
Ticket Monster Tutorial
i

Ticket Monster Tutorial

Ticket Monster Tutorial
ii

Contents

I What is TicketMonster? 1

1 Preamble 2

2 Use cases 3

2.1 What can end users do? . 3

2.2 What can administrators do? . 4

3 Architecture 6

4 How can you run it? 7

4.1 Building TicketMonster . 7

4.2 Running TicketMonster . 7

4.2.1 Running TicketMonster locally . 7

4.2.2 Running TicketMonster in OpenShift . 8

5 Learn more 9

II Introduction & Getting Started 10

6 Purpose and Target Audience 11

7 Installation 13

8 Creating a new Java EE 6 project with Maven 15

9 Exploring the newly generated project 26

10 Adding a new entity using Forge 32

11 Reviewing persistence.xml & updating import.sql 38

12 Adding a new entity using JBoss Developer Studio 39

13 Deployment 46

Ticket Monster Tutorial
iii

14 Adding a JAX-RS RESTful web service 51

15 Adding a jQuery Mobile client application 64

16 Conclusion 76

16.1 Cleaning up the generated code . 76

III Building the persistence layer with JPA2 and Bean Validation 78

17 What will you learn here? 79

18 Your first entity 80

19 Database design & relationships 86

19.1 Media items . 87

19.2 Events . 88

19.3 Shows . 94

19.4 Performances . 100

19.5 Venue . 102

19.6 Sections . 107

19.7 Booking, Ticket & Seat . 107

20 Connecting to the database 109

21 Populating test data 111

22 Conclusion 113

IV Building The Business Services With JAX-RS 114

23 What Will You Learn Here? 115

24 Business Services And Their Relationships 116

25 Preparations 117

25.1 Adding Jackson Core . 117

25.2 Verifying the versions of the JBoss BOMs . 117

25.3 Enabling CDI . 118

25.4 Adding utility classes . 118

26 Internal Services 119

26.1 The Media Manager . 119

26.2 The Seat Allocation Service . 123

26.3 Booking Monitor Service . 125

Ticket Monster Tutorial
iv

27 JAX-RS Services 127

27.1 Initializing JAX-RS . 127

27.2 A Base Service For Read Operations . 127

27.3 Retrieving Venues . 131

27.4 Retrieving Events . 132

27.5 Creating and deleting bookings . 133

28 Testing the services 138

28.1 A Basic Deployment Class . 138

28.2 Writing RESTful service tests . 139

28.3 Running the tests . 143

28.3.1 Executing tests from the command line . 144

28.3.2 Running Arquillian tests from within Eclipse . 144

V Building The User UI Using HTML5 146

29 What Will You Learn Here? 147

30 First, the basics 148

30.1 Client-side MVC Support . 148

30.2 Modularity . 149

30.3 Templating . 149

30.4 Mobile and desktop versions . 150

31 Setting up the structure 151

31.1 Routing . 154

32 Setting up the initial views 157

33 Displaying Events 159

33.1 The Event model . 159

33.2 The Events collection . 159

33.3 The EventsView view . 160

34 Viewing a single event 163

35 Creating Bookings 169

36 Mobile view 178

36.1 Setting up the structure . 178

36.2 The landing page . 181

36.3 The events view . 182

36.4 Displaying an individual event . 183

36.5 Booking tickets . 187

Ticket Monster Tutorial
v

37 More Resources 195

VI Building the Administration UI using Forge 196

38 What Will You Learn Here? 197

39 Setting up Forge 198

39.1 JBoss Enterprise Application Platform 6 . 198

39.2 JBoss AS 7 . 198

39.3 Required Forge Plugins . 198

40 Getting started with Forge 199

41 Generating the CRUD UI 201

41.1 Update the project . 201

41.2 Scaffold the view from the JPA entities . 203

42 Test the CRUD UI 204

43 Make some changes to the UI 205

VII Building The Statistics Dashboard Using GWT And Errai 208

44 What Will You Learn Here? 209

44.1 Before we start . 209

45 Module definition 214

46 Host page 215

47 Enabling Errai 217

48 Preparing the wire objects 218

49 The EntryPoint 219

50 The widgets 222

VIII Creating hybrid mobile versions of the application with Apache Cordova 225

51 What will you learn here? 226

52 What are hybrid mobile applications? 227

53 Tweak your application for remote access 228

Ticket Monster Tutorial
vi

54 Downloading Apache Cordova 230

55 Creating an Android hybrid mobile application 231

55.1 Creating an Android project using Apache Cordova . 231

55.2 Adding Apache Cordova to TicketMonster . 238

56 Creating an iOS hybrid mobile application 240

56.1 Creating an iOS project using Apache Cordova . 240

56.2 Adding Apache Cordova for iOS to TicketMonster . 241

57 Conclusion 243

IX Adding a data grid 244

58 What Will You Learn Here? 245

59 The problem at hand 246

60 Adding Infinispan 247

61 Configuring the infrastructure 249

62 Using caches for seat reservations 251

63 Implementing carts 254

64 Conclusion 275

Ticket Monster Tutorial
1 / 275

Part I

What is TicketMonster?

Ticket Monster Tutorial
2 / 275

Chapter 1

Preamble

TicketMonster is an example application that focuses on Java EE6 - JSF 2, JPA 2, CDI and JAX-RS along with HTML5, jQuery
Mobile, JSF and GWT. It is a moderately complex application that demonstrates how to build modern web applications optimized
for mobile & desktop. TicketMonster is representative of an online ticketing broker - providing access to events (e.g. concerts,
shows, etc) with an online booking application.

Apart from being a demo, TicketMonster provides an already existing application structure that you can use as a starting point
for your app. You could try out your use cases, test your own ideas, or, contribute improvements back to the community.

Fork us on GitHub!

The accompanying tutorials walk you through the various tools & technologies needed to build TicketMonster on your own.
Alternatively you can download TicketMonster as a completed application and import it into your favorite IDE.

Before we dive into the code, let’s discuss the requirements for the application.

http://github.com/jboss-jdf/ticket-monster

Ticket Monster Tutorial
3 / 275

Chapter 2

Use cases

We have grouped the current use cases in two major categories: end user oriented, and administrative.

2.1 What can end users do?

The end users of the application want to attend some cool events. They will try to find shows, create bookings, or cancel bookings.
The use cases are:

• look for current events;

• look for venues;

• select shows (events taking place at specific venues) and choose a performance time;

• book tickets;

• view current bookings;

• cancel bookings;

Ticket Monster Tutorial
4 / 275

Figure 2.1: End user use cases

2.2 What can administrators do?

Administrators are more concerned the operation of the business. They will manage the master data: information about venues,
events and shows, and will want to see how many tickets have been sold. The use cases are:

• add, remove and update events;

• add, remove and update venues (including venue layouts);

• add, remove and update shows and performances;

• monitor ticket sales for current shows;

Ticket Monster Tutorial
5 / 275

Figure 2.2: Administration use cases

Ticket Monster Tutorial
6 / 275

Chapter 3

Architecture

Figure 3.1: TicketMonster architecture

The application uses Java EE 6 services to provide business logic and persistence, utilizing technologies such as CDI, EJB 3.1
and JAX-RS, JPA 2. These services back the user-facing booking process, which is implemented using HTML5 and JavaScript,
with support for mobile devices through jQuery Mobile.

The administration site is centered around CRUD use cases, so instead of writing everything manually, the business layer and UI
are generated by Forge, using EJB 3.1, CDI and JSF. For a better user experience, Richfaces UI components are used.

Monitoring sales requires staying in touch with the latest changes on the server side, so this part of the application will be
developed in GWT and showcases Errai’s support for real-time updates via client-server CDI eventing.

Ticket Monster Tutorial
7 / 275

Chapter 4

How can you run it?

Before building and running TicketMonster, you must generate the administration site with Forge. See the tutorial for details.

4.1 Building TicketMonster

TicketMonster can be built from Maven, by runnning the following Maven command:

mvn clean package

If you want to run the Arquillian tests as part of the build, you can enable one of the two available Arquillian profiles.

For running the tests in an already running application server instance, use the arq-jbossas-remote profile.

mvn clean package -Parq-jbossas-remote

If you want the test runner to start an application server instance, use the arq-jbossas-managed profile. You must set up the
JBOSS_HOME property to point to the server location, or update the src/main/test/resources/arquillian.xml
file.

mvn clean package -Parq-jbossas-managed

If you intend to deploy into OpenShift, you can use the postgresql-openshift profile:

mvn clean package -Ppostgresql-openshift

4.2 Running TicketMonster

You can run TicketMonster into a local JBoss AS7 instance or on OpenShift.

4.2.1 Running TicketMonster locally

First, start JBoss Enterprise Application Platform 6 or JBoss AS 7 with the Web Profile.

1. Open a command line and navigate to the root of the JBoss server directory.

2. The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

http://www.jboss.org/jdf/examples/ticket-monster/tutorial/AdminJSF
http://openshift.com

Ticket Monster Tutorial
8 / 275

Then, deploy TicketMonster.

1. Make sure you have started the JBoss Server as described above.

2. Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy

(You can use the arq-jbossas-remote profile for running tests as well)

3. This will deploy target/ticket-monster.war to the running instance of the server.

4. Now you can see the application running at http://localhost:8080/ticket-monster.

4.2.2 Running TicketMonster in OpenShift

First, create an OpenShift project.

1. Make sure that you have an OpenShift domain and you have created an application using the jbossas-7 cartridge (for
more details, get started here). If you want to use PostgreSQL, add the postgresql-8.4 cartridge too.

2. Ensure that the Git repository of the project is checked out.

Then, build and deploy it.

1. Build TicketMonster using either:

• the default profile (with H2 database support)

mvn clean package

• the postgresql-openshift profile (with PostgreSQL support) if the PostgreSQL cartrdige is enabled in OpenShift.

mvn clean package -Ppostgresql-openshift

2. Copy the target/ticket-monster.war file in the OpenShift Git repository (located at <root-of-openshift-application-git-repository>).

cp target/ticket-monster.war
<root-of-openshift-application-git-repository>/deployments/ROOT.war

3. Navigate to <root-of-openshift-application-git-repository> folder

4. Remove the existing src folder and pom.xml file.

git rm -r src
git rm pom.xml

5. Add the copied file to the repository, commit and push to Openshift

git add deployments/ROOT.war
git commit -m "Deploy TicketMonster"
git push

6. Now you can see the application running at at http://<app-name>-<domain-name>.rhcloud.com

http://localhost:8080/ticket-monster
https://openshift.redhat.com/app/getting_started

Ticket Monster Tutorial
9 / 275

Chapter 5

Learn more

The example is accompanied by a series of tutorials that will walk you through the process of creating the TicketMonster
application from end to end.

After reading this series you will understand how to:

• set up your project;

• define the persistence layer of the application;

• design and implement the business layer and expose it to the front-end via RESTful endpoints;

• implement a mobile-ready front-end using HTML 5, JSON, JavaScript and jQuery Mobile;

• develop a JSF-based administration interface rapidly using JSF and JBoss Forge;

• thoroughly test your project using JUnit and Arquillian;

Throughout the series, you will be shown how to achieve these goals using JBoss Developer Studio.

Ticket Monster Tutorial
10 / 275

Part II

Introduction & Getting Started

Ticket Monster Tutorial
11 / 275

Chapter 6

Purpose and Target Audience

The target audience for this tutorial are those individuals who do not yet have a great deal of experience with:

• Eclipse + JBoss Tools (JBoss Developer Studio)

• JBoss Enterprise Application 6 or JBoss AS 7

• Java EE 6 features like JAX-RS

• HTML5 & jQuery for building an mobile web front-end.

This tutorial sets the stage for the creation of TicketMonster - our sample application that illustrates how to bring together the
best features of Java EE 6 + HTML5 + JBoss to create a rich, mobile-optimized and dynamic application.

TicketMonster is developed as an open source application, and you can find it at github.

If you prefer to watch instead of read, a large portion of this content is also covered in video form.

In this tutorial, we will cover the following topics:

• Working with JBoss Developer Studio (Eclipse + JBoss Tools)

• Creating of a Java EE 6 project via a Maven archetype

• Leveraging m2e and m2e-wtp

• Using Forge to create a JPA entity

• Using Hibernate Tools

• Database Schema Generation

• Deployment to a local JBoss Server

• Adding a JAX-RS endpoint

• Adding a jQuery Mobile client

• Using the Mobile BrowserSim

https://github.com/jboss-jdf/ticket-monster
http://docs.jboss.org/tools/movies/

Ticket Monster Tutorial
12 / 275

Figure 6.1: JBoss Developer Studio 6 with Mobile BrowserSim

Ticket Monster Tutorial
13 / 275

Chapter 7

Installation

The first order of business is to get your development environment setup and JBoss Developer Studio v6 installed. JBoss
Developer Studio is Eclipse Juno (4.2 SR2) for Java EE Developers plus select JBoss Tools and is available for free. Visit
https://devstudio.jboss.com/download/6.x.html to download it. You may also choose to install JBoss Tools 4.0.1 into your existing
Eclipse for Java EE Developers installation. This document uses screenshots depicting JBoss Developer Studio.

You must have a Java Development Kit (JDK) installed, either v6 or v7 will work - whilst a JVM runtime will work for most use
cases, for a developer environment it is normally best to have the full JDK. System requirements for JBoss Developer Studio are
listed in the System Requirements chapter of the JBoss Developer Studio 6.0 Getting Started Guide online documentation.

Tip
If you prefer to see JBoss Developer studio being installed, then check out this video.
To see JBoss Tools being installed into Eclipse, see this video.

The JBoss Developer Studio installer has a (very long!) name such as jbdevstudio-product-universal-6.0.1.GA-v20130327-2052-B361.jar
where the latter portion of the file name relates to build date and version information and the text near the front related to the
target operating system. The "universal" installer is for any operating system. To launch the installer you may simply be able to
double-click on the .jar file name or you may need to issue the following from the operating system command line:

java -jar jbdevstudio-product-universal-6.0.1.GA-v20130327-2052-B361.jar

We recommend using the "universal" installer as it handles Windows, Mac OS X and Linux - 32-bit and 64-bit versions.

Note
Even if you are installing on a 64-bit OS, you may still wish to use the 32-bit JVM for the JBoss Developer Studio (or Eclipse +
JBoss Tools). Only the 32-bit version provides the Visual Page Editor - a split-pane editor that gives you a glimpse of what your
HTML/XHTML (JSF, JSP, etc) will look like. Also, the 32-bit version uses less memory than the 64-bit version. You may still run
your application server in 64-bit JVMs if needed to insure compatibility with the production environment whilst keeping your IDE
in 32-bit mode.

https://devstudio.jboss.com/download/6.x.html
https://access.redhat.com/site/documentation/en-US/JBoss_Developer_Studio/6.0/html/Getting_Started_Guide/minimumrequirements.html
http://vimeo.com/39606090
http://vimeo.com/39743315

Ticket Monster Tutorial
14 / 275

Figure 7.1: Installation Wizard, Step 1 of 9

The rest of the steps are fairly self explanatory. If you run into trouble, please consult the videos above as they explore a few
troubleshooting tips related to JRE/JDK setup.

Please make sure to say Yes to the prompt that says "Will you allow JBoss Tools team to receive anonymous usage statistics for
this Eclipse instance with JBoss Tools?". This information is very helpful to us when it comes to prioritizing our QA efforts in
terms of operating system platforms. More information concerning our usage tracking can be found at http://www.jboss.org/-
tools/usage

You can skip the step in the installation wizard that allows you to install JBoss Enterprise Application Platform 6 or JBoss AS 7
as we will do this in the next step.

http://www.jboss.org/tools/usage
http://www.jboss.org/tools/usage

Ticket Monster Tutorial
15 / 275

Chapter 8

Creating a new Java EE 6 project with Maven

Tip
For a deeper dive into the world of Maven and how it is used with JBoss Developer Studio and JBoss Enterprise Application
Platform 6 (or JBoss Tools and JBoss AS 7) review link: this video.

Now that everything is properly installed, configured, running and verified to work, let’s build something "from scratch".

We recommend that you switch to the JBoss Perspective if you have not already.

Tip
If you close JBoss Central, it is only a click away - simply click on the JBoss icon in the Eclipse toolbar - it is normally the last
icon, on the last row - assuming you are in the JBoss Perspective.

First, select Create Projects→ Java EE Web Project in JBoss Central. Under the covers, this uses a Maven archetype which
creates a Java EE 6 web application (.war), based around Maven. The project can be built outside of the IDE, and in continuous
integration solutions like Hudson/Jenkins.

http://vimeo.com/39796236

Ticket Monster Tutorial
16 / 275

Figure 8.1: JBoss Central

You will be prompted with a dialog box that verifies that JBoss Developer Studio is configured correctly. If you are in a brand new
workspace, the application server will not be configured yet and you will notice the lack of a check mark on the server/runtime
row.

Ticket Monster Tutorial
17 / 275

Figure 8.2: New Project Wizard

Note
There are several ways to add JBoss Enterprise Application Platform 6 or JBoss AS 7 to JBoss Developer Studio. The Install. . .
button on the new project wizard is probably the easiest, but you can use any of the methods you are familiar with!

To add JBoss Enterprise Application Platform or JBoss AS 7, click on the Install. . . button, or if you have not yet downloaded
and unzipped the server, click on the Download and Install. . . button.

Ticket Monster Tutorial
18 / 275

Caution
The download option only works with the community application server. Although the enterprise application server is
listed, it still needs to be manually downloaded.

Selecting Install. . . will pop up the JBoss Runtime Detection section of Preferences. You can always get back to this dialog by
selecting Preferences→ JBoss Tools→ JBoss Tools Runtime Detection.

Ticket Monster Tutorial
19 / 275

Figure 8.3: JBoss Tools Runtime Detection

Select the Add button which will take you to a file browser dialog where you should locate your unzipped JBoss server.

Ticket Monster Tutorial
20 / 275

Figure 8.4: Runtime Open Dialog

Select Open and JBoss Developer Studio will pop up the Searching for runtimes. . . window.

Ticket Monster Tutorial
21 / 275

Figure 8.5: Searching for runtimes window

Simply select OK. You should see the added runtime in the Paths list.

Ticket Monster Tutorial
22 / 275

Figure 8.6: JBoss Tools Runtime Detection Completed

Select OK to close the Preferences dialog, and you will be returned to the New Project Example dialog, with the the server/run-
time found.

Ticket Monster Tutorial
23 / 275

Figure 8.7: JBoss AS 7.0/7.1 or EAP 6 Found

The Target Runtime allows you to choose between JBoss Enterprise Application Platform and JBoss AS 7. If it is left empty,
JBoss AS 7 will be elected.

Caution
Choosing an enterprise application server as the runtime will require you to configure Maven to use the JBoss Enterprise
Maven repositories. For instructions on configure the Maven repositories, visit the JBoss Enterprise Application Platform
6.1 documentation.

Select Next.

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Development_Guide/index.html#Install_the_JBoss_Enterprise_Application_Platform_6_Maven_Repository
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Development_Guide/index.html#Install_the_JBoss_Enterprise_Application_Platform_6_Maven_Repository

Ticket Monster Tutorial
24 / 275

Figure 8.8: New Project Wizard Step 2

The default Project name is jboss-javaee6-webapp. If this field appears blank, it is because your workspace already
contains a "jboss-javaee6-webapp" in which case just provide another name for your project. Change the project name to
ticket-monster, and the package name to org.jboss.jdf.example.ticketmonster.

Select Finish.

JBoss Tools/JBoss Developer Studio will now generate the template project and import it into the workspace. You will see it pop
up into the Project Explorer and a message that asks if you would like to review the readme file.

Ticket Monster Tutorial
25 / 275

Figure 8.9: New Project Wizard Step 3

Select Finish

Ticket Monster Tutorial
26 / 275

Chapter 9

Exploring the newly generated project

Using the Project Explorer, open up the generated project, and double-click on the pom.xml.

The generated project is a Maven-based project with a pom.xml in its root directory.

Figure 9.1: Project Explorer

JBoss Developer Studio and JBoss Tools include m2e and m2e-wtp. m2e is the Maven Eclipse plug-in and provides a graphical
editor for editing pom.xml files, along with the ability to run maven goals directly from within Eclipse. m2e-wtp allows you
to deploy your Maven-based project directly to any Web Tools Project (WTP) compliant application server. This means you can
drag & drop, use Run As→ Run on Server and other mechanisms to have the IDE deploy your application.

The pom.xml editor has several tabs along its bottom edge.

Ticket Monster Tutorial
27 / 275

Figure 9.2: pom.xml Editor Tabs

For this tutorial, we do not need to edit the pom.xml as it already provides the Java EE 6 APIs that we will need (e.g. JPA,
JAX-RS, CDI). You should spend some time exploring the Dependencies and the pom.xml (source view) tabs.

One key element to make note of is <version.jboss.bom>1.0.4.Final</version.jboss.bom>which establishes
if this project uses JBoss Enterprise Application Platform or JBoss AS dependencies. The BOM (Bill of Materials) specifies the
versions of the Java EE (and other) APIs defined in the dependency section.

If you are using JBoss Enterprise Application Platform 6 and you selected that as your Target Runtime, you will find a -redhat-1
suffix on the version string. You may need to setup the JBoss Enterprise Maven repository to use the certified dependencies in
your project, details of which are available here.

Caution
The specific version of the BOM (e.g. 1.0.4.Final) is likely to change, so do not be surprised if the version is
slightly different.
The recommended version of the BOM for a runtime (EAP 6 or AS 7) can be obtained by visiting the JBoss Stacks
site.

https://community.jboss.org/wiki/SettingUpTheJBossEnterpriseRepositories
http://www.jboss.org/jdf/stack/stacks/
http://www.jboss.org/jdf/stack/stacks/

Ticket Monster Tutorial
28 / 275

Figure 9.3: Project Explorer Java Packages

Using the Project Explorer, drill-down into src/main/java under Java Resources.

The initial project includes the following Java packages:

.controller

Ticket Monster Tutorial
29 / 275

contains the backing beans for #{newMember} and #{memberRegistration} in the JSF page index.xhtml

.data
contains a class which uses @Produces and @Named to return the list of members for index.xhtml

.model
contains the JPA entity class, a POJO annotated with @Entity, annotated with Bean Validation (JSR 303) constraints

.rest
contains the JAX-RS endpoints, POJOs annotated with @Path

.service
handles the registration transaction for new members

.util
contains Resources.java which sets up an alias for @PersistenceContext to be injectable via @Inject

Now, let’s explore the resources in the project.

Figure 9.4: Project Explorer Resources

Ticket Monster Tutorial
30 / 275

Under src you will find:

main/resources/import.sql
contains insert statements that provides initial database data. This is particularly useful when hibernate.hbm2dll.auto=create-drop
is set in persistence.xml. hibernate.hbm2dll.auto=create-drop causes the schema to be recreated each
time the application is deployed.

main/resources/META-INF/persistence.xml
establishes that this project contains JPA entities and it identifies the datasource, which is deployed alongside the project.
It also includes the hibernate.hbm2dll.auto property set to create-drop by default.

test/java/test
provides the .test package that contains MemberRegistrationTest.java, an Arquillian based test that runs both
from within JBoss Developer Studio via Run As→ JUnit Test and at the command line:

mvn test -Parq-jbossas-remote

Note that you will need to start the JBoss Enterprise Application Platform 6 or JBoss AS 7 server before running the
test.

src/main/webapp
contains index.xhtml, the JSF-based user interface for the sample application. If you double-click on that file you will
see Visual Page Editor allows you to visually navigate through the file and see the source simultaneously. Changes to the
source are immediately reflected in the visual pane.

Ticket Monster Tutorial
31 / 275

Figure 9.5: Visual Page Editor

In src/main/webapp/WEB-INF, you will find three key files:

beans.xml
is an empty file that indicates this is a CDI capable EE6 application

faces-config.xml
is an empty file that indicates this is a JSF capable EE6 application

ticket-monster-ds.xml
when deployed, creates a new datasource within the JBoss container

Ticket Monster Tutorial
32 / 275

Chapter 10

Adding a new entity using Forge

There are several ways to add a new JPA entity to your project:

Starting from scratch
Right-click on the .model package and select New→ Class. JPA entities are annotated POJOs so starting from a simple
class is a common approach.

Reverse Engineering
Right-click on the "model" package and select New→ JPA Entities from Tables. For more information on this technique
see this video

Using Forge
to create a new entity for your project using a CLI (we will explore this in more detail below)

Reverse Engineering with Forge
Forge has a Hibernate Tools plug-in that allows you to script the conversion of RDBMS schema into JPA entities. For more
information on this technique see this video.

For the purposes of this tutorial, we will take advantage of Forge to add a new JPA entity. This requires the least keystrokes, and
we do not yet have a RDBMS schema to reverse engineer. There is also an optional section for adding an entity using New→
Class.

Right-click on the .model package in the Project Explorer and select Show In→ Forge Console.

https://vimeo.com/39608294
https://vimeo.com/39608326

Ticket Monster Tutorial
33 / 275

Figure 10.1: Show In Forge Console

Tip
Alternative methods to activate Forge include:

• Window→ Show View→ Forge Console

• Ctrl 4 (Windows) or Cmd 4 (Mac).

Note: the Show In method will issue a "pick-up" command to switch you to the right location within your project.

The first time you start Forge, you will be prompted with a Forge Not Running dialog, select Yes.

Figure 10.2: Show Forge Not Running

Ticket Monster Tutorial
34 / 275

Tip
If you are not prompted you can always start Forge using the green arrow (or stop via the red square) in the Forge Console tab.

Figure 10.3: Show Forge Start/Stop

Figure 10.4: Show Forge Console

Forge is a command-oriented rapid application development tool that allows you to enter commands that generate classes and
code. It will automatically update the IDE for you. A key feature is "content assist" or "tab completion", activated by pressing
tab.

To generate an entity, use these commands:

entity --named Event --package org.jboss.jdf.example.ticketmonster.model
field string --named name
validation setup --provider JAVA_EE
constraint NotNull --onProperty name
constraint Size --onProperty name --min 5 --max 50 --message "Must be > 5 and < 50"
field string --named description
constraint Size --onProperty description --min 20 --max 1000 --message "Must be > 20 and <

1000"
field boolean --named major
field string --named picture

Let’s work through this, step by step.

At the [ticket-monster] model $ prompt, type en and hit the tab key on your keyboard. entity will fill in. Hit tab
again and entity --named will appear. Type in Event and add a space — Forge can not anticipate the name of your new
entity!

Hit tab again and select --package. Now, hit tab repeatedly to fill in org.jboss.jdf.example.ticketmonster.
Since there are multiple entries underneath examples, Forge will display those options. Type in m and hit tab to select model.

Now hit the Enter/Return key to watch the command execute. The Event entity will be generated into the "model" package and
open up inside of Eclipse.

Ticket Monster Tutorial
35 / 275

Figure 10.5: Forge new entity

Figure 10.6: Event Entity

Note
@Entity public class is placed on the same line as ` import java.lang.Override` by Forge. Using the formatter your
IDE provides on the entity will make this look more like you would expect!

Forge has automatically changed the context of the CLI to Event.java, and typing ls will provide a listing of the fields and
methods.

Ticket Monster Tutorial
36 / 275

Figure 10.7: Forge ls

Now that the base Event entity has been created, let’s add the fields and their JSR 303 Bean Validation constraints.

This next step involves adding a name property for the Event entity so that an event could hold data like "Rock Concert".

Type fie and hit tab to fill in field, if you hit tab again, Forge will list out the possible field types. Type in s and hit tab, Forge
will respond with string. Hit tab again to get --named and type in name. You should end up with the command field
string --named name, to execute it, press enter. This will add a private String name; field, and the appropriate
accessor and mutator (getter and setter) methods. You should also notice that the toString method is tweaked to include name as
well.

Figure 10.8: @Column name

From this point forward, we will assume you have the basics of using Forge’s interactive command line. The remaining com-
mands to run are:

validation setup --provider JAVA_EE
constraint NotNull --onProperty name
constraint Size --onProperty name --min 5 --max 50 --message "Must be > 5 and < 50"
field string --named description
constraint Size --onProperty description --min 20 --max 1000 --message "Must be > 20 and <

1000"
field boolean --named major
field string --named picture

The easiest way to see the results of Forge operating on the Event.java JPA Entity is to use the Outline View of JBoss
Developer Studio. It is normally on the right-side of the IDE when using the JBoss Perspective.

Ticket Monster Tutorial
37 / 275

Figure 10.9: Outline View

Ticket Monster Tutorial
38 / 275

Chapter 11

Reviewing persistence.xml & updating import.sql

By default, the entity classes generate the database schema, and is controlled by src/main/resources/persistence.xml.

The two key settings are the <jta-data-source> and the hibernate.hbm2ddl.auto property. The datasource maps
to the datasource defined in src\main\webapp\ticket-monster-ds.xml.

The hibernate.hbm2ddl.auto=create-drop property indicates that all database tables will be dropped when an ap-
plication is undeployed, or redeployed, and created when the application is deployed.

The import.sql file contains SQL statements that will inject sample data into your initial database structure. Add the follow-
ing insert statements:

insert into Event (id, name, description, major, picture, version) values (1, 'Shane''s Sock
Puppets', 'This critically acclaimed masterpiece...', true,
'http://dl.dropbox.com/u/65660684/640px-Carnival_Puppets.jpg', 1);

insert into Event (id, name, description, major, picture, version) values (2, 'Rock concert
of the decade', 'Get ready to rock...', true,
'http://dl.dropbox.com/u/65660684/640px-Weir%2C_Bob_(2007)_2.jpg', 1);

Ticket Monster Tutorial
39 / 275

Chapter 12

Adding a new entity using JBoss Developer Stu-
dio

Alternatively, we can add an entity with JBoss Developer Studio or JBoss Tools.

First, right-click on the .model package and select New → Class. Enter the class name as Venue - our concerts & shows
happen at particular stadiums, concert halls and theaters.

First, add some private fields representing the entities properties, which translate to the columns in the database table.

package org.jboss.jdf.example.ticketmonster.model;

public class Venue {
private Long id;
private String name;
private String description;
private int capacity;

}

Now, right-click on the editor itself, and from the pop-up, context menu select Source→ Generate Getters and Setters.

Ticket Monster Tutorial
40 / 275

Figure 12.1: Generate Getters and Setters Menu

This will create accessor and mutator methods for all your fields, making them accessible properties for the entity class.

Ticket Monster Tutorial
41 / 275

Figure 12.2: Generate Getters and Setters Dialog

Click Select All and then OK.

Ticket Monster Tutorial
42 / 275

Figure 12.3: Venue.java with gets/sets

Now, right-click on the editor, from the pop-up context menu select Source→ Generate Hibernate/JPA Annotations.

If you are prompted to save Venue.java, simply select OK.

Ticket Monster Tutorial
43 / 275

Figure 12.4: Save Modified Resources

The Hibernate: add JPA annotations wizard will start up. First, verify that Venue is the class you are working on.

Ticket Monster Tutorial
44 / 275

Figure 12.5: Hibernate: add JPA annotations

Select Next.

The next step in the wizard will provide a sampling of the refactored sources – describing the basic changes that are being made
to Venue.

Ticket Monster Tutorial
45 / 275

Figure 12.6: Hibernate: add JPA annotations Step 2

Select Finish.

Now you may wish to add the Bean Validation constraint annotations, such as @NotNull to the fields.

Ticket Monster Tutorial
46 / 275

Chapter 13

Deployment

At this point, if you have not already deployed the application, right click on the project name in the Project Explorer and
select Run As → Run on Server. If needed, this will startup the application server instance, compile & build the application
and push the application into the JBOSS_HOME/standalone/deployments directory. This directory is scanned for new
deployments, so simply placing your war in the directory will cause it to be deployed.

Caution
If you have been using another application server or web server such as Tomcat, shut it down now to avoid any port
conflicts.

Ticket Monster Tutorial
47 / 275

Figure 13.1: Run As→ Run on Server

Now, deploy the h2console webapp. You can read how to do this in the h2console quickstart.

The Run As→ Run on Server option will also launch the internal Eclipse browser with the appropriate URL so that you can
immediately begin interacting with the application.

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial
48 / 275

Figure 13.2: Eclipse Browser after Run As→ Run on Server

Now, go to http://localhost:8080/h2console to start up the h2 console.

http://localhost:8080/h2console

Ticket Monster Tutorial
49 / 275

Figure 13.3: h2console in browser

Use jdbc:h2:mem:ticket-monster as the JDBC URL (this is defined in src/main/webapp/WEB-INF/ticket-monster-ds.xml),
sa as the username and sa as the password.

Click Connect

You will see both the EVENT table, the VENUE table and the MEMBER tables have been added to the H2 schema.

And if you enter the SQL statement: select * from event and select the Run (Ctrl-Enter) button, it will display the data
you entered in the import.sql file in a previous step. With these relatively simple steps, you have verified that your new EE
6 JPA entities have been added to the system and deployed successfully, creating the supporting RDBMS schema as needed.

Ticket Monster Tutorial
50 / 275

Figure 13.4: h2console Select * from Event

Ticket Monster Tutorial
51 / 275

Chapter 14

Adding a JAX-RS RESTful web service

The goal of this section of the tutorial is to walk you through the creation of a POJO with the JAX-RS annotations.

Right-click on the .rest package, select New→ Class from the context menu, and enter EventService as the class name.

Ticket Monster Tutorial
52 / 275

Figure 14.1: New Class EventService

Select Finish.

Ticket Monster Tutorial
53 / 275

Replace the contents of the class with this sample code:

package org.jboss.jdf.example.ticketmonster.rest;

@Path("/events")
@RequestScoped
public class EventService {

@Inject
private EntityManager em;

@GET
@Produces(MediaType.APPLICATION_JSON)
public List<Event> getAllEvents() {

final List<Event> results =
em.createQuery(
"select e from Event e order by e.name").getResultList();

return results;
}

}

This class is a JAX-RS endpoint that returns all Events.

Ticket Monster Tutorial
54 / 275

Figure 14.2: EventService after Copy and Paste

You’ll notice a lot of errors, relating to missing imports. The easiest way to solve this is to right-click inside the editor and select
Source→ Organize Imports from the context menu.

Ticket Monster Tutorial
55 / 275

Figure 14.3: Source→ Organize→ Imports

Some of the class names are not unique. Eclipse will prompt you with any decisions around what class is intended. Select the
following:

• javax.ws.rs.core.MediaType

• org.jboss.jdf.example.ticketmonster.model.Event

• javax.ws.rs.Produces

• java.util.List

• java.inject.Inject

• java.enterprise.context.RequestScoped

The following screenshots illustrate how you handle these decisions. The Figure description indicates the name of the class you
should select.

Ticket Monster Tutorial
56 / 275

Figure 14.4: javax.ws.rs.core.MediaType

Ticket Monster Tutorial
57 / 275

Figure 14.5: org.jboss.jdf.example.ticketmonster.model.Event

Ticket Monster Tutorial
58 / 275

Figure 14.6: javax.ws.rs.Produces

Ticket Monster Tutorial
59 / 275

Figure 14.7: java.util.List

Ticket Monster Tutorial
60 / 275

Figure 14.8: javax.inject.Inject

Ticket Monster Tutorial
61 / 275

Figure 14.9: javax.enterprise.context.RequestScoped

You should end up with these imports:

import java.util.List;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.persistence.EntityManager;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.jdf.example.ticketmonster.model.Event;

Once these import statements are in place you should have no more compilation errors. When you save EventService.java,
you will see it listed in JAX-RS REST Web Services in the Project Explorer.

Ticket Monster Tutorial
62 / 275

Figure 14.10: Project Explorer JAX-RS Services

This feature of JBoss Developer Studio and JBoss Tools provides a nice visual indicator that you have successfully configured
your JAX-RS endpoint.

