Ticket Monster Tutorial

Ticket Monster Tutorial

Ticket Monster Tutorial

Contents

I Whatis TicketMonster?
1 Preamble

2 Use cases
2.1 Whatcanend users do? e e e e e

2.2 What can administrators do? e e e e e
3 Architecture

4 How can you run it?
4.1 Building TicketMOnster e e e
4.2 Running TicketMONSIEr e e e e e e e e e e e e e
4.2.1 Running TicketMonster locally e
4.2.2 Running TicketMonster in OpenShift o

5 Learn more

II Introduction & Getting Started

6 Purpose and Target Audience

7 Installation

8 Creating a new Java EE 6 project with Maven

9 Exploring the newly generated project

10 Adding a new entity using Forge

11 Reviewing persistence.xml & updating import.sql
12 Adding a new entity using JBoss Developer Studio

13 Deployment

10

11

13

15

25

31

37

38

45

Ticket Monster Tutorial

14 Adding a JAX-RS RESTful web service
15 Adding a jQuery Mobile client application

16 Conclusion

16.1 Cleaning up the generatedcode e e

IIT Building the persistence layer with JPA2 and Bean Validation
17 What will you learn here?
18 Your first entity

19 Database design & relationships
19.1 Mediaitems o o i e e e e e e e e
19.2 Bvents L e
19.3 Shows o e e e e e e
19.4 Performances L e e e e
19.5 Venue e e
19.6 Sections e e e e e e e e e e e e
19.7 Booking, Ticket & Seat e e

20 Connecting to the database
21 Populating test data

22 Conclusion

IV Building The Business Services With JAX-RS
23 What Will You Learn Here?
24 Business Services And Their Relationships

25 Preparations
25.1 Adding Jackson Core e e e e
25.2 Verifying the versions of the JBoss BOMs e
25.3 Enabling CDI o e e e e e e e
25.4 Adding utility classes e e e e e

26 Internal Services
26.1 The MediaManager e e e
26.2 The Seat Allocation SErvicCe o o e e

50

60

81
81

83

84

85

91
92
93
99
105
107
112
112

114

116

118

119

120

121

122
122
122
123
123

Ticket Monster Tutorial

iv

27 JAX-RS Services 130
27.1 Imitializing JAX-RS . . . o o e e 130
27.2 A Base Service For Read Operations i ittt e e 130
27.3 Retrieving VENUES L e e e e e e 134
27.4 Retrieving Events oL e 135
27.5 Creating and deleting bookings L e 136

28 Testing the services 141
28.1 A Basic Deployment Class e e 141
28.2 Writing RESTful service tests o o it e e e e e e e e 142
28.3 Running the tests L L e e e e e 146
28.3.1 Executing tests from the command line oL L o 147

28.3.2 Running Arquillian tests from within Eclipse L oo 147

V Building The User UI Using HTMLS 149
29 What Will You Learn Here? 150
30 First, the basics 151
30.1 Client-side MVC Support o o o e e e e e e 151
30.2 Modularity e 152
303 Templating L e e e e e e e e 152
30.4 Mobile and desktop Versions L. e e e e e e e e e e e 153

31 Setting up the structure 154
31.1 Routing o o e e e e e 157

32 Setting up the initial views 160
33 Displaying Events 162
33.1 The Eventmodel e e e 162
33.2 The Events collection e e e e e e e e e e e e e 162
33.3 The EventsView VIEW L L L e e e e e e 163

34 Viewing a single event 166
35 Creating Bookings 172
36 Mobile view 181
36.1 Setting up the StruCture L e e e e e e 181
36.2 Thelanding page o 0 e e e e e e e e e e 184
36.3 The eVents VIEW v i o et e e e e e e e e e e e e e e e e e e e 185
36.4 Displaying anindividual event e e 187
36.5 Booking tickets L L e e 190

Ticket Monster Tutorial

v
37 More Resources 198
VI Building the Administration UI using Forge 199
38 What Will You Learn Here? 200
39 Setting up Forge 201
39.1 JBoss Enterprise Application Platform 6 Lo 201
30.2 JBOSS AS 7 o o o 201
39.3 Required Forge Plugins e e e e e 201
40 Getting started with Forge 202
41 Generating the CRUD Ul 204
41.1 Generate the REST resources from the JPA entities e 204
41.2 Update the project o o v o e e e e e e e e e e e e e e e 204
41.3 Scaffold the Angular]S Ul from the JPA entities e 205
42 Test the CRUD UI 206
43 Make some changes to the Ul 207
VII Building The Statistics Dashboard Using HTMLS and JavaScript 212
44 What Will You Learn Here? 213
45 Implementing the Metrics API 214
46 Creating the Bot service 218
47 Displaying Metrics 226
47.1 The Metricsmodel e e 226
47.2 The Metrics collection e e e e e e e e e 226
47.3 The MetricSVIEW VIEW v v i v v i e 227
48 Displaying the Bot interface 229
48.1 The Botmodel e 229
48.2 The BOtVIew VIEW o e e e e e 230
49 Creating the dashboard 233
49.1 Creating a composite MONItOr VIEW v v v v it et e e e e e e e e e e e e e e e 233

49.2 Configure the router L e e 234

Ticket Monster Tutorial

Vi

VIII Creating hybrid mobile versions of the application with Apache Cordova 235
50 What will you learn here? 236
51 What are hybrid mobile applications? 237
52 Tweak your application for remote access 238
53 Downloading Apache Cordova 240
54 Creating an Android hybrid mobile application 241

54.1 Creating an Android project using Apache Cordova L 241

54.2 Adding Apache Cordova to TicketMonster o o i i e e e e e 248
55 Creating an iOS hybrid mobile application 250

55.1 Creating an iOS project using Apache Cordova e 250

55.2 Adding Apache Cordova for iOS to TicketMonster 251
56 Conclusion 253
IX Adding a data grid 254
57 What Will You Learn Here? 255
58 The problem at hand 256
59 Adding Infinispan 257
60 Configuring the infrastructure 259
61 Using caches for seat reservations 261
62 Implementing carts 264
63 Conclusion 286
X Adding a full-text search engine 287
64 What will you learn here? 288
65 Setting up the infrastructure 289

65.1 Setupthedependencies L e e e e e e e 289

65.2 Add some configurationo e e e e e e 290

Ticket Monster Tutorial

vii

66 Build the core search engine

66.1 Indexing the domain model

66.1.1 Adding the metadata toourdomainmodel oL oL o

66.1.2 Indexing existingdata e

66.2 Writing the search engine .

66.2.1 Build the Apache Lucene query e e e e

66.2.2 Build the objectquery e

66.3 Exposing search to the UI .

67 Filter results by location

68 Enable and expose navigation by facets

68.1 Indexing data for faceting .

68.2 Create the faceting requests

68.3 Return the faceting information L. e e e e

68.4 Selecting a facet
68.5 Exposing faceting to the UI

69 More resources

291
291
291
294
294
296
297
298

302

307
307
309
310
312
315

319

Ticket Monster Tutorial
1/319

Part I

What is TicketMonster?

Ticket Monster Tutorial
2/319

Chapter 1

Preamble

TicketMonster is an example application that focuses on Java EE6 - JPA 2, CDI, EJB 3.1 and JAX-RS along with HTMLS5 and
jQuery Mobile. It is a moderately complex application that demonstrates how to build modern web applications optimized for
mobile & desktop. TicketMonster is representative of an online ticketing broker - providing access to events (e.g. concerts,
shows, etc) with an online booking application.

Apart from being a demo, TicketMonster provides an already existing application structure that you can use as a starting point
for your app. You could try out your use cases, test your own ideas, or, contribute improvements back to the community.

(tm1)

Fork us on GitHub!

The accompanying tutorials walk you through the various tools & technologies needed to build TicketMonster on your own.
Alternatively you can download TicketMonster as a completed application and import it into your favorite IDE.

Before we dive into the code, let’s discuss the requirements for the application.

http://github.com/jboss-jdf/ticket-monster

Ticket Monster Tutorial
3/319

Chapter 2

Use cases

We have grouped the current use cases in two major categories: end user oriented, and administrative.

2.1 What can end users do?

The end users of the application want to attend some cool events. They will try to find shows, create bookings, or cancel bookings.
The use cases are:

¢ look for current events;

¢ look for venues;

* select shows (events taking place at specific venues) and choose a performance time;
* book tickets;

* view current bookings;

* cancel bookings;

Ticket Monster Tutorial
4/319

Select Event

User

Reserve
Seats

Figure 2.1: End user use cases

2.2 What can administrators do?

Administrators are more concerned the operation of the business. They will manage the master data: information about venues,
events and shows, and will want to see how many tickets have been sold. The use cases are:

* add, remove and update events;
¢ add, remove and update venues (including venue layouts);
* add, remove and update shows and performances;

e monitor ticket sales for current shows;

Ticket Monster Tutorial
5/319

Manage
Venues

Administrator

Manage
Layout

Figure 2.2: Administration use cases

Ticket Monster Tutorial
6/319

Chapter 3

Architecture

_l
i User Front-end (HTMLS) h Monitorin
Admin Front-end Dashb %
. . (HTMLS e
Classic Ul Mobile Ul AnaulartS (HTMLS,
g } Backbone.js)
4 Ty f |
. : Forge I
Business Layer (CDI, EJB, JAX-RS) : Seaffold i

— "M‘
-~

Fersistence (JPA)

Figure 3.1: TicketMonster architecture

The application uses Java EE 6 services to provide business logic and persistence, utilizing technologies such as CDI, EJB 3.1
and JAX-RS, JPA 2. These services back the user-facing booking process, which is implemented using HTML5 and JavaScript,
with support for mobile devices through jQuery Mobile.

The administration site is centered around CRUD use cases, so instead of writing everything manually, the business layer and Ul
are generated by Forge, using EJB 3.1, CDI and JAX-RS. For a better user experience, Twitter Bootstrap is used.

Monitoring sales requires staying in touch with the latest changes on the server side, so this part of the application will be
developed in HTMLS5 and JavaScript using a polling solution.

Ticket Monster Tutorial
7/319

Chapter 4

How can you run it?

4.1 Building TicketMonster

TicketMonster can be built from Maven, by runnning the following Maven command:

mvn clean package

If you want to run the Arquillian tests as part of the build, you can enable one of the two available Arquillian profiles.
For running the tests in an already running application server instance, use the arg-jbossas-remote profile.

mvn clean package -Parg-jbossas-remote

If you want the test runner to start an application server instance, use the arg—jbossas-managed profile. You must set up the
JBOSS_HOME property to point to the server location, or update the src/main/test/resources/arquillian.xml
file.

mvn clean package -Parg-jbossas-managed

If you intend to deploy into OpenShift, you can use the postgresgl-openshift profile:

mvn clean package -Ppostgresgl-openshift

4.2 Running TicketMonster

You can run TicketMonster into a local JBoss AS7 instance or on OpenShift.

4.2.1 Running TicketMonster locally

First, start JBoss Enterprise Application Platform 6 or JBoss AS 7 with the Web Profile.

1. Open a command line and navigate to the root of the JBoss server directory.

2. The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

Then, deploy TicketMonster.

http://openshift.com

Ticket Monster Tutorial

8/319

. Make sure you have started the JBoss Server as described above.

Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy

(You can use the arg—jbossas—remote profile for running tests as well)
This will deploy target/ticket-monster.war to the running instance of the server.

Now you can see the application running at http://localhost:8080/ticket-monster.

4.2.2 Running TicketMonster in OpenShift

First, create an OpenShift project.

1.

2.

Make sure that you have an OpenShift domain and you have created an application using the jbossas—7 cartridge (for
more details, get started here). If you want to use PostgreSQL, add the postgresgl-8. 4 cartridge too.

Ensure that the Git repository of the project is checked out.

Then, build and deploy it.

1.

\S)

W

Build TicketMonster using either:

* the default profile (with H2 database support)

mvn clean package

* the postgresgl-openshift profile (with PostgreSQL support) if the PostgreSQL cartrdige is enabled in OpenShift.

mvn clean package -Ppostgresgl-openshift

Copy the target /ticket-monster.war file in the OpenShift Git repository (located at <root-of-openshift-appli

cp target/ticket-monster.war
<root-of-openshift-application-git-repository>/deployments/ROOT.war

Navigate to <root—of-openshift-application—-git-repository> folder

Remove the existing src folder and pom. xm1 file.

git rm -r src
git rm pom.xml

Add the copied file to the repository, commit and push to Openshift

git add deployments/ROOT.war
git commit -m "Deploy TicketMonster"
git push

Now you can see the application running at at http://<app-name>-<domain-name>.rhcloud.com

http://localhost:8080/ticket-monster
https://openshift.redhat.com/app/getting_started

Ticket Monster Tutorial
9/319

Chapter 5

Learn more

The example is accompanied by a series of tutorials that will walk you through the process of creating the TicketMonster
application from end to end.

After reading this series you will understand how to:

* set up your project;

* define the persistence layer of the application;

* design and implement the business layer and expose it to the front-end via RESTful endpoints;
* implement a mobile-ready front-end using HTML 5, JSON, JavaScript and jQuery Mobile;

* develop a HTML5-based administration interface rapidly using JBoss Forge;

* thoroughly test your project using JUnit and Arquillian;

Throughout the series, you will be shown how to achieve these goals using JBoss Developer Studio.

Ticket Monster Tutorial
10/319

Part 11

Introduction & Getting Started

Ticket Monster Tutorial
11/319

Chapter 6

Purpose and Target Audience

The target audience for this tutorial are those individuals who do not yet have a great deal of experience with:

* Eclipse + JBoss Tools (JBoss Developer Studio)

* JBoss Enterprise Application 6 or JBoss AS 7

Java EE 6 features like JAX-RS

HTMLS & jQuery for building an mobile web front-end.

This tutorial sets the stage for the creation of TicketMonster - our sample application that illustrates how to bring together the
best features of Java EE 6 + HTMLS + JBoss to create a rich, mobile-optimized and dynamic application.

TicketMonster is developed as an open source application, and you can find it at github.
If you prefer to watch instead of read, a large portion of this content is also covered in video form.

In this tutorial, we will cover the following topics:

* Working with JBoss Developer Studio (Eclipse + JBoss Tools)
* Creating of a Java EE 6 project via a Maven archetype

* Leveraging m2e and m2e-wtp

» Using Forge to create a JPA entity

 Using Hibernate Tools

» Database Schema Generation

* Deployment to a local JBoss Server

* Adding a JAX-RS endpoint

* Adding a jQuery Mobile client

* Using the Mobile BrowserSim

https://github.com/jboss-jdf/ticket-monster
http://docs.jboss.org/tools/movies/

Ticket Monster Tutorial

12/319

2 AR c LR R R B S (L - T
Progace Explaner B =0 o [ty Mot Templine T
= - hitp (o sk B0 R - e i r ol _bied

BRI - P LI
K- AT maD iR
S el BT Wb SardiE

Ll Fril

L

Ll

L e mebmi s o 8- BE-SY

Li Deplormaar [HCrgRad BfioH - P lad
A Wb Edaourc e
+ AL S

1 v B Linat L
b g e e
F LI e e L T
¥ O M TA-
e LR
(B LET
e R R)

i i
{ TNTSELERET Y PRSI
o Deplortd Raagurcin

= P u
RLADREL sl
=
o
Lt]
B O
¥ o embapg
3 rada b,
1 arcn aheem,
izl bom,

jGuery Mobile

Rock concert of the decade

Rt Jiiecal haa - B0 RS Tickat-manifen meal ﬂ-

Shane's Sock Puppats

Rock comcert of the decade 3]

wboss.orgideveloper Lhane's Sock Puppats B

Properties B8 Serpr G Comcte [T =) Progeese £ Dperdhsk Capiorer o F

Figure 6.1: JBoss Developer Studio 7 with Mobile BrowserSim

Ticket Monster Tutorial
13/319

Chapter 7

Installation

The first order of business is to get your development environment setup and JBoss Developer Studio v7 installed. JBoss
Developer Studio is Eclipse Kepler (e4.3) for Java EE Developers plus select JBoss Tools and is available for free. Visit
https://devstudio.jboss.com/download/7.x.html to download it. You may also choose to install JBoss Tools 4.1 into your ex-
isting Eclipse for Java EE Developers installation. This document uses screenshots depicting JBoss Developer Studio.

You must have a Java Development Kit (JDK) installed, either v6 or v7 will work - whilst a JVM runtime will work for most use
cases, for a developer environment it is normally best to have the full JDK. System requirements for JBoss Developer Studio are
listed in the System Requirements chapter of the JBoss Developer Studio 7.0 Installation Guide online documentation.

Tip
If you prefer to see JBoss Developer studio being installed, then check out this video.
To see JBoss Tools being installed into Eclipse, see this video.

The JBoss Developer Studio installer has a (very long!) name such as jbdevstudio-product-universal-7.0.0.GA-v2013(
where the latter portion of the file name relates to build date and version information and the text near the front related to the

target operating system. The "universal" installer is for any operating system. To launch the installer you may simply be able to
double-click on the .jar file name or you may need to issue the following from the operating system command line:

java —-jar jbdevstudio-product-universal-7.0.0.GA-v20130720-0044-B364. jar

We recommend using the "universal" installer as it handles Windows, Mac OS X and Linux - 32-bit and 64-bit versions.

Note

Even if you are installing on a 64-bit OS, you may still wish to use the 32-bit JVM for the JBoss Developer Studio (or Eclipse
+ JBoss Tools). Only the 32-bit version provides a supported version of the Visual Page Editor - a split-pane editor that gives
you a glimpse of what your HTML/XHTML (JSF, JSP, etc) will look like. Also, the 32-bit version uses less memory than the
64-bit version. You may still run your application server in 64-bit JVMs if needed to insure compatibility with the production
environment whilst keeping your IDE in 32-bit mode. Visual Page Editor has experimental support for 64-bit JVMs in JBoss
Developer Studio 7. Please refer the JBoss Tools Visual Editor FAQ for details.

https://devstudio.jboss.com/download/7.x.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Developer_Studio/7.0/html/Installation_Guide/chap-System_Requirements.html
http://vimeo.com/39606090
http://vimeo.com/39743315
https://community.jboss.org/wiki/JBosstoolsVisualEditorFAQ

Ticket Monster Tutorial
14 /319

800 JBoss Developer Studio 7.0.0.GA

Introduction

Step 1 of 9

JBoss
DEVELOPER STUDIO

|27 Please read the following information:

This installer will guide you through the installation of JBoss Developer Studio 7.0.0.GA.
It is strongly recommended that you quit all programs before continuing with this installation.

Click the "Next" button to proceeded to the next screen. If you want to change something on a previous screen, click
the "Previous" button.

You may stop this installation at any time by clicking the "Quit" button.

JBoss by Red Hat

| Next | Quit
[Next_|

Figure 7.1: Installation Wizard, Step 1 of 9

The rest of the steps are fairly self explanatory. If you run into trouble, please consult the videos above as they explore a few
troubleshooting tips related to JRE/JDK setup.

Please make sure to say Yes to the prompt that says "Will you allow JBoss Tools team to receive anonymous usage statistics for
this Eclipse instance with JBoss Tools?". This information is very helpful to us when it comes to prioritizing our QA efforts in

terms of operating system platforms. More information concerning our usage tracking can be found at http://www.jboss.org/-
tools/usage

You can skip the step in the installation wizard that allows you to install JBoss Enterprise Application Platform 6 or JBoss AS 7
as we will do this in the next step.

http://www.jboss.org/tools/usage
http://www.jboss.org/tools/usage

Ticket Monster Tutorial
15/319

Chapter 8

Creating a new Java EE 6 project with Maven

Tip
For a deeper dive into the world of Maven and how it is used with JBoss Developer Studio and JBoss Enterprise Application
Platform 6 (or JBoss Tools and JBoss AS 7) review this video.

Now that everything is properly installed, configured, running and verified to work, let’s build something "from scratch".

We recommend that you switch to the JBoss Perspective if you have not already.

Tip
If you close JBoss Central, it is only a click away - simply click on the JBoss icon in the Eclipse toolbar - it is normally the last
icon, on the last row - assuming you are in the JBoss Perspective.

First, select Start from scratch — Java EE Web Project in JBoss Central. Under the covers, this uses a Maven archetype which
creates a Java EE 6 web application (.war), based around Maven. The project can be built outside of the IDE, and in continuous
integration solutions like Hudson/Jenkins.

http://vimeo.com/39796236

Ticket Monster Tutorial

16/319

i, JBoss Central &2

= O
i,. Welcome to |Boss ¥ (Q, Search JBoss Community @ % @ Show on Startup
Start from scratch

i
Java EE Web Project is a sample, deployable Maven 3 project te help
you get your foot in the door developing with Java EE & on JBoss
Enterprise Application Platform & or |Boss Application Server 7.1.

. This project is setup to allow you to create a compliant Java EE 6

/=" 5pring Praoject application using JSF 2.0, CDI 1.0, EJ& 3.1, JPA 2.0 and Bean Validation
1.0.

Ej HTMLS Project

8 OpenShift Application
@ Richfaces Project

¥ Java EE Web Project
@ Mawven Project

Start from a sample

‘=% B o Tutarial

Web Applications kitchensink

Mobile Applications grester

Back-end Applications | helloworld

kitchensink-rf

JBoss Buzz

LR Other resources

) This week in JBoss (26 July 2013): (More) Summer Fun 5 days ago by Marius Bogoevici

JBoss developer website
W) JBoss Tools 4.1 and Red Hat JBoss Developer Studic 7 go CA 1 week age

User Forum
. B X Dewveloper Forum
L) This week in JBoss (18th of July): Summer Fun 2 weeks ago by Eric D. Schabell)
W) This week in JBoss (12th of July): Screencasts 3 weeks ago by Burr Sutter Product documentation
I Thir wnals i 1D At o€ Lialich Maka £

Fa it Musemede A I [st Videos
Getting Started | % Soﬁware;Updale‘

Figure 8.1: JBoss Central

You will be prompted with a dialog box that verifies that JBoss Developer Studio is configured correctly. If you are in a brand new
workspace, the application server will not be configured yet and you will notice the lack of a check mark on the server/runtime
TOW.

Ticket Monster Tutorial

177319

800
Java EE Web Project

Create a Maven-based Java EE 6 web application project

Mew Project Example

Description;

This is your project! it's a sample, deployable Maven 3 project to help you get your foot in the door develaping with
Java EE & on JBoss Enterprise Application Platform & or JBoss Application Server 7.1,

This project is setup to allow you to create a compliant Java EE & application using JSF 2.0, CDI 1.0, EJE 3.1, JPA 2.0
and Bean Validation 1.0.

Project based on the org.jboss.spec.archetypes:jboss=javaeeb-weabapp-archetype:7.1.3.CRE Maven archetype
[_] Create a blank project

Target Runtime |

L
bt

Reguirements

Type Description Found?

senver/runtime | This project example requires |Boss Enterprise Appli... [Install...]
plugin This project example requires m2e >= 1.0, bl

plugin This project example requires m2e-wip == 0.16.0. [[Download and Install..]
plugin This project example requires |Boss Maven Tools. [+

@ < Back [MNext> | | Cancel | Finish

Figure 8.2: New Project Wizard

Note

There are several ways to add JBoss Enterprise Application Platform 6 or JBoss AS 7 to JBoss Developer Studio. The Install. ..
button on the new project wizard is probably the easiest, but you can use any of the methods you are familiar with!

To add JBoss Enterprise Application Platform or JBoss AS 7, click on the Install... button, or if you have not yet downloaded
and unzipped the server, click on the Download and Install... button.

Ticket Monster Tutorial
18/319

I Caution
The download option only works with the community application server. Although the enterprise application server is
listed, it still needs to be manually downloaded.

Selecting Install... will pop up the JBoss Runtime Detection section of Preferences. You can always get back to this dialog by
selecting Preferences — JBoss Tools — JBoss Tools Runtime Detection.

800 Preferences
type filter text JBoss Runtime Detection =R v
FCeneral
b Ant Description
P Data Management

Each path on this list will be automatically scanned for runtimes when

FForge
FreSMarkEr Editor a new workspace is created or if selected at every Eclipse startup.
b Help Click Edit to configure rules/filters for the search.
HQL editor o
P InstallfUpdate atha
:ia“ - | Path Every start lTI
e
b Java Persistence JApplications /jbdevstudio/runtimes
¥ JavaScript [Edit... |
¥)Boss Tools
BrowserSim/Cordovas | " Remove |
P CDI (Context and Dep e
FJAX-RS T T —
Jax | Search.. |

JBoss Central
JBoss Maven Integratic S
JBoss Portlet | Downlead... |
JBoss Runtime Detecti
P Project Examples
Remote Debug
Source toakn [Type ik
Usage Reporting ™ JBoss AS Link
> Web ™ Seam
»Maven
P Plug-in Development
Project Archives
I Remote Systems
¥ Run/Debug
FServer
»Team
Terminal
P TestNG
Walidation

Available runtime detectors

| Restore Defaults | | Apply |

| Cancel | [OK]

Figure 8.3: JBoss Tools Runtime Detection

Select the Add button which will take you to a file browser dialog where you should locate your unzipped JBoss server.

Ticket Monster Tutorial

19/319

LONON ; FE— s ODED

Add a new path

[4| p H EER— m] H oy] | [jboss-eap-6.1 s (Q
FAVORITES .Installationinformation (] appclient S
=1 All My Files K nstallSumaw.html il bin 3
P [0 bundles a
gApplice [Uninstaller » [l docs 3
. Desktop £ domain >
@ Documents [icons "
¥ Jboss-modules.jar
© Downloads JBosSEULA.txt
= Movies LICENSE.txt
J9 Music [modules 3
) SHAZ565UM
[E) Pictures [standalone 3
SHARED version.txt
[] welcome-content 3

RHODD3210 Xs... &
Ll RHOOD3210

[Mew Folder]

Figure 8.4: Runtime Open Dialog

[Cancel] E—Dp.n—i

Select Open and JBoss Developer Studio will pop up the Searching for runtimes... window.

Ticket Monster Tutorial

20/319

| oe 2 Searching for runtimes... -

1 new runtime found. Press OK 1o create the runtimes with a checkmark.
Searching runtimes is finished.

Name | Version |Type | Location [
™ jboss-cap-6.1 6.1 EAP [Applications/EAP-6.1.0/jboss-ea...

¥ Hide already created runtimes

Figure 8.5: Searching for runtimes window

Simply select OK. You should see the added runtime in the Paths list.

Ticket Monster Tutorial
21/319

800 Preferences
type filter text JBoss Runtime Detection o v w
P General
ANt Description
¥ Data Management o))
» Forge Each path on this list will be automatically scanned for runtimes when

a new workspace is created or if selected at every Eclipse startup.

FreeMarker Editor
Click Edit to configure rules/filters for the search.

FHelp
HQL editar
FInstalljUpdate Paths
Flava Path Every start
I Java EE | Add |

JApplications /jbdevstudio/runtimes [

¥ Java Persistence
) japplications [EAP-6.1.0/jboss-e_.. Il

b JavaScript
¥)Boss Tools
BrowserSim/Cordovas (

Remove |

» CDI (Context and Dep —_—
b JAX-RS —_—
JAX Search... |

JBoss Central |
JBoss Maven Integratic —
JBoss Portlet | Download... |
JBoss Runtime Detecti

P Project Examples
Remote Debug Available runtime detectors

Remote Repositories 'Type Link

Source Looku.p [g JBoss AS Link
Usage Reporting =
» Web = Link
»Maven
b Plug-in Development
Project Archives
FRemote Systems
¥ Run/Debug
b Server
P Team
Terminal
FTestNG
Walidation

| Restore Defaults | | Apply |

| Cancel | [0K]

Figure 8.6: JBoss Tools Runtime Detection Completed

Select OK to close the Preferences dialog, and you will be returned to the New Project Example dialog, with the the server/run-
time found.

Ticket Monster Tutorial

22/319
8060 New Project Example
Java EE Web Project
Create a Maven-based Java EE 6 web application project
Descripticn:
This is your project! it's a sample, deployable Maven 3 project to help you get your foot in the door develaping with
Java EE & on JBoss Enterprise Application Platform & or JBoss Application Server 7.1,
This project is setup to allow you to create a compliant Java EE & application using JSF 2.0, CDI 1.0, EJE 3.1, JPA 2.0
and Bean Validation 1.0.
Project based on the org.jboss.spec.archetypes:jboss=javaeeb-weabapp-archetype:7.1.3.CRE Maven archetype
[_] Create a blank project
Target Runtime | |
Reguirements
Type Description Found? [m]
senver/runtime | This project example requires |Boss Enterprise Appli... install...
plugin This project example requires m2e >= 1.0, bl
. - | Download and Install... |
plugin This project example requires m2e-wip == 0.16.0. [
plugin This project example requires |Boss Maven Tools. [+

@ < Back [Next> | | Cancel | Finish

Figure 8.7: JBoss AS 7.0/7.1 or EAP 6 Found

The Target Runtime allows you to choose between JBoss Enterprise Application Platform and JBoss AS 7. If it is left empty,
JBoss AS 7 will be elected.

I Caution

Choosing an enterprise application server as the runtime will require you to configure Maven to use the JBoss Enterprise

Maven repositories. For instructions on configure the Maven repositories, visit the JBoss Enterprise Application Platform
6.1 documentation.

Select Next.

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Development_Guide/index.html#Install_the_JBoss_Enterprise_Application_Platform_6_Maven_Repository
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Development_Guide/index.html#Install_the_JBoss_Enterprise_Application_Platform_6_Maven_Repository

Ticket Monster Tutorial
23/319

800 MNew Project Example

Java EE Web Project

Create a Maven-based Java EE & web application project | ia?

Project name | ticket-monster v |

Package | org jboss.jdf.example.ticketmonster] v |

@' Use default Workspace location

Location: * | | Browse.. |

|| Add project(s) to working set

Working set: : More...

b Advanced

@ | < Back Next> | | Cancel | [Finish. |

Figure 8.8: New Project Wizard Step 2

The default Project name is jboss-javaee6-webapp. If this field appears blank, it is because your workspace already
contains a "jboss-javaee6-webapp" in which case just provide another name for your project. Change the project name to
ticket-monster, and the package name to org. jboss. jdf.example.ticketmonster.

Select Finish.

JBoss Tools/JBoss Developer Studio will now generate the template project and import it into the workspace. You will see it pop
up into the Project Explorer and a message that asks if you would like to review the readme file.

Ticket Monster Tutorial

24 /319
806 New Project Example
Java EE Web Project
'lava EE Web Project’ Project is now ready

Show the Quick Fix dialog

[ﬂ Show 'fticket-monster/README.md" for further instructions

| | Do not show this page again

@ | Cancel | E—F&n&uh—J

Figure 8.9: New Project Wizard Step 3

Select Finish

Ticket Monster Tutorial

25/319
Exploring the newly generated project
Using the Project Explorer, open up the generated project, and double-click on the pom. xm1.
The generated project is a Maven-based project with a pom. xm1 in its root directory.
an0b JBoss - ticket-monster/pom.xmi - JBoss Developer Studio - fUsers /vinest/waorkspace
- TSN TN C CE L R B W R @
(o Project Explorer B2 | |3 Package Explorer = a i JBoss Condr s ChpE=meansierfporm.xml B2 =0
= = Overview
w = ticket-mongber
b A - WE el Serdcer Artifact = Project
b 2P JAK-RE RIST Web Services .
. :.I:memnt Dairiohie: Hekit-monihs Croup i org.jbos il exampls, ke reeadgr Kamg BeReT=Ion e
¥ i Web Resources Artifact b o Hgkot- mendder WURL: T
* 43 Jhh Lontent Wershon (0L 1 - SRAPSHOT Description: A s1ares Jawa EE 6 wehags preject for use
b 18 lava Resaarons Packag ar =1 on JBoss &5 7 { EAP B, generated from the
¥ B JavasScript Re sources "3 = — by javare f-wehapp archetvpe
F LG Deployed Besouroes ¥ Parent
F Ebin
[Ppomaml -
README.md
o O profect build sounceEncodimg - UTF-8 Create. .. inception
- .--U"i'lt T rgho, [Bed s Mt n.plugin | 7.3 Final =
N T wersion jbess.bom - 104, Final : b Organization

Ao chmpiler. plugin © 2.3.1 b oSCM

b Modules
b lidee Maragerenl

b Comitbnuous brbegration
Owervicw | Dependerscicd | Dependersty Higranchy | Fffectiee MOM | pom.xmi

3 ties 4 Serverd IT
i beds-gap-6.1 [Stopped]

Figure 9.1: Project Explorer

JBoss Developer Studio and JBoss Tools include m2e and m2e-wtp. m2e is the Maven Eclipse plug-in and provides a graphical
editor for editing pom. xm1 files, along with the ability to run maven goals directly from within Eclipse. m2e-wtp allows you
to deploy your Maven-based project directly to any Web Tools Project (WTP) compliant application server. This means you can
drag & drop, use Run As — Run on Server and other mechanisms to have the IDE deploy your application.

The pom. xm1 editor has several tabs along its bottom edge.

Ticket Monster Tutorial
26 /319

Owerview | Dependencies | Dependency Hierarchy | Effective POM | pom.xml

Problems Properties <1 Servers £2 £3 OpenShift Explorer =i ¥ I

b i jboss-eap-6.1 [Stopped]

Figure 9.2: pom.xml Editor Tabs

For this tutorial, we do not need to edit the pom.xml as it already provides the Java EE 6 APIs that we will need (e.g. JPA,
JAX-RS, CDI). You should spend some time exploring the Dependencies and the pom.xml (source view) tabs.

One key element to make note of is <version. jboss.bom>1.0.4.Final</version. jboss.bom> which establishes
if this project uses JBoss Enterprise Application Platform or JBoss AS dependencies. The BOM (Bill of Materials) specifies the
versions of the Java EE (and other) APIs defined in the dependency section.

If you are using JBoss Enterprise Application Platform 6 and you selected that as your Target Runtime, you will find a ~-redhat-1
suffix on the version string. You may need to setup the JBoss Enterprise Maven repository to use the certified dependencies in
your project, details of which are available here.

Caution
! The specific version of the BOM (e.g. 1.0.4.Final) is likely to change, so do not be surprised if the version is
slightly different.

The recommended version of the BOM for a runtime (EAP 6 or AS 7) can be obtained by visiting the JBoss Stacks
site.

https://community.jboss.org/wiki/SettingUpTheJBossEnterpriseRepositories
http://www.jboss.org/jdf/stack/stacks/
http://www.jboss.org/jdf/stack/stacks/

Ticket Monster Tutorial
27 /319

l._|i‘| Project Explorer 2 [3 Package Explorer = O

T;"ij'-ticket—mnnster
b AP JAX-WS Web Services
b 7P AX-RS REST Web Services
> ‘ Deployment Descriptor: ticket-monster
;,Jl,\x- Loading descriptor for ticket-monster..
b 11 Web Resources
F < JPA Content
Tfﬁjava Resources
¥ (#sre/main/java
b 4 org.jboss.jdf.example.ticketmonster.controller
» 4 org.jboss.jdf.example.ticketmonster.data
» £ org.jboss.jdf.example.ticketmonster. model
» {4 org.jboss.jdf.example.ticketmonster.rest
b £ org.jboss.jdf.example.ticketmonster.service
> fE org.jboss.jdf.example.ticketmonster. util
b src/main/resources
b B src/test/java
b [src/test/resources
b = Libraries
b = JavaScript Resources
> E;Deplu'g,red Resources
. Bpomxm
|=| README.md
L=
P (= target

Figure 9.3: Project Explorer Java Packages

Using the Project Explorer, drill-down into src/main/ java under Java Resources.

The initial project includes the following Java packages:

.controller

Ticket Monster Tutorial
28/319

contains the backing beans for # { newMember} and # {memberRegistration} inthe JSF page index.xhtml

.data
contains a class which uses @Produces and @Named to return the list of members for index .xhtml

.model
contains the JPA entity class, a POJO annotated with @Ent ity, annotated with Bean Validation (JSR 303) constraints

.rest
contains the JAX-RS endpoints, POJOs annotated with @Path

.service
handles the registration transaction for new members

.util
contains Resources.java which sets up an alias for @PersistenceContext to be injectable via @Inject

Now, let’s explore the resources in the project.

ng,lava Resources
> i src/main/java
¥ [src/main/resources
¥ = META-INF
+ persistence.xml
|E] import.sgl
¥ B src/test/java
v EE‘ org.jboss.jdf.example.ticketmonster.test
> m MemberBegistrationTest.java
b [src/test/resources
b = Libraries
b =, JavaScript Resources
> I::' Deployed Resources

E| pom.xml
|=| README.md

¥ = src
¥ (=-main
P (=java
P (= resources
¥ [=-webapp
miE index.htmil
mirE index.xhtml
b [resources
b (= WEB-INF
P = test

» (= target

Figure 9.4: Project Explorer Resources

Ticket Monster Tutorial
29/319

Under src you will find:

main/resources/import.sql
contains insert statements that provides initial database data. This is particularly useful when hibernate.hbm2dll.auto=cr

issetinpersistence.xml. hibernate.hbm2dll.auto=create-drop causes the schema to be recreated each
time the application is deployed.

main/resources/META-INF /persistence.xml
establishes that this project contains JPA entities and it identifies the datasource, which is deployed alongside the project.
It also includes the hibernate.hbm2dll. auto property set to create—drop by default.

test/java/test

provides the . test package that contains MemberRegistrationTest . java, an Arquillian based test that runs both
from within JBoss Developer Studio via Run As — JUnit Test and at the command line:

mvn test -Parg-jbossas-remote

Note that you will need to start the JBoss Enterprise Application Platform 6 or JBoss AS 7 server before running the
test.

src/main/webapp
contains index .xhtml, the JSF-based user interface for the sample application. If you double-click on that file you will

see Visual Page Editor allows you to visually navigate through the file and see the source simultaneously. Changes to the
source are immediately reflected in the visual pane.

Ticket Monster Tutorial

30/319

I“.
%, JBoss Central

f index.xhtml 23

model class.</p=
= <h:panelGrid columns="3" columnClasses="titlelell "=

<h:
<h:

routputlabel for="name” value="Name:" /=
tinputText 1d="name” value="#{newMember. namel” /=
rmessage for="name” errorClass="invalid"” />

outputLobel for="emagil"” value="Emgil:" /=
inputText id="email"” wvalue="#{newMember.emaill" /=

<h:message for="email” errorClass="invalid"” />

<h:
<h:

outputLobel for="phoneNumber” value="Phone #:" /=

inputText id="phoneNumber"”
wnliip="#neauwMambhar nhanabMomharl™ /-

i

| - Font Name - : || - Font Size - I :

| .

Member Registration
Enforces annotation-based constraints defined on the model class.

#newhMember.name}

Name + Error Message
0 0

Email: #newMember.email} lZl « Error Message
O | a
I |

Phone #HnewMember.phoneNumbs « Error Message

#:

uizcomposition * wirdefine » h:form » h:panelGrid = hiinputText »

Visual fSource | Source

Preview

Figure 9.5: Visual Page Editor

In src/main/webapp/WEB-INF, you will find three key files:

beans.xml
is an empty file that indicates this is a CDI capable EE6 application

faces—-config.xml
is an empty file that indicates this is a JSF capable EE6 application

ticket-monster-ds.xml
when deployed, creates a new datasource within the JBoss container

Ticket Monster Tutorial
31/319

Chapter 10

Adding a new entity using Forge

There are several ways to add a new JPA entity to your project:

Starting from scratch

Right-click on the .model package and select New — Class. JPA entities are annotated POJOs so starting from a simple
class is a common approach.

Reverse Engineering

Right-click on the "model" package and select New — JPA Entities from Tables. For more information on this technique
see this video

Using Forge
to create a new entity for your project using a CLI (we will explore this in more detail below)

Reverse Engineering with Forge

Forge has a Hibernate Tools plug-in that allows you to script the conversion of RDBMS schema into JPA entities. For more
information on this technique see this video.

For the purposes of this tutorial, we will take advantage of Forge to add a new JPA entity. This requires the least keystrokes, and

we do not yet have a RDBMS schema to reverse engineer. There is also an optional section for adding an entity using New —
Class.

Right-click on the .model package in the Project Explorer and select Show In — Forge Console.

https://vimeo.com/39608294
https://vimeo.com/39608326

Ticket Monster Tutorial

32/319
B Project Explorer 32 Open Type Hlerarchv F4 _
Show In CEW > 5 Forge Console
! Properties
1'l";'::';"'ti:_'h'.vs:t—mn:nr‘ns-h:r = Copy 3 C
> A IAX-WSWeb 5¢ B2 Copy Qualified Name
; -’;‘,?J;I'I“E RESTW (2 Paste 8V
‘=g Deployment
)) . ¥ Delete =
L,.J:) Loading descri r
F 1L Web Resources Build Path >
b 44 JPA Content Source NS >
¥ % java Resources Refactor NHT >
¥ (& src/main/ja
b Hlorg.jbos: g Import...
» Hf org.jbost 4 Export...
> [J]Memt 2 Refresh F5
Figure 10.1: Show In Forge Console
Tip
Alternative methods to activate Forge include:
* Window — Show View — Forge Console
» Ctrl 4 (Windows) or Cmd 4 (Mac).
Note: the Show In method will issue a "pick-up" command to switch you to the right location within your project.
The first time you start Forge, you will be prompted with a Forge Not Running dialog, select Yes.
800 Forge Not Running
Forge is not running. Do you want to start the Forge runtime?
""\-_.:\r-"ll
| No | E Yes ;

Figure 10.2: Show Forge Not Running

Ticket Monster Tutorial
33/319

Tip
If you are not prompted you can always start Forge using the green arrow (or stop via the red square) in the Forge Console tab.

5. Forge Console 23 E= = O

Figure 10.3: Show Forge Start/Stop

'* Problems [Properties 4% Servers [Console = Progress £3 OpenShift Explorer - Forge Console &2 o = 0

1 e —
[I L P W\
L I I s T I T T I Y)
[T N4 O I NP AN |

£

JBoss Forge, version [1.3.3.Final] - JBoss, by Red Haot, Inc. [http://forge.jboss.org]

[noe project] workspace 3 pick-up /Users/vineet/workspace/ticket-monster/sre/main/javalorg/jboss/jdf fexamples/ticketmonster/model
Picked up type <DirectoryResources>: model
[1 model

Figure 10.4: Show Forge Console

Forge is a command-oriented rapid application development tool that allows you to enter commands that generate classes and
code. It will automatically update the IDE for you. A key feature is "content assist" or "tab completion", activated by pressing
tab.

To generate an entity, use these commands:

entity --named Event --package org.jboss.jdf.example.ticketmonster.model

field string —--named name

validation setup —--provider JAVA_EE

constraint NotNull --onProperty name

constraint Size --onProperty name --min 5 --max 50 —--message "Must be > 5 and < 50"

field string —--named description

constraint Size —--onProperty description —--min 20 --max 1000 —--message "Must be > 20 and <
1000"

field boolean --named major

field string —--named picture

Let’s work through this, step by step.

Atthe [ticket-monster] model $ prompt, type en and hit the tab key on your keyboard. ent ity will fill in. Hit tab
again and entity —-named will appear. Type in Event and add a space — Forge can not anticipate the name of your new
entity!

Hit tab again and select ——package. Now, hit tab repeatedly to fill in org. jboss. jdf.example.ticketmonster.
Since there are multiple entries underneath examples, Forge will display those options. Type in m and hit tab to select mode 1.

Now hit the Enter/Return key to watch the command execute. The Event entity will be generated into the "model" package and
open up inside of Eclipse.

Ticket Monster Tutorial

34/319

'*. Problems [Properties i Servers El Console & Progress £3 OpenShift Explorer &- Forge Console & P EBR =0

U N/ N, I
[

JBoss Forge, version [1.3.3.Final] - JBoss, by Red Hat, Inc. [http://forge.jboss.org]
[no project] workspace § pick-up /Users/vineet/workspoce/ticket-monster/src/main/javasorg/jboss/jdf fexamplesticketmonster/model
P\cked up type <DirectoryResource>: model
onster] model 3 entity --nomed Event --packoge org. jboss, jdf. example. ticketmonster.
dntu model rest service ukil
e ter] model © entity --nomed Event --package org.jboss.jdf.example_ticketmonster model
(reated SEnt\ty [org.jboss. jdf .example. ticketmonster model.Event]
Picked up type <JavoResources: org.jboss.jdf.example.ticketmonster.model .Event
N-‘ote !Users!v\neetfworkchefltlcket monster/src/maind jovalorg/ jboss/jdf fexample/ticketmonster /model/Event . java
] Event.jova i

Figure 10.5: Forge new entity

[(5Projecte 22 @ Package = O . JBoss Central w| ticket-maonster/pom,xml [1) Eventjava 23

2 ~ package org.jboss.jdf.example. ticketmonster.model;

v _T%ticket- monster

@ import javax.persistence.Entity;
B A JAN-WS Web Services U

b AP JAX-RS REST Web Services BEntity

b ‘3 Deployment Descripter: ticket-mo 4 public class Event implements Serializable
2 Web Resources {

F & |PA Content

¥ 78 Java Resources - eld

¥ 58 sre/mainfjava @GeneratedVoluestrategy = GenerationType, AUTOD

F £ org.jboss. jdf.example.ticket private Long id = null;
F i org.jboss.jdf.example. ticket 5 BVersion

&t org.jboss jdf.example.ticker eColumnlname = "wversion®™)

Im Event.java private int version = 8;
b [J] Member.java

» £ org.jboss. jdf.example. ticker public Long getld()

» £ org.jboss. jdf example.ticket {

return this.id;
k[org.jboss. jdfexample ticket = ==t

P (& src/ main/resources

}

Figure 10.6: Event Entity

@Columnlname = "id™, updotoble = false, nullable = false)

Note

@Entity public class is placed on the same line as * import java.lang.Override™ by Forge. Using the formatter your

IDE provides on the entity will make this look more like you would expect!

Forge has automatically changed the context of the CLI to Event . java, and typing 1s will provide a listing of the fields and

methods.

Ticket Monster Tutorial
35/319

. Problems [Properties 4 Servers = Progress £3 OpenShift Explorer %- Forge Consale & B3SO
[ticket nster] Event.java § ls

[Fields]
private: 2: :4d; privakte: :intiiversion;

[methods]

public::equals(Object that): :boolear public::getId()

public: :getVersion()::in public::hashlode(:

public: isetId(final Long id)::void public::setVersion{final int version)::v

public: rkoStringl: :

[ticket-monster] Event.jova 3

Figure 10.7: Forge 1s

Now that the base Event entity has been created, let’s add the fields and their JSR 303 Bean Validation constraints.
This next step involves adding a name property for the Event entity so that an event could hold data like "Rock Concert".

Type £ie and hittab to fill in £ield, if you hit tab again, Forge will list out the possible field types. Type in s and hit tab, Forge
will respond with st ring. Hit tab again to get ——named and type in name. You should end up with the command field
string —--named name, to execute it, press enter. This will add a private String name; field, and the appropriate
accessor and mutator (getter and setter) methods. You should also notice that the toString method is tweaked to include name as
well.

B & JPAC
] envent public String getMome(}

v f_E.'J:L-.-:L Resources {
¥ (B srefmain/java return this.neme;
F [org.jboss. jdf.example ticketmonster controller }
F B org.jboss. jdf.example ticketmonster.data
¥ [} org.jboss. jdf.example tickermonster. model 3 public vold setMese(finmal String name)
B 1) Event java {

b [1] Member_java this.name = nase;

F B org.jboss. jdf example ticketmonster. rest ¥

F {1 org.jboss.jdf.example ticketmanster service eOvarride

F 5 org.jboss. jdf example ticketmanster.util) public String toStringl)
F [srefrmain fresources {
B B srefrestfjava String result - getCless().getSimpleNome()} + " °
P (8 grefresnfresaurces if {name l= null && Inome.trim().isEmpty(})
b i Libraries result += "name: " & nome;

b B Javaseript Resources return result;
}

b L5 Deployed Resources }

Figure 10.8: @Column name

From this point forward, we will assume you have the basics of using Forge’s interactive command line. The remaining com-
mands to run are:

validation setup —-provider JAVA_EE

constraint NotNull --onProperty name

constraint Size --onProperty name --min 5 --max 50 --message "Must be > 5 and < 50"

field string —--named description

constraint Size --onProperty description —--min 20 --max 1000 --message "Must be > 20 and <
1000"

field boolean --named major

field string —--named picture

Ticket Monster Tutorial
36/319

The easiest way to see the results of Forge operating on the Event . java JPA Entity is to use the Outline View of JBoss
Developer Studio. It is normally on the right-side of the IDE when using the JBoss Perspective.

0= Outline 22 | <> Palette = H

B1A 8 s e w ¥
#+ org.jboss.jdf.example.ticketmonster.model
_ f Eemt |
o id: Long
B wersion :int
B name : String
o description - 5tring
8 major : boolean
o picture : 5tring
@ getld() : Long
@ setld{Long) : void
@ getVersion() : int
@ setVersionlint} : void
@ . equals{Object) : boolean
@ . hashCode() : int
@ getMamel) - 5tring
@ setMame(String) @ void
@ getDescription() : 5tring
@ setDescription({String) : void
@ getMajor() : boolean
@ setMajor(boolean) : void
@ getPicturel) : 5tring
@ setPicture(String) @ void
@ o toString) @ String

Figure 10.9: Outline View

Ticket Monster Tutorial
37/319

Chapter 11

Reviewing persistence.xml & updating import.sql

By default, the entity classes generate the database schema, and is controlled by src/main/resources/persistence.xml.

The two key settings are the <jta-data-source> and the hibernate.hbm2ddl.auto property. The datasource maps
to the datasource defined in src\main\webapp\ticket-monster—-ds.xml.

The hibernate.hbm2ddl.auto=create-drop property indicates that all database tables will be dropped when an ap-
plication is undeployed, or redeployed, and created when the application is deployed.

The import . sgl file contains SQL statements that will inject sample data into your initial database structure. Add the follow-
ing insert statements:

insert into Event (id, name, description, major, picture, version) wvalues (1, 'Shane''s Sock
Puppets', 'This critically acclaimed masterpiece...', true,
"http://dl.dropbox.com/u/65660684/640px—Carnival_Puppets. jpg', 1);

insert into Event (id, name, description, major, picture, version) wvalues (2, 'Rock concert
of the decade', 'Get ready to rock...', true,

'http://dl.dropbox.com/u/65660684/640px—Weir$2C_Bob_ (2007)_2.jpg', 1);

Ticket Monster Tutorial
38/319

Chapter 12

Adding a new entity using JBoss Developer Stu-
dio

Alternatively, we can add an entity with JBoss Developer Studio or JBoss Tools.

First, right-click on the .model package and select New — Class. Enter the class name as Venue - our concerts & shows
happen at particular stadiums, concert halls and theaters.

First, add some private fields representing the entities properties, which translate to the columns in the database table.

package org. jboss. jdf.example.ticketmonster.model;

public class Venue {
private Long id;
private String name;
private String description;
private int capacity;

Now, right-click on the editor itself, and from the pop-up, context menu select Source — Generate Getters and Setters.

Ticket Monster Tutorial

39/319

P Q| Qi B G @ e DI (Qauccaccess | g |[iimess
[m) ticket-monster/ [1] Eventjava [Venuejava B = ™ S B8 SEou 2 Palet = @
package org.jboss.jdf.example.ticketmonster.model; SPL] ~&§ e 5

4 org.jboss. jdf.example.ticke

pllh] ir rlace Vanus [

ah <7 Undo Typing w7z >3 venue
2 Revert File |
=l e T |.:
o Save S
Open Declaration F3
Open Type Hierarchy F4
Open Call Hierarchy ~™CH
Show in Breadcrumb “CHEB Toggle Comment £
Quick Outline o Remove Block Comment ~EEY
Quick Type Hierarchy HT Cenerate Element Comment NEE)
Open With » .
Show In o EEW > cﬂrl"ect |ndentat|ﬂ‘n ﬂﬁl
Format {+a3EF
Cut X Format Element
Copy =
Copy Qualified Name Add Import G 3M
Organize Imports %0
Paste Hv
Sort Members...
Quick Fix 1 Clean Up...
Source “CaES » . .
Refactor ST b Generlate Hibernate/JPA annotations... -
Local History > Override /Implement Methods...
ol Cenerate Getters and Setters... P EEE =0
. References (3 Cenerate Delegate Methods... .
[fel Declarations > Cenerate hashCode() and equals()...
Addec , Cenerate to5tring()... n major:
£ Add to Snippets... Generate Constructor using Fields...
"::::f RUN As » Generate Constructors from Superclass... etmonster/model/
e ® Externalize Strings...

