket-monster-1/pom.xml
Wrote /Users/pmuir/workspace/ticket-monster-1/src/main/webapp/WEB-INF/web.xml

Figure 36.2: Output of richfaces setup

Ticket Monster Tutorial 182/198

36.2 Scaffold the view from the JPA entities

You can either scaffold the entities one-by-one, which allows to control which Uls are generated, or you can generate a CRUD
UI for all the entities. We’ll do the latter:

scaffold from-entity org. jboss.jdf.example.ticketmonster.model.» ——-targetDir admin <>
—-—overwrite

Forge asks us whether we want to overwrite every file - which get’s a bit tedious! Specifying ——overwrite allows Forge
to overwrite files without prompt - much better!

We now have a CRUD UI for all the entities used in TicketMonster!

Ticket Monster Tutorial 183 /198

Chapter 37

Test the CRUD Ul

Let’s test our UI on our local JBoss AS instance. As usual, we’ll build and deploy using Maven:

mvn clean package Jjboss—-as:deploy

Ticket Monster Tutorial 184 /198

Chapter 38

Make some changes to the Ul

Let’s add support for images to the Admin UI TicketMonster doesn’t provide support for storing images, but allows you to
reference images from hosting sites on the internet. TicketMonster caches the images, so you can still use the application when
you aren’t connected to the internet.

We’ll use JSF 2’s composite components, which allow to easily create new components.
/src/main/webapp/resources/tm/image.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite">

<head>

<title>Cached Image</title>

</head>

<body>

<composite:interface>
<composite:attribute name="media" type="org. jboss.jdf.example.ticketmonster.services.
MediaPath"/>
<composite:attribute name="id" type="java.lang.String" />
</composite:interface>

<composite:implementation>
<h:graphicImage value="#{cc.attrs.media.url}" rendered="#{!cc.attrs.media.cached}"/>
<h:graphicImage value="/rest/media/cache/#{cc.attrs.media.url}" rendered="#{cc.attrs. «
media.cached}"/>
</composite:implementation>

</body>
</html>

The image composite component encapsulates the rendering of the image, pulling it from the remote location if the item is
available and not cached, or pulling it from the cache if otherwise.

Adding this fileto /src/main/webapp/resources/tm/ automatically registers the component with JSF, using the names-
pace xmlns:tm="http://java.sun.com/jsf/composite/tm.

Let’s go ahead and use this component to display the image in src/main/webapp/admin/event/view.xhtml - the

page an admin uses to view an event before editing it. Open up the file in JBoss Developer Studio (or your favourite IDE

or text editor). Forge has generated an entry in panel grid to display the image URL, so we can just add <tm:image
media="#{mediaManager.getPath (eventBean.event.picture) }" />tothe<h:1link> withtheid eventBeanEv
We need to register the namespace as well, so add xmlns:tm="http://java.sun.com/jsf/composite/tm" to the
<ui:composition> tag. You should end up with a file that looks a bit like:

Ticket Monster Tutorial

185/198

/src/main/webapp/admin/event/view.xhtml

<?xml version=’"1.0’ encoding='UTF-8’ 2>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3

/DTD/xhtmll-transitional.dtd">

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns: f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:tm="http://java.sun.com/jsf/composite/tm"
template="/resources/scaffold/pageTemplate.xhtml">

<f:metadata>

<f:viewParam name="id" value="#{eventBean.id}" />

<f:event type="preRenderView" listener="#{eventBean.retrieve}"
</f:metadata>

<ui:param name="pageTitle" value="View Event" />

<ui:define name="header">
Event
</ui:define>

<ui:define name="subheader">
View existing Event
</ui:define>

<ui:define name="footer" />

<ui:define name="main">
<h:panelGrid columnClasses="label, component, required"
columns="3">
<h:outputLabel for="eventBeanEventName" value="Name:" />
<h:outputText id="eventBeanEventName"
value="#{eventBean.event.name}" />
<h:outputText />