You should now redeploy your project via Run As→ Run on Server, or by right clicking on the project in the Servers tab and
select Full Publish.

Figure 14.11: Full Publish

Ticket Monster Tutorial
63 / 275

Using a browser, visit http://localhost:8080/ticket-monster/rest/events to see the results of the query, formatted as JSON (JavaScript
Object Notation).

Figure 14.12: JSON Response

Note
The rest prefix is setup in a file called JaxRsActivator.java which contains a small bit of code that sets up the
application for JAX-RS endpoints.

http://localhost:8080/ticket-monster/rest/events

Ticket Monster Tutorial
64 / 275

Chapter 15

Adding a jQuery Mobile client application

Now, it is time to add a HTML5, jQuery based client application that is optimized for the mobile web experience.

There are numerous JavaScript libraries that help you optimize the end-user experience on a mobile web browser. We have found
that jQuery Mobile is one of the easier ones to get started with but as your skills mature, you might investigate solutions like
Sencha Touch, Zepto or Jo. This tutorial focuses on jQuery Mobile as the basis for creating the UI layer of the application.

The UI components interact with the JAX-RS RESTful services (e.g. EventService.java).

Tip
For more information on building HTML5 + REST applications with JBoss technologies, check out Aerogear.

These next steps will guide you through the creation of a file called mobile.html that provides a mobile friendly version of
the application, using jQuery Mobile.

First, using the Project Explorer, navigate to src/main/webapp, and right-click on webapp, and choose New HTML file.

http://www.jboss.org/aerogear

Ticket Monster Tutorial
65 / 275

Figure 15.1: New HTML File

Caution
In certain versions of JBoss Developer Studio, the New HTML File Wizard may start off with your target location being
m2e-wtp/web-resources, this is an incorrect location and it is a bug, JBIDE-11472.
It has been corrected in JBoss Developer Studio 6.

Change directory to ticket-monster/src/main/webapp and enter name the file mobile.html.

https://issues.jboss.org/browse/JBIDE-11472

Ticket Monster Tutorial
66 / 275

Figure 15.2: New HTML File src/main/webapp

Select Next.

On the Select HTML Template page of the New HTML File wizard, select HTML5 jQuery Mobile Page. This template will
get you off to a fast start using jQuery Mobile.

Ticket Monster Tutorial
67 / 275

Figure 15.3: Select HTML5 jQuery Mobile Template

Select Finish.

The document must start with <!DOCTYPE html> as this identifies the page as HTML 5 based. For this particular phase of
the tutorial, we are not introducing a bunch of HTML 5 specific concepts like the new form fields (type=email), websockets or
the new CSS capabilities. For now, we simply wish to get our mobile application completed as soon as possible. The good news
is that jQuery and jQuery Mobile make the consumption of a RESTful endpoint very simple.

Ticket Monster Tutorial
68 / 275

You might notice that in the Visual Page Editor, the visual portion is not that attractive, this is because the majority of jQuery
Mobile magic happens at runtime and our visual page editor simply displays the HTML without embellishment.

Visit http://localhost:8080/ticket-monster/mobile.html.

Note
Note: Normally HTML files are deployed automatically, if you find it missing, just use Full Publish or Run As Run on Server as
demonstrated in previous steps.

As soon as the page loads, you will be prompted with an alert box with "Ready to Go". This alert box is generated from JavaScript
that is associated with the pageinit event.

Figure 15.4: jQuery Mobile Template

One side benefit of using a HTML5 + jQuery-based front-end to your application is that it allows for fast turnaround in develop-
ment. Simply edit the HTML file, save the file and refresh your browser.

Now the secret sauce to connecting your front-end to your back-end is simply editing the pageinit JavaScript event and including
an invocation of the previously created Events JAX-RS service.

Insert the following block of code directly below the alert()

$.getJSON("rest/events", function(events) {
// console.log("returned are " + events);
var listOfEvents = $("#listOfItems");
listOfEvents.empty();
$.each(events, function(index, event) {

http://localhost:8080/ticket-monster/mobile.html

Ticket Monster Tutorial
69 / 275

// console.log(event.name);
listOfEvents.append("" + event.name + "");

});
listOfEvents.listview("refresh");

});

Note:

• using $.getJSON("rest/events") to hit the EventService.java

• a commented out // console.log, causes problems in IE

• Getting a reference to listOfItems which is declared in the HTML using an id attribute

• Calling .empty on that list - removing the exiting One, Two, Three items

• For each event - based on what is returned in step 1

• another commented out // console.log

• append the found event to the UL in the HTML

• refresh the listOfItems

Note
You may find the .append("...") syntax unattractive, embedding HTML inside of the JS .append method, this can
be corrected using various JS templating techniques.

The result is ready for the average mobile phone. Simply refresh your browser to see the results.

Ticket Monster Tutorial
70 / 275

Figure 15.5: jQuery Mobile REST Results

JBoss Developer Studio and JBoss Tools includes BrowerSim to help you better understand what your mobile application will
look like. Look for a "phone" icon in the toolbar, visible in the JBoss Perspective.

Figure 15.6: Mobile BrowserSim icon in Eclipse Toolbar

Note
The BrowserSim tool takes advantage of a locally installed Safari (Mac & Windows) on your workstation. It does not package a
whole browser by itself. You will need to install Safari on Windows to leverage this feature – but that is more economical than
having to purchase a MacBook to quickly look at your mobile-web focused application!

Ticket Monster Tutorial
71 / 275

Figure 15.7: Mobile BrowserSim

Ticket Monster Tutorial
72 / 275

The Mobile BrowserSim has a Devices menu, on Mac it is in the top menu bar and on Windows it is available via right-click as
a pop-up menu. This menu allows you to change user-agent and dimensions of the browser, plus change the orientation of the
device.

Figure 15.8: Mobile BrowserSim Devices Menu

Ticket Monster Tutorial
73 / 275

Figure 15.9: Mobile BrowserSim on Windows 7

You can also add your own custom device/browser types.

Ticket Monster Tutorial
74 / 275

Figure 15.10: Mobile BrowserSim Custom Devices Window

Under the File menu, you will find a View Page Source option that will open up the mobile-version of the website’s source code
inside of JBoss Developer Studio. This is a very useful feature for learning how other developers are creating their mobile web
presence.

Ticket Monster Tutorial
75 / 275

Figure 15.11: Mobile BrowserSim View Source

Ticket Monster Tutorial
76 / 275

Chapter 16

Conclusion

This concludes our introduction to building HTML5 Mobile Web applications using Java EE 6 with Forge and JBoss Developer
Studio. At this point, you should feel confident enough to tackle any of the additional exercises to learn how the TicketMonster
sample application is constructed.

16.1 Cleaning up the generated code

Before we proceed with the tutorial and implement TicketMonster, we need to clean up some of the archetype-generated code.
The Member management code, while useful for illustrating the general setup of a Java EE 6 web application, will not be part of
TicketMonster, so we can safely remove some packages, classes, and resources:

• All the Member-related persistence and business code:

– src/main/java/org/jboss/jdf/example/ticketmonster/controller

– src/main/java/org/jboss/jdf/example/ticketmonster/data

– src/main/java/org/jboss/jdf/example/ticketmonster/model/Member.java

– src/main/java/org/jboss/jdf/example/ticketmonster/rest/MemberResourceRESTService.java

– src/main/java/org/jboss/jdf/example/ticketmonster/service/MemberRegistration.java

• Generated web content

– src/main/webapp/index.html

– src/main/webapp/index.xhtml

– src/main/webapp/WEB-INF/templates/default.xhtml

• JSF configuration (we will re-add it via Forge)

– src/main/webapp/WEB-INF/faces-config.xml

• Prototype mobile application (we will generate a proper mobile interface)

– src/main/webapp/mobile.html

Also, we will update the src/main/resources/import.sql file and remove the Member entity insertion:

insert into Member (id, name, email, phone_number) values (0, 'John Smith',
'john.smith@mailinator.com', '2125551212'

The data file should contain only the Event data import:

Ticket Monster Tutorial
77 / 275

insert into Event (id, name, description, major, picture, version) values (1, 'Shane''s Sock
Puppets', 'This critically acclaimed masterpiece...', true,
'http://dl.dropbox.com/u/65660684/640px-Carnival_Puppets.jpg', 1);

insert into Event (id, name, description, major, picture, version) values (2, 'Rock concert
of the decade', 'Get ready to rock...', true,
'http://dl.dropbox.com/u/65660684/640px-Weir%2C_Bob_(2007)_2.jpg', 1);

Ticket Monster Tutorial
78 / 275

Part III

Building the persistence layer with JPA2 and
Bean Validation

Ticket Monster Tutorial
79 / 275

Chapter 17

What will you learn here?

You have set up your project successfully. Now it is time to begin working on the TicketMonster application, and the first step
is adding the persistence layer. After reading this guide, you’ll understand what design and implementation choices to make.
Topics covered include:

• RDBMS design using JPA entity beans

• How to validate your entities using Bean Validation

• How to populate test data

• Basic unit testing using JUnit

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included videos show you how we performed all the steps.

TicketMonster contains 14 entities, of varying complexity. In the introduction, you have seen the basic steps for creating a
couple of entities (Event and Venue) and interacting with them. In this tutorial we’ll go deeper into domain model design,
we’ll classify the entities, and walk through designing and creating one of each group.

Ticket Monster Tutorial
80 / 275

Chapter 18

Your first entity

The simplest kind of entities are often those representing lookup tables. TicketCategory is a classic lookup table that defines
the ticket types available (e.g. Adult, Child, Pensioner). A ticket category has one property - description.

What’s in a name?
Using a consistent naming scheme for your entities can help another developer get up to speed with your code base. We’ve
named all our lookup tables XXXCategory to allow us to easily spot them.

Let’s start by creating a JavaBean to represent the ticket category:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

public class TicketCategory {

/* Declaration of fields */

/**
* <p>

* The description of the of ticket category.

* </p>

*
*/

private String description;

/* Boilerplate getters and setters */

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

@Override
public String toString() {

return description;
}

}

We’re going to want to keep the ticket category in collections (for example, to present it as part of drop down in the UI), so it’s
important that we properly implement equals() and hashCode(). At this point, we need to define a property (or group of
properties) that uniquely identifies the ticket category. We refer to these properties as the "entity’s natural identity".

Ticket Monster Tutorial
81 / 275

Defining an entity’s natural identity
Using an ORM introduces additional constraints on object identity. Defining the properties that make up an entity’s natural
identity can be tricky, but is very important. Using the object’s identity, or the synthetic identity (database generated primary
key) identity can introduce unexpected bugs into your application, so you should always ensure you use a natural identity. You
can read more about the issue at https://community.jboss.org/wiki/EqualsAndHashCode.

For ticket category, the choice of natural identity is easy and obvious - it must be the one property, description that the entity has!
Having identified the natural identity, adding an equals() and hashCode() method is easy. In Eclipse, choose Source→
Generate hashCode() and equals(). . .

Figure 18.1: Generate hashCode() and equals() in Eclipse

Now, select the properties to include:

Figure 18.2: Generate hashCode() and equals() in Eclipse

https://community.jboss.org/wiki/EqualsAndHashCode

Ticket Monster Tutorial
82 / 275

Now that we have a JavaBean, let’s proceed to make it an entity. First, add the @Entity annotation to the class:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

...

}

And, add the synthetic id:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

...

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

...

}

As we decided that our natural identifier was the description, we should introduce a unique constraint on the property:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields */

...

/**
* <p>

* The description of the of ticket category.

* </p>

*
* <p>

* The description forms the natural id of the ticket category, and so must be unique.

* </p>

*
*/

Ticket Monster Tutorial
83 / 275

@Column(unique = true)
private String description;

...
}

It’s very important that any data you place in the database is of the highest quality - this data is probably one of your organisations
most valuable assets! To ensure that bad data doesn’t get saved to the database by mistake, we’ll use Bean Validation to enforce
constraints on our properties.

What is Bean Validation?
Bean Validation (JSR 303) is a Java EE specification which:

• provides a unified way of declaring and defining constraints on an object model.

• defines a runtime engine to validate objects

Bean Validation includes integration with other Java EE specifications, such as JPA. Bean Validation constraints are automati-
cally applied before data is persisted to the database, as a last line of defence against bad data.

The description of the ticket category should not be empty for two reasons. Firstly, an empty ticket category description is no
use to a person trying to book a ticket - it doesn’t convey any information. Secondly, as the description forms the natural identity,
we need to make sure the property is always populated.

Let’s add the Bean Validation constraint @NotEmpty:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields */

...

/**
* <p>

* The description of the of ticket category.

* </p>

*
* <p>

* The description forms the natural id of the ticket category, and so must be unique.

* </p>

*
* <p>

* The description must not be null and must be one or more characters, the Bean
Validation constraint <code>@NotEmpty</code>

* enforces this.

* </p>

*
*/

@Column(unique = true)
@NotEmpty
private String description;

...
}

And that is our first entity! Here is the complete entity:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

Ticket Monster Tutorial
84 / 275

/**
* <p>

* A lookup table containing the various ticket categories. E.g. Adult, Child, Pensioner, etc.

* </p>

*/
@Entity
public class TicketCategory {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The description of the of ticket category.

* </p>

*
* <p>

* The description forms the natural id of the ticket category, and so must be unique.

* </p>

*
* <p>

* The description must not be null and must be one or more characters, the Bean
Validation constraint <code>@NotEmpty</code>

* enforces this.

* </p>

*
*/

@Column(unique = true)
@NotEmpty
private String description;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

/* toString(), equals() and hashCode() for TicketCategory, using the natural identity of
the object */

@Override
public boolean equals(Object o) {

if (this == o)

Ticket Monster Tutorial
85 / 275

return true;
if (o == null || getClass() != o.getClass())

return false;

TicketCategory that = (TicketCategory) o;

if (description != null ? !description.equals(that.description) : that.description !=
null)

return false;

return true;
}

@Override
public int hashCode() {

return description != null ? description.hashCode() : 0;
}

@Override
public String toString() {

return description;
}

}

TicketMonster contains another lookup tables, EventCategory. It’s pretty much identical to TicketCategory, so we
leave it as an exercise to the reader to investigate, and understand. If you are building the application whilst following this
tutorial, copy the source over from the TicketMonster example.

Ticket Monster Tutorial
86 / 275

Chapter 19

Database design & relationships

First, let’s understand the the entity design.

An Event may occur at any number of venues, on various days and at various times. The intersection between an event and a
venue is a Show, and each show can have a Performance which is associated with a date and time.

Venues are a separate grouping of entities, which, as mentioned, intersect with events via shows. Each venue consists of groupings
of seats, each known as a Section.

Every section, in every show is associated with a ticket category via the TicketPrice entity.

Users must be able to book tickets for performances. A Booking is associated with a performance, and contains a collection of
tickets.

Finally, both events and venues can have "media items", such as images or videos attached.

Ticket Monster Tutorial
87 / 275

Figure 19.1: Entity-Relationship Diagram

19.1 Media items

Storing large binary objects, such as images or videos in the database isn’t advisable (as it can lead to performance issues), and
playback of videos can also be tricky, as it depends on browser capabilities. For TicketMonster, we decided to make use of
existing services to host images and videos, such as YouTube or Flickr. All we store in the database is the URL the application
should use to access the media item, and the type of the media item (note that the URL forms a media items natural identifier).
We need to know the type of the media item in order to render the media correctly in the view layer.

In order for a view layer to correctly render the media item (e.g. display an image, embed a media player), it’s likely that special
code has had to have been added. For this reason we represent the types of media that TicketMonster understands as a closed set,
unmodifiable at runtime. An enum is perfect for this!

Luckily, JPA has native support for enums, all we need to do is add the @Enumerated annotation:

src/main/java/org/jboss/jdf/example/ticketmonster/model/MediaItem.java

...

/**
* <p>

* The type of the media, required to render the media item correctly.

* </p>

*

Ticket Monster Tutorial
88 / 275

* <p>

* The media type is a closed set - as each different type of media requires
support coded into the view layers, it

* cannot be expanded upon without rebuilding the application. It is therefore
represented by an enumeration. We instruct

* JPA to store the enum value using it's String representation, so that we can later
reorder the enum members, without

* changing the data. Of course, this does mean we can't change the names of media items
once the app is put into

* production.

* </p>

*/
@Enumerated(STRING)
private MediaType mediaType;

...

@Enumerated(STRING) or @Enumerated(ORDINAL)?
JPA can store an enum value using it’s ordinal (position in the list of declared enums) or it’s STRING (the name it is given). If
you choose to store an ordinal, you musn’t alter the order of the list. If you choose to store the name, you musn’t change the
enum name. The choice is yours!

The rest of MediaItem shouldn’t present a challenge to you. If you are building the application whilst following this tutorial,
copy both MediaItem and MediaType from the TicketMonster project.

19.2 Events

In Chapter 18 we saw how to build simple entities with properties, identify and apply constraints using Bean Validation, identify
the natural id and add a synthetic id. From now on we’ll assume you know how to build simple entities - for each new entity that
we build, we will start with it’s basic structure and properties filled in.

So, here is our starting point for Event (where we left at the end of the introduction, and including some comments reflecting the
explanations above):

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

@Entity
public class Event {

/* Declaration of fields */

/**
* The synthetic ID of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The name of the event.

* </p>

*
* <p>

* The name of the event forms it's natural identity and cannot be shared between events.

* </p>

*

Ticket Monster Tutorial
89 / 275

* <p>

* Two constraints are applied using Bean Validation

* </p>

*
*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more than
50 characters. This allows for

* better formatting consistency in the view layer.

*

*/
@Column(unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50
characters")
private String name;

/**
* <p>

* A description of the event.

* </p>

*
* <p>

* Two constraints are applied using Bean Validation

* </p>

*
*

* <code>@NotNull</code> — the description must not be null.

* <code>@Size</code> — the name must be at least 20 characters and no more
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event
organisers provide at least some description

* - a classic example of a business constraint.

*

*/
@NotNull
@Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000
characters")
private String description;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getDescription() {
return description;

}

Ticket Monster Tutorial
90 / 275

public void setDescription(String description) {
this.description = description;

}

/* toString(), equals() and hashCode() for Event, using the natural identity of the
object */

@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;
}

@Override
public int hashCode() {

return name != null ? name.hashCode() : 0;
}

@Override
public String toString() {

return name;
}

}

First, let’s add a media item to Event. As multiple events (or venues) could share the same media item, we’ll model the
relationship as many-to-one - many events can reference the same media item.

Relationships supported by JPA
JPA can model four types of relationship between entities - one-to-one, one-to-many, many-to-one and many-to-many. A
relationship may be bi-directional (both sides of the relationship know about each other) or uni-directional (only one side knows
about the relationship).
Many database models are hierarchical (parent-child), as is TicketMonster’s. As a result, you’ll probably find you mostly use
one-to-many and many-to-one relationships, which allow building parent-child models.

Creating a many-to-one relationship is very easy in JPA. Just add the @ManyToOne annotation to the field. JPA will take care
of the rest. Here’s the property for Event:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

...

/**
* <p>

* A media item, such as an image, which can be used to entice a browser to book a ticket.

* </p>

*
* <p>

* Media items can be shared between events, so this is modeled as a
<code>@ManyToOne</code> relationship.

* </p>

Ticket Monster Tutorial
91 / 275

*
* <p>

* Adding a media item is optional, and the view layer will adapt if none is provided.

* </p>

*
*/

@ManyToOne
private MediaItem mediaItem;

...

public MediaItem getMediaItem() {
return mediaItem;

}

public void setMediaItem(MediaItem picture) {
this.mediaItem = picture;

}

...

There is no need for a media item to know who references it (in fact, this would be a poor design, as it would reduce the reusability
of MediaItem), so we can leave this as a uni-directional relationship.

An event will also have a category. Once again, many events can belong to the same event category, and there is no need for an
event category to know what events are in it. To add this relationship, we add the eventCategory property, and annotate it
with @ManyToOne, just as we did for MediaItem.

And that’s Event created. Here is the full source:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

/**
* <p>

* Represents an event, which may have multiple performances with different dates and venues.

* </p>

*
* <p>

* Event's principle members are it's relationship to {@link EventCategory} - specifying the
type of event it is - and

* {@link MediaItem} - providing the ability to add media (such as a picture) to the event
for display. It also contains

* meta-data about the event, such as it's name and a description.

* </p>

*
*/

@Entity
public class Event {

/* Declaration of fields */

/**
* The synthetic ID of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The name of the event.

* </p>

*

Ticket Monster Tutorial
92 / 275

* <p>

* The name of the event forms it's natural identity and cannot be shared between events.

* </p>

*
* <p>

* Two constraints are applied using Bean Validation

* </p>

*
*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more than
50 characters. This allows for

* better formatting consistency in the view layer.

*

*/
@Column(unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50
characters")
private String name;

/**
* <p>

* A description of the event.

* </p>

*
* <p>

* Two constraints are applied using Bean Validation

* </p>

*
*

* <code>@NotNull</code> — the description must not be null.

* <code>@Size</code> — the name must be at least 20 characters and no more
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event
organisers provide at least some description

* - a classic example of a business constraint.

*

*/
@NotNull
@Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000
characters")
private String description;

/**
* <p>

* A media item, such as an image, which can be used to entice a browser to book a ticket.

* </p>

*
* <p>

* Media items can be shared between events, so this is modeled as a
<code>@ManyToOne</code> relationship.

* </p>

*
* <p>

* Adding a media item is optional, and the view layer will adapt if none is provided.

* </p>

*
*/

@ManyToOne
private MediaItem mediaItem;

Ticket Monster Tutorial
93 / 275

/**
* <p>

* The category of the event

* </p>

*
* <p>

* Event categories are used to ease searching of available of events, and hence this is
modeled as a relationship

* </p>

*
* <p>

* The Bean Validation constraint <code>@NotNull</code> indicates that the event category
must be specified.

*/
@ManyToOne
@NotNull
private EventCategory category;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public MediaItem getMediaItem() {
return mediaItem;

}

public void setMediaItem(MediaItem picture) {
this.mediaItem = picture;

}

public EventCategory getCategory() {
return category;

}

public void setCategory(EventCategory category) {
this.category = category;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

/* toString(), equals() and hashCode() for Event, using the natural identity of the
object */

Ticket Monster Tutorial
94 / 275

@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;
}

@Override
public int hashCode() {

return name != null ? name.hashCode() : 0;
}

@Override
public String toString() {

return name;
}

}

19.3 Shows

A show is an event at a venue. It consists of a set of performances of the show. A show also contains the list of ticket prices
available.

Let’s start building Show. Here’s is our starting point:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/**
* <p>

* A show is an instance of an event taking place at a particular venue. A show can have
multiple performances.

* </p>

*/
@Entity
public class Show {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

Ticket Monster Tutorial
95 / 275

* <p>

* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

* </p>

*/
@ManyToOne
@NotNull
private Event event;

/**
* <p>

* The venue where this show takes place. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*
* <p>

* The <code>@NotNull</code> Bean Validation constraint means that the venue must be
specified.

* </p>

*/
@ManyToOne
@NotNull
private Venue venue;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public Event getEvent() {
return event;

}

public void setEvent(Event event) {
this.event = event;

}

public Venue getVenue() {
return venue;

}

public void setVenue(Venue venue) {
this.venue = venue;

}

/* toString(), equals() and hashCode() for Show, using the natural identity of the object

*/
@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Show show = (Show) o;

if (event != null ? !event.equals(show.event) : show.event != null)

Ticket Monster Tutorial
96 / 275

return false;
if (venue != null ? !venue.equals(show.venue) : show.venue != null)

return false;

return true;
}

@Override
public int hashCode() {

int result = event != null ? event.hashCode() : 0;
result = 31 * result + (venue != null ? venue.hashCode() : 0);
return result;

}

@Override
public String toString() {

return event + " at " + venue;
}

}

If you’ve been paying attention, you’ll notice that there is a problem here. We’ve identified that the natural identity of this entity
is formed of two properties - the event and the venue, and we’ve correctly coded the equals() and hashCode() methods (or
had them generated for us!). However, we haven’t told JPA that these two properties, in combination, must be unique. As there
are two properties involved, we can no longer use the @Column annotation (which operates on a single property/table column),
but now must use the class level @Table annotation (which operates on the whole entity/table). Change the class definition to
read:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

...

@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show {

...
}

You’ll notice that JPA requires us to use the column names, rather than property names here. The column names used in the
@UniqueConstraint annotation are those generated by default for properties called event and venue.

Now, let’s add the set of performances to the event. Unlike previous relationships we’ve seen, the relationship between a show
and it’s performances is bi-directional. We chose to model this as a bi-directional relationship in order to improve the generated
database schema (otherwise you end with complicated mapping tables which makes updates to collections hard). Let’s add the
set of performances:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

...

/**
* <p>

* The set of performances of this show.

* </p>

*
* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship. Collection
members

* are fetched eagerly, so that they can be accessed even after the entity has become
detached.

* This relationship is bi-directional (a performance knows which show it is part of),
and the <code>mappedBy</code>

Ticket Monster Tutorial
97 / 275

* attribute establishes this.

* </p>

*
*/

@OneToMany(fetch=EAGER, mappedBy = "show", cascade = ALL)
@OrderBy("date")
private Set<Performance> performances = new HashSet<Performance>();

...

public Set<Performance> getPerformances() {
return performances;

}

public void setPerformances(Set<Performance> performances) {
this.performances = performances;

...

As the relationship is bi-directional, we specify the mappedBy attribute on the @OneToMany annotation, which informs JPA to
create a bi-directional relationship. The value of the attribute is name of property which forms the other side of the relationship -
in this case, not unsuprisingly show!

As Show is the owner of Performance (and without a show, a performance cannot exist), we add the cascade = ALL
attribute to the @OneToMany annotation. As a result, any persistence operation that occurs on a show, will be propagated to it’s
performances. For example, if a show is removed, any associated performances will be removed as well.

When retrieving a show, we will also retrieve its associated performances by adding the fetch = EAGER attribute to the
@OneToMany annotation. This is a design decision which required careful consideration. In general, you should favour the
default lazy initialization of collections: their content should be accessible on demand. However, in this case we intend to
marshal the contents of the collection and pass it across the wire in the JAX-RS layer, after the entity has become detached, and
cannot initialize its members on demand.

We’ll also need to add the set of ticket prices available for this show. Once more, this is a bi-directional relationship, owned by
the show. It looks just like the set of performances.

Here’s the full source for Show:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/**
* <p>

* A show is an instance of an event taking place at a particular venue. A show can have
multiple performances.

* </p>

*
* <p>

* A show contains a set of performances, and a set of ticket prices for each section of the
venue for this show.

* </p>

*
* <p>

* The event and venue form the natural id of this entity, and therefore must be unique. JPA
requires us to use the class level

* <code>@Table</code> constraint.

* </p>

*
*/

/*
* We suppress the warning about not specifying a serialVersionUID, as we are still

developing this app, and want the JVM to

* generate the serialVersionUID for us. When we put this app into production, we'll generate
and embed the serialVersionUID

Ticket Monster Tutorial
98 / 275

*/
@SuppressWarnings("serial")
@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show implements Serializable {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*
* <p>

* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

* </p>

*/
@ManyToOne
@NotNull
private Event event;

/**
* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*
* <p>

* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

* </p>

*/
@ManyToOne
@NotNull
private Venue venue;

/**
* <p>

* The set of performances of this show.

* </p>

*
* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship. TODO Explain
EAGER fetch.

* This relationship is bi-directional (a performance knows which show it is part of),
and the <code>mappedBy</code>

* attribute establishes this. We cascade all persistence operations to the set of
performances, so, for example if a show

* is removed, then all of it's performances will also be removed.

* </p>

*
* <p>

* Normally a collection is loaded from the database in the order of the rows, but here

Ticket Monster Tutorial
99 / 275

we want to make sure that

* performances are ordered by date - we let the RDBMS do the heavy lifting. The

* <code>@OrderBy<code> annotation instructs JPA to do this.

* </p>

*/
@OneToMany(fetch = EAGER, mappedBy = "show", cascade = ALL)
@OrderBy("date")
private Set<Performance> performances = new HashSet<Performance>();

/**
* <p>

* The set of ticket prices available for this show.

* </p>

*
* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship.

* This relationship is bi-directional (a ticket price category knows which show it is
part of), and the <code>mappedBy</code>

* attribute establishes this. We cascade all persistence operations to the set of
performances, so, for example if a show

* is removed, then all of it's ticket price categories are also removed.

* </p>

*/
@OneToMany(mappedBy = "show", cascade = ALL, fetch = EAGER)
private Set<TicketPrice> ticketPrices = new HashSet<TicketPrice>();

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public Event getEvent() {
return event;

}

public void setEvent(Event event) {
this.event = event;

}

public Set<Performance> getPerformances() {
return performances;

}

public void setPerformances(Set<Performance> performances) {
this.performances = performances;

}

public Venue getVenue() {
return venue;

}

public void setVenue(Venue venue) {
this.venue = venue;

}

public Set<TicketPrice> getTicketPrices() {
return ticketPrices;

Ticket Monster Tutorial
100 / 275

}

public void setTicketPrices(Set<TicketPrice> ticketPrices) {
this.ticketPrices = ticketPrices;

}

/* toString(), equals() and hashCode() for Show, using the natural identity of the object

*/
@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Show show = (Show) o;

if (event != null ? !event.equals(show.event) : show.event != null)
return false;

if (venue != null ? !venue.equals(show.venue) : show.venue != null)
return false;

return true;
}

@Override
public int hashCode() {

int result = event != null ? event.hashCode() : 0;
result = 31 * result + (venue != null ? venue.hashCode() : 0);
return result;

}

@Override
public String toString() {

return event + " at " + venue;
}

}

19.4 Performances

Finally, let’s create the Performance class, which represents an instance of a Show. Performance is pretty straightforward. It
contains the date and time of the performance, and the show of which it is a performance. Together, the show, and the date and
time, make up the natural identity of the performance. Here’s the source for Performance:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Performance.java

/**
* <p>

* A performance represents a single instance of a show.

* </p>

*
* <p>

* The show and date form the natural id of this entity, and therefore must be unique. JPA
requires us to use the class level

* <code>@Table</code> constraint.

* </p>

*
*/

@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "date", "show_id" }))

Ticket Monster Tutorial
101 / 275

public class Performance {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The date and start time of the performance.

* </p>

*
* <p>

* A Java {@link Date} object represents both a date and a time, whilst an RDBMS splits
out Date, Time and Timestamp.

* Therefore we instruct JPA to store this date as a timestamp using the
<code>@Temporal(TIMESTAMP)</code> annotation.

* </p>

*
* <p>

* The date and time of the performance is required, and the Bean Validation constraint
<code>@NotNull</code> enforces this.

* </p>

*/
@Temporal(TIMESTAMP)
@NotNull
private Date date;

/**
* <p>

* The show of which this is a performance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*
* <p>

* The show of which this is a performance is required, and the Bean Validation
constraint <code>@NotNull</code> enforces

* this.

* </p>

*/
@ManyToOne
@NotNull
private Show show;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public void setShow(Show show) {
this.show = show;

}

Ticket Monster Tutorial
102 / 275

public Show getShow() {
return show;

}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this.date = date;

}

/* equals() and hashCode() for Performance, using the natural identity of the object */

@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Performance that = (Performance) o;

if (date != null ? !date.equals(that.date) : that.date != null)
return false;

if (show != null ? !show.equals(that.show) : that.show != null)
return false;

return true;
}

@Override
public int hashCode() {

int result = date != null ? date.hashCode() : 0;
result = 31 * result + (show != null ? show.hashCode() : 0);
return result;

}
}

Of interest here is the storage of the date and time.

A Java Date represents "a specific instance in time, with millisecond precision" and is the recommended construct for represent-
ing date and time in the JDK. A RDBMS’s DATE type typically has day precision only, and uses the DATETIME or TIMESTAMP
types to represent an instance in time, and often only to second precision.

As the mapping between Java date and time, and database date and time isn’t straightforward, JPA requires us to use the
@Temporal annotation on any property of type Date, and to specify whether the Date should be stored as a date, a time
or a timestamp (date and time).

19.5 Venue

Now, let’s build out the entities to represent the venue.

We start by adding an entity to represent the venue. A venue needs to have a name, a description, a capacity, an address, an
associated media item and a set sections in which people can sit. If you completed the introduction chapter, you should already
have some of these properties set, so we will update the Venue class to look like in the definition below.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Venue.java

/**
* <p>

Ticket Monster Tutorial
103 / 275

* Represents a single venue

* </p>

*
*/

@Entity
public class Venue {

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

/**
* <p>

* The name of the event.

* </p>

*
* <p>

* The name of the event forms it's natural identity and cannot be shared between events.

* </p>

*
* <p>

* The name must not be null and must be one or more characters, the Bean Validation

* constraint <code>@NotEmpty</code> enforces this.

* </p>

*/
@Column(unique = true)
@NotEmpty
private String name;

/**
* The address of the venue

*/
@Embedded
private Address address = new Address();

/**
* A description of the venue

*/
private String description;

/**
* <p>

* A set of sections in the venue

* </p>

*
* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship.

* Collection members are fetched eagerly, so that they can be accessed even after the

* entity has become detached. This relationship is bi-directional (a section knows which

* venue it is part of), and the <code>mappedBy</code> attribute establishes this. We

* cascade all persistence operations to the set of performances, so, for example if a
venue

* is removed, then all of it's sections will also be removed.

* </p>

*/
@OneToMany(cascade = ALL, fetch = EAGER, mappedBy = "venue")
private Set<Section> sections = new HashSet<Section>();

Ticket Monster Tutorial
104 / 275

/**
* The capacity of the venue

*/
private int capacity;

/**
* An optional media item to entice punters to the venue. The <code>@ManyToOne</code>

establishes the relationship.

*/
@ManyToOne
private MediaItem mediaItem;

/* Boilerplate getters and setters */

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

public MediaItem getMediaItem() {
return mediaItem;

}

public void setMediaItem(MediaItem description) {
this.mediaItem = description;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public Set<Section> getSections() {
return sections;

}

public void setSections(Set<Section> sections) {
this.sections = sections;

}

Ticket Monster Tutorial
105 / 275

public int getCapacity() {
return capacity;

}

public void setCapacity(int capacity) {
this.capacity = capacity;

}

/* toString(), equals() and hashCode() for Venue, using the natural identity of the
object */

@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Venue venue = (Venue) o;

if (address != null ? !address.equals(venue.address) : venue.address != null)
return false;

if (name != null ? !name.equals(venue.name) : venue.name != null)
return false;

return true;
}

@Override
public int hashCode() {

int result = name != null ? name.hashCode() : 0;
result = 31 * result + (address != null ? address.hashCode() : 0);
return result;

}

@Override
public String toString() {

return name;
}

}

In creating this entity, we’ve followed all the design and implementation decisions previously discussed, with one new concept.
Rather than add the properties for street, city, postal code etc. to this object, we’ve extracted them into the Address object, and
included it in the Venue object using composition. This would allow us to reuse the Address object in other places (such as a
customer’s address).

A RDBMS doesn’t have a similar concept to composition, so we need to choose whether to represent the address as a separate
entity, and create a relationship between the venue and the address, or whether to map the properties from Address to the table
for the owning entity, in this case Venue. It doesn’t make much sense for an address to be a full entity - we’re not going to want
to run queries against the address in isolation, nor do we want to be able to delete or update an address in isolation - in essence,
the address doesn’t have a standalone identity outside of the object into which it is composed.

To embed the Address into Venue we add the @Embeddable annotation to the Address class. However, unlike a full
entity, there is no need to add an identifier. Here’s the source for Address:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Address.java

/**
* <p>

* A reusable representation of an address.

* </p>

Ticket Monster Tutorial
106 / 275

*
* <p>

* Addresses are used in many places in an application, so to observe the DRY principle, we
model Address as an embeddable

* entity. An embeddable entity appears as a child in the object model, but no relationship
is established in the RDBMS..