Figure 12.1: Generate Getters and Setters Menu

This will create accessor and mutator methods for all your fields, making them accessible properties for the entity class.

Ticket Monster Tutorial

40/319
8 00 Cenerate Getters and Setters
Select getters and setters to create:
™ » o capacity | select All |
[ﬂ b o description
M > o id | Deselect All |
[ﬂ F o name

| Select Getters |

| Select Setters |

|| Allow setters for final fields (remowve 'final' modifier from fields if necessary)

Insertion point:

| First member

Sort by:

|' Fields in getter/setter pairs

Access modifier

(*) public () protected () default () private
|| final | | synchronized

| | Generate method comments

The format of the getters/setters may be configured on the Code Templates preference page.

1 8 of 8 selected.

@ | cancel | E OK g

Figure 12.2: Generate Getters and Setters Dialog

Click Select All and then OK.

Ticket Monster Tutorial
41/319

[J] Venue.java 53 = O

package org.jboss.jdf.example.ticketmonster.model;

public class Venue {
private Long 1id;
private String name;
private String description;
private int capacity;
= public Long getId() {

return 1id;
}
= public void setId{Long id} {
this.id = 1id;
}

= public String getMame() {
return name;
1
= public void setMName(5tring name) {
this.name = name;
1
= public String getDescription() {
return description;
}
= public void setDescription(S5tring description) {
this.description = description;
}
= public int getCapacity(} {
return capacity;
}
= public void setCapocity(int capacity) {
this.capacity = capacity;

H

Figure 12.3: Venue.java with gets/sets

Now, right-click on the editor, from the pop-up context menu select Source — Generate Hibernate/JPA Annotations.

If you are prompted to save Venue . java, simply select OK.

Ticket Monster Tutorial
42 /319

8 00 Save Modified Resources

Some modified resources must be saved before this operation.

m Venue.java

| | Always save all modified resources automatically prior to refactoring

® [Cancel] E—ﬂl—i

Figure 12.4: Save Modified Resources

The Hibernate: add JPA annotations wizard will start up. First, verify that Venue is the class you are working on.

Ticket Monster Tutorial
43 /319

e OO0 Hibernate: add JPA annotations

Hibernate: add JPA annotations to the related set of entities

The following classes will be changed

& Class
org.jboss, jdf.example.ticketmonst. ..

Preferred location of Annotations: [Fields :]
Default string length (255 by default): | 255 |
Enable optimistic locking:]

@ [< Back J [Mext = J [Cancel J E—Hﬂh—i

Figure 12.5: Hibernate: add JPA annotations

Select Next.

The next step in the wizard will provide a sampling of the refactored sources — describing the basic changes that are being made
to Venue.

Ticket Monster Tutorial

44 /319
e OO0 Hibernate: add JPA annotations
Hibernate: add JPA annotations to the related set of entities
The following changes are necessary to perform the refactoring.
Changes to be performed L 97 | Lo

|| 8 venue.java - ticket-monster/src/main/javajorg/jboss/jdffexample/ticketmoenster/ model

m Venue.java ﬁ?\} % ’f@ @

Original Source Refactored Source

_package org.jboss. jdf . example. ticketmo pockage org.jboss.jdf.example.tick

public class Venue { import jovax.persistence.Entity; I]
private Long id; | import jovax.persistence.Generated M

private String name;

import jovax.persistence.ld;
private String description;

private int capocity; | | @Entity
public Long getId(} { \]public class Venue {
return id; \ ald
} | @GheneratedValue
public volid setId{lLong 1d) { private Long id;
this.id = 1id; private String name;
} private String description
@ | < Back | Mext > | Cancel | [Finish]

Figure 12.6: Hibernate: add JPA annotations Step 2

Select Finish.

Now you may wish to add the Bean Validation constraint annotations, such as @NotNul1l to the fields.

Ticket Monster Tutorial
45/319

Chapter 13

Deployment

At this point, if you have not already deployed the application, right click on the project name in the Project Explorer and
select Run As — Run on Server. If needed, this will startup the application server instance, compile & build the application
and push the application into the JBOSS_HOME/standalone/deployments directory. This directory is scanned for new
deployments, so simply placing your war in the directory will cause it to be deployed.

| Caution
J If you have been using another application server or web server such as Tomcat, shut it down now to avoid any port
conflicts.

Ticket Monster Tutorial

46 /319
.x . Show In NEW »
[(5 Project E 32 | [P
- 2 Copy BC rsistence.ld;
¥ S ticket-monster | ”f' Copy Qualified Name
» A Jax-wswebs [Paste EV nue {
b APIAX-RS RESTW 3¢ Delete = b a1
i . eavalue
> EaDeployment D Byjld Path > Long id;
I Web Resource: pofactor T P | String name;
":'H”" Cantent String description;
¥ & Java Resource! Import P | int capacity;
¥ (Bgrefrmain/ji Export p Long getId() {
+ B org.jbos urn id;
F Horgjbos 5 Refresh F5
d -l J id setId(Long id
'Iff;“gé‘h“ Close Project i feid;(ongIieay 3
Pij M“"': Close Unrelated Projects
. II] o S5tring getMame() {
E]"-'_enu- &y Mark as Deployable urn name;
> Borgjbos \uidate
b i org.jbos ; I i void setName(String name) {
» B8 org jbos Show in Remote Systems view P
P (5 gre fmaing Run As g +a 1 Run on Server O4XXR
b [#sreftestjm Debug As > 5 2 Java Applet NHXA
b [(Hsreftest/re: Profile As > T 3 Java App“catiﬂn ok)
> = Librari . -
Bilibraries | Team > Ju 4 JUnit Test 8XT
> B Javascript Rest Compare With > ¢ -
mz 5 Maven build KM

» L9 Deployed Rest pastore from Local History...

[m] porm.xm hhavan > mz 6 Maven build...
(=] README.md m2 7 Maven clean
> 3 src Java EE Tools >
F-_':imgﬂ JPA Tools > mz 8 Maven generate-sources
- Configure > mz 9 Maven install
Source (3 mz Maven test

Figure 13.1: Run As — Run on Server

Now, deploy the h2console webapp. You can read how to do this in the h2console quickstart.

The Run As — Run on Server option will also launch the internal Eclipse browser with the appropriate URL so that you can
immediately begin interacting with the application.

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial

47 /319
Venue.java @ http:/ /localhost:8080 /ticket-monster/index.jsf 2 = d
Qﬁ{h http:/ flocalhost: 8080/ ticket-monster /index.jsf | B s

Welcome to JBoss!

You have successfully deployed a Java EE 6 Enterprise Application.

Your application can run on:

JBOSS ENTERPRISE

—
APPLICATION PLATFORM E51 JBoss Application Server7

Supported) (Community)

'* Problems [Properties & Servers 52 = Progress £3 OpenShift Explorer .- Forge Console

:."-.-::jhnss-eap-ﬁ.l [Started, Synchronized)
ﬁ; ticket-monster [Started, Synchronized]

b Sl Filesets

b ¥| XML Configuration

Figure 13.2: Eclipse Browser after Run As — Run on Server

Now, go to http://localhost:8080/h2console to start up the h2 console.

http://localhost:8080/h2console

Ticket Monster Tutorial
48 /319

J] Venue.java i@ htrp://localhost:8080/h2console/consoleflogin.jsp?jsessionid 22 = O

go o .ﬁh II“I'IIFIZI||"|EIEE|hDStZBﬂanfhEEﬂHSthEDHSDlE.I'|D'giﬂ.j5p?jSESSiDFIid=5359bd3jT| =

[English + | Preferences Tools Help
Saved Settings: [Ceneric H2 (Embedded) : J
Setting Name: | ganeric H2 (Embedded) ' save| |Remove
Driver Class: |0rg.h2.Dri1.rer |
JDBC URL: |jdbc:h2:mem:ticket—mﬂnster |
User Name: [sa |
Password: [an I

|C-::-n nect| | Test Connection

Figure 13.3: h2console in browser

Use jdbc:h2:mem:ticket-monster asthe JDBC URL (this is defined in src/main/webapp/WEB-INF/ticket-monste
sa as the username and sa as the password.

Click Connect
You will see both the EVENT table, the VENUE table and the MEMBER tables have been added to the H2 schema.

And if you enter the SQL statement: select = from event and select the Run (Ctrl-Enter) button, it will display the data
you entered in the import . sql file in a previous step. With these relatively simple steps, you have verified that your new EE
6 JPA entities have been added to the system and deployed successfully, creating the supporting RDBMS schema as needed.

Ticket Monster Tutorial

49/319

Venue.java {@ H2 Console 53

= |l

=] W * |hitpof flocalhost 8080 /h2console /console flogin.dotjsessionid=8859bd32d928a094 14b 155bF822f0 v | [-

& | @ | & Auto commit =g 7 | Max rows: | 1000

gj jdbeh2:mem:ticket-manster

@ £ EVENT

I MEMBER

T VENUE

] INFORMATION_SCHEMA
55 Sequences

{§} Users

(1) HZ 1.3.168-redhat-2 (2012-07-1

FEEEBEE

) Q = | ' |Aul:ﬂmﬂ'lplﬂtl!| Mormal]@

Run (Ctri+Enter), Clear S0L statament:

select * from event

select* from event;
ID |DESCRIPTION MAJOR

1 |Tniscritically TRUE
acclaimed
maslerpiece...

2 |Getreadyto TRUE
rock...

(2 rows, B0 ms)

Edit)|

'NAME .FICTU RE "JERE-IGI'\

Shana 's | httpfdl.dropbox. mﬂuﬁﬁﬁﬁﬂﬁ&#ﬁﬁdﬂm—
Sock |Camival_Puppets.jpg
Puppets

‘Rock | hitp/idi.dropbox.com/u/65660684/640px- 1

concert |Weirts2C_Bob_(2007)_2.jpg
of the
decade

Figure 13.4: h2console Select * from Event

Ticket Monster Tutorial
50/319

Chapter 14

Adding a JAX-RS RESTful web service

The goal of this section of the tutorial is to walk you through the creation of a POJO with the JAX-RS annotations.

Right-click on the . rest package, select New — Class from the context menu, and enter Event Service as the class name.

Ticket Monster Tutorial

51/319

800 New Java Class
Java Class

Create a new Java class.

Source folder: Iticket—munsterfsrc.n‘main,n’java ' [Browse...]
Package: I4::rg.jl:mss.jdf.En:ar'nple.ticketmnnster.r&st I [Browse... :|
| | Enclosing type: Browse...
Mame: EventService

Modifiers: (*) public () default private protected

[| abstract [| final static
Superclass: Ijava.lang.{]bject I | Browse... |
Interfaces: |- Add |
Remowve

Which method stubs would you like to create?
[| public static void main{String[] args)
| | Constructors from superclass
[ﬂ Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

| | Generate comments

@ | Cancel | [Finish]

Figure 14.1: New Class EventService

Select Finish.

Ticket Monster Tutorial
52/319

Replace the contents of the class with this sample code:

package org. jboss. jdf.example.ticketmonster.rest;

QPath ("/events")

@RequestScoped

public class EventService ({
@Inject
private EntityManager em;

QGET
@Produces (MediaType.APPLICATION_JSON)
public List<Event> getAllEvents () {
final List<Event> results =
em.createQuery (
"select e from Event e order by e.name").getResultlList ();
return results;

This class is a JAX-RS endpoint that returns all Events.

Ticket Monster Tutorial

53/319

[J] *EventService.java 3 = 0

package org.jboss.jdf.example.ticketmonster.rest;
& @Path("/events") =
£ ©@RequestScoped =

public class EventService q
= @Injeck =
¥ private EntitvMaonager em; =
£ = BGET, —
+H EProduces(Medialype . APPLICATION _J1SON) =
¥ public List=Event= getAllEvents{) { =
¥ final List=Event= results = =
i en.createluery(=

"select e from Event e order by e.nome").getRe
return results;
}

Figure 14.2: EventService after Copy and Paste

You’ll notice a lot of errors, relating to missing imports. The easiest way to solve this is to right-click inside the editor and select
Source — Organize Imports from the context menu.

Ticket Monster Tutorial

54/319

E g},h?wklg Etlradcrumh 1:3 Toggle Comment 3/

QE:Ek T;Ip;n:ierarchv s Remove Block Comment ~3\

: Cenerate Element Comment ¥

Open With >

Show In W > Correct Indentation 3|

Cut oA Ilzg::m:: Element s

Copy)

Copy Qualified Name Add Import M

Paste BV Organize Imports %0

Quick Fix %1 g?;fﬁ:bm'"

Refactor NET > Cenerate Hibernate/JPA annotations...

Local History > Override /Implement Methods...

Cenerate Cetters and Setters...

| 3 TR o — [

Figure 14.3: Source — Organize — Imports

Some of the class names are not unique. Eclipse will prompt you with any decisions around what class is intended. Select the
following:

* javax.ws.rs.core.MediaType

* org.jboss.jdf.example.ticketmonster.model.Event
* javax.ws.rs.Produces

* java.util.List

* java.inject.Inject

* java.enterprise.context.RequestScoped

The following screenshots illustrate how you handle these decisions. The Figure description indicates the name of the class you
should select.

Ticket Monster Tutorial

55/319

L. IO ; NE—— Organize Imports

Choose type to import: Page 1 of 6

Jjavax.ws.rs.core.MediaType
@ Fjava.aM.PageAn ributes.MediaType

@ < Back [New= | [cancel | Finish

Figure 14.4: javax.ws.rs.core.MediaType

L NS N s NE— Organize Imports

Choose type to import: Page 2 of 6

@ java.awt.Event

0 javax.enterprise.event.Event

(1) org.jboss.arguillian.core.api.Event

(1) org.jboss.arguillian.core.spi.event. Event
@Forg.jboss.as.conlroller.services.palh.PathManager.Evem

€ org.jboss.jdf.example.ticketmonster. model.Event
G org.osgi.service.event.Event
G org.w3c.dom.events.Event

@ [<Back | [MNexe> | | cancel | Finish

Figure 14.5: org.jboss.jdf.example.ticketmonster.model.Event

Ticket Monster Tutorial

56 /319

0 Organize Imports

Choose type to import: Page 3 of 6

(04 javax.ws.rs.Produces

@ javax.enterprise.inject.Produces

@ [< Back] H [Cancel] | Finish |

Figure 14.6: javax.ws.rs.Produces

808 .Organize Imports

Choose type to import: Page 4 of 6

Il java.util List
€] java.awt.List

® [< Back] F—“"""—'i [Cancel] | Finish |

Figure 14.7: java.util.List

Ticket Monster Tutorial
57 /319

8006 Organize Imports

Choose type to import: Page 5 of 6
[1

& javaw.inject.Inject
@ org.jboss.arguillian.core.api.annotation.Inject

@ | <Back | [MNext >] | Cancel | Finish

Figure 14.8: javax.inject.Inject

8.0 6 Organize Imports

Choose type to import: Page 6 of 6
[|

@ javax.enterprise.context.RequestScoped
@ javax.faces.bean.ReguestScoped

@ | <Back | MNext > | cancel | [Finish]

Figure 14.9: javax.enterprise.context.RequestScoped

You should end up with these imports:

import java.util.List;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.persistence.EntityManager;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import org. jboss.jdf.example.ticketmonster.model.Event;

Once these import statements are in place you should have no more compilation errors. When you save Event Service. java,
you will see it listed in JAX-RS REST Web Services in the Project Explorer.

Ticket Monster Tutorial

58/319
[ProjectE % [2 Package =~ O AT EvernService java = 7
= - - import java.util.List;
¥ i ticket-monster
B A8 JAX-WS Web Services import jevax_ enterprize.context. RequestScoped;
¥ 3 JAN-RS REST Web Services import jovax.injeck,Injeck;
2 GET frast/event import jovax.persistence.EntityManaoger;
= - o bl import jovox.ws.rs.GET;
& _"Im“'rm'mhw’ import jovax.ws.rs.Path;
B & POST frest/members import javax.ws.rs.Produces;
B & GET frest/membersfid:[0-9]| import jovax.ws.rs.core MediaType;
¥ g Deployment Descriptor: ticket=rr
[j'__wr.-h Resources import org.jboss. jdf.example.ticketmonster model .Event;
¥ & JPA Content .
¥ 8 Java Resources g:i;ﬂi;:::x:; J
¥ §Bsrcimain/java public class EventService {
¥ B org.jboss. jdf.example.tick #Inject

¥ B org.jboss. jdf.example. tick
[org.jboss.jdf.example.ticks
¥ [# org.jboss.jdf.example.ticks
F 1] EventService.java
¥ (1] JaxRsActivator, java
¥ (1] MembarResourceRESTS:
B org.jboss. jdf.example. tick
[org.jboss.jdf.example.tick
¥ (# soc/main/resources
(38 5o ftest/java
B (8 so ftest/ resources
F m Libraries

private EntityManager om;

BGET
#Produces{Medialype . APPLICATION_JS0N)
public List<Ewvent> getAllEvents() {
finol List=<Event> resulis =
em. createfuery(
"seleck ¢ from Event e order by e.name™}).getRe
return results;

Figure 14.10: Project Explorer JAX-RS Services

This feature of JBoss Developer Studio and JBoss Tools provides a nice visual indicator that you have successfully configured
your JAX-RS endpoint.

You should now redeploy your project via Run As — Run on Server, or by right clicking on the project in the Servers tab and
select Full Publish.

'* Problems [Properties il Servers 52 = Progress £3 OpenShift Explorer
 New >

Tﬁjh&ss—eap—ﬁ.l [5tan Show In LW >
B ticket-monster [Start _
5t Filesets
[X] XML Configuratiol ® Stop
Restart
Remove =

5% Incremental Publish

= Full Publish

i F

Properties 38|

Figure 14.11: Full Publish

Ticket Monster Tutorial

59/319

Using a browser, visit http://localhost:8080/ticket-monster/rest/events to see the results of the query, formatted as JSON (JavaScript
Object Notation).

m EventService.java i@ htp://localhost: 8080 /ticket-monster/rest/events 53 = O

S m |httr:l:HIDcalhust:EEBD,fticket—mons-ter!restfwentsl | B

[{"id" 2, "version":1, "name"” : "Rock concert of the

decade"”, "description” :"Get ready to
rock...","major"ttrue, "picture” : "http://dl.dropbox.com/u/ 65660684/
640px-Weir%2C_ Beob (2007)_2.jpg"}.
{"id":1,"version":1l, "name" : "Shane's Sock

Puppeta”, "description” : "This critically acclaimed

masterpiece..."”,"major":true, "picture” : "http://dl.dropbox.com/u/65
660684/640px-Carnival Puppets.jpg"}]

Figure 14.12: JSON Response

Note

The rest prefix is setup in a file called JaxRsActivator. java which contains a small bit of code that sets up the
application for JAX-RS endpoints.

http://localhost:8080/ticket-monster/rest/events

Ticket Monster Tutorial
60/319

Chapter 15

Adding a jQuery Mobile client application

Now, it is time to add a HTMLS, jQuery based client application that is optimized for the mobile web experience.

There are numerous JavaScript libraries that help you optimize the end-user experience on a mobile web browser. We have found
that jQuery Mobile is one of the easier ones to get started with but as your skills mature, you might investigate solutions like
Sencha Touch, Zepto or Jo. This tutorial focuses on jQuery Mobile as the basis for creating the UI layer of the application.

The UI components interact with the JAX-RS RESTful services (e.g. EventService. java).

Tip
For more information on building HTML5 + REST applications with JBoss technologies, check out Aerogear.

These next steps will guide you through the creation of a file called mobile.html that provides a mobile friendly version of
the application, using jQuery Mobile.

First, using the Project Explorer, navigate to src/main/webapp, and right-click on webapp, and choose New HTML file.

http://www.jboss.org/aerogear

Ticket Monster Tutorial

61/319
ST ¢ Project...
y Golnto
1 i | File
+ ShowlIn THEW » [j Folder
« &= Copy Qualified Name & JPA ORM Mapping File
[Paste EV
% Delete = IELEE
Build Path > [JSP File
¢ Move... % XHTML Page
Rename...
«n File beans.xml
g2y Import... .
o3 EXport... 4 Example...
a5
&) Refresh Fs | 1 Other... 38N
Figure 15.1: New HTML File
| Caution
° In certain versions of JBoss Developer Studio, the New HTML File Wizard may start off with your target location being

m2e-wtp/web-resources, this is an incorrect location and it is a bug, JBIDE-11472.
It has been corrected in JBoss Developer Studio 6.

Change directory to ticket-monster/src/main/webapp and enter name the file mobile.html.

https://issues.jboss.org/browse/JBIDE-11472

Ticket Monster Tutorial

62/319

e 00 New HTML File

HTML

Create a new HTML file.

)

Enter or select the parent folder:

ticket-mo nster/src/main/webapp

B oo
=% RemoteSystemsTempFiles
THticket—mnnster
= .settings
¥ (= src
¥ = main
P = java
b (= resources
F (= webapp
b = test
P [(=-target

File name: mobhile.html

| Advanced »»> |

@ < Back | Next> | |

|| Finish |

Figure 15.2: New HTML File src/main/webapp

Select Next.

On the Select HTML Template page of the New HTML File wizard, select New HTML File (5). This template will get you

started with a boilerplate HTMLS document.

Ticket Monster Tutorial
63 /319

8 00 New HTML File
Select HTML Template

Select a template as initial content in the HTML page. < >\

[ﬂ Use HTML Template

Templates:

Mame Description

Mew Facelet Header Creates a header for use with the Facelet t...
Mew Facelet Template Creates a basic header/content/footer Fac. ..
Mew HTML File (4.01 frameset) html 4.01 frameset

Mew HTML File {(4.01 strict) html 4.01 strict

Mew HTML File {(4.01 transitional) html 4.01 transitional

New HTML File (5)
Mew XHTML File (1.0 frameset) xhtml 1.0 frameset

Mew XHTML File (1.0 strict) xhtml 1.0 strict

Mew XHTML File (1.0 transitional) xhtml 1.0 transitional

Prewview:

<|DOCTYPE html=

<html=

<heads=

<meta charset="%{encoding}] ">
<title=Insert title here</titlex
</ head>

Templates are 'New HTML' templates found in the HTML Templates preference page.

@ | <Back | Next > | Cancel | E—ﬂn&uh—}

Figure 15.3: Select New HTML File (5) Template

Select Finish.

The document must start with <!DOCTYPE html> as this identifies the page as HTML 5 based. For this particular phase of
the tutorial, we are not introducing a bunch of HTML 5 specific concepts like the new form fields (type=email), websockets or
the new CSS capabilities. For now, we simply wish to get our mobile application completed as soon as possible. The good news
is that jQuery and jQuery Mobile make the consumption of a RESTful endpoint very simple.

Ticket Monster Tutorial
64 /319

You will now notice the Palette View visible in the JBoss perspective. This view contains a collection of popular jQuery Mobile
widgets that can be dragged and dropped into the HTML pages to speed up construction of jQuery Mobile pages.

=

0= Qutline +& Palette 53

B
(Q fype filter text)
4

=~ jQuery Mobile

w [=

JS/CSS Page Dialog Popup
R frecrassansasis : p———
1 R :

Erid Field Cantainer Fanel Table

Collapsible Collapsible Set

mmmij

Header Bar Footer Bar Mavbar Select
Listwisw
o OO0 aé& ao
Button Euttons Link Toggle
@ - @»
Radio Checkbox Checkboxes Slhder
N I y
ve—= b}
Text [nput Farm Label
Image Video Sudio

Figure 15.4: The jQuery Mobile Palette

Ticket Monster Tutorial
65/319

Tip
For a deeper dive into the jQuery Mobile palette feature in JBoss Developer Studio review this video.

Let us first set the title of the HTMLS document as:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">
<title>TicketMonster</title>
</head>

<body>

</body>
</html>

We shall now add the jQuery and jQuery Mobile JavaScript and CSS files to the HTML document. Luckily for us we can do this
by clicking the JS/CSS widget in the palette.

http://vimeo.com/67480300

Ticket Monster Tutorial
66 /319

0= Qutline +* Palette 53 = O
(Q |ype filter text)
= jQuery Mobile £

w] =
h:. JS/CES Fage Dialog Popup

I;———EI :. : |
1 R :
Add ?ef;:rences tﬁ'j{_}:uew, jﬂue;',r Mlllhil-E 15 an*dI{IZSS to <head:>

Collapsible Collapsible Set

mmmﬁj

Headear Bar Footer Bar M awvkar Selact
Listwiew
o 000 a ao
Button Buttons Link Toggle
@ CCmCD
Fadio C hackbox Chackboxes Slider
) A Pmmme e
Text. y:—= i Label
Text Input Form Label
Image Video Audio

Figure 15.5: Click the JS/CSS widget

This results in the following document with the jQuery JavaScript file and the jQuery Mobile JavaScript and CSS files being
added to the head element.

Ticket Monster Tutorial
67 /319

<!DOCTYPE html>

<html>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"
href="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
<script src="http://code. jquery.com/jquery-1.9.1.min. js"></script>
<script src="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js"></script>
<meta charset="UTF-8">
<title>TicketMonster</title>

</head>

<body>

</body>
</html>

We shall now proceed to setup the page layout. Click the page widget in the palette to do so. Ensure that the cursor is in the
<body> element of the document when you do so.

Ticket Monster Tutorial
68 /319

= Qutline =& Palette 23 = 0

Q, type filter text

= jQuery Mobile £
+ (] B &S
JSICES Page _ Dialog Popup
an p— : p—
1 R :
Gnd Fisld Cortainsr P ansl Tﬁhlﬂ
Page:

‘g fll::li'u' data-role="page">

Collapsible Collapsible Se</dive

mmmﬁj

Headear Bar Footer Bar M awvkar Selact
Listwiew
o 000 a ao
Button Buttons Link Toggle
@ CCmCD
Fadio C hackbox Chackboxes Slider
) A Pmmme e
Text. y:—= i Label
Text Input Form Label
Image Video Audio

Figure 15.6: Click the page widget

Ticket Monster Tutorial
69/319

I Caution

° When you click some of the widgets in the palette, it is important to have the cursor in the right element of the document.
Failing to observe this will result in the widget being added in undesired locations. Alternatively, you can drag and drop
the widget to the desired location in the document.

This opens a dialog to configure the jQuery Mobile page.

800 Insert Tag

New Page
Create a mew jQuery Mobile page widget.

<div data-role="page" id="pagel"-

@ Header: TicketMonster <div data-role="header"s
Footer:) ,_<‘11-»Ticketuonsturm‘hl;

</ dLve
1D: page]| | <div data-role="content">

<p>Page content goes here.</p-

_| Back Button: </div>

<div data-role="footer":>
Label: Back <héd>=/hd>

<fdive
lcon: back - e/ dive

lcon only:
TicketMonster
Theme: v

Page content goes here.

E Add references to JS/CSS [Hide Preview _

Preview mdy fov SuppodT 2 svailable feslares

{’3\: Cancel Finish

oy

Figure 15.7: Create a new jQuery Mobile page

Set the page title as "TicketMonster", footer as blank, and the ID as "pagel". Click Finish to add a new jQuery Mobile page to
the document. The layout is now established.

<!DOCTYPE html>

<html>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"
href="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
<script src="http://code. jquery.com/jquery-1.9.1.min. js"></script>
<script src="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js"></script>
<meta charset="UTF-8">
<title>TicketMonster</title>

</head>

<body>

<div data-role="page" id="pagel'">

Ticket Monster Tutorial
70/319

<div data-role="header">
<hl>TicketMonster</hl>

</div>

<div data-role="content">
<p>Page content goes here.</p>

</div>
<div data-role="footer">
<h4></h4>
</div>
</div>
</body>
</html>

To populate the page content, remove the paragraph element: <p>Page content goes here.</p> to start with a blank
content section. Click the Listview widget in the palette to start populating the content section.

Ticket Monster Tutorial

71/319

= Qutline =& Palette 23 = 0

Q, type filter text

= jQuery Mobile £
w (] =
JSICES Fage Dialog Popup
an r—— : ——
R &~ e '
Grid Field Container P an=l Takle

Collapsible Collapsible Set

mmmﬁj

Header Bar Footer Bar Mavhbar Select
h_‘ Listwiew
=T D b |
Listview: Link Toggle

<ul data-role="listview"

< ful>

Checkboxes Slider
Wil s,
v:— | Llabel
Text Input Form Label
Image Video Audio

Figure 15.8: Click the Listview widget

This opens a new dialog to configure the jQuery Mobile listview widget.

Ticket Monster Tutorial

72 /319
800 Insert Tag
MNew Listview D
Create a new jQuery Mobile listview widget. (]
_ ®

<ul data-role="1listview" 1id="1listOfItems" data-inset="true"=

Numbered: [] Read-only: [<lizTtem l</lix>
Autodividers: [- <liz<a href="#"=Ttem 2</a==
g Search filter: (] <lisItem 3
Inset: o
ID: listOfltemns
Items
Number: | 3 : |
—(1 .
Label: Item 3 tem 1 ©
Divider:]
URL (href): " # | ltem 2 ©
. . ltem 3 ©
Theme: v |

Divider Theme: | '

EI Add references to J5/CS5 | Hide Preview |
Preview may not support ail available features

@ | Cancel | | Finish |

Figure 15.9: Add a jQuery Mobile Listview widget

Select the inset checkbox to display the list as an inset list. Inset lists do not span the entire widget of the display. Set the ID as
"listOfItems". Retain the number of items in the list as three, and also their labels, but modify the URL values to #. Retain the
default values for the other fields, and click Finish. This will create a listview widget with 3 item entries in the list. The jQuery

Mobile page is now structurally complete.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"
href="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.css" />
<script src="http://code. jquery.com/jquery-1.9.1.min. js"></script>
<script src="http://code. jquery.com/mobile/1.3.1/jquery.mobile-1.3.1.min.js"></script>
<meta charset="UTF-8">
<title>TicketMonster</title>
</head>
<body>
<div data-role="page" id="pagel'">
<div data-role="header">
<hl>TicketMonster</hl>
</div>
<div data-role="content ">
<ul data-role="listview" id="l1istOfItems" data-inset="true">
Item 1

Ticket Monster Tutorial
73/319

Item 2</1li>
Item 3

</div>
<div data-role="footer">
<h4></h4>
</div>
</div>
</body>
</html>

You might notice that in the Visual Page Editor, the visual portion is not that attractive, this is because the majority of jQuery
Mobile magic happens at runtime and our visual page editor simply displays the HTML without embellishment.

Visit http://localhost:8080/ticket-monster/mobile.html.

Note
Note: Normally HTML files are deployed automatically, if you find it missing, just use Full Publish or Run As Run on Server as

demonstrated in previous steps.

As soon as the page loads, you can view the jQuery Mobile enhanced page.

i@ jQuery Mobile Template E3 mobile.html

S] é‘-"' http:/ flocalhost: 8080 ticket-monster/mobile. html bd

jQuery Mobile

One

Two ©

Three

www.jboss.org/developer

Figure 15.10: jQuery Mobile Template

One side benefit of using a HTMLS5 + jQuery-based front-end to your application is that it allows for fast turnaround in develop-
ment. Simply edit the HTML file, save the file and refresh your browser.

http://localhost:8080/ticket-monster/mobile.html

Ticket Monster Tutorial
74 /319

Now the secret sauce to connecting your front-end to your back-end is simply observing the jQuery Mobile pageinit JavaScript
event and including an invocation of the previously created Events JAX-RS service.

Insert the following block of code as the last item in the <head> element

<head>

<title>TicketMonster</title>
<script type="text/javascript">
$ (document) .on ("pageinit", "#pagel", function (event) {
$.getJSON ("rest/events", function (events) {
// console.log("returned are " + events);
var listOfEvents = $("#listOfItems");
listOfEvents.empty () ;
$.each (events, function (index, event) {
// console.log(event.name);
listOfEvents.append("" + event.name + "");

}) i
listOfEvents.listview ("refresh");
1) i
1) i
</script>
</head>

Note:

* On triggering pageinit on the page having id "pagel"

* using $.getJSON ("rest/events") tohit the EventService. java

e acommented out // console.log, causes problems in IE

* Getting a reference to 1istOfItems which is declared in the HTML using an id attribute
e Calling . empty on that list - removing the exiting One, Two, Three items

* For each event - based on what is returned in step 1

* another commented out // console.log
¢ append the found event to the UL in the HTML

e refreshthe 1istOfItems

Note
You may find the .append ("<1i>...") syntax unattractive, embedding HTML inside of the JS .append method, this can
be corrected using various JS templating techniques.

The result is ready for the average mobile phone. Simply refresh your browser to see the results.

Ticket Monster Tutorial

75/319
¢ JBoss Central mobile.html @ TicketMonster 2 = O
=] é}" http: f flocalhost: 8080/ ticket-monster/mobile.html | [
TicketMonster

Rock concert of the decade

Shane's Sock Puppets

Figure 15.11: jQuery Mobile REST Results

JBoss Developer Studio and JBoss Tools includes BrowerSim to help you better understand what your mobile application will
look like. Look for a "phone" icon in the toolbar, visible in the JBoss Perspective.

b3 O Es_‘;

Figure 15.12: Mobile BrowserSim icon in Eclipse Toolbar

|Boss - |Boss Developer Studio

L G G @

Note
The BrowserSim tool takes advantage of a locally installed Safari (Mac & Windows) on your workstation. It does not package a

whole browser by itself. You will need to install Safari on Windows to leverage this feature — but that is more economical than
having to purchase a MacBook to quickly look at your mobile-web focused application!

Ticket Monster Tutorial

76 /319

.uill JBoss 12:34 PM

TicketMonster

hitp2ocalhost:BOBOAIcket-monster/mabile. bt

TicketMonster

Rock concert of the decade

Shane's Sock Puppets

Figure 15.13: Mobile BrowserSim

Ticket Monster Tutorial
77 /319

The Mobile BrowserSim has a Devices menu, on Mac it is in the top menu bar and on Windows it is available via right-click as
a pop-up menu. This menu allows you to change user-agent and dimensions of the browser, plus change the orientation of the

device.
¥ Device AT

Rotate Left
| Rotate Right

| v Use Skins
Desktop (Default User-Agent)
Apple iPad 4 Retina
Apple iPad mini

Apple iPhone 3
J Apple iPhone 4
LSS v Apple iPhone 5
RIM BlackBerry Bold Touch 9900
Samsung Galaxy S Il
Samsung Galaxy Nexus
Galaxy Note |l
Galaxy S Il
Samsung Galaxy Tab 10.1

.utll JBoss

Rock con

Shane's Sock Puppets &)

Figure 15.14: Mobile BrowserSim Devices Menu

Ticket Monster Tutorial
78 /319

Decltop (Defaul User-Agent)

Apple Pad 2
il JBosa 12:34 e

amazoncom

& Apple Phone 3
Apple Phone 4

RIM ElsckBerry Eold Towch 9900

Samaung Galary 5

- Samaung Galary 51

SEANCh AMazon.com i

. Samaung Galaey Tab 100

Maore.
o ¥ L Skns
st menl
U Gl
L R 1

Dipen i del il Bicwier

Exrt

for iPhone

Figure 15.15: Mobile BrowserSim on Windows 7

You can also add your own custom device/browser types.

Ticket Monster Tutorial
79/319

800 Preferences

Devices

Name Width Height Pixel Ratio User-Agent Skin Add

|| Desktop (Default User-A... 1024 768 1 DEFAULT None

[_| Apple iPad 4 Retina 768 1024 1 Mozilla/5.0 (iPad; U;... iPad | Edit |

[Apple iPad mini 768 1024 1 Mozilla/5.0 (iPad; U;... iPad : i

| Apple iPhone 3 320 480 1 Mozilla/5.0 (iPhone;... iPho Remove

| Apple iPhone 4 640 a60 2 Mozilla/5.0 (iPhone;... iPho R
le iPhone § 2 Mozilla/5.0 (iPhone;... i | Revert All |

|| RIM BlackBerry Bold Tou... 640 480 1 Mozilla/5.0 (BlackBe... iPho

|| Samsung Calaxy S Il 480 BOO 1.5 Mozilla/5.0 (Linux;... GCala

[] Samsung Galaxy Nexus 720 1280 2 Mozilla/5.0 (Linux;... GCala

[| Galaxy Note Il 800 1280 2 Mozilla/5.0 (Linux;... GCala

[Galaxy S 1l 720 1280 2 Mozilla/5.0 (Linux;... Cala

Skins options

[EUSE skins

Truncate the device window when it does not fit display

() Always truncate () Never truncate () Prompt

| Load Defaults |

[oK] | Cancel |

Figure 15.16: Mobile BrowserSim Custom Devices Window

Under the File menu, you will find a View Page Source option that will open up the mobile-version of the website’s source code

inside of JBoss Developer Studio. This is a very useful feature for learning how other developers are creating their mobile web
presence.

Ticket Monster Tutorial
80/319

wvwwr bankofame i . K et Dless T % vine ’
TN N Lt TR TR R I =T * [
i hiips:{ 'waw.bankofamerica.com/mobile/banking.go & = 0

<IDOCTYPE himlx
<chtwl long="en-U5" class="no-j1%

12:34 PM
Online Banking from Bank of Amarica

hitps: f fwew . bankofamerica.commobibe JE

seta content="text/htel; charset-utf-4° kikp-equive="Content- Type
- «Online Banking from Baonk of Americaorti
= Bank ol America S e et nose="vienport” content= “midth=device-width, initigl-scole=, moxisum-scale=d,use

Gt the free Mobda
Banking App

Fol="aag1 &= tauch={ £OA - Aracolpasdd ™ slEei="14dx 44" F Toba] =mabiE | g=mah =0
F&l="gapl &= tauch=-f Con-precomposed ™ stzes="114x114" M loba] =mabi | &-med -0
ink rel="opple-touch-icon-precomposed” sizes=""2u72" heef="/pa’global -mobi le-web-dotc
nit rel=“gople-touch-1con-precomposed” href= “/po/global ~sobi Le-web-dot coms1. dgraphic

f="/pasy

Sk A T b aAe T CIETEMT. "hank af assaisn snlfms Raniiss saalins b

WisualiSource | Source | Preview

AL Servars B r 5
T iep JDOs3-eap-6.1 [Sarted. Synchronized]
& bhrket -monsber (S zed
F | Fileseis
F & AML Configuration
Read-Onky Crean Inggn L

Figure 15.17: Mobile BrowserSim View Source

Ticket Monster Tutorial
81/319

Chapter 16

Conclusion

This concludes our introduction to building HTMLS5 Mobile Web applications using Java EE 6 with Forge and JBoss Developer
Studio. At this point, you should feel confident enough to tackle any of the additional exercises to learn how the TicketMonster
sample application is constructed.

16.1 Cleaning up the generated code

Before we proceed with the tutorial and implement TicketMonster, we need to clean up some of the archetype-generated code.
The Member management code, while useful for illustrating the general setup of a Java EE 6 web application, will not be part of
TicketMonster, so we can safely remove some packages, classes, and resources:

 All the Member-related persistence and business code:

- src/main/java/org/jboss/jdf/example/ticketmonster/controller

- src/main/java/org/jboss/jdf/example/ticketmonster/data

— src/main/java/org/jboss/jdf/example/ticketmonster/model/Member. java

— src/main/java/org/jboss/jdf/example/ticketmonster/rest/MemberResourceRESTService. java

- src/main/java/org/jboss/jdf/example/ticketmonster/service/MemberRegistration. java
* Generated web content

- src/main/webapp/index.html
— src/main/webapp/index.xhtml

— src/main/webapp/WEB-INF/templates/default.xhtml

JSF configuration (we will re-add it via Forge)

— src/main/webapp/WEB-INF/faces—-config.xml

Prototype mobile application (we will generate a proper mobile interface)

— src/main/webapp/mobile.html

Also, we will update the src/main/resources/import. sql file and remove the Member entity insertion:

insert into Member (id, name, email, phone_number) wvalues (0, 'John Smith',
'john.smith@mailinator.com', '2125551212'

The data file should contain only the Event data import:

Ticket Monster Tutorial

82/319

insert into Event (id, name, description, major, picture, version) wvalues (1,
Puppets', 'This critically acclaimed masterpiece...', true,
"http://dl.dropbox.com/u/65660684/640px—Carnival_Puppets. jpg', 1);

insert into Event (id, name, description, major, picture, version) wvalues (2,
of the decade', 'Get ready to rock...', true,
'"http://dl.dropbox.com/u/65660684/640px-Weir$2C_Bob_(2007)_2.jpg"', 1);

'"Shane''s Sock

"Rock concert

Ticket Monster Tutorial
83/319

Part 111

Building the persistence layer with JPA2 and
Bean Validation

Ticket Monster Tutorial
84 /319

Chapter 17

What will you learn here?

You have set up your project successfully. Now it is time to begin working on the TicketMonster application, and the first step
is adding the persistence layer. After reading this guide, you’ll understand what design and implementation choices to make.
Topics covered include:

RDBMS design using JPA entity beans
* How to validate your entities using Bean Validation
* How to populate test data

* Basic unit testing using JUnit

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through. For those of you who prefer to watch and learn, the included videos show you how we performed all the steps.

TicketMonster contains 14 entities, of varying complexity. In the introduction, you have seen the basic steps for creating a
couple of entities (Event and Venue) and interacting with them. In this tutorial we’ll go deeper into domain model design,
we’ll classify the entities, and walk through designing and creating one of each group.

Ticket Monster Tutorial
85/319

Chapter 18

Your first entity

The simplest kind of entities are often those representing lookup tables. TicketCategory is a classic lookup table that defines
the ticket types available (e.g. Adult, Child, Pensioner). A ticket category has one property - description.

What’s in a name?
Using a consistent naming scheme for your entities can help another developer get up to speed with your code base. We've
named all our lookup tables XXXCategory to allow us to easily spot them.

Let’s start by creating a JavaBean to represent the ticket category:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

public class TicketCategory {
/+ Declaration of fields =/

/[x

* <p>

* The description of the of ticket category.
* </p>

*

*/

private String description;
/+ Bollerplate getters and setters =/

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

@Override
public String toString() {
return description;

}

We’re going to want to keep the ticket category in collections (for example, to present it as part of drop down in the UI), so it’s
important that we properly implement equals () and hashCode (). At this point, we need to define a property (or group of
properties) that uniquely identifies the ticket category. We refer to these properties as the "entity’s natural identity".

Ticket Monster Tutorial
86/319

Defining an entity’s natural identity

Using an ORM introduces additional constraints on object identity. Defining the properties that make up an entity’s natural
identity can be tricky, but is very important. Using the object’s identity, or the synthetic identity (database generated primary
key) identity can introduce unexpected bugs into your application, so you should always ensure you use a natural identity. You
can read more about the issue at https://community.jboss.org/wiki/EqualsAndHashCode.

For ticket category, the choice of natural identity is easy and obvious - it must be the one property, description that the entity has!
Having identified the natural identity, adding an equals () and hashCode () method is easy. In Eclipse, choose Source —
Generate hashCode() and equals(). ..

icketCatege i’

icketPriceC e B0verride

enuejaa | gnen F3 public String toString() {

itor.client Open With > 1 return description;

ce Open Type Hierarchy F4
Show In TEW >

dingMonitol

crouces 1 COPY #C

isources 2 Copy Qualified Name

Ubraryla [Paste BnY

sendencies 3¢ Delete B
i Remove from Context 0381

erfeh Build Path >

er-patch Source S » Format

4 Refactor N®T > .

tart Organize Imports %80
£ Import... Sort Members...

spes w4 Export... Clean Up...
References » Generate Hibernate/JPA annotations
Declarations > Override/Implement Methods...

Generate Getters and Setters...

<" Refresh #R Generate Delegate Methods...
Assign Working Sets...

- Generate toString()...

Figure 18.1: Generate hashCode() and equals() in Eclipse

Now, select the properties to include:

Generate hashCode() and equals()

Select the fields to include in the hashCode() and equals() methods:

[o description [

Select All |
| Deselectall |
Insertion point:
| Last member =
|| Generate method comments
] Use 'instanceaf' to compare types
"] Use blocks in 'if' statements
i 1of1selected.
3
(‘?) | Cancel | | 0K

Figure 18.2: Generate hashCode() and equals() in Eclipse

https://community.jboss.org/wiki/EqualsAndHashCode

Ticket Monster Tutorial
87 /319

Now that we have a JavaBean, let’s proceed to make it an entity. First, add the @Ent ity annotation to the class:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

And, add the synthetic id:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields x/

/[*
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/+ Boilerplate getters and setters «*/

public Long getId() {
return id;

public void setId(Long id) {
this.id = id;

As we decided that our natural identifier was the description, we should introduce a unique constraint on the property:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java
@Entity

public class TicketCategory {

/* Declaration of fields x/

* <p>
* The description of the of ticket category.
* </p>

* <p>
* The description forms the natural id of the ticket category, and so must be unique.
* </p>

Ticket Monster Tutorial
88/319

@Column (unique = true)
private String description;

It’s very important that any data you place in the database is of the highest quality - this data is probably one of your organisations
most valuable assets! To ensure that bad data doesn’t get saved to the database by mistake, we’ll use Bean Validation to enforce
constraints on our properties.

What is Bean Validation?
Bean Validation (JSR 303) is a Java EE specification which:

+ provides a unified way of declaring and defining constraints on an object model.
+ defines a runtime engine to validate objects

Bean Validation includes integration with other Java EE specifications, such as JPA. Bean Validation constraints are automati-
cally applied before data is persisted to the database, as a last line of defence against bad data.

The description of the ticket category should not be empty for two reasons. Firstly, an empty ticket category description is no
use to a person trying to book a ticket - it doesn’t convey any information. Secondly, as the description forms the natural identity,
we need to make sure the property is always populated.

Let’s add the Bean Validation constraint @NotEmpty:
src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

@Entity
public class TicketCategory {

/* Declaration of fields =*/

* <p>
* The description of the of ticket category.
* </p>

* <p>
* The description forms the natural id of the ticket category, and so must be unique.
* </p>

* <p>
* The description must not be null and must be one or more characters, the Bean
Validation constraint <code>@NotEmpty</code>
* enforces this.
* </p>
*
*/
@Column (unique = true)
@NotEmpty
private String description;

And that is our first entity! Here is the complete entity:

src/main/java/org/jboss/jdf/example/ticketmonster/model/TicketCategory.java

Ticket Monster Tutorial
89/319

/ %%
* <p>
* A lookup table containing the various ticket categories. E.g. Adult, Child, Pensioner, etc.
* </p>
*/
@Entity
public class TicketCategory {

/* Declaration of fields =*/

/ * %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/ x %
* <p>
* The description of the of ticket category.
* </p>

* <p>
* The description forms the natural id of the ticket category, and so must be unique.
* </p>

* <p>
* The description must not be null and must be one or more characters, the Bean
Validation constraint <code>@NotEmpty</code>
* enforces this.
* </p>
*
*/
@Column (unique = true)
@NotEmpty
private String description;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

/+ toString (), equals() and hashCode () for TicketCategory, using the natural identity of
the object x/

@Override
public boolean equals (Object o) {
if (this == o)

Ticket Monster Tutorial

90/319
return true;
if (o == null || getClass() != o.getClass())
return false;
TicketCategory that = (TicketCategory) o;
if (description != null ? !description.equals(that.description) : that.description !=
null)

return false;

return true;

@Override
public int hashCode () {
return description != null ? description.hashCode() : 0;

@Override
public String toString() {
return description;

TicketMonster contains another lookup tables, EventCategory. It’s pretty much identical to TicketCategory, so we
leave it as an exercise to the reader to investigate, and understand. If you are building the application whilst following this
tutorial, copy the source over from the TicketMonster example.

Ticket Monster Tutorial
91/319

Chapter 19

Database design & relationships

First, let’s understand the the entity design.

An Event may occur at any number of venues, on various days and at various times. The intersection between an event and a
venue is a Show, and each show can have a Per formance which is associated with a date and time.

Venues are a separate grouping of entities, which, as mentioned, intersect with events via shows. Each venue consists of groupings
of seats, each known as a Section.

Every section, in every show is associated with a ticket category via the TicketPrice entity.

Users must be able to book tickets for performances. A Booking is associated with a performance, and contains a collection of
tickets.

Finally, both events and venues can have "media items", such as images or videos attached.

Ticket Monster Tutorial

92/319

19.1 Media items

Figure 19.1: Entity-Relationship Diagram

MediaType Administration
—F

EventCategory Medialtem Address

Event <t Show = Venue
T — T —
Booking Performance —— SectionAllocation Section
Ticket .
TicketPriceCategory TicketCategory
Seat

Storing large binary objects, such as images or videos in the database isn’t advisable (as it can lead to performance issues), and
playback of videos can also be tricky, as it depends on browser capabilities. For TicketMonster, we decided to make use of
existing services to host images and videos, such as YouTube or Flickr. All we store in the database is the URL the application
should use to access the media item, and the type of the media item (note that the URL forms a media items natural identifier).
We need to know the type of the media item in order to render the media correctly in the view layer.

In order for a view layer to correctly render the media item (e.g. display an image, embed a media player), it’s likely that special
code has had to have been added. For this reason we represent the types of media that TicketMonster understands as a closed set,
unmodifiable at runtime. An enum is perfect for this!

Luckily, JPA has native support for enums, all we need to do is add the @Enumerated annotation:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Medialtem.java

/[**
* <p>
* The type of the media,
* </p>

*

required to render the media item correctly.

Ticket Monster Tutorial
93/319

* <p>

* The media type is a closed set - as each different type of media requires
support coded into the view layers, it

* cannot be expanded upon without rebuilding the application. It is therefore
represented by an enumeration. We instruct

* JPA to store the enum value using it's String representation, so that we can later
reorder the enum members, without

* changing the data. Of course, this does mean we can't change the names of media items
once the app is put into

* production.

* </p>

*/
@Enumerated (STRING)
private MediaType mediaType;

@Enumerated(STRING) or @Enumerated(ORDINAL)?

JPA can store an enum value using it's ordinal (position in the list of declared enums) or it's STRING (the name it is given). If
you choose to store an ordinal, you musn’t alter the order of the list. If you choose to store the name, you musn’t change the
enum name. The choice is yours!

The rest of MediaItem shouldn’t present a challenge to you. If you are building the application whilst following this tutorial,
copy both MediaItem and MediaType from the TicketMonster project.

19.2 Events

In Chapter 18 we saw how to build simple entities with properties, identify and apply constraints using Bean Validation, identify
the natural id and add a synthetic id. From now on we’ll assume you know how to build simple entities - for each new entity that
we build, we will start with it’s basic structure and properties filled in.

So, here is our starting point for Event (where we left at the end of the introduction, and including some comments reflecting the
explanations above):

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

@Entity
public class Event {

/x Declaration of fields =/

/ x %
* The synthetic ID of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

* <p>
* The name of the event.
* </p>

* <p>
* The name of the event forms it's natural identity and cannot be shared between events.
* </p>

Ticket Monster Tutorial
94 /319

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more than
50 characters. This allows for

*x better formatting consistency in the view layer.

*
*/
@Column (unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50

characters")
private String name;

/ x %
* <p>
* A description of the event.
* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

x <code>@NotNull</code> — the description must not be null.</1li>

* <code>@Size</code> — the name must be at least 20 characters and no more
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event
organisers provide at least some description

* — a classic example of a business constraint.
*
*/
@NotNull
@Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000

characters")

private String description;

/+ Boilerplate getters and setters =/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public String getDescription() {
return description;

Ticket Monster Tutorial
95/319

public void setDescription(String description) {
this.description = description;

/+ toString (), equals() and hashCode () for Event, using the natural identity of the
object */

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;

@Override
public int hashCode () {
return name != null ? name.hashCode() : 0;
}
@Override

public String toString () {
return name;

First, let’s add a media item to Event. As multiple events (or venues) could share the same media item, we’ll model the
relationship as many-fo-one - many events can reference the same media item.

