Ticket Monster Tutorial

Marius Bogoevici, Pete Muir, Burr Sutter

Part I. What is TicketMonster?

Chapter 1. Preamble

TicketMonster is an example application that focuses on Java EE6 - JPA 2, CDI, EJB 3.1 and JAX-RS along with HTML5 and jQuery Mobile. It is a moderately complex application that demonstrates how to build modern web applications optimized for mobile & desktop. TicketMonster is representative of an online ticketing broker - providing access to events (e.g. concerts, shows, etc) with an online booking application.
Apart from being a demo, TicketMonster provides an already existing application structure that you can use as a starting point for your app. You could try out your use cases, test your own ideas, or, contribute improvements back to the community.
[image: gfx/octocat_social.png]

Fork us on GitHub!
The accompanying tutorials walk you through the various tools & technologies needed to build TicketMonster on your own. Alternatively you can download TicketMonster as a completed application and import it into your favorite IDE.
Before we dive into the code, let’s discuss the requirements for the application.

Chapter 2. Use cases

We have grouped the current use cases in two major categories: end user oriented, and administrative.
2.1. What can end users do?

The end users of the application want to attend some cool events. They will try to find shows, create bookings, or cancel bookings. The use cases are:
	
look for current events;

	
look for venues;

	
select shows (events taking place at specific venues) and choose a performance time;

	
book tickets;

	
view current bookings;

	
cancel bookings;

Figure 2.1. End user use cases
[image: gfx/ticket-monster-user-use-cases.png]

2.2. What can administrators do?

Administrators are more concerned the operation of the business. They will manage the master data: information about venues, events and shows, and will want to see how many tickets have been sold. The use cases are:
	
add, remove and update events;

	
add, remove and update venues (including venue layouts);

	
add, remove and update shows and performances;

	
monitor ticket sales for current shows;

Figure 2.2. Administration use cases
[image: gfx/ticket-monster-administration-use-cases.png]

Chapter 3. Architecture

Figure 3.1. TicketMonster architecture
[image: gfx/ticket-monster-architecture.png]

The application uses Java EE 6 services to provide business logic and persistence, utilizing technologies such as CDI, EJB 3.1 and JAX-RS, JPA 2. These services back the user-facing booking process, which is implemented using HTML5 and JavaScript, with support for mobile devices through jQuery Mobile.
The administration site is centered around CRUD use cases, so instead of writing everything manually, the business layer and UI are generated by Forge, using EJB 3.1, CDI and JAX-RS. For a better user experience, Twitter Bootstrap is used.
Monitoring sales requires staying in touch with the latest changes on the server side, so this part of the application will be developed in HTML5 and JavaScript using a polling solution.

Chapter 4. How can you run it?

4.1. Building TicketMonster

Caution
In order to build the application, you will need you to
configure Maven to use the JBoss Enterprise Maven repositories. For instructions on
configure the Maven repositories, visit the JBoss Enterprise Application Platform 6.3 documentation.

TicketMonster can be built from Maven, by runnning the following Maven command:
mvn clean package
This prepares a WAR file that you can deploy right away in a JBoss Enterprise Application Platform instance. It would use the in-built H2 database.
If you want to run the Arquillian tests as part of the build, you can enable one of the two available Arquillian profiles.
For running the tests in an already running application server instance, use the arq-jbossas-remote profile.
mvn clean package -Parq-jbossas-remote
If you want the test runner to start an application server instance, use the arq-jbossas-managed profile. You must set up the JBOSS_HOME property to point to the server location, or update the src/main/test/resources/arquillian.xml file.
mvn clean package -Parq-jbossas-managed
If you intend to deploy into OpenShift with the PostgreSQL cartridge, you can use the postgresql-openshift profile:
mvn clean package -Ppostgresql-openshift
If you intend to deploy into OpenShift with the MySQL cartridge, you can use the mysql-openshift profile:
mvn clean package -Pmysql-openshift

4.2. Running TicketMonster

You can run TicketMonster into a local JBoss EAP 6.3 instance or on OpenShift.
4.2.1. Running TicketMonster locally

Start JBoss Enterprise Application Platform 6.3.
	