* </p>

*/
@Embeddable
public class Address {

/* Declaration of fields */
private String street;
private String city;
private String country;

/* Declaration of boilerplate getters and setters */

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;

}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;

}

/* toString(), equals() and hashCode() for Address, using the natural identity of the
object */

@Override
public boolean equals(Object o) {

if (this == o)
return true;

if (o == null || getClass() != o.getClass())
return false;

Address address = (Address) o;

if (city != null ? !city.equals(address.city) : address.city != null)
return false;

if (country != null ? !country.equals(address.country) : address.country != null)
return false;

if (street != null ? !street.equals(address.street) : address.street != null)
return false;

return true;

Ticket Monster Tutorial
107 / 275

}

@Override
public int hashCode() {

int result = street != null ? street.hashCode() : 0;
result = 31 * result + (city != null ? city.hashCode() : 0);
result = 31 * result + (country != null ? country.hashCode() : 0);
return result;

}

@Override
public String toString() {

return street + ", " + city + ", " + country;
}

}

19.6 Sections

A venue consists of a number of seating sections. Each seating section has a name, a description, the number of rows in the
section, and the number of seats in a row. It’s natural identifier is the name of section combined with the venue (a venue can’t
have two sections with the same name). Section doesn’t introduce any new concepts, so go ahead and copy the source in, if
you are building the application whilst following this tutorial.

19.7 Booking, Ticket & Seat

There aren’t many new concepts to explore in Booking, Ticket and Seat, so if you are following along with the tutorial,
you should copy in the Booking, Ticket and Seat classes.

Once the user has selected an event, identified the venue, and selected a performance, they have the opportunity to request a
number of seats in a given section, and select the category of tickets required. Once they chosen their seats, and entered their
email address, a Booking is created.

A booking consists of the date the booking was created, an email address (as TicketMonster doesn’t yet have fully fledged
user management), a set of tickets and the associated performance. The set of tickets shows us how to create a uni-directional
one-to-many relationship:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java

...

/**
* <p>

* The set of tickets contained within the booking. The <code>@OneToMany<code> JPA
mapping establishes this relationship.

* </p>

*
* <p>

* The set of tickets is eagerly loaded because FIXME . All operations are cascaded to
each ticket, so for example if a

* booking is removed, then all associated tickets will be removed.

* </p>

*
* <p>

* This relationship is uni-directional, so we need to inform JPA to create a foreign key
mapping. The foreign key mapping

* is not visible in the {@link Ticket} entity despite being present in the database.

* </p>

*

Ticket Monster Tutorial
108 / 275

*/
@OneToMany(fetch = EAGER, cascade = ALL)
@JoinColumn @NotEmpty
@Valid
private Set<Ticket> tickets = new HashSet<Ticket>();

...

We add the @JoinColumn annotation, which sets up a foreign key in Ticket, but doesn’t expose the booking on Ticket. This
prevents the use of messy mapping tables, whilst preserving the integrity of the entity model.

A ticket embeds the seat allocated, and contains a reference to the category under which it was sold. It also contains the price at
which it was sold.

Ticket Monster Tutorial
109 / 275

Chapter 20

Connecting to the database

In this example, we are using the in-memory H2 database, which is very easy to set up on JBoss AS. JBoss AS allows you deploy a
datasource inside your application’s WEB-INF directory. You can locate the source in src/main/webapp/WEB-INF/ticket-monster-ds.xml:

src/main/webapp/WEB-INF/ticket-monster-ds.xml

<datasources xmlns="http://www.jboss.org/ironjacamar/schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.org/ironjacamar/schema
http://docs.jboss.org/ironjacamar/schema/datasources_1_0.xsd">
<!-- The datasource is bound into JNDI at this location. We reference

this in META-INF/persistence.xml -->
<datasource jndi-name="java:jboss/datasources/ticket-monsterDS"

pool-name="ticket-monster" enabled="true" use-java-context="true">
<connection-url>

jdbc:h2:mem:ticket-monster;DB_CLOSE_ON_EXIT=FALSE;DB_CLOSE_DELAY=-1
</connection-url>
<driver>h2</driver>
<security>

<user-name>sa</user-name>
<password>sa</password>

</security>
</datasource>

</datasources>

The datasource configures an H2 in-memory database, called ticket-monster, and registers a datasource in JNDI at the address:

java:jboss/datasources/ticket-monsterDS

Now we need to configure JPA to use the datasource. This is done in src/main/resources/META-INF/persistence.xml:

src/main/resources/persistence.xml

<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="primary">
<!-- If you are running in a production environment, add a managed

data source, this example data source is just for development and testing! -->
<!-- The datasource is deployed as WEB-INF/ticket-monster-ds.xml, you

can find it in the source at src/main/webapp/WEB-INF/ticket-monster-ds.xml -->
<jta-data-source>java:jboss/datasources/ticket-monsterDS</jta-data-source>

Ticket Monster Tutorial
110 / 275

<properties>
<!-- Properties for Hibernate -->
<property name="hibernate.hbm2ddl.auto" value="create-drop" />
<property name="hibernate.show_sql" value="false" />

</properties>
</persistence-unit>

</persistence>

As our application has only one datasource, and hence one persistence unit, the name given to the persistence unit doesn’t really
matter. We call ours primary, but you can change this as you like. We tell JPA about the datasource bound in JNDI.

Hibernate includes the ability to generate tables from entities, which here we have configured. We don’t recommend using this
outside of development. Updates to databases in production should be done manually.

Ticket Monster Tutorial
111 / 275

Chapter 21

Populating test data

Whilst we develop our application, it’s useful to be able to populate the database with test data. Luckily, Hibernate makes this
easy. Just add a file called import.sql onto the classpath of your application (we keep it in src/main/resources/import.sql).
In it, we just write standard sql statements suitable for the database we are using. To do this, you need to know the generated
column and table names for your entities. The best way to work these out is to look at the h2console.

The h2console is included in the JBoss AS quickstarts, along with instructions on how to use it. For more information, see
http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial
112 / 275

Where do I look for my data?
The database URL is jdbc:h2:mem:ticket-monster. After you have downloaded h2console.war and deployed it
on the server, make sure that the application is running on the server and use this value to connect to your running application’s
database.

Figure 21.1: h2console settings

Ticket Monster Tutorial
113 / 275

Chapter 22

Conclusion

You now have a working data model for your TicketMonster application, our next tutorial will show you how to create the
business services layer or something like that - it seems to end abruptly.

Ticket Monster Tutorial
114 / 275

Part IV

Building The Business Services With JAX-RS

Ticket Monster Tutorial
115 / 275

Chapter 23

What Will You Learn Here?

We’ve just defined the domain model of the application and created its persistence layer. Now we need to define the services that
implement the business logic of the application and expose them to the front-end. After reading this, you’ll understand how to
design the business layer and what choices to make while developing it. Topics covered include:

• Encapsulating business logic in services and integrating with the persistence tier

• Using CDI for integrating individual services

• Integration testing using Arquillian

• Exposing RESTful services via JAX-RS

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial
116 / 275

Chapter 24

Business Services And Their Relationships

TicketMonster’s business logic is implemented by a number of classes, with different responsibilities:

• managing media items

• allocating tickets

• handling information on ticket availability

• remote access through a RESTful interface

The services are consumed by various other layers of the application:

• the media management and ticket allocation services encapsulate complex functionality, which in turn is exposed externally by
RESTful services that wrap them

• RESTful services are mainly used by the HTML5 view layer

• the ticket availability service is used by the Errai-based view layer

Where to draw the line?
A business service is an encapsulated, reusable logical component that groups together a number of well-defined cohesive
business operations. Business services perform business operations, and may coordinate infrastructure services such as
persistence units, or even other business services as well. The boundaries drawn between them should take into account
whether the newly created services represent , potentially reusable components.

As you can see, some of the services are intended to be consumed within the business layer of the application, while others
provide an external interface as JAX-RS services. We will start by implementing the former, and we’ll finish up with the latter.
During this process, you will discover how CDI, EJB and JAX-RS make it easy to define and wire together our services.

Ticket Monster Tutorial
117 / 275

Chapter 25

Preparations

25.1 Adding Jackson Core

The first step for setting up our service architecture is to add Jackson Core as a dependency in the project. Adding Jackson Core
as a provided dependency will enable you to use the Jackson annotations in the project. This is necessary to obtain a certain
degree of control over the content of the JSON responses.

pom.xml

<project ...>
...
<dependencies>

<!-- This is the dependency for Jackson Core, which we use for
fine tuning the content of the JSON responses -->

<dependency>
<groupId>org.codehaus.jackson</groupId>
<artifactId>jackson-core-asl</artifactId>
<version>1.8.1</version>
<scope>provided</scope>

</dependency>
</dependencies>
...

</project>

Why do you need the Jackson annotations?
JAX-RS does not specify mediatype-agnostic annotations for certain use cases. You will encounter atleast one of them
in the project. The object graph contains cyclic/bi-directional relationships among entities like Venue, Section, Show,
Performance and TicketPrice. JSON representations for these objects will need tweaking to avoid stack oVerflow
errors and the like, at runtime.
JBoss Enterprise Application 6 and JBoss AS 7 uses Jackson to perform serialization and dserialization of objects, thus requir-
ing use of Jackson annotations to modify this behavior. @JsonIgnoreProperties from Jackson will be used to suppress
serialization and deserialization of one of the fields involved in the cycle.

25.2 Verifying the versions of the JBoss BOMs

The next step is to verify if we’re using the right version of the JBoss BOMs in the project. Using the right versions of the BOMs
ensures that you work against a known set of tested dependencies. Verify that the property jboss.bom.version contains the
value 1.0.7.CR8 or higher:

pom.xml

Ticket Monster Tutorial
118 / 275

<project ...>
...
<properties>

...
<jboss.bom.version>1.0.7.CR8</jboss.bom.version>
...

</properties>
...

</project>

Doing so will ensure that ShrinkWrap Resolvers 2.0.0.Final is present in the test classpath. This would be used in the Arquillian
tests for the application.

25.3 Enabling CDI

The next step is to enable CDI in the deployment by creating a beans.xml file in the WEB-INF folder of the web application.

src/main/webapp/WEB-INF/beans.xml

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

If you used the Maven archetype
If you used the Maven archetype to create the project, this file will exist already in the project - it is added automatically.

You may wonder why the file is empty! Whilst beans.xml can specify various deployment-time configuration (e.g. activation
of interceptors, decorators or alternatives), it can also act as a marker file, telling the container to enable CDI for the deployment
(which it doesn’t do, unless beans.xml is present).

Contexts and Dependency Injection (CDI)
As it’s name suggests, CDI is the contexts and dependency injection standard for Java EE. By enabling CDI in your application,
deployed classes become managed components and their lifecycle and wiring becomes the responsibility of the Java EE server.
In this way, we can reduce coupling between components, which is a requirement o a well-designed architecture. Now, we can
focus on implementing the responsibilities of the components and describing their dependencies in a declarative fashion. The
runtime will do the rest for you: instantiating and wiring them together, as well as disposing of them as needed.

25.4 Adding utility classes

Next, we add some helper classes providing low-level utilities for the application. We won’t get in their implementation details
here, but you can study their source code for details.

Copy the following classes from the original example to src/main/java/org/jboss/jdf/example/ticketmonster/util:

• Base64

• ForwardingMap

• MultivaluedHashMap

• Reflections

• Resources

Ticket Monster Tutorial
119 / 275

Chapter 26

Internal Services

We begin the service implementation by implementing some helper services.

26.1 The Media Manager

First, let’s add support for managing media items, such as images. The persistence layer simply stores URLs, referencing media
items stored by online services. The URL look like http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg.

Now, we could use the URLs in our application, and retrieve these media items from the provider. However, we would prefer to
cache these media items in order to improve application performance and increase resilience to external failures - this will allow
us to run the application successfully even if the provider is down. The MediaManager is a good illustration of a business
service; it performs the retrieval and caching of media objects, encapsulating the operation from the rest of the application.

We begin by creating MediaManager:

src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java

/**
* <p>

* The media manager is responsible for taking a media item, and returning either the URL

* of the cached version (if the application cannot load the item from the URL), or the

* original URL.

* </p>

*
* <p>

* The media manager also transparently caches the media items on first load.

* </p>

*
* <p>

* The computed URLs are cached for the duration of a request. This provides a good balance

* between consuming heap space, and computational time.

* </p>

*
*/

public class MediaManager {

/**
* Locate the tmp directory for the machine

*/
private static final File tmpDir;

static {
String dataDir = System.getenv("OPENSHIFT_DATA_DIR");
String parentDir = dataDir != null ? dataDir : System.getProperty("java.io.tmpdir");

http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg

Ticket Monster Tutorial
120 / 275

tmpDir = new File(parentDir, "org.jboss.jdf.examples.ticket-monster");
if (tmpDir.exists()) {

if (tmpDir.isFile())
throw new IllegalStateException(tmpDir.getAbsolutePath() + " already exists,

and is a file. Remove it.");
} else {

tmpDir.mkdir();
}

}

/**
* A request scoped cache of computed URLs of media items.

*/
private final Map<MediaItem, MediaPath> cache;

public MediaManager() {

this.cache = new HashMap<MediaItem, MediaPath>();
}

/**
* Load a cached file by name

*
* @param fileName

* @return

*/
public File getCachedFile(String fileName) {

return new File(tmpDir, fileName);
}

/**
* Obtain the URL of the media item. If the URL h has already been computed in this

* request, it will be looked up in the request scoped cache, otherwise it will be

* computed, and placed in the request scoped cache.

*/
public MediaPath getPath(MediaItem mediaItem) {

if (cache.containsKey(mediaItem)) {
return cache.get(mediaItem);

} else {
MediaPath mediaPath = createPath(mediaItem);
cache.put(mediaItem, mediaPath);
return mediaPath;

}
}

/**
* Compute the URL to a media item. If the media item is not cacheable, then, as long

* as the resource can be loaded, the original URL is returned. If the resource is not

* available, then a placeholder image replaces it. If the media item is cachable, it

* is first cached in the tmp directory, and then path to load it is returned.

*/
private MediaPath createPath(MediaItem mediaItem) {

if(mediaItem == null) {
return

createCachedMedia(Reflections.getResource("not_available.jpg").toExternalForm(), IMAGE);
} else if (!mediaItem.getMediaType().isCacheable()) {

if (checkResourceAvailable(mediaItem)) {
return new MediaPath(mediaItem.getUrl(), false, mediaItem.getMediaType());

} else {
return

createCachedMedia(Reflections.getResource("not_available.jpg").toExternalForm(), IMAGE);
}

Ticket Monster Tutorial
121 / 275

} else {
return createCachedMedia(mediaItem);

}
}

/**
* Check if a media item can be loaded from it's URL, using the JDK URLConnection classes.

*/
private boolean checkResourceAvailable(MediaItem mediaItem) {

URL url = null;
try {

url = new URL(mediaItem.getUrl());
} catch (MalformedURLException e) {
}

if (url != null) {
try {

URLConnection connection = url.openConnection();
if (connection instanceof HttpURLConnection) {

return ((HttpURLConnection) connection).getResponseCode() ==
HttpURLConnection.HTTP_OK;

} else {
return connection.getContentLength() > 0;

}
} catch (IOException e) {
}

}
return false;

}

/**
* The cached file name is a base64 encoded version of the URL. This means we don't need

to maintain a database of cached

* files.

*/
private String getCachedFileName(String url) {

return Base64.encodeToString(url.getBytes(), false);
}

/**
* Check to see if the file is already cached.

*/
private boolean alreadyCached(String cachedFileName) {

File cache = getCachedFile(cachedFileName);
if (cache.exists()) {

if (cache.isDirectory()) {
throw new IllegalStateException(cache.getAbsolutePath() + " already exists,

and is a directory. Remove it.");
}
return true;

} else {
return false;

}
}

/**
* To cache a media item we first load it from the net, then write it to disk.

*/
private MediaPath createCachedMedia(String url, MediaType mediaType) {

String cachedFileName = getCachedFileName(url);
if (!alreadyCached(cachedFileName)) {

URL _url = null;

Ticket Monster Tutorial
122 / 275

try {
_url = new URL(url);

} catch (MalformedURLException e) {
throw new IllegalStateException("Error reading URL " + url);

}

try {
InputStream is = null;
OutputStream os = null;
try {

is = new BufferedInputStream(_url.openStream());
os = new BufferedOutputStream(getCachedOutputStream(cachedFileName));
while (true) {

int data = is.read();
if (data == -1)

break;
os.write(data);

}
} finally {

if (is != null)
is.close();

if (os != null)
os.close();

}
} catch (IOException e) {

throw new IllegalStateException("Error caching " +
mediaType.getDescription(), e);

}
}
return new MediaPath(cachedFileName, true, mediaType);

}

private MediaPath createCachedMedia(MediaItem mediaItem) {
return createCachedMedia(mediaItem.getUrl(), mediaItem.getMediaType());

}

private OutputStream getCachedOutputStream(String fileName) {
try {

return new FileOutputStream(getCachedFile(fileName));
} catch (FileNotFoundException e) {

throw new IllegalStateException("Error creating cached file", e);
}

}

}

The service delegates to a number of internal methods that do the heavy lifting, but exposes a simple API, to the external
observer it simply converts the MediaItem entities into MediaPath data structures, that can be used by the application to
load the binary data of the media item. The service will retrieve and cache the data locally in the filesystem, if possible (e.g.
streamed videos aren’t cacheable!).

src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaPath.java

public class MediaPath {

private final String url;
private final boolean cached;
private final MediaType mediaType;

public MediaPath(String url, boolean cached, MediaType mediaType) {
this.url = url;
this.cached = cached;

Ticket Monster Tutorial
123 / 275

this.mediaType = mediaType;
}

public String getUrl() {
return url;

}

public boolean isCached() {
return cached;

}

public MediaType getMediaType() {
return mediaType;

}

}

The service can be injected by type into the components that depend on it. However, in order to make it available to JSF views,
we add a @Named annotation, which means the bean can be referenced as mediaManager as well.

We should also control the lifecycle of this service. The MediaManager stores request-specific state, so should be scoped to
the web request, the CDI @RequestScoped is perfect.

src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java

...
@Named
@RequestScoped
public class MediaManager {

...
}

26.2 The Seat Allocation Service

The seat allocation service finds free seats at booking time, in a given section of the venue. It is a good example of how a service
can coordinate infrastructure services (using the injected persistence unit to get access to the ServiceAllocation instance)
and domain objects (by invoking the allocateSeats method on a concrete allocation instance).

Isolating this functionality in a service class makes it possible to write simpler, self-explanatory code in the layers above and
opens the possibility of replacing this code at a later date with a more advanced implementation (for example one using an
in-memory cache).

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

@SuppressWarnings("serial")
public class SeatAllocationService implements Serializable {

@Inject
EntityManager entityManager;

public AllocatedSeats allocateSeats(Section section, Performance performance, int
seatCount, boolean contiguous) {

SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section,
performance);

List<Seat> seats = sectionAllocation.allocateSeats(seatCount, contiguous);
return new AllocatedSeats(sectionAllocation, seats);

}

public void deallocateSeats(Section section, Performance performance, List<Seat> seats) {
SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section,

performance);

Ticket Monster Tutorial
124 / 275

for (Seat seat : seats) {
if (!seat.getSection().equals(section)) {

throw new SeatAllocationException("All seats must be in the same section!");
}
sectionAllocation.deallocate(seat);

}
}

private SectionAllocation retrieveSectionAllocationExclusively(Section section,
Performance performance) {

SectionAllocation sectionAllocationStatus = (SectionAllocation)
entityManager.createQuery(

"select s from SectionAllocation s where " +

"s.performance.id = :performanceId and " +

"s.section.id = :sectionId")

.setParameter("performanceId", performance.getId())

.setParameter("sectionId", section.getId())

.getSingleResult();
entityManager.lock(sectionAllocationStatus, LockModeType.PESSIMISTIC_WRITE);
return sectionAllocationStatus;

}
}

Next, we define the AllocatedSeats class that we use for storing seat reservations for a booking, before they are made
persistent.

src/main/java/org/jboss/jdf/example/ticketmonster/service/AllocatedSeats.java

public class AllocatedSeats {

private final SectionAllocation sectionAllocation;

private final List<Seat> seats;

public AllocatedSeats(SectionAllocation sectionAllocation, List<Seat> seats) {
this.sectionAllocation = sectionAllocation;
this.seats = seats;

}

public SectionAllocation getSectionAllocation() {
return sectionAllocation;

}

public List<Seat> getSeats() {
return seats;

}

public void markOccupied() {
sectionAllocation.markOccupied(seats);

}
}

Ticket Monster Tutorial
125 / 275

26.3 Booking Monitor Service

The last service that we create provides data about the current shows and their ticket availability status. It is accessed remotely by
Errai through a dedicated RPC mechanism, which requires us to define and implement a service interface. We begin by adding
the interface first, using the @Remote annotation from Errai to indicate its purpose.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/BookingMonitorService.java

/**
* A service used by the booking monitor for retrieving status information.

*
* Errai's @Remote annotation indicates that the Service implementation can

* be used as an RPC endpoint and that this interface can be used on the

* client for type safe method invocation on this endpoint.

*/
@Remote
public interface BookingMonitorService {

/**
* Lists all active {@link Show}s (shows with future performances).

*
* @return list of shows found.

*/
public List<Show> retrieveShows();

/**
* Constructs a map of performance IDs to the total number of sold tickets.

*
* @return map of performance IDs to the total number of sold tickets.

*/
public Map<Long, Long> retrieveOccupiedCounts();

}

After doing so, we create the service implementation, using the @Service annotation to indicate that it should be exposed
externally by Errai.

src/main/java/org/jboss/jdf/example/ticketmonster/service/BookingMonitorServiceImpl.java

/**
* Implementation of {@link BookingMonitorService}.

*
* Errai's @Service annotation exposes this service as an RPC endpoint.

*/
@ApplicationScoped
@Service
@SuppressWarnings("unchecked")
public class BookingMonitorServiceImpl implements BookingMonitorService {

@Inject
private EntityManager entityManager;

@Override
public List<Show> retrieveShows() {

Query showQuery = entityManager.createQuery(
"select DISTINCT s from Show s JOIN s.performances p " +
"WHERE p.date > current_timestamp");

return showQuery.getResultList();
}

@Override
public Map<Long, Long> retrieveOccupiedCounts() {

Map <Long, Long> occupiedCounts = new HashMap<Long, Long>();

Ticket Monster Tutorial
126 / 275

Query occupiedCountsQuery = entityManager.createQuery(
"select s.performance.id, SUM(s.occupiedCount) from SectionAllocation

s " +
"where s.performance.date > current_timestamp GROUP BY

s.performance.id");

List<Object[]> results = occupiedCountsQuery.getResultList();
for (Object[] result : results) {

occupiedCounts.put((Long) result[0], (Long) result[1]);
}

return occupiedCounts;
}

}

Implement an interface or not?
You will find yourself very often facing a dilemma: add an interface for a service or not? As you have seen so far and will
continue to see next, most of the services in TicketMonster do not implement interfaces, except wherever it is a requirement
of the framework in use (e.g. Errai in this case). In Java EE 6 the requirements for business services to implement interfaces
have been relaxed significantly, therefore unless there are valid reasons for creating an abstraction (such as multiple possible
implementations), we skipped adding interfaces to our services.

Ticket Monster Tutorial
127 / 275

Chapter 27

JAX-RS Services

The majority of services in the application are JAX-RS web services. They are critical part of the design, as they next service
is used for provide communication with the HTML5 view layer. The JAX-RS services range from simple CRUD to processing
bookings and media items.

To pass data across the wire we use JSON as the data marshalling format, as it is less verbose and easier to process than XML by
the JavaScript client-side framework.

27.1 Initializing JAX-RS

To activate JAX-RS we add the class below, which instructs the container to look for JAX-RS annotated classes and install them
as endpoints. This class should exist already in your project, as it is generated by the archetype, so make sure that it is there and
it contains the code below:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/JaxRsActivator.java

@ApplicationPath("/rest")
public class JaxRsActivator extends Application {

/* class body intentionally left blank */
}

All the JAX-RS services are mapped relative to the /rest path, as defined by the @ApplicationPath annotation.

27.2 A Base Service For Read Operations

Most JAX-RS services must provide both a (filtered) list of entities or individual entity (e.g. events, venues and bookings).
Instead of duplicating the implementation into each individual service we create a base service class and wire the helper objects
in.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

/**
* <p>

* A number of RESTful services implement GET operations on a particular type of entity. For

* observing the DRY principle, the generic operations are implemented in the
<code>BaseEntityService</code>

* class, and the other services can inherit from here.

* </p>

*
* <p>

* Subclasses will declare a base path using the JAX-RS {@link Path} annotation, for
example:

Ticket Monster Tutorial
128 / 275

* </p>

*
* <pre>

* <code>

* @Path("/widgets")

* public class WidgetService extends BaseEntityService<Widget> {

* ...

* }

* </code>

* </pre>

*
* <p>

* will support the following methods:

* </p>

*
* <pre>

* <code>

* GET /widgets

* GET /widgets/:id

* GET /widgets/count

* </code>

* </pre>

*
* <p>

* Subclasses may specify various criteria for filtering entities when retrieving a list
of them, by supporting

* custom query parameters. Pagination is supported by default through the query
parameters <code>first</code>

* and <code>maxResults</code>.

* </p>

*
* <p>

* The class is abstract because it is not intended to be used directly, but subclassed
by actual JAX-RS

* endpoints.

* </p>

*
*/

public abstract class BaseEntityService<T> {

@Inject
private EntityManager entityManager;

private Class<T> entityClass;

public BaseEntityService() {}

public BaseEntityService(Class<T> entityClass) {
this.entityClass = entityClass;

}

public EntityManager getEntityManager() {
return entityManager;

}

}

Now we add a method to retrieve all entities of a given type:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> {

Ticket Monster Tutorial
129 / 275

...

/**
* <p>

* A method for retrieving all entities of a given type. Supports the query parameters

* <code>first</code>

* and <code>maxResults</code> for pagination.

* </p>

*
* @param uriInfo application and request context information (see {@see UriInfo} class

* information for more details)

* @return

*/
@GET
@Produces(MediaType.APPLICATION_JSON)
public List<T> getAll(@Context UriInfo uriInfo) {

return getAll(uriInfo.getQueryParameters());
}

public List<T> getAll(MultivaluedMap<String, String> queryParameters) {
final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
Root<T> root = criteriaQuery.from(entityClass);
Predicate[] predicates = extractPredicates(queryParameters, criteriaBuilder, root);
criteriaQuery.select(criteriaQuery.getSelection()).where(predicates);
criteriaQuery.orderBy(criteriaBuilder.asc(root.get("id")));
TypedQuery<T> query = entityManager.createQuery(criteriaQuery);
if (queryParameters.containsKey("first")) {

Integer firstRecord = Integer.parseInt(queryParameters.getFirst("first"))-1;
query.setFirstResult(firstRecord);

}
if (queryParameters.containsKey("maxResults")) {

Integer maxResults = Integer.parseInt(queryParameters.getFirst("maxResults"));
query.setMaxResults(maxResults);

}
return query.getResultList();

}

/**
* <p>

* Subclasses may choose to expand the set of supported query parameters (for adding
more filtering

* criteria) by overriding this method.

* </p>

* @param queryParameters - the HTTP query parameters received by the endpoint

* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker

* @return a list of {@link Predicate}s that will added as query parameters

*/
protected Predicate[] extractPredicates(MultivaluedMap<String, String> queryParameters,

CriteriaBuilder criteriaBuilder, Root<T> root) {
return new Predicate[]{};

}

}

The newly added method ‘getAll` is annotated with @GET which instructs JAX-RS to call it when a GET HTTP requests on
the JAX-RS’ endpoint base URL /rest/<entityRoot> is performed. But remember, this is not a true JAX-RS endpoint. It is an
abstract class and it is not mapped to a path. The classes that extend it are JAX-RS endpoints, and will have to be mapped to a
path, and are able to process requests.

Ticket Monster Tutorial
130 / 275

The @Produces annotation defines that the response sent back by the server is in JSON format. The JAX-RS implementation
will automatically convert the result returned by the method (a list of entities) into JSON format.

As well as configuring the marshaling strategy, the annotation affects content negotiation and method resolution. If the client
requests JSON content specifically, this method will be invoked.

Note
Even though it is not shown in this example, you may have multiple methods that handle a specific URL and HTTP method,
whilst consuming and producing different types of content (JSON, HTML, XML or others).

Subclasses can also override the extractPredicates method and add own support for additional query parameters to GET
/rest/<entityRoot> which can act as filter criteria.

The getAll method supports retrieving a range of entities, which is especially useful when we need to handle very large sets
of data, and use pagination. In those cases, we need to support counting entities as well, so we add a method that retrieves the
entity count:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> {

...

/**
* <p>

* A method for counting all entities of a given type

* </p>

*
* @param uriInfo application and request context information (see {@see UriInfo} class

information for more details)

* @return

*/
@GET
@Path("/count")
@Produces(MediaType.APPLICATION_JSON)
public Map<String, Long> getCount(@Context UriInfo uriInfo) {

CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
CriteriaQuery<Long> criteriaQuery = criteriaBuilder.createQuery(Long.class);
Root<T> root = criteriaQuery.from(entityClass);
criteriaQuery.select(criteriaBuilder.count(root));
Predicate[] predicates = extractPredicates(uriInfo.getQueryParameters(),

criteriaBuilder, root);
criteriaQuery.where(predicates);
Map<String, Long> result = new HashMap<String, Long>();
result.put("count", entityManager.createQuery(criteriaQuery).getSingleResult());
return result;

}

}

We use the @Path annotation to map the new method to a sub-path of /rest/<entityRoot>. Now all the JAX-RS endpoints
that subclass BaseEntityService will be able to get entity counts from ’/rest/<entityRoot>/count. Just like getAll, this
method also delegates to extractPredicates, so any customizations done there by subclasses

Next, we add a method for retrieving individual entities.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

...
public abstract class BaseEntityService<T> {

Ticket Monster Tutorial
131 / 275

...

/**
* <p>

* A method for retrieving individual entity instances.

* </p>

* @param id entity id

* @return

*/
@GET
@Path("/{id:[0-9][0-9]*}")
@Produces(MediaType.APPLICATION_JSON)
public T getSingleInstance(@PathParam("id") Long id) {

final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
Root<T> root = criteriaQuery.from(entityClass);
Predicate condition = criteriaBuilder.equal(root.get("id"), id);

criteriaQuery.select(criteriaBuilder.createQuery(entityClass).getSelection()).where(condition);
return entityManager.createQuery(criteriaQuery).getSingleResult();

}
}

This method is similar to getAll and getCount, and we use the @Path annotation to map it to a sub-path of /rest/<entityRoot>.
The annotation attribute identifies the expected format of the URL (here, the last segment has to be a number) and binds a portion
of the URL to a variable (here named id). The @PathParam annotation allows the value of the variable to be passed as a
method argument. Data conversion is performed automatically.

Now, all the JAX-RS endpoints that subclass BaseEntityService will get two operations for free:

GET /rest/<entityRoot>
retrieves all entities of a given type

GET /rest/<entityRoot>/<id>
retrieves an entity with a given id

27.3 Retrieving Venues

Adding support for retrieving venues is now extremely simple. We refactor the class we created during the introduction, and
make it extend BaseEntityService, passing the entity type to the superclass constructor. We remove the old retrieval code,
which is not needed anymore.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/VenueService.java

/**
* <p>

* A JAX-RS endpoint for handling {@link Venue}s. Inherits the actual

* methods from {@link BaseEntityService}.

* </p>

*/
@Path("/venues")
/**
* <p>

* This is a stateless service, so a single shared instance can be used in this case.

* </p>

*/
@Stateless
public class VenueService extends BaseEntityService<Venue> {

public VenueService() {

Ticket Monster Tutorial
132 / 275

super(Venue.class);
}

}

We add the @Path annotation to the class, to indicate that this is a JAX-RS resource which can serve URLs starting with
/rest/venues.

We define this service (along with all the other JAX-RS services) as an EJB (see how simple is that in Java EE 6!) to benefit from
automatic transaction enrollment. Since the service is fundamentally stateless, we take advantage of the new EJB 3.1 singleton
feature.

Now, we can retrieve venues from URLs like /rest/venues or rest/venues/1.

27.4 Retrieving Events

Just like VenueService, the EventService implementation we use for TicketMonster is a direct subclass of BaseEntityService.
Refactor the existing class, remove the old retrieval code and make it extend BaseEntityService.

One additional functionality we will implement is querying events by category. We can use URLs like /rest/events?category=1
to retrieve all concerts, for example (1 is the category id of concerts). This is done by overriding the extractPredicates
method to handle any query parameters (in this case, the category parameter).

src/main/java/org/jboss/jdf/example/ticketmonster/rest/EventService.java

/**
* <p>

* A JAX-RS endpoint for handling {@link Event}s. Inherits the actual

* methods from {@link BaseEntityService}, but implements additional search

* criteria.

* </p>

*/
@Path("/events")
/**
* <p>

* This is a stateless service, we declare it as an EJB for transaction demarcation

* </p>

*/
@Stateless
public class EventService extends BaseEntityService<Event> {

public EventService() {
super(Event.class);

}

/**
* <p>

* We override the method from parent in order to add support for additional search

* criteria for events.

* </p>

* @param queryParameters - the HTTP query parameters received by the endpoint

* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker

* @return

*/
@Override
protected Predicate[] extractPredicates(

MultivaluedMap<String, String> queryParameters,
CriteriaBuilder criteriaBuilder,
Root<Event> root) {

List<Predicate> predicates = new ArrayList<Predicate>() ;

Ticket Monster Tutorial
133 / 275

if (queryParameters.containsKey("category")) {
String category = queryParameters.getFirst("category");
predicates.add(criteriaBuilder.equal(root.get("category").get("id"), category));

}

return predicates.toArray(new Predicate[]{});
}

}

The ShowService and BookingService follow the same pattern and we leave the implementation as an exercise to the
reader (knowing that its contents can always be copied over to the appropriate folder).

Of course, we also want to change data with our services - we want to create and delete bookings as well!

27.5 Creating and deleting bookings

To create a booking, we add a new method, which handles POST requests to /rest/bookings. This is not a simple CRUD
method, as the client does not send a booking, but a booking request. It is the responsibility of the service to process the request,
reserve the seats and return the full booking details to the invoker.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

/**
* <p>

* A JAX-RS endpoint for handling {@link Booking}s. Inherits the GET

* methods from {@link BaseEntityService}, and implements additional REST methods.

* </p>

*/
@Path("/bookings")
/**
* <p>

* This is a stateless service, we declare it as an EJB for transaction demarcation

* </p>

*/
@Stateless
public class BookingService extends BaseEntityService<Booking> {

@Inject
SeatAllocationService seatAllocationService;

@Inject @Created
private Event<Booking> newBookingEvent;

public BookingService() {
super(Booking.class);

}

/**
* <p>

* Create a booking. Data is contained in the bookingRequest object

* </p>

* @param bookingRequest

* @return

*/
@SuppressWarnings("unchecked")
@POST
/**
* <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the
support

Ticket Monster Tutorial
134 / 275

* {@link BookingRequest} class.