Relationships supported by JPA

JPA can model four types of relationship between entities - one-to-one, one-to-many, many-to-one and many-to-many. A
relationship may be bi-directional (both sides of the relationship know about each other) or uni-directional (only one side knows
about the relationship).

Many database models are hierarchical (parent-child), as is TicketMonster’s. As a result, you'll probably find you mostly use
one-to-many and many-to-one relationships, which allow building parent-child models.

Creating a many-to-one relationship is very easy in JPA. Just add the @ManyToOne annotation to the field. JPA will take care
of the rest. Here’s the property for Event:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

* <p>
* A media item, such as an image, which can be used to entice a browser to book a ticket.
* </p>

* <p>

* Media items can be shared between events, so this is modeled as a
<code>@ManyToOne</code> relationship.

* </p>

Ticket Monster Tutorial

96/319

* <p>
* Adding a media item is optional, and the view layer will adapt if none is provided.
* </p>
*
*/
@ManyToOne
private Medialtem medialtem;

public Medialtem getMedialtem() {
return medialtem;

public void setMedialtem(Medialtem picture) {
this.medialtem = picture;

There is no need for a media item to know who references it (in fact, this would be a poor design, as it would reduce the reusability
of MediaItem), so we can leave this as a uni-directional relationship.

An event will also have a category. Once again, many events can belong to the same event category, and there is no need for an
event category to know what events are in it. To add this relationship, we add the eventCategory property, and annotate it
with @ManyToOne, just as we did for MediaItem.

And that’s Event created. Here is the full source:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

[* %

*

* % ok X %

*

*/

<p>

Represents an event, which may have multiple performances with different dates and venues.
</p>

<p>

Event's principle members are it's relationship to {Q@link EventCategory} - specifying the
type of event it is - and

{@link Medialtem} - providing the ability to add media (such as a picture) to the event

for display. It also contains
meta-data about the event, such as it's name and a description.
</p>

@Entity
public class Event {

/* Declaration of fields x/

/[*x
* The synthetic ID of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/ x %
* <p>
* The name of the event.
* </p>

*

Ticket Monster Tutorial
97 /319

* <p>
* The name of the event forms it's natural identity and cannot be shared between events.
* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the name must not be null.

* <code>@Size</code> — the name must be at least 5 characters and no more than
50 characters. This allows for

* better formatting consistency in the view layer.

*
*/
@Column (unique = true)
@NotNull
@Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50

characters")
private String name;

/[**
* <p>
* A description of the event.
* </p>

* <p>
* Two constraints are applied using Bean Validation
* </p>

*

* <code>@NotNull</code> — the description must not be null.

* <code>@Size</code> — the name must be at least 20 characters and no more
than 1000 characters. This allows for

* better formatting consistency in the view layer, and also ensures that event
organisers provide at least some description

* — a classic example of a business constraint.</1li>
*
*/
@NotNull
@Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000

characters")
private String description;

/ x %
* <p>
* A media item, such as an image, which can be used to entice a browser to book a ticket.
* </p>
*
* <p>
* Media items can be shared between events, so this is modeled as a
<code>@ManyToOne</code> relationship.
* </p>
*
* <p>
* Adding a media item is optional, and the view layer will adapt if none is provided.
* </p>
*
*/
@ManyToOne
private Medialtem medialtem;

Ticket Monster Tutorial
98 /319

/[**

* <p>

* The category of the event

* </p>

*

* <p>

* Event categories are used to ease searching of available of events, and hence this is
modeled as a relationship

* </p>

*

* <p>

*+ The Bean Validation constraint <code>@NotNull</code> indicates that the event category
must be specified.

*/

@ManyToOne

@NotNull
private EventCategory category;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public Medialtem getMedialItem() {
return medialtem;

public void setMedialtem(MedialItem picture) {
this.medialtem = picture;

public EventCategory getCategory () {
return category;

public void setCategory (EventCategory category) {
this.category = category;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

/+ toString (), equals() and hashCode () for Event, using the natural identity of the
object =/

Ticket Monster Tutorial
99 /319

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())

return false;
Event event = (Event) o;

if (name != null ? !name.equals(event.name) : event.name != null)
return false;

return true;

@Override
public int hashCode () {
return name != null ? name.hashCode() : 0;
}
@Override

public String toString() {
return name;

19.3 Shows

A show is an event at a venue. It consists of a set of performances of the show. A show also contains the list of ticket prices
available.

Let’s start building Show. Here’s is our starting point:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/ %%
* <p>
* A show is an instance of an event taking place at a particular venue. A show can have
multiple performances.
* </p>
x/
@Entity
public class Show {

/x Declaration of fields «*/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/ * %

* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

Ticket Monster Tutorial

100/319

*

<p>

* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

*

*/

</p>

@ManyToOne

@No

tNull

private Event event;

/[*
*

*

<p>

The venue where this show takes place. The <code>@ManyToOne<code> JPA mapping

establishes this relationship.

*
*
*

*

*

*/
@Ma
@No

</p>

<p>

The <code>@NotNull</code> Bean Validation constraint means that the venue must be
specified.

</p>

nyToOne
tNull

private Venue venue;

/ *

Boilerplate getters and setters =/

public Long getId() {

return id;

public void setId(Long id) {

this.id = id;

public Event getEvent () {

return event;

public void setEvent (Event event) {

this.event = event;

public Venue getVenue () {

return venue;

public void setVenue (Venue venue) {

this.venue = venue;

/+ toString (), equals() and hashCode () for Show,

*/
@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())

return false;
Show show = (Show) o;

if (event != null ? !event.equals (show.event)

using the natural identity of the object

show.event

l= mEilil)

Ticket Monster Tutorial
101/319

return false;
if (venue != null ? !venue.equals(show.venue) : show.venue != null)
return false;

return true;

@Override
public int hashCode () {
int result = event != null ? event.hashCode() : 0;
result = 31 x result + (venue != null ? venue.hashCode() : 0);

return result;

@Override
public String toString() {
return event + " at " + venue;

If you’ve been paying attention, you’ll notice that there is a problem here. We’ve identified that the natural identity of this entity
is formed of two properties - the event and the venue, and we’ve correctly coded the equals () and hashCode () methods (or
had them generated for us!). However, we haven’t told JPA that these two properties, in combination, must be unique. As there
are two properties involved, we can no longer use the @Column annotation (which operates on a single property/table column),
but now must use the class level @Table annotation (which operates on the whole entity/table). Change the class definition to
read:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

@Entity
@Table (uniqueConstraints = @UniqueConstraint (columnNames = { "event_id", "venue_id" }))
public class Show {

You’ll notice that JPA requires us to use the column names, rather than property names here. The column names used in the
@UniqueConstraint annotation are those generated by default for properties called event and venue.

Now, let’s add the set of performances to the event. Unlike previous relationships we’ve seen, the relationship between a show
and it’s performances is bi-directional. We chose to model this as a bi-directional relationship in order to improve the generated
database schema (otherwise you end with complicated mapping tables which makes updates to collections hard). Let’s add the
set of performances:

src/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/[*x

* <p>

* The set of performances of this show.
</p>

*

*

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship. Collection
members

* are fetched eagerly, so that they can be accessed even after the entity has become
detached.

* This relationship is bi-directional (a performance knows which show it is part of),
and the <code>mappedBy</code>

Ticket Monster Tutorial
102/319

* attribute establishes this.
* </p>
*
*/
@OneToMany (fetch=EAGER, mappedBy = "show", cascade = ALL)
@OrderBy ("date")
private Set<Performance> performances = new HashSet<Performance> () ;

public Set<Performance> getPerformances () {
return performances;

public void setPerformances (Set<Performance> performances) {
this.performances = performances;

As the relationship is bi-directional, we specify the mappedBy attribute on the @0neToMany annotation, which informs JPA to
create a bi-directional relationship. The value of the attribute is name of property which forms the other side of the relationship -
in this case, not unsuprisingly show!

As Show is the owner of Performance (and without a show, a performance cannot exist), we add the cascade = ALL
attribute to the @OneToMany annotation. As a result, any persistence operation that occurs on a show, will be propagated to it’s
performances. For example, if a show is removed, any associated performances will be removed as well.

When retrieving a show, we will also retrieve its associated performances by adding the fetch = EAGER attribute to the
@OneToMany annotation. This is a design decision which required careful consideration. In general, you should favour the
default lazy initialization of collections: their content should be accessible on demand. However, in this case we intend to
marshal the contents of the collection and pass it across the wire in the JAX-RS layer, after the entity has become detached, and
cannot initialize its members on demand.

We’ll also need to add the set of ticket prices available for this show. Once more, this is a bi-directional relationship, owned by
the show. It looks just like the set of performances.

Here’s the full source for Show:
src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

/ %%

* <p>

* A show is an instance of an event taking place at a particular venue. A show can have
multiple performances.

</p>

<p>

A show contains a set of performances, and a set of ticket prices for each section of the
venue for this show.

</p>

% ok X

*

* <p>

* The event and venue form the natural id of this entity, and therefore must be unique. JPA
requires us to use the class level

* <code>@Table</code> constraint.
</p>

*

*/

/ *

* We suppress the warning about not specifying a serialVersionUID, as we are still
developing this app, and want the JVM to

* generate the serialVersionUID for us. When we put this app into production, we'll generate

and embed the serialVersionUID

Ticket Monster Tutorial
103 /319

*/
@SuppressWarnings ("serial")
@Entity
@Table (uniqueConstraints = Q@UniqueConstraint (columnNames = { "event_id", "venue_id" }))
public class Show implements Serializable {

/+ Declaration of fields =*/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/[*

* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

* <p>

x The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

* </p>

*/

@ManyToOne

@NotNull
private Event event;

/[**

* <p>

* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

* <p>

* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.

* </p>

*/

@ManyToOne

@NotNull
private Venue venue;

/[**

* <p>

* The set of performances of this show.

* </p>

*

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship. TODO Explain
EAGER fetch.

* This relationship is bi-directional (a performance knows which show it is part of),
and the <code>mappedBy</code>

* attribute establishes this. We cascade all persistence operations to the set of
performances, so, for example if a show

* 1is removed, then all of it's performances will also be removed.

* </p>

*

* <p>

* Normally a collection is loaded from the database in the order of the rows, but here

Ticket Monster Tutorial
104 /319

we want to make sure that
* performances are ordered by date - we let the RDBMS do the heavy lifting. The
* <code>@OrderBy<code> annotation instructs JPA to do this.
* </p>
*/
@OneToMany (fetch = EAGER, mappedBy = "show", cascade = ALL)
@OrderBy ("date")
private Set<Performance> performances = new HashSet<Performance> () ;

/[*

* <p>

* The set of ticket prices available for this show.

* </p>

*

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship.

* This relationship is bi-directional (a ticket price category knows which show it is
part of), and the <code>mappedBy</code>

* attribute establishes this. We cascade all persistence operations to the set of
performances, so, for example if a show

* 1is removed, then all of it's ticket price categories are also removed.

* </p>

*/
@OneToMany (mappedBy = "show", cascade = ALL, fetch = EAGER)
private Set<TicketPrice> ticketPrices = new HashSet<TicketPrice>();

/+ Bolilerplate getters and setters =/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public Event getEvent () {
return event;

public void setEvent (Event event) {
this.event = event;

public Set<Performance> getPerformances () {
return performances;

public void setPerformances (Set<Performance> performances) {
this.performances = performances;

public Venue getVenue () {
return venue;

public void setVenue (Venue venue) {
this.venue = venue;

public Set<TicketPrice> getTicketPrices () {
return ticketPrices;

Ticket Monster Tutorial
105/319

public void setTicketPrices (Set<TicketPrice> ticketPrices) {
this.ticketPrices = ticketPrices;

/* toString (), equals() and hashCode() for Show, using the natural identity of the object

*/
@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Show show = (Show) o;
if (event != null ? !event.equals(show.event) : show.event != null)
return false;
if (venue != null ? !venue.equals(show.venue) : show.venue != null)

return false;

return true;

@Override
public int hashCode () {
int result = event != null ? event.hashCode() : 0;
result = 31 x result + (venue != null ? venue.hashCode() : 0);

return result;

@Override
public String toString () {
return event + " at " + venue;

19.4 Performances

Finally, let’s create the Per formance class, which represents an instance of a Show. Performance is pretty straightforward. It
contains the date and time of the performance, and the show of which it is a performance. Together, the show, and the date and

time, make up the natural identity of the performance. Here’s the source for Performance:
src/main/java/org/jboss/jdf/example/ticketmonster/model/Performance.java

[x*

* <p>
* A performance represents a single instance of a show.

* </p>

*

* <p>

* The show and date form the natural id of this entity, and therefore must be unique. JPA

requires us to use the class level

* <code>@Table</code> constraint.

* </p>

*

*/

@Entity

@Table (uniqueConstraints = QUniqueConstraint (columnNames = { "date", "show_id" }))

Ticket Monster Tutorial
106 /319

public class Performance ({
/* Declaration of fields x/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

/ x %

* <p>

The date and start time of the performance.
</p>

3+

*

*

* <p>

* A Java {@link Date} object represents both a date and a time, whilst an RDBMS splits
out Date, Time and Timestamp.

* Therefore we instruct JPA to store this date as a timestamp using the
<code>@Temporal (TIMESTAMP) </code> annotation.

* </p>

*

* <p>

* The date and time of the performance is required, and the Bean Validation constraint
<code>@NotNull</code> enforces this.

* </p>

x/

@Temporal (TIMESTAMP)

@NotNull
private Date date;

/ x %

* <p>

* The show of which this is a performance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

* <p>

* The show of which this is a performance is required, and the Bean Validation
constraint <code>@NotNull</code> enforces

* this.

* </p>

*/

@ManyToOne

@NotNull
private Show show;

/+ Boilerplate getters and setters x*/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public void setShow (Show show) {
this.show = show;

Ticket Monster Tutorial

107 /319

public Show getShow () {

return show;
}
public Date getDate () {

return date;
}
public void setDate (Date date) {

this.date = date;
}
/* equals () and hashCode () for Performance, using the natural identity of the object */
@Override
public boolean equals (Object o) {

if (this == o)

return true;
if (o == null || getClass() != o.getClass())

return false;

Performance that = (Performance) o;

if (date != null ? !date.equals(that.date) : that.date != null)
return false;

if (show != null ? !show.equals(that.show) : that.show != null)

return false;

return true;

@Override
public int hashCode () {
int result = date != null ? date.hashCode() : 0;
result = 31 x result + (show != null ? show.hashCode() : 0);

return result;

Of interest here is the storage of the date and time.

A Java Date represents "a specific instance in time, with millisecond precision" and is the recommended construct for represent-
ing date and time in the JDK. A RDBMS’s DATE type typically has day precision only, and uses the DATETIME or TIMESTAMP
types to represent an instance in time, and often only to second precision.

As the mapping between Java date and time, and database date and time isn’t straightforward, JPA requires us to use the
@Temporal annotation on any property of type Date, and to specify whether the Date should be stored as a date, a time
or a timestamp (date and time).

19.5 Venue

Now, let’s build out the entities to represent the venue.

We start by adding an entity to represent the venue. A venue needs to have a name, a description, a capacity, an address, an
associated media item and a set sections in which people can sit. If you completed the introduction chapter, you should already
have some of these properties set, so we will update the Venue class to look like in the definition below.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Venue.java

[x %
* <p>

Ticket Monster Tutorial
108 /319

* Represents a single venue
* </p>
*
*/
@Entity
public class Venue {

/* Declaration of fields x/

/[*
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = GenerationType.IDENTITY)
private Long id;

* <p>
* The name of the event.
* </p>

* <p>
* The name of the event forms it's natural identity and cannot be shared between events.
* </p>

* <p>
* The name must not be null and must be one or more characters, the Bean Validation
* constraint <code>@NotEmpty</code> enforces this.
* </p>
*/
@Column (unique = true)
@NotEmpty
private String name;

/ x %
* The address of the venue
*/
@Embedded
private Address address = new Address();

/ x %
* A description of the venue
*/

private String description;

/[**
* <p>
* A set of sections in the venue
* </p>

* <p>

* The <code>@OneToMany<code> JPA mapping establishes this relationship.

* Collection members are fetched eagerly, so that they can be accessed even after the

* entity has become detached. This relationship is bi-directional (a section knows which
* venue it is part of), and the <code>mappedBy</code> attribute establishes this. We

* cascade all persistence operations to the set of performances, so, for example if a

venue
* 1s removed, then all of it's sections will also be removed.
* </p>
*/

@OneToMany (cascade = ALL, fetch = EAGER, mappedBy = "venue")

private Set<Section> sections = new HashSet<Section> ();

Ticket Monster Tutorial
109/319

/x %
* The capacity of the venue
*/

private int capacity;

/[*x
* An optional media item to entice punters to the venue. The <code>@ManyToOne</code>
establishes the relationship.
*/
@ManyToOne
private MediaItem medialtem;

/* Boilerplate getters and setters x/
public Long getId() {

return id;

public void setId(Long id) {
this.id = id;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public Address getAddress () {
return address;

public void setAddress (Address address) {
this.address = address;

public Medialtem getMedialItem() {
return medialtem;

public void setMedialtem(MedialItem description) {
this.medialtem = description;

public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

public Set<Section> getSections () {
return sections;

public void setSections (Set<Section> sections) {
this.sections = sections;

Ticket Monster Tutorial
110/319

public int getCapacity () {
return capacity;

public void setCapacity (int capacity) {
this.capacity = capacity;

/* toString (), equals() and hashCode() for Venue, using the natural identity of the
object «*/

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Venue venue = (Venue) o;

if (address != null ? !address.equals (venue.address) : venue.address != null)
return false;

if (name != null ? !name.equals(venue.name) : venue.name != null)

return false;

return true;

@Override
public int hashCode () {
int result = name != null ? name.hashCode () : 0;
result = 31 * result + (address != null ? address.hashCode() : 0);

return result;

@Override
public String toString () {
return name;

In creating this entity, we’ve followed all the design and implementation decisions previously discussed, with one new concept.
Rather than add the properties for street, city, postal code etc. to this object, we’ve extracted them into the Address object, and
included it in the Venue object using composition. This would allow us to reuse the Address object in other places (such as a
customer’s address).

A RDBMS doesn’t have a similar concept to composition, so we need to choose whether to represent the address as a separate
entity, and create a relationship between the venue and the address, or whether to map the properties from Address to the table
for the owning entity, in this case Venue. It doesn’t make much sense for an address to be a full entity - we’re not going to want
to run queries against the address in isolation, nor do we want to be able to delete or update an address in isolation - in essence,
the address doesn’t have a standalone identity outside of the object into which it is composed.

To embed the Address into Venue we add the @Embeddable annotation to the Address class. However, unlike a full
entity, there is no need to add an identifier. Here’s the source for Address:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Address.java

/ %%
* <p>
* A reusable representation of an address.
* </p>

Ticket Monster Tutorial
111/319

<p>
* Addresses are used in many places in an application, so to observe the DRY principle, we
model Address as an embeddable
* entity. An embeddable entity appears as a child in the object model, but no relationship
is established in the RDBMS..
* </p>
*/
@Embeddable
public class Address {

/+ Declaration of fields =/
private String street;
private String city;
private String country;

/+ Declaration of boilerplate getters and setters =*/

public String getStreet () {
return street;

public void setStreet (String street) {
this.street = street;

public String getCity() {
return city;

public void setCity (String city) {
this.city = city;

public String getCountry () {
return country;

public void setCountry (String country) {
this.country = country;

/* toString (), equals () and hashCode () for Address, using the natural identity of the
object =/

@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;

Address address = (Address) o;

if (city !'= null ? !city.equals(address.city) : address.city != null)
return false;

if (country != null ? !country.equals (address.country) : address.country != null)
return false;

if (street != null ? !street.equals(address.street) : address.street != null)

return false;

return true;

Ticket Monster Tutorial
112/319

@Override

public int hashCode () {
int result = street != null ? street.hashCode() : 0;
result = 31 * result + (city !'= null ? city.hashCode() : 0);
result = 31 % result + (country != null ? country.hashCode() : 0);

return result;

@Override
public String toString () {
return street + ", " + city + ", " + country;

19.6 Sections

A venue consists of a number of seating sections. Each seating section has a name, a description, the number of rows in the
section, and the number of seats in a row. It’s natural identifier is the name of section combined with the venue (a venue can’t
have two sections with the same name). Section doesn’t introduce any new concepts, so go ahead and copy the source in, if
you are building the application whilst following this tutorial.

19.7 Booking, Ticket & Seat

There aren’t many new concepts to explore in Booking, Ticket and Seat, so if you are following along with the tutorial,
you should copy in the Booking, Ticket and Seat classes.

Once the user has selected an event, identified the venue, and selected a performance, they have the opportunity to request a
number of seats in a given section, and select the category of tickets required. Once they chosen their seats, and entered their
email address, a Booking is created.

A booking consists of the date the booking was created, an email address (as TicketMonster doesn’t yet have fully fledged
user management), a set of tickets and the associated performance. The set of tickets shows us how to create a uni-directional
one-to-many relationship:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Booking.java

/[**

* <p>

* The set of tickets contained within the booking. The <code>W@OneToMany<code> JPA
mapping establishes this relationship.

* </p>

*

* <p>

* The set of tickets is eagerly loaded because FIXME . All operations are cascaded to
each ticket, so for example if a

* booking is removed, then all associated tickets will be removed.

* </p>

*

* <p>

* This relationship is uni-directional, so we need to inform JPA to create a foreign key
mapping. The foreign key mapping

* 1is not visible in the {@link Ticket} entity despite being present in the database.

* </p>

*

Ticket Monster Tutorial
113/319

*/

@OneToMany (fetch = EAGER, cascade = ALL)
@JoinColumn @NotEmpty

@valid

private Set<Ticket> tickets = new HashSet<Ticket>();

We add the @ JoinColumn annotation, which sets up a foreign key in Ticket, but doesn’t expose the booking on Ticket. This
prevents the use of messy mapping tables, whilst preserving the integrity of the entity model.

A ticket embeds the seat allocated, and contains a reference to the category under which it was sold. It also contains the price at
which it was sold.

Ticket Monster Tutorial
114 /319

Chapter 20

Connecting to the database

In this example, we are using the in-memory H2 database, which is very easy to set up on JBoss AS. JBoss AS allows you deploy a
datasource inside your application’s WEB—INF directory. You can locate the source in src/main/webapp/WEB-INF/ticket-mor

src/main/webapp/WEB-INF/ticket-monster-ds.xml

<datasources xmlns="http://www. jboss.org/ironjacamar/schema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
xsi:schemalocation="http://www. jboss.org/ironjacamar/schema
http://docs. jboss.org/ironjacamar/schema/datasources_1_0.xsd">
<!-- The datasource is bound into JNDI at this location. We reference
this in META-INF/persistence.xml —-—>
<datasource jndi-name="java: jboss/datasources/ticket-monsterDS"
pool-name="ticket-monster"” enabled="true" use-java-context="true">
<connection-url>
jdbc:h2:mem:ticket-monster; DB_CLOSE_ON_EXIT=FALSE;DB_CLOSE_DELAY=-1
</connection-url>
<driver>h2</driver>
<security>
<user-name>sa</user—name>
<password>sa</password>
</security>
</datasource>
</datasources>

The datasource configures an H2 in-memory database, called ticket-monster, and registers a datasource in JNDI at the address:
java: jboss/datasources/ticket-monsterDS

Now we need to configure JPA to use the datasource. Thisis donein src/main/resources/META-INF/persistence.xml:
src/main/resources/persistence.xml

<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema—-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="primary">

<!-— If you are running in a production environment, add a managed

data source, this example data source is just for development and testing! —-->
<!-- The datasource is deployed as WEB-INF/ticket-monster-ds.xml, you

can find it in the source at src/main/webapp/WEB-INF/ticket-monster—-ds.xml —->

<jta-data-source>java: jboss/datasources/ticket-monsterDS</jta-data-source>

Ticket Monster Tutorial
115/319

<properties>
<!-- Properties for Hibernate —-->
<property name="hibernate.hbm2ddl.auto" value="create-drop" />
<property name="hibernate.show_sqgl" value="false" />
</properties>
</persistence-unit>
</persistence>

As our application has only one datasource, and hence one persistence unit, the name given to the persistence unit doesn’t really
matter. We call ours primary, but you can change this as you like. We tell JPA about the datasource bound in JNDI.

Hibernate includes the ability to generate tables from entities, which here we have configured. We don’t recommend using this
outside of development. Updates to databases in production should be done manually.

Ticket Monster Tutorial
116/319

Chapter 21

Populating test data

Whilst we develop our application, it’s useful to be able to populate the database with test data. Luckily, Hibernate makes this

easy. Just add afile called import . sql onto the classpath of your application (we keep itin src/main/resources/import . sql
In it, we just write standard sql statements suitable for the database we are using. To do this, you need to know the generated
column and table names for your entities. The best way to work these out is to look at the h2console.

The h2console is included in the JBoss AS quickstarts, along with instructions on how to use it. For more information, see
http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

http://jboss.org/jdf/quickstarts/jboss-as-quickstart/h2-console/

Ticket Monster Tutorial
117 /319

Where do | look for my data?

The database URL is jdbc:h2:mem:ticket-monster. After you have downloaded h2console.war and deployed it
on the server, make sure that the application is running on the server and use this value to connect to your running application’s
database.

| English s | Preferences Tools Help
Saved Settings: [Generic H2 (Server) -]
Setting Name: ‘Generic H2 (Server) | |Sava| |Rﬂm‘-'ﬂ|
Driver Class: org.h2.Driver
JDBC URL: jdbe:h2:mem:ticket-monster
User Name: 53
Password: .
|Gunnact| |Tastﬂnnnac1:lnn

Figure 21.1: h2console settings

Ticket Monster Tutorial
118 /319

Chapter 22

Conclusion

You now have a working data model for your TicketMonster application, our next tutorial will show you how to create the
business services layer or something like that - it seems to end abruptly.

Ticket Monster Tutorial
119/319

Part IV

Building The Business Services With JAX-RS

Ticket Monster Tutorial
120/319

Chapter 23

What Will You Learn Here?

We’ve just defined the domain model of the application and created its persistence layer. Now we need to define the services that
implement the business logic of the application and expose them to the front-end. After reading this, you’ll understand how to
design the business layer and what choices to make while developing it. Topics covered include:

* Encapsulating business logic in services and integrating with the persistence tier
 Using CDI for integrating individual services
* Integration testing using Arquillian

» Exposing RESTful services via JAX-RS

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial
121/319

Chapter 24

Business Services And Their Relationships

TicketMonster’s business logic is implemented by a number of classes, with different responsibilities:

* managing media items
* allocating tickets
* handling information on ticket availability

» remote access through a RESTful interface
The services are consumed by various other layers of the application:

* the media management and ticket allocation services encapsulate complex functionality, which in turn is exposed externally by
RESTful services that wrap them

* RESTful services are mainly used by the HTMLS view layer

* the ticket availability service is used by the HTMLS5 and JavaScript based monitor

Where to draw the line?

A business service is an encapsulated, reusable logical component that groups together a number of well-defined cohesive
business operations. Business services perform business operations, and may coordinate infrastructure services such as
persistence units, or even other business services as well. The boundaries drawn between them should take into account
whether the newly created services represent , potentially reusable components.

As you can see, some of the services are intended to be consumed within the business layer of the application, while others
provide an external interface as JAX-RS services. We will start by implementing the former, and we’ll finish up with the latter.
During this process, you will discover how CDI, EJB and JAX-RS make it easy to define and wire together our services.

Ticket Monster Tutorial
122 /319

Chapter 25

Preparations

25.1 Adding Jackson Core

The first step for setting up our service architecture is to add Jackson Core as a dependency in the project. Adding Jackson Core
as a provided dependency will enable you to use the Jackson annotations in the project. This is necessary to obtain a certain
degree of control over the content of the JSON responses.

pom.xml
<project ...>
<dependencies>
<!-— This is the dependency for Jackson Core, which we use for
fine tuning the content of the JSON responses ——>
<dependency>
<groupId>org.codehaus. jackson</groupId>
<artifactId>jackson-core—-asl</artifactId>
<version>1.8.1</version>
<scope>provided</scope>
</dependency>
</dependencies>
</project>

Why do you need the Jackson annotations?

JAX-RS does not specify mediatype-agnostic annotations for certain use cases. You will encounter atleast one of them
in the project. The object graph contains cyclic/bi-directional relationships among entities like Venue, Section, Show,
Performance and TicketPrice. JSON representations for these objects will need tweaking to avoid stack oVerflow
errors and the like, at runtime.

JBoss Enterprise Application 6 and JBoss AS 7 uses Jackson to perform serialization and dserialization of objects, thus requir-
ing use of Jackson annotations to modify this behavior. @JsonIgnoreProperties from Jackson will be used to suppress
serialization and deserialization of one of the fields involved in the cycle.

25.2 Verifying the versions of the JBoss BOMs

The next step is to verify if we’re using the right version of the JBoss BOMs in the project. Using the right versions of the BOMs
ensures that you work against a known set of tested dependencies. Verify that the property jboss.bom.version contains the
value 1.0.7.CR8 or higher:

pom.xml

Ticket Monster Tutorial
123/319

<project ...>
;ﬁéoperties>
;3goss.bom.version>1.0.7.CR8</jboss.bom.version>
</pré}.>:erties>
</préﬁéct>

Doing so will ensure that ShrinkWrap Resolvers 2.0.0.Final is present in the test classpath. This would be used in the Arquillian
tests for the application.

25.3 Enabling CDI

The next step is to enable CDI in the deployment by creating a beans . xm1 file in the WEB—INF folder of the web application.
src¢/main/webapp/WEB-INF/beans.xml

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

If you used the Maven archetype
If you used the Maven archetype to create the project, this file will exist already in the project - it is added automatically.

You may wonder why the file is empty! Whilst beans . xm1 can specify various deployment-time configuration (e.g. activation
of interceptors, decorators or alternatives), it can also act as a marker file, telling the container to enable CDI for the deployment
(which it doesn’t do, unless beans . xml is present).

Contexts and Dependency Injection (CDI)

As it's name suggests, CDl is the contexts and dependency injection standard for Java EE. By enabling CDI in your application,
deployed classes become managed components and their lifecycle and wiring becomes the responsibility of the Java EE server.
In this way, we can reduce coupling between components, which is a requirement o a well-designed architecture. Now, we can
focus on implementing the responsibilities of the components and describing their dependencies in a declarative fashion. The
runtime will do the rest for you: instantiating and wiring them together, as well as disposing of them as needed.

25.4 Adding utility classes

Next, we add some helper classes providing low-level utilities for the application. We won’t get in their implementation details
here, but you can study their source code for details.

Copy the following classes from the original example to src/main/java/org/jboss/jdf/example/ticketmonster/uti
* Base64

* ForwardingMap

* MultivaluedHashMap

* Reflections

* Resources

Ticket Monster Tutorial
124 /319

Chapter 26

Internal Services

We begin the service implementation by implementing some helper services.

26.1 The Media Manager

First, let’s add support for managing media items, such as images. The persistence layer simply stores URLs, referencing media
items stored by online services. The URL look like http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg.

Now, we could use the URLSs in our application, and retrieve these media items from the provider. However, we would prefer to
cache these media items in order to improve application performance and increase resilience to external failures - this will allow
us to run the application successfully even if the provider is down. The MediaManager is a good illustration of a business
service; it performs the retrieval and caching of media objects, encapsulating the operation from the rest of the application.

We begin by creating MediaManager:
src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java

/ %%

* <p>

* The media manager is responsible for taking a media item, and returning either the URL
+* of the cached version (if the application cannot load the item from the URL), or the

* original URL.

</p>

*

*

<p>

*

The media manager also transparently caches the media items on first load.
</p>

* <p>
* The computed URLs are cached for the duration of a request. This provides a good balance
* between consuming heap space, and computational time.

* </p>
*
*/
public class MediaManager {
/ x %
* Locate the tmp directory for the machine
*/

private static final File tmpDir;

static {
String dataDir = System.getenv ("OPENSHIFT DATA DIR");
String parentDir = dataDir != null ? dataDir : System.getProperty("java.io.tmpdir");

http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg

Ticket Monster Tutorial
125/319

tmpDir = new File (parentDir, "org. jboss. jdf.examples.ticket-monster");
if (tmpDir.exists()) {
if (tmpDir.isFile())
throw new IllegalStateException (tmpDir.getAbsolutePath() + " already exists,
and is a file. Remove it.");
} else {
tmpDir.mkdir () ;

/ x %
* A request scoped cache of computed URLs of media items.
*/

private final Map<Medialtem, MediaPath> cache;

public MediaManager () {

this.cache = new HashMap<MedialItem, MediaPath>();

/ x %
* Load a cached file by name
*
* @param fileName
* @return
*/
public File getCachedFile(String fileName) {
return new File (tmpDir, fileName);

/[**
* Obtain the URL of the media item. If the URL h has already been computed in this
x request, it will be looked up in the request scoped cache, otherwise it will be
* computed, and placed in the request scoped cache.
*/
public MediaPath getPath (Medialtem medialtem) ({
if (cache.containsKey (medialItem)) {
return cache.get (medialtem);
} else {
MediaPath mediaPath = createPath (medialtem) ;
cache.put (medialtem, mediaPath);
return mediaPath;

/[**
* Compute the URL to a media item. If the media item is not cacheable, then, as long
* as the resource can be loaded, the original URL is returned. If the resource is not
* available, then a placeholder image replaces it. If the media item is cachable, it
* 1s first cached in the tmp directory, and then path to load it is returned.

*/
private MediaPath createPath (MedialItem medialtem) {
if (medialtem == null) ({
return

createCachedMedia (Reflections.getResource ("not_available. jpg") .toExternalForm (), IMAGE);
} else if (!medialtem.getMediaType () .isCacheable()) {

if (checkResourceAvailable (medialtem)) {

return new MediaPath (medialtem.getUrl (), false, medialtem.getMediaType());
} else {

return

createCachedMedia (Reflections.getResource ("not_available. jpg") .toExternalForm (), IMAGE);
}

Ticket Monster Tutorial

126 /319
} else {
return createCachedMedia (medialItem) ;

}
}
/ x %
* Check if a media item can be loaded from it's URL, using the JDK URLConnection classes.
*/

private boolean checkResourceAvailable (MediaItem mediaItem) {
URL url = null;
try {
url = new URL (medialtem.getUrl());
} catch (MalformedURLException e) {
}

if (url !'= null) {
try {

URLConnection connection = url.openConnection();

if (connection instanceof HttpURLConnection) {
return ((HttpURLConnection) connection).getResponseCode ()

HttpURLConnection.HTTP_OK;

} else {

return connection.getContentLength () > 0;

}
} catch (IOException e) {
}
}

return false;

/[**
* The cached file name is a base64 encoded version of the URL. This means we don't need
to maintain a database of cached
* files.
*/
private String getCachedFileName (String url) {
return Baseb64.encodeToString (url.getBytes (), false);

/[**
* Check to see if the file is already cached.
*/
private boolean alreadyCached(String cachedFileName) {
File cache = getCachedFile (cachedFileName) ;
if (cache.exists()) {
if (cache.isDirectory()) {
throw new IllegalStateException (cache.getAbsolutePath() + " already exists,
and 1is a directory. Remove it.");
}
return true;
} else {
return false;

/ x %
* To cache a media item we first load it from the net, then write it to disk.
x/
private MediaPath createCachedMedia (String url, MediaType mediaType) {
String cachedFileName = getCachedFileName (url) ;
if (!alreadyCached (cachedFileName)) {
URL _url = null;

Ticket Monster Tutorial
127 /319

try {
_url = new URL(url);
} catch (MalformedURLException e) {
throw new IllegalStateException ("Error reading URL " + url);

try {
InputStream is = null;
OutputStream os = null;
try {
is = new BufferedInputStream(_url.openStream());
os = new BufferedOutputStream(getCachedOutputStream (cachedFileName));

while (true) {

int data = is.read();
if (data == -1)
break;

os.write (data);

}
} finally {

if (is !'= null)
is.close();
if (os != null)
os.close();

}
} catch (IOException e) {
throw new IllegalStateException ("Error caching " +

mediaType.getDescription(), e);
}
}

return new MediaPath (cachedFileName, true, mediaType);

private MediaPath createCachedMedia (MediaItem medialtem) {
return createCachedMedia (medialtem.getUrl (), medialtem.getMediaType());

private OutputStream getCachedOutputStream(String fileName) {

try {
return new FileOutputStream(getCachedFile (fileName)) ;

} catch (FileNotFoundException e) {
throw new IllegalStateException("Error creating cached file", e);

The service delegates to a number of internal methods that do the heavy lifting, but exposes a simple API, to the external
observer it simply converts the MediaItem entities into MediaPath data structures, that can be used by the application to
load the binary data of the media item. The service will retrieve and cache the data locally in the filesystem, if possible (e.g.

streamed videos aren’t cacheable!).

src/main/java/org/jboss/jdf/example/ticketmonster/service/MediaPath.java

public class MediaPath {

private final String url;
private final boolean cached;
private final MediaType mediaType;

public MediaPath(String url, boolean cached, MediaType mediaType) {
this.url = url;
this.cached = cached;

Ticket Monster Tutorial
128 /319

this.mediaType = mediaType;

public String getUrl () {
return url;

public boolean isCached() {
return cached;

public MediaType getMediaType () {
return mediaType;

The service can be injected by type into the components that depend on it.

We should also control the lifecycle of this service. The MediaManager stores request-specific state, so should be scoped to
the web request, the CDI @Request Scoped is perfect.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/MediaManager.java

@RequestScoped
public class MediaManager {

26.2 The Seat Allocation Service

The seat allocation service finds free seats at booking time, in a given section of the venue. It is a good example of how a service
can coordinate infrastructure services (using the injected persistence unit to get access to the ServiceAllocation instance)
and domain objects (by invoking the allocateSeats method on a concrete allocation instance).

Isolating this functionality in a service class makes it possible to write simpler, self-explanatory code in the layers above and
opens the possibility of replacing this code at a later date with a more advanced implementation (for example one using an
in-memory cache).

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

@SuppressWarnings ("serial™)
public class SeatAllocationService implements Serializable {

@Inject
EntityManager entityManager;

public AllocatedSeats allocateSeats (Section section, Performance performance, int
seatCount, boolean contiguous) {

SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively (section,
performance) ;

List<Seat> seats = sectionAllocation.allocateSeats (seatCount, contiguous);

return new AllocatedSeats (sectionAllocation, seats);

public void deallocateSeats (Section section, Performance performance, List<Seat> seats) {
SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively (section,
performance) ;
for (Seat seat : seats) {

Ticket Monster Tutorial
129 /319

if (!seat.getSection() .equals(section)) {
throw new SeatAllocationException ("All seats must be in the same section!");

}

sectionAllocation.deallocate (seat);

private SectionAllocation retrieveSectionAllocationExclusively (Section section,
Performance performance) {
SectionAllocation sectionAllocationStatus = (SectionAllocation)

entityManager.createQuery (

"select s from SectionAllocation s where " +

"s.performance.id = :performancelId and " +

"s.section.id = :sectionId")

.setParameter ("performanceId", performance.getId())

.setParameter ("sectionId", section.getId())

.getSingleResult () ;

entityManager.lock (sectionAllocationStatus, LockModeType.PESSIMISTIC_WRITE) ;
return sectionAllocationStatus;

Next, we define the AllocatedSeats class that we use for storing seat reservations for a booking, before they are made
persistent.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/AllocatedSeats.java
public class AllocatedSeats {
private final SectionAllocation sectionAllocation;
private final List<Seat> seats;
public AllocatedSeats (SectionAllocation sectionAllocation, List<Seat> seats) {

this.sectionAllocation = sectionAllocation;
this.seats = seats;

public SectionAllocation getSectionAllocation() {
return sectionAllocation;

public List<Seat> getSeats () {
return seats;

public void markOccupied () {
sectionAllocation.markOccupied (seats);

Ticket Monster Tutorial
130/319

Chapter 27

JAX-RS Services

The majority of services in the application are JAX-RS web services. They are critical part of the design, as they next service
is used for provide communication with the HTMLS5 view layer. The JAX-RS services range from simple CRUD to processing
bookings and media items.

To pass data across the wire we use JSON as the data marshalling format, as it is less verbose and easier to process than XML by
the JavaScript client-side framework.

27.1 Initializing JAX-RS

To activate JAX-RS we add the class below, which instructs the container to look for JAX-RS annotated classes and install them
as endpoints. This class should exist already in your project, as it is generated by the archetype, so make sure that it is there and
it contains the code below:

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/JaxRsActivator.java

@ApplicationPath ("/rest")

public class JaxRsActivator extends Application {
/* class body intentionally left blank =/

}

All the JAX-RS services are mapped relative to the /rest path, as defined by the @ApplicationPath annotation.

27.2 A Base Service For Read Operations

Most JAX-RS services must provide both a (filtered) list of entities or individual entity (e.g. events, venues and bookings).
Instead of duplicating the implementation into each individual service we create a base service class and wire the helper objects
in.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

/ **
* <p>
* A number of RESTful services implement GET operations on a particular type of entity. For
* observing the DRY principle, the generic operations are implemented in the
<code>BaseEntityService</code>
* class, and the other services can inherit from here.
* </p>
*
* <p>
* Subclasses will declare a base path using the JAX-RS {@link Path} annotation, for

example:

Ticket Monster Tutorial
131/319

</p>

<pre>

<code>

@Path ("/widgets")

public class WidgetService extends BaseEntityService<Widget> {

}
</code>
</pre>

<p>
will support the following methods:
</p>

<pre>
<code>
GET /widgets
GET /widgets/:id
GET /widgets/count
</code>
</pre>

<p>

L T T N I N T N S N S S N T SN S N S T N N

Subclasses may specify various criteria for filtering entities when retrieving a list
of them, by supporting
* custom query parameters. Pagination is supported by default through the query
parameters <code>first</code>

and <code>maxResults</code>.
</p>

* % ok X

<p>

*

The class is abstract because it is not intended to be used directly, but subclassed
by actual JAX-RS
* endpoints.
* </p>

*/

public abstract class BaseEntityService<T> {

@Inject
private EntityManager entityManager;

private Class<T> entityClass;
public BaseEntityService() {}
public BaseEntityService (Class<T> entityClass) {

this.entityClass = entityClass;

public EntityManager getEntityManager () {
return entityManager;

Now we add a method to retrieve all entities of a given type:
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> ({

Ticket Monster Tutorial

132/319
/[*x
* <p>
* A method for retrieving all entities of a given type. Supports the query parameters

<code>first</code>
and <code>maxResults</code> for pagination.
</p>

*

*

*

* @param uriInfo application and request context information (see {@see UriInfo} class
* 1nformation for more details)
* (@return
*/
@GET
@Produces (MediaType.APPLICATION_JSON)
public List<T> getAll (@Context UrilInfo urilInfo) {
return getAll (uriInfo.getQueryParameters());

public List<T> getAll (MultivaluedMap<String, String> queryParameters) {
final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery (entityClass);
Root<T> root = criteriaQuery.from(entityClass);
Predicate[] predicates = extractPredicates (queryParameters, criteriaBuilder, root);
criteriaQuery.select (criteriaQuery.getSelection()) .where (predicates);
criteriaQuery.orderBy (criteriaBuilder.asc (root.get ("id")));
TypedQuery<T> query = entityManager.createQuery(criteriaQuery);
if (queryParameters.containsKey ("first")) {
Integer firstRecord = Integer.parselnt (queryParameters.getFirst ("first"))-1;
query.setFirstResult (firstRecord);
}
if (queryParameters.containsKey ("maxResults")) {
Integer maxResults = Integer.parselnt (queryParameters.getFirst ("maxResults"));
query.setMaxResults (maxResults) ;

return query.getResultList ();

/[**

* <p>

* Subclasses may choose to expand the set of supported query parameters (for adding
more filtering

* criteria) by overriding this method.

* </p>

* @param queryParameters - the HTTP query parameters received by the endpoint

* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker
* @return a list of {@link Predicate}s that will added as query parameters
*/
protected Predicate[] extractPredicates (MultivaluedMap<String, String> queryParameters,
CriteriaBuilder criteriaBuilder, Root<T> root) {
return new Predicate[]({};

The newly added method ‘getAll" is annotated with @GET which instructs JAX-RS to call it when a GET HTTP requests on
the JAX-RS’ endpoint base URL /rest/<entityRoot> is performed. But remember, this is not a true JAX-RS endpoint. It is an
abstract class and it is not mapped to a path. The classes that extend it are JAX-RS endpoints, and will have to be mapped to a
path, and are able to process requests.

Ticket Monster Tutorial
133/319

The @Produces annotation defines that the response sent back by the server is in JSON format. The JAX-RS implementation
will automatically convert the result returned by the method (a list of entities) into JSON format.

As well as configuring the marshaling strategy, the annotation affects content negotiation and method resolution. If the client
requests JSON content specifically, this method will be invoked.

Note
Even though it is not shown in this example, you may have multiple methods that handle a specific URL and HTTP method,
whilst consuming and producing different types of content (JSON, HTML, XML or others).

Subclasses can also override the ext ractPredicates method and add own support for additional query parameters to GET
/rest/<entityRoot> which can act as filter criteria.

The getA11 method supports retrieving a range of entities, which is especially useful when we need to handle very large sets
of data, and use pagination. In those cases, we need to support counting entities as well, so we add a method that retrieves the
entity count:

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> ({

/ x %
* <p>
* A method for counting all entities of a given type
* </p>
*
* @param uriInfo application and request context information (see {@see UriInfo} class
information for more details)
* @return
*/
@GET
@Path ("/count™")
@Produces (MediaType.APPLICATION_JSON)
public Map<String, Long> getCount (€@Context UriInfo urilInfo) {

CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder () ;
CriteriaQuery<Long> criteriaQuery = criteriaBuilder.createQuery (Long.class);
Root<T> root = criteriaQuery.from(entityClass);

criteriaQuery.select (criteriaBuilder.count (root));

Predicate[] predicates = extractPredicates (uriInfo.getQueryParameters(),

criteriaBuilder, root);
criteriaQuery.where (predicates);
Map<String, Long> result = new HashMap<String, Long>();
result.put ("count"”, entityManager.createQuery (criteriaQuery) .getSingleResult());
return result;

We use the @Path annotation to map the new method to a sub-path of /rest/<entityRoot>. Now all the JAX-RS endpoints
that subclass BaseEntityService will be able to get entity counts from '/rest/<entityRoot>/count. Just like getAl1, this
method also delegates to ext ractPredicates, so any customizations done there by subclasses

Next, we add a method for retrieving individual entities.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BaseEntityService.java

public abstract class BaseEntityService<T> ({

Ticket Monster Tutorial

134/319
/ x %
* <p>
* A method for retrieving individual entity instances.
* </p>
* @param id entity id
* @return
*/
@GET
@Path ("/{id:[0-9] [0-9]*}")
@Produces (MediaType .APPLICATION_JSON)
public T getSingleInstance (@PathParam("id") Long id) {
final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery (entityClass);
Root<T> root = criteriaQuery.from(entityClass);
Predicate condition = criteriaBuilder.equal (root.get ("id"), id);

criteriaQuery.select (criteriaBuilder.createQuery(entityClass) .getSelection()) .where(condition);
return entityManager.createQuery (criteriaQuery) .getSingleResult () ;

This method is similar to get A11 and get Count, and we use the @Path annotation to map it to a sub-path of /rest/<entityRoot>.
The annotation attribute identifies the expected format of the URL (here, the last segment has to be a number) and binds a portion
of the URL to a variable (here named id). The @PathParam annotation allows the value of the variable to be passed as a
method argument. Data conversion is performed automatically.

Now, all the JAX-RS endpoints that subclass BaseEntityService will get two operations for free:

GET /rest/<entityRoot>
retrieves all entities of a given type

GET /rest/<entityRoot>/<id>
retrieves an entity with a given id

27.3 Retrieving Venues

Adding support for retrieving venues is now extremely simple. We refactor the class we created during the introduction, and
make it extend BaseEntityService, passing the entity type to the superclass constructor. We remove the old retrieval code,
which is not needed anymore.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/VenueService.java

[**

* <p>

* A JAX-RS endpoint for handling {@link Venue}s. Inherits the actual
* methods from {@link BaseEntityService}.

* </p>

*/

@Path ("/venues")

/ %%

* <p>

* This is a stateless service, so a single shared instance can be used in this case.
* </p>

*/

@Stateless

public class VenueService extends BaseEntityService<Venue> {

public VenueService() {

Ticket Monster Tutorial
135/319

super (Venue.class) ;

We add the @Path annotation to the class, to indicate that this is a JAX-RS resource which can serve URLs starting with
/rest/venues.

‘We define this service (along with all the other JAX-RS services) as an EJB (see how simple is that in Java EE 6!) to benefit from
automatic transaction enrollment. Since the service is fundamentally stateless, we take advantage of the new EJB 3.1 singleton
feature.

Now, we can retrieve venues from URLs like /rest /venues or rest /venues/1.

27.4 Retrieving Events

Justlike VenueService, the Event Service implementation we use for TicketMonster is a direct subclass of BaseEntityServi
Refactor the existing class, remove the old retrieval code and make it extend BaseEntityService.

One additional functionality we will implement is querying events by category. We can use URLs like /rest /events?category=1
to retrieve all concerts, for example (1 is the category id of concerts). This is done by overriding the extractPredicates
method to handle any query parameters (in this case, the category parameter).

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/EventService.java

/ %%
* <p>
* A JAX-RS endpoint for handling {@link Event}s. Inherits the actual
* methods from {@link BaseEntityService}, but implements additional search
* criteria.
* </p>
x/
@Path ("/events")
[**
* <p>
* This is a stateless service, we declare it as an EJB for transaction demarcation
* </p>
x/
@Stateless
public class EventService extends BaseEntityService<Event> {

public EventService () {
super (Event.class) ;

/ x %
* <p>
* We override the method from parent in order to add support for additional search
* criteria for events.
* </p>
* @param queryParameters - the HTTP query parameters received by the endpoint
* @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker

* @param root @{link Root} used by the invoker
* @return
*/
@Override
protected Predicate[] extractPredicates (
MultivaluedMap<String, String> queryParameters,
CriteriaBuilder criteriaBuilder,
Root<Event> root) {
List<Predicate> predicates = new ArraylList<Predicate> () ;

Ticket Monster Tutorial

136 /319

if (queryParameters.containsKey ("category")) {
String category = queryParameters.getFirst ("category”);

predicates.add(criteriaBuilder.equal (root.get ("category") .get ("id"), category));

return predicates.toArray (new Predicate[]{});

The ShowService and BookingService follow the same pattern and we leave the implementation as an exercise to the

reader (knowing that its contents can always be copied over to the appropriate folder).

Of course, we also want to change data with our services - we want to create and delete bookings as well!

27.5 Creating and deleting bookings

To create a booking, we add a new method, which handles POST requests to /rest /bookings. This is not a simple CRUD
method, as the client does not send a booking, but a booking request. It is the responsibility of the service to process the request,

reserve the seats and return the full booking details to the invoker.
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

/ %%
* <p>
* A JAX-RS endpoint for handling {@link Booking}s. Inherits the GET
* methods from {@link BaseEntityService}, and implements additional REST methods.
* </p>
*/
@Path ("/bookings")
/ x*
* <p>
* This is a stateless service, we declare it as an EJB for transaction demarcation
* </p>
*/
@Stateless
public class BookingService extends BaseEntityService<Booking> {

@Inject
SeatAllocationService seatAllocationService;

@Inject @Created
private Event<Booking> newBookingEvent;

public BookingService () {
super (Booking.class) ;

* <p>
* Create a booking. Data is contained in the bookingRequest object
* </p>
* (@param bookingRequest
* @return
*/
@SuppressWarnings ("unchecked")
@POST
/ x %

* <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the

support

Ticket Monster Tutorial
137 /319

* {@link BookingRequest} class.
*/
@Consumes (MediaType .APPLICATION_JSON)
public Response createBooking (BookingRequest bookingRequest) {
try {
// identify the ticket price categories in this request
Set<Long> priceCategoryIds = bookingRequest.getUniquePriceCategoryIds () ;

// load the entities that make up this booking's relationships
Performance performance = getEntityManager () .find(Performance.class,
bookingRequest .getPerformance ()) ;

// As we can have a mix of ticket types in a booking, we need to load all of them
that are relevant,

// id

Map<Long, TicketPrice> ticketPricesById = loadTicketPrices (priceCategoryIds);

// Now, start to create the booking from the posted data
// Set the simple stuff first!