<h:outputLabel for="eventBeanEventPicture" wvalue="Picture:"

<h:1link id="eventBeanEventPicture"
outcome="/admin/medialtem/view"
value="#{eventBean.event.picture}">
<tm:image

media="#{mediaManager.getPath (eventBean.event.picture) } "
<f:param name="id" value="#{eventBean.event.picture.id}"

</h:1link>

<h:outputText />

<h:outputLabel for="eventBeanEventCategory"
value="Category:" />

<h:1link id="eventBeanEventCategory"
outcome="/admin/eventCategory/view"
value="#{eventBean.event.category}">
<f:param name="id"

value="#{eventBean.event.category.id}" />

</h:1link>

<h:outputText />

<h:outputLabel for="eventBeanEventDescription"
value="Description:" />

<h:outputText id="eventBeanEventDescription"
value="#{eventBean.event.description}" />

<h:outputText />

<h:outputLabel value="Major:" />

<h:outputText

.org/TR/xhtmll ¢

/>

Ticket Monster Tutorial

186 /198

styleClass="#{eventBean.event.major ? ’'boolean-true’
<h:outputText />
</h:panelGrid>

<div class="buttons">
<h:1link value="View All" outcome="search" />
<h:1link value="Edit" outcome="create"
includeViewParams="true" />
<h:1link value="Create New" outcome="create" />
</div>
</ui:define>

</ui:composition>

We can test these changes by running

mvn clean package jboss-as:deploy

as usual.

"boolean—-false’ }"

/>

Ticket Monster Tutorial 187 /198

Part VI

Building The Statistics Dashboard Using GWT
And Errai

Ticket Monster Tutorial 188 /198

Chapter 39

What Will You Learn Here?

You’ve just built the administration view, and would like to collect real-time information about ticket sales and attendance. Now
it would be good to implement a dashboard that can collect data and receive real-time updates. After reading this tutorial, you
will understand our dashboard design and the choices that we made in its implementation. Topics covered include:

* Adding GWT to your application

* Setting up CDI server-client eventing using Errai

» Testing GWT applications

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you

through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.

In this tutorial, we will create a booking monitor using Errai and GWT, and add it to the TicketMonster application. It will show
live updates on the booking status of all performances and shows. These live updates are powered by CDI events crossing the
client-server boundary, a feature provided by the Errai Framework.

Ticket Monster Tutorial 189/198

Chapter 40

Module definition

The first step is to add a GWT module descriptor (a .gwt .xml file) which defines the GWT module, its dependencies and
configures the client source paths. Only classes in these source paths will be compiled to JavaScript by the GWT compiler.
Here’s the BookingMonitor.gwt .xml file:

src/main/resources/org/jboss/jdf/example/ticketmonster/BookingMonitor.gwt.xml

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.6//EN"
"http://google-web-toolkit.googlecode.com/svn/releases/1.6/distro-source/core/src/ +
gwt-module.dtd">

==
This file declares the Errai/GWT module for the TicketMonster booking monitor,
which shares the model classes with the user-facing part of the app, but defines
its own user interface for TicketMonster administrators.

——>

<module rename-to="BookingMonitor">
<inherits name="org.jboss.errai.common.ErraiCommon"/>
<inherits name="org.jboss.errai.bus.ErraiBus"/>
<inherits name="org. jboss.errai.ioc.Container"/>
<inherits name="org. jboss.errai.enterprise.CDI"/>

<!-- Model classes that are shared with the rest of the application -->
<source path="model"/>

<!-- Classes that are specific to ’"booking monitor’ features; not shared with rest of <

app ——>
<source path="monitor"/>

<!-- Limit the supported browsers for the sake of this demo —--—>
<set-property name="user.agent" value="ie8,safari,geckol_8"/>
</module>

The rename-to attribute specifies the output directory and file name of the resulting JavaScript file. In this case we specified
that the BookingMonitor module will be compiled into BookingMonitor/BookingMonitor.nocache. js in the
project’s output directory. The module further inherits the required Errai modules, and specifies the already existing model
package as source path, as well as a new package named monitor, which will contain all the client source code specific to the
booking monitor.