*/
@Consumes(MediaType.APPLICATION_JSON)
public Response createBooking(BookingRequest bookingRequest) {

try {
// identify the ticket price categories in this request
Set<Long> priceCategoryIds = bookingRequest.getUniquePriceCategoryIds();

// load the entities that make up this booking's relationships
Performance performance = getEntityManager().find(Performance.class,

bookingRequest.getPerformance());

// As we can have a mix of ticket types in a booking, we need to load all of them
that are relevant,

// id
Map<Long, TicketPrice> ticketPricesById = loadTicketPrices(priceCategoryIds);

// Now, start to create the booking from the posted data
// Set the simple stuff first!
Booking booking = new Booking();
booking.setContactEmail(bookingRequest.getEmail());
booking.setPerformance(performance);
booking.setCancellationCode("abc");

// Now, we iterate over each ticket that was requested, and organize them by
section and category

// we want to allocate ticket requests that belong to the same section
contiguously

Map<Section, Map<TicketCategory, TicketRequest>> ticketRequestsPerSection
= new TreeMap<Section, java.util.Map<TicketCategory,

TicketRequest>>(SectionComparator.instance());
for (TicketRequest ticketRequest : bookingRequest.getTicketRequests()) {

final TicketPrice ticketPrice =
ticketPricesById.get(ticketRequest.getTicketPrice());

if (!ticketRequestsPerSection.containsKey(ticketPrice.getSection())) {
ticketRequestsPerSection

.put(ticketPrice.getSection(), new HashMap<TicketCategory,
TicketRequest>());

}
ticketRequestsPerSection.get(ticketPrice.getSection()).put(

ticketPricesById.get(ticketRequest.getTicketPrice()).getTicketCategory(), ticketRequest);
}

// Now, we can allocate the tickets
// Iterate over the sections, finding the candidate seats for allocation
// The process will acquire a write lock for a given section and performance
// Use deterministic ordering of sections to prevent deadlocks
Map<Section, AllocatedSeats> seatsPerSection =

new TreeMap<Section,
org.jboss.jdf.example.ticketmonster.service.AllocatedSeats>(SectionComparator.instance());

List<Section> failedSections = new ArrayList<Section>();
for (Section section : ticketRequestsPerSection.keySet()) {

int totalTicketsRequestedPerSection = 0;
// Compute the total number of tickets required (a ticket category doesn't

impact the actual seat!)
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories =

ticketRequestsPerSection.get(section);
// calculate the total quantity of tickets to be allocated in this section
for (TicketRequest ticketRequest : ticketRequestsByCategories.values()) {

totalTicketsRequestedPerSection += ticketRequest.getQuantity();
}

Ticket Monster Tutorial
135 / 275

// try to allocate seats

AllocatedSeats allocatedSeats =
seatAllocationService.allocateSeats(section,

performance, totalTicketsRequestedPerSection, true);
if (allocatedSeats.getSeats().size() == totalTicketsRequestedPerSection) {

seatsPerSection.put(section, allocatedSeats);
} else {

failedSections.add(section);
}

}
if (failedSections.isEmpty()) {

for (Section section : seatsPerSection.keySet()) {
// allocation was successful, begin generating tickets
// associate each allocated seat with a ticket, assigning a price

category to it
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories =

ticketRequestsPerSection.get(section);
AllocatedSeats allocatedSeats = seatsPerSection.get(section);
allocatedSeats.markOccupied();
int seatCounter = 0;
// Now, add a ticket for each requested ticket to the booking
for (TicketCategory ticketCategory :

ticketRequestsByCategories.keySet()) {
final TicketRequest ticketRequest =

ticketRequestsByCategories.get(ticketCategory);
final TicketPrice ticketPrice =

ticketPricesById.get(ticketRequest.getTicketPrice());
for (int i = 0; i < ticketRequest.getQuantity(); i++) {

Ticket ticket =
new

Ticket(allocatedSeats.getSeats().get(seatCounter + i), ticketCategory,
ticketPrice.getPrice());

// getEntityManager().persist(ticket);
booking.getTickets().add(ticket);

}
seatCounter += ticketRequest.getQuantity();

}
}
// Persist the booking, including cascaded relationships
booking.setPerformance(performance);
booking.setCancellationCode("abc");
getEntityManager().persist(booking);
newBookingEvent.fire(booking);
return

Response.ok().entity(booking).type(MediaType.APPLICATION_JSON_TYPE).build();
} else {

Map<String, Object> responseEntity = new HashMap<String, Object>();
responseEntity.put("errors", Collections.singletonList("Cannot allocate the

requested number of seats!"));
return

Response.status(Response.Status.BAD_REQUEST).entity(responseEntity).build();
}

} catch (ConstraintViolationException e) {
// If validation of the data failed using Bean Validation, then send an error
Map<String, Object> errors = new HashMap<String, Object>();
List<String> errorMessages = new ArrayList<String>();
for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {

errorMessages.add(constraintViolation.getMessage());
}
errors.put("errors", errorMessages);
// A WebApplicationException can wrap a response

Ticket Monster Tutorial
136 / 275

// Throwing the exception causes an automatic rollback
throw new

WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
} catch (Exception e) {

// Finally, handle unexpected exceptions
Map<String, Object> errors = new HashMap<String, Object>();
errors.put("errors", Collections.singletonList(e.getMessage()));
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new

WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
}

}

/**
* Utility method for loading ticket prices

* @param priceCategoryIds

* @return

*/
private Map<Long, TicketPrice> loadTicketPrices(Set<Long> priceCategoryIds) {

List<TicketPrice> ticketPrices = (List<TicketPrice>) getEntityManager()
.createQuery("select p from TicketPrice p where p.id in :ids")
.setParameter("ids", priceCategoryIds).getResultList();

// Now, map them by id
Map<Long, TicketPrice> ticketPricesById = new HashMap<Long, TicketPrice>();
for (TicketPrice ticketPrice : ticketPrices) {

ticketPricesById.put(ticketPrice.getId(), ticketPrice);
}
return ticketPricesById;

}
}

We won’t get into the details of the inner workings of the method - it implements a fairly complex algorithm - but we’d like to
draw attention to a few particular items.

We use the @POST annotation to indicate that this method is executed on inbound HTTP POST requests. When implementing a
set of RESTful services, it is important that the semantic of HTTP methods are observed in the mappings. Creating new resources
(e.g. bookings) is typically associated with HTTP POST invocations. The @Consumes annotation indicates that the type of the
request content is JSON and identifies the correct unmarshalling strategy, as well as content negotiation.

The BookingService delegates to the SeatAllocationService to find seats in the requested section, the required
SeatAllocationService instance is initialized and supplied by the container as needed. The only thing that our service
does is to specify the dependency in form of an injection point - the field annotated with @Inject.

We would like other parts of the application to be aware of the fact that a new booking has been created, therefore we use the
CDI to fire an event. We do so by injecting an Event<Booking> instance into the service (indicating that its payload will be a
booking). In order to individually identify this event as referring to event creation, we use a CDI qualifier, which we need to add:

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Created.java

/**
* {@link Qualifier} to mark a Booking as new (created).

*/
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Created {

}

Ticket Monster Tutorial
137 / 275

What are qualifiers?
CDI uses a type-based resolution mechanism for injection and observers. In order to distinguish between implementations
of an interface, you can use qualifiers, a type of annotations, to disambiguate. Injection points and event observers can use
qualifiers to narrow down the set of candidates

We also need allow the removal of bookings, so we add a method:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

@Singleton
public class BookingService extends BaseEntityService<Booking> {

...

@Inject @Cancelled
private Event<Booking> cancelledBookingEvent;
...
/**
* <p>

* Delete a booking by id

* </p>

* @param id

* @return

*/
@DELETE
@Path("/{id:[0-9][0-9]*}")
public Response deleteBooking(@PathParam("id") Long id) {

Booking booking = getEntityManager().find(Booking.class, id);
if (booking == null) {

return Response.status(Response.Status.NOT_FOUND).build();
}
getEntityManager().remove(booking);
cancelledBookingEvent.fire(booking);
return Response.ok().build();

}
}

We use the @DELETE annotation to indicate that it will be executed as the result of an HTTP DELETE request (again, the use of
the DELETE HTTP verb is a matter of convention).

We need to notify the other components of the cancellation of the booking, so we fire an event, with a different qualifier.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/shared/qualifier/Cancelled.java

/**
* {@link Qualifier} to mark a Booking as cancelled.

*/
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Cancelled {

}

The other services, including the MediaService that handles media items follow roughly the same patterns as above, so we
leave them as an exercise to the reader.

Ticket Monster Tutorial
138 / 275

Chapter 28

Testing the services

We’ve now finished implementing the services and there is a significant amount of functionality in the application. Before taking
any step forward, you need to make sure the services work correctly: we need to test them.

Testing enterprise services be a complex task as the implementation is based on services provided by a container: dependency
injection, access to infrastructure services such as persistence, transactions etc.. Unit testing frameworks, whilst offering a
valuable infrastructure for running tests, do not provide these capabilities.

One of the traditional approaches has been the use of mocking frameworks to simulate what will happen in the runtime environ-
ment. While certainly providing a solution mocking brings its own set of problems (e.g. the additional effort required to provide
a proper simulation or the risk of introducing errors in the test suite by incorrectly implemented mocks.

Fortunately, Arquillian provides the means to testing your application code within the container, with access to all the services
and container features. In this section we will show you how to create a few Arquillian tests for your business services.

What to test?
A common asked question is: how much application functionality should we test? The truth is, you can never test too much. That
being said, resources are always limited and tradeoffs are part of an engineer’s work. Generally speaking, trivial functionality
(setters/getters/toString methods) is a big concern compared to the actual business code, so you probably want to focus your
efforts on the business code. Testing should include individual parts (unit testing), as well as aggregates (integration testing).

28.1 A Basic Deployment Class

In order to create Arquillian tests, we need to define the deployment. The code under test, as well as its dependencies is packaged
and deployed in the container.

Much of the deployment contents is common for all tests, so we create a helper class with a method that creates the base
deployment with all the general content.

src/test/java/org/jboss/jdf/ticketmonster/test/TicketMonsterDeployment.java

public class TicketMonsterDeployment {

public static WebArchive deployment() {
return ShrinkWrap

.create(WebArchive.class, "test.war")

.addPackage(Resources.class.getPackage())

.addAsResource("META-INF/test-persistence.xml", "META-INF/persistence.xml")

.addAsResource("import.sql")

.addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml")
// Deploy our test datasource
.addAsWebInfResource("test-ds.xml");

Ticket Monster Tutorial
139 / 275

}
}

Arquillian uses Shrinkwrap to define the contents of the deployment.

28.2 Writing RESTful service tests

For testing our JAX-RS RESTful services, we need to add the corresponding application classes to the deployment. Since we
need to do that for each test we create, we abide by the DRY principles and create a utility class.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/RESTDeployment.java

public class RESTDeployment {

public static WebArchive deployment() {
return TicketMonsterDeployment.deployment()

.addPackage(Booking.class.getPackage())

.addPackage(BaseEntityService.class.getPackage())

.addPackage(MockMultivaluedMap.class.getPackage())

.addClass(SeatAllocationService.class)

.addClass(AllocatedSeats.class)

.addClass(MediaPath.class)

.addClass(MediaManager.class);
}

}

Now, we create the first test to validate the proper retrieval of individual events.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

@RunWith(Arquillian.class)
public class VenueServiceTest {

@Deployment
public static WebArchive deployment() {

return RESTDeployment.deployment();
}

@Inject
private VenueService venueService;

@Test
public void testGetVenueById() {

// Test loading a single venue
Venue venue = venueService.getSingleInstance(1l);
assertNotNull(venue);
assertEquals("Roy Thomson Hall", venue.getName());

}

}

In the class above we specify the deployment, and we define the test method. The test supports CDI injection - one of the
strengths of Arquillian is the ability to inject the object being tested.

Now, we test a more complicated use cases, query parameters for pagination.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

Ticket Monster Tutorial
140 / 275

...
@RunWith(Arquillian.class)
public class VenueServiceTest {

...

@Test
public void testPagination() {

// Test pagination logic
MultivaluedMap<String, String> queryParameters = new MultivaluedHashMap<String,

String>();

queryParameters.add("first", "2");
queryParameters.add("maxResults", "1");

List<Venue> venues = venueService.getAll(queryParameters);
assertNotNull(venues);
assertEquals(1, venues.size());
assertEquals("Sydney Opera House", venues.get(0).getName());

}

}

We add another test method (testPagination), which tests the retrieval of all venues, passing the search criteria as parame-
ters. We use a Map to simulate the passing of query parameters.

Now, we test more advanced use cases such as the creation of a new booking. We do so by adding a new test for bookings

src/test/java/org/jboss/jdf/ticketmonster/test/rest/BookingServiceTest.java

@RunWith(Arquillian.class)
public class BookingServiceTest {

@Deployment
public static WebArchive deployment() {

return RESTDeployment.deployment();
}

@Inject
private BookingService bookingService;

@Inject
private ShowService showService;

@Test
@InSequence(1)
public void testCreateBookings() {

BookingRequest br = createBookingRequest(1l, 0, 0, 1, 3);
bookingService.createBooking(br);

BookingRequest br2 = createBookingRequest(2l, 1, 2, 4, 9);
bookingService.createBooking(br2);

BookingRequest br3 = createBookingRequest(3l, 0, 0, 1);
bookingService.createBooking(br3);

}

@Test
@InSequence(10)
public void testGetBookings() {

checkBooking1();

Ticket Monster Tutorial
141 / 275

checkBooking2();
checkBooking3();

}

private void checkBooking1() {
Booking booking = bookingService.getSingleInstance(1l);
assertNotNull(booking);
assertEquals("Roy Thomson Hall",

booking.getPerformance().getShow().getVenue().getName());
assertEquals("Rock concert of the decade",

booking.getPerformance().getShow().getEvent().getName());
assertEquals("bob@acme.com", booking.getContactEmail());

// Test the ticket requests created

assertEquals(3 + 2 + 1, booking.getTickets().size());

List<String> requiredTickets = new ArrayList<String>();
requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add("D @ 149.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");

checkTickets(requiredTickets, booking);
}

private void checkBooking2() {
Booking booking = bookingService.getSingleInstance(2l);
assertNotNull(booking);
assertEquals("Sydney Opera House",

booking.getPerformance().getShow().getVenue().getName());
assertEquals("Rock concert of the decade",

booking.getPerformance().getShow().getEvent().getName());
assertEquals("bob@acme.com", booking.getContactEmail());

assertEquals(3 + 2 + 1, booking.getTickets().size());

List<String> requiredTickets = new ArrayList<String>();
requiredTickets.add("S2 @ 197.75 (Adult)");
requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");

checkTickets(requiredTickets, booking);
}

private void checkBooking3() {
Booking booking = bookingService.getSingleInstance(3l);
assertNotNull(booking);
assertEquals("Roy Thomson Hall",

booking.getPerformance().getShow().getVenue().getName());
assertEquals("Shane's Sock Puppets",

booking.getPerformance().getShow().getEvent().getName());
assertEquals("bob@acme.com", booking.getContactEmail());

assertEquals(2 + 1, booking.getTickets().size());

List<String> requiredTickets = new ArrayList<String>();

Ticket Monster Tutorial
142 / 275

requiredTickets.add("B @ 199.5 (Adult)");
requiredTickets.add("D @ 149.5 (Adult)");
requiredTickets.add("B @ 199.5 (Adult)");

checkTickets(requiredTickets, booking);
}

@Test
@InSequence(10)
public void testPagination() {

// Test pagination logic
MultivaluedMap<String, String> queryParameters = new

MultivaluedHashMap<java.lang.String, java.lang.String>();

queryParameters.add("first", "2");
queryParameters.add("maxResults", "1");

List<Booking> bookings = bookingService.getAll(queryParameters);
assertNotNull(bookings);
assertEquals(1, bookings.size());
assertEquals("Sydney Opera House",

bookings.get(0).getPerformance().getShow().getVenue().getName());
assertEquals("Rock concert of the decade",

bookings.get(0).getPerformance().getShow().getEvent().getName());
}

@Test
@InSequence(20)
public void testDelete() {

bookingService.deleteBooking(2l);
checkBooking1();
checkBooking3();
try {

bookingService.getSingleInstance(2l);
} catch (Exception e) {

if (e.getCause() instanceof NoResultException) {
return;

}
}
fail("Expected NoResultException did not occur.");

}

private BookingRequest createBookingRequest(Long showId, int performanceNo, int...
ticketPriceNos) {

Show show = showService.getSingleInstance(showId);

Performance performance = new
ArrayList<Performance>(show.getPerformances()).get(performanceNo);

BookingRequest bookingRequest = new BookingRequest(performance, "bob@acme.com");

List<TicketPrice> possibleTicketPrices = new
ArrayList<TicketPrice>(show.getTicketPrices());

int i = 1;
for (int index : ticketPriceNos) {

bookingRequest.addTicketRequest(new
TicketRequest(possibleTicketPrices.get(index), i));

i++;
}

return bookingRequest;

Ticket Monster Tutorial
143 / 275

}

private void checkTickets(List<String> requiredTickets, Booking booking) {
List<String> bookedTickets = new ArrayList<String>();
for (Ticket t : booking.getTickets()) {

bookedTickets.add(new StringBuilder().append(t.getSeat().getSection()).append(" @
").append(t.getPrice()).append("

(").append(t.getTicketCategory()).append(")").toString());
}
System.out.println(bookedTickets);
for (String requiredTicket : requiredTickets) {

Assert.assertTrue("Required ticket not present: " + requiredTicket,
bookedTickets.contains(requiredTicket));

}
}

}

First we test booking creation in a test method of its own (testCreateBookings). Then, we test that the previously created
bookings are retrieved correctly (testGetBookings and testPagination). Finally, we test that deletion takes place
correctly (testDelete).

The other tests in the application follow roughly the same pattern and are left as an exercise to the reader.

28.3 Running the tests

If you have followed the instructions in the introduction and used the Maven archetype to generate the project structure, you
should have two profiles already defined in your application.

/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

...
<profile>

<!-- An optional Arquillian testing profile that executes tests
in your JBoss AS instance -->

<!-- This profile will start a new JBoss AS instance, and execute
the test, shutting it down when done -->

<!-- Run with: mvn clean test -Parq-jbossas-managed -->
<id>arq-jbossas-managed</id>
<dependencies>

<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-arquillian-container-managed</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

</profile>

<profile>
<!-- An optional Arquillian testing profile that executes tests

in a remote JBoss AS instance -->
<!-- Run with: mvn clean test -Parq-jbossas-remote -->
<id>arq-jbossas-remote</id>

Ticket Monster Tutorial
144 / 275

<dependencies>
<dependency>

<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-arquillian-container-remote</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

</profile>

</profiles>
</project>

If you haven’t used the archetype, or the profiles don’t exist, create them.

Each profile defines a different Arquillian container. In both cases the tests execute in an application server instance. In one case
(arq-jbossas-managed) the server instance is started and stopped by the test suite, while in the other (arq-jbossas-remote),
the test suite expects an already started server instance.

Once these profiles are defined, we can execute the tests in two ways:

• from the command-line build

• from an IDE

28.3.1 Executing tests from the command line

You can now execute the test suite from the command line by running the Maven build with the appropriate target and profile, as
in one of the following examples.

After ensuring that the JBOSS_HOME environment variable is set to a valid JBoss AS7 installation directory), you can run the
following command:

mvn clean test -Parq-jbossas-managed

Or, after starting a JBoss AS7 instance, you can run the following command

mvn clean test -Parq-jbossas-remote

These tests execute as part of the Maven build and can be easily included in an automated build and test harness.

28.3.2 Running Arquillian tests from within Eclipse

Running the entire test suite as part of the build is an important part of the development process - you may want to make sure that
everything is working fine before releasing a new milestone, or just before committing new code. However, running the entire
test suite all the time can be a productivity drain, especially when you’re trying to focus on a particular problem. Also, when
debugging, you don’t want to leave the comfort of your IDE for running the tests.

Running Arquillian tests from JBoss Developer Studio or JBoss tools is very simple as Arquillian builds on JUnit (or TestNG).

First enable one of the two profiles in the project. In Eclipse, open the project properties, and from the Maven tab, add the profile
as shown in the picture below.

Ticket Monster Tutorial
145 / 275

Figure 28.1: Update Maven profiles in Eclipse

The project configuration will be updated automatically.

Now, you can click right on one of your test classes, and select Run As→ JUnit Test.

The test suite will run, deploying the test classes to the application server, executing the tests and finally producing the much
coveted green bar.

Figure 28.2: Running the tests

Ticket Monster Tutorial
146 / 275

Part V

Building The User UI Using HTML5

Ticket Monster Tutorial
147 / 275

Chapter 29

What Will You Learn Here?

We’ve just implemented the business services of our application, and exposed them through RESTful endpoints. Now we need
to implement a flexible user interface that can be easily used with both desktop and mobile clients. After reading this tutorial,
you will understand our front-end design and the choices that we made in its implementation. Topics covered include:

• Creating single-page applications using HTML5, JavaScript and JSON

• Using JavaScript frameworks for invoking RESTful endpoints and manipulating page content

• Feature and device detection

• Implementing a version of the user interface that is optimized for mobile clients using JavaScript frameworks such as jQuery
mobile

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial
148 / 275

Chapter 30

First, the basics

In this tutorial, we will build a single-page application. All the necessary code: HTML, CSS and JavaScript is retrieved within a
single page load. Rather than refreshing the page every time the user changes a view, the content of the page will be redrawn by
manipulating the DOM in JavaScript. The application uses REST calls to retrieve data from the server.

Figure 30.1: Single page application

30.1 Client-side MVC Support

Because this is a moderately complex example, which involves multiple views and different types of data, we will use a client-side
MVC framework to structure the application, which provides amongst others:

• routing support within the single page application;

• event-driven interaction between views and data;

• simplified CRUD invocations on RESTful services.

In this application we use the client-side MVC framework "backbone.js".

Ticket Monster Tutorial
149 / 275

Figure 30.2: Backbone architecture

30.2 Modularity

In order to provide good separation of concerns, we split the JavaScript code into modules. Ensuring that all the modules of the
application are loaded properly at runtime becomes a complex task, as the application size increases. To conquer this complexity,
we use the Asynchronous Module Definition mechanism as implemented by the "require.js" library.

Asynchronous Module Definition
The Asynchronous Module Definition (AMD) API specifies a mechanism for defining modules such that the module, and its
dependencies, can be asynchronously loaded. This is particularly well suited for the browser where synchronous loading of
modules incurs performance, usability, debugging, and cross-domain access problems.

30.3 Templating

Instead of manipulating the DOM directly, and mixing up HTML with the JavaScript code, we create HTML markup fragments
separately as templates which are applied when the application views are rendered.

Ticket Monster Tutorial
150 / 275

In this application we use the templating support provided by "underscore.js".

30.4 Mobile and desktop versions

The page flow and structure, as well as feature set, are slightly different for mobile and desktop, and therefore we will build two
variants of the single-page-application, one for desktop and one for mobile. As the application variants are very similar, we will
cover the desktop version of the application first, and then we will explain what is different in the mobile version.

Ticket Monster Tutorial
151 / 275

Chapter 31

Setting up the structure

Before we start developing the user interface, we need to set up the general application structure and add the JavaScript libraries.
First, we create the directory structure:

Figure 31.1: File structure for our web application

We put stylesheets in resources/css folder, images in resources/img, and HTML view templates in resources/templates.
resources/js contains the JavaScript code, split between resources/js/libs - which contains the libraries used by the
application, resources/js/app - which contains the application code, and resources/js/configurations which
contains module definitions for the different versions of the application - i.e. mobile and desktop. The resources/js/app
folder will contain the application modules, in subsequent subdirectories, for models, collections, routers and views.

Ticket Monster Tutorial
152 / 275

The first step in implementing our solution is adding the stylesheets and JavaScript libraries to the resources/css and
resources/js/libs:

require.js
AMD support, along with the plugins:

• text - for loading text files, in our case the HTML templates

• order - for enforcing load ordering if necessary

jQuery
general purpose library for HTML traversal and manipulation

Underscore
JavaScript utility library (and a dependency of Backbone)

Backbone
Client-side MVC framework

Bootstrap
UI components and stylesheets for page structuring

Now, we create the main page of the application (which is the URL loaded by the browser):

src/main/webapp/index.html

<!DOCTYPE html>
<html>
<head>

<title>Ticket Monster</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0"/>

<script type="text/javascript" src="resources/js/libs/modernizr-2.0.6.js"></script>
<script type="text/javascript" src="resources/js/libs/require.js"

data-main="resources/js/configurations/loader"></script>
</head>
<body>
</body>
</html>

As you can see, the page does not contain much. It loads Modernizr (for HTML5 and CSS3 feature detection) and RequireJS
(for loading JavaScript modules in an asynchronous manner). Once RequireJS is loaded by the browser, it will configure itself to
use a baseUrl of resources/js/configurations (specified via the data-main attribute on the script tag). All
scripts loaded by RequireJS will use this baseUrl unless specified otherwise.

RequireJS will then load a script having a module ID of loader (again, specified via the data-main attribute):

src/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define(function () {

/*
A simple check on the client. For touch devices or small-resolution screens)
show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/

var environment;

if (Modernizr.touch || Modernizr.mq("only all and (max-width: 480px)")) {

Ticket Monster Tutorial
153 / 275

environment = "mobile"
} else {

environment = "desktop"
}

require([environment]);
});

This script detects the current client (mobile or desktop) based on its capabilities (touch or not) and loads another JavaScript mod-
ule (desktop or mobile) defined in the resources/js/configurations folder (aka the baseUrl) depending on the
detected features. In the case of the desktop client, the code is loaded from resources/js/configurations/desktop.js.

src/main/webapp/resources/js/configurations/desktop.js

/**
* Shortcut alias definitions - will come in handy when declaring dependencies

* Also, they allow you to keep the code free of any knowledge about library

* locations and versions

*/
requirejs.config({

baseUrl: "resources/js",
paths: {

jquery:'libs/jquery-1.9.1',
underscore:'libs/underscore',
text:'libs/text',
order:'libs/order',
bootstrap: 'libs/bootstrap',
backbone: 'libs/backbone',
utilities: 'app/utilities',
router:'app/router/desktop/router'

},
// We shim Backbone since it doesn't declare an AMD module
shim: {

'backbone': {
deps: ['jquery', 'underscore'],
exports: 'Backbone'

}
}

});

define("initializer", ["jquery"],
function ($) {
$('head').append('<link type="text/css" rel="stylesheet"
href="resources/css/screen.css"/>');
$('head').append('<link rel="stylesheet" href="resources/css/bootstrap.css"
type="text/css" media="all"/>');
$('head').append('<link rel="stylesheet" href="resources/css/custom.css" type="text/css"
media="all">');
$('head').append('<link href="http://fonts.googleapis.com/css?family=Rokkitt"
rel="stylesheet" type="text/css">');

});

// Now we declare all the dependencies
require([

'order!initializer',
'order!router'

], function(){
});

define("configuration", {
baseUrl : ""

});

Ticket Monster Tutorial
154 / 275

The module loads all the utility libraries, converting them to AMD modules where necessary (like it is the case for Backbone). It
also defines two modules of its own - an initializer that loads the application stylesheets for the page, and the configuration
module that allows customizing the REST service URLs (this will become in handy in a further tutorial).

Before we add any functionality, let us create a first landing page. We will begin by setting up a critical piece of the application,
the router.

31.1 Routing

The router allows for navigation in our application via bookmarkable URLs, and we will define it as follows:

src/main/webapp/resources/js/app/router/desktop/router.js
/**
* A module for the router of the desktop application

*/
define("router", [

'jquery',
'underscore',
'configuration',
'utilities',
'text!../templates/desktop/main.html'

],function ($,
_,
config,
utilities,
MainTemplate) {

$(document).ready(new function() {
utilities.applyTemplate($('body'), MainTemplate)

})

/**
* The Router class contains all the routes within the application -

* i.e. URLs and the actions that will be taken as a result.

*
* @type {Router}

*/

var Router = Backbone.Router.extend({
routes:{
}

});

// Create a router instance
var router = new Router();

//Begin routing
Backbone.history.start();

return router;
});

Remember, this is a single page application. You can either navigate using urls such as http://localhost:8080/ticket-monster/desktop-index.html#events
or using relative urls (from within the application, this being exactly what the main menu does). The fragment after the hash sign
represents the url within the single page, on which the router will act, according to the mappings set up in the routes property.

The main module needs to load it. Because the router depends on all the other components (models, collections and views) of the
application, directly or indirectly, it is the only component that is explicitly loaded in the desktop definition, which we change
as follows:

src/main/webapp/resources/js/configurations/desktop.js

Ticket Monster Tutorial
155 / 275

requirejs.config({
baseUrl: "resources/js",
paths: {

jquery:'libs/jquery-1.9.1',
underscore:'libs/underscore',
text:'libs/text',
order:'libs/order',
bootstrap: 'libs/bootstrap',
backbone: 'libs/backbone',
utilities: 'app/utilities',
router:'app/router/desktop/router'

},
// We shim Backbone since it doesn't declare an AMD module
shim: {

'backbone': {
deps: ['jquery', 'underscore'],
exports: 'Backbone'

}
}

});
...

require([
'order!initializer',
'order!underscore',
'order!backbone',
'order!router'

], function(){
});

During the router set up, we load the page template for the entire application. TicketMonster uses a templating library in order to
separate application logic from it’s actual graphical content. The actual HTML is described in template files, which are applied
by the application, when necessary, on a DOM element - effectively populating it’s content. So the general content of the page,
as described in the body element is described in a template file too. Let us define it.

/src/main/webapp/resources/templates/desktop/main.html

<!--
The main layout of the page - contains the menu and the 'content' <div/> in which
all the
views will render the content.

-->
<div id="logo"><div class="wrap"><h1>Ticket Monster</h1></div></div>
<div id="container">

<div id="menu">
<div class="navbar">

<div class="navbar-inner">
<div class="container">

<ul class="nav">
About
Events
Venues
Bookings
Monitor
Administration

</div>

</div>
</div>

</div>
<div id="content" class="container-fluid">

Ticket Monster Tutorial
156 / 275

</div>
</div>

<footer style="">
<div style="text-align: center;"><img src="resources/img/dualbrand_as7eap.png"
alt="HTML5"/></div>

</footer>

The actual HTML code of the template contains a menu definition which will be present on all the pages, as well as an empty
element named content, which is the placeholder for the application views. When a view is displayed, it will apply a template
and populate the content element.

Ticket Monster Tutorial
157 / 275

Chapter 32

Setting up the initial views

Let us complete our application setup by creating an initial landing page. The first thing that we will need to do is to add a view
component.

src/main/resources/js/app/views/desktop/home.js

/**
* The About view

*/
define([

'utilities',
'text!../../../../templates/desktop/home.html'

], function (utilities, HomeTemplate) {

var HomeView = Backbone.View.extend({
render:function () {

utilities.applyTemplate($(this.el),HomeTemplate,{});
return this;

}
});

return HomeView;
});

Functionally, this is a very basic component - it only renders the splash page of the application, but it helps us introduce a
new concept that will be heavily used throughout the application views. One main role of a view is to describe the logic for
manipulating the page content. It will do so by defining a function named render which will be invoked by the application. In
this very simple case, all that the view does is to create the content of the splash page. You can proceed by copying the content
of src/main/webapp/resources/templates/desktop/home.html to your project.

Backbone Views
Views are logical representations of user interface elements that can interact with data components, such as models in an
event-driven fashion. Apart from defining the logical structure of your user interface, views handle events resulting from the
user interaction (e.g. clicking a DOM element or selecting an element into a list), translating them into logical actions inside the
application.

Once we defined a view, we must tell the router to navigate to it whenever requested. We will add the following mapping to the
router:

src/main/webapp/resources/js/app/router/desktop/router.js

var Router = Backbone.Router.extend({
routes : {

Ticket Monster Tutorial
158 / 275

"":"home",
"about":"home"

},
home : function () {

utilities.viewManager.showView(new HomeView({el:$("#content")}));
}

});

We have just told the router to invoke the home function whenever the user navigates to the root of the application or uses a
#about hash. The method will simply cause the HomeView defined above to render.

Now you can navigate to http://localhost:8080/ticket-monster/#about or http://localhost:8080/ticket-monster
and see the results.

Ticket Monster Tutorial
159 / 275

Chapter 33

Displaying Events

The first use case that we implement is event navigation. The users will be able to view the list of events and select the one that
they want to attend. After doing so, they will select a venue, and will be able to choose a performance date and time.

33.1 The Event model

We define a Backbone model for holding event data. Nearly all domain entities (booking, event, venue) are represented by a
corresponding Backbone model:

src/main/webapp/resources/js/app/models/event.js

/**
* Module for the Event model

*/
define([

'configuration'
], function (config) {

/**
* The Event model class definition

* Used for CRUD operations against individual events

*/
var Event = Backbone.Model.extend({

urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations
});
// export the Event class
return Event;

});

The Event model can perform CRUD operations against the REST services we defined earlier.

Backbone Models
Backbone models contain data as well as much of the logic surrounding it: conversions, validations, computed properties, and
access control. They also perform CRUD operations with the REST service.

33.2 The Events collection

We define a Backbone collection for handling groups of events (like the events list):

src/main/webapp/resources/js/app/collections/events.js

Ticket Monster Tutorial
160 / 275

/**
* Module for the Events collection

*/
define([

// The collection element type and configuration are dependencies
'app/models/event',
'configuration'

], function (Event, config) {
/**
* Here we define the Bookings collection

* We will use it for CRUD operations on Bookings

*/
var Events = Backbone.Collection.extend({

url: config.baseUrl + "rest/events", // the URL for performing CRUD operations
model: Event,
id:"id", // the 'id' property of the model is the identifier
comparator:function (model) {

return model.get('category').id;
}

});
return Events;

});

By mapping the model and collection to a REST endpoint you can perform CRUD operations without having to invoke the
services explicitly. You will see how that works a bit later.

Backbone Collections
Collections are ordered sets of models. They can handle events which are fired as a result of a change to a individual member,
and can perform CRUD operations for syncing up contents against RESTful services.

33.3 The EventsView view

Now that we have implemented the data components of the example, we need to create the view that displays them.

src/main/webapp/resources/js/app/views/desktop/events.js

define([
'utilities',
'text!../../../../templates/desktop/events.html'

], function (
utilities,
eventsTemplate) {

var EventsView = Backbone.View.extend({
events:{

"click a":"update"
},
render:function () {

var categories = _.uniq(
_.map(this.model.models, function(model){

return model.get('category')
}), false, function(item){

return item.id
});

utilities.applyTemplate($(this.el), eventsTemplate, {categories:categories,
model:this.model})

$(this.el).find('.item:first').addClass('active');

Ticket Monster Tutorial
161 / 275

$(".carousel").carousel();
$(".collapse").collapse();
$("a[rel='popover']").popover({trigger:'hover',container:'body'});
return this;

},
update:function () {

$("a[rel='popover']").popover('hide')
}

});

return EventsView;
});

As we explained, earlier, the view is attached to a DOM element (the el property). When the render method is invoked, it
manipulates the DOM and renders the view. We could have achieved this by writing these instructions directly in the method,
but that would make it hard to change the page design later on. Instead, we create a template and apply it, thus separating the
HTML view code from the view implementation.

src/main/webapp/resources/templates/desktop/events.html

<div class="row-fluid">
<div class="span3">

<div id="itemMenu">

<%
_.each(categories, function (category) {
%>
<div class="accordion-group">

<div class="accordion-heading">
<a class="accordion-toggle"

data-target="#category-<%=category.id%>-collapsible"
data-toggle="collapse"

data-parent="#itemMenu"><%= category.description %>
</div>
<div id="category-<%=category.id%>-collapsible" class="collapse in

accordion-body">
<div id="category-<%- category.id%>" class="accordion-inner">

<%
_.each(model.models, function (model) {
if (model.get('category').id == category.id) {
%>
<p><a href="#events/<%- model.attributes.id%>" rel="popover"

data-content="<%- model.attributes.description%>"
data-original-title="<%-

model.attributes.name%>"><%=model.attributes.name%></p>
<% }
});
%>

</div>
</div>

</div>
<% }); %>

</div>
</div>

<div id='itemSummary' class="span9">
<div class="row-fluid">

<div class="span11">
<div id="eventCarousel" class="carousel">

<!-- Carousel items -->
<div class="carousel-inner">

Ticket Monster Tutorial
162 / 275

<%_.each(model.models, function(model) { %>
<div class="item">

<img src='rest/media/<%=model.attributes.mediaItem.id%>'/>

<div class="carousel-caption">
<h4><%=model.attributes.name%></h4>

<p><%=model.attributes.description%></p>
<a class="btn btn-danger" href="#events/<%=model.id%>">Book

tickets
</div>

</div>
<% }) %>

</div>
<!-- Carousel nav -->
<a class="carousel-control left" href="#eventCarousel"

data-slide="prev">‹
<a class="carousel-control right" href="#eventCarousel"

data-slide="next">›
</div>

</div>
</div>

</div>
</div>

As well as applying the template and preparing the data that will be used to fill it in (the categories and model entries in
the map), the render method also performs the JavaScript calls that are required to initialize the UI components (in this case
the Bootstrap carousel and popover).