Booking booking = new Booking() ;

booking.setContactEmail (bookingRequest.getEmail());
booking.setPerformance (performance) ;
booking.setCancellationCode ("abc") ;

// Now, we iterate over each ticket that was requested, and organize them by
section and category
// we want to allocate ticket requests that belong to the same section
contiguously
Map<Section, Map<TicketCategory, TicketRequest>> ticketRequestsPerSection
= new TreeMap<Section, java.util.Map<TicketCategory,
TicketRequest>> (SectionComparator.instance());
for (TicketRequest ticketRequest : bookingRequest.getTicketRequests()) {
final TicketPrice ticketPrice =
ticketPricesById.get (ticketRequest.getTicketPrice());
if (!ticketRequestsPerSection.containsKey (ticketPrice.getSection())) {
ticketRequestsPerSection
.put (ticketPrice.getSection (), new HashMap<TicketCategory,
TicketRequest>());

}
ticketRequestsPerSection.get (ticketPrice.getSection()) .put (

ticketPricesById.get (ticketRequest.getTicketPrice()) .getTicketCategory (), ticketRequest);
}

// Now, we can allocate the tickets
// Iterate over the sections, finding the candidate seats for allocation
// The process will acquire a write lock for a given section and performance
// Use deterministic ordering of sections to prevent deadlocks
Map<Section, AllocatedSeats> seatsPerSection =
new TreeMap<Section,
org. jboss.jdf.example.ticketmonster.service.AllocatedSeats> (SectionComparator.instance());
List<Section> failedSections = new ArrayList<Section>();
for (Section section : ticketRequestsPerSection.keySet ()) {
int totalTicketsRequestedPerSection = 0;
// Compute the total number of tickets required (a ticket category doesn't
impact the actual seat!)
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories =
ticketRequestsPerSection.get (section);
// calculate the total quantity of tickets to be allocated in this section
for (TicketRequest ticketRequest : ticketRequestsByCategories.values()) {
totalTicketsRequestedPerSection += ticketRequest.getQuantity();

Ticket Monster Tutorial
138/319

// try to allocate seats

AllocatedSeats allocatedSeats =
seatAllocationService.allocateSeats (section,
performance, totalTicketsRequestedPerSection, true);
if (allocatedSeats.getSeats () .size() == totalTicketsRequestedPerSection) {
seatsPerSection.put (section, allocatedSeats);
} else {
failedSections.add (section);

}
if (failedSections.isEmpty()) {
for (Section section : seatsPerSection.keySet()) {
// allocation was successful, begin generating tickets
// associate each allocated seat with a ticket, assigning a price
category to it
final Map<TicketCategory, TicketRequest> ticketRequestsByCategories =
ticketRequestsPerSection.get (section);
AllocatedSeats allocatedSeats = seatsPerSection.get (section);
allocatedSeats.markOccupied() ;
int seatCounter = 0;
// Now, add a ticket for each requested ticket to the booking
for (TicketCategory ticketCategory
ticketRequestsByCategories.keySet ()) {
final TicketRequest ticketRequest =
ticketRequestsByCategories.get (ticketCategory) ;
final TicketPrice ticketPrice =
ticketPricesById.get (ticketRequest.getTicketPrice());
for (int i1 = 0; i < ticketRequest.getQuantity(); i++) {
Ticket ticket =
new
Ticket (allocatedSeats.getSeats () .get (seatCounter + i), ticketCategory,
ticketPrice.getPrice());
// getEntityManager () .persist (ticket);
booking.getTickets () .add (ticket) ;
}
seatCounter += ticketRequest.getQuantity();

}
// Persist the booking, including cascaded relationships
booking.setPerformance (performance) ;
booking.setCancellationCode ("abc") ;
getEntityManager () .persist (booking) ;
newBookingEvent. fire (booking) ;
return
Response.ok () .entity (booking) .type (MediaType .APPLICATION_JSON_TYPE) .build() ;
} else {
Map<String, Object> responseEntity = new HashMap<String, Object>();
responseEntity.put ("errors"”, Collections.singletonList ("Cannot allocate the
requested number of seats!"));
return
Response.status (Response.Status.BAD_REQUEST) .entity (responseEntity) .build();
}
} catch (ConstraintViolationException e) ({
// If validation of the data failed using Bean Validation, then send an error
Map<String, Object> errors = new HashMap<String, Object>();
List<String> errorMessages = new ArrayList<String>();
for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {
errorMessages.add (constraintViolation.getMessage()) ;
}
errors.put ("errors", errorMessages);
// A WebApplicationException can wrap a response

Ticket Monster Tutorial
139/319

// Throwing the exception causes an automatic rollback
throw new
WebApplicationException (Response.status (Response.Status.BAD_REQUEST) .entity (errors) .build());
} catch (Exception e) {
// Finally, handle unexpected exceptions
Map<String, Object> errors = new HashMap<String, Object>();
errors.put ("errors", Collections.singletonlList (e.getMessage()));
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new
WebApplicationException (Response.status (Response.Status.BAD_REQUEST) .entity (errors) .build());
}

/ x %
* Utility method for loading ticket prices
* @param priceCategoryIds
* (@return
*/
private Map<Long, TicketPrice> loadTicketPrices (Set<Long> priceCategoryIds) {
List<TicketPrice> ticketPrices = (List<TicketPrice>) getEntityManager ()
.createQuery ("select p from TicketPrice p where p.id in :ids")
.setParameter ("ids", priceCategoryIds) .getResultList ();
// Now, map them by id
Map<Long, TicketPrice> ticketPricesById = new HashMap<Long, TicketPrice>();
for (TicketPrice ticketPrice : ticketPrices) {
ticketPricesById.put (ticketPrice.getId (), ticketPrice);
}

return ticketPricesById;

We won’t get into the details of the inner workings of the method - it implements a fairly complex algorithm - but we’d like to
draw attention to a few particular items.

We use the @POST annotation to indicate that this method is executed on inbound HTTP POST requests. When implementing a
set of RESTful services, it is important that the semantic of HTTP methods are observed in the mappings. Creating new resources
(e.g. bookings) is typically associated with HTTP POST invocations. The @Consumes annotation indicates that the type of the
request content is JSON and identifies the correct unmarshalling strategy, as well as content negotiation.

The BookingService delegates to the SeatAllocationService to find seats in the requested section, the required
SeatAllocationService instance is initialized and supplied by the container as needed. The only thing that our service
does is to specify the dependency in form of an injection point - the field annotated with @Inject.

We would like other parts of the application to be aware of the fact that a new booking has been created, therefore we use the
CDI to fire an event. We do so by injecting an Event <Booking> instance into the service (indicating that its payload will be a
booking). In order to individually identify this event as referring to event creation, we use a CDI qualifier, which we need to add:

src¢/main/java/org/jboss/jdf/example/ticketmonster/util/qualifier/Created.java

/ %%
* {@link Qualifier} to mark a Booking as new (created).
x/
@QQualifier
@Target ({ElementType.FIELD,ElementType.PARAMETER, ElementType .METHOD, ElementType.TYPE})
@Retention (RetentionPolicy.RUNTIME)
public @interface Created {

Ticket Monster Tutorial
140/319

What are qualifiers?

CDI uses a type-based resolution mechanism for injection and observers. In order to distinguish between implementations
of an interface, you can use qualifiers, a type of annotations, to disambiguate. Injection points and event observers can use
qualifiers to narrow down the set of candidates

We also need allow the removal of bookings, so we add a method:
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BookingService.java

@Singleton
public class BookingService extends BaseEntityService<Booking> {

@Inject @Cancelled
private Event<Booking> cancelledBookingEvent;

* <p>
* Delete a booking by id
* </p>
* (@param id
* @return
*/
@DELETE
@Path ("/{id:[0-9] [0-9] x} ")
public Response deleteBooking (@PathParam("id") Long id) {
Booking booking = getEntityManager () .find(Booking.class, id);
if (booking == null) {
return Response.status (Response.Status.NOT_FOUND) .build() ;
}
getEntityManager () .remove (booking) ;
cancelledBookingEvent.fire (booking);
return Response.ok () .build();

We use the @DELETE annotation to indicate that it will be executed as the result of an HTTP DELETE request (again, the use of
the DELETE HTTP verb is a matter of convention).

We need to notify the other components of the cancellation of the booking, so we fire an event, with a different qualifier.
src¢/main/java/org/jboss/jdf/example/ticketmonster/util/qualifier/Cancelled.java

/ x*
* {@link Qualifier} to mark a Booking as cancelled.
x/
@Qualifier
@Target ({ElementType.FIELD,ElementType.PARAMETER, ElementType .METHOD, ElementType.TYPE})
@Retention (RetentionPolicy.RUNTIME)
public @interface Cancelled {

The other services, including the MediaService that handles media items follow roughly the same patterns as above, so we
leave them as an exercise to the reader.

Ticket Monster Tutorial
141/319

Chapter 28

Testing the services

We’ve now finished implementing the services and there is a significant amount of functionality in the application. Before taking
any step forward, you need to make sure the services work correctly: we need to test them.

Testing enterprise services be a complex task as the implementation is based on services provided by a container: dependency
injection, access to infrastructure services such as persistence, transactions etc.. Unit testing frameworks, whilst offering a
valuable infrastructure for running tests, do not provide these capabilities.

One of the traditional approaches has been the use of mocking frameworks to simulate what will happen in the runtime environ-
ment. While certainly providing a solution mocking brings its own set of problems (e.g. the additional effort required to provide
a proper simulation or the risk of introducing errors in the test suite by incorrectly implemented mocks.

Fortunately, Arquillian provides the means to testing your application code within the container, with access to all the services
and container features. In this section we will show you how to create a few Arquillian tests for your business services.

What to test?

A common asked question is: how much application functionality should we test? The truth is, you can never test too much. That
being said, resources are always limited and tradeoffs are part of an engineer’s work. Generally speaking, trivial functionality
(setters/getters/toString methods) is a big concern compared to the actual business code, so you probably want to focus your
efforts on the business code. Testing should include individual parts (unit testing), as well as aggregates (integration testing).

28.1 A Basic Deployment Class

In order to create Arquillian tests, we need to define the deployment. The code under test, as well as its dependencies is packaged
and deployed in the container.

Much of the deployment contents is common for all tests, so we create a helper class with a method that creates the base
deployment with all the general content.

src/test/java/org/jboss/jdf/ticketmonster/test/TicketMonsterDeployment.java

public class TicketMonsterDeployment ({

public static WebArchive deployment () {
return ShrinkWrap

.create (WebArchive.class, "test.war")
.addPackage (Resources.class.getPackage())
.addAsResource ("META-INF/test-persistence.xml", "META-INF/persistence.xml")
.addAsResource ("import.sqgl")
.addAsWebInfResource (EmptyAsset .INSTANCE, "beans.xml")
// Deploy our test datasource
.addAsWebInfResource ("test-ds.xml") ;

Ticket Monster Tutorial
142 /319

Arquillian uses Shrinkwrap to define the contents of the deployment.

28.2 Writing RESTful service tests

For testing our JAX-RS RESTful services, we need to add the corresponding application classes to the deployment. Since we
need to do that for each test we create, we abide by the DRY principles and create a utility class.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/ RESTDeployment.java

public class RESTDeployment {

public static WebArchive deployment () {
return TicketMonsterDeployment.deployment ()

.addPackage (Booking.class.getPackage ())
.addPackage (BaseEntityService.class.getPackage ())
.addPackage (MockMultivaluedMap.class.getPackage ())
.addClass (SeatAllocationService.class)
.addClass (AllocatedSeats.class)
.addClass (MediaPath.class)
.addClass (MediaManager.class) ;

Now, we create the first test to validate the proper retrieval of individual events.
src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

@RunWith (Arquillian.class)
public class VenueServiceTest {

@Deployment
public static WebArchive deployment () {
return RESTDeployment.deployment () ;

@Inject
private VenueService venueService;

@Test
public void testGetVenueById() {

// Test loading a single venue

Venue venue = venueService.getSingleInstance(1ll);
assertNotNull (venue) ;

assertEquals ("Roy Thomson Hall", venue.getName());

In the class above we specify the deployment, and we define the test method. The test supports CDI injection - one of the
strengths of Arquillian is the ability to inject the object being tested.

Now, we test a more complicated use cases, query parameters for pagination.

src/test/java/org/jboss/jdf/ticketmonster/test/rest/VenueServiceTest.java

Ticket Monster Tutorial
143 /319

QRunWith (Arquillian.class)
public class VenueServiceTest {

@Test
public void testPagination() {

// Test pagination logic
MultivaluedMap<String, String> queryParameters = new MultivaluedHashMap<String,
String>();

queryParameters.add ("first", "2");
queryParameters.add ("maxResults", "1");

List<Venue> venues = venueService.getAll (queryParameters);
assertNotNull (venues) ;

assertEquals (1, venues.size());

assertEquals ("Sydney Opera House", venues.get (0).getName ());

We add another test method (testPagination), which tests the retrieval of all venues, passing the search criteria as parame-
ters. We use a Map to simulate the passing of query parameters.

Now, we test more advanced use cases such as the creation of a new booking. We do so by adding a new test for bookings
src/test/java/org/jboss/jdf/ticketmonster/test/rest/BookingServiceTest.java

QRunWith (Arquillian.class)
public class BookingServiceTest {

@Deployment
public static WebArchive deployment () {
return RESTDeployment.deployment () ;

@Inject
private BookingService bookingService;

@Inject
private ShowService showService;

@Test

@InSequence (1)

public void testCreateBookings () {
BookingRequest br = createBookingRequest (11, 0, 0, 1, 3);
bookingService.createBooking (br) ;

BookingRequest br2 = createBookingRequest (21, 1, 2, 4, 9);
bookingService.createBooking (br2);

BookingRequest br3 = createBookingRequest (31, 0, 0, 1);
bookingService.createBooking (br3);

@Test

@InSequence (10)

public void testGetBookings () {
checkBookingl () ;

Ticket Monster Tutorial

144 /319

checkBooking2 () ;
checkBooking3 () ;

private void checkBookingl () {
Booking booking = bookingService.getSingleInstance (1l1l);
assertNotNull (booking) ;
assertEquals ("Roy Thomson Hall",
booking.getPerformance () .getShow () .getVenue () .getName ()) ;
assertEquals ("Rock concert of the decade”,
booking.getPerformance () .getShow () .getEvent () .getName ()) ;
assertEquals ("bobl@acme.com", booking.getContactEmail());

// Test the ticket requests created

assertEquals (3 + 2 + 1, booking.getTickets () .size());

List<String> requiredTickets = new ArrayList<String>();

requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add("A @ 219.5 (Adult)");
requiredTickets.add ("D @ 149.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
requiredTickets.add("C @ 179.5 (Adult)");
checkTickets (requiredTickets, booking);

private void checkBooking2 ()
= bookingService.getSingleInstance (21);

Booking booking

{

assertNotNull (booking) ;

assertEquals ("Sydney Opera House",
booking.getPerformance () .getShow () .getVenue () .getName ()) ;

assertEquals ("Rock concert of the decade",
booking.getPerformance () .getShow () .getEvent () .getName ()) ;

assertEquals ("boblacme.com", booking.getContactEmail());

assertEquals(3 + 2 + 1, booking.getTickets () .size());

List<String> requiredTickets = new ArrayList<String>();
requiredTickets.add ("S2 @ 197.75 (Adult)");

requiredTickets.add("S6 @ 145. (Child 0-14yrs)");
requiredTickets.add ("S6 @ 145. (Child 0-14yrs)");
requiredTickets.add ("S4 @ 145. (Child 0-14yrs)");
requiredTickets.add("S6 @ 145. (Child 0-14yrs)");
requiredTickets.add ("S4 @ 145. (Child 0-14yrs)")

r

SO O O O

checkTickets (requiredTickets, booking);

private void checkBooking3 () {
Booking booking = bookingService.getSingleInstance (31);
assertNotNull (booking) ;
assertEquals ("Roy Thomson Hall",
booking.getPerformance () .getShow () .getVenue () .getName ()) ;
assertEquals ("Shane's Sock Puppets”,
booking.getPerformance () .getShow () .getEvent () .getName ()) ;
assertEquals ("bob@acme.com", booking.getContactEmail());

assertEquals (2 + 1, booking.getTickets () .size());

List<String> requiredTickets = new ArrayList<String>();

Ticket Monster Tutorial
145/319

requiredTickets.add ("B @ 199.5 (Adult)");
requiredTickets.add ("D @ 149.5 (Adult)");
requiredTickets.add ("B @ 199.5 (Adult)");

checkTickets (requiredTickets, booking);

@Test
@InSequence (10)
public void testPagination() {

// Test pagination logic
MultivaluedMap<String, String> queryParameters = new
MultivaluedHashMap<java.lang.String, java.lang.String>();

queryParameters.add("first", "2");
queryParameters.add ("maxResults", "1");

List<Booking> bookings = bookingService.getAll (queryParameters);
assertNotNull (bookings) ;
assertEquals (1, bookings.size());
assertEquals ("Sydney Opera House",

bookings.get (0) .getPerformance () .getShow () .getVenue () .getName ()) ;
assertEquals ("Rock concert of the decade"”,

bookings.get (0) .getPerformance () .getShow () .getEvent () .getName ()) ;

}

@Test
@InSequence (20)
public void testDelete () {
bookingService.deleteBooking(21);
checkBookingl () ;
checkBooking3 () ;
try {
bookingService.getSingleInstance (21);
} catch (Exception e) {
if (e.getCause() instanceof NoResultException) {
return;

}

fail ("Expected NoResultException did not occur.");

private BookingRequest createBookingRequest (Long showId, int performanceNo, int...
ticketPriceNos) {
Show show = showService.getSinglelInstance (showId);

Performance performance = new
ArrayList<Performance> (show.getPerformances ()) .get (performanceNo) ;

BookingRequest bookingRequest = new BookingRequest (performance, "boblacme.com");

List<TicketPrice> possibleTicketPrices = new
ArrayList<TicketPrice> (show.getTicketPrices());
int i = 1;
for (int index : ticketPriceNos) {
bookingRequest.addTicketRequest (new
TicketRequest (possibleTicketPrices.get (index), 1));
i++;

return bookingRequest;

Ticket Monster Tutorial
146 /319

private void checkTickets (List<String> requiredTickets, Booking booking) {
List<String> bookedTickets = new ArrayList<String>();
for (Ticket t : booking.getTickets()) {
bookedTickets.add (new StringBuilder () .append(t.getSeat () .getSection()) .append("” @
") .append(t.getPrice()) .append ("
(") .append (t.getTicketCategory()) .append (") ") .toString());
}
System.out.println (bookedTickets);
for (String requiredTicket : requiredTickets) {
Assert.assertTrue ("Required ticket not present: " + requiredTicket,
bookedTickets.contains (requiredTicket));

}

First we test booking creation in a test method of its own (testCreateBookings). Then, we test that the previously created
bookings are retrieved correctly (testGetBookings and testPagination). Finally, we test that deletion takes place
correctly (testDelete).

The other tests in the application follow roughly the same pattern and are left as an exercise to the reader.

28.3 Running the tests

If you have followed the instructions in the introduction and used the Maven archetype to generate the project structure, you
should have two profiles already defined in your application.

/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<profile>

<!-- An optional Arquillian testing profile that executes tests
in your JBoss AS instance ——>
<!—— This profile will start a new JBoss AS instance, and execute
the test, shutting it down when done —-->
<!-—— Run with: mvn clean test -Parg-jbossas-managed —-—>
<id>arg-jbossas-managed</id>
<dependencies>
<dependency>
<groupId>org. jboss.as</groupld>
<artifactId>jboss-as—-arquillian-container-managed</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
</profile>
<profile>
<!—— An optional Arquillian testing profile that executes tests
in a remote JBoss AS instance ——>
<!-— Run with: mvn clean test -Parg-jbossas—-remote ——>

<id>arg-jbossas—-remote</id>

Ticket Monster Tutorial
147 /319

<dependencies>
<dependency>
<groupId>org. jboss.as</groupld>
<artifactId>jboss-as—-arquillian-container-remote</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
</profile>

</profiles>
</project>
If you haven’t used the archetype, or the profiles don’t exist, create them.

Each profile defines a different Arquillian container. In both cases the tests execute in an application server instance. In one case
(arg-jbossas-managed) the server instance is started and stopped by the test suite, while in the other (arg—jbossas-remote),
the test suite expects an already started server instance.

Once these profiles are defined, we can execute the tests in two ways:

¢ from the command-line build

e from an IDE

28.3.1 Executing tests from the command line
You can now execute the test suite from the command line by running the Maven build with the appropriate target and profile, as
in one of the following examples.

After ensuring that the JBOSS_HOME environment variable is set to a valid JBoss AS7 installation directory), you can run the
following command:

mvn clean test -Parg-jbossas-managed

Or, after starting a JBoss AS7 instance, you can run the following command

mvn clean test -Parg-jbossas-remote

These tests execute as part of the Maven build and can be easily included in an automated build and test harness.

28.3.2 Running Arquillian tests from within Eclipse

Running the entire test suite as part of the build is an important part of the development process - you may want to make sure that
everything is working fine before releasing a new milestone, or just before committing new code. However, running the entire
test suite all the time can be a productivity drain, especially when you’re trying to focus on a particular problem. Also, when
debugging, you don’t want to leave the comfort of your IDE for running the tests.

Running Arquillian tests from JBoss Developer Studio or JBoss tools is very simple as Arquillian builds on JUnit (or TestNG).

First enable one of the two profiles in the project. In Eclipse, open the project properties, and from the Maven tab, add the profile
as shown in the picture below.

Ticket Monster Tutorial
148 /319

8 00 Properties for ticket-monster
type filter text Maven A B
P Resource
Builders Active Maven Profiles (comma separated):

P CDI (Context and Dependen
Deployment Assembly
Expression Language Valida @ Resolve dependencies from Workspace projects
FreeMarker Context

» Coogle
Hibernate Settings
Java Build Path

»Java Code Style

P Java Compiler

P Java Editor
Javadoc Location

P Javascript

P JBoss Tools Knowledge Base

b IPA
J5F Validation
JSP Fragment

¥ Maven

Lifecycle Mapping
WTP Integration

Iarq—Jhn;sa;—remnte I

Figure 28.1: Update Maven profiles in Eclipse

The project configuration will be updated automatically.
Now, you can click right on one of your test classes, and select Run As — JUnit Test.

The test suite will run, deploying the test classes to the application server, executing the tests and finally producing the much
coveted green bar.

[2 Markers |1 properties |4 Servers |8 Data Source Explorer | [Snippets ME Console | =0

Finished after 2.461 seconds &® o | @, -~
¥ Fiijorg jboss.idf. test rest. Test [Runner: JUnit = Failure Trace 3

£ testGetVenueByld (0.064 s)
£ testPagination (0.082 s)

Figure 28.2: Running the tests

Ticket Monster Tutorial
149 /319

Part V

Building The User Ul Using HTMLS

Ticket Monster Tutorial
150/319

Chapter 29

What Will You Learn Here?

We’ve just implemented the business services of our application, and exposed them through RESTful endpoints. Now we need
to implement a flexible user interface that can be easily used with both desktop and mobile clients. After reading this tutorial,
you will understand our front-end design and the choices that we made in its implementation. Topics covered include:

* Creating single-page applications using HTMLS5, JavaScript and JSON
* Using JavaScript frameworks for invoking RESTful endpoints and manipulating page content
* Feature and device detection

* Implementing a version of the user interface that is optimized for mobile clients using JavaScript frameworks such as jQuery
mobile

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial
151/319

Chapter 30

First, the basics

In this tutorial, we will build a single-page application. All the necessary code: HTML, CSS and JavaScript is retrieved within a
single page load. Rather than refreshing the page every time the user changes a view, the content of the page will be redrawn by
manipulating the DOM in JavaScript. The application uses REST calls to retrieve data from the server.

Singe HTMLS 1 REST
page services

Figure 30.1: Single page application

30.1 Client-side MVC Support

Because this is a moderately complex example, which involves multiple views and different types of data, we will use a client-side
MVC framework to structure the application, which provides amongst others:

* routing support within the single page application;
¢ event-driven interaction between views and data;

* simplified CRUD invocations on RESTful services.

In this application we use the client-side MVC framework "backbone.js".

Ticket Monster Tutorial

152 /319
o backbone.js

: #url E

: events user action

E ~———

: execute

- - Client
Server

REST
service

Domain

Figure 30.2: Backbone architecture

30.2 Modularity

In order to provide good separation of concerns, we split the JavaScript code into modules. Ensuring that all the modules of the
application are loaded properly at runtime becomes a complex task, as the application size increases. To conquer this complexity,
we use the Asynchronous Module Definition mechanism as implemented by the "require.js" library.

Asynchronous Module Definition

The Asynchronous Module Definition (AMD) API specifies a mechanism for defining modules such that the module, and its
dependencies, can be asynchronously loaded. This is particularly well suited for the browser where synchronous loading of
modules incurs performance, usability, debugging, and cross-domain access problems.

30.3 Templating

Instead of manipulating the DOM directly, and mixing up HTML with the JavaScript code, we create HTML markup fragments
separately as templates which are applied when the application views are rendered.

Ticket Monster Tutorial
153 /319

In this application we use the templating support provided by "underscore.js".

30.4 Mobile and desktop versions

The page flow and structure, as well as feature set, are slightly different for mobile and desktop, and therefore we will build two
variants of the single-page-application, one for desktop and one for mobile. As the application variants are very similar, we will
cover the desktop version of the application first, and then we will explain what is different in the mobile version.

Ticket Monster Tutorial
154 /319

Chapter 31

Setting up the structure

Before we start developing the user interface, we need to set up the general application structure and add the JavaScript libraries.
First, we create the directory structure:

¥ = src
¥ i=-main
¥ = webapp
P (= admin
¥ = resources
P (= css
P (= img
V(= is
¥ (=app
P (= collections
b = models
P (= router
b (views
utilities.js
b = configurations
L Elbs
¥ i=templates
I i =- desktop
= mobile

Figure 31.1: File structure for our web application

We put stylesheets in resources/css folder, images in resources/img, and HTML view templates in resources/template
resources/ js contains the JavaScript code, split between resources/ js/1libs - which contains the libraries used by the
application, resources/ js/app - which contains the application code, and resources/js/configurations which
contains module definitions for the different versions of the application - i.e. mobile and desktop. The resources/js/app

folder will contain the application modules, in subsequent subdirectories, for models, collections, routers and views.

Ticket Monster Tutorial
155/319

The first step in implementing our solution is adding the stylesheets and JavaScript libraries to the resources/css and
resources/js/libs:

require.js
AMD support, along with the plugin:

* text - for loading text files, in our case the HTML templates

jQuery
general purpose library for HTML traversal and manipulation

Underscore
JavaScript utility library (and a dependency of Backbone)

Backbone
Client-side MVC framework

Bootstrap
UI components and stylesheets for page structuring

Now, we create the main page of the application (which is the URL loaded by the browser):
src¢/main/webapp/index.html

<!DOCTYPE html>
<html>
<head>
<title>Ticket Monster</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0"/>

<script type="text/javascript" srec="resources/js/libs/modernizr-2.0.6.js"></script>
<script type="text/javascript" src="resources/js/libs/require.js"
data-main="resources/js/configurations/loader"></script>
</head>
<body>
</body>
</html>

As you can see, the page does not contain much. It loads Modernizr (for HTMLS and CSS3 feature detection) and Require]JS
(for loading JavaScript modules in an asynchronous manner). Once Require]JS is loaded by the browser, it will configure itself to
use a baseUrl of resources/Jjs/configurations (specified via the data-main attribute on the script tag). All
scripts loaded by RequireJS will use this baseUr1 unless specified otherwise.

RequireJS will then load a script having a module ID of 1oader (again, specified via the data—-main attribute):
src¢/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define (function () {

/ *

A simple check on the client. For touch devices or small-resolution screens)

show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/
var environment;
if (Modernizr.touch || Modernizr.mg("only all and (max-width: 480px)")) {

environment = "mobile"
} else {

Ticket Monster Tutorial
156 /319

environment = "desktop"

require ([environment]) ;
1) ;

This script detects the current client (mobile or desktop) based on its capabilities (touch or not) and loads another JavaScript mod-
ule (desktop or mobile) defined in the resources/js/configurations folder (aka the baseUrl) depending on the
detected features. In the case of the desktop client, the code is loaded from resources/js/configurations/desktop. js.

src¢/main/webapp/resources/js/configurations/desktop.js

/K x
* Shortcut alias definitions - will come in handy when declaring dependencies

* Also, they allow you to keep the code free of any knowledge about library

* locations and versions
x/
requirejs.config({
baseUrl: "resources/js",
paths: {
jquery: 'libs/jquery-1.9.1",
underscore: 'libs/underscore’,
text: 'libs/text’,
bootstrap: 'libs/bootstrap’',
backbone: 'libs/backbone’,
utilities: 'app/utilities’,
router: 'app/router/desktop/router’

b
// We shim Backbone.js and Underscore.js since they don't declare AMD modules

shim: {
'backbone': {
deps: ['jquery', 'underscore'],
exports: 'Backbone'

by

'underscore': {
exports: '_'

1) g

define("initializer", ["jquery"],
function ($) {
// Configure jQuery to append timestamps to requests,
// Important for MSIE
$.ajaxSetup ({cache:false});
$('head') .append ('<link type="text/css" rel="stylesheet"

href="resources/css/screen.css"/>");
S ('head') .append('<link rel="stylesheet" href="resources/css/bootstrap.css"

to bypass browser caches

type="text/css" media="all"/>'");
$('head') .append('<link rel="stylesheet" href="resources/css/custom.css" type="text/css"

media="all">");
$('head') .append('<link href="http://fonts.googleapis.com/css?family=Rokkitt"
rel="stylesheet" type="text/css">");

})i

// Now we load the dependencies

// This loads and runs the 'initializer' and 'router' modules.

require ([
'initializer',
'router’

1, function|() {

Ticket Monster Tutorial
157 /319

1)

define ("configuration", {
baseUrl : ""
1) ;

The module loads all the utility libraries, converting them to AMD modules where necessary (like it is the case for Backbone). It
also defines two modules of its own - an initializer that loads the application stylesheets for the page, and the configuration
module that allows customizing the REST service URLSs (this will become in handy in a further tutorial).

Before we add any functionality, let us create a first landing page. We will begin by setting up a critical piece of the application,
the router.

31.1 Routing

The router allows for navigation in our application via bookmarkable URLSs, and we will define it as follows:

src/main/webapp/resources/js/app/router/desktop/router.js

[**
* A module for the router of the desktop application
*/

define ("router"”, [

'jquery',
'"underscore',
'configuration',
'utilities',
'text!../templates/desktop/main.html’
], function (S,
—
config,
utilities,
MainTemplate) {

$ (document) . ready (new function () {
utilities.applyTemplate ($('body'), MainTemplate)
})

/[**
* The Router class contains all the routes within the application -
* i.e. URLs and the actions that will be taken as a result.
*
* @type {Router}
*/

var Router = Backbone.Router.extend ({
initialize: function() {
//Begin dispatching routes
Backbone.history.start ();
}I
routes: {
}
}) i

// Create a router instance
var router = new Router();

return router;

Ticket Monster Tutorial

158 /319

Remember, this is a single page application. You can either navigate using urls suchashttp://localhost:8080/ticket-mons:
or using relative urls (from within the application, this being exactly what the main menu does). The fragment after the hash sign
represents the url within the single page, on which the router will act, according to the mappings set up in the routes property.

The main module needs to load it. Because the router depends on all the other components (models, collections and views) of the
application, directly or indirectly, it is the only component that is explicitly loaded in the de skt op definition, which we change
as follows:

src/main/webapp/resources/js/configurations/desktop.js

requirejs.config ({

baseUrl: "resources/js",

paths: {
jquery: 'libs/jquery-1.9.1",
underscore: 'libs/underscore’,
text: 'libs/text’,
order: 'libs/order’',
bootstrap: 'libs/bootstrap’',
backbone: 'libs/backbone’,
utilities: 'app/utilities’,
router: 'app/router/desktop/router’

b
// We shim Backbone.js and Underscore.js since they don't declare AMD modules

shim: {
'backbone': {
deps: ['jquery', 'underscore'l,
exports: 'Backbone'
}I
'underscore': {
exports: '_'
}
}
1) i
require ([

1y

1)

'order!initializer',
'"order!underscore’',
'order!backbone’,
'order!router'

function () {

During the router set up, we load the page template for the entire application. TicketMonster uses a templating library in order to
separate application logic from it’s actual graphical content. The actual HTML is described in template files, which are applied
by the application, when necessary, on a DOM element - effectively populating it’s content. So the general content of the page,
as described in the body element is described in a template file too. Let us define it.

/sre/main/webapp/resources/templates/desktop/main.html

gl==

-—>

The main layout of the page - contains the menu and the 'content' <div/> in which
all the
views will render the content.

<div id="logo"><div class="wrap"><hl>Ticket Monster</hl></div></div>
<div id="container">

<div id="menu">
<div class="navbar">
<div class="navbar-inner">
<div class="container">
<ul class="nav">

Ticket Monster Tutorial

159 /319

href="#about">About</1i>
href="#events">Events</1li>
href="#venues">Venues</1i>
href="#bookings">Bookings</1i>
href="booking-monitor.html">Monitor</1i>
href="admin">Administration</1li>

<a
<a
<a
<a
<a
<a

</div>
</div>
</div>

</div>

<div id="content" class="container-fluid">

</div>

</div>

<footer style="">

<div style="text—-align: center;"><img src="resources/img/dualbrand_as7eap.png"

alt="HTML5"/></div>
</footer>

The actual HTML code of the template contains a menu definition which will be present on all the pages, as well as an empty
element named content, which is the placeholder for the application views. When a view is displayed, it will apply a template

and populate the content element.

Ticket Monster Tutorial
160/319

Chapter 32

Setting up the initial views

Let us complete our application setup by creating an initial landing page. The first thing that we will need to do is to add a view
component.

src¢/main/resources/js/app/views/desktop/home.js

/ %%
* The About view
x/
define ([
'utilities',
"text!../../../../templates/desktop/home.html’
1, function (utilities, HomeTemplate) ({

var HomeView = Backbone.View.extend ({
render: function () {
utilities.applyTemplate ($ (this.el), HomeTemplate, {});
return this;

P

return HomeView;
1)

Functionally, this is a very basic component - it only renders the splash page of the application, but it helps us introduce a
new concept that will be heavily used throughout the application views. One main role of a view is to describe the logic for
manipulating the page content. It will do so by defining a function named render which will be invoked by the application. In
this very simple case, all that the view does is to create the content of the splash page. You can proceed by copying the content
of src/main/webapp/resources/templates/desktop/home.html to your project.

Backbone Views

Views are logical representations of user interface elements that can interact with data components, such as models in an
event-driven fashion. Apart from defining the logical structure of your user interface, views handle events resulting from the
user interaction (e.g. clicking a DOM element or selecting an element into a list), translating them into logical actions inside the
application.

Once we defined a view, we must tell the router to navigate to it whenever requested. We will add the following mapping to the
router:

src/main/webapp/resources/js/app/router/desktop/router.js

var Router = Backbone.Router.extend ({

Ticket Monster Tutorial
161/319

routes : {
"": "home",
"about": "home"
}I
home : function () {
utilities.viewManager.showView (new HomeView ({el:$ ("#content")}));

We have just told the router to invoke the home function whenever the user navigates to the root of the application or uses a
#about hash. The method will simply cause the HomeView defined above to render.

Now you can navigatetohttp://localhost:8080/ticket-monster/#about orhttp://localhost:8080/ticket-
and see the results.

Ticket Monster Tutorial
162 /319

Chapter 33

Displaying Events

The first use case that we implement is event navigation. The users will be able to view the list of events and select the one that
they want to attend. After doing so, they will select a venue, and will be able to choose a performance date and time.

33.1 The Event model

We define a Backbone model for holding event data. Nearly all domain entities (booking, event, venue) are represented by a
corresponding Backbone model:

src¢/main/webapp/resources/js/app/models/event.js

/ %%
* Module for the Event model
x/
define ([
'configuration'
], function (config) {
/[**

* The Event model class definition

* Used for CRUD operations against individual events

*/
var Event = Backbone.Model.extend ({

urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations

1)
// export the Event class
return Event;

1)

The Event model can perform CRUD operations against the REST services we defined earlier.

Backbone Models
Backbone models contain data as well as much of the logic surrounding it: conversions, validations, computed properties, and
access control. They also perform CRUD operations with the REST service.

33.2 The Events collection

We define a Backbone collection for handling groups of events (like the events list):

src¢/main/webapp/resources/js/app/collections/events.js

Ticket Monster Tutorial
163 /319

/ %%
* Module for the Events collection
*/
define ([
// The collection element type and configuration are dependencies
'app/models/event ',
"configuration'
], function (Event, config) {
/ x %

* Here we define the Bookings collection

* We will use it for CRUD operations on Bookings

*/

var Events = Backbone.Collection.extend ({
url: config.baseUrl + "rest/events"”, // the URL for performing CRUD operations
model: Event,
id:"id", // the 'id' property of the model is the identifier
comparator:function (model) {
return model.get ('category') .id;

P

return Events;

1)

By mapping the model and collection to a REST endpoint you can perform CRUD operations without having to invoke the
services explicitly. You will see how that works a bit later.

Backbone Collections
Collections are ordered sets of models. They can handle events which are fired as a result of a change to a individual member,

and can perform CRUD operations for syncing up contents against RESTful services.

33.3 The EventsView view

Now that we have implemented the data components of the example, we need to create the view that displays them.
src¢/main/webapp/resources/js/app/views/desktop/events.js

define ([
'utilities',
'text!../../../../templates/desktop/events.html’
1, function (
utilities,
eventsTemplate) {

var EventsView = Backbone.View.extend ({
events: {
"click a":"update"
}I
render: function () {
var categories = _.uniqg(
_.map (this.model.models, function (model) {
return model.get ('category')
}), false, function(item) {
return item.id
}) i
utilities.applyTemplate ($ (this.el), eventsTemplate, {categories:categories,
model :this.model})
S(this.el) .find('.item:first') .addClass ('active');

Ticket Monster Tutorial
164 /319

$(".carousel") .carousel () ;
S(".collapse") .collapse();
S ("a[rel="'popover']").popover ({trigger: "hover',container: 'body'});

return this;

}o
update: function () {
$("a[rel="popover']") .popover ('hide')

)i

return EventsView;

1)

As we explained, earlier, the view is attached to a DOM element (the el property). When the render method is invoked, it
manipulates the DOM and renders the view. We could have achieved this by writing these instructions directly in the method,
but that would make it hard to change the page design later on. Instead, we create a template and apply it, thus separating the

HTML view code from the view implementation.
src/main/webapp/resources/templates/desktop/events.html

<div class="row-fluid">
<div class="span3">
<div id="itemMenu'">

<
_.each(categories, function (category) {
%>
<div class="accordion—-group">
<div class="accordion-heading">
<a class="accordion-toggle"
data-target="#category-<$=category.id%$>-collapsible"
data-toggle="collapse”
data-parent="#itemMenu"><%= category.description %>
</div>
<div id="category-<%=category.id%>-collapsible" class="collapse in

o°

accordion-body">
<div id="category-<%- category.id%>" class="accordion-inner">

<

_.each (model.models, function (model) {

if (model.get ('category') .id == category.id) {

%>

<p><a href="#events/<$- model.attributes.id$>" rel="popover"
data-content="<%- model.attributes.description%>"
data-original-title="<%-

model.attributes.name$>"><%=model.attributes.name%$></p>

o°

<% }
1) i
</div>

</div>

</div>
<% 1) %>
</div>
</div>

<div id='itemSummary' class="span9">
<div class="row-fluid">
<div class="spanll">
<div id="eventCarousel" class="carousel'">
<!-- Carousel items —-->
<div class="carousel-inner">

Ticket Monster Tutorial
165/319

<%_.each (model.models, function (model) { %>
<div class="item">
<img src='rest/media/<%$=model.attributes.medialtem.id%>"'/>

<div class="carousel-caption">
<h4><%=model.attributes.name%></h4>

<p><%=model.attributes.description%$></p>
<a class="btn btn-danger" href="#events/<$=model.id$>">Book

tickets
</div>
</div>
<% }) %>
</div>
<!—-- Carousel nav —-—>

<a class="carousel-control left" href="#eventCarousel"
data-slide="prev">‹

<a class="carousel-control right" href="#eventCarousel"
data-slide="next">›

</div>
</div>
</div>
</div>
</div>

As well as applying the template and preparing the data that will be used to fill it in (the categories and model entries in
the map), the render method also performs the JavaScript calls that are required to initialize the UI components (in this case
the Bootstrap carousel and popover).

A view can also listen to events fired by the children of it’s root element (e 1). In this case, the update method is configured to
listen to clicks on anchors. The configuration occurs within the event s property of the class.

Now that the views are in place, we need to add another routing rule to the application.
src/main/webapp/resources/js/app/router/desktop/router.js

var Router = Backbone.Router.extend ({

routes : {
.7
"events": "events"
}I
.7
events:function () {
var events = new Events();

var eventsView = new EventsView ({model:events, el:$("#content")});
events.bind("reset",
function () {
utilities.viewManager.showView (eventsView) ;
}) .fetch();

P

The events function handles the #event s fragment and will retrieve the events in our application via a REST call. We don’t
manually perform the REST call as it is triggered the by invocation of fetch on the Events collection, as discussed earlier.

The reset event on the collection is invoked when the data from the server is received, and the collection is populated. This
triggers the rendering of the events view (which is bound to the #content div).

The whole process is event orientated - the models, views and controllers interact through events.

Ticket Monster Tutorial
166 /319

Chapter 34

Viewing a single event

With the events list view now in place, we can add a view to display the details of each individual event, allowing the user to
select a venue and performance time.

We already have the models in place so all we need to do is to create the additional view and expand the router. First, we’ll
implement the view:

src/main/webapp/resources/js/app/views/desktop/event-detail.js

define ([
'utilities',
'require’,
'text!../../../../templates/desktop/event-detail.html’,
'text!../../../../templates/desktop/media.html’,
'text!../../../../templates/desktop/event-venue-description.html’,
'configuration',
'bootstrap'
], function (
utilities,
require,
eventDetailTemplate,
mediaTemplate,
eventVenueDescriptionTemplate,
config,
Bootstrap) {

var EventDetail = Backbone.View.extend ({

events: {
"click input [name='bookButton']":"beginBooking",
"change select[id='venueSelector']":"refreshShows",
"change select[id='dayPicker']":"refreshTimes"

b

render:function () {

S (this.el) .empty ()
utilities.applyTemplate ($ (this.el), eventDetailTemplate, this.model.attributes);
S ("#bookingOption") .hide () ;
S ("#venueSelector") .attr ('disabled', true);
S ("#dayPicker") .empty () ;
S ("#dayPicker") .attr ('disabled', true)
S ("#performanceTimes") .empty () ;
S ("#performanceTimes") .attr ('disabled’, true)
var self = this
$.getJSON (config.baseUrl + "rest/shows?event=" + this.model.get ('id'), function
(shows) {

Ticket Monster Tutorial
167 /319

self.shows = shows
S ("#venueSelector”) .empty () .append ("<option value='0' selected>Select a
venue</option>");
$.each (shows, function (i, show) ({
S ("#venueSelector") .append ("<option value='" + show.id + "'>" +
show.venue.address.city + " : " + show.venue.name + "</option>")
}) i
S ("#venueSelector") .removeAttr ('disabled’)
})
return this;
}I
beginBooking:function () {
require ("router") .navigate ('/book/' + $("#venueSelector option:selected") .val() +
/' + $("#performanceTimes") .val(), true)
}I
refreshShows: function (event) ({
event.stopPropagation () ;
$ ("#dayPicker") .empty () ;

var selectedShowId = event.currentTarget.value;

if (selectedShowId != 0) {
var selectedShow = _.find(this.shows, function (show) ({
return show.id == selectedShowId

}) i
this.selectedShow = selectedShow;
utilities.applyTemplate ($ ("#eventVenueDescription"),
eventVenueDescriptionTemplate, {venue:selectedShow.venue});
var times = _.unig(_.sortBy(_.map (selectedShow.performances, function
(performance) {
return (new Date (performance.date) .withoutTimeOfDay ()) .getTime ()
}), function (item) {
return item
P)) i
utilities.applyTemplate ($ ("#venueMedia"), mediaTemplate, selectedShow.venue)
$ ("#dayPicker") .removelAttr ('disabled’)
S ("#performanceTimes") .removelAttr ('disabled’)
_.each(times, function (time) {
var date = new Date (time)
S ("#dayPicker") .append ("<option value='" + date.toYMD() + "'>" +
date.toPrettyStringWithoutTime () + "</option>")
}) i
this.refreshTimes ()
S ("#bookingWhen") .show (100)
} else {
S ("#bookingWhen™) .hide (100)

S ("#bookingOption") .hide ()
$ ("#dayPicker") .empty ()
$ ("#venueMedia") .empty ()
S ("#eventVenueDescription") .empty ()
$ ("#dayPicker") .attr ('disabled', true)
S ("#performanceTimes") .empty ()
S ("#performanceTimes") .attr ('disabled’', true)
}
}o
refreshTimes:function () {

var selectedDate = $("#dayPicker").val();
S ("#performanceTimes") .empty ()
if (selectedDate) {
$.each (this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date (performance.date);

Ticket Monster Tutorial

168 /319
if (_.isEqual (performanceDate.toYMD (), selectedDate)) {
S ("#performanceTimes") .append ("<option value='" + performance.id +
"!'>" + performanceDate.getHours () .toZeroPaddedString(2) + ":" +

performanceDate.getMinutes () .toZeroPaddedString (2) + "</option>")
}
1)
}
S ("#bookingOption") .show ()

1)

return EventDetail;
1) i

This view is more complex than the global events view, as portions of the page need to be updated when the user chooses a venue.

Ticket Monster Tutorial
169 /319

i ™
" ~
Venue image
i
Venue / w
Selector = Venue details
" ~
Performance times
S y,
Event details
(N
Section
Selector
é ~
Ticket quantity
inputs Ticket Summary
. y.

Create booking

Figure 34.1: On the event details page some fragments are re-rendered when the user selects a venue

The view responds to three different events:

 changing the current venue triggers a reload of the venue details and the venue image, as well as the performance times. The

Ticket Monster Tutorial

170/319

application retrieves the performance times through a REST call.
* changing the day of the performance causes the performance time selector to reload.

* once the venue and performance date and time have been selected, the user can navigate to the booking page.

The corresponding templates for the three fragments rendered above are:
src/main/webapp/resources/templates/desktop/event-detail.html

<div class="row-fluid" xmlns="http://www.w3.0rg/1999/html">
<h2 class="page-header special-title light-font"><%=name%$></h2>
</div>
<div class="row-fluid">
<div class="span4 well">
<div class="row-fluid"><h3 class="page-header spané6">What?</h3>
<img width="100" src='rest/media/<%=medialtem.id%>"'/></div>
<div class="row-fluid">
<p> </p>

<div class="spanl2"><%= description %></div>
</div>
</div>
<div class="span4 well">
<div class="row-fluid"><h3 class="page-header span6">Where?</h3>
<div class="span6" id='venueMedia'/>
</div>
<div class='row-fluid'><select id='venueSelector'/>
<div id="eventVenueDescription"/>
</div>
</div>
<div id='bookingWhen' style="display: none;" class="span4 well">
<h3 class="page-header">When?</h3>
<select class="span6" id="dayPicker"/>
<select class="spané6" id="performanceTimes"/>

<div id='bookingOption'><input name="bookButton" class="btn btn-primary" type="button"

value="Order tickets"></div>
</div>
</div>

src¢/main/webapp/resources/templates/desktop/event-venue-description.html

<address>
<p><%= venue.description %></p>
<p>Address:</p>
<p><%= venue.address.street $></p>
<p><%= venue.address.city %>, <%= venue.address.country %></p>
</address>

Now that the view exists, we add it to the router:
src/main/webapp/resources/js/app/router/desktop/router.js

/[x %
* A module for the router of the desktop application
*/

define ("router", [

'app/models/event’',
.

'app/views/desktop/event-detail’,

Ticket Monster Tutorial
171/319

], function (
Event,

EventDetailView,

o) 1
var Router = Backbone.Router.extend ({
Léﬁtes:{
;é;ents/:id":"eventDetail",
}o

eventDetail:function (id) {
var model = new Event ({id:id});
var eventDetailView = new EventDetailView ({model:model, el:$("#content")});
model .bind ("change”,
function () {
utilities.viewManager.showView (eventDetailView) ;
}) .fetch();

)

As you can see, this is very similar to the previous view and route, except that now the application can accept parameterized
URLs (e.g. http://localhost:8080/ticket—-monster/index#events/1). This URL can be entered directly into
the browser, or it can be navigated to as a relative path (e.g. #events/1) from within the applicaton.

With this in place, all that remains is to implement the final view of this use case, creating the bookings.

Ticket Monster Tutorial
172 /319

Chapter 35

Creating Bookings

The user has chosen the event, the venue and the performance time, and must now create the booking. Users can select one of the
available sections for the show’s venue, and then enter the number of tickets required for each category available for this show
(Adult, Child, etc.). They then add the tickets to the current order, which causes the summary view to be updated. Users can also
remove tickets from the order. When the order is complete, they enter their contact information (e-mail address) and submit the
order to the server.