Ticket Monster Tutorial 190/ 198

Chapter 41

Host page

In the next step we add a host HTML page which includes the generated JavaScript and all required CSS files for the booking
monitor. It further specifies a <div> element with id content which will be used as a container for the booking monitor’s
user interface.

src/main/webapp/booking-monitor.html

<!DOCTYPE html>
<html>
<head>
<title>Ticket Monster Administration</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link rel="stylesheet" href="resources/bootstrap/css/bootstrap.css" />
<link type="text/css" rel="stylesheet" href="resources/css/screen.css" />

<script type="text/Jjavascript" src="BookingMonitor/BookingMonitor.nocache.js"></script>
</head>

<body>
<div id="container">
<div id="menu">
<div class="navbar">
<div class="navbar—-inner">
<div class="container">
JBoss Ticket Monster Booking Monitor
</div>
</div>
</div>
</div>
<h3 class="booking-status—-header">Booking status</h3>
<div id="content" class="container-fluid"></div>
</div>

<footer>
<div style="text-align: center;">

</div>
</footer>
</body>
</html>

Ticket Monster Tutorial 191/198

Chapter 42

Enabling Errai

For enabling Errai in our application we will add an ErraiApp.properties marker file. When it is detected inside a JAR
or at the top of any classpath, the subdirectories are scanned for deployable components. As such, all Errai application modules
in a project must contain an ErraiApp.properties at the root of all classpaths that you wish to be scanned, in this case
src/main/resources.

We will alsoadd anErraiService.properties file, which contains basic configuration for the bus itself. Unlike ErraiApp.pr«
there should be at most one ErraiService.properties file on the classpath of a deployed application.

src¢/main/resources/ErraiService.properties

#
Request dispatcher implementation (default is SimpleDispatcher)
#

errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

Ticket Monster Tutorial 192 /198

Chapter 43

Preparing the wire objects

One of the strengths of Errai is the ability to use domain objects for communication across the wire. In order for that to
be possible, all model classes that are transferred using Errai RPC or Errai CDI need to be annotated with the Errai-specific
annotation @Portable. We will begin by annotating the Booking class which used as an the event payload.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java
import org.jboss.errai.common.client.api.annotations.Portable;
@Portable

public class Booking implements Serializable ({

}

You should do the same for the other model classes.

Ticket Monster Tutorial

193/198

Chapter 44

The EntryPoint

We are set up now and ready to start coding. The first class we need is the EntryPoint into the GWT application. Using Errai, all
it takes is to create a POJO and annotate it with @EntryPoint.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java

package org.

import
import
import
import
import

import
import

import
import
import
import
import
import
import
import
import
import

import

[**
* The

*

*
*

*

*/

java.
java.
java.
java.
java.

util

util.
util.
util.
util.
.Map;

Collections;
Comparator;
HashMap;
List;

jboss. jdf .example.ticketmonster.monitor.client.local;

javax.enterprise.event.Observes;

javax.inject.Inject;

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

com.

jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.

errai.bus.
errai.ioc.
errai.ioc.
errai.ioc.
example.
example.
example.
example.
example.
example.

jdf.
jdf.
jdf.
jdf.
jdf.
jdf.

client.
client.
client.
client.

api
api
api
api

.RemoteCallback;
AfterInitialization;
.Caller;

.EntryPoint;

ticketmonster.monitor.client.shared.BookingMonitorService;
ticketmonster.monitor.client.shared.qualifier.Cancelled;
ticketmonster.monitor.client.shared.qualifier.Created;
ticketmonster.model.Booking;
ticketmonster.model.Performance;

ticketmonster.model.Show;

google.gwt.user.client.ui.RootPanel;

entry point into the TicketMonster booking monitor.