A view can also listen to events fired by the children of it’s root element (el). In this case, the update method is configured to
listen to clicks on anchors. The configuration occurs within the events property of the class.

Now that the views are in place, we need to add another routing rule to the application.

src/main/webapp/resources/js/app/router/desktop/router.js

var Router = Backbone.Router.extend({
routes : {

...,
"events":"events"

},
...,
events:function () {

var events = new Events();
var eventsView = new EventsView({model:events, el:$("#content")});
events.bind("reset",

function () {
utilities.viewManager.showView(eventsView);

}).fetch();
}

});

The events function handles the #events fragment and will retrieve the events in our application via a REST call. We don’t
manually perform the REST call as it is triggered the by invocation of fetch on the Events collection, as discussed earlier.

The reset event on the collection is invoked when the data from the server is received, and the collection is populated. This
triggers the rendering of the events view (which is bound to the #content div).

The whole process is event orientated - the models, views and controllers interact through events.

Ticket Monster Tutorial
163 / 275

Chapter 34

Viewing a single event

With the events list view now in place, we can add a view to display the details of each individual event, allowing the user to
select a venue and performance time.

We already have the models in place so all we need to do is to create the additional view and expand the router. First, we’ll
implement the view:

src/main/webapp/resources/js/app/views/desktop/event-detail.js

define([
'utilities',
'require',
'text!../../../../templates/desktop/event-detail.html',
'text!../../../../templates/desktop/media.html',
'text!../../../../templates/desktop/event-venue-description.html',
'configuration',
'bootstrap'

], function (
utilities,
require,
eventDetailTemplate,
mediaTemplate,
eventVenueDescriptionTemplate,
config,
Bootstrap) {

var EventDetail = Backbone.View.extend({

events:{
"click input[name='bookButton']":"beginBooking",
"change select[id='venueSelector']":"refreshShows",
"change select[id='dayPicker']":"refreshTimes"

},

render:function () {
$(this.el).empty()
utilities.applyTemplate($(this.el), eventDetailTemplate, this.model.attributes);
$("#bookingOption").hide();
$("#venueSelector").attr('disabled', true);
$("#dayPicker").empty();
$("#dayPicker").attr('disabled', true)
$("#performanceTimes").empty();
$("#performanceTimes").attr('disabled', true)
var self = this
$.getJSON(config.baseUrl + "rest/shows?event=" + this.model.get('id'), function

(shows) {

Ticket Monster Tutorial
164 / 275

self.shows = shows
$("#venueSelector").empty().append("<option value='0' selected>Select a

venue</option>");
$.each(shows, function (i, show) {

$("#venueSelector").append("<option value='" + show.id + "'>" +
show.venue.address.city + " : " + show.venue.name + "</option>")

});
$("#venueSelector").removeAttr('disabled')

})
return this;

},
beginBooking:function () {

require("router").navigate('/book/' + $("#venueSelector option:selected").val() +
'/' + $("#performanceTimes").val(), true)

},
refreshShows:function (event) {

event.stopPropagation();
$("#dayPicker").empty();

var selectedShowId = event.currentTarget.value;

if (selectedShowId != 0) {
var selectedShow = _.find(this.shows, function (show) {

return show.id == selectedShowId
});
this.selectedShow = selectedShow;
utilities.applyTemplate($("#eventVenueDescription"),

eventVenueDescriptionTemplate, {venue:selectedShow.venue});
var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function

(performance) {
return (new Date(performance.date).withoutTimeOfDay()).getTime()

}), function (item) {
return item

}));
utilities.applyTemplate($("#venueMedia"), mediaTemplate, selectedShow.venue)
$("#dayPicker").removeAttr('disabled')
$("#performanceTimes").removeAttr('disabled')
_.each(times, function (time) {

var date = new Date(time)
$("#dayPicker").append("<option value='" + date.toYMD() + "'>" +

date.toPrettyStringWithoutTime() + "</option>")
});
this.refreshTimes()
$("#bookingWhen").show(100)

} else {
$("#bookingWhen").hide(100)
$("#bookingOption").hide()
$("#dayPicker").empty()
$("#venueMedia").empty()
$("#eventVenueDescription").empty()
$("#dayPicker").attr('disabled', true)
$("#performanceTimes").empty()
$("#performanceTimes").attr('disabled', true)

}

},
refreshTimes:function () {

var selectedDate = $("#dayPicker").val();
$("#performanceTimes").empty()
if (selectedDate) {

$.each(this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date(performance.date);

Ticket Monster Tutorial
165 / 275

if (_.isEqual(performanceDate.toYMD(), selectedDate)) {
$("#performanceTimes").append("<option value='" + performance.id +

"'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" +
performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")

}
})

}
$("#bookingOption").show()

}

});

return EventDetail;
});

This view is more complex than the global events view, as portions of the page need to be updated when the user chooses a venue.

Ticket Monster Tutorial
166 / 275

Figure 34.1: On the event details page some fragments are re-rendered when the user selects a venue

The view responds to three different events:

• changing the current venue triggers a reload of the venue details and the venue image, as well as the performance times. The

Ticket Monster Tutorial
167 / 275

application retrieves the performance times through a REST call.

• changing the day of the performance causes the performance time selector to reload.

• once the venue and performance date and time have been selected, the user can navigate to the booking page.

The corresponding templates for the three fragments rendered above are:

src/main/webapp/resources/templates/desktop/event-detail.html

<div class="row-fluid" xmlns="http://www.w3.org/1999/html">
<h2 class="page-header special-title light-font"><%=name%></h2>

</div>
<div class="row-fluid">

<div class="span4 well">
<div class="row-fluid"><h3 class="page-header span6">What?</h3>

<img width="100" src='rest/media/<%=mediaItem.id%>'/></div>
<div class="row-fluid">

<p> </p>

<div class="span12"><%= description %></div>
</div>

</div>
<div class="span4 well">

<div class="row-fluid"><h3 class="page-header span6">Where?</h3>
<div class="span6" id='venueMedia'/>

</div>
<div class='row-fluid'><select id='venueSelector'/>

<div id="eventVenueDescription"/>
</div>

</div>
<div id='bookingWhen' style="display: none;" class="span4 well">

<h3 class="page-header">When?</h3>
<select class="span6" id="dayPicker"/>
<select class="span6" id="performanceTimes"/>

<div id='bookingOption'><input name="bookButton" class="btn btn-primary" type="button"
value="Order tickets"></div>

</div>
</div>

src/main/webapp/resources/templates/desktop/event-venue-description.html

<address>
<p><%= venue.description %></p>
<p>Address:</p>
<p><%= venue.address.street %></p>
<p><%= venue.address.city %>, <%= venue.address.country %></p>

</address>

Now that the view exists, we add it to the router:

src/main/webapp/resources/js/app/router/desktop/router.js

/**
* A module for the router of the desktop application

*/
define("router", [

...
'app/models/event',

...,
'app/views/desktop/event-detail',

Ticket Monster Tutorial
168 / 275

...
],function (

...
Event,
...
EventDetailView,
...) {

var Router = Backbone.Router.extend({
routes:{

...
"events/:id":"eventDetail",

},
...
eventDetail:function (id) {

var model = new Event({id:id});
var eventDetailView = new EventDetailView({model:model, el:$("#content")});
model.bind("change",

function () {
utilities.viewManager.showView(eventDetailView);

}).fetch();
}

});

As you can see, this is very similar to the previous view and route, except that now the application can accept parameterized
URLs (e.g. http://localhost:8080/ticket-monster/desktop-index#events/1). This URL can be entered
directly into the browser, or it can be navigated to as a relative path (e.g. #events/1) from within the applicaton.

With this in place, all that remains is to implement the final view of this use case, creating the bookings.

Ticket Monster Tutorial
169 / 275

Chapter 35

Creating Bookings

The user has chosen the event, the venue and the performance time, and must now create the booking. Users can select one of the
available sections for the show’s venue, and then enter the number of tickets required for each category available for this show
(Adult, Child, etc.). They then add the tickets to the current order, which causes the summary view to be updated. Users can also
remove tickets from the order. When the order is complete, they enter their contact information (e-mail address) and submit the
order to the server.

First, we add the new view:

src/main/webapp/resources/js/app/views/desktop/create-booking.js

define([
'utilities',
'require',
'configuration',
'text!../../../../templates/desktop/booking-confirmation.html',
'text!../../../../templates/desktop/create-booking.html',
'text!../../../../templates/desktop/ticket-categories.html',
'text!../../../../templates/desktop/ticket-summary-view.html',
'bootstrap'

],function (
utilities,
require,
config,
bookingConfirmationTemplate,
createBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate){

var TicketCategoriesView = Backbone.View.extend({
id:'categoriesView',
events:{

"keyup input":"onChange"
},
render:function () {

if (this.model != null) {
var ticketPrices = _.map(this.model, function (item) {

return item.ticketPrice;
});
utilities.applyTemplate($(this.el), ticketEntriesTemplate,

{ticketPrices:ticketPrices});
} else {

$(this.el).empty();
}
return this;

Ticket Monster Tutorial
170 / 275

},
onChange:function (event) {

var value = event.currentTarget.value;
var ticketPriceId = $(event.currentTarget).data("tm-id");
var modifiedModelEntry = _.find(this.model, function (item) {

return item.ticketPrice.id == ticketPriceId
});
// update model
if ($.isNumeric(value) && value > 0) {

modifiedModelEntry.quantity = parseInt(value);
}
else {

delete modifiedModelEntry.quantity;
}
// display error messages
if (value.length > 0 &&

(!$.isNumeric(value) // is a non-number, other than empty string
|| value <= 0 // is negative
|| parseFloat(value) != parseInt(value))) { // is not an integer

$("#error-input-"+ticketPriceId).empty().append("Please enter a positive
integer value");

$("#ticket-category-fieldset-"+ticketPriceId).addClass("error")
} else {

$("#error-input-"+ticketPriceId).empty();
$("#ticket-category-fieldset-"+ticketPriceId).removeClass("error")

}
// are there any outstanding errors after this update?
// if yes, disable the input button
if (

$("div[id^='ticket-category-fieldset-']").hasClass("error") ||
_.isUndefined(modifiedModelEntry.quantity)) {

$("input[name='add']").attr("disabled", true)
} else {

$("input[name='add']").removeAttr("disabled")
}

}
});

var TicketSummaryView = Backbone.View.extend({
tagName:'tr',
events:{

"click i":"removeEntry"
},
render:function () {

var self = this;
utilities.applyTemplate($(this.el), ticketSummaryViewTemplate,

this.model.bookingRequest);
},
removeEntry:function (event) {

var index = $(event.currentTarget).data("index");
var ticketPriceId =

this.model.bookingRequest.seatAllocations[index].ticketRequest.ticketPrice.id;
var self = this;
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId),

data: JSON.stringify([{ticketPrice:ticketPriceId, quantity:-1}]),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function(cart) {

self.owner.refreshSummary(cart, self.owner)
}

});

Ticket Monster Tutorial
171 / 275

}
});

var CreateBookingView = Backbone.View.extend({

events:{
"click input[name='submit']":"save",
"change select[id='sectionSelect']":"refreshPrices",
"keyup #email":"updateEmail",
"change #email":"updateEmail",
"click input[name='add']":"addQuantities"

},
render:function () {

var self = this;
$.ajax({url: (config.baseUrl + "rest/carts"),

data:JSON.stringify({performance:this.model.performanceId}),
type:"POST",
dataType:"json",
contentType:"application/json",
success: function (cart) {

self.model.cartId = cart.id;
$.getJSON(config.baseUrl + "rest/shows/" + self.model.showId,

function (selectedShow) {

self.currentPerformance = _.find(selectedShow.performances,
function (item) {

return item.id == self.model.performanceId;
});

var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown
var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices,

'section'), id), true, id);
utilities.applyTemplate($(self.el), createBookingTemplate, {

sections:sections,
show:selectedShow,
performance:self.currentPerformance});

self.ticketCategoriesView = new TicketCategoriesView({model:{},
el:$("#ticketCategoriesViewPlaceholder")});

self.ticketSummaryView = new TicketSummaryView({model:self.model,
el:$("#ticketSummaryView")});

self.ticketSummaryView.owner = self;
self.show = selectedShow;
self.ticketCategoriesView.render();
self.ticketSummaryView.render();
$("#sectionSelector").change();

});
}

}
);
return this;

},
refreshPrices:function (event) {

var ticketPrices = _.filter(this.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;

});
var sortedTicketPrices = _.sortBy(ticketPrices, function(ticketPrice) {

return ticketPrice.ticketCategory.description;
});
var ticketPriceInputs = new Array();
_.each(sortedTicketPrices, function (ticketPrice) {

Ticket Monster Tutorial
172 / 275

ticketPriceInputs.push({ticketPrice:ticketPrice});
});
this.ticketCategoriesView.model = ticketPriceInputs;
this.ticketCategoriesView.render();

},
save:function (event) {

var bookingRequest = {ticketRequests:[]};
var self = this;
bookingRequest.email = this.model.bookingRequest.email;
bookingRequest.performance = this.model.performanceId
$("input[name='submit']").attr("disabled", true)
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId + "/checkout"),

data:JSON.stringify({email:this.model.bookingRequest.email}),
type:"POST",
dataType:"json",
contentType:"application/json",
success:function (booking) {

this.model = {}
$.getJSON(config.baseUrl +'rest/shows/performance/' +

booking.performance.id, function (retrievedPerformance) {
utilities.applyTemplate($(self.el), bookingConfirmationTemplate,

{booking:booking, performance:retrievedPerformance })
});

}}).error(function (error) {
if (error.status == 400 || error.status == 409) {

var errors = $.parseJSON(error.responseText).errors;
_.each(errors, function (errorMessage) {

$("#request-summary").append('<div class="alert alert-error">\timesError! ' + errorMessage +
'</div>')

});
} else {

$("#request-summary").append('<div class="alert alert-error">\timesError! An error has
occured</div>')

}
$("input[name='submit']").removeAttr("disabled");

})

},
calculateTotals:function () {

// make sure that tickets are sorted by section and ticket category
this.model.bookingRequest.seatAllocations.sort(function (t1, t2) {

if (t1.ticketRequest.ticketPrice.section.id !=
t2.ticketRequest.ticketPrice.section.id) {

return t1.ticketRequest.ticketPrice.section.id -
t2.ticketRequest.ticketPrice.section.id;

}
else {

return t1.ticketRequest.ticketPrice.ticketCategory.id -
t2.ticketRequest.ticketPrice.ticketCategory.id;

}
});

this.model.bookingRequest.totals =
_.reduce(this.model.bookingRequest.seatAllocations, function (totals, seatAllocation) {

var ticketRequest = seatAllocation.ticketRequest;
return {

tickets:totals.tickets + ticketRequest.quantity,
price:totals.price + ticketRequest.quantity *

ticketRequest.ticketPrice.price
};

Ticket Monster Tutorial
173 / 275

}, {tickets:0, price:0.0});
},
addQuantities:function () {

var self = this;
var ticketRequests = [];
_.each(this.ticketCategoriesView.model, function (model) {

if (model.quantity != undefined) {
ticketRequests.push({ticketPrice:model.ticketPrice.id,

quantity:model.quantity})
}

});
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId),

data:JSON.stringify(ticketRequests),
type:"POST",
dataType:"json",
contentType:"application/json",
success: function(cart) {

self.refreshSummary(cart, self)
}}

);
},
refreshSummary: function(cart, view) {

view.model.bookingRequest.seatAllocations = cart.seatAllocations;
view.ticketCategoriesView.model = null;
$('option:selected', 'select').removeAttr('selected');
view.calculateTotals();
view.ticketCategoriesView.render();
view.ticketSummaryView.render();
view.setCheckoutStatus();

},
updateEmail:function (event) {

// jQuery 1.9 does not handle pseudo CSS selectors like :valid :invalid, anymore
var validElements;
try {

validElements = $(".form-search").get(0).querySelectorAll(":valid");
for (var ctr=0; ctr < validElements.length; ctr++) {

if (event.currentTarget === validElements[ctr]) {
this.model.bookingRequest.email = event.currentTarget.value;
$("#error-email").empty();

} else {
$("#error-email").empty().append("Please enter a valid e-mail

address");
delete this.model.bookingRequest.email;

}
}

}
catch(e) {

// For browsers like IE9 that do fail on querySelectorAll for CSS pseudo
selectors,

// we use the regex defined in the HTML5 spec.
var emailRegex = new

RegExp("[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*");
if(emailRegex.test(event.currentTarget.value)) {

this.model.bookingRequest.email = event.currentTarget.value;
$("#error-email").empty();

} else {
$("#error-email").empty().append("Please enter a valid e-mail address");
delete this.model.bookingRequest.email;

}
}
this.setCheckoutStatus();

},

Ticket Monster Tutorial
174 / 275

setCheckoutStatus:function () {
if (this.model.bookingRequest.totals != undefined &&

this.model.bookingRequest.totals.tickets > 0 && this.model.bookingRequest.email !=
undefined && this.model.bookingRequest.email != '') {

$('input[name="submit"]').removeAttr('disabled');
}
else {

$('input[name="submit"]').attr('disabled', true);
}

}
});

return CreateBookingView;
});

The code above may be surprising! After all, we said that we were going to add a single view, but instead, we added three! This
view makes use of two subviews (TicketCategoriesView and TicketSummaryView) for re-rendering parts of the main
view. Whenever the user changes the current section, the list of available tickets is updated. Whenever the user adds the tickets to
the booking, the booking summary is re-rendered. Changes in quantities or the target email may enable or disable the submission
button - the booking is validated whenever changes to it are made. We do not create separate modules for the subviews, since
they are not referenced outside the module itself.

The booking submission is handled by the savemethod which constructs a JSON object, as required by a POST to http://localhost:8080/ticket-monster/rest/bookings,
and performs the AJAX call. In case of a successful response, a confirmation view is rendered. On failure, a warning is displayed
and the user may continue to edit the form.

The corresponding templates for the views above are shown below:

src/main/webapp/resources/templates/desktop/booking-confirmation.html

<div class="row-fluid">
<h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>

</div>
<div class="row-fluid">

<div class="span5 well">
<h4 class="page-header">Checkout information</h4>
<p>Email: <%= booking.contactEmail %></p>
<p>Event: <%= performance.event.name %></p>
<p>Venue: <%= performance.venue.name %></p>
<p>Date: <%= new Date(booking.performance.date).toPrettyString()

%></p>
<p>Created on: <%= new Date(booking.createdOn).toPrettyString()

%></p>
</div>
<div class="span5 well">

<h4 class="page-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">

<thead>
<tr>

<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>
</thead>
<tbody>
<% $.each(_.sortBy(booking.tickets, function(ticket) {return ticket.id}),

function (i, ticket) { %>
<tr>

<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>

Ticket Monster Tutorial
175 / 275

<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% }) %>
</tbody>

</table>
</div>

</div>
<div class="row-fluid" style="padding-bottom:30px;">

<div class="span2">Home</div>
</div>

src/main/webapp/resources/templates/desktop/create-booking.html

<div class="row-fluid">
<div class="span12">

<h2 class="special-title light-font"><%=show.event.name%>
<small><%=show.venue.name%>, <%=new

Date(performance.date).toPrettyString()%></p></small>
</h2>

</div>
</div>
<div class="row-fluid">

<div class="span6 well">
<h3 class="page-header">Select tickets</h3>
<form class="form-horizontal">
<div id="sectionSelectorPlaceholder">

<div class="control-group">
<label class="control-label"

for="sectionSelect">Section</label>
<div class="controls">

<select id="sectionSelect">
<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function(section) { %>
<option value="<%=section.id%>"><%=section.name%> -

<%=section.description%></option>
<% }) %>

</select>
</div>

</div>
</div>
</form>
<div id="ticketCategoriesViewPlaceholder"></div>

</div>
<div id="request-summary" class="span5 offset1 well">

<h3 class="page-header">Order summary</h3>
<div id="ticketSummaryView" class="row-fluid"/>
<h3 class="page-header">Checkout</h3>
<div class="row-fluid">

<form class="form-search">
<input type='email' id="email" placeholder="Email" required/>
<input type='button' class="btn btn-primary" name="submit" value="Checkout"

disabled="true"/>
<p class="help-block error-notification" id="error-email"></p>
</form>

</div>
</div>

</div>

src/main/webapp/resources/templates/desktop/ticket-categories.html

<% if (ticketPrices.length > 0) { %>

Ticket Monster Tutorial
176 / 275

<form class="form-horizontal">
<% _.each(ticketPrices, function(ticketPrice) { %>
<div class="control-group" id="ticket-category-fieldset-<%=ticketPrice.id%>">

<label
class="control-label"><%=ticketPrice.ticketCategory.description%></label>

<div class="controls">
<div class="input-append">

<input class="span6" rel="tooltip" title="Enter value"
data-tm-id="<%=ticketPrice.id%>"
placeholder="Number of tickets"
name="tickets-<%=ticketPrice.ticketCategory.id%>"/>

@ $<%=ticketPrice.price%>

<p class="help-block" id="error-input-<%=ticketPrice.id%>"></p>
</div>

</div>
</div>
<% }) %>

<p> </p>

<div class="control-group">
<label class="control-label"/>

<div class="controls">
<input type="button" class="btn btn-primary" disabled="true" name="add" value="Add

tickets"/>
</div>

</div>
</div>
</form>
<% } %>

src/main/webapp/resources/templates/desktop/ticket-summary-view.html

<div class="span12">
<% if (tickets.length>0) { %>
<table class="table table-bordered table-condensed row-fluid" style="background-color:
#fffffa;">

<thead>
<tr>

<th colspan="5">Requested tickets</th>
</tr>
<tr>

<th>Section</th>
<th>Category</th>
<th>Quantity</th>
<th>Price</th>
<th></th>

</tr>
</thead>
<tbody id="ticketRequestSummary">
<% _.each(tickets, function (ticketRequest, index, tickets) { %>
<tr>

<td><%= ticketRequest.ticketPrice.section.name %></td>
<td><%= ticketRequest.ticketPrice.ticketCategory.description %></td>
<td><%= ticketRequest.quantity %></td>
<td>$<%=ticketRequest.ticketPrice.price%></td>
<td><i class="icon-trash"/></td>

</tr>
<% }); %>

Ticket Monster Tutorial
177 / 275

</tbody>
</table>
<p/>
<div class="row-fluid">

<div class="span5">Total ticket count: <%= totals.tickets %></div>
<div class="span5">Total price: $<%=totals.price%></div></div>

<% } else { %>
No tickets requested.
<% } %>

</div>

Finally, once the view is available, we can add it’s corresponding routing rule:

src/main/webapp/resources/js/app/router/desktop/router.js

/**
* A module for the router of the desktop application

*/
define("router", [

...
'app/views/desktop/create-booking',

...
],function (

...
CreateBooking
...
) {

var Router = Backbone.Router.extend({
routes:{

...
"book/:showId/:performanceId":"bookTickets",

},
...
bookTickets:function (showId, performanceId) {

var createBookingView =
new CreateBookingView({

model:{ showId:showId,
performanceId:performanceId,
bookingRequest:{tickets:[]}},
el:$("#content")

});
utilities.viewManager.showView(createBookingView);

}
});

This concludes the implementation of the booking use case. We started by listing the available events, continued by selecting a
venue and performance time, and ended by choosing tickets and completing the order.

The other use cases: a booking starting from venues and view existing bookings are conceptually similar, so you can just copy the
remaining files in the src/main/webapp/resources/js/app/models, src/main/webapp/resources/js/app/collections,
src/main/webapp/resources/js/app/views/desktop and the remainder of src/main/webapp/resources/js/app/routers/desktop/router.js.

Ticket Monster Tutorial
178 / 275

Chapter 36

Mobile view

The mobile version of the application uses approximately the same architecture as the desktop version. Any differences are due
to the functional changes in the mobile version and the use of jQuery mobile.

36.1 Setting up the structure

The first step in implementing our solution is to copy the CSS and JavaScript libraries to resources/css and resources/js/libs:

require.js
AMD support, along with the plugins:

• text - for loading text files, in our case the HTML templates

• order - for enforcing load ordering if necessary

jQuery
general purpose library for HTML traversal and manipulation

Underscore
JavaScript utility library (and a dependency of Backbone)

Backbone
Client-side MVC framework

jQuery Mobile
user interface system for mobile devices;

(If you have already built the desktop application, some files may already be in place.)

For mobile clients, the main page will display the mobile version of the application, by loading the mobile AMD module of the
application. Let us create it.

/src/main/webapp/resources/js/configurations/mobile.js

/**
* Shortcut alias definitions - will come in handy when declaring dependencies

* Also, they allow you to keep the code free of any knowledge about library

* locations and versions

*/
require.config({

baseUrl:"resources/js",
paths: {

jquery:'libs/jquery-1.9.1',
jquerymobile:'libs/jquery.mobile-1.3.1',

Ticket Monster Tutorial
179 / 275

text:'libs/text',
underscore:'libs/underscore',
backbone: 'libs/backbone',
order: 'libs/order',
utilities: 'app/utilities',
router:'app/router/mobile/router'

},
// We shim Backbone since it doesn't declare an AMD module
shim: {

'backbone': {
deps: ['underscore', 'jquery'],
exports: 'Backbone'

}
}

});

define("configuration", function() {
if (window.TicketMonster != undefined && TicketMonster.config != undefined) {

return {
baseUrl: TicketMonster.config.baseRESTUrl

};
} else {

return {
baseUrl: ""

}
}

});

define("initializer", [
'jquery',
'utilities',
'text!../templates/mobile/main.html'

], function ($,
utilities,
MainTemplate) {

$('head').append('<link rel="stylesheet" href="resources/css/jquery.mobile-1.3.1.css"/>');
$('head').append('<link rel="stylesheet" href="resources/css/m.screen.css"/>');
$(document).bind("mobileinit", function () {

utilities.applyTemplate($('body'), MainTemplate)
});

});

// Now we declare all the dependencies
require(['order!initializer',

'order!underscore',
'order!backbone',
'order!router'],

function(){
});

define(["configuration"],function(configuration){
return {config: configuration };

});

In this application, we combine Backbone and jQuery Mobile. Each framework has its own strengths; jQuery Mobile provides
UI components and touch support, whilst Backbone provides MVC support. There is some overlap between the two, as jQuery
Mobile provides its own navigation mechanism which we disable.

We also define a special initializer module (initializer) that, when loaded, adds the stylesheets and applies the template for
the general structure of the page in the body element. Let us add the template definition.

Ticket Monster Tutorial
180 / 275

We also define a configuration module which allows the customization of the base URLs for RESTful invocations. This
module does not play any role in the mobile web version. We will come to it, however, when discussing hybrid applications.

src/main/webapp/resources/templates/mobile/main.html

<!--
The main layout of the page - contains the menu and the 'content' <div/> in which
all the
views will render the content.

-->
<div id="container" data-role="page" data-ajax="false"></div>

Next, we create the application router.

src/main/webapp/resources/js/app/router/mobile/router.js

/**
* A module for the router of the desktop application.

*
*/

define("router",[
'jquery',
'jquerymobile',
'underscore',
'utilities',
'text!../templates/mobile/home-view.html'

],function ($,
jqm,
_,
utilities,
HomeViewTemplate) {

// prior to creating an starting the router, we disable jQuery Mobile's own routing
mechanism
$.mobile.hashListeningEnabled = false;
$.mobile.linkBindingEnabled = false;
$.mobile.pushStateEnabled = false;

/**
* The Router class contains all the routes within the application - i.e. URLs and the

actions

* that will be taken as a result.

*
* @type {Router}

*/
var Router = Backbone.Router.extend({

defaultHandler:function (actions) {
if ("" != actions) {

$.mobile.changePage("#" + actions, {transition:'slide', changeHash:false,
allowSamePageTransition:true});

}
}

});

// Create a router instance
var router = new Router();

// Begin routing
Backbone.history.start();

return router;
});

Ticket Monster Tutorial
181 / 275

In the router code we make customizations in order to get the two frameworks working together - disabling the jQuery Mobile
navigation and adding the defaultHandler to the router for handling jQuery Mobile transitions between internal pages (such
as the ones generated by a nested listview).

Next, we need to create a first page.

36.2 The landing page

The first page in our application is the landing page. First, we add the template for it:

src/main/webapp/resources/templates/mobile/home-view.html

<div data-role="header">
<h3>Ticket Monster</h3>

</div>
<div data-role="content" align="center">

<h4 align="left">Find events</h4>
<ul data-role="listview">

By Category

By Location

</div>

Now we have to add the page to the router:

src/main/webapp/resources/js/app/router/mobile/router.js

/**
* A module for the router of the desktop application.

*
*/

define("router",[
...
'text!../templates/mobile/home-view.html'

],function (
...

HomeViewTemplate) {

...
var Router = Backbone.Router.extend({

routes:{
"":"home"

},
...
home:function () {

utilities.applyTemplate($("#container"), HomeViewTemplate);
try {

$("#container").trigger('pagecreate');
} catch (e) {

// workaround for a spurious error thrown when creating the page initially
}

}
});
...

});

Ticket Monster Tutorial
182 / 275

Because jQuery Mobile navigation is disabled, we must tell jQuery Mobile explicitly to enhance the page content in order to
create the mobile view. Here, we trigger the jQuery Mobile pagecreate event explicitly to ensure that the page gets the
appropriate look and feel.

36.3 The events view

First, we display a list of events (just as in the desktop view). Since mobile interfaces are more constrained, we will just show a
simple list view:

src/main/webapp/resources/js/app/views/mobile/events.js

define([
'utilities',
'text!../../../../templates/mobile/events.html'

], function (
utilities,
eventsView) {

var EventsView = Backbone.View.extend({
render:function () {

var categories = _.uniq(
_.map(this.model.models, function(model){

return model.get('category')
}), false, function(item){

return item.id
});

utilities.applyTemplate($(this.el), eventsView, {categories:categories,
model:this.model})

$(this.el).trigger('pagecreate');
return this;

}
});

return EventsView;
});

As you can see, the view is very similar to the desktop view, the main difference being the explicit hint to jQuery mobile through
the pagecreate event invocation.

Next, we add the template for rendering the view:

src/main/webapp/resources/templates/mobile/events.html

<div data-role="header">
<a data-role="button" data-icon="home" href="#">Home
<h3>Categories</h3>

</div>
<div data-role="content" id='itemMenu'>

<div id='categoryMenu' data-role='listview' data-filter='true'
data-filter-placeholder='Event category name ...'>

<%
_.each(categories, function (category) {
%>

<%= category.description %>
<ul id="category-<%=category.id%>">

<%
_.each(model.models, function (model) {
if (model.get('category').id == category.id) {
%>

Ticket Monster Tutorial
183 / 275

<a href="#events/<%=model.attributes.id%>"><%=model.attributes.name%>

<% }
});
%>

<% }); %>

</div>
</div>

And finally, we need to instruct the router to invoke the page:

src/main/webapp/resources/js/app/router/mobile/router.js

/**
* A module for the router of the desktop application.

*
*/

define("router",[
...

'app/collections/events',
...
'app/views/mobile/events'
...

],function (
...,
Events,
...,
EventsView,
...) {

...
var Router = Backbone.Router.extend({

routes:{
...

"events":"events"
...

},
...
events:function () {

var events = new Events;
var eventsView = new EventsView({model:events, el:$("#container")});
events.bind("reset",

function () {
utilities.viewManager.showView(eventsView);

}).fetch();
}
...

});
...

});

Just as in the case of the desktop application, the list of events will be accessible at #events (i.e. http://localhost:8080/ticket-monster/mobile-index.html#events).

36.4 Displaying an individual event

Now, we create the view to display an event:

src/main/webapp/resources/js/app/views/mobile/event-detail.js

Ticket Monster Tutorial
184 / 275

define([
'utilities',
'require',
'configuration',
'text!../../../../templates/mobile/event-detail.html',
'text!../../../../templates/mobile/event-venue-description.html'

], function (
utilities,
require,
config,
eventDetail,
eventVenueDescription) {

var EventDetailView = Backbone.View.extend({
events:{

"click a[id='bookButton']":"beginBooking",
"change select[id='showSelector']":"refreshShows",
"change select[id='performanceTimes']":"performanceSelected",
"change select[id='dayPicker']":'refreshTimes'

},
render:function () {

$(this.el).empty()
utilities.applyTemplate($(this.el), eventDetail, this.model.attributes)
$(this.el).trigger('create')
$("#bookButton").addClass("ui-disabled")
var self = this;
$.getJSON(config.baseUrl + "rest/shows?event=" + this.model.get('id'), function

(shows) {
self.shows = shows;
$("#showSelector").empty().append("<option data-placeholder='true'>Choose a

venue ...</option>");
$.each(shows, function (i, show) {

$("#showSelector").append("<option value='" + show.id + "'>" +
show.venue.address.city + " : " + show.venue.name + "</option>");

});
$("#showSelector").selectmenu('refresh', true)
$("#dayPicker").selectmenu('disable')
$("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show

date ...</option>")
$("#performanceTimes").selectmenu('disable')
$("#performanceTimes").empty().append("<option data-placeholder='true'>Choose

a show time ...</option>")
});
$("#dayPicker").empty();
$("#dayPicker").selectmenu('disable');
$("#performanceTimes").empty();
$("#performanceTimes").selectmenu('disable');
$(this.el).trigger('pagecreate');
return this;

},
performanceSelected:function () {

if ($("#performanceTimes").val() != 'Choose a show time ...') {
$("#bookButton").removeClass("ui-disabled")

} else {
$("#bookButton").addClass("ui-disabled")

}
},
beginBooking:function () {

require('router').navigate('book/' + $("#showSelector option:selected").val() +
'/' + $("#performanceTimes").val(), true)

},

Ticket Monster Tutorial
185 / 275

refreshShows:function (event) {

var selectedShowId = event.currentTarget.value;

if (selectedShowId != 'Choose a venue ...') {
var selectedShow = _.find(this.shows, function (show) {

return show.id == selectedShowId
});
this.selectedShow = selectedShow;
var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function

(performance) {
return (new Date(performance.date).withoutTimeOfDay()).getTime()

}), function (item) {
return item

}));
utilities.applyTemplate($("#eventVenueDescription"), eventVenueDescription,

{venue:selectedShow.venue});
$("#detailsCollapsible").show()
$("#dayPicker").removeAttr('disabled')
$("#performanceTimes").removeAttr('disabled')
$("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show

date ...</option>")
_.each(times, function (time) {

var date = new Date(time)
$("#dayPicker").append("<option value='" + date.toYMD() + "'>" +

date.toPrettyStringWithoutTime() + "</option>")
});
$("#dayPicker").selectmenu('refresh')
$("#dayPicker").selectmenu('enable')
this.refreshTimes()

} else {
$("#detailsCollapsible").hide()
$("#eventVenueDescription").empty()
$("#dayPicker").empty()
$("#dayPicker").selectmenu('disable')
$("#performanceTimes").empty()
$("#performanceTimes").selectmenu('disable')

}

},
refreshTimes:function () {

var selectedDate = $("#dayPicker").val();
$("#performanceTimes").empty().append("<option data-placeholder='true'>Choose a

show time ...</option>")
if (selectedDate) {

$.each(this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date(performance.date);
if (_.isEqual(performanceDate.toYMD(), selectedDate)) {

$("#performanceTimes").append("<option value='" + performance.id +
"'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" +
performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")

}
})
$("#performanceTimes").selectmenu('enable')

}
$("#performanceTimes").selectmenu('refresh')
this.performanceSelected()

}

});

Ticket Monster Tutorial
186 / 275

return EventDetailView;
});

Once again, this is very similar to the desktop version. Now we add the page templates:

src/main/webapp/resources/templates/mobile/event-detail.html

<div data-role="header">
<h3>Book tickets</h3>

</div>
<div data-role="content">

<h3><%=name%></h3>
<img width='100px' src='rest/media/<%=mediaItem.id%>'/>
<p><%=description%></p>
<div data-role="fieldcontain">

<label for="showSelector">Where</label>
<select id='showSelector' data-mini='true'/>

</div>

<div data-role="collapsible" data-content-theme="c" style="display: none;"
id="detailsCollapsible">

<h3>Venue details</h3>

<div id="eventVenueDescription">
</div>

</div>

<div data-role='fieldcontain'>
<fieldset data-role='controlgroup'>

<legend>When</legend>
<label for="dayPicker">When:</label>
<select id='dayPicker' data-mini='true'/>

<label for="performanceTimes">When:</label>
<select id="performanceTimes" data-mini='true'/>

</fieldset>
</div>

</div>
<div data-role="footer" class="ui-bar ui-grid-c">

<div class="ui-block-a"></div>
<div class="ui-block-b"></div>
<div class="ui-block-c"></div>
<a id='bookButton' class="ui-block-e" data-theme='b' data-role="button"
data-icon="check">Book

</div>

src/main/webapp/resources/templates/mobile/event-venue-description.html

<img width="100" src="rest/media/<%=venue.mediaItem.id%>"/></p>
<%= venue.description %>
<address>

<p>Address:</p>
<p><%= venue.address.street %></p>
<p><%= venue.address.city %>, <%= venue.address.country %></p>

</address>

Finally, we add this to the router, explicitly indicating to jQuery Mobile that a transition has to take place after the view is
rendered - in order to allow the page to render correctly after it has been invoked from the listview.

src/main/webapp/resources/js/app/router/mobile/router.js

Ticket Monster Tutorial
187 / 275

/**
* A module for the router of the desktop application.