First, we add the new view:
src/main/webapp/resources/js/app/views/desktop/create-booking.js

define ([
'utilities',
'require’,
"configuration',
"text!../../../../templates/desktop/booking-confirmation.html’,
'text!../../../../templates/desktop/create-booking.html’,
"text!../../../../templates/desktop/ticket—-categories.html’,
"text!../../../../templates/desktop/ticket-summary-view.html',
'bootstrap’

], function (
utilities,
require,
config,
bookingConfirmationTemplate,
createBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate) {

var TicketCategoriesView = Backbone.View.extend ({

id: 'categoriesView',
intervalDuration : 100,
formvValues : [],
events: {

"change input":"onChange"
}I
render: function () {

if (this.model != null) {

var ticketPrices = _.map (this.model, function (item) ({

return item.ticketPrice;
}) i
utilities.applyTemplate ($(this.el), ticketEntriesTemplate,
{ticketPrices:ticketPrices});
} else {
$(this.el) .empty () ;

Ticket Monster Tutorial
173 /319

}
this.watchForm() ;
return this;

}I

onChange: function (event) {

var value = event.currentTarget.value;

var ticketPriceId = $(event.currentTarget) .data ("tm—-1id");

var modifiedModelEntry = _.find(this.model, function (item) {
return item.ticketPrice.id == ticketPriceld

1) i
// update model
if ($.isNumeric(value) && value > 0) {
modifiedModelEntry.quantity = parselnt (value);
}
else {
delete modifiedModelEntry.quantity;
}
// display error messages
if (value.length > 0 &&
(!$.isNumeric(value) // is a non-number, other than empty string
|| value <= 0 // is negative
| | parseFloat (value) != parselnt(value))) { // is not an integer
S ("#error-input-"+ticketPriceId) .empty () .append("Please enter a positive
integer value");
S ("#ticket-category-fieldset-"+ticketPriceld) .addClass ("error")
} else {
$("#error-input-"+ticketPriceld) .empty () ;
S ("#ticket—-category—-fieldset—"+ticketPriceld) .removeClass ("error")
}
// are there any outstanding errors after this update?
// if yes, disable the input button

if (
S("div[id*="ticket-category-fieldset—-"']") .hasClass ("error") ||
_.isUndefined(modifiedModelEntry.quantity)) {
S ("input [name="add']") .attr ("disabled", true)
} else {

S ("input [name="add'] ") .removeAttr ("disabled")

o
watchForm: function() {
if (S ("#sectionSelectorPlaceholder”) .length) {
var self = this;

S ("input [namex="tickets']") .each(function (index,element) ({
if (element.value !== self.formValues|[element.name]) {
self.formValues[element.name] = element.value;
S ("input [name="'"+element .name+"'] ") .change () ;
}
1) i
this.timerObject = setTimeout (function () {

self.watchForm() ;
}, this.intervalDuration);
} else {
this.onClose();

}I
onClose: function () {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;

Ticket Monster Tutorial
174 /319

var TicketSummaryView = Backbone.View.extend ({
tagName: '"tr’,
events: {
"click 1i":"removeEntry"
}I
render:function () {
var self = this;
utilities.applyTemplate ($(this.el), ticketSummaryViewTemplate,
this.model.bookingRequest) ;
}I
removeEntry:function () {
this.model.bookingRequest.tickets.splice (this.model.index, 1);

1)
var CreateBookingView = Backbone.View.extend ({

intervalDuration : 100,

formvalues : [],

events: {
"click input [name='submit']":"save",
"change select[id='sectionSelect']":"refreshPrices",
"keyup #email":"updateEmail",
"change #email": "updateEmail",
"click input [name='add']":"addQuantities",
"click 1i":"updateQuantities"

}I

render: function () {

var self = this;
$.getJSON (config.baseUrl + "rest/shows/" + this.model.showId, function
(selectedShow) {

self.currentPerformance = _.find(selectedShow.performances, function (item) {
return item.id == self.model.performanceld;

1)

var id = function (item) {return item.id;};
// prepare a list of sections to populate the dropdown
var sections = _.unig(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'),
id), true, id);
utilities.applyTemplate ($(self.el), createBookingTemplate, {
sections:sections,
show:selectedShow,
performance:self.currentPerformance});
self.ticketCategoriesView = new TicketCategoriesView ({model:{},
el:$ ("#ticketCategoriesViewPlaceholder") 1});
self.ticketSummaryView = new TicketSummaryView ({model:self.model,
el:S$ ("#ticketSummaryView") }) ;
self.show = selectedShow;
self.ticketCategoriesView.render () ;
self.ticketSummaryView.render () ;
$("#sectionSelector") .change () ;
self.watchForm();
1)
return this;
}I
refreshPrices:function (event) {
var ticketPrices = _.filter (this.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;

1)

Ticket Monster Tutorial

175/ 319
var sortedTicketPrices = _.sortBy(ticketPrices, function (ticketPrice) {
return ticketPrice.ticketCategory.description;
1) i
var ticketPricelnputs = new Array();
_.each(sortedTicketPrices, function (ticketPrice) {
ticketPriceInputs.push({ticketPrice:ticketPrice});
1) i
this.ticketCategoriesView.model = ticketPricelnputs;
this.ticketCategoriesView.render () ;
}I
save: function (event) {
var bookingRequest = {ticketRequests:[]};
var self = this;
bookingRequest.ticketRequests = _.map (this.model.bookingRequest.tickets, function

(ticket) {
return {ticketPrice:ticket.ticketPrice.id, quantity:ticket.gquantity}
1)
bookingRequest.email = this.model.bookingRequest.email;
bookingRequest.performance = this.model.performanceld
S ("input [name="'submit '] ") .attr ("disabled", true)
$.ajax ({url: (config.baseUrl + "rest/bookings"),
data:JSON.stringify (bookingRequest),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function (booking) {
this.model = {}
$.getJSON (config.baseUrl + 'rest/shows/performance/' +
booking.performance.id, function (retrievedPerformance) {
utilities.applyTemplate ($(self.el), bookingConfirmationTemplate,
{booking:booking, performance:retrievedPerformance })
1)
}}) .error (function (error) {
if (error.status == 400 || error.status == 409) {
var errors = $.parseJSON(error.responseText) .errors;
_.each(errors, function (errorMessage) {
S ("#request—-summary") .append ('<div class="alert alert-error">S\timesSError! ' + errorMessage +
'</div>")
})i
} else {
S ("#request—-summary") .append('<div class="alert alert-error">S\timesSError! An error has
occured</div>")

}

$ ("input [name="'submit ']") .removeAttr ("disabled") ;

b

}I
addQuantities: function () {
var self = this;
_.each (this.ticketCategoriesView.model, function (model) {
if (model.quantity != undefined) {
var found = false;
_.each(self.model.bookingRequest.tickets, function (ticket) {

if (ticket.ticketPrice.id == model.ticketPrice.id) {
ticket.quantity += model.quantity;
found = true;

1)
if (!found) {

Ticket Monster Tutorial
176 /319

self.model.bookingRequest.tickets.push({ticketPrice:model.ticketPrice,

quantity:model.quantity});
}

1) i
this.ticketCategoriesView.model = null;
$('option:selected', 'select') .removeAttr ('selected');

this.ticketCategoriesView.render () ;
this.updateQuantities();
}I
updateQuantities:function () {
// make sure that tickets are sorted by section and ticket category
this.model.bookingRequest.tickets.sort (function (tl, t2) {
{

if (tl.ticketPrice.section.id != t2.ticketPrice.section.id)
return tl.ticketPrice.section.id - t2.ticketPrice.section.id;

}

else {
return tl.ticketPrice.ticketCategory.id -

t2.ticketPrice.ticketCategory.id;
}
b i

_.reduce (this.model.bookingRequest.tickets,

this.model.bookingRequest.totals

function (totals, ticketRequest) {

return {
tickets:totals.tickets + ticketRequest.quantity,
price:totals.price + ticketRequest.quantity =

ticketRequest.ticketPrice.price

}i
}, {tickets:0, price:0.0});

this.ticketSummaryView.render () ;
this.setCheckoutStatus () ;
}o

updateEmail : function
if ($(event.currentTarget) .is(':valid')) {
event.currentTarget.value;

this.model.bookingRequest.email =
S ("#error-email") .empty () ;

(event) {

} else {
S ("#error-email") .empty () .append ("Please enter a valid e-mail address");

delete this.model.bookingRequest.email;

}
this.setCheckoutStatus () ;

}l
setCheckoutStatus: function () {

if (this.model.bookingRequest.totals
this.model.bookingRequest.totals.tickets > 0 && this.model.bookingRequest.email

undefined && this.model.bookingRequest.email != ''") {
$ ('"input [name="submit"] ') .removeAttr ('disabled’);

!'= undefined &&
| =

}

else {

$ ('"input [name="submit"] ') .attr ('disabled’, true);

}I
watchForm: function () {
if (S ("#email") .length) {
var self = this;
var element = $("#email');
if (element.val() !== self.formValues["email"]) {
self.formValues["email"”"] = element.val();

S ("#email") .change () ;

Ticket Monster Tutorial
177 /319

this.timerObject = setTimeout (function() {
self.watchForm();
}, this.intervalDuration);
} else {
this.onClose () ;

}I
onClose: function() {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;
}

this.ticketCategoriesView.close();

)i

return CreateBookingView;
b i

The code above may be surprising! After all, we said that we were going to add a single view, but instead, we added three! This
view makes use of two subviews (TicketCategoriesView and Ticket SummaryView) for re-rendering parts of the main
view. Whenever the user changes the current section, the list of available tickets is updated. Whenever the user adds the tickets to
the booking, the booking summary is re-rendered. Changes in quantities or the target email may enable or disable the submission
button - the booking is validated whenever changes to it are made. We do not create separate modules for the subviews, since
they are not referenced outside the module itself.

The booking submission is handled by the save method which constructs a JSON object, as required by aPOST tohttp://localho:
and performs the AJAX call. In case of a successful response, a confirmation view is rendered. On failure, a warning is displayed
and the user may continue to edit the form.

The corresponding templates for the views above are shown below:
src/main/webapp/resources/templates/desktop/booking-confirmation.html

<div class="row-fluid">
<h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>
</div>
<div class="row-fluid">
<div class="span5 well">
<h4 class="page-header">Checkout information</h4>
<p>Email: <%= booking.contactEmail $></p>
<p>Event: <%= performance.event.name $></p>
<p>Venue: <%= performance.venue.name $></p>
<p>Date: <%= new Date (booking.performance.date) .toPrettyStringy()
$></p>
<p>Created on: <%= new Date (booking.createdOn) .toPrettyString()
$></p>
</div>
<div class="span5 well">
<h4 class="page—-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">
<thead>
<tr>
<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>
</tr>
</thead>
<tbody>
<% S$S.each(_.sortBy(booking.tickets, function(ticket) {return ticket.id}),
function (i, ticket) { %>

Ticket Monster Tutorial

178 /319

<tr>
<td><%= ticket.id %></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%$=ticket.seat.rowNumber$%></td>
<td><%$=ticket.seat.number%></td>

</tr>
<% }) %>
</tbody>
</table>
</div>
</div>

<div class="row—-fluid" style="padding—-bottom:30px; ">
<div class="span2">Home</div>
</div>

src/main/webapp/resources/templates/desktop/create-booking.html

<div class="row-fluid">
<div class="spanl2">
<h2 class="special-title light-font"><%$=show.event.name%>
<small><%=show.venue.name%>, <%$=new
Date (performance.date) .toPrettyString () $></p></small>
</h2>
</div>
</div>
<div class="row-fluid">
<div class="span6 well">
<h3 class="page—-header">Select tickets</h3>
<form class="form-horizontal">
<div id="sectionSelectorPlaceholder">
<div class="control-group">
<label class="control-label"
for="sectionSelect">Section</label>
<div class="controls">
<select id="sectionSelect">

<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function(section) { %>

<option value="<%=section.id%>"><%$=section.name%> -
<%=section.description%></option>
<% 1) %>
</select>
</div>
</div>
</div>
</form>
<div id="ticketCategoriesViewPlaceholder"></div>
</div>
<div id="request-summary" class="span5 offsetl well">
<h3 class="page-header">0Order summary</h3>
<div id="ticketSummaryView" class="row-fluid"/>
<h3 class="page—-header">Checkout</h3>
<div class="row-fluid">
<form class="form-search">
<input type='email' id="email" placeholder="Email" required/>

<input type='button' class="btn btn-primary" name="submit" wvalue="Checkout"

disabled="true"/>
<p class="help-block error-notification" id="error-email"></p>
</form>
</div>
</div>
</div>

Ticket Monster Tutorial
179/319

src/main/webapp/resources/templates/desktop/ticket-categories.html

<% if (ticketPrices.length > 0) { %>
<form class="form-horizontal">

<% _.each(ticketPrices, function (ticketPrice) { %>
<div class="control-group" id="ticket-category-fieldset-<%=ticketPrice.id?%>">
<label

class="control-label "><%$=ticketPrice.ticketCategory.description%></label>

<div class="controls">
<div class="input-append">
<input class="spané6" rel="tooltip" title="Enter value"
data-tm-id="<%=ticketPrice.id%>"
placeholder="Number of tickets"
name="tickets—<%=ticketPrice.ticketCategory.id%>"/>
Q@ $<%=ticketPrice.price%>

<p class="help-block" id="error—-input-<$=ticketPrice.id%>"></p>
</div>
</div>
</div>
<% }) %>

<p> </p>

<div class="control-group">
<label class="control-label"/>

<div class="controls">
<input type="button" class="btn btn-primary" disabled="true" name="add" wvalue="Add
tickets"/>
</div>
</div>
</div>
</form>
<% } %>

src/main/webapp/resources/templates/desktop/ticket-summary-view.html

<div class="spanl2">
<% if (tickets.length>0) { %>
<table class="table table-bordered table-condensed row-fluid" style="background-color:
#fffffa; ">
<thead>
<tr>
<th colspan="5">Requested tickets</th>
</tr>
<tr>
<th>Section</th>
<th>Category</th>
<th>Quantity</th>
<th>Price</th>
<th></th>
</tr>
</thead>
<tbody id="ticketRequestSummary">
<% _.each(tickets, function (ticketRequest, index, tickets) { %>
<tr>
<td><%= ticketRequest.ticketPrice.section.name %></td>
<td><%= ticketRequest.ticketPrice.ticketCategory.description %></td>
<td><%= ticketRequest.quantity %></td>
<td>S$<%$=ticketRequest.ticketPrice.price%></td>

Ticket Monster Tutorial
180/319

<td><i class="icon-trash"/></td>

</tr>
<% 1) %>
</tbody>
</table>
<p/>

<div class="row-fluid">
<div class="span5">Total ticket count: <%= totals.tickets %></div>
<div class="span5">Total price: $<%$=totals.price%$></div></div>

<% } else { %>

No tickets requested.

<% } %>
</div>

Finally, once the view is available, we can add it’s corresponding routing rule:
src/main/webapp/resources/js/app/router/desktop/router.js

[**
* A module for the router of the desktop application

*/
define ("router", [

'app/views/desktop/create-booking’,

1, function (

CreateBookiné
) o
var Router = Backbone.Router.extend ({
Léﬁtes:{

"book/:showId/:performanceId": "bookTickets",
}l

bookTickets:function (showId, performanceld) {
var createBookingView =
new CreateBookingView ({
model:{ showId:showId,
performanceld:performanceld,
bookingRequest:{tickets:[]}},
el:$ ("#content")
1) i

utilities.viewManager.showView (createBookingView) ;

)i

This concludes the implementation of the booking use case. We started by listing the available events, continued by selecting a
venue and performance time, and ended by choosing tickets and completing the order.

The other use cases: a booking starting from venues and view existing bookings are conceptually similar, so you can just copy the
remaining files inthe src/main/webapp/resources/js/app/models, src/main/webapp/resources/js/app/col
src/main/webapp/resources/js/app/views/desktop and the remainder of src/main/webapp/resources/js/a

Ticket Monster Tutorial
181/319

Chapter 36

Mobile view

The mobile version of the application uses approximately the same architecture as the desktop version. Any differences are due
to the functional changes in the mobile version and the use of jQuery mobile.

36.1 Setting up the structure

The first step in implementing our solution is to copy the CSS and JavaScript libraries to resources/css and resources/js/1lib:

require.js
AMD support, along with the plugin:

* text - for loading text files, in our case the HTML templates

JjQuery
general purpose library for HTML traversal and manipulation

Underscore
JavaScript utility library (and a dependency of Backbone)

Backbone
Client-side MVC framework

jQuery Mobile
user interface system for mobile devices;

(If you have already built the desktop application, some files may already be in place.)

For mobile clients, the main page will display the mobile version of the application, by loading the mobile AMD module of the
application. Let us create it.

/sre/main/webapp/resources/js/configurations/mobile.js

[**
* Shortcut alias definitions - will come in handy when declaring dependencies
* Also, they allow you to keep the code free of any knowledge about library
* locations and versions
*/
require.config({
baseUrl: "resources/js",
paths: {
jquery: 'libs/jquery-1.9.1",
jquerymobile: 'libs/jquery.mobile-1.3.2",
text: 'libs/text’,

Ticket Monster Tutorial
182/319

underscore: 'l1ibs/underscore’,
backbone: 'libs/backbone’,
order: 'libs/order',
utilities: 'app/utilities’',
router: 'app/router/mobile/router’
}l
// We shim Backbone.js and Underscore.js since they don't declare AMD modules
shim: {
'backbone': {
deps: ['underscore', 'jquery'l],
exports: 'Backbone'

b

'"underscore': {
exports: '_'

1)

define ("configuration”, function() {
if (window.TicketMonster != undefined && TicketMonster.config != undefined) ({
return {
baseUrl: TicketMonster.config.baseRESTUrl
}i
} else {
return {
baseUrl: ""
}i

1)

define("initializer", |
’jquer_y’l
'utilities',
'text!../templates/mobile/main.html’
1, function (S,
utilities,
MainTemplate) {

// Configure jQuery to append timestamps to requests, to bypass browser caches
// Important for MSIE
$.ajaxSetup ({cache:false});
$('head') .append('<link rel="stylesheet" href="resources/css/jquery.mobile-1.3.2.css"/>");
$('head') .append('<link rel="stylesheet" href="resources/css/m.screen.css"/>");
// Bind to mobileinit before loading JjQueryMobile
$ (document) .bind ("mobileinit", function () {

// Prior to creating and starting the router, we disable jQuery Mobile's own routing
mechanism

$.mobile.hashListeningEnabled = false;

$.mobile.linkBindingEnabled = false;

$.mobile.pushStateEnabled = false;

utilities.applyTemplate ($('body'), MainTemplate) ;
1)
// Then (load jQueryMobile and) start the router to finally start the app
require (['router']);

b
// Now we declare all the dependencies

// This loads and runs the 'initializer' module.
require (['initializer']);

In this application, we combine Backbone and jQuery Mobile. Each framework has its own strengths; jQuery Mobile provides

Ticket Monster Tutorial
183 /319

UI components and touch support, whilst Backbone provides MVC support. There is some overlap between the two, as jQuery
Mobile provides its own navigation mechanism which we disable.

We also define a configuration module which allows the customization of the base URLs for RESTful invocations. This
module does not play any role in the mobile web version. We will come to it, however, when discussing hybrid applications.

We also define a special initializer module (initializer) that, when loaded, adds the stylesheets and applies the template
for the general structure of the page in the body element. In the initializer module we make customizations in order to get the
two frameworks working together - disabling the jQuery Mobile navigation. Let us add the template definition for the template
loaded by the initializer module.

src¢/main/webapp/resources/templates/mobile/main.html

K==
The main layout of the page - contains the menu and the 'content' <div/> in which
all the
views will render the content.

——>

<div id="container" data-role="page" data-ajax="false"></div>

Next, we create the application router.
src¢/main/webapp/resources/js/app/router/mobile/router.js

/ * %
* A module for the router of the mobile application.
*
*/
define ("router", [
'jquery',
'jquerymobile’,
'"underscore',
'utilities',
'text!../templates/mobile/home-view.html"'
], function (S,
jam,
—
utilities,
HomeViewTemplate) {

/ * %
* The Router class contains all the routes within the application - i.e. URLs and the
actions
* that will be taken as a result.
*
* @type {Router}
*/
var Router = Backbone.Router.extend ({
initialize: function () {
//Begin dispatching routes
Backbone.history.start ();
by
defaultHandler:function (actions) {
if ("" != actions) {
$.mobile.changePage ("#" + actions, {transition:'slide', changeHash:false,
allowSamePageTransition:true}) ;

}
1)

// Create a router instance
var router = new Router();

Ticket Monster Tutorial
184 /319

return router;

1) g

In the router code we add the defaultHandler to the router for handling jQuery Mobile transitions between internal pages
(such as the ones generated by a nested listview).

Next, we need to create a first page.

36.2 The landing page

The first page in our application is the landing page. First, we add the template for it:
src/main/webapp/resources/templates/mobile/home-view.html

<div data-role="header">
<h3>Ticket Monster</h3>
</div>
<div data-role="content" align="center'">

<h4 align="left">Find events</h4>
<ul data-role="listview">

By Category
</1li>

By Location
</1li>

</div>

Now we have to add the page to the router:

src¢/main/webapp/resources/js/app/router/mobile/router.js

/ %%

* A module for the router of the mobile application.
*

*/

define ("router”, [

'text!../templates/mobile/home-view.html"'
], function (

HomeViewTemplate) {

var Router = Backbone.Router.extend ({

routes: {

n ": "home ”n

}l

home: function () {
utilities.applyTemplate ($ ("#container"), HomeViewTemplate);
try {

S ("#container") .trigger ('pagecreate’) ;
} catch (e) {

// workaround for a spurious error thrown when creating the page initially

Ticket Monster Tutorial
185/319

1) g

Because jQuery Mobile navigation is disabled, we must tell jQuery Mobile explicitly to enhance the page content in order to
create the mobile view. Here, we trigger the jQuery Mobile pagecreate event explicitly to ensure that the page gets the
appropriate look and feel.

36.3 The events view

First, we display a list of events (just as in the desktop view). Since mobile interfaces are more constrained, we will just show a
simple list view:

src¢/main/webapp/resources/js/app/views/mobile/events.js

define ([
'utilities',
'text!../../../../templates/mobile/events.html"'
1, function (
utilities,
eventsView) {

var EventsView = Backbone.View.extend ({
render: function () {
var categories = _.uniqg(
_.map (this.model.models, function (model) {
return model.get ('category')
}), false, function(item) {
return item.id
1)
utilities.applyTemplate ($ (this.el), eventsView, {categories:categories,
model :this.model})
S (this.el) .trigger ('pagecreate’);
return this;

)i

return EventsView;

1)

As you can see, the view is very similar to the desktop view, the main difference being the explicit hint to jQuery mobile through
the pagecreate event invocation.

Next, we add the template for rendering the view:
src/main/webapp/resources/templates/mobile/events.html

<div data-role="header">
<a data-role="button" data-icon="home" href="#">Home
<h3>Categories</h3>
</div>
<div data-role="content" id='itemMenu'>
<div id='categoryMenu' data-role='listview' data-filter='true'
data-filter-placeholder='Event category name ...'>
<%
_.each(categories, function (category) {
%>
<1li>
<%= category.description %$>
<ul id="category-<$=category.id%>">
<%
_.each (model.models, function (model) {

Ticket Monster Tutorial

186 /319
if (model.get ('category') .id == category.id) ({
%>
<1li>
<a href="#events/<%=model.attributes.id%>"><%=model.attributes.name%>
</1li>
<% }
1)
%>

</1li>
<% }); %>
</div>

</div>

And finally, we need to instruct the router to invoke the page:
src/main/webapp/resources/js/app/router/mobile/router.js

[**
* A module for the router of the desktop application.
*

*/

define ("router", [
'app/collections/events’',
'app/views/mobile/events’
1, function (
L4
Events,
.7
EventsView,
o) {

var Router = Backbone.Router.extend ({

routes: {

"events": "events"
s
events: function () {
var events = new Events;

var eventsView = new EventsView ({model:events, el:$("#container")});
events.bind("reset",
function () {
utilities.viewManager.showView (eventsView) ;
}) .fetch();

1)

Just as in the case of the desktop application, the list of events will be accessible at #events (i.e. http://localhost:8080/tick

Ticket Monster Tutorial
187 /319

36.4 Displaying an individual event

Now, we create the view to display an event:
src/main/webapp/resources/js/app/views/mobile/event-detail.js

define ([
'utilities',
'require’,
'configuration',
'text!../../../../templates/mobile/event-detail.html’,
'text!../../../../templates/mobile/event-venue-description.html'
], function (
utilities,
require,
config,
eventDetail,
eventVenueDescription) {

var EventDetailView = Backbone.View.extend ({

events: {
"click a[id="'bookButton']":"beginBooking",
"change select[id='showSelector']":"refreshShows",
"change select[id='performanceTimes']": "performanceSelected”,
"change select[id='dayPicker']": 'refreshTimes'
}I
render: function () {

S (this.el) .empty ()

utilities.applyTemplate ($(this.el), eventDetail, this.model.attributes)

S (this.el) .trigger ('create')

S ("#bookButton") .addClass ("ui-disabled")

var self = this;

$.getJSON (config.baseUrl + "rest/shows?event=" + this.model.get ('id'), function

(shows) {
self.shows = shows;
$ ("#showSelector") .empty () .append ("<option data-placeholder='true'>Choose a
venue ...</option>");
$S.each (shows, function (i, show) ({
S ("#showSelector") .append ("<option value='" + show.id + "'>" +
show.venue.address.city + " : " + show.venue.name + "</option>");
1)
S ("#showSelector") .selectmenu ('refresh', true)
S ("#dayPicker") .selectmenu('disable’)
S ("#dayPicker") .empty () .append ("<option data-placeholder='true'>Choose a show
date ...</option>")
S ("#performanceTimes") .selectmenu ('disable’)
$ ("#performanceTimes") .empty () .append ("<option data-placeholder='true'>Choose
a show time ...</option>")
1) g
S ("#dayPicker") .empty () ;
S ("#dayPicker") .selectmenu('disable’);
S ("#performanceTimes") .empty () ;
S ("#performanceTimes") .selectmenu ('disable’);

S (this.el) .trigger ('pagecreate’);
return this;
bo

performanceSelected: function () {
if ($("#performanceTimes") .val() != 'Choose a show time ...') {
S ("#bookButton") .removeClass ("ui—-disabled")
} else {

S ("#bookButton") .addClass ("ui—-disabled")

Ticket Monster Tutorial
188 /319

}o
beginBooking:function () {
require ('router') .navigate ('book/' + $("#showSelector option:selected") .val() +
'/' + $("#performanceTimes") .val(), true)

b
refreshShows: function (event) {

var selectedShowId = event.currentTarget.value;

if (selectedShowId != 'Choose a venue ...'") {
var selectedShow = _.find(this.shows, function (show) {
return show.id == selectedShowId

}) i
this.selectedShow = selectedShow;
var times = _.unig(_.sortBy(_.map (selectedShow.performances, function
(performance) {
return (new Date (performance.date) .withoutTimeOfDay ()) .getTime ()
}), function (item) {
return item
)i
utilities.applyTemplate ($ ("#eventVenueDescription"), eventVenueDescription,
{venue:selectedShow.venue}) ;
S ("#detailsCollapsible™) .show ()
$ ("#dayPicker") .removelAttr ('disabled’)
S ("#performanceTimes") .removeAttr ('disabled')
S ("#dayPicker") .empty () .append ("<option data-placeholder='true'>Choose a show
date ...</option>")
_.each(times, function (time) {
var date = new Date (time)
$ ("#dayPicker") .append ("<option value='" + date.toYMD() + "'>" +
date.toPrettyStringWithoutTime () + "</option>")
}) i
$ ("#dayPicker") .selectmenu ('refresh')
S ("#dayPicker") .selectmenu ('enable')
this.refreshTimes ()
} else {
S ("#detailsCollapsible™) .hide ()
S ("#eventVenueDescription") .empty ()
S ("#dayPicker") .empty ()
$ ("#dayPicker") .selectmenu ('disable’)
S ("#performanceTimes") .empty ()
$ ("#performanceTimes") .selectmenu ('disable’)

}I
refreshTimes: function () {

var selectedDate = $("#dayPicker").val();

S ("#performanceTimes") .empty () .append ("<option data-placeholder='true'>Choose a

show time ...</option>")
if (selectedDate) {
$.each (this.selectedShow.performances, function (i, performance) {
var performanceDate = new Date (performance.date);

if (_.isEqual (performanceDate.toYMD (), selectedDate)) {
S ("#performanceTimes") .append ("<option value='" + performance.id +
"!'>" + performanceDate.getHours () .toZeroPaddedString(2) + ":" +

performanceDate.getMinutes () .toZeroPaddedString (2) + "</option>")
}
})
$ ("#performanceTimes") .selectmenu ('enable')

}

S ("#performanceTimes") .selectmenu ('refresh')

Ticket Monster Tutorial

189/319

this.performanceSelected()

}) i

return EventDetailView;
1)

Once again, this is very similar to the desktop version. Now we add the page templates:
src/main/webapp/resources/templates/mobile/event-detail.html

<div data-role="header">
<h3>Book tickets</h3>
</div>
<div data-role="content">
<h3><%=name%></h3>
<img width='100px' src='rest/media/<%=medialtem.id%>'/>
<p><%=description%></p>
<div data-role="fieldcontain">
<label for="showSelector">Where</label>
<select id='showSelector' data-mini='true'/>
</div>

<div data-role="collapsible" data-content-theme="c" style="display: none;"
id="detailsCollapsible">
<h3>Venue details</h3>

<div id="eventVenueDescription">
</div>
</div>

<div data-role='fieldcontain'>
<fieldset data-role='controlgroup'>
<legend>When</legend>
<label for="dayPicker">When:</label>
<select id='dayPicker' data-mini='true'/>

<label for="performanceTimes">When:</label>
<select id="performanceTimes" data-mini='true'/>

</fieldset>
</div>

</div>
<div data-role="footer" class="ui-bar ui-grid-c">
<div class="ui-block-a"></div>
<div class="ui-block-b"></div>
<div class="ui-block-c"></div>
<a id='bookButton' class="ui-block-e" data-theme='b' data-role="button"
data-icon="check">Book
</div>

src¢/main/webapp/resources/templates/mobile/event-venue-description.html

<img width="100" src="rest/media/<%$=venue.medialtem.id$>"/></p>
<%= venue.description %>
<address>

<p>Address:</p>

<p><%= venue.address.street $%$></p>

<p><%= venue.address.city %>, <%= venue.address.country $%></p>
</address>

Ticket Monster Tutorial
190/319

Finally, we add this to the router, explicitly indicating to jQuery Mobile that a transition has to take place after the view is
rendered - in order to allow the page to render correctly after it has been invoked from the listview.

src¢/main/webapp/resources/js/app/router/mobile/router.js

/ %%
* A module for the router of the desktop application.
*

*/

define ("router”, [
'app/model/event ',
'app/views/mobile/event—-detail’

], function (
.7
Event,
.7
EventDetailView,

9 {

var éééter = Backbone.Router.extend ({
;éﬁtes:{
"evegég/:id":"eventDetail",
},

eventDetail:function (id) {
var model = new Event ({id:id});
var eventDetailView = new EventDetailView ({model:model, el:$("#container™)});
model .bind ("change”,
function () {
utilities.viewManager.showView (eventDetailView) ;
$.mobile.changePage ($ ("#container"), {transition:'slide’,
changeHash: false});
}) .fetch();

1)

Just as the desktop version, the mobile event detail view allows users to choose a venue and a performance time. The next step is
to allow the user to book some tickets.

36.5 Booking tickets

The views to book tickets are simpler than the desktop version. Users can select a section and enter the number of tickets for
each category however, there is no way to add or remove tickets from an order. Once the form is filled out, the user can only
submit it.

First, we create the views:
src/main/webapp/resources/js/app/views/mobile/create-booking.js

define ([
'utilities',

Ticket Monster Tutorial
191/319

"configuration',
'require’,

'text!../../../../templates/mobile/booking—-details.html’,

'text!../../../../templates/mobile/create-booking.html’,

"text!../../../../templates/mobile/confirm-booking.html"',

'text!../../../../templates/mobile/ticket-entries.html’,

'text!../../../../templates/mobile/ticket—-summary-view.html'
1, function (

utilities,

config,

require,

bookingDetailsTemplate,
createBookingTemplate,
confirmBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate) ({

var TicketCategoriesView = Backbone.View.extend ({
id: 'categoriesView',
events: {
"change input":"onChange"
}I
render: function () {
var views = {};

if (this.model != null) {
var ticketPrices = _.map (this.model, function (item) {
return item.ticketPrice;
}) i
utilities.applyTemplate ($(this.el), ticketEntriesTemplate,
{ticketPrices:ticketPrices});
} else {
$(this.el) .empty () ;
}
S (this.el) .trigger ('pagecreate’);
return this;
}I
onChange: function (event) ({

var value = event.currentTarget.value;

var ticketPricelId = $(event.currentTarget) .data("tm-id");

var modifiedModelEntry = _.find(this.model, function(item) { return
item.ticketPrice.id == ticketPriceId});

if ($.isNumeric(value) && value > 0) {
modifiedModelEntry.quantity = parselnt (value);
}
else {
delete modifiedModelEntry.quantity;

})i

var TicketSummaryView = Backbone.View.extend ({
render: function () {
utilities.applyTemplate ($(this.el), ticketSummaryViewTemplate,
this.model.bookingRequest)
}
1)

var ConfirmBookingView = Backbone.View.extend ({
events: {
"click a[id='saveBooking']":"save",
"click a[id="'goBack']":"back"

Ticket Monster Tutorial
192 /319

}I

render: function () {
utilities.applyTemplate ($(this.el), confirmBookingTemplate, this.model)
this.ticketSummaryView = new TicketSummaryView ({model:this.model,

el:S$ ("#ticketSummaryView") }) ;

this.ticketSummaryView.render () ;
S (this.el) .trigger ('pagecreate’)

}I

back:function () {
require ("router") .navigate ('book/' + this.model.bookingRequest.show.id + '/' +

this.model.bookingRequest.performance.id, true)

}, save:function (event) {
var bookingRequest = {ticketRequests:[]};
var self = this;
_.each(this.model.bookingRequest.tickets, function (collection) {
_.each(collection, function (model) {
if (model.quantity != undefined) {
bookingRequest.ticketRequests.push({ticketPrice:model.ticketPrice.id,
quantity:model.quantity})
}i
)
1) i

bookingRequest.email = this.model.email;
bookingRequest .performance = this.model.performanceld;
$.ajax ({url: (config.baseUrl + "rest/bookings"),
data:JSON.stringify (bookingRequest),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function (booking) {
utilities.applyTemplate ($ (self.el), bookingDetailsTemplate, booking)
$(self.el) .trigger ('pagecreate');
}}) .error (function (error) {
alert (error);
1)
this.model = {};

1)

var CreateBookingView = Backbone.View.extend ({

events: {
"click a[id='confirmBooking']":"checkout",
"change select":"refreshPrices",
"blur input [type='number']":"updateForm",
"blur input [name='email']":"updateForm"

by

render: function () {
var self = this;

$.getJSON (config.baseUrl + "rest/shows/" + this.model.showId, function

(selectedShow) {

self.model.performance = _.find(selectedShow.performances, function (item) {

return item.id == self.model.performanceld;

1)

var id = function (item) {return item.id;};

// prepare a list of sections to populate the dropdown

var sections = _.unig(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'),

Ticket Monster Tutorial

193/319
id), true, id);
utilities.applyTemplate ($(self.el), createBookingTemplate, {
show:selectedShow,
performance:self.model.performance,
sections:sections});
$S(self.el) .trigger ('pagecreate’);
self.ticketCategoriesView = new TicketCategoriesView ({model:{},
el:$("#ticketCategoriesViewPlaceholder") });
self.model.show = selectedShow;
self.ticketCategoriesView.render () ;
S('al[id="confirmBooking"]') .addClass ('ui-disabled');
S ("#sectionSelector") .change () ;
1) i
}I
refreshPrices:function (event) {
if (event.currentTarget.value != "Choose a section") {
var ticketPrices = _.filter (this.model.show.ticketPrices, function (item) ({
return item.section.id == event.currentTarget.value;
}) i
var ticketPricelnputs = new Array();
_.each(ticketPrices, function (ticketPrice) {
var model = {};
model.ticketPrice = ticketPrice;
ticketPriceInputs.push (model);
}) i
S ("#ticketCategoriesViewPlaceholder") .show () ;
this.ticketCategoriesView.model = ticketPricelnputs;
this.ticketCategoriesView.render () ;
S (this.el) .trigger ('pagecreate') ;
} else {
S ("#ticketCategoriesViewPlaceholder") .hide () ;
this.ticketCategoriesView.model = new Array();
this.updateForm() ;
}
}I
checkout : function () {
this.model.bookingRequest.tickets.push (this.ticketCategoriesView.model) ;
this.model.performance = new ConfirmBookingView ({model:this.model,
el:$ ("#container")}) .render () ;
S ("#container") .trigger ('pagecreate’) ;
}I
updateForm: function () {
var totals = _.reduce (this.ticketCategoriesView.model, function (partial, model) {
if (model.quantity != undefined) {

partial.tickets += model.quantity;
partial.price += model.quantity * model.ticketPrice.price;
return partial;
}
}, {tickets:0, price:0.0});
this.model.email = $("input[type='email']").val();
this.model.bookingRequest.totals = totals;

if (totals.tickets > 0 && $("input[type='email']") .val()) {
S('a[id="confirmBooking"]') .removeClass ('ui-disabled');
} else {

S('al[id="confirmBooking"]') .addClass ('ui-disabled"');

1)
return CreateBookingView;

Ticket Monster Tutorial
194 /319

1)

The views follow the structure the desktop application, except that the summary view is not rendered inline but after a page
transition.

Next, we create the page fragment templates. First, the actual page:
src¢/main/webapp/resources/templates/mobile/create-booking.html

<div data-role="header">
<hl>Book tickets</hl>
</div>
<div data-role="content">
<p>
<h3><%=show.event .name%></h3>
</p>
<p>
<%$=show.venue.name%>
<p>

<p>
<small><%$=new Date (performance.date) .toPrettyString()%></small>
</p>
<div id="sectionSelectorPlaceholder">
<div data-role="fieldcontain">
<label for="sectionSelect">Section</label>
<select id="sectionSelect">

<option value="-1" selected="true">Choose a section</option>
<% _.each(sections, function(section) { %>

<option value="<3=section.id$>"><%=section.name%> -
<%=section.description%></option>

<% 1) %>
</select>
</div>
</div>

<div id="ticketCategoriesViewPlaceholder" style="display:none;"/>

<div class="fieldcontain">
<label>Contact email</label>
<input type='email' name='email' placeholder="Email"/>
</div>
</div>

<div data-role="footer" class="ui-bar">

Cancel

Checkout
</div>

Next, the fragment that contains the input form for tickets, which is re-rendered whenever the section is changed:
src¢/main/webapp/resources/templates/mobile/ticket-entries.html

<% if (ticketPrices.length > 0) { %>
<form name="ticketCategories'">
<h4>Select tickets by category</h4>
<% _.each(ticketPrices, function(ticketPrice) { %>
<div id="ticket-category-input-<$=ticketPrice.id%>"/>

<fieldset data-role="fieldcontain">
<label
for="ticket-<$=ticketPrice.id$%$>"><%=ticketPrice.ticketCategory.description%> ($<%=ticketPrice.pri

Ticket Monster Tutorial
195/319

<input id="ticket-<$%$=ticketPrice.id%>" data-tm-id="<%=ticketPrice.id%>"
type="number" placeholder="Enter value"
name="tickets"/>
</fieldset>
<% 1) %>
</form>
}

Before submitting the request to the server, the order is confirmed:
src¢/main/webapp/resources/templates/mobile/confirm-booking.html

<div data-role="header">
<hl>Confirm order</hl>
</div>
<div data-role="content">
<h3><%=show.event .name%></h3>
<p><%=show.venue.name%></p>
<p><small><%=new Date (performance.date) .toPrettyString()%></small></p>
<p>Buyer: <emphasis><%=email%></emphasis></p>
<div id="ticketSummaryView"/>

</div>

<div data-role="footer" class="ui-bar">
<div class="ui-grid-b">
<div class="ui-block-a"><a id="cancel" href="#" data-role="button"
data-icon="delete">Cancel</div>
<div class="ui-block-b"><a id="goBack" data-role="button"
data-icon="back">Back</div>
<div class="ui-block-c"><a id="saveBooking" data-icon="check"
data-role="button">Buy!</div>
</div>
</div>

The confirmation page contains a summary subview:

src¢/main/webapp/resources/templates/mobile/ticket-summary-view.html

<table>
<thead>
<tr>
<th>Section</th>
<th>Category</th>
<th>Price</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<% _.each(tickets, function(ticketRequest) { %>
<% _.each(ticketRequest, function (model) { %>
<% if (model.quantity != undefined) { %>
<tr>
<td><%= model.ticketPrice.section.name %></td>
<td><%= model.ticketPrice.ticketCategory.description %$></td>
<td>$<%= model.ticketPrice.price %></td>
<td><%= model.quantity %$></td>
</tr>
<%} %>
<% }) %>
<% }) %>
</tbody>

</table>

Ticket Monster Tutorial

196 /319

<div data-theme="c">
<h4>Totals</h4>
<p>Total tickets: <%$= totals.tickets $%$></p>
<p> Total price: $<%= totals.price %></p>
</div>

Finally, we create the page that displays the booking confirmation:
src/main/webapp/resources/templates/mobile/booking-details.html

<div data-role="header">
<hl>Booking complete</hl>
</div>
<div data-role="content">
<table id="confirm tbl">
<thead>
<tr>
<td colspan="5" align="center">Booking <%=id%></td>
<tr>
<tr>
<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>
</tr>
</thead>
<tbody>
<% $.each(_.sortBy(tickets, function(ticket) {return ticket.id}), function
ticket) { %>
<tr>
<td><%= ticket.id %></td>
<td><%$=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%=ticket.seat.rowNumber$%></td>
<td><%=ticket.seat.number%$></td>
</tr>
<% }) %>
</tbody>
</table></div>
<div data-role="footer" class="ui-bar">

<div class="ui-block-b"><a id="back" href="#" data-role="button"
data-icon="back">Back</div>

</div>

The last step is registering the view with the router:
src/main/webapp/resources/js/app/router/desktop/router.js

/ *x
* A module for the router of the desktop application
*/

define ("router", [
'app/views/mobile/create-booking’,
], function (

CreateBookingView

) o

Ticket Monster Tutorial

197 /319

var Router = Backbone.Router.extend ({
routes: {
"book/:showId/:performanceId": "bookTickets",

by

bookTickets:function (showId, performanceld) ({
var createBookingView =
new CreateBookingView (
{ model: {
showId:showId,
performanceld:performanceld,
bookingRequest:{tickets:[]}},
el:$ ("#container")
}) i
utilities.viewManager.showView (createBookingView) ;

Ticket Monster Tutorial
198 /319

Chapter 37

More Resources

To learn more about writing HTMLS5 + REST applications with JBoss, take a look at the Aerogear project.

http://www.jboss.org/aerogear

Ticket Monster Tutorial
199 /319

Part VI

Building the Administration Ul using Forge

Ticket Monster Tutorial
200/319

Chapter 38

What Will You Learn Here?

You’ve just defined the domain model of your application, and all the entities managed directly by the end-users. Now it’s time
to build an administration GUI for the TicketMonster application using JAX-RS and AngularJS. After reading this guide, you’ll
understand how to use JBoss Forge to create the JAX-RS resources from the entities and how to create an AngularJS based UI.

We’ll round out the guide by revealing the required, yet short and sweet, configuration.

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you
through.

Ticket Monster Tutorial
201/319

Chapter 39

Setting up Forge

39.1 JBoss Enterprise Application Platform 6

If you are using JBoss Enterprise Application Platform 6, Forge is available in JBoss Developer Studio 7.

To show the Forge Console, navigate to Window — Show View — Other, locate Forge Console and click OK. Then click the Start
button in top right corner of the view.

39.2 JBoss AS7

If you are using JBoss AS 7, you should install JBoss Forge version 1.4.0.Final or higher. Follow the instructions at Installing
Forge.

Open a command line and navigate to the root directory of this quickstart.
Launch Forge by typing the following command:

forge

39.3 Required Forge Plugins

Forge comes with a number of built in plugins, including the "scaffold-x" plugin, which is able to generate a full CRUD UI
from JPA entities. The generated UI uses Angular]S as the view layer, with JAX-RS resources providing the backend services.
Internally, Forge uses Metawidget to create the CRUD screens.

Forge also includes a powerful plugin management system. The Angular]S scaffolding plugin isn’t bundled with Forge, but it’s
easy to install. First use the forge find-plugin command to locate it

forge find-plugin angularjs

In this case, the plugin is just called angularjs - easy! We can install it using the forge install-plugin command:

forge install-plugin angularijs

This will download, compile and install the RichFaces plugin.

https://docs.jboss.org/author/display/FORGE/Installation
https://docs.jboss.org/author/display/FORGE/Installation
http://metawidget.org/

Ticket Monster Tutorial
202 /319

Chapter 40

Getting started with Forge

Forge is a powerful rapid application development (aimed at Java EE 6) and project comprehension tool. It can operate both on
projects it creates, and on existing projects, such as TicketMonster. If you want to learn more about Forge . ..

When you cd into a project with Forge, it inspects the project, and detects what technologies you are using in the project. Let’s
see this in action:

project list-facets

Those facets detected are colored green.

Ticket Monster Tutorial
203/319

[ticket-monster] ticket-monster £ project list-facets

NOT INSTALLED

- forge.spec.jaxrs.webxml [org.jboss.forge.spec.javaee.rest.RestWebXmlFacetImpl]

- forge.spec.jms [org.]jboss.forge.spec.javaee.jms.JmsFacetImpl]

- angularjs [org.jboss.forge.scaffold.angularjs.AngularScaffold]

- forge.spec.validation [org.jboss.forge.spec.javaee.validation.ValidationFacetImpl]

- forge.spec.jaxws [org.]jboss.forge.spec.javaee.soap.SoapFacetImpl]

- faces [org.jboss.forge.scaffoldx.faces.FacesScaffold]

- forge.spec.jstl [org.jboss.forge.spec.javaee.jstl.JSTLFacetImpl]

- faces [org.jboss.forge.scaffold.faces.FacesScaffold]

- forge.vcs.git [org.jboss.forge.git.GitFacet]

- forge.configuration.facet [org.jboss.forge.env.ConfigurationFacet]

- forge.vcs.git.api [org.jboss.forge.git.GitAPIFacet]

- forge.spec.jpa.metamodel [org.jboss.forge.spec.javaee.jpa.PersistenceMetaModelFacetImpl]
- forge.ap1 [org.]jboss.forge.dev.ForgeAPIFacet]

- forge.maven.scaffold.TemplateFacet [org.jboss.forge.scaffoldx.facets.MavenScaffoldTemplateFacet]
- forge.vcs.git.ignore [org.jboss.forge.git.gitignore.GitIgnoreFacet]

INSTALLED

+ forge.maven.JavaExecutionFacet [org.jboss.forge.maven.facets.JavaExecutlionFacetImpl]
+ forge.spec.jaxrs [org.jboss.forge.spec.javaee.rest.RestFacetImpl]

+ forge.spec.jaxrs.applicationclass [org.jboss.forge.spec.javaee.rest.RestApplicationFacetImpl]
+ forge.maven.ResourceFacet [org.]jboss.forge.maven.facets.MavenResourceFacet]

+ forge.maven.JavaSourceFacet [org.jboss.forge.maven.facets.MavenJavaSourceFacet]

+ forge.maven.MavenCoreFacet [org.jboss.forge.maven. facets.MavenCoreFacetImpl]

+ forge.spec.jsf.ap1 [org.]jboss.forge.spec.javaee.]sf.FacesAPIFacetImpl]

+ forge.spec.jpa [org.jboss.forge.spec.javaee.jpa.PersistenceFacetImpl]

+ forge.spec.jsf [org.]jboss.forge.spec.javaee.]sf.FacesFacetImpl]

+ forge.spec.jta [org.jboss.forge.spec.javaee.]jta.JTAFacetImpl]

+ forge.maven.MavenPluginFacet [org.jboss.forge.maven.facets.MavenPluginFacetImpl]

+ forge.maven.WebResourceFacet [org.jboss.forge.maven.facets.MavenWebResourceFacet]

+ forge.maven.MetadataFacet [org.jboss.forge.maven.facets.MavenMetadataFacet]

+ forge.maven.PackagingFacet [org.jboss.forge.maven.facets.MavenPackagingFacet]

+ forge.spec.ejb [org.]jboss.forge.spec.javaee.ejb.EJBFacetImpl]

+ forge.maven.MavenDependencyFacet [org.jboss.forge.maven.facets.MavenDependencyFacet]

+ forge.spec.servlet [org.]jboss.forge.spec.javaee.servlet.ServletFacetImpl]

+ forge.spec.cd1 [org.]jboss.forge.spec.javaee.cd1.CDIFacetImpl]

[ticket-monster] ticket-monster %

Figure 40.1: Output of project list-facets

As you can see, Forge has detected all the technologies we are using, such as JPA, JAX-RS, CDI and Bean Validation.

Ticket Monster Tutorial
204 /319

Chapter 41

Generating the CRUD Ul

Forge Scripts

Forge supports the execution of scripts. The generation of the CRUD Ul is provided as a Forge script in TicketMonster, so
you don’t need to type the commands everytime you want to regenerate the Admin Ul The script will also prompt you to
apply all changes to the generated CRUD UI that listed later in this chapter. This would relieve us of the need to manually
type in the changes.

To run the script:

run admin_layer.fsh

41.1 Generate the REST resources from the JPA entities

First, we need to generate REST resources for the entities. Run:

rest endpoint-from-entity --contentType application/json
org. jboss. jdf.example.ticketmonster.model.* —--strategy ROOT_AND_NESTED_DTO

to instruct Forge to generate JAX-RS resources for all the JPA entities in the project. The resources would be represented in JSON
to enable the AngularJS-based front-end to communicate with the backend services. Each resource representation is structured
to contain the representation of the corresponding JPA entity (the root) and any associated entities (that are represneted as nested
objects).

Note

The ROOT_AND_NESTED_DTO resource representation enables Forge to create REST resources for complex object graphs
without adding Jackson annotations to avoid cycles in the graph. Without this constrained representation, one would have
to add annotations like @JsonIgnore (to ignore certain undesirable object properties), or @JsonIdentity (to represent
cycles in JSON without succumbing to StackOverflowErrors or similar such errors/exceptions).

41.2 Update the project

Next, we need to setup the Angular]JS Scaffold in the project. Run:

scaffold-x setup --scaffoldType angularjs --targetDir admin

Ticket Monster Tutorial
205/319

to instruct Forge to generate the css, images and JavaScript libraries used by the scaffold.

[ticket-monster] ticket-monster $ scaffold-x setup --scaffoldType angularjs --targetDir admin
? Scaffold provider [angularjs] i1s not installed. Install it? [Y/n]

%SUCCESS* Installed [angularjs] successfully.

Wrote fhome/vineet/ticket-monster/src/main/webapp/admin/styles/bootstrap.css

Wrote /home/vineet/ticket-monster/src/main/webapp/admin/styles/main.css

Wrote fhome/vineet/ticket-monster/src/main/webapp/admin/styles/bootstrap-responsive.css

Wrote /fhome/vineet/ticket-monster/src/main/webapp/admin/scripts/vendor/jquery-1.9.1.]s

Wrote /fhome/wvineet/ticket-monster/src/main/webapp/admin/scripts/vendor/angular.js

Wrote fhome/vineet/ticket-monster/src/main/webapp/admin/scripts/vendor/angular-resource.js

Wrote /fhome/vineet/ticket-monster/src/main/webapp/admin/img/forge-logo.png

Wrote fhome/vineet/ticket-monster/src/main/webapp/admin/img/glyphicons-halflings.png

Wrote fhome/vineet/ticket-monster/src/main/webapp/admin/img/glyphicons-halflings-white.png
[ticket-monster] ticket-monster § I

Figure 41.1: Output of scaffold setup

41.3 Scaffold the AngularJS Ul from the JPA entities

You can either scaffold the entities one-by-one, which allows you to control which Uls are generated, or you can generate a
CRUD UI for all the entities. We’ll do the latter:

scaffold-x from src/main/java/org/jboss/jdf/example/ticketmonster/model/+ —--targetDir admin
—-—overwrite

Forge asks us whether we want to overwrite every file - which gets a bit tedious! Specifying ~—overwrite allows Forge
to overwrite files without prompt - much better!

Note

Forge will prompt you for additional information when creating the scaffold. For example, you may be prompted to provide
information about how different objects should be displayed in the Ul. You may also be prompted to specify a different URL for
the REST resources used by the AngularJS-based Ul. The defaults are sufficient since this is a convenience offered by Forge
to provide a different value. Forge inspects the project for existing REST resources conforming to a convention and uses it as
the default. Likewise, Forge inspects JPA entities and chooses the first displayable value as the default.

We now have a CRUD UI for all the entities used in TicketMonster!

Ticket Monster Tutorial
206 /319

Chapter 42

Test the CRUD Ul

Let’s test our Ul on our local JBoss AS instance. As usual, we’ll build and deploy using Maven:

mvn clean package Jjboss-as:deploy

Ticket Monster Tutorial
207 /319

Chapter 43

Make some changes to the Ul

Let’s add support for images to the Admin UL. Events and Venues have "Medialtem's associated with them, but they’re only
displayed as URLSs. Let’s display the corresponding images in the Angular]JS views, by adding the required bindings:

src/main/webapp/admin/views/Event/detail.html

<div id="mediaItemControls" class="controls">
<select id="medialItem" name="medialtem" ng-model="medialtemSelection"

ng-options="m.text for m in medialtemSelectionList" >
<option value="">Choose a Media Item</option>
</select>

<img class="img-polaroid span4" ng-hide="!medialtemSelection.text"
ng-src="{{medialtemSelection.text}}" />
</div>

src¢/main/webapp/admin/views/Venue/detail.html

<div id="mediaItemControls" class="controls">
<select id="medialItem" name="medialtem" ng-model="medialtemSelection"

ng-options="m.text for m in medialtemSelectionList" >
<option value="">Choose a Media Item</option>
</select>

<img class="img-polaroid span4" ng-hide="!medialtemSelection.text"
ng-src="{{medialtemSelection.text}}" />
</div>

The admin site will now display the corresponding image if a media item is associated with the venue or event.