@EntryPoint
public class BookingMonitor {

/ x %

The {@code @EntryPoint} annotation indicates to the Errai framework that
this class should be instantiated inside the web browser when the web page
is first loaded.

* This map caches the number of sold tickets for each {Q@link Performance} using
* the performance id as key.

*/

private static Map<Long,

/ x %

Long> occupiedCounts;

Ticket Monster Tutorial 194 /198

* This is the client-side proxy to the {@link BookingMonitorService}.
* The proxy is generated at build time, and injected into this field when the page <+
loads.
*/
@Inject
private Caller<BookingMonitorService> monitorService;

/[*
* We store references to {@link ShowStatusWidget}s in this map, so we can update
* these widgets when {@link Booking}s are received for the corresponding {Q@link Show}.
*/

private Map<Show, ShowStatusWidget> shows = new HashMap<Show, ShowStatusWidget>();

/[*x
* This method constructs the UI.

*

Methods annotated with Errai’s {@link AfterInitialization} are only called once
* everything is up and running, including the communication channel to the server.
*/

@AfterInitialization

public void createAndShowUI () {

// Retrieve the number of sold tickets for each performance.
monitorService.call (new RemoteCallback<Map<Long, Long>>() {
@Override
public void callback (Map<Long, Long> occupiedCounts) {
BookingMonitor.occupiedCounts = occupiedCounts;
listShows () ;

*

}

}) .retrieveOccupiedCounts () ;

private void listShows () {
// Retrieve all shows
monitorService.call (new RemoteCallback<List<Show>> () {
@Override
public void callback (List<Show> shows) {
// Sort based on event name

Collections.sort (shows, new Comparator<Show> () {
@Override
public int compare (Show s0, Show sl) {
return s0.getEvent () .getName () .compareTo (sl.getEvent () .getName ()) ;

}) i

// Create a show status widget for each show

for (Show show : shows) {
ShowStatusWidget sw = new ShowStatusWidget (show) ;
BookingMonitor.this.shows.put (show, sw);
RootPanel.get ("content") .add (sw) ;

}

}) .retrieveShows () ;

As soon as Errai has completed its initialization process, the Booking Monitor#createAndShowUI () method is invoked
(@AfterInitialization tells Errai to call it). In this case the method will fetch initial data from the server using Errai

RPC and construct the user interface. To carry out the remote procedure call, we use an injected Caller for the remote interface
BookingMonitorService whichispartofthe org. jboss. jdf.example.ticketmonster.monitor.client.share
package and whose implementation BookingMonitorServiceImpl has been explained in the previous chapter.

Ticket Monster Tutorial 195/198

In order for the booking status to be updated in real-time, the class must be notified when a change has occured. If you have
built the service layer already, you may remember that the JAX-RS BookingService class will fire CDI events whenever a
booking has been created or cancelled. Now we need to listen to those events.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java

public class BookingMonitor ({

/ x %

* Responds to the CDI event that’s fired on the server when a {@link Booking} is <=
created.

*

* @param booking the create booking

*/

public void onNewBooking (@Observes @Created Booking booking) {

updateBooking (booking, false);

/[**
* Responds to the CDI event that’s fired on the server when a {@link Booking} is <>
cancelled.
*
* @param booking the cancelled booking
*/
public void onCancelledBooking (@0bserves @Cancelled Booking booking) {
updateBooking (booking, true);

// update the UI widget to reflect the new or cancelled booking
private void updateBooking (Booking booking, boolean cancellation) {
ShowStatusWidget sw = shows.get (booking.getPerformance () .getShow());

if (sw != null) {
long count = getOccupiedCountForPerformance (booking.getPerformance()) ;
count += (cancellation) ? -booking.getTickets () .size() : booking.getTickets(). ¢
size();
occupiedCounts.put (booking.getPerformance () .getId (), count);
sw.updatePerformance (booking.getPerformance());

/ x %
* Retrieve the sold ticket count for the given {@link Performance}.
*
* @param p the performance
* @return number of sold tickets.
*/
public static long getOccupiedCountForPerformance (Performance p) {
Long count = occupiedCounts.get (p.getId());
return (count == null) ? 0 : count.intValue();

The newly created methods onNewBooking and onCancelledBooking are event listeners. They are identified as such by
the @0bserves annotation applied to their parameters. By using the @Created and @Cancelled qualifiers that we have
defined in our application, we narrow down the range of events that they listen.