*
*/

define("router",[
...

'app/model/event',
...
'app/views/mobile/event-detail'
...

],function (
...,
Event,
...,
EventDetailView,
...) {

...
var Router = Backbone.Router.extend({

routes:{
...

"events/:id":"eventDetail",
...

},
...
eventDetail:function (id) {

var model = new Event({id:id});
var eventDetailView = new EventDetailView({model:model, el:$("#container")});
model.bind("change",

function () {
utilities.viewManager.showView(eventDetailView);
$.mobile.changePage($("#container"), {transition:'slide',

changeHash:false});
}).fetch();

}
...

});
...

});

Just as the desktop version, the mobile event detail view allows users to choose a venue and a performance time. The next step is
to allow the user to book some tickets.

36.5 Booking tickets

The views to book tickets are simpler than the desktop version. Users can select a section and enter the number of tickets for
each category however, there is no way to add or remove tickets from an order. Once the form is filled out, the user can only
submit it.

First, we create the views:

src/main/webapp/resources/js/app/views/mobile/create-booking.js

define([
'utilities',
'configuration',
'require',
'text!../../../../templates/mobile/booking-details.html',
'text!../../../../templates/mobile/create-booking.html',
'text!../../../../templates/mobile/confirm-booking.html',

Ticket Monster Tutorial
188 / 275

'text!../../../../templates/mobile/ticket-entries.html',
'text!../../../../templates/mobile/ticket-summary-view.html'

], function (
utilities,
config,
require,
bookingDetailsTemplate,
createBookingTemplate,
confirmBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate) {

var TicketCategoriesView = Backbone.View.extend({
id:'categoriesView',
events:{

"change input":"onChange"
},
render:function () {

var views = {};

if (this.model != null) {
var ticketPrices = _.map(this.model, function (item) {

return item.ticketPrice;
});
utilities.applyTemplate($(this.el), ticketEntriesTemplate,

{ticketPrices:ticketPrices});
} else {

$(this.el).empty();
}
$(this.el).trigger('pagecreate');
return this;

},
onChange:function (event) {

var value = event.currentTarget.value;
var ticketPriceId = $(event.currentTarget).data("tm-id");
var modifiedModelEntry = _.find(this.model, function(item) { return

item.ticketPrice.id == ticketPriceId});
if ($.isNumeric(value) && value > 0) {

modifiedModelEntry.quantity = parseInt(value);
}
else {

delete modifiedModelEntry.quantity;
}

}
});

var TicketSummaryView = Backbone.View.extend({
render:function () {

utilities.applyTemplate($(this.el), ticketSummaryViewTemplate,
this.model.bookingRequest)

}
});

var ConfirmBookingView = Backbone.View.extend({
events:{

"click a[id='saveBooking']":"save",
"click a[id='goBack']":"back"

},
render:function () {

utilities.applyTemplate($(this.el), confirmBookingTemplate, this.model)
this.ticketSummaryView = new TicketSummaryView({model:this.model,

el:$("#ticketSummaryView")});

Ticket Monster Tutorial
189 / 275

this.ticketSummaryView.render();
$(this.el).trigger('pagecreate')

},
back:function () {

require("router").navigate('book/' + this.model.bookingRequest.show.id + '/' +
this.model.bookingRequest.performance.id, true)

}, save:function (event) {
var bookingRequest = {ticketRequests:[]};
var self = this;
_.each(this.model.bookingRequest.tickets, function (collection) {

_.each(collection, function (model) {
if (model.quantity != undefined) {

bookingRequest.ticketRequests.push({ticketPrice:model.ticketPrice.id,
quantity:model.quantity})

};
})

});

bookingRequest.email = this.model.email;
bookingRequest.performance = this.model.performanceId;
$.ajax({url:(config.baseUrl + "rest/bookings"),

data:JSON.stringify(bookingRequest),
type:"POST",
dataType:"json",
contentType:"application/json",
success:function (booking) {

utilities.applyTemplate($(self.el), bookingDetailsTemplate, booking)
$(self.el).trigger('pagecreate');

}}).error(function (error) {
alert(error);

});
this.model = {};

}
});

var CreateBookingView = Backbone.View.extend({

events:{
"click a[id='confirmBooking']":"checkout",
"change select":"refreshPrices",
"blur input[type='number']":"updateForm",
"blur input[name='email']":"updateForm"

},
render:function () {

var self = this;

$.getJSON(config.baseUrl + "rest/shows/" + this.model.showId, function
(selectedShow) {

self.model.performance = _.find(selectedShow.performances, function (item) {
return item.id == self.model.performanceId;

});
var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown
var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'),

id), true, id);

utilities.applyTemplate($(self.el), createBookingTemplate, {
show:selectedShow,

performance:self.model.performance,

Ticket Monster Tutorial
190 / 275

sections:sections});
$(self.el).trigger('pagecreate');
self.ticketCategoriesView = new TicketCategoriesView({model:{},

el:$("#ticketCategoriesViewPlaceholder") });
self.model.show = selectedShow;
self.ticketCategoriesView.render();
$('a[id="confirmBooking"]').addClass('ui-disabled');
$("#sectionSelector").change();

});

},
refreshPrices:function (event) {

if (event.currentTarget.value != "Choose a section") {
var ticketPrices = _.filter(this.model.show.ticketPrices, function (item) {

return item.section.id == event.currentTarget.value;
});
var ticketPriceInputs = new Array();
_.each(ticketPrices, function (ticketPrice) {

var model = {};
model.ticketPrice = ticketPrice;
ticketPriceInputs.push(model);

});
$("#ticketCategoriesViewPlaceholder").show();
this.ticketCategoriesView.model = ticketPriceInputs;
this.ticketCategoriesView.render();
$(this.el).trigger('pagecreate');

} else {
$("#ticketCategoriesViewPlaceholder").hide();
this.ticketCategoriesView.model = new Array();
this.updateForm();

}
},
checkout:function () {

this.model.bookingRequest.tickets.push(this.ticketCategoriesView.model);
this.model.performance = new ConfirmBookingView({model:this.model,

el:$("#container")}).render();
$("#container").trigger('pagecreate');

},
updateForm:function () {

var totals = _.reduce(this.ticketCategoriesView.model, function (partial, model) {
if (model.quantity != undefined) {

partial.tickets += model.quantity;
partial.price += model.quantity * model.ticketPrice.price;
return partial;

}
}, {tickets:0, price:0.0});
this.model.email = $("input[type='email']").val();
this.model.bookingRequest.totals = totals;
if (totals.tickets > 0 && $("input[type='email']").val()) {

$('a[id="confirmBooking"]').removeClass('ui-disabled');
} else {

$('a[id="confirmBooking"]').addClass('ui-disabled');
}

}
});
return CreateBookingView;

});

The views follow the structure the desktop application, except that the summary view is not rendered inline but after a page
transition.

Ticket Monster Tutorial
191 / 275

Next, we create the page fragment templates. First, the actual page:

src/main/webapp/resources/templates/mobile/create-booking.html

<div data-role="header">
<h1>Book tickets</h1>

</div>
<div data-role="content">

<p>
<h3><%=show.event.name%></h3>

</p>
<p>

<%=show.venue.name%>
<p>

<p>
<small><%=new Date(performance.date).toPrettyString()%></small>

</p>
<div id="sectionSelectorPlaceholder">

<div data-role="fieldcontain">
<label for="sectionSelect">Section</label>
<select id="sectionSelect">

<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function(section) { %>
<option value="<%=section.id%>"><%=section.name%> -

<%=section.description%></option>
<% }) %>

</select>
</div>

</div>
<div id="ticketCategoriesViewPlaceholder" style="display:none;"/>

<div class="fieldcontain">
<label>Contact email</label>
<input type='email' name='email' placeholder="Email"/>

</div>
</div>

<div data-role="footer" class="ui-bar">
Cancel
Checkout

</div>

Next, the fragment that contains the input form for tickets, which is re-rendered whenever the section is changed:

src/main/webapp/resources/templates/mobile/ticket-entries.html

<% if (ticketPrices.length > 0) { %>
<form name="ticketCategories">
<h4>Select tickets by category</h4>
<% _.each(ticketPrices, function(ticketPrice) { %>

<div id="ticket-category-input-<%=ticketPrice.id%>"/>

<fieldset data-role="fieldcontain">
<label

for="ticket-<%=ticketPrice.id%>"><%=ticketPrice.ticketCategory.description%>($<%=ticketPrice.price%>)</label>
<input id="ticket-<%=ticketPrice.id%>" data-tm-id="<%=ticketPrice.id%>"

type="number" placeholder="Enter value"
name="tickets"/>

</fieldset>
<% }) %>
</form>

Ticket Monster Tutorial
192 / 275

<% } %>

Before submitting the request to the server, the order is confirmed:

src/main/webapp/resources/templates/mobile/confirm-booking.html

<div data-role="header">
<h1>Confirm order</h1>

</div>
<div data-role="content">

<h3><%=show.event.name%></h3>
<p><%=show.venue.name%></p>
<p><small><%=new Date(performance.date).toPrettyString()%></small></p>
<p>Buyer: <emphasis><%=email%></emphasis></p>
<div id="ticketSummaryView"/>

</div>

<div data-role="footer" class="ui-bar">
<div class="ui-grid-b">

<div class="ui-block-a"><a id="cancel" href="#" data-role="button"
data-icon="delete">Cancel</div>

<div class="ui-block-b"><a id="goBack" data-role="button"
data-icon="back">Back</div>

<div class="ui-block-c"><a id="saveBooking" data-icon="check"
data-role="button">Buy!</div>
</div>

</div>

The confirmation page contains a summary subview:

src/main/webapp/resources/templates/mobile/ticket-summary-view.html

<table>
<thead>
<tr>

<th>Section</th>
<th>Category</th>
<th>Price</th>
<th>Quantity</th>

</tr>
</thead>
<tbody>
<% _.each(tickets, function(ticketRequest) { %>
<% _.each(ticketRequest, function(model) { %>
<% if (model.quantity != undefined) { %>
<tr>

<td><%= model.ticketPrice.section.name %></td>
<td><%= model.ticketPrice.ticketCategory.description %></td>
<td>$<%= model.ticketPrice.price %></td>
<td><%= model.quantity %></td>

</tr>
<% } %>
<% }) %>
<% }) %>
</tbody>

</table>
<div data-theme="c">

<h4>Totals</h4>
<p>Total tickets: <%= totals.tickets %></p>
<p> Total price: $<%= totals.price %></p>

</div>

Ticket Monster Tutorial
193 / 275

Finally, we create the page that displays the booking confirmation:

src/main/webapp/resources/templates/mobile/booking-details.html

<div data-role="header">
<h1>Booking complete</h1>

</div>
<div data-role="content">

<table id="confirm_tbl">
<thead>
<tr>

<td colspan="5" align="center">Booking <%=id%></td>
<tr>
<tr>

<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>
</thead>
<tbody>
<% $.each(_.sortBy(tickets, function(ticket) {return ticket.id}), function (i,

ticket) { %>
<tr>

<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% }) %>
</tbody>

</table></div>
<div data-role="footer" class="ui-bar">

<div class="ui-block-b"><a id="back" href="#" data-role="button"
data-icon="back">Back</div>

</div>

The last step is registering the view with the router:

src/main/webapp/resources/js/app/router/desktop/router.js

/**
* A module for the router of the desktop application

*/
define("router", [

...
'app/views/mobile/create-booking',
...

],function (
...

CreateBookingView
...) {

var Router = Backbone.Router.extend({
routes:{

...
"book/:showId/:performanceId":"bookTickets",
...

},

Ticket Monster Tutorial
194 / 275

...
bookTickets:function (showId, performanceId) {

var createBookingView =
new CreateBookingView(

{ model: {
showId:showId,
performanceId:performanceId,
bookingRequest:{tickets:[]}},
el:$("#container")

});
utilities.viewManager.showView(createBookingView);

},
...
);

});

Ticket Monster Tutorial
195 / 275

Chapter 37

More Resources

To learn more about writing HTML5 + REST applications with JBoss, take a look at the Aerogear project.

http://www.jboss.org/aerogear

Ticket Monster Tutorial
196 / 275

Part VI

Building the Administration UI using Forge

Ticket Monster Tutorial
197 / 275

Chapter 38

What Will You Learn Here?

You’ve just defined the domain model of your application, and all the entities managed directly by the end-users. Now it’s time
to build an administration GUI for the TicketMonster application using JSF and RichFaces. After reading this guide, you’ll
understand how to use JBoss Forge to create the views from the entities and how to "soup up" the UI using RichFaces.

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.

Ticket Monster Tutorial
198 / 275

Chapter 39

Setting up Forge

39.1 JBoss Enterprise Application Platform 6

If you are using JBoss Enterprise Application Platform 6, Forge is available in JBoss Developer Studio 5 (Beta1 or newer).

To show the Forge Console, navigate to Window→ Show View→ Other, locate Forge Console and click OK. Then click the Start
button in top right corner of the view.

39.2 JBoss AS 7

If you are using JBoss AS 7, you should install JBoss Forge version 1.0.2.Final or higher. Follow the instructions at Installing
Forge.

Open a command line and navigate to the root directory of this quickstart.

Launch Forge by typing the following command:

forge

39.3 Required Forge Plugins

Forge comes with a number of built in plugins, including the "scaffold" plugin, which is able to generate a full CRUD UI from
JPA entities. The generated UI uses JSF as the view layer, backed by CDI beans. Internally, Forge uses Metawidget to create the
CRUD screens.

Forge also includes a powerful plugin management system. The RichFaces plugin isn’t bundled with Forge, but it’s easy to
install. First use the forge find-plugin command to locate it

forge find-plugin richfaces

In this case, the plugin is just called richfaces - easy! We can install it using the forge install-plugin command:

forge install-plugin richfaces

This will download, compile and install the RichFaces plugin.

https://docs.jboss.org/author/display/FORGE/Installation
https://docs.jboss.org/author/display/FORGE/Installation
http://metawidget.org/

Ticket Monster Tutorial
199 / 275

Chapter 40

Getting started with Forge

Forge is a powerful rapid application development (aimed at Java EE 6) and project comprehension tool. It can operate both on
projects it creates, and on existing projects, such as TicketMonster. If you want to learn more about Forge . . .

When you cd into a project with Forge, it inspects the project, and detects what technologies you are using in the project. Let’s
see this in action:

project list-facets

Those facets detected are colored green.

Ticket Monster Tutorial
200 / 275

Figure 40.1: Output of project list-facets

As you can see, Forge has detected all the technologies we are using, such as JPA, JAX-RS, CDI and Bean Validation.

Ticket Monster Tutorial
201 / 275

Chapter 41

Generating the CRUD UI

Forge Scripts

Forge supports the execution of scripts. The generation of the CRUD UI is provided as a Forge script in TicketMonster, so
you don’t need to type the commands everytime you want to regenerate the Admin UI. The script will also prompt you to
applyTo run the script:

run admin_layer.fsh

41.1 Update the project

First, we need to add Scaffold to the project. Run:

scaffold setup --targetDir admin

to instruct Forge to generate the css, images and templates used by the scaffolded UI. Forge also adds an error page to be used
when a 404 or a 500 error is encountered.

Ticket Monster Tutorial
202 / 275

Figure 41.1: Output of scaffold setup

Now, we need to add RichFaces to the project. Run:

richfaces setup

You’ll be prompted for the version of RichFaces to use. Choose version 4.0.0.Final (the default), by pressing Enter.

Figure 41.2: Output of richfaces setup

Ticket Monster Tutorial
203 / 275

41.2 Scaffold the view from the JPA entities

You can either scaffold the entities one-by-one, which allows to control which UIs are generated, or you can generate a CRUD
UI for all the entities. We’ll do the latter:

scaffold from-entity org.jboss.jdf.example.ticketmonster.model.* --targetDir admin --overwrite

Forge asks us whether we want to overwrite every file - which gets a bit tedious! Specifying --overwrite allows Forge
to overwrite files without prompt - much better!

We now have a CRUD UI for all the entities used in TicketMonster!

Ticket Monster Tutorial
204 / 275

Chapter 42

Test the CRUD UI

Let’s test our UI on our local JBoss AS instance. As usual, we’ll build and deploy using Maven:

mvn clean package jboss-as:deploy

Ticket Monster Tutorial
205 / 275

Chapter 43

Make some changes to the UI

Let’s add support for images to the Admin UI. TicketMonster doesn’t provide support for storing images, but allows you to
reference images from hosting sites on the internet. TicketMonster caches the images, so you can still use the application when
you aren’t connected to the internet.

We’ll use JSF 2’s composite components, which allow to easily create new components.

/src/main/webapp/resources/tm/image.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite">

<head>
<title>Cached Image</title>
</head>
<body>

<composite:interface>
<composite:attribute name="media"
type="org.jboss.jdf.example.ticketmonster.services.MediaPath"/>
<composite:attribute name="id" type="java.lang.String" />

</composite:interface>

<composite:implementation>
<h:graphicImage value="#{cc.attrs.media.url}" rendered="#{!cc.attrs.media.cached}"/>
<h:graphicImage value="/rest/media/cache/#{cc.attrs.media.url}"
rendered="#{cc.attrs.media.cached}"/>

</composite:implementation>

</body>
</html>

The image composite component encapsulates the rendering of the image, pulling it from the remote location if the item is
available and not cached, or pulling it from the cache if otherwise.

Adding this file to /src/main/webapp/resources/tm/ automatically registers the component with JSF, using the names-
pace xmlns:tm="http://java.sun.com/jsf/composite/tm.

Let’s go ahead and use this component to display the image in src/main/webapp/admin/event/view.xhtml - the
page an admin uses to view an event before editing it. Open up the file in JBoss Developer Studio (or your favourite IDE
or text editor). Forge has generated an entry in panel grid to display the image URL, so we can just add <tm:image
media="#{mediaManager.getPath(eventBean.event.picture)}" /> to the <h:link>with the id eventBeanEventPicture.
We need to register the namespace as well, so add xmlns:tm="http://java.sun.com/jsf/composite/tm" to the
<ui:composition> tag. You should end up with a file that looks a bit like:

Ticket Monster Tutorial
206 / 275

/src/main/webapp/admin/event/view.xhtml

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:tm="http://java.sun.com/jsf/composite/tm"
template="/resources/scaffold/pageTemplate.xhtml">

<f:metadata>
<f:viewParam name="id" value="#{eventBean.id}" />
<f:event type="preRenderView" listener="#{eventBean.retrieve}" />

</f:metadata>

<ui:param name="pageTitle" value="View Event" />

<ui:define name="header">
Event

</ui:define>

<ui:define name="subheader">
View existing Event

</ui:define>

<ui:define name="footer" />

<ui:define name="main">
<h:panelGrid columnClasses="label,component,required"

columns="3">
<h:outputLabel for="eventBeanEventName" value="Name:" />
<h:outputText id="eventBeanEventName"

value="#{eventBean.event.name}" />
<h:outputText />
<h:outputLabel for="eventBeanEventPicture" value="Picture:" />
<h:link id="eventBeanEventPicture"

outcome="/admin/mediaItem/view"
value="#{eventBean.event.picture}">
<tm:image

media="#{mediaManager.getPath(eventBean.event.picture)}" />
<f:param name="id" value="#{eventBean.event.picture.id}" />

</h:link>
<h:outputText />
<h:outputLabel for="eventBeanEventCategory"

value="Category:" />
<h:link id="eventBeanEventCategory"

outcome="/admin/eventCategory/view"
value="#{eventBean.event.category}">
<f:param name="id"

value="#{eventBean.event.category.id}" />

</h:link>
<h:outputText />
<h:outputLabel for="eventBeanEventDescription"

value="Description:" />
<h:outputText id="eventBeanEventDescription"

value="#{eventBean.event.description}" />
<h:outputText />
<h:outputLabel value="Major:" />
<h:outputText

Ticket Monster Tutorial
207 / 275

styleClass="#{eventBean.event.major ? 'boolean-true' : 'boolean-false'}" />
<h:outputText />

</h:panelGrid>

<div class="buttons">
<h:link value="View All" outcome="search" />
<h:link value="Edit" outcome="create"

includeViewParams="true" />
<h:link value="Create New" outcome="create" />

</div>
</ui:define>

</ui:composition>

We can test these changes by running

mvn clean package jboss-as:deploy

as usual.

Ticket Monster Tutorial
208 / 275

Part VII

Building The Statistics Dashboard Using GWT
And Errai

Ticket Monster Tutorial
209 / 275

Chapter 44

What Will You Learn Here?

You’ve just built the administration view, and would like to collect real-time information about ticket sales and attendance. Now
it would be good to implement a dashboard that can collect data and receive real-time updates. After reading this tutorial, you
will understand our dashboard design and the choices that we made in its implementation. Topics covered include:

• Adding GWT to your application

• Setting up CDI server-client eventing using Errai

• Testing GWT applications

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included video shows you how we performed all the steps.

In this tutorial, we will create a booking monitor using Errai and GWT, and add it to the TicketMonster application. It will show
live updates on the booking status of all performances and shows. These live updates are powered by CDI events crossing the
client-server boundary, a feature provided by the Errai Framework.

44.1 Before we start

Let us quickly review the starting point of this chapter. If you are re-creating TicketMonster as part of reading this tutorial, this
is a good time to check that all the prerequisites are in place. If you are not re-creating TicketMonster on your own, then you can
skip this section.

Before everything, make sure that you have read and created the code described in chapter Part IV.

Afterwards, make sure that Errai is properly configured in the application.

First, we check if pom.xml contains a reference to the Bill Of Materials (BOM) that describes the correct version for the Errai
artifacts. Make sure that you have the following in the dependencyManagement section:

pom.xml

<project ...>
...
<dependencyManagement>
<dependencies>

...
<dependency>

<groupId>org.jboss.bom</groupId>
<artifactId>jboss-javaee-6.0-with-errai</artifactId>
<version>${jboss.bom.version}</version>
<type>pom</type>
<scope>import</scope>

Ticket Monster Tutorial
210 / 275

</dependency>
</dependencies>

</dependencyManagement>
</project>

Next, we check if the GWT and Errai artifacts are included in the project.

pom.xml

<project ...>
...
<dependencies>

<!-- The next set of dependencies are for Errai, which we use for
the TicketMonster booking monitor -->

<dependency>
<groupId>org.jboss.errai</groupId>
<artifactId>errai-bus</artifactId>
<exclusions>

<exclusion>
<groupId>javax.inject</groupId>
<artifactId>javax.inject</artifactId>

</exclusion>
<exclusion>

<groupId>javax.annotation</groupId>
<artifactId>jsr250-api</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.jboss.errai</groupId>
<artifactId>errai-ioc</artifactId>
<exclusions>

<exclusion>
<groupId>javax.inject</groupId>
<artifactId>javax.inject</artifactId>

</exclusion>
<exclusion>

<groupId>javax.annotation</groupId>
<artifactId>jsr250-api</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.jboss.errai</groupId>
<artifactId>errai-tools</artifactId>

</dependency>
<dependency>

<groupId>org.mvel</groupId>
<artifactId>mvel2</artifactId>

</dependency>

<!-- CDI/ Errai Integration Modules -->
<dependency>

<groupId>org.jboss.errai</groupId>
<artifactId>errai-cdi-client</artifactId>

</dependency>

<dependency>
<groupId>org.jboss.errai</groupId>
<artifactId>errai-javax-enterprise</artifactId>
<scope>provided</scope>

Ticket Monster Tutorial
211 / 275

</dependency>

<dependency>
<groupId>org.jboss.errai</groupId>
<artifactId>errai-weld-integration</artifactId>
<exclusions>

<exclusion>
<groupId>org.jboss.weld.servlet</groupId>
<artifactId>weld-servlet</artifactId>

</exclusion>
</exclusions>

</dependency>

<dependency>
<groupId>com.google.gwt</groupId>
<artifactId>gwt-user</artifactId>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>com.google.gwt</groupId>
<artifactId>gwt-dev</artifactId>
<scope>provided</scope>

</dependency>
</dependencies>

...
</project>

Make sure that the appropriate Maven plugins are configured too, and your build configuration contains the following:

pom.xml
<build>

<!-- Maven will append the version to the finalName (which is the
name given to the generated war, and hence the context root) -->
<finalName>${project.artifactId}</finalName>
<pluginManagement>

<plugins>
<!-- Compiler plugin enforces Java 1.6 compatibility and activates

annotation processors -->
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.1</version>
<configuration>

<source>1.6</source>
<target>1.6</target>

</configuration>
</plugin>
<plugin>

<artifactId>maven-war-plugin</artifactId>
<version>2.1.1</version>
<configuration>

<!-- We must exclude GWT client local classes from the
deployment, or classpath scanners such as Hibernate and Weld get confused
when the webapp is bootstrapping. -->

<packagingExcludes>**/javax/**/*.*,**/client/local/**/*.class</packagingExcludes>
<archive>

<manifestEntries>

<Dependencies>org.jboss.as.naming,org.jboss.as.server,org.jboss.msc</Dependencies>

Ticket Monster Tutorial
212 / 275

</manifestEntries>
</archive>

</configuration>
</plugin>

<!-- The JBoss AS plugin deploys your war to a local JBoss AS container -->
<!-- To use run: mvn package jboss-as:deploy -->
<plugin>

<groupId>org.jboss.as.plugins</groupId>
<artifactId>jboss-as-maven-plugin</artifactId>
<version>7.1.1.Final</version>

</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-clean-plugin</artifactId>
<version>2.4.1</version>
<configuration>

<filesets>
<fileset>

<directory>.errai</directory>
<includes>

<include>**</include>
</includes>

</fileset>
</filesets>

</configuration>
</plugin>
<!-- m2e (Maven integration for Eclipse) requires the following

configuration -->
<plugin>

<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>

<lifecycleMappingMetadata>
<pluginExecutions>

<pluginExecution>
<pluginExecutionFilter>

<groupId>org.codehaus.mojo</groupId>
<artifactId>gwt-maven-plugin</artifactId>
<versionRange>[2.3.0,)</versionRange>
<goals>

<goal>resources</goal>
</goals>

</pluginExecutionFilter>
<action>

<execute/>
</action>

</pluginExecution>
</pluginExecutions>

</lifecycleMappingMetadata>
</configuration>

</plugin>
</plugins>

</pluginManagement>
<plugins>

<!-- GWT plugin to compile client-side java code to javascript
and to run GWT development mode -->
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>gwt-maven-plugin</artifactId>

Ticket Monster Tutorial
213 / 275

<version>2.4.0</version>
<configuration>

<inplace>true</inplace>
<logLevel>INFO</logLevel>
<extraJvmArgs>-Xmx512m</extraJvmArgs>
<draftCompile>true</draftCompile>
<!-- Configure GWT's development mode (formerly known
as hosted mode) to not start the default server (embedded jetty), but to
download the HTML host page from the configured runTarget. -->
<noServer>true</noServer>

<runTarget>http://localhost:8080/ticket-monster/booking-monitor.html</runTarget>
</configuration>
<executions>

<execution>
<goals>

<goal>resources</goal>
<goal>compile</goal>

</goals>
</execution>
<execution>

<id>gwt-clean</id>
<phase>clean</phase>
<goals>

<goal>clean</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

If one or more of the above is not true, please make the appropriate changes.

Ticket Monster Tutorial
214 / 275

Chapter 45

Module definition

The first step is to add a GWT module descriptor (a .gwt.xml file) which defines the GWT module, its dependencies and
configures the client source paths. Only classes in these source paths will be compiled to JavaScript by the GWT compiler.
Here’s the BookingMonitor.gwt.xml file:

src/main/resources/org/jboss/jdf/example/ticketmonster/BookingMonitor.gwt.xml

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.6//EN"

"http://google-web-toolkit.googlecode.com/svn/releases/1.6/distro-source/core/src/gwt-module.dtd">

<!--
This file declares the Errai/GWT module for the TicketMonster booking monitor,
which shares the model classes with the user-facing part of the app, but defines
its own user interface for TicketMonster administrators.

-->

<module rename-to="BookingMonitor">
<inherits name="org.jboss.errai.common.ErraiCommon"/>
<inherits name="org.jboss.errai.bus.ErraiBus"/>
<inherits name="org.jboss.errai.ioc.Container"/>
<inherits name="org.jboss.errai.enterprise.CDI"/>

<!-- Model classes that are shared with the rest of the application -->
<source path="model"/>

<!-- Classes that are specific to 'booking monitor' features; not shared with rest of app
-->
<source path="monitor"/>

<!-- Limit the supported browsers for the sake of this demo -->
<set-property name="user.agent" value="ie8,ie9,safari,gecko1_8"/>

</module>

The rename-to attribute specifies the output directory and file name of the resulting JavaScript file. In this case we specified
that the BookingMonitor module will be compiled into BookingMonitor/BookingMonitor.nocache.js in the
project’s output directory. The module further inherits the required Errai modules, and specifies the already existing model
package as source path, as well as a new package named monitor, which will contain all the client source code specific to the
booking monitor.

Ticket Monster Tutorial
215 / 275

Chapter 46

Host page

In the next step we add a host HTML page which includes the generated JavaScript and all required CSS files for the booking
monitor. It further specifies a <div> element with id content which will be used as a container for the booking monitor’s
user interface.

src/main/webapp/booking-monitor.html

<!DOCTYPE html>
<html>
<head>

<title>Ticket Monster Administration</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link type="text/css" rel="stylesheet" href="resources/css/screen.css"/>
<link rel="stylesheet" href="resources/css/bootstrap.css" type="text/css" media="all"/>
<link rel="stylesheet" href="resources/css/custom.css" type="text/css" media="all">

<link href='http://fonts.googleapis.com/css?family=Rokkitt' rel='stylesheet'
type='text/css'>

<script type="text/javascript" src="BookingMonitor/BookingMonitor.nocache.js"></script>
</head>

<body>
<div id="logo"><div class="wrap"><h1>Ticket Monster</h1></div></div>

<div id="container">
<div id="menu">

<div class="navbar">
<div class="navbar-inner">

<div class="container">
<ul class="nav">

About
Events
Venues
Bookings
Monitor
Administration

</div>

</div>
</div>

</div>

<div class="container-fluid">

Ticket Monster Tutorial
216 / 275

<div class="row">
<div class="span7">

<h3 class="page-header light-font special-title">Booking status</h3>
<div id="content">

</div>
</div>

<div class="span5">
<h3 class="page-header light-font special-title">Bot</h3>
<div id="bot-content"></div>

</div>

</div>
</div>

</div>

<footer style="">
<div style="text-align: center;"><img src="resources/img/dualbrand_as7eap.png"

alt="HTML5"/></div>
</footer>

</body>
</html>

Ticket Monster Tutorial
217 / 275

Chapter 47

Enabling Errai

For enabling Errai in our application we will add an ErraiApp.properties marker file. When it is detected inside a JAR
or at the top of any classpath, the subdirectories are scanned for deployable components. As such, all Errai application modules
in a project must contain an ErraiApp.properties at the root of all classpaths that you wish to be scanned, in this case
src/main/resources.

We will also add an ErraiService.properties file, which contains basic configuration for the bus itself. Unlike ErraiApp.properties,
there should be at most one ErraiService.properties file on the classpath of a deployed application.

src/main/resources/ErraiService.properties

#
Request dispatcher implementation (default is SimpleDispatcher)
#
errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

Ticket Monster Tutorial
218 / 275

Chapter 48

Preparing the wire objects

One of the strengths of Errai is the ability to use domain objects for communication across the wire. In order for that to
be possible, all model classes that are transferred using Errai RPC or Errai CDI need to be annotated with the Errai-specific
annotation @Portable. We will begin by annotating the Booking class which used as an the event payload.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java

...
import org.jboss.errai.common.client.api.annotations.Portable;
...
@Portable
public class Booking implements Serializable {
...
}

You should do the same for the other model classes.

Ticket Monster Tutorial
219 / 275

Chapter 49

The EntryPoint

We are set up now and ready to start coding. The first class we need is the EntryPoint into the GWT application. Using Errai, all
it takes is to create a POJO and annotate it with @EntryPoint.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.enterprise.event.Observes;
import javax.inject.Inject;

import org.jboss.errai.bus.client.api.RemoteCallback;
import org.jboss.errai.ioc.client.api.AfterInitialization;
import org.jboss.errai.ioc.client.api.Caller;
import org.jboss.errai.ioc.client.api.EntryPoint;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.BookingMonitorService;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.qualifier.Cancelled;
import org.jboss.jdf.example.ticketmonster.monitor.client.shared.qualifier.Created;
import org.jboss.jdf.example.ticketmonster.model.Booking;
import org.jboss.jdf.example.ticketmonster.model.Performance;
import org.jboss.jdf.example.ticketmonster.model.Show;

import com.google.gwt.user.client.ui.RootPanel;

/**
* The entry point into the TicketMonster booking monitor.

*
* The {@code @EntryPoint} annotation indicates to the Errai framework that

* this class should be instantiated inside the web browser when the web page

* is first loaded.

*/
@EntryPoint
public class BookingMonitor {

/**
* This map caches the number of sold tickets for each {@link Performance} using

* the performance id as key.