Tip

The location of the Medialtem is present in the text property of the medialtemSelection object. The parameter to the
ngSrc directive is set to this value. This ensures that the browser fetches the image present at this location. The expression
src={{medialtemSelection.text}} should be avoided since the browser would attempt to fetch the URL with the
literal text { {hash} } before AngulardS replaces the expression with the actual URL.

Let’s also modify the UI to make it more user-friendly. Shows and Performances are displayed in a non-intuitive manner at the
moment. Shows are displayed as their object identities, while performances are displayed as date-time values. This makes it
difficult to identify them in the views. Let’s modify the UI to display more semantically useful values.

Ticket Monster Tutorial
208 /319

These values will be computed at the server-side, since these are already available in the toString () implementations of these

classes. This would be accomplished by adding a read-only property displayTitle to the Show and Performance REST
resource representations:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/dto/ShowDTO.java

private Set<NestedPerformanceDTO> performances = new HashSet<NestedPerformanceDTO> () ;
private NestedVenueDTO venue;
private String displayTitle;

public ShowDTO ()

}
this.venue = new NestedVenueDTO (entity.getVenue());
this.displayTitle = entity.toString();

}

public String getDisplayTitle ()
{
return this.displayTitle;

src/main/java/org/jboss/jdf/example/ticketmonster/rest/dto/PerformanceDTO.java

private NestedShowDTO show;
private Date date;
private String displayTitle;

public PerformanceDTO ()

this.show = new NestedShowDTO (entity.getShow());
this.date = entity.getDate();
this.displayTitle = entity.toString();

}

public String getDisplayTitle ()
{
return this.displayTitle;

And let us do the same for the nested representations:
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/dto/NestedPerformanceDTO.java
private Long id;

private Date date;
private String displayTitle;

public NestedPerformanceDTO ()
this.id = entity.getId();

this.date = entity.getDate();
this.displayTitle = entity.toString();

Ticket Monster Tutorial
209/319

public String getDisplayTitle ()
{
return this.displayTitle;

src/main/java/org/jboss/jdf/example/ticketmonster/rest/dto/NestedShowDTO.java

private Long id;
private String displayTitle;

public NestedShowDTO ()

this.id = entity.getId();
this.displayTitle = entity.toString();

}

public String getDisplayTitle ()
{
return this.displayTitle;

We shall now proceed to modify the Angular]S views to use the new properties in the resource representations:

src¢/main/webapp/admin/scripts/controllers/editPerformanceController.js

var labelObject = {
value : item.id,
text : item.displayTitle
}i
if ($scope.performance.show && item.id == S$scope.performance.show.id) {

src/main/webapp/admin/scripts/controllers/editSectionAllocationController.js

var labelObject = {
value : item.id,
text : item.displayTitle
}i
if ($scope.sectionAllocation.performance && item.id ==
Sscope.sectionAllocation.performance.id) {

src¢/main/webapp/admin/scripts/controllers/editShowController.js

var labelObject = {

value : item.id,

text : item.displayTitle
}i

if ($scope.show.performances) {

src¢/main/webapp/admin/scripts/controllers/edit TicketPriceController.js

Ticket Monster Tutorial
210/319

var labelObject = {
value : item.id,
text : item.displayTitle
}i
if ($scope.ticketPrice.show && item.id == $scope.ticketPrice.show.id) {

src¢/main/webapp/admin/scripts/controllers/newPerformanceController.js

$Sscope.showSelectionList = $.map(items, function (item) ({

return ({
value : item.id,

text : item.displayTitle
})i
1)

src¢/main/webapp/admin/scripts/controllers/newSectionAllocationController.js

$Sscope.performanceSelectionList = $.map (items, function (item) {

return ({
value : item.id,

text : item.displayTitle
}) i
1)

src¢/main/webapp/admin/scripts/controllers/newShowController.js

$scope.performancesSelectionList = $.map(items, function(item) {
return ({
value : item.id,
text : item.displayTitle
1)
}) i

src/main/webapp/admin/scripts/controllers/newTicketPriceController.js

$scope.showSelectionList = $.map(items, function (item) {

return ({
value : item.id,

text : item.displayTitle
})i
1)

src/main/webapp/admin/views/Performance/search.html

<label for="show" class="control-label">Show</label>
<div class="controls">
<select id="show" name="show" ng-model="search.show" ng-options="s as
s.displayTitle for s in showList'">
<option value="">Choose a Show</option>
</select>

Ticket Monster Tutorial

211/319
<tbody id="search-results-body">
<tr ng-repeat="result in searchResults | searchFilter:searchResults |
startFrom:currentPagex*pageSize | limitTo:pageSize">
<td>{{result.show.displayTitle}}</td>
<td>{{result.date]
date:'yyyy-MM-dd HH:mm:ss Z'}}</td>
</tr>
src/main/webapp/admin/views/SectionAllocation/search.html
<label for="performance" class="control-label">Performance</label>
<div class="controls">
<select id="performance" name="performance" ng-model="search.performance"
ng-options="p as p.displayTitle for p in performanceList">
<option value="">Choose a Performance</option>
</select>
<tbody id="search-results-body">
<tr ng-repeat="result in searchResults | searchFilter:searchResults |
startFrom:currentPagex*pageSize | limitTo:pageSize">
<td>{{result.occupiedCount}}</td>
<td>{{result.performance.displayTitle}}</td>
<td>{{result.section.name}}</td>
</tr>

src¢/main/webapp/admin/views/TicketPrice/search.html

<label for="show" class="control-label">Show</label>
<div class="controls">
<select id="show" name="show" ng-model="search.show" ng-options="s as
s.displayTitle for s in showList'">
<option value="">Choose a Show</option>
</select>

<tbody id="search-results-body">

<tr ng-repeat="result in searchResults | searchFilter:searchResults |
startFrom:currentPagex*pageSize | limitTo:pageSize">
<td>{{result.show.displayTitle}}</td>
<td>{{result.section.name}}</td>
<td>{{result.ticketCategory.description}}</td>

We can test these changes by running

mvn clean package Jjboss-as:deploy

as usual.

Ticket Monster Tutorial
212/319

Part VII

Building The Statistics Dashboard Using
HTMLS and JavaScript

Ticket Monster Tutorial
213/319

Chapter 44

What Will You Learn Here?

You’ve just built the administration view, and would like to collect real-time information about ticket sales and attendance. Now
it would be good to implement a dashboard that can collect data and receive real-time updates. After reading this tutorial, you
will understand our dashboard design and the choices that we made in its implementation. Topics covered include:

* Adding a RESTful API to your application for obtaining metrics

* Adding a non-RESTful API to your application for controlling a bot

* Creating Backbone.js models and views to interact with a non-RESTful service

In this tutorial, we will create a booking monitor using Backbone.js, and add it to the TicketMonster application. It will show

live updates on the booking status of all performances and shows. These live updates are powered by a short polling solution that
pings the server on regular intervals to obtain updated metrics.

Ticket Monster Tutorial
214/319

Chapter 45

Implementing the Metrics API

The Metrics service publishes metrics for every show. These metrics include the capacity of the venue for the show, as well as
the occupied count. Since these metrics are computed from persisted data, we’ll not create any classes to represent them in the
data model. We shall however create new classes to serve as their representations for the REST APIs:

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/ShowMetric.java

package org. jboss. jdf.example.ticketmonster.rest;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org. jboss.jdf.example.ticketmonster.model.Performance;
import org. jboss.jdf.example.ticketmonster.model.Show;

/ **

* Metric data for a Show. Contains the identifier for the Show to identify it,
* in addition to the event name, the venue name and capacity, and the metric
* data for the performances of the Show.

*/

class ShowMetric {

private Long show;

private String event;

private String venue;

private int capacity;

private List<PerformanceMetric> performances;

// Constructor to populate the instance with data
public ShowMetric (Show show, Map<Long, Long> occupiedCounts) {
this.show = show.getId();

this.event = show.getEvent () .getName () ;

this.venue = show.getVenue () .getName () ;

this.capacity = show.getVenue () .getCapacity();

this.performances = convertFrom(show.getPerformances (), occupiedCounts);

private List<PerformanceMetric> convertFrom(Set<Performance> performances,
Map<Long, Long> occupiedCounts) {
List<PerformanceMetric> result = new ArraylList<PerformanceMetric>();
for (Performance performance : performances) {
Long occupiedCount = occupiedCounts.get (performance.getId());
result.add (new PerformanceMetric (performance, occupiedCount));

Ticket Monster Tutorial
215/319

return result;

// Getters for Jackson
// NOTE: No setters and default constructors are defined since
// deserialization is not required.

public Long getShow () {
return show;

public String getEvent () {
return event;

public String getVenue () {
return venue;

public int getCapacity () {
return capacity;

public List<PerformanceMetric> getPerformances () {
return performances;

The ShowMetric class is used to represent the structure of a Show in the metrics API. It contains the show identifier, the Event
name for the Show, the Venue name for the Show, the capacity of the Venue and a collection of PerformanceMetric
instances to represent metrics for individual Performance's for the " Show.

The PerformanceMetric is represented as:
src/main/java/org/jboss/jdf/example/ticketmonster/rest/PerformanceMetric.java

package org. jboss. jdf.example.ticketmonster.rest;
import java.util.Date;
import org. jboss.jdf.example.ticketmonster.model.Performance;

/ %%
* Metric data for a Performance. Contains the datetime for the performance to
* identify the performance, as well as the occupied count for the performance.
x/

class PerformanceMetric {

private Date date;
private Long occupiedCount;

// Constructor to populate the instance with data

public PerformanceMetric (Performance performance, Long occupiedCount) {
this.date = performance.getDate () ;
this.occupiedCount = (occupiedCount == null ? 0 : occupiedCount);

// Getters for Jackson
// NOTE: No setters and default constructors are defined since
// deserialization is not required.

public Date getDate () {
return date;

Ticket Monster Tutorial
216/319

public Long getOccupiedCount () {
return occupiedCount;

This class represents the date-time instance of Per formance in addition to the count of occupied seats for the venue.

The next class we need is the MetricsService class that responds with representations of ShowMetric instances in re-
sponse to HTTP GET requests:

src/main/java/org/jboss/jdf/example/ticketmonster/rest/MetricsService.java

package org. jboss. jdf.example.ticketmonster.rest;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.ejb.Stateless;

import javax.inject.Inject;

import javax.persistence.EntityManager;
import javax.persistence.Query;

import javax.persistence.TypedQuery;
import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import org. jboss.jdf.example.ticketmonster.model.Show;

/ **
* A read-only REST resource that provides a collection of metrics for shows occuring in the
future. Updates to metrics via

* POST/PUT etc. are not allowed, since they are not meant to be computed by consumers.
*

x/
@Path ("/metrics")
@Stateless

public class MetricsService {

@Inject
private EntityManager entityManager;

* Retrieves a collection of metrics for Shows. Each metric in the collection contains
*

* the show id,</1li>

* the event name of the show,</1i>

* the venue for the show,</1li>

* the capacity for the venue</1li>

* the performances for the show,

*

x the timestamp for each performance,</1li>

* the occupied count for each performance</1li>
*

* </1i>

*

* @return A JSON representation of metrics for shows.

Ticket Monster Tutorial
217 /319

*/
QGET
@Produces (MediaType .APPLICATION_JSON)
public List<ShowMetric> getMetrics() {
return retrieveMetricsFromShows (retrieveShows (),
retrieveOccupiedCounts ()) ;

private List<ShowMetric> retrieveMetricsFromShows (List<Show> shows,
Map<Long, Long> occupiedCounts) {
List<ShowMetric> metrics = new ArrayList<ShowMetric>();
for (Show show : shows) {
metrics.add (new ShowMetric (show, occupiedCounts));
}

return metrics;

private List<Show> retrieveShows () {
TypedQuery<Show> showQuery = entityManager
.createQuery ("select DISTINCT s from Show s JOIN s.performances p WHERE p.date >
current_timestamp"”, Show.class) ;
return showQuery.getResultList () ;

private Map<Long, Long> retrieveOccupiedCounts () {
Map<Long, Long> occupiedCounts = new HashMap<Long, Long>();

Query occupiedCountsQuery = entityManager
.createQuery ("select b.performance.id, SIZE (b.tickets) from Booking b "
+ "WHERE b.performance.date > current_timestamp GROUP BY b.performance.id");

List<Object[]> results = occupiedCountsQuery.getResultList ();
for (Object[] result : results) {
occupiedCounts.put ((Long) result[0],
((Integer) result[l]).longValue());

return occupiedCounts;

This REST resource responds to a GET request by querying the database to retrieve all the shows and the performances associated
with each show. The metric for every performance is also obtained; the performance metric is simply the sum of all tickets
booked for the performance. This query result is used to populate the ShowMetric and Per formanceMet ric representation
instances that are later serialized as JSON responses by the JAX-RS provider.

Ticket Monster Tutorial
218/319

Chapter 46

Creating the Bot service

We’d also like to implement a Bot service that would mimic a set of real users. Once started, the Bot would attempt to book
tickets at periodic intervals, until it is ordered to stop. The Bot should also be capable of deleting all Bookings so that the system
could be returned to a clean state.

We will implement the Bot as an EJB that will utlize the container-provided TimerService to periodically perform bookings
of a random number of tickets on randomly selected performances:

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/Bot.java

package org. jboss. jdf.example.ticketmonster.service;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Date;

import java.util.List;

import java.util.Map;

import java.util.Random;

import java.util.concurrent.TimeUnit;

import javax.annotation.Resource;
import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerConfig;

import javax.ejb.TimerService;
import javax.enterprise.event.Event;
import javax.inject.Inject;

import javax.ws.rs.core.Response;

import org. jboss. jdf.example.ticketmonster.model.Performance;

import org. jboss. jdf.example.ticketmonster.model. Show;

import org.jboss.jdf.example.ticketmonster.model.TicketPrice;

import org. jboss.jdf.example.ticketmonster.rest.*;

import org. jboss.jdf.example.ticketmonster.util.MultivaluedHashMap;
import org. jboss.jdf.example.ticketmonster.util.qualifier.BotMessage;

@Stateless
public class Bot {

private static final Random random = new Random(System.nanoTime ()) ;

/+* Frequency with which the bot will book =*x/
public static final long DURATION = TimeUnit.SECONDS.toMillis(3);

/*+% Maximum number of ticket requests that will be filed =/

Ticket Monster Tutorial
219/319

public static int MAX_TICKET_REQUESTS = 100;

/+* Maximum number of tickets per request *x/
public static int MAX_TICKETS_PER_REQUEST = 100;

public static String [] BOOKERS = {"anne@acme.com", "georgel@acme.com",
"william@acme.com", "victoria@acme.com", "edward@acme.com", "elizabeth@acme.com",
"mary@acme.com", "charles@acme.com", "james@acme.com", "henry@acme.com",
"richard@acme.com", "john@acme.com", "stephen@acme.com"};

@Inject
private ShowService showService;

@Inject
private BookingService bookingService;

@Inject @BotMessage
Event<String> event;

@Resource
private TimerService timerService;

public Timer start () {
String startMessage = new StringBuilder (" \n")
.append ("Bot started at ") .append(new Date().toString()) .append("\n")
.toString();
event.fire (startMessage);
return timerService.createIntervalTimer (0, DURATION, new TimerConfig(null, false));

public void stop (Timer timer) {
String stopMessage = new StringBuilder (" \n'")
.append ("Bot stopped at ") .append(new Date () .toString()) .append("\n")
.toString();
event.fire (stopMessage) ;
timer.cancel () ;

@Timeout
public void book (Timer timer) {

// Select a show at random

Show show = selectAtRandom(showService.getAll (MultivaluedHashMap.<String,
String>empty ()));

// Select a performance at random
Performance performance = selectAtRandom (show.getPerformances());

String requestor = selectAtRandom (BOOKERS) ;
BookingRequest bookingRequest = new BookingRequest (performance, requestor);

List<TicketPrice> possibleTicketPrices = new
ArrayList<TicketPrice> (show.getTicketPrices());

List<Integer> indicies = selectAtRandom (MAX_TICKET_REQUESTS <
possibleTicketPrices.size () ? MAX_TICKET_REQUESTS : possibleTicketPrices.size());

StringBuilder message = new StringBuilder (" \n")
.append ("Booking by ")

.append (requestor)

.append (" at ")

.append (new Date () .toString())

Ticket Monster Tutorial

220/319

.append ("\n")
.append (performance)
.append ("\n")
.append ("~~v~~vmvvs v v v v v \n");
for (int index : indicies) {

int no = random.nextInt (MAX_TICKETS_PER_REQUEST) ;

TicketPrice price = possibleTicketPrices.get (index) ;

bookingRequest .addTicketRequest (new TicketReservationRequest (price.getId (), no));

message
.append (no)
.append (" of ")
.append (price.getSection())
.append("\n");

}

Response response = bookingService.createBooking (bookingRequest) ;
if (response.getStatus () == Response.Status.OK.getStatusCode())

message.append ("SUCCESSFUL\n")

o EleIEINE| (Wermmarsmameem cosoms e oo oot \n") ;

}
else {
message.append ("FAILED: \n")

.append (((Map<String, Object>) response.getEntity()) .get ("errors"))

> QPPEMNEL (Vrrmmmmmmaaaa e ammew
}

event.fire (message.toString());

private <T> T selectAtRandom(List<T> list) {
int i = random.nextInt (list.size());
return list.get (i);

private <T> T selectAtRandom (T[] array) {
int i = random.nextInt (array.length);
return arrayl[i];

private <T> T selectAtRandom(Collection<T> collection)

int item = random.nextInt (collection.size());
int i = 0;
for (T obj : collection)
{

if (i == item)

return obj;

i++;
}
throw new IllegalStateException();

private List<Integer> selectAtRandom(int max) {
List<Integer> indicies = new ArraylList<Integer>();

for (int i = 0; i < max;) {
int r = random.nextInt (max) ;
if (!'indicies.contains(r)) {

indicies.add(r) ;
i++;

{

Ticket Monster Tutorial

221/319

return indicies;

The start () and stop (Timer timer) methods are used to control the lifecycle of the Bot. When invoked, the start ()
method creates an interval timer that is scheduled to execute every 3 seconds. The complementary stop (Timer timer)
method accepts a Timer handle, and cancels the associated interval timer. The book (Timer timer) is the callback method
invoked by the container when the interval timer expires; it it therefore invoked every 3 seconds. The callback method selects
a show at random, an associated performance for the chosen show at random, and finally attempts to perform a booking of a
random number of seats.

The Bot also fires CDI events containing log messages. To qualify the St ring messages produced by the Bot, we’ll use the
BotMesssage qualifier:

src¢/main/java/org/jboss/jdf/example/ticketmonster/util/qualifier/BotMessage.java

package org

import
import
import

import

import
import
import
import
import

java.lang.annotation.Documented;
java.lang.annotation.Retention;
java.lang.annotation.Target;

javax.inject.Qualifier;

static
static
static
static
static

QQualifier

@Target ({ TYPE, METHOD,

java.
java.
java.
java.
java.

@Retention (RUNTIME)
@Documented
public @interface BotMessage {

lang.
lang.
lang.
lang.
lang.

annotation

PARAMETER, FIELD })

. jboss.jdf.example.ticketmonster.util.qualifier;

annotation.ElementType.FIELD;
annotation.ElementType.METHOD;
annotation.ElementType.PARAMETER;
annotation.ElementType.TYPE;
.RetentionPolicy.RUNTIME;

The next step is to create a facade for the Bot that invokes the Bot’s start and stop methods:

src/main/java/org/jboss/jdf/example/ticketmonster/service/BotService.java

package org. jboss. jdf.example.ticketmonster.service;

import
import

import
import
import
import
import
import

import
import
import
import
import

/ %%

java.u
java.u

javax.
javax.
javax.
javax.
javax.

javax.

org. jb
org. jb
org.jb
org. jb
org.jb

til
til
ejb
ejb
ejb

OoSs.
OoSs.
OoSs.
OoSs.
OoSs.

.List;
.logging.Logger;

.Asynchronous;
.Singleton;
.Timer;
enterprise.event.Event;
enterprise.event.Observes;
inject.Inject;

jdf.
jdf.
jdf.
jdf.
jdf.

example.
example.
example.
example.
example.

ticketmonster.model.Booking;
ticketmonster.rest.BookingService;
ticketmonster.util.CircularBuffer;
ticketmonster.util.MultivaluedHashMap;
ticketmonster.util.qualifier.BotMessage;

* A Bot service that acts as a Facade for the Bot,
state as well as to obtain the current

providing methods to control the

Bot

Ticket Monster Tutorial
222 /319

* state of the Bot.
*/
@Singleton
public class BotService ({

private static final int MAX_LOG_SIZE = 50;
private CircularBuffer<String> log;

@Inject
private Bot bot;

@Inject
private BookingService bookingService;

@Inject
private Logger logger;

@Inject

@BotMessage

private Event<String> event;
private Timer timer;

public BotService() {

log = new CircularBuffer<String> (MAX_LOG_SIZE);

public void start () {
synchronized (bot) {

if (timer == null) {
logger.info ("Starting bot");
timer = bot.start();

public void stop () {
synchronized (bot) ({
if (timer != null) {
logger.info ("Stopping bot");
bot.stop (timer) ;
timer = null;

@Asynchronous
public void deleteAll () {
synchronized (bot) ({
stop () ;
for (Booking booking : bookingService.getAll (MultivaluedHashMap
.<String, String> empty())) {
bookingService.deleteBooking (booking.getId()) ;
event.fire ("Deleted booking " + booking.getId() + " for "
+ booking.getContactEmail () + "\n");

public void newBookingRequest (@Observes @BotMessage String bookingRequest) {
log.add (bookingRequest) ;

Ticket Monster Tutorial
223/319

public List<String> fetchLog() {
return log.getContents();

}

public boolean isBotActive () {
return (timer != null);

}

The start and stop methods of this facade wrap calls to the start and stop methods of the Bot. These methods are
synchronous by nature. The deleteAll method is an asynchronous business method in this EJB. It first stops the Bot, and
then proceeds to delete all Bookings. Bookings can take quite a while to be deleted depending on the number of existing ones,
and hence declaring this method as @Asynchronous would be appropriate in this situation.

This facade also exposes the log messages produced by the Bot via the fet chLog () method. The contents of the log are backed
by aCircularBuffer. The facade observes all @BotMessage events and adds the contents of each event to the buffer.

Finally, the facade also provides an interface to detect if the bot is active or not: isBotActive that returns true if a Timer
handle is present.

We shall now proceed to create a Bot StatusService class that exposes the operations on the Bot as a web-service. The
BotStatusService will always return the current status of the Bot - whether the Bot has been started or stopped, and the
messages in the Bot’s log. The service also allows the client to change the state of the bot - to start the bot, or to stop it, or even
delete all the bookings.

The BotState is just an enumeration:
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/BotState.java

package org. jboss. jdf.example.ticketmonster.rest;

/ %%
* An enumeration that represents the possible states for the Bot.
x/
public enum BotState {
RUNNING, NOT_RUNNING, RESET
}

The RUNNING and NOT_RUNNING values are obvious. The RESET value is used to represent the state where the Bot will be
stopped and the Bookings would be deleted. Quite naturally, the Bot will eventually enter the NOT_RUNNING state after it is
RESET.

The BotStatusService will be located at the /bot path. It would respond to GET requests at the /messages sub-path
with the contents of the Bot’s log. It will respond to GET requests at the /status sub-path with the JSON representation of
the current BotState. And finally, it will respond to PUT requests containing the JSON representation of the BotState, provided
tothe /status sub-path, by triggering a state change; a HTTP 204 response is returned in this case.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/BotStatusService.java

package org. jboss. jdf.example.ticketmonster.rest;
import java.util.List;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

Ticket Monster Tutorial
224 /319

import org. jboss.jdf.example.ticketmonster.service.BotService;

/ %%
* A non-RESTful service for providing the current state of the Bot. This service also allows
the bot to be started, stopped or
* the existing bookings to be deleted.
*/
@Path ("/bot")
public class BotStatusService {

@Inject
private BotService botService;

/ x %
* Produces a JSON representation of the bot's log, containing a maximum of 50 messages
logged by the Bot.
*
* @return The JSON representation of the Bot's log
*/
@Path ("messages")
@GET
@Produces (MediaType .APPLICATION_JSON)
public List<String> getMessages () {
return botService.fetchLog() ;

/[**
* Produces a representation of the bot's current state. This is a string - "RUNNING" or
"NOT_RUNNING" depending on whether
* the bot is active.
*
* @return The represntation of the Bot's current state.
*/
@Path ("status")
@GET
@Produces (MediaType .APPLICATION_JSON)
public Response getBotStatus() {
BotState state = botService.isBotActive () ? BotState.RUNNING
BotState.NOT_RUNNING;
return Response.ok (state) .build();

/ x %
* Updates the state of the Bot with the provided state. This may trigger the bot to
start itself, stop itself, or stop and
* delete all existing bookings.
*
* @param updatedStatus The new state of the Bot. Only the state property is considered;
any messages provided are ignored.
* @return An empty HTTP 201 response.
*/
@Path ("status")
@PUT
public Response updateBotStatus (BotState updatedState) {
if (updatedState.equals (BotState.RUNNING)) {
botService.start () ;
} else if (updatedState.equals (BotState.NOT_RUNNING)) {
botService.stop () ;
} else if (updatedState.equals (BotState.RESET)) {
botService.deleteAll () ;

Ticket Monster Tutorial

225/319

return Response.noContent () .build();

Should the BotStatusService use JAX-RS?

The BotStatusService appears to be a RESTful service, but on closer examination it does not obey the con-
straints of such a service. It represents a single resource - the Bot and not a collection of resources where each item
in the collected is uniquely identified. In other words, no resource like /bot /1 exists, and neither does a HTTP POST
to /bot creates a new bot. This affects the design of the Backbone.js models in the client, as we shall later see.
Therefore, it is not necessary to use JAX-RS in this scenario. JAX-RS certainly makes it easier, since we can continue
to use the same programming model with minor changes. There is no need to parse requests or serialize responses or
lookup EJBs; JAX-RS does this for us. The alternative would be to use a Servlet or a JSON-RPC endpoint.

We would recommend adoption alternatives in real-life scenarios should they be more suitable.

Ticket Monster Tutorial
226 /319

Chapter 47

Displaying Metrics

We are set up now and ready to start coding the client-side section of the dashboard. The users will be able to view the list of
performances and view the occupied count for that performance.

47.1 The Metrics model

We’ll define a Backbone model to represent the metric data for an individual show.
src/main/webapp/resources/js/app/models/metric.js

[**
* Module for the Metric model
*/
define ([
// Configuration is a dependency
'configuration',
"backbone'
1, function (config) {

/ x %
* The Metric model class definition
* Used for CRUD operations against individual Metric
*/
var Metric = Backbone.Model.extend ({
idAttribute: "show"
}) i

return Metric;

1) i

We’ve specified the show property as the 1dAttribute for the model. This is necessary since every resource in the collection
is uniquely identified by the show property in the representation. Also note that the Backbone model does not define a ur1Root
property unlike other Backbone models. The representation for an individual metric resource cannot be obtained by navigating
to /metrics/X, but the metrics for all shows can be obtained by navigating to /metrics.

47.2 The Metrics collection

We now define a Backbone collection for handling the metrics collection:

src/main/webapp/resources/js/app/collections/metrics.js

Ticket Monster Tutorial
227 /319

/ %%
* The module for a collection of Metrics
x/
define ([
'app/models/metric’,
'configuration',
"backbone'
], function (Metric, config) {

// Here we define the Metrics collection
// We will use it for CRUD operations on Metrics

var Metrics = Backbone.Collection.extend ({
url: config.baseUrl + 'rest/metrics’,
model: Metric

1)

return Metrics;

1) i

We have thus mapped the collection to the Met ricsService REST resource, so we can perform CRUD operations against
this resource. In practice however, we’ll need to only query this resource.

47.3 The MetricsView view

Now that we have the model and the collection, let’s create the view to display the metrics:
src¢/main/webapp/resources/js/app/views/desktop/metrics.js

define ([
'backbone’,
'configuration',
'utilities',
"text!../../../../templates/desktop/metrics.html"'
], function (
Backbone,
config,
utilities,
metricsTemplate) {

var MetricsView = Backbone.View.extend ({
intervalDuration : 3000,
initialize : function () {
_.bind(this.render, this);
_.bind(this.liveUpdate, this);
this.collection.on ("add remove change"”, this.render, this);
var self = this;
S.when (this.collection.fetch())
.done (function () {
self.liveUpdate () ;
}) i
}I
liveUpdate : function() {
this.collection.fetch();
var self = this;
this.timerObject = setTimeout (function () {
self.liveUpdate();
}, this.intervalDuration);

by

Ticket Monster Tutorial
228 /319

render : function () {
utilities.applyTemplate ($ (this.el), metricsTemplate,
{collection:this.collection});
return this;
}I
onClose : function() {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;

)i

return MetricsView;

1)

Like other Backbone views, the view is attached to a DOM element (the el property). When the render method is invoked, it
manipulates the DOM and renders the view. The metricsTemplate template is used to structure the HTML, thus separating
the HTML view code from the view implementation.

The render method is invoked whenever the underlying collection is modified. The view is associated with a timer that is executed
repeatedly with a predetermined interval of 3 seconds. When the timer is triggered, it fetches the updated state of the collection
(the metrics) from the server. Any change in the collection at this point, now triggers a refresh of the view as pointed out earlier.

When the view is closed/destroyed, the associated timer if present is cleared.
src/main/webapp/resources/templates/desktop/metrics.html

<div class="span7">
<h3 class="page-header light-font special-title">Booking status</h3>
<div id="status-content">
<%
_.each(collection.models, function (show) {
%>
<div class="show-status">
<div class="show-status—-header"><%=show.get ('event') %> @ <%=show.get ('venue') $></div>
<%_.each (show.get ('performances'), function (performance) {%>
<div class="performance-status">
<div class="pull-left"><%=new Date (performance.date) .toLocaleString () $></div>
<div class="pull-left performance-status-progress progress progress-success">
<div style="width:
<%= (performance.occupiedCount) / (show.get ('capacity')) *100%>%;" class="bar"></div>
</div>
<div><%$=performance.occupiedCount%> of <%$=show.get ('capacity')%> tickets
booked</div>
</div>
<% 1) %>
</div>
<% }); %>
</div>
</div>

The HTML for the view groups the metrics by show. Every performance associated with the show is displayed in this group,
with the occupied count used to populate a Bootstrap progress bar. The width of the bar is computed with the occupied count for
the performance and the capacity for the show (i.e. capacity for the venue hosting the show).

Ticket Monster Tutorial
229/319

Chapter 48

Displaying the Bot interface

48.1 The Bot model

We’ll define a plain JavaScript object to represent the Bot on the client-side. Recalling the earlier discussion, the Bot service at
the server is not a RESTful service. Since it cannot be identified uniquely, it would require a few bypasses in a Backbone model
(like overriding the url property) to communicate correctly with the service. Additionally, obtaining the Bot’s log messages
would require using jQuery since the log messages also cannot be represented cleanly as a REST resource. Given all these
factors, it would make sense to use a plain JavaScript object to represent the Bot model.

src¢/main/webapp/resources/js/app/models/bot.js

/ x*
* Module for the Bot model
*/
define ([
'jquerY'/
'"configuration',
], function ($, config) {

/[*
* The Bot model class definition
* Used perform operations on the Bot.
= Note that this is not a Backbone model.

*/
var Bot = function () {
this.statusUrl = config.baseUrl + 'rest/bot/status';
this.messagesUrl = config.baseUrl + 'rest/bot/messages’;
}
/ *

* Start the Bot by sending a request to the Bot resource

* with the new status of the Bot set to "RUNNING".

*/

Bot .prototype.start = function() {
S.ajax ({

type: "PUT",
url: this.statusUrl,
data: "\"RUNNING\"",
dataType: "json",
contentType: "application/json"

Ticket Monster Tutorial
230/319

* Stop the Bot by sending a request to the Bot resource
* with the new status of the Bot set to "NOT_RUNNING".

*/
Bot.prototype.stop = function () {
S.ajax ({
type: "PUT",
url: this.statusUrl,
data: "\"NOT_RUNNING\"",
dataType: "json",
contentType: "application/json"
1)
}
/ *

* Stop the Bot and delete all bookings by sending a request to the Bot resource
* with the new status of the Bot set to "RESET".

*/
Bot .prototype.reset = function() {
$.ajax ({
type: "PUT",
url: this.statusUrl,
data: "\"RESET\"",
dataType: "json",
contentType: "application/json"
})i
}
/ *

* Fetch the log messages of the Bot and invoke the callback.
* The callback is provided with the log messages (an array of Strings).
*/
Bot .prototype.fetchMessages = function (callback) {
$.get (this.messagesUrl, function (data) {
if (callback) {
callback (data);

)i

return Bot;

1)

The start, stop and rest methods issue HTTP requests to the Bot service at the rest /bot/status URL with jQuery. The
fetchMessages method issues a HTTP request to the Bot service at the rest /bot /messages URL with jQuery; it accepts a
callback method as a parameter and invokes the callback once it receives a response from the server.

48.2 The BotView view

Now that we have the model, let’s create the view to control the Bot:
src/main/webapp/resources/js/app/views/desktop/bot.js

define ([
'jquery 'I
'underscore',
'backbone’,
'configuration',
'utilities',
'text!../../../../templates/desktop/bot.html"'

Ticket Monster Tutorial
231/319

1, function (
$I
p— 4
Backbone,
config,
utilities,
botTemplate) {

var BotView = Backbone.View.extend ({

intervalDuration : 3000,

initialize : function() {
_.bind(this.liveUpdate, this);
_.bind(this.startBot, this);
_.bind(this.stopBot, this);
_.bind(this.resetBot, this);
utilities.applyTemplate ($ (this.el), botTemplate, {});
this.liveUpdate () ;

}I

events: {

"click #start-bot" : "startBot",
"click #stop-bot" : "stopBot",
"click #reset" : "resetBot"

}I
liveUpdate : function() {
this.model.fetchMessages (this.renderMessages) ;
var self = this;
this.timerObject = setTimeout (function () {
self.liveUpdate();
}, this.intervalDuration);
}I

renderMessages : function(data) {
var displayMessages = data.reverse();
var botLog = $("textarea") .get (0);

// The botLog textarea element may have been removed if the user navigated to a
different view
if (botLog) {
botLog.value = displayMessages.join("");

}I
onClose : function() {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;

}I

startBot : function() {
this.model.start ();
// Refresh the log immediately without waiting for the live update to trigger.
this.model.fetchMessages (this.renderMessages) ;

}I

stopBot : function () {
this.model.stop () ;
// Refresh the log immediately without waiting for the live update to trigger.
this.model.fetchMessages (this.renderMessages) ;

}I

resetBot : function() {
this.model.reset () ;
// Refresh the log immediately without waiting for the live update to trigger.
this.model. fetchMessages (this.renderMessages) ;

Ticket Monster Tutorial
232/319

return BotView;
1) g

This view is similar to other Backbone views in most aspects, except for a few. When the view initialized, it manipulates the
DOM and renders the view; this is unlike other views that are not rendered on initialization. The bot Template template is
used to structure the HTML. An interval timer with a pre-determined duration of 3 seconds is also created when the view is
initialized. When the view is closed/destroyed, the timer if present is cleared out.

When the timer is triggered, it fetches the Bot’s log messages. The renderMessages method is provided as the callback to
the fetchMessages invocation. The renderMessages callback method is provided with the log messages from the server,
and it proceeds to update a textarea with these messages.

The startBot, stopBot and resetBot event handlers are setup to handle click events on the associated buttons in the view. They
merely delegate to the model to perform the actual operations.

src/main/webapp/resources/templates/desktop/bot.html

<div class="span5">
<h3 class="page-header light-font special-title">Bot</h3>
<div id="bot-content">
<div class="btn-group">
<button id="start-bot" type="button" class="btn btn-danger" title="Start the bot">Start
bot</button>
<button id="stop-bot" type="button" class="btn btn-danger">Stop bot</button>
<button id="reset" type="button" class="btn btn-danger" title="Delete all bookings
(stops the bot first)">Delete all bookings</button>
</div>
<div class="bot-console">
<div class="bot-label">Bot Log</div>
<textarea style="width: 400px; height: 300px;" readonly=""></textarea>
</div>
</div>
</div>

The HTML for the view creates a button group for the actions possible on the Bot. It also carries a text area for displaying the
Bot’s log messages.

Ticket Monster Tutorial
233/319

Chapter 49

Creating the dashboard

Now that we have the constituent views for the dashboard, let’s wire it up into the application.

49.1 Creating a composite Monitor view

Let’s create a composite Backbone view to hold the MetricsView and BotView as it’s constituent sub-views.
src/main/webapp/resources/js/app/router/desktop/router.js

define ([
'backbone’,
'configuration',
'utilities',
'app/models/bot ',
'app/collections/metrics’',
'app/views/desktop/bot ',
'app/views/desktop/metrics’,
'text!../../../../templates/desktop/monitor.html"'
], function (
Backbone,
config,
utilities,
Bot,
Metrics,
BotView,
MetricsView,
monitorTemplate) {

var MonitorView = Backbone.View.extend ({
render : function () {
utilities.applyTemplate ($ (this.el), monitorTemplate, {});
var metrics = new Metrics();
this.metricsView = new MetricsView({collection:metrics, el:$("#metrics-view")});
var bot = new Bot ();
this.botView = new BotView ({model:bot,el:$ ("#bot-view")});
return this;
b
onClose : function() {
if (this.botView) ({
this.botView.close();
}
if (this.metricsView) {
this.metricsView.close();

Ticket Monster Tutorial
234 /319

1)

return MonitorView;
1) ;

The render method of this Backbone view creates the two sub-views and renders them. It also initializes the necessary models
and collections required by the sub-views. All other aspects of the view like event handling and updates to the DOM are handled
by the sub-views. When the composite view is destroyed, it also closes the sub-views gracefully.

The HTML template used by the composite just lays out a structure for the sub-views to control two distinct areas of the DOM -
a div with id met rics—view for displaying the metrics, and another div with id bot —view to control the bot:

src/main/webapp/resources/templates/desktop/monitor.html

<div class="container-fluid">
<div class="row">
<div id="metrics-view" class="span7"></div>
<div id="bot-view" class="span5"></div>
</div>
</div>

49.2 Configure the router

Finally, let us wire up the router to display the monitor when the user navigates to the monitor route in the Backbone applica-
tion:

src/main/webapp/resources/js/app/router/desktop/router.js

define ("router"”, [
'app/views/desktop/monitor’',

], function (...
MonitorView,

) Ao

var Router = Backbone.Router.extend ({
routes : {
.7
"monitor":"displayMonitor"
}I
.7
displayMonitor:function () {
var monitorView = new MonitorView ({el:$("#content")});
utilities.viewManager.showView (monitorView) ;
}I
}) i

With this configuration, the user can now navigate to the monitor section of the application, where the metrics and the bot controls
would be displayed. The underlying sub-views would poll against the server to update themselves in near real-time offering a
dashboard solution to TicketMonster.

Ticket Monster Tutorial
235/319

Part VIII

Creating hybrid mobile versions of the
application with Apache Cordova

Ticket Monster Tutorial
236/319

Chapter 50

What will you learn here?

You finished creating the front-end for your application, and it has mobile support. You would now like to provide native client
applications that your users can download from an application store. After reading this tutorial, you will understand how to reuse
the existing HTMLS5 code for create native mobile clients for each target platform with Apache Cordova.

You will learn how to:

* make changes to an existing web application to allow it to be deployed as a hybrid mobile application;
e create a native application for Android with Apache Cordova;

* create a native application for iOS with Apache Cordova;

Ticket Monster Tutorial

237/319

Chapter 51

What are hybrid mobile applications?

Hybrid mobile applications are developed in HTMLS - unlike native applications that are compiled to platform-specific binaries.
The client code - which consists exclusively of HTML, CSS, and JavaScript - is packaged and installed on the client device just
as any native application, and executes in a browser process created by a surrounding native shell.

Besides wrapping the browser process, the native shell also allows access to native device capabilities, such as the accelerometer,
GPS, contact list, etc., made available to the application through JavaScript libraries.

In this example, we use Apache Cordova to implement a hybrid application using the existing HTMLS5 mobile front-end for
TicketMonster, interacting with the RESTful services of a TicketMonster deployment running on JBoss A7 or JBoss EAP.

_—_mmmmEmem -

TicketiMonster
HTMLS

#=| REST Services

Client

L

__________ i

Apache Cordova

Ticket Monster
Installed Application

Mobile device

—

TicketMonster WAR

JBoss AST/EAP/Openshift

I—I

Figure 51.1: Architecture of hybrid TicketMonster

Ticket Monster Tutorial
238/319

Chapter 52

Tweak your application for remote access

Before we make the application hybrid, we need to make some changes in the way in which it accesses remote services. Note
that the changes have already been implemented in the user front end, here we show you the code that we needed to modify.

In the web version of the application the client code is deployed together with the server-side code, so the models and collections
(and generally any piece of code that will perform REST service invocations) can use URLSs relative to the root of the application:
all resources are serviced from the same server, so the browser will do the correct invocation. This also respects the same origin
policy enforced by default by browsers, to prevent cross-site scripting attacks.

If the client code is deployed separately from the services, the REST invocations must use absolute URLs (we will cover the
impact on the same-origin policy later). Furthermore, since we want to be able to deploy the application to different hosts without
rebuilding the source, it must be configurable.

You already caught a glimpse of this in the user front end chapter, where we defined the configuration module for the
mobile version of the application.

src¢/main/webapp/resources/js/configurations/mobile.js

define ("configuration"”, function() ({
if (window.TicketMonster != undefined && TicketMonster.config != undefined) ({
return {
baseUrl: TicketMonster.config.baseRESTUrl
}i
} else {
return
baseUrl: ""

}

This module has a baseURL property that is either set to an empty string for relative URLs or to a prefix, such as a domain
name, depending on whether a global variable named TicketMonster has already been defined, and it has a baseRESTUr1
property.

All our code that performs REST services invocations depends on this module, thus the base REST URL can be configured in a
single place and injected throughout the code, as in the following code example:

src/main/webapp/resources/js/app/models/event.js

/ %%
* Module for the Event model
*/
define ([
'configuration',
"backbone'

Ticket Monster Tutorial
239/319

1, function (config) {
/ x %
* The Event model class definition
* Used for CRUD operations against individual events
*/
var Event = Backbone.Model.extend ({
urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations

1)
// export the Event class

return Event;
1)

The prefix is used in a similar fashion by all the other modules that perform REST service invocations. You don’t need to do
anything right now, because the code we created in the user front end tutorial was written like this originally. Be warned, if
you have a mobile web application that uses any relative URLs, you will need to refactor them to include some form of URL

configuration.

Ticket Monster Tutorial
240/319

Chapter 53

Downloading Apache Cordova

The next step is downloading and installing Apache Cordova. Download the distribution fromhttp://phonegap.com/download
and unzip it.

M changelog (] android » [bin -
[doc - [] blackberry I+ M changelog
] lib S [cordova-cli I+ = cordova-2.7.0.jar
M LICENSE [] ios I ig| cordova-2.7.0.js
M README.md Ll osx " [example "
™ VERSION] windows-phone-7 " M LICENSE
] windows-phone-8 " M NOTICE
] windows§8 " M README.md
M VERSION
L =mil f

Figure 53.1: Apache Cordova distribution

While migrating TicketMonster, we will work with the files in the 1ib directory. They contain native libraries for each of the
supported platforms, as well JavaScript libraries . We have highlighted the contents of the android folder. The folders for the
other platforms have similar content.

Ticket Monster Tutorial
241 /319

Chapter 54

Creating an Android hybrid mobile application

What do you need for Android?

For building the Android version of the application you need to install the Android Developer Tools, which require an Eclipse
instance (3.6.2 or later), and can run on Windows (XP, Vista, 7), Mac OS X (10.5.8 or later), Linux (with GNU C Library - glibc
2.7 or later, 64-bit distributions having installed the libraries for running 32-bit applications).

54.1 Creating an Android project using Apache Cordova

First, we will create an Android project in JBDS. The prerequisites for that are having the Android SDK installed locally , as
well as the Android (ADT) plugin for Eclipse installed in JBDS.

For the former, download the Android SDK from http://developer.android.com/sdk/index.html and unzip it in a directory of your
choice, remembering its location.

For the latter, select Help — Install New Software from the menu, using the URL https://dl-ssl.google.com/android/ecl
and selecting the Developer Tools option. Restart Eclipse.

Now we can create a new Android project.

1. Select File — New — Other and selecting Android Application Project.

2. Enter the project information: application name, project name, package.
Application Name
TicketMonster

Project Name
TicketMonster

package
org.jboss.jdf .ticketmonster.android

Ticket Monster Tutorial
242 /319

New Android Application e

New Android Application

Creates a new Android Application

Application Name: 8| TicketMonster |

Project Name: | TicketMonster l

Package Name: 6 org.jboss jdf.ticketmenster.android |

Minimum Required SDK: & | APl 8: Android 2.2 (Froyo)

Target SDK: & [APl 17: Android 4.2 (Jelly Bean)

Compile With: & | API 17: Android 4.2 {Jelly Bean)

Theme: @ [Holo Light with Dark Action Bar

@ [< Back][MNext = J [Cancel J Finish

Figure 54.1: Entering the application name, project name and package

3. Select default values for the next couple of screens (Configure New Project, Launcher icon).

4. Select BlankActivity as the activity type.

Ticket Monster Tutorial

243 /319

MNew Android Application A

Create Activity

Select whether to create an activity, and if so, what kind of activity.

IET Create Activity

Blank Activity
Fullscreen Activity
Master/Detail Flow

Blank Activity

Creates a new blank activity, with an action bar and optional navigational elements such as tabs or harizontal
swipe.

@ | <Back || MNext> | | Cancel | Finish

Figure 54.2: Select activity type

5. Name the newly created activity TicketMonsterActivity.

Ticket Monster Tutorial

244 /319
MNew Android Application -
Blank Activity
Creates a new blank activity, with an action bar and optional navigational elements such as tabs or
horizontal swipe.
Activity Name 8| TicketMonsterActivity I
Layout Name G activity_ticket_monster I
Mavigation Type @ |_ Mone =
@ | <Back | Mext > | Cancel | | Finish |

Figure 54.3: Name the new activity

A final step involves adding the Apache Cordova library to the project. Copy the 1ib/android/cordova-2.7.0. jar file
from the Cordova distribution into the 1ibs folder of the project.

Ticket Monster Tutorial
245/319

‘F:.LE-TicketM{:-nster

b Esrc
[E@gen Cenerated Java Files
b = Android 4.2.2
P =, Android Private Libraries
=i Android Dependencies
2 assets
¥ = libs
Qul android-support-v4. jar
gul cordova-2.7.0.jar
v E'@ res
b (= drawable-hdpi
= drawable-Idpi

Figure 54.4: Add the Cordova jar

Once you have finished creating the project, navigate to the assets directory. Now we need to create a www directory, that
will contain the HTMLS5 code of the application. Since we are reusing the TicketMonster code you can simply create a symbolic
link to the webapp directory of TicketMonster. Alternatively, you can copy the code of TicketMonster and make all necessary
changes there (however, in that case you will have to maintain the code of the application).

$ 1In -s $TICKET_MONSTER_HOME/demo/src/main/webapp www

Inside the Android project, modify permissions and additional configurations to AndroidManifest .xml to look as follows
AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org. jboss. jdf.ticketmonster.android"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="17" />

<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:resizeable="true"
android:smallScreens="true" />

<uses-permission android:name="android.permission.VIBRATE" />

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses—-permission android:name="android.permission.ACCESS_LOCATION_EXTRA COMMANDS" />
<uses-permission android:name="android.permission.READ_ PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.RECEIVE_SMS" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses—-permission android:name="android.permission.MODIFY AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS" />

Ticket Monster Tutorial

246 /319

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

<application

android:
android:
android:
android:
android:

name="android.permission.
name="android.permission.
.ACCESS_NETWORK_STATE" />

name="android.permission

name="android.permission.
.BROADCAST _STICKY" />

name="android.permission

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
android:configChanges="orientation|keyboardHidden|keyboard|screenSize|locale">

<activity

android:name=".TicketMonsterActivity"
android:label="@string/title activity ticket_monster" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

WRITE_CONTACTS" />
WRITE_EXTERNAIL_STORAGE" />

GET_ACCOUNTS" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-

</activity>
</application>

</manifest>

filter>

We also need to copy the xm1 directory containing the Cordova project configuration file - config.xml, from the Cordova
distribution to the res directory of the project.

Ticket Monster Tutorial
247 /319

TIL%TickEtMﬂnster
> #src
> E'ﬁgen [Generated Java Files]
b =k Android 4.2.2
b = Android Private Libraries
= Android Dependencies
E'@as.s ets
v E'@ libs
ﬂﬁandrnid—suppurt—m.jar
ﬂf cordova-2.7.0.jar
v E'@ res
P (= drawable-hdpi
= drawable-ldpi
P (= drawable-mdpi
b = drawable-xhdpi
P (= drawable-xxhdpi
P (= layout
P (= menu
P (=values
P (=values-swe00dp
b (=values-sw720dp-land
P (=values-vll
P (=values-v1d

¥ = uml

] config.xmil

Figure 54.5: Add the Cordova project configuration file

We will add our REST service URL to the domain whitelist in the config.xml file (you can use "+ " too, for simplicity, during
development) :

res/xml/config.xml

<?xml version="1.0" encoding="utf-8"7?>
<cordova>

<!—-

access elements control the Android whitelist.

Domains are assumed blocked unless set otherwise
-—>

<access origin="http://localhost"/> <!-—- allow local pages -—>
<access origin="http://ticketmonster-jdf.rhcloud.com"/>

Ticket Monster Tutorial
248 /319

</cordova>

Finally, we will update the Android TicketMonsterActivity class, the entry point of our Android application.
src/org/jboss/jdf/ticketmonster/android/TicketMonsterA ctivity.java

package org. jboss.jdf.ticketmonster.android;
import org.apache.cordova.DroidGap;

import android.os.Bundle;
import android.webkit.WebSettings;

public class TicketMonsterActivity extends DroidGap {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
super.loadUrl ("file:///android_asset/www/index.html") ;

@Override
public void init () {
super.init ();

WebSettings settings = this.appView.getSettings();
settings.setUserAgentString ("TicketMonster Cordova Webview Android");

}

Note how we customize the user agent information for the wrapped browser. This will allow us to identify that the application
runs in Cordova, on an Android platform, which will be useful later on.

54.2 Adding Apache Cordova to TicketMonster

First, we will copy the Apache Cordova JavaScript library to the project. From the directory where you unzipped the distribution,
copy the 1ib\android\cordova-2.7.0. js file to the src/main/webapp/resources/js/libs folder, renam-
ing it to cordova-android-2.7.0. Js, to avoid naming conflicts with other platforms (such as iOS which we will also
implement as part of this tutorial).

Next, we need to load the library in the application. We will create a separate module, that will load the rest of the mobile
application, as well as the Apache Cordova JavaScript library for Android. We also need to configure a base URL for the
application. For this example, we will use the URL of the cloud deployment of TicketMonster.

src/main/webapp/resources/js/libs/hybrid-android.js

// override configuration for RESTful services
var TicketMonster = {
config:{
baseRESTUrl: "http://ticketmonster-jdf.rhcloud.com/"

require (["resources/js/libs/cordova-android-2.7.0.7js", "mobile"], function () {

1) i

Ticket Monster Tutorial

249 /319

The final step will involve adjusting src/main/webapp/resources/js/configurations/loader. js to load this
module when running on Android, using the user agent setting we have already configured in the project.

src¢/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define (function () {

/ %

A simple check on the client. For touch devices or small-resolution screens)

show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/
var environment;

if (navigator.userAgent.indexOf ("TicketMonster Cordova Webview Android") > -1) {

environment = "hybrid-android"

}

else if (Modernizr.touch || Modernizr.mqg("only all and (max-width: 480px)")) {
environment = "mobile"

} else {
environment = "desktop"

require ([environment]) ;

1)

Now you are ready to run the application. Right-click on project Run as—Android Application.