Ticket Monster Tutorial

196 /198

Chapter 45

The widgets

Next, we will define the widget classes that are responsible for rendering the user interface. First, we will create the widget class
for an individual performance.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/PerformanceStatusWidget.java

package org. jboss. jdf.example.ticketmonster.monitor.client.local;

import

import
import
import
import
import

[**

org.jboss. jdf.example.ticketmonster.model.Performance;

com.google.gwt.il8n.client.DateTimeFormat;
com.google.gwt.il8n.client.DateTimeFormat.PredefinedFormat;
com.google.gwt.user.client.ui.Composite;
com.google.gwt.user.client.ui.HorizontalPanel;
com.google.gwt.user.client.ui.Label;

* A UI component to display the status of a {@link Performance}.

*/
public

class PerformanceStatusWidget extends Composite {

private Label bookingStatusLabel = new Label();

private HorizontalPanel progressBar = new HorizontalPanel ();
private Label soldPercentlLabel;
private Label availablePercentLabel;

private Performance performance;
private long soldTickets;
private int capacity;

public PerformanceStatusWidget (Performance performance) {

this.performance = performance;

soldTickets = BookingMonitor.getOccupiedCountForPerformance (performance) ;
capacity = performance.getShow () .getVenue () .getCapacity();

setBookingStatus () ;
setProgress();

HorizontalPanel performancePanel = new HorizontalPanel ();

String date = DateTimeFormat.getFormat (PredefinedFormat.DATE_TIME_SHORT) .format (¢

performance.getDate());
performancePanel.add (new Label (date));
performancePanel.add (progressBar) ;
performancePanel.add (bookingStatusLabel) ;

Ticket Monster Tutorial 197 /198

performancePanel.setStyleName ("performance—-status");
initWidget (performancePanel) ;

/[**
* Updates the booking status (progress bar and corresponding text) of the {@link <
Performance}
* associated with this widget based on the number of sold tickets cached in {@link <
BookingMonitor}.

*/
public void updateBookingStatus () {
this.soldTickets = BookingMonitor.getOccupiedCountForPerformance (performance);
setBookingStatus () ;
setProgress();
}
private void setBookingStatus () {

bookingStatusLabel.setText (soldTickets + " of " + capacity + " tickets booked");

private void setProgress() {
int soldPercent = Math.round((soldTickets / (float) capacity) =* 100);

if (soldPercentLabel != null) {
progressBar.remove (soldPercentLabel) ;

if (availablePercentlLabel != null) {
progressBar.remove (availablePercentLabel) ;

soldPercentLabel = new Label () ;
soldPercentLabel.setStyleName ("performance-status—-progress—-sold");
soldPercentLabel.setWidth (soldPercent + "px");

availablePercentlLabel = new Label();
availablePercentLabel.setStyleName ("performance-status—-progress—available");
availablePercentLabel.setWidth ((100 - soldPercent) + "px");

progressBar.add (soldPercentLabel) ;
progressBar.add(availablePercentLabel) ;

A show has multiple performances, so we will create a ShowStatusWidget to contains a PerformanceStatusWidget
for each performance.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/ShowStatusWidget.java
package org. jboss.jdf.example.ticketmonster.monitor.client.local;

import java.util.Date;
import java.util.HashMap;

import java.util.Map;

import org.jboss.jdf.example.ticketmonster.model.Performance;
import org. jboss. jdf.example.ticketmonster.model. Show;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.VerticalPanel;

Ticket Monster Tutorial 198 /198

[**

* A UI component to display the status of a {@link Show}.