*/
private static Map<Long, Long> occupiedCounts;

/**

Ticket Monster Tutorial
220 / 275

* This is the client-side proxy to the {@link BookingMonitorService}.

* The proxy is generated at build time, and injected into this field when the page loads.

*/
@Inject
private Caller<BookingMonitorService> monitorService;

/**
* We store references to {@link ShowStatusWidget}s in this map, so we can update

* these widgets when {@link Booking}s are received for the corresponding {@link Show}.

*/
private Map<Show, ShowStatusWidget> shows = new HashMap<Show, ShowStatusWidget>();

/**
* This method constructs the UI.

*
* Methods annotated with Errai's {@link AfterInitialization} are only called once

* everything is up and running, including the communication channel to the server.

*/
@AfterInitialization
public void createAndShowUI() {

// Retrieve the number of sold tickets for each performance.
monitorService.call(new RemoteCallback<Map<Long, Long>>() {

@Override
public void callback(Map<Long, Long> occupiedCounts) {

BookingMonitor.occupiedCounts = occupiedCounts;
listShows();

}
}).retrieveOccupiedCounts();

}

private void listShows() {
// Retrieve all shows
monitorService.call(new RemoteCallback<List<Show>>() {

@Override
public void callback(List<Show> shows) {

// Sort based on event name
Collections.sort(shows, new Comparator<Show>() {

@Override
public int compare(Show s0, Show s1) {

return s0.getEvent().getName().compareTo(s1.getEvent().getName());
}

});

// Create a show status widget for each show
for (Show show : shows) {

ShowStatusWidget sw = new ShowStatusWidget(show);
BookingMonitor.this.shows.put(show, sw);
RootPanel.get("content").add(sw);

}
}

}).retrieveShows();
}

}

As soon as Errai has completed its initialization process, the Booking Monitor#createAndShowUI() method is invoked
(@AfterInitialization tells Errai to call it). In this case the method will fetch initial data from the server using Errai
RPC and construct the user interface. To carry out the remote procedure call, we use an injected Caller for the remote interface
BookingMonitorServicewhich is part of the org.jboss.jdf.example.ticketmonster.monitor.client.shared
package and whose implementation BookingMonitorServiceImpl has been explained in the previous chapter.

Ticket Monster Tutorial
221 / 275

In order for the booking status to be updated in real-time, the class must be notified when a change has occurred. If you have
built the service layer already, you may remember that the JAX-RS BookingService class will fire CDI events whenever a
booking has been created or cancelled. Now we need to listen to those events.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/BookingMonitor.java

public class BookingMonitor {

/**
* Responds to the CDI event that's fired on the server when a {@link Booking} is created.

*
* @param booking the create booking

*/
public void onNewBooking(@Observes @Created Booking booking) {

updateBooking(booking, false);
}

/**
* Responds to the CDI event that's fired on the server when a {@link Booking} is

cancelled.

*
* @param booking the cancelled booking

*/
public void onCancelledBooking(@Observes @Cancelled Booking booking) {

updateBooking(booking, true);
}

// update the UI widget to reflect the new or cancelled booking
private void updateBooking(Booking booking, boolean cancellation) {

ShowStatusWidget sw = shows.get(booking.getPerformance().getShow());
if (sw != null) {

long count = getOccupiedCountForPerformance(booking.getPerformance());
count += (cancellation) ? -booking.getTickets().size() :

booking.getTickets().size();

occupiedCounts.put(booking.getPerformance().getId(), count);
sw.updatePerformance(booking.getPerformance());

}
}

/**
* Retrieve the sold ticket count for the given {@link Performance}.

*
* @param p the performance

* @return number of sold tickets.

*/
public static long getOccupiedCountForPerformance(Performance p) {

Long count = occupiedCounts.get(p.getId());
return (count == null) ? 0 : count.intValue();

}

}

The newly created methods onNewBooking and onCancelledBooking are event listeners. They are identified as such by
the @Observes annotation applied to their parameters. By using the @Created and @Cancelled qualifiers that we have
defined in our application, we narrow down the range of events that they listen.

Ticket Monster Tutorial
222 / 275

Chapter 50

The widgets

Next, we will define the widget classes that are responsible for rendering the user interface. First, we will create the widget class
for an individual performance.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/PerformanceStatusWidget.java

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import org.jboss.jdf.example.ticketmonster.model.Performance;

import com.google.gwt.i18n.client.DateTimeFormat;
import com.google.gwt.i18n.client.DateTimeFormat.PredefinedFormat;
import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.Label;

/**
* A UI component to display the status of a {@link Performance}.

*/
public class PerformanceStatusWidget extends Composite {

private Label bookingStatusLabel = new Label();

private HorizontalPanel progressBar = new HorizontalPanel();
private Label soldPercentLabel;
private Label availablePercentLabel;

private Performance performance;
private long soldTickets;
private int capacity;

public PerformanceStatusWidget(Performance performance) {
this.performance = performance;

soldTickets = BookingMonitor.getOccupiedCountForPerformance(performance);
capacity = performance.getShow().getVenue().getCapacity();

setBookingStatus();
setProgress();

HorizontalPanel performancePanel = new HorizontalPanel();
String date =

DateTimeFormat.getFormat(PredefinedFormat.DATE_TIME_SHORT).format(performance.getDate());
performancePanel.add(new Label(date));
performancePanel.add(progressBar);
performancePanel.add(bookingStatusLabel);

Ticket Monster Tutorial
223 / 275

performancePanel.setStyleName("performance-status");
initWidget(performancePanel);

}

/**
* Updates the booking status (progress bar and corresponding text) of the {@link

Performance}

* associated with this widget based on the number of sold tickets cached in {@link
BookingMonitor}.

*/
public void updateBookingStatus() {

this.soldTickets = BookingMonitor.getOccupiedCountForPerformance(performance);
setBookingStatus();
setProgress();

}

private void setBookingStatus() {
bookingStatusLabel.setText(soldTickets + " of " + capacity + " tickets booked");

}

private void setProgress() {
int soldPercent = Math.round((soldTickets / (float) capacity) * 100);

if (soldPercentLabel != null) {
progressBar.remove(soldPercentLabel);

}

if (availablePercentLabel != null) {
progressBar.remove(availablePercentLabel);

}

soldPercentLabel = new Label();
soldPercentLabel.setStyleName("performance-status-progress-sold");
soldPercentLabel.setWidth(soldPercent + "px");

availablePercentLabel = new Label();
availablePercentLabel.setStyleName("performance-status-progress-available");
availablePercentLabel.setWidth((100 - soldPercent) + "px");

progressBar.add(soldPercentLabel);
progressBar.add(availablePercentLabel);

}
}

A show has multiple performances, so we will create a ShowStatusWidget to contains a PerformanceStatusWidget
for each performance.

src/main/java/org/jboss/jdf/example/ticketmonster/monitor/client/local/ShowStatusWidget.java

package org.jboss.jdf.example.ticketmonster.monitor.client.local;

import java.util.Date;
import java.util.HashMap;
import java.util.Map;

import org.jboss.jdf.example.ticketmonster.model.Performance;
import org.jboss.jdf.example.ticketmonster.model.Show;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.VerticalPanel;

Ticket Monster Tutorial
224 / 275

/**
* A UI component to display the status of a {@link Show}.

*/
public class ShowStatusWidget extends Composite {

private Map<Long, PerformanceStatusWidget> performances = new HashMap<Long,
PerformanceStatusWidget>();

public ShowStatusWidget(Show show) {
VerticalPanel widgetPanel = new VerticalPanel();
widgetPanel.setStyleName("show-status");

Label showStatusHeader = new Label(show.getEvent().getName() + " @ " +
show.getVenue());

showStatusHeader.setStyleName("show-status-header");
widgetPanel.add(showStatusHeader);

// Add a performance status widget for each performance of the show
for (Performance performance : show.getPerformances()) {

if (performance.getDate().getTime() > new Date().getTime()) {
PerformanceStatusWidget psw = new PerformanceStatusWidget(performance);
performances.put(performance.getId(), psw);
widgetPanel.add(psw);

}
}

initWidget(widgetPanel);
}

/**
* Triggers an update of the {@link PerformanceStatusWidget} associated with

* the provided {@link Performance}.

*
* @param performance

*/
public void updatePerformance(Performance performance) {

PerformanceStatusWidget pw = performances.get(performance.getId());
if (pw != null) {

pw.updateBookingStatus();
}

}
}

This class is has two responsibilities. First, it will to display together all the performances that belong to a given show. Also,
it will update its PerformanceStatusWidget children whenever a booking event is received on the client (through the
observer method defined above).

Ticket Monster Tutorial
225 / 275

Part VIII

Creating hybrid mobile versions of the
application with Apache Cordova

Ticket Monster Tutorial
226 / 275

Chapter 51

What will you learn here?

You finished creating the front-end for your application, and it has mobile support. You would now like to provide native client
applications that your users can download from an application store. After reading this tutorial, you will understand how to reuse
the existing HTML5 code for create native mobile clients for each target platform with Apache Cordova.

You will learn how to:

• make changes to an existing web application to allow it to be deployed as a hybrid mobile application;

• create a native application for Android with Apache Cordova;

• create a native application for iOS with Apache Cordova;

Ticket Monster Tutorial
227 / 275

Chapter 52

What are hybrid mobile applications?

Hybrid mobile applications are developed in HTML5 - unlike native applications that are compiled to platform-specific binaries.
The client code - which consists exclusively of HTML, CSS, and JavaScript - is packaged and installed on the client device just
as any native application, and executes in a browser process created by a surrounding native shell.

Besides wrapping the browser process, the native shell also allows access to native device capabilities, such as the accelerometer,
GPS, contact list, etc., made available to the application through JavaScript libraries.

In this example, we use Apache Cordova to implement a hybrid application using the existing HTML5 mobile front-end for
TicketMonster, interacting with the RESTful services of a TicketMonster deployment running on JBoss A7 or JBoss EAP.

Figure 52.1: Architecture of hybrid TicketMonster

Ticket Monster Tutorial
228 / 275

Chapter 53

Tweak your application for remote access

Before we make the application hybrid, we need to make some changes in the way in which it accesses remote services. Note
that the changes have already been implemented in the user front end, here we show you the code that we needed to modify.

In the web version of the application the client code is deployed together with the server-side code, so the models and collections
(and generally any piece of code that will perform REST service invocations) can use URLs relative to the root of the application:
all resources are serviced from the same server, so the browser will do the correct invocation. This also respects the same origin
policy enforced by default by browsers, to prevent cross-site scripting attacks.

If the client code is deployed separately from the services, the REST invocations must use absolute URLs (we will cover the
impact on the same-origin policy later). Furthermore, since we want to be able to deploy the application to different hosts without
rebuilding the source, it must be configurable.

You already caught a glimpse of this in the user front end chapter, where we defined the configuration module for the
mobile version of the application.

src/main/webapp/resources/js/configurations/mobile.js

...
define("configuration", function() {

if (window.TicketMonster != undefined && TicketMonster.config != undefined) {
return {

baseUrl: TicketMonster.config.baseRESTUrl
};

} else {
return {

baseUrl: ""
}

}
})
...

This module has a baseURL property that is either set to an empty string for relative URLs or to a prefix, such as a domain
name, depending on whether a global variable named TicketMonster has already been defined, and it has a baseRESTUrl
property.

All our code that performs REST services invocations depends on this module, thus the base REST URL can be configured in a
single place and injected throughout the code, as in the following code example:

src/main/webapp/resources/js/app/models/event.js

/**
* Module for the Event model

*/
define([

'configuration',
'backbone'

Ticket Monster Tutorial
229 / 275

], function (config) {
/**
* The Event model class definition

* Used for CRUD operations against individual events

*/
var Event = Backbone.Model.extend({

urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations
});
// export the Event class
return Event;

});

The prefix is used in a similar fashion by all the other modules that perform REST service invocations. You don’t need to do
anything right now, because the code we created in the user front end tutorial was written like this originally. Be warned, if
you have a mobile web application that uses any relative URLs, you will need to refactor them to include some form of URL
configuration.

Ticket Monster Tutorial
230 / 275

Chapter 54

Downloading Apache Cordova

The next step is downloading and installing Apache Cordova. Download the distribution from http://phonegap.com/download
and unzip it.

Figure 54.1: Apache Cordova distribution

While migrating TicketMonster, we will work with the files in the lib directory. They contain native libraries for each of the
supported platforms, as well JavaScript libraries . We have highlighted the contents of the android folder. The folders for the
other platforms have similar content.

Ticket Monster Tutorial
231 / 275

Chapter 55

Creating an Android hybrid mobile application

What do you need for Android?
For building the Android version of the application you need to install the Android Developer Tools, which require an Eclipse
instance (3.6.2 or later), and can run on Windows (XP, Vista, 7), Mac OS X (10.5.8 or later), Linux (with GNU C Library - glibc
2.7 or later, 64-bit distributions having installed the libraries for running 32-bit applications).

55.1 Creating an Android project using Apache Cordova

First, we will create an Android project in JBDS. The prerequisites for that are having the Android SDK installed locally , as
well as the Android (ADT) plugin for Eclipse installed in JBDS.

For the former, download the Android SDK from http://developer.android.com/sdk/index.html and unzip it in a directory of your
choice, remembering its location.

For the latter, select Help→ Install New Software from the menu, using the URL https://dl-ssl.google.com/android/eclipse/
and selecting the Developer Tools option. Restart Eclipse.

Now we can create a new Android project.

1. Select File→ New→ Other and selecting Android Application Project.

2. Enter the project information: application name, project name, package.

Application Name
TicketMonster

Project Name
TicketMonster

package
org.jboss.jdf.ticketmonster.android

Ticket Monster Tutorial
232 / 275

Figure 55.1: Entering the application name, project name and package

3. Select default values for the next couple of screens (Configure New Project, Launcher icon).

4. Select BlankActivity as the activity type.

Ticket Monster Tutorial
233 / 275

Figure 55.2: Select activity type

5. Name the newly created activity TicketMonsterActivity.

Ticket Monster Tutorial
234 / 275

Figure 55.3: Name the new activity

A final step involves adding the Apache Cordova library to the project. Copy the lib/android/cordova-2.7.0.jar file
from the Cordova distribution into the libs folder of the project.

Ticket Monster Tutorial
235 / 275

Figure 55.4: Add the Cordova jar

Once you have finished creating the project, navigate to the assets directory. Now we need to create a www directory, that
will contain the HTML5 code of the application. Since we are reusing the TicketMonster code you can simply create a symbolic
link to the webapp directory of TicketMonster. Alternatively, you can copy the code of TicketMonster and make all necessary
changes there (however, in that case you will have to maintain the code of the application).

$ ln -s $TICKET_MONSTER_HOME/demo/src/main/webapp www

Inside the Android project, modify permissions and additional configurations to AndroidManifest.xml to look as follows

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.jboss.jdf.ticketmonster.android"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="17" />

<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:resizeable="true"
android:smallScreens="true" />

<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS" />

Ticket Monster Tutorial
236 / 275

<uses-permission android:name="android.permission.WRITE_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.BROADCAST_STICKY" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
android:configChanges="orientation|keyboardHidden|keyboard|screenSize|locale">
<activity

android:name=".TicketMonsterActivity"
android:label="@string/title_activity_ticket_monster" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>

We also need to copy the xml directory containing the Cordova project configuration file - config.xml, from the Cordova
distribution to the res directory of the project.

Ticket Monster Tutorial
237 / 275

Figure 55.5: Add the Cordova project configuration file

We will add our REST service URL to the domain whitelist in the config.xml file (you can use "*" too, for simplicity, during
development) :

res/xml/config.xml

<?xml version="1.0" encoding="utf-8"?>
<cordova>

...

<!--
access elements control the Android whitelist.
Domains are assumed blocked unless set otherwise
-->

<access origin="http://localhost"/> <!-- allow local pages -->
<access origin="http://ticketmonster-jdf.rhcloud.com"/>

...

Ticket Monster Tutorial
238 / 275

</cordova>

Finally, we will update the Android TicketMonsterActivity class, the entry point of our Android application.

src/org/jboss/jdf/ticketmonster/android/TicketMonsterActivity.java

package org.jboss.jdf.ticketmonster.android;

import org.apache.cordova.DroidGap;

import android.os.Bundle;
import android.webkit.WebSettings;

public class TicketMonsterActivity extends DroidGap {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
super.loadUrl("file:///android_asset/www/index.html");

}

@Override
public void init() {
super.init();

WebSettings settings = this.appView.getSettings();
settings.setUserAgentString("TicketMonster Cordova Webview Android");

}

}

Note how we customize the user agent information for the wrapped browser. This will allow us to identify that the application
runs in Cordova, on an Android platform, which will be useful later on.

55.2 Adding Apache Cordova to TicketMonster

First, we will copy the Apache Cordova JavaScript library to the project. From the directory where you unzipped the distribution,
copy the lib\android\cordova-2.7.0.js file to the src/main/webapp/resources/js/libs folder, renam-
ing it to cordova-android-2.7.0.js, to avoid naming conflicts with other platforms (such as iOS which we will also
implement as part of this tutorial).

Next, we need to load the library in the application. We will create a separate module, that will load the rest of the mobile
application, as well as the Apache Cordova JavaScript library for Android. We also need to configure a base URL for the
application. For this example, we will use the URL of the cloud deployment of TicketMonster.

src/main/webapp/resources/js/libs/hybrid-android.js

// override configuration for RESTful services
var TicketMonster = {

config:{
baseRESTUrl:"http://ticketmonster-jdf.rhcloud.com/"

}
}

require (["resources/js/libs/cordova-android-2.7.0.js","mobile"], function() {

});

Ticket Monster Tutorial
239 / 275

The final step will involve adjusting src/main/webapp/resources/js/configurations/loader.js to load this
module when running on Android, using the user agent setting we have already configured in the project.

src/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define(function () {

/*
A simple check on the client. For touch devices or small-resolution screens)
show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/

var environment;

if (navigator.userAgent.indexOf("TicketMonster Cordova Webview Android") > -1) {
environment = "hybrid-android"

}
else if (Modernizr.touch || Modernizr.mq("only all and (max-width: 480px)")) {

environment = "mobile"
} else {

environment = "desktop"
}

require([environment]);
});

Now you are ready to run the application. Right-click on project Run as→Android Application.

Ticket Monster Tutorial
240 / 275

Chapter 56

Creating an iOS hybrid mobile application

In order to create the iOS hybrid mobile version of the application make you sure you have the following software installed:

• Xcode 4.5+

• XCode Command Line Tools

You need a Mac OS X for this
Creating the iOS hybrid mobile version of the application requires a system running Mac OS X Lion or later (10.7+), mainly for
running Xcode.

Also, we assume that you have installed and extracted Apache Cordova already as described in a previous section.

56.1 Creating an iOS project using Apache Cordova

First, we need to create an iOS project. In order to do so we run the create command, to be found in the lib/ios/bin of
your Apache Cordova distribution. Run the command with the following parameters:

$ $LIB_IOS_BIN/create $TICKET_MONSTER_HOME/cordova/ios org.jboss.ticketmonster.cordova.ios
TicketMonster

For the purpose of this tutorial, we assume that the cordova directory which is the parent of the ios directory where the project is
created, is at the same level as the directory where the original project exists.

Note
The create script for Cordova/iOS will create a www sub-directory in the ios directory. This www sub-directory will need to
be deleted since we’re sharing the sources from the TicketMonster project.

Delete the www sub-directory under the TicketMonster, since we will not be using the underlying sources

$ rm -rf $TICKET_MONSTER_HOME/cordova/ios/www

We then create a symbolic link inside the ios directory to the original TicketMonster project, with the name www.

$ ln -s $TICKET_MONSTER_HOME/demo/src/main/webapp www

Ticket Monster Tutorial
241 / 275

Now we open the created project in Xcode.

Just as in the case of the Android application, we customize the user agent information that gets passed on to the browser. We
will use this information to load the proper JavaScript library. So we will adjust the initialize method in the generated code
to that effect.

Classes/AppDelegate.m

...

+ (void)initialize {
// Set user agent
NSDictionary *dictionary = [[NSDictionary alloc]

initWithObjectsAndKeys:@"TicketMonster Cordova Webview iOS",
@"UserAgent", nil];
[[NSUserDefaults standardUserDefaults] registerDefaults:dictionary];
[dictionary release];

}

...

The Cordova library for iOS is already included in the generated project.

56.2 Adding Apache Cordova for iOS to TicketMonster

First, we copy the Apache Cordova JavaScript library to the project. From the directory where you unzipped the distribution,
copy the lib\ios\CordovaLib\cordova.ios.js file to the src/main/webapp/resources/js/libs folder,
renaming it to cordova-ios-2.7.0.js, to avoid naming conflicts with other platforms (such as Android which we already
implemented as part of this tutorial.

Next, we need to load the library in the application. We will create a separate module, that will load the rest of the mobile
application, as well as the Apache Cordova JavaScript library for iOS. We also need to configure a base URL for the application.
For this example, we will use the URL of the cloud deployment of TicketMonster.

Note
The cordova.io.js is typically present as cordova-2.7.0.js in Cordova/iOS projects. The aforementioned Cordova
create script renames the file during project creation to cordova-2.7.0.js. This is why we propose renaming it to avoid
potential conflicts.

src/main/webapp/resources/js/libs/hybrid-ios.js

// override configuration for RESTful services
var TicketMonster = {

config:{
baseRESTUrl:"http://ticketmonster-jdf.rhcloud.com/"

}
}

require (["resources/js/libs/cordova-ios-2.7.0.js","mobile"], function() {

});

Finally, we once again edit the JavaScript loader module to add support for iOS.

src/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define(function () {

Ticket Monster Tutorial
242 / 275

/*
A simple check on the client. For touch devices or small-resolution screens)
show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/

var environment;

if (navigator.userAgent.indexOf("TicketMonster Cordova Webview iOS") > -1) {
environment = "hybrid-ios"

}
else if (navigator.userAgent.indexOf("TicketMonster Cordova Webview Android") > -1) {

environment = "hybrid-android"
}
else if (Modernizr.touch || Modernizr.mq("only all and (max-width: 480px)")) {

environment = "mobile"
} else {

environment = "desktop"
}

require([environment]);
});

Now you are ready to run the application. Select a simulator and run (Cmd-R).

Ticket Monster Tutorial
243 / 275

Chapter 57

Conclusion

This concludes our tutorial for building a hybrid application with Apache Cordova. You have seen how we have turned a working
HTML5 web application into one that can run natively on Android and iOS.

For more details, as well as an example of deploying to a physical device, consult the Aerogear tutorial on the same topic.

http://aerogear.org/docs/guides/HTML5ToHybridWithCordova/

Ticket Monster Tutorial
244 / 275

Part IX

Adding a data grid

Ticket Monster Tutorial
245 / 275

Chapter 58

What Will You Learn Here?

You’ve just finished implementing TicketMonster, and are wondering how can you improve its concurrency and scalability. One
possible solution is to reconsider the storage strategy and use a data grid, at least for a part of your application data. In this
tutorial, you will learn how to:

• Add JBoss Data Grid to your web application;

• Configure caches programmatically;

• Use caches to implement scalable server-side stateful components such as shopping carts;

• Use caches to implement a highly-concurrent data access mechanism for seat allocations.

Ticket Monster Tutorial
246 / 275

Chapter 59

The problem at hand

When it comes to performance, TicketMonster has a few special requirements:

High concurrency
tickets will sell out very fast, maybe in 5 minutes;

High volume
there may be thousands of shows with thousands of tickets to sell, each;

Location awareness
shows can take place all around the world, and we’d like the data to be available in the same region where the show takes
place.

So far, in the tutorial we have used exclusively a database. While it works as an initial implementation, we plan to address the
concerns above with a better-suited solution. We will do this by adding Infinispan to our project, thus addressing the above
concerns as follows:

High concurrency
In-memory data access and optimized locking;

High volume
The application can handle increasingly large data amounts by adding new data grid nodes;

Location awareness
A multi-node data grid can be configured so that data is stored on specific nodes.

What is a data grid? What is Infinispan?
A data grid is a cluster of (typically commodity) servers, normally residing on a single local-area network, connected to each
other using IP based networking. Data grids behave as a single resource, exposing the aggregate storage capacity of all
servers in the cluster. Data stored in the grid is usually partitioned, using a variety of techniques, to balance load across all
servers in the cluster as evenly as possible. Data is often redundantly stored in the grid to provide resilience to individual
servers in the grid failing i.e. more than one copy is stored in the grid, transparently to the application.
Infinispan is an extremely scalable, highly available key/value NoSQL datastore and distributed data grid platform - 100% open
source, and written in Java. The purpose of Infinispan is to expose a data structure that is highly concurrent, designed ground-
up to make the most of modern multi-processor/multi-core architectures while at the same time providing distributed cache
capabilities.
link

http://www.jboss.org/infinispan

Ticket Monster Tutorial
247 / 275

Chapter 60

Adding Infinispan

First, you need to decide how you will use Infinispan in the project. You can opt between two access patterns:

Library
The data grid nodes are embedded in the application. In this case, we need to add the core data grid libraries as a depen-
dency to the project.

Remote client-server
The data grid nodes are started separately and accessed through a client library. Only the client library is added as a
dependency.

For TicketMonster, we will use the library access pattern, as in this particular case we can benefit from the simpler setup.
For a more detailed description of the pros and cons of each access pattern, you can read a more detailed explanation in the
product documentation . In any case, switching from one mode to the other is non-intrusive, the only major difference being the
infrastructure setup.

Next, we will begin by adding the JBoss Developer Framework Bill of Materials (BOM) that describes the correct version for
the Infinispan artifacts.

pom.xml

<project ...>
...
<dependencyManagement>
<dependencies>

...
<dependency>

<groupId>org.jboss.bom</groupId>
<artifactId>jboss-javaee-6.0-with-infinispan</artifactId>
<version>${jboss.bom.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>
</project>

Next, we will add the infinispan-core library to the project.

Next, we will include the Infinispan library in the project.

pom.xml

<project ...>
...
<dependencies>

https://docs.jboss.org/author/display/ISPN51/Infinispan+Server+Modules#InfinispanServerModules-ServerModules
https://docs.jboss.org/author/display/ISPN51/Infinispan+Server+Modules#InfinispanServerModules-ServerModules

Ticket Monster Tutorial
248 / 275

<!-- This is the dependency for Infinispan, which we use for carts and
seat reservation

-->
<dependency>

<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>

</dependency>
</dependencies>
...

</project>

Ticket Monster Tutorial
249 / 275

Chapter 61

Configuring the infrastructure

First, we will create a producer and disposer for the Infinispan cache manager, where we define the global cache configuration
and set up default options for the caches used in the application. The cache manager is unique for the application and to the data
grid node, so we will create it as an application scoped bean.

src/main/org/jboss/jdf/example/ticketmonster/util/CacheProducer.java

/**
* Producer for the {@link EmbeddedCacheManager} instance used by the application. Defines

* the default configuration for caches.

*/
@ApplicationScoped
public class CacheProducer {

@Inject @DataDir
private String dataDir;

@Produces
@ApplicationScoped
public EmbeddedCacheManager getCacheContainer() {

GlobalConfiguration glob = new GlobalConfigurationBuilder()
.nonClusteredDefault() //Helper method that gets you a default constructed

GlobalConfiguration, preconfigured for use in LOCAL mode
.globalJmxStatistics().enable() //This method allows enables the jmx

statistics of the global configuration.
.build(); //Builds the GlobalConfiguration object

Configuration loc = new ConfigurationBuilder()
.jmxStatistics().enable() //Enable JMX statistics
.clustering().cacheMode(CacheMode.LOCAL) //Set Cache mode to LOCAL - Data is

not replicated.
.transaction().transactionMode(TransactionMode.TRANSACTIONAL)
.transactionManagerLookup(new GenericTransactionManagerLookup())
.lockingMode(LockingMode.PESSIMISTIC)
.locking().isolationLevel(IsolationLevel.REPEATABLE_READ) //Sets the

isolation level of locking
.eviction().maxEntries(4).strategy(EvictionStrategy.LIRS) //Sets 4 as

maximum number of entries in a cache instance and uses the LIRS strategy - an efficient
low inter-reference recency set replacement policy to improve buffer cache performance

.loaders().passivation(false).addFileCacheStore().location(dataDir +
File.separator + "TicketMonster-CacheStore").purgeOnStartup(true) //Disable passivation
and adds a FileCacheStore that is Purged on Startup

.build(); //Builds the Configuration object
return new DefaultCacheManager(glob, loc, true);

}

Ticket Monster Tutorial
250 / 275

public void cleanUp(@Disposes EmbeddedCacheManager manager) {
manager.stop();

}
}

We will inject the cache manager instance in various services that use the data grid, which will use it in turn to get access to
application caches.

Ticket Monster Tutorial
251 / 275

Chapter 62

Using caches for seat reservations

First, we are going to change the existing implementation of the SeatAllocationService to use the Infinispan datagrid.
Rather than storing the seat allocations in a database, we will store them as data grid entries.

This requires a few changes to our existing classes. If in the database implementation we used properties of the SectionAllocation
class to identify the entity that corresponds to a given Section and Performance, for the datagrid implementation we will
create a key class, making sure that its equals() and hashCode() methods are implemented correctly.

src/main/java/org/jboss/jdf/example/ticketmonster/service/SectionAllocationKey.java

public class SectionAllocationKey implements Serializable {

private final Section section;
private final Performance performance;

private SectionAllocationKey(Section section, Performance performance) {

this.section = section;
this.performance = performance;

}

public static SectionAllocationKey of (Section section, Performance performance) {
return new SectionAllocationKey(section, performance);

}

public Section getSection() {
return section;

}

public Performance getPerformance() {
return performance;

}

@Override
public boolean equals(Object o) {

if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;

SectionAllocationKey that = (SectionAllocationKey) o;

if (performance != null ? !performance.equals(that.performance) : that.performance !=
null) return false;

if (section != null ? !section.equals(that.section) : that.section != null) return
false;

Ticket Monster Tutorial
252 / 275

return true;
}

@Override
public int hashCode() {

int result = section != null ? section.hashCode() : 0;
result = 31 * result + (performance != null ? performance.hashCode() : 0);
return result;

}
}

Now we can proceed with modifying the SeatAllocationService. Since we are not persisting seat allocations in the
database, we will remove the EntityManager reference and use a cache acquired from the cache manager. We inject the
cache manager instance produced previously and create a SeatAllocation-specific cache in the constructor.

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

public class SeatAllocationService {

public static final String ALLOCATIONS = "TICKETMONSTER_ALLOCATIONS";

private Cache<SectionAllocationKey, SectionAllocation> cache;

/**
* We inject the {@link EmbeddedCacheManager} and retrieve a {@link Cache} instance.

*
* @param manager

*/
@Inject
public SeatAllocationService(EmbeddedCacheManager manager) {

Configuration allocation = new ConfigurationBuilder()
.transaction().transactionMode(TransactionMode.TRANSACTIONAL)
.transactionManagerLookup(new JBossTransactionManagerLookup())
.lockingMode(LockingMode.PESSIMISTIC)
.loaders().addFileCacheStore().purgeOnStartup(true)
.build();

manager.defineConfiguration(ALLOCATIONS, allocation);
this.cache = manager.getCache(ALLOCATIONS);

}
.....

}

Now, we can proceed with changing the implementation of the rest of the class.

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

public class SeatAllocationService {

....

public AllocatedSeats allocateSeats(Section section, Performance performance,
int seatCount, boolean contiguous) {

SectionAllocationKey sectionAllocationKey = SectionAllocationKey.of(section,
performance);

SectionAllocation allocation = getSectionAllocation(sectionAllocationKey);
ArrayList<Seat> seats = allocation.allocateSeats(seatCount, contiguous);
cache.replace(sectionAllocationKey, allocation);
return new AllocatedSeats(allocation, seats);

}

public void deallocateSeats(Section section, Performance performance, List<Seat> seats) {

Ticket Monster Tutorial
253 / 275

SectionAllocationKey sectionAllocationKey = SectionAllocationKey.of(section,
performance);

SectionAllocation sectionAllocation = getSectionAllocation(sectionAllocationKey);
for (Seat seat : seats) {

if (!seat.getSection().equals(section)) {
throw new SeatAllocationException("All seats must be in the same section!");

}
sectionAllocation.deallocate(seat);

}
cache.replace(sectionAllocationKey, sectionAllocation);

}

/**
* Mark the seats as being allocated

* @param allocatedSeats

*/
public void finalizeAllocation(AllocatedSeats allocatedSeats) {

allocatedSeats.markOccupied();
}

/**
* Mark the seats as being allocated

* @param performance

* @param allocatedSeats

*/
public void finalizeAllocation(Performance performance, List<Seat> allocatedSeats) {

SectionAllocation sectionAllocation = cache.get(
SectionAllocationKey.of(allocatedSeats.get(0).getSection(), performance));

sectionAllocation.markOccupied(allocatedSeats);
}

/**
* Retrieve a {@link SectionAllocation} instance for a given {@link Performance} and

* {@link Section} (embedded in the {@link SectionAllocationKey}). Lock it for the scope

* of the current transaction.

*
* @param sectionAllocationKey - wrapper for a {@link Performance} and {@link Section}

pair

*
* @return the corresponding {@link SectionAllocation}

*/
private SectionAllocation getSectionAllocation(SectionAllocationKey
sectionAllocationKey) {

SectionAllocation newAllocation = new
SectionAllocation(sectionAllocationKey.getPerformance(),

sectionAllocationKey.getSection());
SectionAllocation sectionAllocation = cache.putIfAbsent(sectionAllocationKey,

newAllocation);
cache.getAdvancedCache().lock(sectionAllocationKey);
return sectionAllocation == null?newAllocation:sectionAllocation;

}
}

Ticket Monster Tutorial
254 / 275

Chapter 63

Implementing carts

Once we have stored our allocation status in the data grid, we can move on to implementing a cart system for TicketMonster.
Rather than composing the orders on the client and sending the entire order as a single requests, users will be able to add and
remove seats to their orders while they’re shopping.

We will store the carts in the datagrid, thus ensuring that they’re accessible across the cluster, without the complications of using
a web session.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Cart.java

public class Cart implements Serializable {

private String id;

private Performance performance;

private ArrayList<SeatAllocation> seatAllocations = new ArrayList<SeatAllocation>();

/**
* Constructor for deserialization

*/
private Cart() {
}

private Cart(String id) {
this.id = id;

}

public static Cart initialize() {
return new Cart(UUID.randomUUID().toString());

}

public String getId() {
return id;

}

public Performance getPerformance() {
return performance;

}

public void setPerformance(Performance performance) {
this.performance = performance;

}

public ArrayList<SeatAllocation> getSeatAllocations() {
return seatAllocations;

Ticket Monster Tutorial
255 / 275

}
}

A Cart contains SeatAllocation`s - collections of `Seats`s corresponding to a particular `TicketRequest
(which represents a number of seats requested for a particular performance).

src/main/java/org/jboss/jdf/example/ticketmonster/model/SeatAllocation.java

public class SeatAllocation {

private TicketRequest ticketRequest;

private ArrayList<Seat> allocatedSeats;

public SeatAllocation(TicketRequest ticketRequest, ArrayList<Seat> allocatedSeats) {
this.ticketRequest = ticketRequest;
this.allocatedSeats = allocatedSeats;

}

public TicketRequest getTicketRequest() {
return ticketRequest;

}

public ArrayList<Seat> getAllocatedSeats() {
return allocatedSeats;

}
}

We use this structure so that we can easily add or update seats to the cart, when the client issues a new request.

We will update the SectionAllocation class, introducing an expiration time for each allocated seat. With this implemen-
tation, seats can have three different states:

free
The seat has not been allocated;

allocated permanently
The seat has been sold and remains allocated until the ticket is canceled;

allocated temporarily
The seat is allocated, but can be re-allocated after a specific time.