Ticket Monster Tutorial
250/319

Chapter 55

Creating an iOS hybrid mobile application

In order to create the iOS hybrid mobile version of the application make you sure you have the following software installed:

e Xcode 4.5+

¢ XCode Command Line Tools

You need a Mac OS X for this
Creating the iOS hybrid mobile version of the application requires a system running Mac OS X Lion or later (10.7+), mainly for
running Xcode.

Also, we assume that you have installed and extracted Apache Cordova already as described in a previous section.

55.1 Creating an iOS project using Apache Cordova

First, we need to create an iOS project. In order to do so we run the create command, to be found in the 1ib/ios/bin of
your Apache Cordova distribution. Run the command with the following parameters:

$ SLIB_IOS_BIN/create S$STICKET_MONSTER_HOME/cordova/ios org.jboss.ticketmonster.cordova.ios
TicketMonster

For the purpose of this tutorial, we assume that the cordova directory which is the parent of the ios directory where the project is
created, is at the same level as the directory where the original project exists.

Note
The create script for Cordova/iOS will create a www sub-directory in the ios directory. This www sub-directory will need to
be deleted since we're sharing the sources from the TicketMonster project.

Delete the www sub-directory under the TicketMonster, since we will not be using the underlying sources

S rm —-rf STICKET_MONSTER_HOME/cordova/ios/www

We then create a symbolic link inside the ios directory to the original TicketMonster project, with the name www.

$ In —-s STICKET_MONSTER_HOME/demo/src/main/webapp www

Ticket Monster Tutorial
251/319

Now we open the created project in Xcode.

Just as in the case of the Android application, we customize the user agent information that gets passed on to the browser. We
will use this information to load the proper JavaScript library. So we will adjust the initialize method in the generated code
to that effect.

Classes/AppDelegate.m

+ (void)initialize {
// Set user agent
NSDictionary =*dictionary = [[NSDictionary alloc]
initWithObjectsAndKeys:@"TicketMonster Cordova Webview 10S",
@"UserAgent", nil];
[[NSUserDefaults standardUserDefaults] registerDefaults:dictionary];
[dictionary release];

The Cordova library for iOS is already included in the generated project.

55.2 Adding Apache Cordova for iOS to TicketMonster

First, we copy the Apache Cordova JavaScript library to the project. From the directory where you unzipped the distribution,
copy the 1ib\ios\CordovaLib\cordova.ios. js file to the src/main/webapp/resources/js/1libs folder,
renaming it to cordova-ios—-2.7.0. js, to avoid naming conflicts with other platforms (such as Android which we already
implemented as part of this tutorial.

Next, we need to load the library in the application. We will create a separate module, that will load the rest of the mobile
application, as well as the Apache Cordova JavaScript library for iOS. We also need to configure a base URL for the application.
For this example, we will use the URL of the cloud deployment of TicketMonster.

Note

The cordova.io. js istypically present as cordova-2.7.0. js in Cordova/iOS projects. The aforementioned Cordova
create script renames the file during project creation to cordova-2.7.0. js. This is why we propose renaming it to avoid
potential conflicts.

src¢/main/webapp/resources/js/libs/hybrid-ios.js

// override configuration for RESTful services
var TicketMonster = {
config:{
baseRESTUrl: "http://ticketmonster-jdf.rhcloud.com/"
}
}

require (["resources/js/libs/cordova-ios—2.7.0.73s", "mobile"], function() {

1) i

Finally, we once again edit the JavaScript Loader module to add support for iOS.
src¢/main/webapp/resources/js/configurations/loader.js

//detect the appropriate module to load
define (function () {

Ticket Monster Tutorial
252 /319

/ *

A simple check on the client. For touch devices or small-resolution screens)

show the mobile client. By enabling the mobile client on a small-resolution screen
we allow for testing outside a mobile device (like for example the Mobile Browser
simulator in JBoss Tools and JBoss Developer Studio).

*/
var environment;

if (navigator.userAgent.indexOf ("TicketMonster Cordova Webview i0OS") > -1) {
environment = "hybrid-ios"

}

else if (navigator.userAgent.indexOf ("TicketMonster Cordova Webview Android") > -1) {

environment = "hybrid-android"

}

else if (Modernizr.touch || Modernizr.mqg("only all and (max-width: 480px)")) {
environment = "mobile"

} else {
environment = "desktop"

require ([environment]) ;

P

Now you are ready to run the application. Select a simulator and run (Cmd-R).

Ticket Monster Tutorial
253/319

Chapter 56

Conclusion

This concludes our tutorial for building a hybrid application with Apache Cordova. You have seen how we have turned a working
HTMLS web application into one that can run natively on Android and iOS.

For more details, as well as an example of deploying to a physical device, consult the Aerogear tutorial on the same topic.

http://aerogear.org/docs/guides/HTML5ToHybridWithCordova/

Ticket Monster Tutorial
254 /319

Part IX

Adding a data grid

Ticket Monster Tutorial
255/319

Chapter 57

What Will You Learn Here?

You’ve just finished implementing TicketMonster, and are wondering how can you improve its concurrency and scalability. One
possible solution is to reconsider the storage strategy and use a data grid, at least for a part of your application data. In this
tutorial, you will learn how to:

Add JBoss Data Grid to your web application;
* Configure caches programmatically;
» Use caches to implement scalable server-side stateful components such as shopping carts;

 Use caches to implement a highly-concurrent data access mechanism for seat allocations.

Ticket Monster Tutorial
256 /319

Chapter 58

The problem at hand

When it comes to performance, TicketMonster has a few special requirements:

High concurrency
tickets will sell out very fast, maybe in 5 minutes;

High volume
there may be thousands of shows with thousands of tickets to sell, each;

Location awareness
shows can take place all around the world, and we’d like the data to be available in the same region where the show takes
place.

So far, in the tutorial we have used exclusively a database. While it works as an initial implementation, we plan to address the
concerns above with a better-suited solution. We will do this by adding Infinispan to our project, thus addressing the above
concerns as follows:

High concurrency
In-memory data access and optimized locking;

High volume
The application can handle increasingly large data amounts by adding new data grid nodes;

Location awareness
A multi-node data grid can be configured so that data is stored on specific nodes.

What is a data grid? What is Infinispan?

A data grid is a cluster of (typically commodity) servers, normally residing on a single local-area network, connected to each
other using IP based networking. Data grids behave as a single resource, exposing the aggregate storage capacity of all
servers in the cluster. Data stored in the grid is usually partitioned, using a variety of techniques, to balance load across all
servers in the cluster as evenly as possible. Data is often redundantly stored in the grid to provide resilience to individual
servers in the grid failing i.e. more than one copy is stored in the grid, transparently to the application.

Infinispan is an extremely scalable, highly available key/value NoSQL datastore and distributed data grid platform - 100% open
source, and written in Java. The purpose of Infinispan is to expose a data structure that is highly concurrent, designed ground-
up to make the most of modern multi-processor/multi-core architectures while at the same time providing distributed cache
capabilities.

link

http://www.jboss.org/infinispan

Ticket Monster Tutorial
257 /319

Chapter 59

Adding Infinispan

First, you need to decide how you will use Infinispan in the project. You can opt between two access patterns:

Library
The data grid nodes are embedded in the application. In this case, we need to add the core data grid libraries as a depen-
dency to the project.

Remote client-server
The data grid nodes are started separately and accessed through a client library. Only the client library is added as a
dependency.

For TicketMonster, we will use the library access pattern, as in this particular case we can benefit from the simpler setup.
For a more detailed description of the pros and cons of each access pattern, you can read a more detailed explanation in the
product documentation . In any case, switching from one mode to the other is non-intrusive, the only major difference being the
infrastructure setup.

Next, we will begin by adding the JBoss Developer Framework Bill of Materials (BOM) that describes the correct version for
the Infinispan artifacts.

pom.xml

<project ...>

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org. jboss.bom</groupIld>
<artifactId>jboss—-javaee-6.0-with-infinispan</artifactId>
<version>${jboss.bom.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement >
</project>

Next, we will add the infinispan—core library to the project.
Next, we will include the Infinispan library in the project.
pom.xml

<project ...>

<dependencies>

https://docs.jboss.org/author/display/ISPN51/Infinispan+Server+Modules#InfinispanServerModules-ServerModules
https://docs.jboss.org/author/display/ISPN51/Infinispan+Server+Modules#InfinispanServerModules-ServerModules

Ticket Monster Tutorial
258 /319

<!-- This is the dependency for Infinispan, which we use for carts and
seat reservation
—-—>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>
</dependency>
</dependencies>

</project>

Ticket Monster Tutorial
259/319

Chapter 60

Configuring the infrastructure

First, we will create a producer and disposer for the Infinispan cache manager, where we define the global cache configuration
and set up default options for the caches used in the application. The cache manager is unique for the application and to the data
grid node, so we will create it as an application scoped bean.

src¢/main/org/jboss/jdf/example/ticketmonster/util/CacheProducer.java

/ %%
* Producer for the {@link EmbeddedCacheManager} instance used by the application. Defines
* the default configuration for caches.
x/

@ApplicationScoped

public class CacheProducer ({

@Inject @DataDir
private String dataDir;

@Produces
@ApplicationScoped
public EmbeddedCacheManager getCacheContainer () {
GlobalConfiguration glob = new GlobalConfigurationBuilder ()
.nonClusteredDefault () //Helper method that gets you a default constructed
GlobalConfiguration, preconfigured for use in LOCAL mode
.globalJdmxStatistics () .enable() //This method allows enables the jmx
statistics of the global configuration.
.build(); //Builds the GlobalConfiguration object
Configuration loc = new ConfigurationBuilder ()
.jmxStatistics () .enable() //Enable JMX statistics
.clustering () .cacheMode (CacheMode.LOCAL) //Set Cache mode to LOCAL - Data is
not replicated.
.transaction () .transactionMode (TransactionMode.TRANSACTIONAL)
.transactionManagerLookup (new GenericTransactionManagerLookup ())
.lockingMode (LockingMode .PESSIMISTIC)
.locking () .isolationLevel (IsolationLevel .REPEATABLE_READ) //Sets the
isolation level of locking
.eviction () .maxEntries (4) .strategy (EvictionStrategy.LIRS) //Sets 4 as
maximum number of entries in a cache instance and uses the LIRS strategy — an efficient
low inter-reference recency set replacement policy to improve buffer cache performance
.loaders () .passivation (false) .addFileCacheStore () .location (databDir +
File.separator + "TicketMonster—CacheStore") .purgeOnStartup (true) //Disable passivation
and adds a FileCacheStore that is Purged on Startup
.build(); //Builds the Configuration object
return new DefaultCacheManager (glob, loc, true);

Ticket Monster Tutorial
260/319

public void cleanUp (@Disposes EmbeddedCacheManager manager) {
manager.stop () ;

We will inject the cache manager instance in various services that use the data grid, which will use it in turn to get access to
application caches.

Ticket Monster Tutorial
261/319

Chapter 61

Using caches for seat reservations

First, we are going to change the existing implementation of the SeatAllocationService to use the Infinispan datagrid.
Rather than storing the seat allocations in a database, we will store them as data grid entries.

This requires a few changes to our existing classes. If in the database implementation we used properties of the SectionAllocation
class to identify the entity that corresponds to a given Section and Performance, for the datagrid implementation we will
create a key class, making sure that its equals () and hashCode () methods are implemented correctly.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/SectionAllocationKey.java

public class SectionAllocationKey implements Serializable {

private final Section section;
private final Performance performance;

private SectionAllocationKey (Section section, Performance performance) {

this.section = section;

this.performance = performance;

public static SectionAllocationKey of (Section section, Performance performance) {
return new SectionAllocationKey (section, performance);

public Section getSection() {
return section;

public Performance getPerformance () {
return performance;

@Override
public boolean equals (Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
SectionAllocationKey that = (SectionAllocationKey) o;
if (performance != null ? !performance.equals (that.performance) that .performance !=

null) return false;

if (section != null ? !section.equals(that.section) : that.section != null) return
false;

Ticket Monster Tutorial
262 /319

return true;

@Override
public int hashCode () {
int result = section != null ? section.hashCode() : 0;
result = 31 % result + (performance != null ? performance.hashCode() : 0);

return result;

Now we can proceed with modifying the SeatAllocationService. Since we are not persisting seat allocations in the
database, we will remove the EntityManager reference and use a cache acquired from the cache manager. We inject the
cache manager instance produced previously and create a SeatAllocation-specific cache in the constructor.

src/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

public class SeatAllocationService {

public static final String ALLOCATIONS = "TICKETMONSTER ALLOCATIONS";
private Cache<SectionAllocationKey, SectionAllocation> cache;

/[**
* We inject the {Q@link EmbeddedCacheManager} and retrieve a {@link Cache} instance.
*
* @param manager
x/
@Inject
public SeatAllocationService (EmbeddedCacheManager manager) {
Configuration allocation = new ConfigurationBuilder ()
.transaction () .transactionMode (TransactionMode.TRANSACTIONAL)
.transactionManagerLookup (new JBossTransactionManagerLookup ())
.lockingMode (LockingMode .PESSIMISTIC)
.loaders () .addFileCacheStore () .purgeOnStartup (true)
Cbuild() ;
manager.defineConfiguration (ALLOCATIONS, allocation);
this.cache = manager.getCache (ALLOCATIONS) ;

Now, we can proceed with changing the implementation of the rest of the class.
src¢/main/java/org/jboss/jdf/example/ticketmonster/service/SeatAllocationService.java

public class SeatAllocationService {

public AllocatedSeats allocateSeats(Section section, Performance performance,
int seatCount, boolean contiguous) {
SectionAllocationKey sectionAllocationKey = SectionAllocationKey.of (section,
performance) ;
SectionAllocation allocation = getSectionAllocation (sectionAllocationKey) ;
ArrayList<Seat> seats = allocation.allocateSeats (seatCount, contiguous);
cache.replace(sectionAllocationKey, allocation);
return new AllocatedSeats (allocation, seats);

public void deallocateSeats (Section section, Performance performance, List<Seat> seats) {

Ticket Monster Tutorial
263 /319

SectionAllocationKey sectionAllocationKey = SectionAllocationKey.of (section,
performance) ;
SectionAllocation sectionAllocation = getSectionAllocation(sectionAllocationKey);

for (Seat seat : seats) {
if (!seat.getSection() .equals(section)) {
throw new SeatAllocationException ("All seats must be in the same section!");

}
sectionAllocation.deallocate (seat);
}

cache.replace (sectionAllocationKey, sectionAllocation);

/[**
* Mark the seats as being allocated
* @param allocatedSeats
x/
public void finalizeAllocation (AllocatedSeats allocatedSeats) {
allocatedSeats.markOccupied() ;

/ x %
* Mark the seats as being allocated
* @param performance
* @param allocatedSeats
x/
public void finalizeAllocation (Performance performance, List<Seat> allocatedSeats) ({
SectionAllocation sectionAllocation = cache.get (
SectionAllocationKey.of (allocatedSeats.get (0) .getSection (), performance));
sectionAllocation.markOccupied(allocatedSeats);

* Retrieve a {@link SectionAllocation} instance for a given {@link Performance} and
* {@link Section} (embedded in the {@link SectionAllocationKey}). Lock it for the scope
x* of the current transaction.

* @param sectionAllocationKey - wrapper for a {@link Performance} and {@link Section}
pair
*
* @return the corresponding {@link SectionAllocation}
*/
private SectionAllocation getSectionAllocation(SectionAllocationKey
sectionAllocationKey) {
SectionAllocation newAllocation = new
SectionAllocation (sectionAllocationKey.getPerformance (),
sectionAllocationKey.getSection());
SectionAllocation sectionAllocation = cache.putIfAbsent (sectionAllocationKey,
newAllocation) ;
cache.getAdvancedCache () .lock (sectionAllocationKey) ;
return sectionAllocation == null?newAllocation:sectionAllocation;

Ticket Monster Tutorial
264 /319

Chapter 62

Implementing carts

Once we have stored our allocation status in the data grid, we can move on to implementing a cart system for TicketMonster.
Rather than composing the orders on the client and sending the entire order as a single requests, users will be able to add and
remove seats to their orders while they’re shopping.

We will store the carts in the datagrid, thus ensuring that they’re accessible across the cluster, without the complications of using
a web session.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Cart.java

public class Cart implements Serializable {
private String id;
private Performance performance;

private Arraylist<SeatAllocation> seatAllocations = new ArraylList<SeatAllocation>();

/ x %
* Constructor for deserialization
*/

private Cart () {

}

private Cart (String id) {
this.id = id;

public static Cart initialize() {
return new Cart (UUID.randomUUID () .toString());

public String getId() {
return id;

public Performance getPerformance () {
return performance;

public void setPerformance (Performance performance) {
this.performance = performance;

public Arraylist<SeatAllocation> getSeatAllocations () {
return seatAllocations;

Ticket Monster Tutorial
265/319

A Cart contains SeatAllocation's — collections of “Seats’'s corresponding to a particular " Tick
(which represents a number of seats requested for a particular performance).

src/main/java/org/jboss/jdf/example/ticketmonster/model/SeatAllocation.java

public class SeatAllocation {
private TicketRequest ticketRequest;
private ArraylList<Seat> allocatedSeats;

public SeatAllocation (TicketRequest ticketRequest, ArrayList<Seat> allocatedSeats) {
this.ticketRequest = ticketRequest;
this.allocatedSeats = allocatedSeats;

public TicketRequest getTicketRequest () {
return ticketRequest;

public Arraylist<Seat> getAllocatedSeats () {
return allocatedSeats;

We use this structure so that we can easily add or update seats to the cart, when the client issues a new request.

We will update the SectionAllocation class, introducing an expiration time for each allocated seat. With this implemen-
tation, seats can have three different states:

free
The seat has not been allocated;

allocated permanently
The seat has been sold and remains allocated until the ticket is canceled;

allocated temporarily
The seat is allocated, but can be re-allocated after a specific time.

So, when a cart expires and is removed from the cache, the seats it held become available again. With these changes, the updated
implementation of the SectionAllocation class will be as follows:

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/SectionAllocation.java

@Entity

@Table (uniqueConstraints = @QUniqueConstraint (columnNames = { "performance_id", "section_id"
1))

public class SectionAllocation implements Serializable {
public static final int EXPIRATION_TIME = 60 = 1000;

/x Declaration of fields =/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

Ticket Monster Tutorial
266 /319

* <p>
* The version used to optimistically lock this entity.
* </p>

* <p>
* Adding this field enables optimistic locking. As we don't access this field in the
application, we need to suppress the
* warnings the java compiler gives us about not using the field!
* </p>
*/
@SuppressWarnings ("unused")
@Version
private long version;

/ x %

* <p>

* The performance to which this allocation relates. The <code>@ManyToOne<code> JPA
mapping establishes this relationship.

* </p>

*

* <p>

* The performance must be specified, so we add the Bean Validation constrain
<code>@NotNull</code>

* </p>

*/

@ManyToOne

@NotNull
private Performance performance;

/ x %

* <p>

* The section to which this allocation relates. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.

* </p>

*

* <p>

* The section must be specified, so we add the Bean Validation constrain
<code>@NotNull</code>

* </p>

*/

@ManyToOne

@NotNull
private Section section;

/ x %

* <p>

* A two dimensional matrix of allocated seats in a section, represented by a 2
dimensional array.

* </p>

*

* <p>

* A two dimensional array doesn't have a natural RDBMS mapping, so we simply store this
a binary object in the database, an

* approach which requires no additional mapping logic. Any analysis of which seats
within a section are allocated is done

* in the business logic, below, not by the RDBMS.

* </p>

*

* <p>

* <code>Q@Lob</code> instructs JPA to map this a large object in the database

Ticket Monster Tutorial

267 /319

* </p>
x/
@Lob
private long([][] allocated;

/ x %

* <p>

* The number of occupied seats in a section. It is updated whenever tickets are sold
or canceled.

* </p>

*

* <p>

* This field contains a summary of the information found in the
<code>allocated</code> fields, and

* it is intended to be used for analytics purposes only.

* </p>

*/

private int occupiedCount = 0;

/ x %
* Constructor for persistence
*/

public SectionAllocation() {

}

public SectionAllocation (Performance performance, Section section) {
this.performance = performance;
this.section = section;
this.allocated = new long[section.getNumberOfRows ()] [section.getRowCapacity()];
for (long[] seatStates : allocated) {
Arrays.fill (seatStates, 01);

/ x %

* Post-load callback method initializes the allocation table if it not populated already

= for the entity

*/
@PostLoad
void initialize () {

if (this.allocated == null) {

this.allocated = new
long([this.section.getNumberOfRows ()] [this.section.getRowCapacity ()];
for (long[] seatStates : allocated) {
Arrays.fill (seatStates, 01);

/ x %

* Check if a particular seat is allocated in this section for this performance.
*

* @return true if the seat is allocated, otherwise false
*/
public boolean isAllocated(Seat s) {
// Examine the allocation matrix, using the row and seat number as indices
return allocated[s.getRowNumber () - 1] [s.getNumber() - 1] != 0;

/[**
* Allocate the specified number seats within this section for this performance.
Optionally allocate them in a contiguous

Ticket Monster Tutorial
268 /319

*

block.

*

@param seatCount the number of seats to allocate
@param contiguous whether the seats must be allocated in a contiguous block or not
@return the allocated seats

*

*

*/
public Arraylist<Seat> allocateSeats (int seatCount, boolean contiguous) ({
// The list of seats allocated
ArrayList<Seat> seats = new ArrayList<Seat>();

// The seat allocation algorithm starts by iterating through the rows in this section
for (int rowCounter = 0; rowCounter < section.getNumberOfRows (); rowCounter++) {

if (contiguous) {
// identify the first block of free seats of the requested size
int startSeat = findFreeGapStart (rowCounter, 0, seatCount);
// if a large enough block of seats is available
if (startSeat >= 0) {
// Create the list of allocated seats to return
for (int i = 1; i <= seatCount; i++) {
seats.add (new Seat (section, rowCounter + 1, startSeat + 1i));
}
// Seats are allocated now, so we can stop checking rows
break;
}
} else {
// As we aren't allocating contiguously, allocate each seat needed, one at a
time
int startSeat = findFreeGapStart (rowCounter, 0, 1);
// if a seat is found
if (startSeat >= 0) {

do {
// Create the seat to return to the user
seats.add (new Seat (section, rowCounter + 1, startSeat + 1));
// Find the next free seat in the row
startSeat = findFreeGapStart (rowCounter, startSeat, 1);
} while (startSeat >= 0 && seats.size() < seatCount);
if (seats.size() == seatCount) {
break;

}

// Simple check to make sure we could actually allocate the required number of seats

if (seats.size() == seatCount) {
for (Seat seat : seats) {
allocate (seat.getRowNumber () - 1, seat.getNumber() - 1, 1,

expirationTimestamp ()) ;
}
return seats;
} else {
return new ArrayList<Seat> (0);

public void markOccupied (List<Seat> seats) {
for (Seat seat : seats) {
allocate (seat.getRowNumber () - 1, seat.getNumber() - 1, 1, -1);

Ticket Monster Tutorial

269 /319

/[**

* Helper method which can locate blocks of seats

*

* @param row The row number to check

* @param startSeat The seat to start with in the row
* @param size The size of the block to locate

* Q@Qreturn

*/

private int findFreeGapStart (int row, int startSeat, int size) {

done

/ x %

// An array of occupied seats in the row
long[] occupied = allocated[row];
int candidateStart = -1;

// Iterate over the seats, and locate the first free seat block
for (int i = startSeat; i < occupied.length; i++) {

// if the seat isn't allocated

long currentTimestamp = System.currentTimeMillis () ;

if (occupied[i] >=0 && currentTimestamp > occupied[i]) {
// then set this as a possible start
if (candidateStart == -1) {
candidateStart = i;

}

// 1f we've counted out enough seats since the possible start, then we are

if ((size == (i - candidateStart + 1))) {
return candidateStart;

}
} else {
candidateStart = -1;

}

return -1;

* Helper method to allocate a specific block of seats

*

* @param row the row in which the seat should be allocated

* @param start the seat number to start allocating from

* @param size the size of the block to allocate

* @throws SeatAllocationException if less than 1 seat is to be allocated

* @throws SeatAllocationException

if the first seat to allocate is more than the number

of seats in the row
* @throws SeatAllocationException if the last seat to allocate is more than the number

of seats in the row
* @throws SeatAllocationException if the seats are already occupied.

*/

private void allocate (int row, int start, int size, long finalState) throws
SeatAllocationException {

long[] occupied = allocated[row];
if (size <= 0) {
throw new SeatAllocationException ("Number of seats must be greater than zero");
}
if (start < 0 || start >= occupied.length) {
throw new SeatAllocationException ("Seat number must be betwen 1 and " +

occupied.length);

}
if ((start + size) > occupied.length) {
throw new SeatAllocationException ("Cannot allocate seats above row capacity");

Ticket Monster Tutorial
270/319

// Now that we know we can allocate the seats, set them to occupied in the allocation
matrix
for (int i = start; 1 < (start + size); i++) {
occupied[i] = finalState;
occupiedCount++;

/[*
* Dellocate a seat within this section for this performance.
*
* @param seat the seats that need to be deallocated
*/
public void deallocate (Seat seat) {
if (!isAllocated(seat)) {

throw new SeatAllocationException ("Trying to deallocate an unallocated seat!");
}
this.allocated[seat.getRowNumber ()-1] [seat.getNumber ()-1] = 0;
occupiedCount --—;

/* Boilerplate getters and setters x/

public int getOccupiedCount () {
return occupiedCount;

public Performance getPerformance () {
return performance;

public Section getSection() {
return section;

public Long getId() {
return id;

private long expirationTimestamp () {
return System.currentTimeMillis () + EXPIRATION_TIME;

Next, we will implement a cart store service for cart CRUD operations. Since users may open as many carts as they want, but
not complete the purchase, we will store them as temporary entries, with an expiration time, leaving the job of removing them
automatically to the data grid middleware itself. Thus, you don’t have to worry about cleaning up your data.

src¢/main/java/org/jboss/jdf/example/ticketmonster/service/CartStore.java

public class CartStore ({
public static final String CARTS_CACHE = "TICKETMONSTER_CARTS";
private final Cache<String, Cart> cartsCache;
@Inject

public CartStore (EmbeddedCacheManager manager) {
this.cartsCache = manager.getCache (CARTS_CACHE) ;

Ticket Monster Tutorial

public Cart getCart (String cartId) {
return this.cartsCache.get (cartId);

/ x %
* Saves or updates a cart, setting an expiration time.
*
* @param cart - the cart to be saved
*/

public void saveCart (Cart cart) {
this.cartsCache.put (cart.getId(), cart, 10, TimeUnit.MINUTES);

/ x %
* Removes a cart
*

* @param cart - the cart to be removed
*/
public void delete(Cart cart) {
this.cartsCache.remove (cart.getId());

Now we can go on and implement the RESTful service for managing carts.

First, we will implement the CRUD operations - adding and reading carts, as a thin layer on top of the CartStore. Because
cart data is not tied to a web session, users can create as many carts as they want without having to worry about cleaning up
the web session. Moreover, the web component of the application has a stateless architecture, which means that it can scale

elastically across multiple machines - the responsibility of distributing data across nodes falling to the data grid itself.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java

@Path ("/carts")
@Stateless
public class CartService ({

public static final String CARTS_CACHE = "CARTS";

@Inject
private CartStore cartStore;

/[x
* Creates a new cart for a given performance, passed in as a JSON document.
*

*

@param data
* @return

*/
@POST
public Cart openCart (Map<String, String> data) {
Cart cart = Cart.initialize();
cart.setPerformance (entityManager.find (Performance.class,
Long.parselong (data.get ("performance"))));

cartStore.saveCart (cart) ;
return cart;

/[**
* Retrieves a cart by its id.

*

@param id
* @return

*/

Ticket Monster Tutorial
272/319

QGET
@Path ("/{id}")
public Cart getCart (String id) {
Cart cart = cartStore.getCart (id);

if (cart != null) {
return cart;
} else {

throw new RestServiceException (Response.Status.NOT_FOUND) ;

The openCart method allows opening a cart by posting a simple JSON document containing the reference to a an existing
performance to http://localhost:8080/ticket-monster/rest/carts. The getCart method allows accessing
the cart contents from an URL of the form http://localhost:8080/ticket—-monster/rest/carts/<cartId>.
Thus, the carts themselves become web resources. In true RESTful fashion, if the cart cannot be found, a "Resource Not Found"
error will be thrown by the server.

Next, we will add the ability of adding or removing seats from a cart. This will be done as an additional RESTful endpoint, that al-

lows user to post ticket (or seat) requests to an existing cart, at the URL http://localhost:8080/ticket-monster/rest/ca
Whenever such a POST request is received, the Cart Service will delegate to the SeatAllocationService to adjust the current
allocation, returning the cart contents (including the temporarily assigned seats) at the end.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java

@Path ("/carts")
@Stateless
public class CartService ({

// already added code ommitted

@Inject
private EntityManager entityManager;

@Inject
private SeatAllocationService seatAllocationService;

// already added code ommitted

/ x %
* Add or remove tickets to the cart. Also reserves and frees seats as tickets are added
* and removed.
*
* @param id
* @param ticketRequests
* @return
*/
@POST
@Path ("/{id}")
@Consumes (MediaType.APPLICATION_JSON)
public Cart addTicketRequest (QPathParam("id") String id, TicketReservationRequest...
ticketRequests) {
Cart cart = cartStore.getCart (id);

for (TicketReservationRequest ticketRequest : ticketRequests) {

TicketPrice ticketPrice = entityManager.find(TicketPrice.class,
ticketRequest.getTicketPrice());
Iterator<SeatAllocation> iterator = cart.getSeatAllocations().iterator();
while (iterator.hasNext ()) {
SeatAllocation seatAllocation = iterator.next();
if

(seatAllocation.getTicketRequest () .getTicketPrice () .getId() .equals (ticketRequest.getTicketPrice (.

Ticket Monster Tutorial
273/319

seatAllocationService.deallocateSeats (ticketPrice.getSection(),
cart.getPerformance (), seatAllocation.getAllocatedSeats());

ticketRequest.setQuantity (ticketRequest.getQuantity () +
seatAllocation.getTicketRequest () .getQuantity());

iterator.remove () ;

}

if (ticketRequest.getQuantity() > 0) {

AllocatedSeats allocatedSeats =
seatAllocationService.allocateSeats (ticketPrice.getSection (), cart.getPerformance (),
ticketRequest.getQuantity (), true);

cart.getSeatAllocations () .add (new SeatAllocation (new TicketRequest (ticketPrice,
ticketRequest.getQuantity()), allocatedSeats.getSeats()));

}

}

return cart;

Finally, when the user has finished reserving seats, they must complete the purchase. To that end, you will add another RESTful
endpoint, at the URL http://localhost:8080/ticket-monster/rest/carts/<cartId>/checkout. Posting
the final purchase data (like e-mail, and in the future, payment information) will trigger the checkout process, ticket allocation
and making the seat reservations permanent.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/CartService.java

@Path ("/carts")
@Stateless
public class CartService {
/ %%
* <p>
* Create a booking.
* </p>

* @param cartId

* @param data

* @return

*/
@SuppressWarnings ("unchecked")
@POST
/ x %

* <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the
support

* {@link BookingRequest} class.

*/

@Consumes (MediaType .APPLICATION_JSON)

@Path ("/{id}/checkout™)
public Response createBookingFromCart (@PathParam("id") String cartId, Map<String, String>
data) {

try {
// identify the ticket price categories in this request

Cart cart = cartStore.getCart (cartId);

// load the entities that make up this booking's relationships
// Now, start to create the booking from the posted data

// Set the simple stuff first!

Booking booking = new Booking() ;
booking.setContactEmail (data.get ("email"));

Ticket Monster Tutorial
274 /319

booking.setPerformance (cart.getPerformance()) ;
booking.setCancellationCode ("abc") ;

for (SeatAllocation seatAllocation : cart.getSeatAllocations()) {
for (Seat seat : seatAllocation.getAllocatedSeats()) {
TicketPrice ticketPrice =
seatAllocation.getTicketRequest () .getTicketPrice();
booking.getTickets () .add (new Ticket (seat,
ticketPrice.getTicketCategory (), ticketPrice.getPrice()));
}
seatAllocationService.finalizeAllocation (cart.getPerformance(),
seatAllocation.getAllocatedSeats());
}

booking.setCancellationCode ("abc") ;
entityManager.persist (booking) ;
cartStore.delete(cart);
newBookingEvent.fire (booking) ;
return
Response.ok () .entity (booking) .type (MediaType .APPLICATION_JSON_TYPE) .build() ;

} catch (ConstraintViolationException e) {
// If validation of the data failed using Bean Validation, then send an error
Map<String, Object> errors = new HashMap<String, Object>();
List<String> errorMessages = new ArrayList<String>();
for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {

errorMessages.add (constraintViolation.getMessage ()) ;

}
errors.put ("errors", errorMessages);
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new
RestServiceException (Response.status (Response.Status.BAD_REQUEST) .entity (errors) .build()) ;
} catch (Exception e) {
// Finally, handle unexpected exceptions
Map<String, Object> errors = new HashMap<String, Object>();
errors.put ("errors"”, Collections.singletonList (e.getMessage()));
// A WebApplicationException can wrap a response
// Throwing the exception causes an automatic rollback
throw new

RestServiceException (Response.status (Response.Status.BAD_REQUEST) .entity(errors) .build());
}

Now, all that remains is modifying the client side of the application to adapt the changes in the web service structure. During
the ticket booking process, as tickets are added and removed to the cart, the CreateBookingView will invoke the RESTful

endpoints to allocate seats and will display the outcome to the user in the updated Ticket SummaryView. Here is how the
JavaScript code will change.

src/main/webapp/resources/js/app/views/desktop/create-booking.js

define ([
'utilities',
'require’,
"configuration',
"text!../../..
"text!../../..
"text!../../..
"text!../../..
'bootstrap'

], function (

./templates/desktop/booking—confirmation.html’,
./templates/desktop/create-booking.html’',
./templates/desktop/ticket-categories.html’,
./templates/desktop/ticket-summary-view.html',

AN NN

utilities,

Ticket Monster Tutorial

275/ 319
require,
config,
bookingConfirmationTemplate,
createBookingTemplate,
ticketEntriesTemplate,
ticketSummaryViewTemplate) {
var TicketCategoriesView = Backbone.View.extend ({
id: 'categoriesView',
intervalDuration : 100,
formvValues : [],
events: {
"change input":"onChange"
}I
render: function () {
if (this.model != null) {
var ticketPrices = _.map (this.model, function (item) {
return item.ticketPrice;
}) i
utilities.applyTemplate ($(this.el), ticketEntriesTemplate,
{ticketPrices:ticketPrices});
} else {
$(this.el) .empty () ;
}
this.watchForm() ;
return this;
}I
onChange: function (event) {
var value = event.currentTarget.value;
var ticketPricelId = $(event.currentTarget) .data("tm-id");
var modifiedModelEntry = _.find(this.model, function (item) {
return item.ticketPrice.id == ticketPriceld
1) i
// update model
if ($.isNumeric(value) && value > 0) {
modifiedModelEntry.quantity = parselnt (value);
}
else {
delete modifiedModelEntry.quantity;
}
// display error messages
if (value.length > 0 &&
(!$.isNumeric(value) // is a non-number, other than empty string
|| value <= 0 // is negative
| | parseFloat (value) != parselnt(value))) { // is not an integer

S ("#error-input-"+ticketPriceld) .empty () .append("Please enter a positive
integer value");
S ("#ticket—-category—-fieldset—"+ticketPriceld) .addClass ("error")
} else {
$("#error-input-"+ticketPriceld) .empty () ;
S ("#ticket—-category—-fieldset—"+ticketPriceld) .removeClass ("error")
}
// are there any outstanding errors after this update?
// if yes, disable the input button
if (
S("div[id*="ticket-category-fieldset—-"']") .hasClass ("error") ||
_.isUndefined(modifiedModelEntry.quantity)) {
S ("input [name="add']") .attr ("disabled", true)
} else {
S ("input [name="add'] ") .removeAttr ("disabled")

Ticket Monster Tutorial

276 /319

}o
watchForm: function() {
if ($ ("#sectionSelectorPlaceholder") .length) {
var self = this;

S ("input [namex="tickets']") .each(function (index,element)
if (element.value !== self.formValues|[element.name]) {
self.formValues[element.name] = element.value;
S ("input [name="'"+element .name+"'] ") .change () ;
}
1)
this.timerObject = setTimeout (function () {

self.watchForm();
}, this.intervalDuration);
} else {
this.onClose () ;

}I
onClose: function () {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;

)i

var TicketSummaryView = Backbone.View.extend ({
tagName: '"tr’,

events: {

"click 1i":"removeEntry"
}I
render:function () {

var self = this;
utilities.applyTemplate ($(this.el), ticketSummaryViewTemplate,
this.model.bookingRequest) ;
o
removeEntry:function (event) {
var index = $(event.currentTarget) .data("index");
var ticketPriceld =

this.model.bookingRequest.seatAllocations|[index] .ticketRequest.ticketPrice.id;

var self = this;

$.ajax ({url: (config.baseUrl + "rest/carts/" + this.model.cartId),
data: JSON.stringify([{ticketPrice:ticketPriceld, quantity:-1}]),

type: "POST",

dataType: "json",

contentType: "application/json",

success: function(cart) {
self.owner.refreshSummary (cart, self.owner)

var CreateBookingView = Backbone.View.extend ({

intervalDuration : 100,

formvValues : [],

events: {
"click input [name='submit']":"save",
"change select[id='sectionSelect']":"refreshPrices",
"change #email":"updateEmail",

"click input [name='add']":"addQuantities"

{

Ticket Monster Tutorial

277 /319

render: function () {

function

function

var self = this;
$.ajax ({url: (config.baseUrl + "rest/carts"),
data:JSON.stringify ({performance:this.model.performanceld}),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function (cart) {
self.model.cartId = cart.id;

$.getJSON (config.baseUrl + "rest/shows/" + self.model.showId,

(selectedShow) {

self.currentPerformance = _.find(selectedShow.performances,

(item) {
return item.id == self.model.performanceld;

}) i

var id = function (item) {return item.id;};

// prepare a list of sections to populate the dropdown

var sections = _.unig(_.sortBy(_.pluck (selectedShow.ticketPrices,

'section'), id), true, id);

utilities.applyTemplate ($(self.el), createBookingTemplate,

sections:sections,
show:selectedShow,
performance:self.currentPerformance});

{

self.ticketCategoriesView = new TicketCategoriesView ({model:{},

el:$ ("#ticketCategoriesViewPlaceholder")});
self.ticketSummaryView = new TicketSummaryView ({model:self.model,

el:$ ("#ticketSummaryView") }) ;

by

self.ticketSummaryView.owner = self;
self.show = selectedShow;
self.ticketCategoriesView.render () ;
self.ticketSummaryView.render () ;

S ("#sectionSelect") .change();
self.watchForm() ;

)i
return this;

refreshPrices:function (event) {

}l

var ticketPrices = _.filter (this.show.ticketPrices, function (item) {
return item.section.id == event.currentTarget.value;

1) i

var sortedTicketPrices = _.sortBy(ticketPrices, function (ticketPrice)

return ticketPrice.ticketCategory.description;

var ticketPricelInputs = new Array();

_.each(sortedTicketPrices, function (ticketPrice) {
ticketPriceInputs.push ({ticketPrice:ticketPrice});

1)

this.ticketCategoriesView.model = ticketPricelInputs;

this.ticketCategoriesView.render () ;

save:function (event) {

var bookingRequest = {ticketRequests:[]};

var self = this;

bookingRequest.email = this.model.bookingRequest.email;
bookingRequest .performance = this.model.performanceId
S ("input [name="submit']") .attr ("disabled", true)

{

Ticket Monster Tutorial
278 /319

$.ajax ({url: (config.baseUrl + "rest/carts/" + this.model.cartId + "/checkout"),

data:JSON.stringify ({email:this.model.bookingRequest.email}),
type: "POST",

dataType: "json",

contentType: "application/json",

success: function (booking) {
this.model = {}

$.getJSON (config.baseUrl + 'rest/shows/performance/' +
booking.performance.id, function (retrievedPerformance) {

utilities.applyTemplate ($(self.el), bookingConfirmationTemplate,
{booking:booking, performance:retrievedPerformance })

})i

}}) .error (function (error) {
if (error.status == 400 || error.status == 409) {
var errors = $.parseJSON(error.responseText) .errors;

_.each(errors, function (errorMessage) {

S ("#request—summary") .append ('<div class="alert alert-error">S\times$Error! ' + errorMessage +
'</div>")
1)
} else {
S ("#request—-summary") .append('<div class="alert alert-error">S\timesS$Error! An error has
occured</div>")

}

S ("input [name="'submit']") .removeAttr ("disabled");

})

}l
calculateTotals:function () {

// make sure that tickets are sorted by section and ticket category
this.model.bookingRequest.seatAllocations.sort (function (tl, t2) {
if (tl.ticketRequest.ticketPrice.section.id !=
t2.ticketRequest.ticketPrice.section.id) {
return tl.ticketRequest.ticketPrice.section.id -
t2.ticketRequest.ticketPrice.section.id;
}
else {
return tl.ticketRequest.ticketPrice.ticketCategory.id -
t2.ticketRequest.ticketPrice.ticketCategory.id;
}
1)

this.model.bookingRequest.totals =
_.reduce (this.model.bookingRequest.seatAllocations, function (totals,

var ticketRequest = seatAllocation.ticketRequest;
return ({

seatAllocation) {

tickets:totals.tickets + ticketRequest.quantity,
price:totals.price + ticketRequest.quantity =
ticketRequest.ticketPrice.price
}i
}, {tickets:0, price:0.0});
}y

addQuantities:function () {
var self = this;
var ticketRequests = [];
_.each(this.ticketCategoriesView.model, function (model) {
if (model.quantity != undefined) {

ticketRequests.push({ticketPrice:model.ticketPrice.id,
quantity:model.quantity})

}
1)

Ticket Monster Tutorial
279/319

$.ajax ({url: (config.baseUrl + "rest/carts/" + this.model.cartId),
data:JSON.stringify (ticketRequests),
type: "POST",
dataType: "json",
contentType: "application/json",
success: function(cart) {
self.refreshSummary (cart, self)
I
)i
}I
refreshSummary: function (cart, view) {

view.model.bookingRequest.seatAllocations = cart.seatAllocations;
view.ticketCategoriesView.model = null;
S ('option:selected’', 'select').removeAttr ('selected');

view.calculateTotals () ;
view.ticketCategoriesView.render () ;
view.ticketSummaryView.render () ;
view.setCheckoutStatus () ;
}I
updateEmail: function (event) {
// jQuery 1.9 does not handle pseudo CSS selectors like :valid :invalid, anymore
var validElements;
try {
validElements = $(".form-search").get (0) .querySelectorAll (":valid");
for (var ctr=0; ctr < validElements.length; ctr++) {

if (event.currentTarget === validElements|[ctr]) {
this.model.bookingRequest.email = event.currentTarget.value;
$("#error-email™) .empty () ;
} else {
$("#error-email") .empty () .append ("Please enter a valid e-mail

address") ;
delete this.model.bookingRequest.email;

}
catch(e) {
// For browsers like IE9 that do fail on querySelectorAll for CSS pseudo
selectors,
// we use the regex defined in the HTML5 spec.
var emailRegex = new
RegExp ("[a—zA-Z0-9. ! #5%& "++/=2"_"{ | }~=]+@[a-zA-Z0-9-]+(?:\. [a-zA-Z0-9-]+) ") ;
if (emailRegex.test (event.currentTarget.value)) {
this.model.bookingRequest.email = event.currentTarget.value;
S("#error-email") .empty () ;
} else {
S ("#error-email") .empty () .append ("Please enter a valid e-mail address");
delete this.model.bookingRequest.email;

this.setCheckoutStatus () ;
b

setCheckoutStatus: function () {
if (this.model.bookingRequest.totals != undefined &&
this.model.bookingRequest.totals.tickets > 0 && this.model.bookingRequest.email !=
undefined && this.model.bookingRequest.email != ''") {

S ('input [name="submit"] ') .removeAttr ('disabled’);
}
else {

S ('"input [name="submit"] ') .attr ('disabled’, true);

bo
watchForm: function () {

Ticket Monster Tutorial
280/319

if($("#email") .length) {
var self = this;
var element = $("#email");
if (element.val() !== self.formValues|["email"]) {
self.formValues|["email"”"] = element.val();
S ("#email") .change () ;
}
this.timerObject = setTimeout (function () {
self.watchForm() ;
}, this.intervalDuration);
} else {
this.onClose();

}I
onClose: function () {
if (this.timerObject) {
clearTimeout (this.timerObject) ;
delete this.timerObject;
}

this.ticketCategoriesView.close () ;

1)

return CreateBookingView;

1)

Also, we need to update the router code as well.

src/main/webapp/resources/js/app/router/desktop/router.js

/ * %
* A module for the router of the desktop application
*/

define ("router", |

'jquer_y 'I
'"underscore',
'configuration',
'utilities',
'app/models/booking’,
'app/models/event ',
'app/models/venue’,
'app/collections/bookings’,
'app/collections/events’,
'app/collections/venues’,
'app/views/desktop/home"’,
'app/views/desktop/events’,
'app/views/desktop/venues’,
'app/views/desktop/create-booking’,
'app/views/desktop/bookings’,
'app/views/desktop/event-detail’,
'app/views/desktop/venue-detail',
'app/views/desktop/booking-detail’,
'text!../templates/desktop/main.html’'
], function (S,

p—

config,

utilities,

Booking,

Event,

Venue,

Bookings,

Events,

Ticket Monster Tutorial
281/319

Venues,

HomeView,
EventsView,
VenuesView,
CreateBookingView,
BookingsView,
EventDetailView,
VenueDetailView,
BookingDetailView,
MainTemplate) {

$ (document) .ready (new function () ({
utilities.applyTemplate ($('body'), MainTemplate)
})

/[*
* The Router class contains all the routes within the application -
* i.e. URLs and the actions that will be taken as a result.
*
* @Qtype {Router}
*/

var Router = Backbone.Router.extend ({
routes: {

" "home",
"about":"home",
"events": "events",
"events/:1id": "eventDetail",
"venues": "venues"”,
"venues/:1d": "venueDetail",
"book/:showId/:performanceId": "bookTickets",
"bookings":"listBookings",
"bookings/:id": "bookingDetail",
"ignore":"ignore",

"+tactions": "defaultHandler"
}I
events:function () {
var events = new Events();
var eventsView = new EventsView ({model:events, el:$("#content")});
events.bind ("reset"”,
function () {

utilities.viewManager.showView (eventsView) ;
}) .fetch();
b
venues: function () {
var venues = new Venues;
var venuesView = new VenuesView ({model:venues, el:$("#content")});
venues.bind("reset”,
function () {
utilities.viewManager.showView (venuesView) ;
}) .fetch();
}I
home: function () {
utilities.viewManager.showView (new HomeView ({el:$ ("#content")}));
}I
bookTickets:function (showId, performanceld) {
var createBookingView =
new CreateBookingView ({
model:{ showId:showId,
performanceld:performanceld,
bookingRequest:{seatAllocations:[]}},
el:S$ ("#content")

Ticket Monster Tutorial
282 /319

}) i
utilities.viewManager.showView (createBookingView) ;
}I
listBookings:function () {
$.get (
config.baseUrl + "rest/bookings/count”,
function (data) {
var bookings = new Bookings;
var bookingsView = new BookingsView ({
model: {bookings: bookings},
el:S$ ("#content"),
pageSize: 10,
page: 1,
count:data.count});

bookings.bind ("destroy",
function () {
bookingsView.refreshPage () ;
1) i
bookings.fetch({data:{first:1, maxResults:10},
processData:true, success:function () {
utilities.viewManager.showView (bookingsView) ;

PH) g
)i

}I
eventDetail:function (id) {
var model = new Event ({id:id});
var eventDetailView = new EventDetailView ({model:model, el:$("#content")});
model .bind ("change",
function () {
utilities.viewManager.showView (eventDetailView) ;
}) .fetch();
o
venueDetail: function (id) {
var model = new Venue ({id:id});
var venueDetailView = new VenueDetailView ({model:model, el:$("#content")});
model .bind ("change”,
function () {
utilities.viewManager.showView (venueDetailView) ;
}) .fetch();
}’
bookingDetail: function (id) {
var bookingModel = new Booking ({id:id});
var bookingDetailView = new BookingDetailView ({model:bookingModel,
el:$("#content")});
bookingModel .bind ("change”,
function () {
utilities.viewManager.showView (bookingDetailView) ;
}) .fetch();

}) i

// Create a router instance
var router = new Router();

//Begin routing
Backbone.history.start () ;

return router;

Ticket Monster Tutorial
283 /319

1)

Finally, we need to update a few templates to account for the changes in code. First, we will allow for displaying the seats in the
ticket summary view as they are allocated.

src¢/main/webapp/resources/templates/desktop/ticket-summary-view.html

<div class="spanl2">
<% if (seatAllocations.length>0) { %>
<table class="table table-bordered table-condensed row-fluid" style="background-color:
#fffffa; ">
<thead>
<tr>
<th colspan="7">Requested tickets</th>
</tr>
<tr>
<th>Section</th>
<th>Category</th>
<th>Quantity</th>
<th>Price</th>
<th>Row</th>
<th>Seat</th>
<th></th>
</tr>
</thead>
<tbody id="ticketRequestSummary">
<% _.each(seatAllocations, function (seatAllocation, index, seatAllocations) { %>
<tr>
<td><%= seatAllocation.ticketRequest.ticketPrice.section.name %></td>
<td><%= seatAllocation.ticketRequest.ticketPrice.ticketCategory.description
$></td>
<td><%= seatAllocation.ticketRequest.quantity %$></td>
<td>$<%= seatAllocation.ticketRequest.ticketPrice.price%></td>
<td><%= seatAllocation.allocatedSeats[0].rowNumber %></td>
<td><% _.each(seatAllocation.allocatedSeats, function (ticketRequest, index,
seat) { %>
<% 1f (index > 0) { $><p/><% } %$><%=
seatAllocation.allocatedSeats[index] .number%>
<% });%></td>
<td><i class="icon-trash" data-index='<%= index %>'/></td>
</tr>
<% 1) %>
</tbody>
</table>
<p/>
<div class="row-fluid">
<div class="span5">Total ticket count: <%= totals.tickets %></div>
<div class="span5">Total price: $<%=totals.price%></div></div>
<% } else { %>
No tickets requested.

<% } %>
</div>

Next, we will update the booking details view template.
src¢/main/webapp/resources/templates/desktop/booking-details.html

<div class="row-fluid">
<h2 class="page-header light-font special-title">Booking #<%=booking.id%> details</h2>
</div>
<div class="row-fluid">
<div class="span5 well">
<h4 class="page-header">Checkout information</h4>

Ticket Monster Tutorial
284 /319

<p>Email: <%$= booking.contactEmail $%></p>
<p>Event: <%= performance.event.name $></p>
<p>Venue: <%$= performance.venue.name %></p>

<p>Date: <%= new Date (booking.performance.date) .toPrettyString()
$></p>

<p>Created on: <%$= new Date (booking.createdOn) .toPrettyString ()
$></p>
</div>
<div class="span5 well">
<h4 class="page—-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">
<thead>

<tr>
<th>Ticket #</th>
<th>Category</th>
<th>Section</th>
<th>Row</th>
<th>Seat</th>
</tr>
</thead>
<tbody>
<% $.each(_.sortBy (booking.tickets, function(ticket) {return
ticket.seat.section.idx1000
+ ticket.seat.rowNumber*100
+ ticket.seat.number}), function (i, ticket) { %>
<tr>
<td><%= ticket.id %$></td>
<td><%=ticket.ticketCategory.description%></td>
<td><%=ticket.seat.section.name%></td>
<td><%=ticket.seat.rowNumber%></td>
<td><%=ticket.seat.number%></td>

</tr>
<% 1) %>
</tbody>
</table>
</div>
</div>

<div class="row-fluid" style="padding-bottom:30px; ">
<div class="span2">Back</div>
</div>

Finally, we will need to update the booking confirmation page.
src/main/webapp/resources/templates/desktop/booking-confirmation.html

<div class="row—-fluid">
<h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>
</div>
<div class="row—-fluid">
<div class="span5 well">
<h4 class="page—-header">Checkout information</h4>
<p>Email: <%$= booking.contactEmail $%></p>
<p>Event: <%= performance.event.name $></p>
<p>Venue: <%= performance.venue.name $%></p>
<p>Date: <%= new Date (booking.performance.date) .toPrettyString()
$></p>

Ticket Monster Tutorial

285/319
<p>Created on: <%= new Date (booking.createdOn) .toPrettyString()
$></p>
</div>
<div class="span5 well">
<h4 class="page—-header">Ticket allocations</h4>
<table class="table table-striped table-bordered" style="background-color: #fffffa;">

<thead>
<tr>

<th>Ticket #</th>
<th>Category</th>
<th>Section</th>

<th>Row</th>
<th>Seat</th>
</tr>
</thead>
<tbody>

<% S$S.each(_.sortBy(booking.tickets, function (ticket)
ticket.seat.section.idx1000

+ ticket.seat.rowNumberx100

+ ticket.seat.number}), function (i, ticket) { %>

<tr>

<td><%= ticket.id $></td>

<td><%=ticket
<td><%=ticket
<td><%=ticket.
<td><%=ticket.