Open a command line and navigate to the root of the JBoss server directory.

	
The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

Then, deploy TicketMonster.
	
Make sure you have started the JBoss Server as described above.

	
Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy
(You can use the arq-jbossas-remote profile for running tests as well)

	
This will deploy target/ticket-monster.war to the running instance of the server.

	
Now you can see the application running at http://localhost:8080/ticket-monster.

4.2.2. Running TicketMonster in OpenShift

First, create an OpenShift project.
	
Make sure that you have an OpenShift domain and you have created an application using the jbosseap-6 cartridge (for more details, get started here). If you want to use PostgreSQL, add the postgresql-9.2 cartridge too. Or for MySQL, add the mysql-5.5 cartridge.

	
Ensure that the Git repository of the project is checked out.

Then, build and deploy it.
	
Build TicketMonster using either:

	
the default profile (with H2 database support)

mvn clean package

	
the postgresql-openshift profile (with PostgreSQL support) if the PostgreSQL cartrdige is enabled in OpenShift.

mvn clean package -Ppostgresql-openshift

	
the mysql-openshift profile (with MySQL support) if the MySQL cartrdige is enabled in OpenShift.

mvn clean package -Pmysql-openshift

	
Copy the target/ticket-monster.war file in the OpenShift Git repository (located at <root-of-openshift-application-git-repository>).

cp target/ticket-monster.war <root-of-openshift-application-git-repository>/deployments/ROOT.war

	
Navigate to <root-of-openshift-application-git-repository> folder.

	
Remove the existing src folder and pom.xml file.

git rm -r src
git rm pom.xml

	
Add the copied file to the repository, commit and push to Openshift

git add deployments/ROOT.war
git commit -m "Deploy TicketMonster"
git push

	
Now you can see the application running at at http://<app-name>-<domain-name>.rhcloud.com

Chapter 5. Learn more

The example is accompanied by a series of tutorials that will walk you through the process of
creating the TicketMonster application from end to end.
After reading this series you will understand how to:
	
set up your project;

	
define the persistence layer of the application;

	
design and implement the business layer and expose it to the front-end via RESTful endpoints;

	
implement a mobile-ready front-end using HTML 5, JSON, JavaScript and jQuery Mobile;

	
develop a HTML5-based administration interface rapidly using JBoss Forge;

	
thoroughly test your project using JUnit and Arquillian;

Throughout the series, you will be shown how to achieve these goals using JBoss Developer Studio.

Part II. Introduction & Getting Started

Chapter 6. Purpose and Target Audience

The target audience for this tutorial are those individuals who do not yet have a great deal of experience with:
	
Eclipse + JBoss Tools (JBoss Developer Studio)

	
JBoss Enterprise Application Platform 6.3

	
Java EE 6 features like JAX-RS

	
HTML5 & jQuery for building an mobile web front-end.

This tutorial sets the stage for the creation of TicketMonster - our sample application that illustrates how to bring together the best features of Java EE 6 + HTML5 + JBoss to create a rich, mobile-optimized and dynamic application.
TicketMonster is developed as an open source application, and you can find it at github.
If you prefer to watch instead of read, a large portion of this content is also covered in video form.
In this tutorial, we will cover the following topics:
	
Working with JBoss Developer Studio (Eclipse + JBoss Tools)

	
Creating of a Java EE 6 project via a Maven archetype

	
Leveraging m2e and m2e-wtp

	
Using Forge to create a JPA entity

	
Using Hibernate Tools

	
Database Schema Generation

	
Deployment to a local JBoss Server

	
Adding a JAX-RS endpoint

	
Adding a jQuery Mobile client

	
Using the Mobile BrowserSim

Figure 6.1. JBoss Developer Studio 8 with Mobile BrowserSim
[image: gfx/introduction/jbds8_mobile_browsersim.png]