So, when a cart expires and is removed from the cache, the seats it held become available again. With these changes, the updated
implementation of the SectionAllocation class will be as follows:

src/main/java/org/jboss/jdf/example/ticketmonster/model/SectionAllocation.java

@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "performance_id", "section_id"

}))
public class SectionAllocation implements Serializable {

public static final int EXPIRATION_TIME = 60 * 1000;

/* Declaration of fields */

/**
* The synthetic id of the object.

*/
@Id
@GeneratedValue(strategy = IDENTITY)
private Long id;

Ticket Monster Tutorial
256 / 275

/**
* <p>

* The version used to optimistically lock this entity.

* </p>

*
* <p>

* Adding this field enables optimistic locking. As we don't access this field in the
application, we need to suppress the

* warnings the java compiler gives us about not using the field!

* </p>

*/
@SuppressWarnings("unused")
@Version
private long version;

/**
* <p>

* The performance to which this allocation relates. The <code>@ManyToOne<code> JPA
mapping establishes this relationship.

* </p>

*
* <p>

* The performance must be specified, so we add the Bean Validation constrain
<code>@NotNull</code>

* </p>

*/
@ManyToOne
@NotNull
private Performance performance;

/**
* <p>

* The section to which this allocation relates. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*
* <p>

* The section must be specified, so we add the Bean Validation constrain
<code>@NotNull</code>

* </p>

*/
@ManyToOne
@NotNull
private Section section;

/**
* <p>

* A two dimensional matrix of allocated seats in a section, represented by a 2
dimensional array.

* </p>

*
* <p>

* A two dimensional array doesn't have a natural RDBMS mapping, so we simply store this
a binary object in the database, an

* approach which requires no additional mapping logic. Any analysis of which seats
within a section are allocated is done

* in the business logic, below, not by the RDBMS.

* </p>

*
* <p>

* <code>@Lob</code> instructs JPA to map this a large object in the database

Ticket Monster Tutorial
257 / 275

* </p>

*/
@Lob
private long allocated[][];

/**
* <p>

* The number of occupied seats in a section. It is updated whenever tickets are sold
or canceled.

* </p>

*
* <p>

* This field contains a summary of the information found in the
<code>allocated</code> fields, and

* it is intended to be used for analytics purposes only.

* </p>

*/
private int occupiedCount = 0;

/**
* Constructor for persistence

*/
public SectionAllocation() {
}

public SectionAllocation(Performance performance, Section section) {
this.performance = performance;
this.section = section;
this.allocated = new long[section.getNumberOfRows()][section.getRowCapacity()];
for (long[] seatStates : allocated) {

Arrays.fill(seatStates, 0l);
}

}

/**
* Post-load callback method initializes the allocation table if it not populated already

* for the entity

*/
@PostLoad
void initialize() {

if (this.allocated == null) {
this.allocated = new

long[this.section.getNumberOfRows()][this.section.getRowCapacity()];
for (long[] seatStates : allocated) {

Arrays.fill(seatStates, 0l);
}

}
}

/**
* Check if a particular seat is allocated in this section for this performance.

*
* @return true if the seat is allocated, otherwise false

*/
public boolean isAllocated(Seat s) {

// Examine the allocation matrix, using the row and seat number as indices
return allocated[s.getRowNumber() - 1][s.getNumber() - 1] != 0;

}

/**
* Allocate the specified number seats within this section for this performance.

Optionally allocate them in a contiguous

Ticket Monster Tutorial
258 / 275

* block.

*
* @param seatCount the number of seats to allocate

* @param contiguous whether the seats must be allocated in a contiguous block or not

* @return the allocated seats

*/
public ArrayList<Seat> allocateSeats(int seatCount, boolean contiguous) {

// The list of seats allocated
ArrayList<Seat> seats = new ArrayList<Seat>();

// The seat allocation algorithm starts by iterating through the rows in this section
for (int rowCounter = 0; rowCounter < section.getNumberOfRows(); rowCounter++) {

if (contiguous) {
// identify the first block of free seats of the requested size
int startSeat = findFreeGapStart(rowCounter, 0, seatCount);
// if a large enough block of seats is available
if (startSeat >= 0) {

// Create the list of allocated seats to return
for (int i = 1; i <= seatCount; i++) {

seats.add(new Seat(section, rowCounter + 1, startSeat + i));
}
// Seats are allocated now, so we can stop checking rows
break;

}
} else {

// As we aren't allocating contiguously, allocate each seat needed, one at a
time

int startSeat = findFreeGapStart(rowCounter, 0, 1);
// if a seat is found
if (startSeat >= 0) {

do {
// Create the seat to return to the user
seats.add(new Seat(section, rowCounter + 1, startSeat + 1));
// Find the next free seat in the row
startSeat = findFreeGapStart(rowCounter, startSeat, 1);

} while (startSeat >= 0 && seats.size() < seatCount);
if (seats.size() == seatCount) {

break;
}

}
}

}
// Simple check to make sure we could actually allocate the required number of seats

if (seats.size() == seatCount) {
for (Seat seat : seats) {

allocate(seat.getRowNumber() - 1, seat.getNumber() - 1, 1,
expirationTimestamp());

}
return seats;

} else {
return new ArrayList<Seat>(0);

}
}

public void markOccupied(List<Seat> seats) {
for (Seat seat : seats) {

allocate(seat.getRowNumber() - 1, seat.getNumber() - 1, 1, -1);
}

}

Ticket Monster Tutorial
259 / 275

/**
* Helper method which can locate blocks of seats

*
* @param row The row number to check

* @param startSeat The seat to start with in the row

* @param size The size of the block to locate

* @return

*/
private int findFreeGapStart(int row, int startSeat, int size) {

// An array of occupied seats in the row
long[] occupied = allocated[row];
int candidateStart = -1;

// Iterate over the seats, and locate the first free seat block
for (int i = startSeat; i < occupied.length; i++) {

// if the seat isn't allocated
long currentTimestamp = System.currentTimeMillis();
if (occupied[i] >=0 && currentTimestamp > occupied[i]) {

// then set this as a possible start
if (candidateStart == -1) {

candidateStart = i;
}
// if we've counted out enough seats since the possible start, then we are

done
if ((size == (i - candidateStart + 1))) {

return candidateStart;
}

} else {
candidateStart = -1;

}
}
return -1;

}

/**
* Helper method to allocate a specific block of seats

*
* @param row the row in which the seat should be allocated

* @param start the seat number to start allocating from

* @param size the size of the block to allocate

* @throws SeatAllocationException if less than 1 seat is to be allocated

* @throws SeatAllocationException if the first seat to allocate is more than the number
of seats in the row

* @throws SeatAllocationException if the last seat to allocate is more than the number
of seats in the row

* @throws SeatAllocationException if the seats are already occupied.

*/
private void allocate(int row, int start, int size, long finalState) throws
SeatAllocationException {

long[] occupied = allocated[row];
if (size <= 0) {

throw new SeatAllocationException("Number of seats must be greater than zero");
}
if (start < 0 || start >= occupied.length) {

throw new SeatAllocationException("Seat number must be betwen 1 and " +
occupied.length);

}
if ((start + size) > occupied.length) {

throw new SeatAllocationException("Cannot allocate seats above row capacity");
}

Ticket Monster Tutorial
260 / 275

// Now that we know we can allocate the seats, set them to occupied in the allocation
matrix

for (int i = start; i < (start + size); i++) {
occupied[i] = finalState;
occupiedCount++;

}

}

/**
* Dellocate a seat within this section for this performance.

*
* @param seat the seats that need to be deallocated

*/
public void deallocate(Seat seat) {

if (!isAllocated(seat)) {
throw new SeatAllocationException("Trying to deallocate an unallocated seat!");

}
this.allocated[seat.getRowNumber()-1][seat.getNumber()-1] = 0;
occupiedCount --;

}

/* Boilerplate getters and setters */

public int getOccupiedCount() {
return occupiedCount;

}

public Performance getPerformance() {
return performance;

}

public Section getSection() {
return section;

}

public Long getId() {
return id;

}

private long expirationTimestamp() {
return System.currentTimeMillis() + EXPIRATION_TIME;

}

}

Next, we will implement a cart store service for cart CRUD operations. Since users may open as many carts as they want, but
not complete the purchase, we will store them as temporary entries, with an expiration time, leaving the job of removing them
automatically to the data grid middleware itself. Thus, you don’t have to worry about cleaning up your data.

src/main/java/org/jboss/jdf/example/ticketmonster/service/CartStore.java

public class CartStore {

public static final String CARTS_CACHE = "TICKETMONSTER_CARTS";

private final Cache<String, Cart> cartsCache;

@Inject
public CartStore(EmbeddedCacheManager manager) {

this.cartsCache = manager.getCache(CARTS_CACHE);
}

Ticket Monster Tutorial
261 / 275

public Cart getCart(String cartId) {
return this.cartsCache.get(cartId);

}

/**
* Saves or updates a cart, setting an expiration time.

*
* @param cart - the cart to be saved

*/
public void saveCart(Cart cart) {

this.cartsCache.put(cart.getId(), cart, 10, TimeUnit.MINUTES);
}

/**
* Removes a cart

*
* @param cart - the cart to be removed

*/
public void delete(Cart cart) {

this.cartsCache.remove(cart.getId());
}

}

Now we can go on and implement the RESTful service for managing carts.

First, we will implement the CRUD operations - adding and reading carts, as a thin layer on top of the CartStore. Because
cart data is not tied to a web session, users can create as many carts as they want without having to worry about cleaning up
the web session. Moreover, the web component of the application has a stateless architecture, which means that it can scale
elastically across multiple machines - the responsibility of distributing data across nodes falling to the data grid itself.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java

@Path("/carts")
@Stateless
public class CartService {

public static final String CARTS_CACHE = "CARTS";

@Inject
private CartStore cartStore;

/**
* Creates a new cart for a given performance, passed in as a JSON document.

*
* @param data

* @return

*/
@POST
public Cart openCart(Map<String, String> data) {

Cart cart = Cart.initialize();
cart.setPerformance(entityManager.find(Performance.class,

Long.parseLong(data.get("performance"))));
cartStore.saveCart(cart);
return cart;

}

/**
* Retrieves a cart by its id.

*
* @param id

* @return

*/

Ticket Monster Tutorial
262 / 275

@GET
@Path("/{id}")
public Cart getCart(String id) {

Cart cart = cartStore.getCart(id);
if (cart != null) {

return cart;
} else {

throw new RestServiceException(Response.Status.NOT_FOUND);
}

}

}

The openCart method allows opening a cart by posting a simple JSON document containing the reference to a an existing
performance to http://localhost:8080/ticket-monster/rest/carts. The getCart method allows accessing
the cart contents from an URL of the form http://localhost:8080/ticket-monster/rest/carts/<cartId>.
Thus, the carts themselves become web resources. In true RESTful fashion, if the cart cannot be found, a "Resource Not Found"
error will be thrown by the server.

Next, we will add the ability of adding or removing seats from a cart. This will be done as an additional RESTful endpoint, that al-
lows user to post ticket (or seat) requests to an existing cart, at the URL http://localhost:8080/ticket-monster/rest/carts/<cartId>.
Whenever such a POST request is received, the CartService will delegate to the SeatAllocationService to adjust the current
allocation, returning the cart contents (including the temporarily assigned seats) at the end.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java
@Path("/carts")
@Stateless
public class CartService {

// already added code ommitted

@Inject
private EntityManager entityManager;

@Inject
private SeatAllocationService seatAllocationService;

// already added code ommitted

/**
* Add or remove tickets to the cart. Also reserves and frees seats as tickets are added

* and removed.

*
* @param id

* @param ticketRequests

* @return

*/
@POST
@Path("/{id}")
@Consumes(MediaType.APPLICATION_JSON)
public Cart addTicketRequest(@PathParam("id") String id, TicketReservationRequest...
ticketRequests){

Cart cart = cartStore.getCart(id);

for (TicketReservationRequest ticketRequest : ticketRequests) {
TicketPrice ticketPrice = entityManager.find(TicketPrice.class,

ticketRequest.getTicketPrice());
Iterator<SeatAllocation> iterator = cart.getSeatAllocations().iterator();
while (iterator.hasNext()) {

SeatAllocation seatAllocation = iterator.next();
if

(seatAllocation.getTicketRequest().getTicketPrice().getId().equals(ticketRequest.getTicketPrice())){

Ticket Monster Tutorial
263 / 275

seatAllocationService.deallocateSeats(ticketPrice.getSection(),
cart.getPerformance(), seatAllocation.getAllocatedSeats());

ticketRequest.setQuantity(ticketRequest.getQuantity() +
seatAllocation.getTicketRequest().getQuantity());

iterator.remove();
}

}
if (ticketRequest.getQuantity() > 0) {
AllocatedSeats allocatedSeats =

seatAllocationService.allocateSeats(ticketPrice.getSection(), cart.getPerformance(),
ticketRequest.getQuantity(), true);

cart.getSeatAllocations().add(new SeatAllocation(new TicketRequest(ticketPrice,
ticketRequest.getQuantity()), allocatedSeats.getSeats()));

}
}
return cart;

}

}

Finally, when the user has finished reserving seats, they must complete the purchase. To that end, you will add another RESTful
endpoint, at the URL http://localhost:8080/ticket-monster/rest/carts/<cartId>/checkout. Posting
the final purchase data (like e-mail, and in the future, payment information) will trigger the checkout process, ticket allocation
and making the seat reservations permanent.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java

@Path("/carts")
@Stateless
public class CartService {

/**
* <p>

* Create a booking.

* </p>

*
* @param cartId

* @param data

* @return

*/
@SuppressWarnings("unchecked")
@POST
/**
* <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the
support

* {@link BookingRequest} class.

*/
@Consumes(MediaType.APPLICATION_JSON)
@Path("/{id}/checkout")
public Response createBookingFromCart(@PathParam("id") String cartId, Map<String, String>
data) {

try {
// identify the ticket price categories in this request

Cart cart = cartStore.getCart(cartId);

// load the entities that make up this booking's relationships

// Now, start to create the booking from the posted data
// Set the simple stuff first!
Booking booking = new Booking();
booking.setContactEmail(data.get("email"));

Ticket Monster Tutorial
264 / 275

booking.setPerformance(cart.getPerformance());
booking.setCancellationCode("abc");

for (SeatAllocation seatAllocation : cart.getSeatAllocations()) {
for (Seat seat : seatAllocation.getAllocatedSeats()) {

TicketPrice ticketPrice =
seatAllocation.getTicketRequest().getTicketPrice();

booking.getTickets().add(new Ticket(seat,
ticketPrice.getTicketCategory(), ticketPrice.getPrice()));

}
seatAllocationService.finalizeAllocation(cart.getPerformance(),

seatAllocation.getAllocatedSeats());
}

booking.setCancellationCode("abc");
entityManager.persist(booking);
cartStore.delete(cart);
newBookingEvent.fire(booking);
return

Response.ok().entity(booking).type(MediaType.APPLICATION_JSON_TYPE).build();

} catch (ConstraintViolationException e) {
// If validation of the data failed using Bean Validation, then send an error
Map<String, Object> errors = new HashMap<String, Object>();
List<String> errorMessages = new ArrayList<String>();
for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {

errorMessages.add(constraintViolation.getMessage());
}
errors.put("errors", errorMessages);
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new

RestServiceException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
} catch (Exception e) {

// Finally, handle unexpected exceptions
Map<String, Object> errors = new HashMap<String, Object>();
errors.put("errors", Collections.singletonList(e.getMessage()));
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new

RestServiceException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
}

}

Now, all that remains is modifying the client side of the application to adapt the changes in the web service structure. During
the ticket booking process, as tickets are added and removed to the cart, the CreateBookingView will invoke the RESTful
endpoints to allocate seats and will display the outcome to the user in the updated TicketSummaryView. Here is how the
JavaScript code will change.

src/main/webapp/resources/js/app/views/desktop/create-booking.js

define([
'utilities',
'require',
'configuration',
'text!../../../../templates/desktop/booking-confirmation.html',
'text!../../../../templates/desktop/create-booking.html',
'text!../../../../templates/desktop/ticket-categories.html',
'text!../../../../templates/desktop/ticket-summary-view.html',
'bootstrap'

],function (
utilities,

Ticket Monster Tutorial
265 / 275

require,
config,
bookingConfirmationTemplate,
createBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate){

var TicketCategoriesView = Backbone.View.extend({
id:'categoriesView',
events:{

"keyup input":"onChange"
},
render:function () {

if (this.model != null) {
var ticketPrices = _.map(this.model, function (item) {

return item.ticketPrice;
});
utilities.applyTemplate($(this.el), ticketEntriesTemplate,

{ticketPrices:ticketPrices});
} else {

$(this.el).empty();
}
return this;

},
onChange:function (event) {

var value = event.currentTarget.value;
var ticketPriceId = $(event.currentTarget).data("tm-id");
var modifiedModelEntry = _.find(this.model, function (item) {

return item.ticketPrice.id == ticketPriceId
});
// update model
if ($.isNumeric(value) && value > 0) {

modifiedModelEntry.quantity = parseInt(value);
}
else {

delete modifiedModelEntry.quantity;
}
// display error messages
if (value.length > 0 &&

(!$.isNumeric(value) // is a non-number, other than empty string
|| value <= 0 // is negative
|| parseFloat(value) != parseInt(value))) { // is not an integer

$("#error-input-"+ticketPriceId).empty().append("Please enter a positive
integer value");

$("#ticket-category-fieldset-"+ticketPriceId).addClass("error")
} else {

$("#error-input-"+ticketPriceId).empty();
$("#ticket-category-fieldset-"+ticketPriceId).removeClass("error")

}
// are there any outstanding errors after this update?
// if yes, disable the input button
if (

$("div[id^='ticket-category-fieldset-']").hasClass("error") ||
_.isUndefined(modifiedModelEntry.quantity)) {

$("input[name='add']").attr("disabled", true)
} else {

$("input[name='add']").removeAttr("disabled")
}

}
});

Ticket Monster Tutorial
266 / 275

var TicketSummaryView = Backbone.View.extend({
tagName:'tr',
events:{

"click i":"removeEntry"
},
render:function () {

var self = this;
utilities.applyTemplate($(this.el), ticketSummaryViewTemplate,

this.model.bookingRequest);
},
removeEntry:function (event) {

var index = $(event.currentTarget).data("index");
var ticketPriceId =

this.model.bookingRequest.seatAllocations[index].ticketRequest.ticketPrice.id;
var self = this;
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId),

data: JSON.stringify([{ticketPrice:ticketPriceId, quantity:-1}]),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function(cart) {

self.owner.refreshSummary(cart, self.owner)
}

});
}

});

var CreateBookingView = Backbone.View.extend({

events:{
"click input[name='submit']":"save",
"change select[id='sectionSelect']":"refreshPrices",
"keyup #email":"updateEmail",
"change #email":"updateEmail",
"click input[name='add']":"addQuantities"

},
render:function () {

var self = this;
$.ajax({url: (config.baseUrl + "rest/carts"),

data:JSON.stringify({performance:this.model.performanceId}),
type:"POST",
dataType:"json",
contentType:"application/json",
success: function (cart) {

self.model.cartId = cart.id;
$.getJSON(config.baseUrl + "rest/shows/" + self.model.showId,

function (selectedShow) {

self.currentPerformance = _.find(selectedShow.performances,
function (item) {

return item.id == self.model.performanceId;
});

var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown
var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices,

'section'), id), true, id);
utilities.applyTemplate($(self.el), createBookingTemplate, {

sections:sections,
show:selectedShow,
performance:self.currentPerformance});

Ticket Monster Tutorial
267 / 275

self.ticketCategoriesView = new TicketCategoriesView({model:{},
el:$("#ticketCategoriesViewPlaceholder")});

self.ticketSummaryView = new TicketSummaryView({model:self.model,
el:$("#ticketSummaryView")});

self.ticketSummaryView.owner = self;
self.show = selectedShow;
self.ticketCategoriesView.render();
self.ticketSummaryView.render();
$("#sectionSelector").change();

});
}

}
);
return this;

},
refreshPrices:function (event) {

var ticketPrices = _.filter(this.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;

});
var sortedTicketPrices = _.sortBy(ticketPrices, function(ticketPrice) {

return ticketPrice.ticketCategory.description;
});
var ticketPriceInputs = new Array();
_.each(sortedTicketPrices, function (ticketPrice) {

ticketPriceInputs.push({ticketPrice:ticketPrice});
});
this.ticketCategoriesView.model = ticketPriceInputs;
this.ticketCategoriesView.render();

},
save:function (event) {

var bookingRequest = {ticketRequests:[]};
var self = this;
bookingRequest.email = this.model.bookingRequest.email;
bookingRequest.performance = this.model.performanceId
$("input[name='submit']").attr("disabled", true)
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId + "/checkout"),

data:JSON.stringify({email:this.model.bookingRequest.email}),
type:"POST",
dataType:"json",
contentType:"application/json",
success:function (booking) {

this.model = {}
$.getJSON(config.baseUrl +'rest/shows/performance/' +

booking.performance.id, function (retrievedPerformance) {
utilities.applyTemplate($(self.el), bookingConfirmationTemplate,

{booking:booking, performance:retrievedPerformance })
});

}}).error(function (error) {
if (error.status == 400 || error.status == 409) {

var errors = $.parseJSON(error.responseText).errors;
_.each(errors, function (errorMessage) {

$("#request-summary").append('<div class="alert alert-error">\timesError! ' + errorMessage +
'</div>')

});
} else {

$("#request-summary").append('<div class="alert alert-error">\timesError! An error has
occured</div>')

}
$("input[name='submit']").removeAttr("disabled");

})

Ticket Monster Tutorial
268 / 275

},
calculateTotals:function () {

// make sure that tickets are sorted by section and ticket category
this.model.bookingRequest.seatAllocations.sort(function (t1, t2) {

if (t1.ticketRequest.ticketPrice.section.id !=
t2.ticketRequest.ticketPrice.section.id) {

return t1.ticketRequest.ticketPrice.section.id -
t2.ticketRequest.ticketPrice.section.id;

}
else {

return t1.ticketRequest.ticketPrice.ticketCategory.id -
t2.ticketRequest.ticketPrice.ticketCategory.id;

}
});

this.model.bookingRequest.totals =
_.reduce(this.model.bookingRequest.seatAllocations, function (totals, seatAllocation) {

var ticketRequest = seatAllocation.ticketRequest;
return {

tickets:totals.tickets + ticketRequest.quantity,
price:totals.price + ticketRequest.quantity *

ticketRequest.ticketPrice.price
};

}, {tickets:0, price:0.0});
},
addQuantities:function () {

var self = this;
var ticketRequests = [];
_.each(this.ticketCategoriesView.model, function (model) {

if (model.quantity != undefined) {
ticketRequests.push({ticketPrice:model.ticketPrice.id,

quantity:model.quantity})
}

});
$.ajax({url: (config.baseUrl + "rest/carts/" + this.model.cartId),

data:JSON.stringify(ticketRequests),
type:"POST",
dataType:"json",
contentType:"application/json",
success: function(cart) {

self.refreshSummary(cart, self)
}}

);
},
refreshSummary: function(cart, view) {

view.model.bookingRequest.seatAllocations = cart.seatAllocations;
view.ticketCategoriesView.model = null;
$('option:selected', 'select').removeAttr('selected');
view.calculateTotals();
view.ticketCategoriesView.render();
view.ticketSummaryView.render();
view.setCheckoutStatus();

},
updateEmail:function (event) {

if ($(event.currentTarget).is(':valid')) {
this.model.bookingRequest.email = event.currentTarget.value;
$("#error-email").empty();

} else {
$("#error-email").empty().append("Please enter a valid e-mail address");
delete this.model.bookingRequest.email;

}

Ticket Monster Tutorial
269 / 275

this.setCheckoutStatus();
},
setCheckoutStatus:function () {

if (this.model.bookingRequest.totals != undefined &&
this.model.bookingRequest.totals.tickets > 0 && this.model.bookingRequest.email !=
undefined && this.model.bookingRequest.email != '') {

$('input[name="submit"]').removeAttr('disabled');
}
else {

$('input[name="submit"]').attr('disabled', true);
}

}
});

return CreateBookingView;
});

Also, we need to update the router code as well.

src/main/webapp/resources/js/app/router/desktop/router.js

/**
* A module for the router of the desktop application

*/
define("router", [

'jquery',
'underscore',
'configuration',
'utilities',
'app/models/booking',
'app/models/event',
'app/models/venue',
'app/collections/bookings',
'app/collections/events',
'app/collections/venues',
'app/views/desktop/home',
'app/views/desktop/events',
'app/views/desktop/venues',
'app/views/desktop/create-booking',
'app/views/desktop/bookings',
'app/views/desktop/event-detail',
'app/views/desktop/venue-detail',
'app/views/desktop/booking-detail',
'text!../templates/desktop/main.html'

],function ($,
_,
config,
utilities,
Booking,
Event,
Venue,
Bookings,
Events,
Venues,
HomeView,
EventsView,
VenuesView,
CreateBookingView,
BookingsView,
EventDetailView,
VenueDetailView,
BookingDetailView,

Ticket Monster Tutorial
270 / 275

MainTemplate) {

$(document).ready(new function() {
utilities.applyTemplate($('body'), MainTemplate)

})

/**
* The Router class contains all the routes within the application -

* i.e. URLs and the actions that will be taken as a result.

*
* @type {Router}

*/

var Router = Backbone.Router.extend({
routes:{

"":"home",
"about":"home",
"events":"events",
"events/:id":"eventDetail",
"venues":"venues",
"venues/:id":"venueDetail",
"book/:showId/:performanceId":"bookTickets",
"bookings":"listBookings",
"bookings/:id":"bookingDetail",
"ignore":"ignore",
"*actions":"defaultHandler"

},
events:function () {

var events = new Events();
var eventsView = new EventsView({model:events, el:$("#content")});
events.bind("reset",

function () {
utilities.viewManager.showView(eventsView);

}).fetch();
},
venues:function () {

var venues = new Venues;
var venuesView = new VenuesView({model:venues, el:$("#content")});
venues.bind("reset",

function () {
utilities.viewManager.showView(venuesView);

}).fetch();
},
home:function () {

utilities.viewManager.showView(new HomeView({el:$("#content")}));
},
bookTickets:function (showId, performanceId) {

var createBookingView =
new CreateBookingView({
model:{ showId:showId,

performanceId:performanceId,
bookingRequest:{seatAllocations:[]}},
el:$("#content")

});
utilities.viewManager.showView(createBookingView);

},
listBookings:function () {

$.get(
config.baseUrl + "rest/bookings/count",
function (data) {

var bookings = new Bookings;
var bookingsView = new BookingsView({

Ticket Monster Tutorial
271 / 275

model:{bookings: bookings},
el:$("#content"),
pageSize: 10,
page: 1,
count:data.count});

bookings.bind("destroy",
function () {

bookingsView.refreshPage();
});

bookings.fetch({data:{first:1, maxResults:10},
processData:true, success:function () {

utilities.viewManager.showView(bookingsView);
}});

}
);

},
eventDetail:function (id) {

var model = new Event({id:id});
var eventDetailView = new EventDetailView({model:model, el:$("#content")});
model.bind("change",

function () {
utilities.viewManager.showView(eventDetailView);

}).fetch();
},
venueDetail:function (id) {

var model = new Venue({id:id});
var venueDetailView = new VenueDetailView({model:model, el:$("#content")});
model.bind("change",

function () {
utilities.viewManager.showView(venueDetailView);

}).fetch();
},
bookingDetail:function (id) {

var bookingModel = new Booking({id:id});
var bookingDetailView = new BookingDetailView({model:bookingModel,

el:$("#content")});
bookingModel.bind("change",

function () {
utilities.viewManager.showView(bookingDetailView);

}).fetch();

}
});

// Create a router instance
var router = new Router();

//Begin routing
Backbone.history.start();

return router;
});

Finally, we need to update a few templates to account for the changes in code. First, we will allow for displaying the seats in the
ticket summary view as they are allocated.

src/main/webapp/resources/templates/desktop/ticket-summary-view.html

<div class="span12">
<% if (seatAllocations.length>0) { %>

Ticket Monster Tutorial
272 / 275

<table class="table table-bordered table-condensed row-fluid" style="background-color:
#fffffa;">

<thead>
<tr>

<th colspan="7">Requested tickets</th>
</tr>
<tr>

<th>Section</th>
<th>Category</th>
<th>Quantity</th>
<th>Price</th>
<th>Row</th>
<th>Seat</th>
<th></th>

</tr>
</thead>
<tbody id="ticketRequestSummary">
<% _.each(seatAllocations, function (seatAllocation, index, seatAllocations) { %>
<tr>

<td><%= seatAllocation.ticketRequest.ticketPrice.section.name %></td>
<td><%= seatAllocation.ticketRequest.ticketPrice.ticketCategory.description

%></td>
<td><%= seatAllocation.ticketRequest.quantity %></td>
<td>$<%= seatAllocation.ticketRequest.ticketPrice.price%></td>
<td><%= seatAllocation.allocatedSeats[0].rowNumber %></td>
<td><% _.each(seatAllocation.allocatedSeats, function (ticketRequest, index,

seat) { %>
<% if (index > 0) { %><p/><% } %><%=

seatAllocation.allocatedSeats[index].number%>
<% });%></td>
<td><i class="icon-trash" data-index='<%= index %>'/></td>

</tr>
<% }); %>
</tbody>

</table>
<p/>
<div class="row-fluid">

<div class="span5">Total ticket count: <%= totals.tickets %></div>
<div class="span5">Total price: $<%=totals.price%></div></div>

<% } else { %>
No tickets requested.
<% } %>

</div>

Next, we will update the booking details view template.

src/main/webapp/resources/templates/desktop/booking-details.html
<div class="row-fluid">

<h2 class="page-header light-font special-title">Booking #<%=booking.id%> details</h2>
</div>
<div class="row-fluid">

<div class="span5 well">
<h4 class="page-header">Checkout information</h4>

<p>Email: <%= booking.contactEmail %></p>

<p>Event: <%= performance.event.name %></p>

<p>Venue: <%= performance.venue.name %></p>

<p>Date: <%= new Date(booking.performance.date).toPrettyString()
%></p>

Ticket Monster Tutorial
273 / 275

<p>Created on: <%= new Date(booking.createdOn).toPrettyString()
%></p>
</div>
<div class="span5 well">

<h4 class="page-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">

<thead>

<tr>
<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>
</thead>
<tbody>
<% $.each(_.sortBy(booking.tickets, function(ticket) {return

ticket.seat.section.id*1000
+ ticket.seat.rowNumber*100
+ ticket.seat.number}), function (i, ticket) { %>

<tr>
<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% }) %>
</tbody>

</table>
</div>

</div>
<div class="row-fluid" style="padding-bottom:30px;">

<div class="span2">Back</div>
</div>

Finally, we will need to update the booking confirmation page.

src/main/webapp/resources/templates/desktop/booking-confirmation.html

<div class="row-fluid">
<h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>

</div>
<div class="row-fluid">

<div class="span5 well">
<h4 class="page-header">Checkout information</h4>
<p>Email: <%= booking.contactEmail %></p>
<p>Event: <%= performance.event.name %></p>
<p>Venue: <%= performance.venue.name %></p>
<p>Date: <%= new Date(booking.performance.date).toPrettyString()

%></p>
<p>Created on: <%= new Date(booking.createdOn).toPrettyString()

%></p>
</div>
<div class="span5 well">

<h4 class="page-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">

<thead>
<tr>

<th>Ticket #</th>

Ticket Monster Tutorial
274 / 275

<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>

</tr>
</thead>
<tbody>
<% $.each(_.sortBy(booking.tickets, function(ticket) {return

ticket.seat.section.id*1000
+ ticket.seat.rowNumber*100
+ ticket.seat.number}), function (i, ticket) { %>
<tr>

<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% }) %>
</tbody>

</table>
</div>

</div>
<div class="row-fluid" style="padding-bottom:30px;">

<div class="span2">Home</div>
</div>

This is it!

Ticket Monster Tutorial
275 / 275

Chapter 64

Conclusion

You have successfully converted your application from one that relies exclusively on relational persistence to using a NoSQL
(key-value) data store for a part of its data. You have identified the use cases where the switch is mostly likely to result in
performance improvements, including the changes in application functionality that can benefit from this conversion. You have
learned how to set up the infrastructure, distinguish between the different configuration options, and use the API.

	I What is TicketMonster?
	Preamble
	Use cases
	What can end users do?
	What can administrators do?

	Architecture
	How can you run it?
	Building TicketMonster
	Running TicketMonster
	Running TicketMonster locally
	Running TicketMonster in OpenShift

	Learn more

	II Introduction & Getting Started
	Purpose and Target Audience
	Installation
	Creating a new Java EE 6 project with Maven
	Exploring the newly generated project
	Adding a new entity using Forge
	Reviewing persistence.xml & updating import.sql
	Adding a new entity using JBoss Developer Studio
	Deployment
	Adding a JAX-RS RESTful web service
	Adding a jQuery Mobile client application
	Conclusion
	Cleaning up the generated code

	III Building the persistence layer with JPA2 and Bean Validation
	What will you learn here?
	Your first entity
	Database design & relationships
	Media items
	Events
	Shows
	Performances
	Venue
	Sections
	Booking, Ticket & Seat

	Connecting to the database
	Populating test data
	Conclusion

	IV Building The Business Services With JAX-RS
	What Will You Learn Here?
	Business Services And Their Relationships
	Preparations
	Adding Jackson Core
	Verifying the versions of the JBoss BOMs
	Enabling CDI
	Adding utility classes

	Internal Services
	The Media Manager
	The Seat Allocation Service
	Booking Monitor Service

	JAX-RS Services
	Initializing JAX-RS
	A Base Service For Read Operations
	Retrieving Venues
	Retrieving Events
	Creating and deleting bookings

	Testing the services
	A Basic Deployment Class
	Writing RESTful service tests
	Running the tests
	Executing tests from the command line
	Running Arquillian tests from within Eclipse

	V Building The User UI Using HTML5
	What Will You Learn Here?
	First, the basics
	Client-side MVC Support
	Modularity
	Templating
	Mobile and desktop versions

	Setting up the structure
	Routing

	Setting up the initial views
	Displaying Events
	The Event model
	The Events collection
	The EventsView view

	Viewing a single event
	Creating Bookings
	Mobile view
	Setting up the structure
	The landing page
	The events view
	Displaying an individual event
	Booking tickets

	More Resources

	VI Building the Administration UI using Forge
	What Will You Learn Here?
	Setting up Forge
	JBoss Enterprise Application Platform 6
	JBoss AS 7
	Required Forge Plugins

	Getting started with Forge
	Generating the CRUD UI
	Update the project
	Scaffold the view from the JPA entities

	Test the CRUD UI
	Make some changes to the UI

	VII Building The Statistics Dashboard Using GWT And Errai
	What Will You Learn Here?
	Before we start

	Module definition
	Host page
	Enabling Errai
	Preparing the wire objects
	The EntryPoint
	The widgets

	VIII Creating hybrid mobile versions of the application with Apache Cordova
	What will you learn here?
	What are hybrid mobile applications?
	Tweak your application for remote access
	Downloading Apache Cordova
	Creating an Android hybrid mobile application
	Creating an Android project using Apache Cordova
	Adding Apache Cordova to TicketMonster

	Creating an iOS hybrid mobile application
	Creating an iOS project using Apache Cordova
	Adding Apache Cordova for iOS to TicketMonster

	Conclusion

	IX Adding a data grid
	What Will You Learn Here?
	The problem at hand
	Adding Infinispan
	Configuring the infrastructure
	Using caches for seat reservations
	Implementing carts
	Conclusion