</tr>
<% 1) %>
</tbody>
</table>
</div>
</div>

.ticketCategory.description%></td>
.seat.section.name%></td>

seat .rowNumber%></td>
seat .number%></td>

<div class="row-fluid" style="padding-bottom:30px;">
<div class="span2">Home</div>

</div>

This is it!

{return

Ticket Monster Tutorial
286 /319

Chapter 63

Conclusion

You have successfully converted your application from one that relies exclusively on relational persistence to using a NoSQL
(key-value) data store for a part of its data. You have identified the use cases where the switch is mostly likely to result in
performance improvements, including the changes in application functionality that can benefit from this conversion. You have
learned how to set up the infrastructure, distinguish between the different configuration options, and use the API.

Ticket Monster Tutorial
287 /319

Part X

Adding a full-text search engine

Ticket Monster Tutorial
288 /319

Chapter 64

What will you learn here?

You have a functional TicketMonster but the ability to find the right ticket is a bit limited. You would like to add a search engine
to make show discovery much easier. In this tutorial, you will learn how to:

* Add Hibernate Search to your web application
* Index your entities and build the search engine to retrieve your data
* Add faceting i.e. the ability to filter results by price range, categories etc

* Offer the ability to search around the user’s location (geolocation or spatial search)

What is Hibernate Search?

Hibernate Search indexes objects into Lucene, a full-text search engine and offer an object-oriented API to query those objects
using full-text search, spatial queries and more.

It integrates transparently with Hibernate ORM by listening to entity changes and updating the Lucene index accordingly.
Finally Hibernate Search implements several strategies to cluster indexes very easily.

Ticket Monster Tutorial
289/319

Chapter 65

Setting up the infrastructure

We just need to add Hibernate Search in our classpath and add a few configuration options in persistence.xml.

Our first task is to add Hibernate Search as a dependency to our application. There are two ways to do it. For now we will use
the JBoss Modules approach where Hibernate Search is installed on JBoss EAP or JBoss AS.

65.1 Set up the dependencies

Download the Hibernate Search module and copy its content into JBoss EAP or JBoss AS’s modules directory.

Next update jboss-deployment-structure.xml to include the ORM module of Hibernate Search. This module is
necessary to import the Hibernate Search engine as well as the integration code with Hibernate ORM.

src/main/webapp/WEB_INF/jboss-deployment-structure.xml

<jboss-deployment-structure>
<deployment>
<exclusions>
</exclusions>
<!--— This allows you to define additional dependencies, it is the same
as using the Dependencies: manifest attribute —-->
<dependencies>
<module name="org. jboss.as.naming" />
<module name="org. jboss.as.server" />
<module name="org. jboss.msc" />
<module name="org.hibernate.search.orm" services="export" />
</dependencies>
</deployment>
</jboss-deployment-structure>

Note
services="export" lets Hibernate Search use the service locator pattern to integrate with Hibernate ORM

Finally, we need to add Hibernate Search as a provided dependency in our pom. xm1.
pom.xml

<project ...>

<properties>

http://sourceforge.net/projects/hibernate/files/hibernate-search/4.4.0.Final/hibernate-search-modules-4.4.0.Final-jbossas-72-dist.zip

Ticket Monster Tutorial
290/319

<!-— Hibernate Search version ——>
<hibernate.search.version>4.4.0.Final</hibernate.search.version>

</properties>

<dependencies>

<!-- Add Hibernate Search as a dependency —-->

<dependency>
<groupId>org.hibernate</groupIld>
<artifactId>hibernate-search-orm</artifactId>
<version>${hibernate.search.version}</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.hibernate</groupId>
<artifactId>hibernate-search-engine</artifactId>
<version>${hibernate.search.version}</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-search-analyzers</artifactId>
<version>${hibernate.search.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>

</project>

65.2 Add some configuration

Hibernate Search needs a few extra settings in persistence.xml. You can store the indexes either in RAM or on the file
system. We will start with an in-memory storage to keep things simple.

src/main/resources/META-INF/persistence.xml

<persistence ...>
<persistence-unit name="primary">

<properties>
<property name="hibernate.search.default.directory provider" value="ram"/>

<!-— Alternatively store the index on the file system
<property name="hibernate.search.default.directory_provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase"
value="/var/data/ticket-monster/indexes"/>
—-—>
</properties>
</persistence-unit>
</persistence>

Ticket Monster Tutorial
291 /319

Chapter 66

Build the core search engine

We are now ready to start our search engine. Let’s first see how we decide what to index before building the right queries.

66.1 Indexing the domain model

Marking entities and properties as indexed is as simple as adding annotations. But we need to properly understand the kind of
queries we wish to build. We want our users to be able to search for:

* agiven Event by name and description
* ata given Venue by name and possibly by location

* filtering by category, price and date would be nice too

66.1.1 Adding the metadata to our domain model

You cannot do joins in a full-text index. Instead, we cheat by denormalizing the information and indexing the associated objects
we want to query by in the same entry. For that, we need to be able to navigate to all of the entities we are interested in.

Let’s look at our domain model once again.

Ticket Monster Tutorial
292 /319

MediaType Administration
—F
EventCategory Medialtem Address
Event <t Show = Venue
T — T —
Booking Performance —— SectionAllocation Section
Ticket .
TicketPriceCategory TicketCategory
Seat

Figure 66.1: Entity-Relationship Diagram

Show happens to be the central entity from which we can reach Event, Venue as well as price and date information for each
Performance. That will be the entity we will start indexing from.

Let’s make Show indexed by adding an @ Indexed annotation. We also want to index the associated Event and Venue when
a given Show is indexed. For that, we will mark each association as @ IndexedEmbedded.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

@SuppressWarnings ("serial")

@Entity

@Table (uniqueConstraints = QUniqueConstraint (columnNames = { "event_id", "venue_id" }))
@Indexed

public class Show implements Serializable {

/x Declaration of fields =/

/ x %
* The synthetic id of the object.
*/
@Id
@GeneratedValue (strategy = IDENTITY)
private Long id;

Ticket Monster Tutorial
293/319

/[**
* <p>
* The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.
* </p>
*
* <p>
* The <code>@NotNull</code> Bean Validation constraint means that the event must be
specified.
* </p>
*/
@ManyToOne
@NotNull
@IndexedEmbedded
private Event event;

/ x %
* <p>
* The venue where this show takes place. The <code>@ManyToOne<code> JPA mapping
establishes this relationship.
* </p>
*
* <p>
* The <code>@NotNull</code> Bean Validation constraint means that the venue must be
specified.
* </p>
*/
@ManyToOne
@NotNull
@IndexedEmbedded
private Venue venue;

Next, we need to index the Event name and description. To make a property as indexed, use the @Fie1d annotation.

src/main/java/org/jboss/jdf/example/ticketmonster/model/Event.java

@SuppressWarnings ("serial™)
@Entity
public class Event implements Serializable {

@Column (unique = true)

@NotNull

@Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50
characters")

@Field

private String name;

@NotNull

@Size(min = 20, max = 1000, message = "An event's description must contain between 20 and
1000 characters")

@Field

private String description;

Ticket Monster Tutorial
294 /319

What’s in a name?

By default, each entity type is indexed in a dedicated Apache Lucene index. An index is made of a set of documents. Each
document contains fields which are made of a name and a value. You can think of a document as aMap<String, String>.
Of course the structure of the index is vastly different to make searches fast.

Now you understand where @ Indexed and @Field come from.

Do the same for Venue and mark the name attribute as @Field. Now when a Show is created or modified, the index will be
updated and will contain the show’s event name and description as well as the venue name.

But what about existing shows in our database? How can we index them?

66.1.2 Indexing existing data

For initial indexing (or reindexing), Hibernate Search offers an API: MassIndexer. It reindexes all entities of a given type
quickly. Let’s create a service that will call MassIndexer to reindex our data when the application starts. That is convenient
during development time.

src/main/java/org/jboss/jdf/example/ticketmonster/service/Bootstrap.java

@Singleton

@Startup

public class Bootstrap {
@Inject private EntityManager em;
@Inject private Logger logger;

@PostConstruct
public void onStartup () {
try {
logger.info ("Indexing entities");
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;
ftem.createIndexer () .purgeAllOnStart (true) .startAndWait () ;
} catch (InterruptedException e) {
logger.severe ("Unable to index data with Hibernate Search");

The Hibernate Search APIs are accessible via FullTextEntityManager, a simpler wrapper around the EntityManager
you use to manage the entities. The MassIndexer APl is a fluent API letting you refine what entities you want to reindex,
with how many threads, synchronously or asynchronously etc. But the simple usage is good enough for most cases.

We now have indexed entities, it is time to write our query engine.

66.2 Writing the search engine

Since the application makes use of rich clients, we will expose our search service via a REST endpoint. In it, we will retrieve a
FullTextEntityManager - the entry point for Hibernate Search and our way to write the search engine.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

@Stateless
@Path ("/search")
public class SearchService ({

Ticket Monster Tutorial
295/319

@Inject
EntityManager em;
@Inject

Logger logger;

QGET

@Produces (MediaType .APPLICATION_JSON)

public ShowResults search (@QueryParam("query") String searchString) {
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;
return null;

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/ShowResults.java

public class ShowResults {
private List<ShowView> results;

public ShowResults (List<ShowView> results) {
this.results = results;

public List<ShowView> getResults () {
return results;

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/ShowView.java

public class ShowView {
private Long eventId;
private String eventName;
private String eventDescription;
private String eventCategory;
private String venueName;

public ShowView (Show show) {
this.eventId = show.getEvent () .getId();

this.eventName = show.getEvent () .getName () ;

this.eventDescription = show.getEvent () .getDescription() ;
this.eventCategory = show.getEvent () .getCategory () .getDescription();
this.venueName = show.getVenue () .getName () ;

public Long getEventId() {
return eventId;

public String getEventName () {
return eventName;

public String getEventDescription () {
return eventDescription;

public String getEventCategory () {
return eventCategory;

public String getVenueName () {

Ticket Monster Tutorial
296 /319

return venueName;

We could have returned a list of Show to our endpoint but since Show is linked to many other entities, we will instead return a
list of ShowView only containing the relevant information. We will save bandwidth, database load and increase responsiveness.
We could also return a simple list of ShowView but preparing for the future extension of our search engine, we will wrap than
list in a ShowResults object.

Writing a full-text query is composed of a few phases:

* build an Apache Lucene query
* build an object query wrapping the Lucene query

 execute the query

66.2.1 Build the Apache Lucene query

Our first step is to write the core full-text query. We will use Hibernate Search query DSL for this. Every query starts from a
QueryBuilder for a given entity type. From a QueryBuilder we can define a specific query (keyword, phrase, range etc)
on one or several fields and a few options (boost, fuziness etc).

By default, a property annotated @F ie1d has a corresponding field named after the property. When embedding associations in
the index, you can use the usual dot notation: starting from a Show, you can look for the event name via the following path
event .name.

Here we will focus on keyword queries - queries looking for specific terms - on a few fields of event and venue. Since a matching
term on an event name seems more important than on an event description, we use different boost values to give them different
weight in the ranking system. And if the query string provided by the user is empty, we will return all elements.

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

@GET

@Produces (MediaType .APPLICATION_JSON)

public ShowResults search(@QueryParam("query") String searchString) {
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;

QueryBuilder gb = ftem.getSearchFactory ()
.buildQueryBuilder ()
.forEntity (Show.class)
.get ();

Query luceneQuery = buildLuceneQuery (searchString, gb);

private Query buildLuceneQuery (String searchString, QueryBuilder gb) {

Query luceneQuery;

if (searchString.isEmpty()) {
// Return all terms
luceneQuery = gb.all () .createQuery();

}

else {
// Find the terms of searchString with terms in event.name (weight of 10),
// event.description (weight of 1) and venue.name (weight of 5)

luceneQuery = gb
.keyword ()
.onField ("event.name") .boostedTo (10f)

Ticket Monster Tutorial
297 /319

.andField ("event.description")
.andField ("venue.name") .boostedTo (5f)
.matching(searchString)
.createQuery () ;

}

return luceneQuery;

Different ways to write a Lucene query
There are several ways to express the core of your full-text query:

 native Lucene query APls

+ Lucene query parser

« Hibernate Search query DSL

The Hibernate Search query DSL has several advantages:
« itis easy to use, easier to write

« it offers a great deal of query expressiveness

* it generates raw Lucene queries that can be combined

« itis at the domain object level (not the index level) and thus deals with analyzers and property value conversion transparently

Next we need to wrap that query into the Hibernate Search full-text query.

66.2.2 Build the object query

Hibernate ORM offers several ways of querying your database (JP-QL, native SQL queries, criteria query). Think of Hibernate
Search full-text queries as another approach. Even the API is similar and interchangeable. Objects returned by Hibernate Search
queries are managed objects just like object returned by a JP-QL query.

The object query is created from the FullTextEntityManager.createFullTextQuery () passing the Lucene query
and the (list of) entity type we are interested in. Our query would return a list of Show out of the box, but we really want a list
of ShowResult. To do that, we use an Hibernate ORM ResultTransformer and apply it to the query.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

QGET
@Produces (MediaType .APPLICATION_JSON)
public ShowResults search (@QueryParam("query") String searchString) {
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;
QueryBuilder gb = ftem.getSearchFactory ()
.buildQueryBuilder ()
.forEntity (Show.class)
.get ();

Query luceneQuery = buildLuceneQuery (searchString, gb);

FullTextQuery objectQuery = ftem.createFullTextQuery (luceneQuery, Show.class);
objectQuery.setResultTransformer (ShowViewResultTransformer.INSTANCE) ;

Ticket Monster Tutorial
298 /319

List<ShowResult> results = (List<ShowResult>) objectQuery.getResultList();
return new ShowResults (results);

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/ShowViewResultTransformer.java

/ **
* Converts a list of Show into a list of ShowView.
*
*+ @author Emmanuel Bernard
*/
public class ShowViewResultTransformer implements ResultTransformer {
public static ShowViewResultTransformer INSTANCE = new ShowViewResultTransformer () ;

@Override
public Object transformTuple (Object[] tuple, String[] aliases) {
return tuple;

@Override

public List transformList (List collection) {
List<ShowView> results = new ArrayList<ShowView> (collection.size());
for (Show show : (List<Show>) collection) {

results.add (new ShowView (show)) ;

}

return results;

That’s it! We have a fully functional search engine. Now it is time to expose it to our user.

What’s in a query?

A FullTextQuery is literally a subclass of the JPA Query class. You have access to all of its capability, in particular
pagination!

It also offers additional methods. To name a few:

* getResultSize (): get the number of matching elements (regardless of pagination) ; this operation is very efficient.
* getSort () : sort results explicitly instead of by relevance.

+ setProjection (): return projected fields instead of managed entities ; this does not hit the database at all.

66.3 Exposing search to the Ul

We have seen previously in this tutorial how to write the UI part of a backbone.js application. So this section will go a tiny bit
faster and give you the end result.

Let’s first define a model for the results we will receive from the search REST endpoint. This model will also be responsible for
computing the application URL exposed for bookmarkability.

src/main/webapp/resources/js/app/models/results.js

[**

* Module for the query results model
*/

define ([

Ticket Monster Tutorial

299 /319

"configuration',

'backbone'’
], function (config) {
/[*
* The Results model class definition
*/

var Results = Backbone.Model.extend ({

urlRoot: config.baseUrl + 'rest/search', // the URL for performing CRUD operations

initialize : function() {
_.bindAll (this, "fetch");
_.bindAll (this, "appUrl") ;
by

// the URL with params to reach the REST endpoint

url: function() {
params = '?query=' + encodeURIComponent (this.get ("query"));
return this.urlRoot + params;

}I

// the application URL as exposed by the application for bookmarkability
appUrl: function() {

result = "search/anywhere/";

var query = this.get ("query");

result += encodeURIComponent (query) ;

return result;

)i

// export the Results class
return Results;
1) i

Now that we have a model bound to our backend, we need a view to expose the results to the user.
src/main/webapp/resources/js/app/views/results.js

define ([
'utilities',
'require’,
'text!../../../../templates/desktop/results.html’,
"configuration',
'bootstrap'

], function (
utilities,
require,
resultsTemplate,
config,
Bootstrap) {

var ResultsView = Backbone.View.extend (({
events: {
}l
initialize:function () {

this.model.bind('change', this.render, this);
o

render: function () {
$(this.el) .empty () ;
this.delegateEvents () ;
utilities.applyTemplate ($ (this.el), resultsTemplate, {model:this.model,
query:this.model.get ("query"”) });

Ticket Monster Tutorial
300/319

return this;

)i

return ResultsView;
1) ;

src/main/webapp/resources/templates/desktop/results.html

<h3 class="page-header light-font special-title">Results for <%$=query%></h3>
<div class="row-fluid">
<div class='spanl2'>
<table class='table table-bordered' style="background: #ffffrfa;">

<thead>
<tr>
<th>Event</th>
<th>Venue</th>
</tr>
</thead>
<tbody id='bookingList'>
<% _.each (model.get ("results"), function (result) { %>
<tr>

<td><a href="#events/<%$=result.eventId$>"><%=result.eventName$%></td>
<td><%=result.venueName%></td>

</tr>
<% }); %>
</tbody>
</table>
</div>
</div>

Note that we do retrieve the actual query from the model (query parameter) and pass it to the template for display. We will
need to fill query from the router. Speaking of the devil, let’s add the necessary routes to trigger a query.

src¢/main/webapp/resources/js/app/router/desktop/router.js

define ("router", [
000
'app/models/results’,
coo0g
'app/views/desktop/results’,
'text!../templates/desktop/main.html’
], function (S,
.7
Results,
.7
ResultsView,
MainTemplate) {

var Router = Backbone.Router.extend ({
routes: {
.7
"search/anywhere/:query": "results",

}I
.7
results:function (query) {
var model = new Results();
model.set ("query", decodeURIComponent (query));
var resultsView = new ResultsView ({model:model, el:$("#content"), router:this});

Ticket Monster Tutorial
301/319

model .bind ("change”,
function () {
utilities.viewManager.showView (resultsView) ;
}) .fetch();

return router;

1)

We need to do one more thing. Somehow the query URL (e.g. #search/anywhere/morrison) needs to be called. Let’s
add a search box in the top menu and have it call that URL.

src¢/main/webapp/resources/templates/desktop/main.html

<ul class="nav">
About</1i>
Events</1li>
Venues
Bookings</1li>
Monitor</1li>
Administration</1li>

<script type="text/javascript">
//<![CDATA[

function get_results (event)
{
event .preventDefault () ;
location.href = "#search/anywhere/" +
escape (document .searchbox.query.value) ;
return false;
}
//11>
</secript>
<form id="searchbox" name="searchbox" class="navbar-search pull-right"
onsubmit="return get_results (event) ">
<input id="query" name="query" class="search-query" type="text"
placeholder="Search"/>
</form>

This concludes our work to get the core search engine built and exposed via the UI.

Our next step is to improve the search results by offering the ability to filter results by the user’s location.

Ticket Monster Tutorial
302 /319

Chapter 67

Filter results by location

Let’s face it, driving more than 50 kilometers - or 30 miles for our imperial friends - to go to an event is quite uncommon. We
will offer the ability to filter results to venues within a given radius and luckily for us, Hibernate Search offer such functionality
very easily. Let’s first work on the backend from the REST endpoint down to the actual Hibernate Search query. But first, let’s
make sure we index the geographical position of a venue.

Coordinates are provided as doubles representing the latitude and longitude hosted on the Address object associated with a
venue. To make sure it is indexed, we need to add a spatial index field, link it to the coordinate properties and make sure Address
is indexed when Venue is. @Spatial is the annotation describing a spatial field while @Latitude and @Longitude link
properties to a spatial field.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Venue.java

@SuppressWarnings ("serial")
@Entity
public class Venue implements Serializable {

/ x %
* The address of the venue
*/
@IndexedEmbedded
private Address address = new Address();

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Address.java

@SuppressWarnings ("serial')

@Embeddable

@Spatial (name="coordinates", spatialMode=SpatialMode.GRID)
public class Address implements Serializable {

/* Declaration of fields =*/
private String street;
private String city;
private String country;
@QLatitude (of="coordinates")
private double latitude;
@Longitude (of="coordinates")
private double longitude;

Ticket Monster Tutorial
303/319

The @Spatial fieldis named coordinates and the name is used to match the corresponding @Lat itude and @Longitude.

Types of spatial indexes
You can index and query spatial data in two fashions:

in lati nd longi n mbined ran ri
SpatialMode.RAlN%%(atitude and longitude and use two combined range queries

use a grid index which translates latitude and longitude into a grid number and use a simple term
SpatialMode . GRil@ery

The former is fine as long as you have less than 100k point of interests. The latter will scale better but take a bit more space in
your index. You can get more information from the Hibernate Search documentation.

Now that the location is indexed, let’s receive the user location from the REST endpoint and adjust our Hibernate Search query to

restrict results to a specific area. The Hibernate Search query DSL offers the tools to write the geolocalized - or spatial - queries
as well as the ability to compose bits of queries together.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

@Stateless
@Path ("/search")
public class SearchService ({

@GET

@Produces (MediaType.APPLICATION_JSON)

public ShowResults search(@QueryParam("query") String searchString,
@QueryParam("latitude") Double latitude, @QueryParam("longitude") Double longitude) ({

Query luceneQuery = buildLuceneQuery (searchString, latitude, longitude, gb);

private Query buildLuceneQuery (String searchString, Double latitude, Double longitude,
QueryBuilder gb) {

Query luceneQuery;
Query termsQuery;
if (searchString.isEmpty()) {
// Return all terms
termsQuery = gb.all () .createQuery();
}

else {

// Find the terms of searchString with terms in event.name (weight of 10),
// event.description (weight of 1) and venue.name (weight of 3)
termsQuery = gb.keyword()
.onField ("event.name") .boostedTo (10f)
.andField("event.description")
.andField ("venue.name") .boostedTo (5f)
.matching(searchString)
.createQuery () ;
}
if (latitude !'= null && longitude != null) {
Query localQuery = gb.spatial()
.onCoordinates ("venue.address.coordinates")

Ticket Monster Tutorial
304 /319

.within (50, Unit.KM)
.ofLatitude (latitude) .andLongitude (longitude)
.createQuery () ;
luceneQuery = gb.bool ()
.must (termsQuery)
.must (localQuery)
.createQuery () ;

}
else {
luceneQuery = termsQuery;

}

return luceneQuery;

Only the lucene query has changed, the rest of the code remains as itis. If latitude and longitude are provided, we create
a localQuery which restricts results to 50 kilometers of the provided coordinates and we use the field hosted on the venue
address. The next step is to combine this local query with the term query previously build thanks to a boolean query.

Let’s retrieve the latitude and longitude from the user’s browser and pass it along to our REST service.

src/main/webapp/resources/js/app/models/results.js

// the URL with params to reach the REST endpoint

url: function() {
params = '?query=' + encodeURIComponent (this.get ("query"));
if (typeof this.get ("lat") !'= 'undefined' && typeof this.get ("Ing") !=
'undefined') {
params = params + '&latitude=' + encodeURIComponent (this.get ("l1at")) +

'§longitude=' + encodeURIComponent (this.get ("Ing"));
}
return this.urlRoot + params;

}l

// the application URL as exposed by the application for bookmarkability
appUrl: function () {
result = "search/";
var query = this.get ("query");
var lat = this.get ("lat");
var lng = this.get ("1lng");
if (typeof lat != 'undefined' && typeof 1lng != 'undefined') {
result += "around/" + lat + "/" + 1lng + "/";
}
else {
result += "anywhere/";
}
result += encodeURIComponent (query) ;
return result;

The url function is the URL that calls the REST endpoint while the appUr1 function is the bookmarkable URL as displayed
by the application for a search:

* search/anywhere/morisson looks for events all around the world mentioning "morisson"

* search/around/48.8534100/2.3488000/morisson looks for events around Paris mentioning "morisson”

Ticket Monster Tutorial
305/319

Let’s add the necessary route corresponding to the local search. The router also needs to set in the model the 1at and 1ng
attributes used by the URL builder methods above.

src¢/main/webapp/resources/js/app/router/desktop/router.js

var Router = Backbone.Router.extend ({
routes: {
I
"search/anywhere/:query": "results"”,
"search/around/:lat/:1ng/:query": "localResults",

}I
.7
results:function (query, categoryId, minPriceId) {
this.localResults (null, null, query);
}I
localResults:function (lat, lng, query) {
var model = new Results();
model.set ("query"”", decodeURIComponent (query));
if (lat !'= null) {
model.set ("Iat", lat);
}
if (lng != null) ({
model.set ("1ng", 1lng);
}
var resultsView = new ResultsView ({model:model, el:$("#content"), router:this});
model .bind ("change”,
function () {
utilities.viewManager.showView (resultsView) ;
}) .fetch();

Finally let’s retrieve the user coordinates from the user’s browser and use it in our queries if the user ticks the around me checkbox.
This is fairly easy and standard to do in JavaScript. The example here is a bit verbose as we made sure to have proper fallback
to a generic query if the browser does not give us the coordinates (inability to find them, user does not accept to be geolocalized,
etc.).

src/main/webapp/resources/templates/desktop/main.html

<ul class="nav">
About</1i>
Events</1li>
Venues
Bookings</1li>
Monitor</1li>
Administration</1li>

<script type="text/javascript">
/ /<! [CDATA[
function get_results (event)
{
event.preventDefault () ;
if (document.searchbox.local.checked && navigator.geolocation)
{
options = {
maximumAge: 6000000 // milliseconds (100 minutes)

Ticket Monster Tutorial
306 /319

navigator.geolocation.getCurrentPosition (handlePosition,
handleError, options);
return false;
}
else {
return queryAnywhere();
}
function handlePosition (pos)
{
return queryLocal (pos.coords) ;
}
function handleError (error)
{

return queryAnywhere () ;

}
function queryAnywhere ()
{
location.href = "#search/anywhere/" +
escape (document .searchbox.query.value) ;
return false;
}
function queryLocal (coords)
{
location.href = "#search/around/" + coords.latitude + '/' +
coords.longitude + '/' + escape (document.searchbox.query.value);
return false;
}
/711>
</script>
<form id="searchbox" name="searchbox" class="navbar-search pull-right"
onsubmit="return get_results (event) ">
<input id="query" name="query" class="search-query" type="text"
placeholder="Search"/>
<input name="local" type="checkbox">around me</input>
</form>

Ticket Monster Tutorial
307 /319

Chapter 68

Enable and expose navigation by facets

This feature is by far the most complex to add but brings a significant boost to usability. The user will be able to refine a query
with facets automatically computed and suggested. In practice, it helps a user to refine a query to find what he is looking for.

What is a facet?
Faceting offers a way to categorize the results of a query based on selected dimensions:

* by price range
+ by average comment notes
* by brand

A facet is a given brand, a given price range and each facet can display the number of matching results.

In our case, we want to see our results:

* by category (concert, etc)

* by minimum price range
Let’s split our work in a few steps:

* indexing the necessary data
* create the faceting requests
* return the list of facets for the UI to expose them

* upon user selection further filter results by a given facet

68.1 Indexing data for faceting

A facet is aggregated by its exact value so no string tokenization should take place. By default, strings are analyzed and split into
tokens often corresponding to individual words. For a field used in faceting, we need to disable the analyzing phase. Let’s do
that for the category description.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/EventCategory.java

Ticket Monster Tutorial
308/319

@SuppressWarnings ("serial™)
@Entity
public class EventCategory implements Serializable {

@Column (unique=true)
@NotEmpty
@Field(analyze=Analyze.NO)
private String description;

Also add @TndexedEmbedded on Event .category.

Next, we want to index the minimum price for a given Show. Since shows only contain a set of TicketPrice, we need to
apply some transformation before indexing the information. Hibernate Search’s field bridges are a way to massage your data
before indexing. They take a property value and describe how the data is ultimately indexed. In our case, we will take the set of
prices, find the minimum price and index it. A field bridge is declared with a @FieldBridge annotation. Since our field is not
represented by the object model, we will give it an artificial name: ticketPrices.min. We will use this later in our query.

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/Show.java

@OneToMany (mappedBy = "show", cascade = ALL, fetch = EAGER)

@Field(name="ticketPrices.min", analyze=Analyze.NO,
bridge=Q@FieldBridge (impl=PriceMinBridge.class))

private Set<TicketPrice> ticketPrices = new HashSet<TicketPrice>();

src¢/main/java/org/jboss/jdf/example/ticketmonster/model/search/PriceMinBridge.java

/ x*
* Find the minimum price for a give show and index it.
*
* @author Emmanuel Bernard <emmanuel@hibernate.org>
x/
public class PriceMinBridge extends NumericFieldBridge ({

@Override
public Object get (String name, Document document) {
return Float.valueOf (document.getFieldable(name).stringValue());
}
@Override

public void set (String name, Object value, Document document, LuceneOptions

luceneOptions) {

if (value != null) {
float min = Float.MAX_VALUE;
for (TicketPrice price : (Set<TicketPrice>) wvalue) {

float current = price.getPrice();
if (current < min) {
min = current;

}

luceneOptions.addNumericFieldToDocument (name, min, document);

Ticket Monster Tutorial
309/319

Since we want to store a numerical value, we did extend NumericFieldBridge. Check out the Hibernate Search documen-
tation for more details on field bridges.

Now is the time to look at our faceting query.

68.2 Create the faceting requests

Expressing the faceting requests is easy. We will use the query DSL to create a faceting request for each facet group, and then
associate each faceting request to the Hibernate Search query.

Faceting groups can be of two types:

discrete each value found for a given field are considered a facet value

range a pre-defined set of ranges are created and results are broken down by them

You can refine facet groups a bit, for example:

¢ should facets with zero results be returned

* how facets should be ordered for a given facet group (by field value, by range definition etc)

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

@Produces (MediaType.APPLICATION_JSON)
public ShowResults search (@QueryParam("query") String searchString,
@QueryParam("latitude") Double latitude, @QueryParam("longitude") Double longitude) ({

Query luceneQuery = buildLuceneQuery (searchString, latitude, longitude, gb);
FullTextQuery objectQuery = ftem.createFullTextQuery (luceneQuery, Show.class);

enableFaceting (gb, objectQuery);
objectQuery.setResultTransformer (ShowViewResultTransformer.INSTANCE) ;

ShowResults results = buildResultObject (objectQuery) ;
return results;

private void enableFaceting(QueryBuilder gb, FullTextQuery objectQuery) {

FacetingRequest categoryFaceting = gb.facet ()
.name ("category")

.onField ("event.category.description")
.discrete ()

.includeZeroCounts (true)

.orderedBy (FacetSortOrder.FIELD_VALUE)
.createFacetingRequest () ;

FacetingRequest priceFaceting = gb.facet ()
.name ("price")
.onField("ticketPrices.min")

.range ()
.below (50f) .excludelLimit ()

Ticket Monster Tutorial
310/319

.from(50f) .to(100f) .excludeLimit ()

.from(100f) .to(200f) .excludeLimit ()

.above (200f)

.includeZeroCounts (true)

.orderedBy (FacetSortOrder.RANGE_DEFINITION_ORDER)
.createFacetingRequest () ;

objectQuery.getFacetManager () .enableFaceting (categoryFaceting) .enableFaceting (priceFaceting);

}

68.3 Return the faceting information

Our next step is to expose the facets to the Ul by adding FacetGroupView and FacetView representations to the returned
ShowResults and fill these structures with the faceting information provided by Hibernate Search. From an Hibernate Search
query, we can access FacetManager containing all faceting related information. In particular:

* FacetManager.getFacets (String) provides the list of Facet for a given group

* FacetManager.getFacetGroup (String) offers ways to select / unselect and query selected facets for a given group

Our FacetView knows whether or not it has been selected. We do compute that state from the FacetManager.
src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/FacetGroup View.java

/ %%
* Represent a facet group exposing its facial name, its identifier
+ and the list of associated facet values.
*
*+ @author Emmanuel Bernard
*/
public class FacetGroupView {
private String name;
private String id;
private List<FacetView> facets = new ArraylList<FacetView>();

public FacetGroupView (String name, FacetManager fm, String facetingName) ({

this.name = name;
this.id = facetingName;
for (Facet facet : fm.getFacets (facetingName)) {
boolean selected =
fm.getFacetGroup (facetingName) .getSelectedFacets () .contains (facet);

facets.add (new FacetView (facet, selected));

public String getName () {
return name;

public List<FacetView> getFacets () {
return facets;

public void addFacet (FacetView facet) {
facets.add (facet);

Ticket Monster Tutorial

311/319

public String getId() {
return id;

public boolean isWithSelectedFacet () {
for (FacetView facet : facets) {
if (facet.isSelected()) {
return true;

}

return false;

src¢/main/java/org/jboss/jdf/example/ticketmonster/rest/search/FacetView.java

[x %
* Represent a facet with its wvalue, the number of matching results and
* whether or not the user has selected it.
*
* @author Emmanuel Bernard
x/
public class FacetView {
private String value;
private int count;
private boolean selected;

public FacetView (Facet facet, boolean selected) {
this.value = facet.getValue();
this.count = facet.getCount () ;
this.selected = selected;

public String getValue () {
return value;

public void overrideValue (String value) {
this.value = value;

public int getCount () {
return count;

public boolean isSelected() {
return selected;

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

private ShowResults buildResultObject (FullTextQuery objectQuery) {
ShowResults results = new ShowResults (objectQuery.getResultList ());
FacetManager fm = objectQuery.getFacetManager () ;

FacetGroupView facetGroup = new FacetGroupView("Category"”", fm, "category");

results.addFacetGroup (facetGroup) ;

facetGroup = new FacetGroupView ("Starting price"”, fm, "price");

for (int index = 0 ; index < facetGroup.getFacets().size() ; index++)
FacetView facet = facetGroup.getFacets () .get (index);

Ticket Monster Tutorial
312/319

facet.overrideValue (PRICE_FACET_VALUES[index]) ;

}
results.addFacetGroup (facetGroup) ;
return results;

private static String[] PRICE_FACET_VALUES = new String[] {"below $50", "$50 to $100",
"S100 to $200", "above $200"};

Since we want to control how price range is displayed in the UI, we have created an array representing the target text (PRICE_FACET_V:?
Expect something integrated in Hibernate Search in the near future.

68.4 Selecting a facet

To make faceting fully functional, the user needs to be able to select one or several facets. Let’s add the ability do pass the
selected facets to our REST endpoint and act upon it.

src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

@GET
@Produces (MediaType .APPLICATION_JSON)
public ShowResults search (@QueryParam("query") String searchString,
@QueryParam("latitude") Double latitude, @QueryParam("longitude") Double longitude,
@QueryParam ("categoryfacet"”") Integer categoryFacetId, @QueryParam("minpricefacet")
Integer minPriceFacetId) {
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;
QueryBuilder gb =
ftem.getSearchFactory () .buildQueryBuilder () .forEntity (Show.class) .get () ;

Query luceneQuery = buildLuceneQuery (searchString, latitude, longitude, gb);
FullTextQuery objectQuery = ftem.createFullTextQuery (luceneQuery, Show.class);

enableFaceting(gb, objectQuery);
enableFacetRestriction (objectQuery, categoryFacetId, minPriceFacetId) ;

objectQuery.setResultTransformer (ShowViewResultTransformer.INSTANCE) ;

ShowResults results = buildResultObject (objectQuery) ;
return results;

private void enableFacetRestriction(FullTextQuery objectQuery, Integer categoryFacetId,
Integer minPriceFacetId) {
FacetManager fm = objectQuery.getFacetManager () ;

if (categoryFacetId != null) {
Facet selectedFacet = fm.getFacets ("category") .get (categoryFacetId);
fm.getFacetGroup ("category"”) .selectFacets (selectedFacet) ;

}

if (minPriceFacetId != null) {
Facet selectedFacet = fm.getFacets ("price") .get (minPriceFacetId);

fm.getFacetGroup ("price”) .selectFacets (selectedFacet);

Ticket Monster Tutorial
313/319

We are done on the backend side. Let’s look at SearchService in its entirety as it is the core of our search engine.
src/main/java/org/jboss/jdf/example/ticketmonster/rest/search/SearchService.java

[**
* Service exposed as a REST endpoint and offering full-text search, geolocalized search
* as well as faceting using Hibernate Search.
*
* @author Emmanuel Bernard
*/
@Stateless
QPath ("/search")
public class SearchService ({
@Inject
EntityManager em;
@Inject
Logger logger;

/ x %

*

REST endpoint for the search engine

* @param searchString contains the words to search
* @param latitude (optional) search restricted around latitude
* @param longitude (optional) search restricted around longitude
* @param categoryFacetId (optional) selected category facet
* @param minPriceFacetId (optional) selected price facet
* @return ShowResults containing the results and the faceting data
*/
QGET
@Produces (MediaType.APPLICATION_JSON)
public ShowResults search (@QueryParam("query") String searchString,
@QueryParam("latitude") Double latitude, @QueryParam("longitude") Double longitude,
@QueryParam ("categoryfacet") Integer categoryFacetId, @QueryParam("minpricefacet")
Integer minPriceFacetId) {
FullTextEntityManager ftem = Search.getFullTextEntityManager (em) ;
QueryBuilder gb =
ftem.getSearchFactory () .buildQueryBuilder () .forEntity (Show.class) .get () ;

Query luceneQuery = buildLuceneQuery (searchString, latitude, longitude, gb);
FullTextQuery objectQuery = ftem.createFullTextQuery (luceneQuery, Show.class);

enableFaceting(gb, objectQuery);
enableFacetRestriction (objectQuery, categoryFacetId, minPriceFacetId);

objectQuery.setResultTransformer (ShowViewResultTransformer.INSTANCE) ;

ShowResults results = buildResultObject (objectQuery) ;
return results;

private Query buildLuceneQuery (String searchString, Double latitude, Double longitude,
QueryBuilder gb) {
Query luceneQuery;
Query termsQuery;
if (searchString.isEmpty()) {
// Return all terms
termsQuery = gb.all().createQuery();

Ticket Monster Tutorial
314 /319

else {
// Find the terms of searchString with terms in event.name (weight of 10),
// event.description (weight of 1) and venue.name (weight of 3)
termsQuery = gb.keyword()
.onField ("event.name") .boostedTo (10f)
.andField("event.description")
.andField ("venue.name") .boostedTo (5f)
.matching(searchString)
.createQuery () ;
}
if (latitude !'= null && longitude != null) {
Query localQuery = gb.spatial/()
.onCoordinates ("venue.address.coordinates")
.within (50, Unit.KM)
.ofLatitude (latitude) .andLongitude (longitude)
.createQuery () ;
luceneQuery = gb.bool ()
.must (termsQuery)
.must (localQuery)
.createQuery () ;
}
else {
luceneQuery = termsQuery;
}
return luceneQuery;
}
private ShowResults buildResultObject (FullTextQuery objectQuery) {

ShowResults results = new ShowResults (objectQuery.getResultList ());
FacetManager fm = objectQuery.getFacetManager () ;
FacetGroupView facetGroup = new FacetGroupView ("Category", fm, "category");

results.addFacetGroup (facetGroup) ;

facetGroup = new FacetGroupView ("Starting price", fm, "price");

for (int index = 0 ; index < facetGroup.getFacets () .size() ; index++) {
FacetView facet = facetGroup.getFacets () .get (index) ;
facet.overrideValue (PRICE_FACET_VALUES[index]) ;

}

results.addFacetGroup (facetGroup) ;

return results;

private void enableFaceting(QueryBuilder gb, FullTextQuery objectQuery) {
FacetingRequest categoryFaceting = gb.facet ()
.name ("category")
.onField("event.category.description")
.discrete ()
.includeZeroCounts (true)
.orderedBy (FacetSortOrder.FIELD_VALUE)
.createFacetingRequest () ;
FacetingRequest priceFaceting = gb.facet ()
.name ("price")
.onField("ticketPrices.min")
.range ()
.below (50f) .excludeLimit ()
.from(50f) .to(100f) .excludeLimit ()
.from(100f) .to(200f) .excludeLimit ()
.above (200f)
.includeZeroCounts (true)
.orderedBy (FacetSortOrder .RANGE_DEFINITION_ORDER)
.createFacetingRequest () ;

objectQuery.getFacetManager () .enableFaceting (categoryFaceting) .enableFaceting (priceFaceting);

}

Ticket Monster Tutorial
315/319

private static String[] PRICE_FACET_VALUES = new String[] {"below $50", "$50 to $100",
"S$100 to $200", "above $200"};

private void enableFacetRestriction(FullTextQuery objectQuery, Integer categoryFacetId,
Integer minPriceFacetId) {
FacetManager fm = objectQuery.getFacetManager () ;
if (categoryFacetId != null) {
Facet selectedFacet = fm.getFacets ("category") .get (categoryFacetId);
fm.getFacetGroup ("category"”) .selectFacets (selectedFacet) ;

}

if (minPriceFacetId != null) {
Facet selectedFacet = fm.getFacets ("price") .get (minPriceFacetId);
fm.getFacetGroup ("price") .selectFacets (selectedFacet);

We are now ready to expose facets in the Ul

68.5 Exposing faceting to the Ul

Integrating faceting and the Ul is two-fold:

* display the facets on the query result screen

* re-execute the query if the user has select one or more facets and offer some bookmarkable URL for queries with facet selection

The optionally selected category and price facet are stored in the model and influence both the REST endpoint URL and
the bookmarkable application URL (e.g. #search/anywhere/morisson/category/all/minprice/1.

src¢/main/webapp/resources/js/app/models/results.js

// the URL with params to reach the REST endpoint

url: function() {
params = '?query=' + encodeURIComponent (this.get ("query"));
if (typeof this.get ("lat") != 'undefined' && typeof this.get ("Ing") !=
'undefined') {
params = params + '&latitude=' + encodeURIComponent (this.get ("lat")) +

"¢longitude="' + encodeURIComponent (this.get ("Ing"));
}

if (typeof this.get ("category") != 'undefined') {

params = params + '&categoryfacet=' + this.get ("category");
}
if (typeof this.get ("price") != 'undefined') ({

params = params + '&minpricefacet=' + this.get ("price");

}

return this.urlRoot + params;
by

// the application URL as exposed by the application for bookmarkability
appUrl: function() {

result = "search/";

var query = this.get ("query");

var lat = this.get ("lat");

var 1lng = this.get ("1ng");

var category = this.get ("category”);

Ticket Monster Tutorial

316/319

var minprice = this.get ("price");

if (typeof lat != 'undefined' && typeof lng != 'undefined')
result += "around/" + lat + "/" + 1lng + "/";

}

else {
result += "anywhere/";

}

result += encodeURIComponent (query) ;

result += "/category/"

if (typeof category != 'undefined') {
result += category;

}

else {
result += 'all';

}

result += "/minprice/"

if (typeof minprice != 'undefined') {
result += minprice;

}

else {
result += 'all';

}

return result;

{

The view needs to react to clicks on the faceting links and properly update the model before navigating to the appropriate URL

src¢/main/webapp/resources/js/app/views/results.js

events: {

"click .faceting": "enableFaceting"
}o
initialize:function () {

this.model.bind('change', this.render, this);
}s

render: function () {
S (this.el) .empty () ;
this.delegateEvents () ;

utilities.applyTemplate ($ (this.el), resultsTemplate, {model:this.model,

query:this.model.get ("query")});
return this;
}o

//called when the user clicks on a faceting link and refresh the model and

application URL
enableFaceting: function (e) {
var id = $(e.currentTarget) .data("id");

var faceting = id.substring (0, id.lastIndexOf('-"));
var index = id.substring(id.lastIndexOf('-") + 1);
if (index == 'all') {

this.model.unset (faceting);
}
else {
this.model.set (faceting, index);
}
this.model.fetch();

Ticket Monster Tutorial

317/319

this.options.router.navigate (this.model.appUrl());
return false;

Let’s now display the faceting information as a left sidebar. For each facet group we expose the list of facets, their count and add
a link triggering the result refresh when a facet is selected (or cleared).

src¢/main/webapp/resources/templates/desktop/results.html

<h3 class="page-header light-font special-title">Results for <%=query%></h3>
<div class="row-fluid">

<div class='span3'>
<div id="itemMenu'">
<% _.each (model.get ("facetGroups"), function (facetGroup) { %>
<div class="facets—-group">
<div class="facets-heading">
<%=facetGroup.name%>
</div>
<div class="facets-body in" style="height: auto; ">
<div class="facets-inner">
<%if (facetGroup.withSelectedFacet) { %>
<p><a href="#search"” class='faceting'
data-id='<%=facetGroup.id%>-all'> (Clear)</p>
}os>
_.each(facetGroup.facets, function (facet, index, facets) { %>
if (facet.selected == true) { %>

class="muted'><%=facet.value$%> <%$=facet.count%$></p>

<% } else { %>

o° o o

A A A A
o] o

<p><a href="#search" class='faceting'
data-id='<%=facetGroup.id%>-<%=index%>'><%=facet.value%> <%=facet.count%></p>

<% } %>
<% 1); %>
</div>

</div>

</div>

<5 1) %>

</div>
</div>

<div class='span9'>

<table class='table table-bordered' style="background: #ffffrfa;">

<thead>
<tr>
<th>Event</th>
<th>Venue</th>
</tr>
</thead>
<tbody id='bookingList'>
<% _.each (model.get ("results"), function (result) { %>
<tr>

<td><a href="#events/<%=result.eventId$>"><%=result.eventName%></td>
<td><%=result.venueName$%></td>
</tr>
<% }); %>
</tbody>
</table>
</div>
</div>

Ticket Monster Tutorial
318/319

Let’s finally add the necessary routes corresponding to the facet filtering and update the action methods to update the model with
the facets selected.

src¢/main/webapp/resources/js/app/router/desktop/router.js

routes: {
.7
"search/anywhere/:query": "results",

"search/anywhere/:query/category/:categoryId/minprice/:priceId": "results”",
"search/around/:lat/:1ng/:query": "localResults",

"search/around/:lat/:1ng/:query/category/:categoryId/minprice/:priceId": "localResults",

by

results:function (query, categoryId, minPriceId) {
this.localResults (null, null, query, categoryId, minPriceId);
}I
localResults:function (lat, lng, query, categoryId, minPriceId) {
var model = new Results();
model.set ("query", decodeURIComponent (query));
if (lat !'= null) {
model.set ("Iat", lat);
}
if (lng !'= null) {
model.set ("1ng", 1lng);
}
if (typeof (categoryId) != 'undefined' && categoryId != 'all') {
model.set ("category"”", categoryId);
}
if (typeof (minPriceld) != 'undefined' && minPriceld != 'all') {
model.set ("price", minPriceld);

}

var resultsView = new ResultsView ({model:model, el:$("#content"), router:this});
model .bind ("change",
function () {

utilities.viewManager.showView (resultsView) ;
}) .fetch();

With minimal work, we have added a powerful search engine with geolocalized queries and faceting improve further customer’s
navigation.

Ticket Monster Tutorial
319/319

Chapter 69

More resources

To learn more about search and Hibernate Search in particular, take a look at the Hibernate Search project and its documentation.

http://search.hibernate.org

	I What is TicketMonster?
	Preamble
	Use cases
	What can end users do?
	What can administrators do?

	Architecture
	How can you run it?
	Building TicketMonster
	Running TicketMonster
	Running TicketMonster locally
	Running TicketMonster in OpenShift

	Learn more

	II Introduction & Getting Started
	Purpose and Target Audience
	Installation
	Creating a new Java EE 6 project with Maven
	Exploring the newly generated project
	Adding a new entity using Forge
	Reviewing persistence.xml & updating import.sql
	Adding a new entity using JBoss Developer Studio
	Deployment
	Adding a JAX-RS RESTful web service
	Adding a jQuery Mobile client application
	Conclusion
	Cleaning up the generated code

	III Building the persistence layer with JPA2 and Bean Validation
	What will you learn here?
	Your first entity
	Database design & relationships
	Media items
	Events
	Shows
	Performances
	Venue
	Sections
	Booking, Ticket & Seat

	Connecting to the database
	Populating test data
	Conclusion

	IV Building The Business Services With JAX-RS
	What Will You Learn Here?
	Business Services And Their Relationships
	Preparations
	Adding Jackson Core
	Verifying the versions of the JBoss BOMs
	Enabling CDI
	Adding utility classes

	Internal Services
	The Media Manager
	The Seat Allocation Service

	JAX-RS Services
	Initializing JAX-RS
	A Base Service For Read Operations
	Retrieving Venues
	Retrieving Events
	Creating and deleting bookings

	Testing the services
	A Basic Deployment Class
	Writing RESTful service tests
	Running the tests
	Executing tests from the command line
	Running Arquillian tests from within Eclipse

	V Building The User UI Using HTML5
	What Will You Learn Here?
	First, the basics
	Client-side MVC Support
	Modularity
	Templating
	Mobile and desktop versions

	Setting up the structure
	Routing

	Setting up the initial views
	Displaying Events
	The Event model
	The Events collection
	The EventsView view

	Viewing a single event
	Creating Bookings
	Mobile view
	Setting up the structure
	The landing page
	The events view
	Displaying an individual event
	Booking tickets

	More Resources

	VI Building the Administration UI using Forge
	What Will You Learn Here?
	Setting up Forge
	JBoss Enterprise Application Platform 6
	JBoss AS 7
	Required Forge Plugins

	Getting started with Forge
	Generating the CRUD UI
	Generate the REST resources from the JPA entities
	Update the project
	Scaffold the AngularJS UI from the JPA entities

	Test the CRUD UI
	Make some changes to the UI

	VII Building The Statistics Dashboard Using HTML5 and JavaScript
	What Will You Learn Here?
	Implementing the Metrics API
	Creating the Bot service
	Displaying Metrics
	The Metrics model
	The Metrics collection
	The MetricsView view

	Displaying the Bot interface
	The Bot model
	The BotView view

	Creating the dashboard
	Creating a composite Monitor view
	Configure the router

	VIII Creating hybrid mobile versions of the application with Apache Cordova
	What will you learn here?
	What are hybrid mobile applications?
	Tweak your application for remote access
	Downloading Apache Cordova
	Creating an Android hybrid mobile application
	Creating an Android project using Apache Cordova
	Adding Apache Cordova to TicketMonster

	Creating an iOS hybrid mobile application
	Creating an iOS project using Apache Cordova
	Adding Apache Cordova for iOS to TicketMonster

	Conclusion

	IX Adding a data grid
	What Will You Learn Here?
	The problem at hand
	Adding Infinispan
	Configuring the infrastructure
	Using caches for seat reservations
	Implementing carts
	Conclusion

	X Adding a full-text search engine
	What will you learn here?
	Setting up the infrastructure
	Set up the dependencies
	Add some configuration

	Build the core search engine
	Indexing the domain model
	Adding the metadata to our domain model
	Indexing existing data

	Writing the search engine
	Build the Apache Lucene query
	Build the object query

	Exposing search to the UI

	Filter results by location
	Enable and expose navigation by facets
	Indexing data for faceting
	Create the faceting requests
	Return the faceting information
	Selecting a facet
	Exposing faceting to the UI

	More resources