*/

public class ShowStatusWidget extends Composite {

private Map<Long, PerformanceStatusWidget> performances = new HashMap<Long, <>

PerformanceStatusWidget> () ;

public ShowStatusWidget (Show show) {

/ x %

*

*

*

*

*/

VerticalPanel widgetPanel = new VerticalPanel();
widgetPanel.setStyleName ("show-status");

Label showStatusHeader = new Label (show.getEvent () .getName() + " @ " + show. ¢
getVenue ()) ;

showStatusHeader.setStyleName ("show-status—header");

widgetPanel.add (showStatusHeader) ;

// Add a performance status widget for each performance of the show

for (Performance performance : show.getPerformances()) {
if (performance.getDate () .getTime () > new Date () .getTime()) {
PerformanceStatusWidget psw = new PerformanceStatusWidget (performance) ;
performances.put (performance.getId(), psw);

widgetPanel.add (psw) ;

initWidget (widgetPanel) ;

Triggers an update of the {@link PerformanceStatusWidget} associated with
the provided {@link Performance}.

@param performance

public void updatePerformance (Performance performance) {

PerformanceStatusWidget pw = performances.get (performance.getId());
if (pw != null) ({
pw.updateBookingStatus () ;

This class is has two responsibilities. First, it will to display together all the performances that belong to a given show. Also,
it will update its PerformanceStatusWidget children whenever a booking event is received on the client (through the
observer method defined above).

	I Introduction & Getting Started
	Purpose and Target Audience
	Installation
	Creating a new Java EE 6 project with Maven
	Exploring the newly generated project
	Adding a new entity using Forge
	Reviewing persistence.xml & updating import.sql
	Adding a new entity using JBoss Developer Studio
	Deployment
	Adding a JAX-RS RESTful web service
	Adding a jQuery Mobile client application
	Conclusion

	II Building the persistence layer with JPA2 and Bean Validation
	What will you learn here?
	Your first entity
	Database design & relationships
	Media items
	Events
	Shows
	Performances
	Venue
	Sections
	Booking, Ticket & Seat

	Connecting to the database
	Populating test data
	Conclusion

	III Building The Business Services With JAX-RS
	What Will You Learn Here?
	Business Services And Their Relationships
	Preparations
	Internal Services
	The Media Manager
	The Seat Allocation Service
	Booking Monitor Service

	JAX-RS Services
	Initializing JAX-RS
	A Base Service For Read Operations
	Retrieving Venues
	Retrieving Events
	Creating and deleting bookings

	Testing the services
	A Basic Deployment Class
	Writing RESTful service tests
	Running the tests
	Executing tests from the command line
	Running Arquillian tests from within Eclipse

	IV Building The User UI Using HTML5
	What Will You Learn Here?
	First, the basics
	Client-side MVC Support
	Modularity
	Templating
	Mobile and desktop versions

	Setting up the structure
	Displaying Events
	The Event model
	The Events collection
	The EventsView view
	Routing

	Viewing a single event
	Creating Bookings
	Mobile view
	Setting up the structure
	The landing page
	The events view
	Displaying an individual event
	Booking tickets

	Device detection
	More Resources

	V Building the Administration UI using Forge
	What Will You Learn Here?
	Setting up Forge
	JBoss Enterprise Application Platform 6
	JBoss AS 7
	Required Forge Plugins

	Getting started with Forge
	Generating the CRUD UI
	Update the project
	Scaffold the view from the JPA entities

	Test the CRUD UI
	Make some changes to the UI

	VI Building The Statistics Dashboard Using GWT And Errai
	What Will You Learn Here?
	Module definition
	Host page
	Enabling Errai
	Preparing the wire objects
	The EntryPoint
	The widgets