Chapter 7. Installation

The first order of business is to get your development environment setup and JBoss Developer Studio v8 installed. JBoss Developer Studio is Eclipse Luna (e4.4) for Java EE Developers plus select JBoss Tools and is available for free. Visit http://www.jboss.org/products/devstudio/download to download it. You may also choose to install JBoss Tools 4.2 into your existing Eclipse for Java EE Developers installation. This document uses screenshots depicting JBoss Developer Studio.
You must have a Java Development Kit (JDK) installed. Java 7 JDK is recommended - whilst a JVM runtime will work for most use cases, for a developer environment it is normally best to have the full JDK.
Tip
If you prefer to see JBoss Developer Studio being installed,
then check out this video.
To see JBoss Tools being installed into Eclipse, see
this video.

The JBoss Developer Studio installer has a (very long!) name such as jboss-devstudio-8.0.0.GA-v20141020-1042-B317-installer-standalone.jar
where the latter portion of the file name relates to build date and version information and the text near the front related to the target operating system. The "universal" installer is for any operating system. To launch the installer you may simply be able to double-click on the .jar file name or you may need to issue the following from the operating system command line:
java -jar jboss-devstudio-8.0.0.GA-v20141020-1042-B317-installer-standalone.jar
We recommend using the "universal" installer as it handles Windows, Mac OS X and Linux - 32-bit and 64-bit versions.
Note
Even if you are installing on a 64-bit OS, you may still wish
to use the 32-bit JVM for the JBoss Developer Studio (or
Eclipse + JBoss Tools). Only the 32-bit version provides a
supported version of the Visual Page Editor - a split-pane
editor that gives you a glimpse of what your HTML/XHTML (JSF,
 JSP, etc) will look like.
Also, the 32-bit version uses less memory than the 64-bit
version. You may still run your application server in 64-bit
JVMs if needed to insure compatibility with the production
environment whilst keeping your IDE in 32-bit mode.
Visual Page Editor has experimental support for 64-bit JVMs in JBoss
Developer Studio 8. Please refer the JBoss Tools Visual Editor FAQ for details.

Figure 7.1. Installation Wizard, Step 1 of 9
[image: gfx/introduction/installer_wizard_page1.png]

The rest of the steps are fairly self explanatory. If you run into trouble, please consult the videos above as they explore a few troubleshooting tips related to JRE/JDK setup.
You can skip the step in the installation wizard that allows you to install JBoss Enterprise Application Platform 6.3 as we will do this in the next step.
Once installed, launch JBoss Developer Studio. Please make sure to say Yes to the prompt that says "Will you allow JBoss Tools team to receive anonymous usage statistics for this Eclipse instance with JBoss Tools?". This information is very helpful to us when it comes to prioritizing our QA efforts in terms of operating system platforms. More information concerning our usage tracking can be found at http://www.jboss.org/tools/usage

Chapter 8. Creating a new Java EE 6 project with Maven

Tip
For a deeper dive into the world of Maven and how it is used with
JBoss Developer Studio and JBoss Enterprise Application
Platform 6 review this video.

Now that everything is properly installed, configured, running and verified to work, let’s build something "from scratch".
We recommend that you switch to the JBoss Perspective if you have not already.
Tip
If you close JBoss Central, it is only a click away - simply
click on the JBoss icon in the Eclipse toolbar - it is normally
the last icon, on the last row - assuming you are in the JBoss
Perspective.

First, select Start from scratch → Java EE Web Project in JBoss Central. Under the covers, this uses a Maven archetype which creates a Java EE 6 web application (.war), based around Maven. The project can be built outside of the IDE, and in continuous integration solutions like Hudson/Jenkins.
Figure 8.1. JBoss Central
[image: gfx/introduction/jboss_dev_studio_jboss_central.png]

You will be prompted with a dialog box that verifies that JBoss Developer Studio is configured correctly. If you are in a brand new workspace, the application server will not be configured yet and you will notice the lack of a check mark on the server/runtime row.
Figure 8.2. New Project Wizard
[image: gfx/introduction/new_project_wizard.png]

Note
There are several ways to add JBoss Enterprise Application
Platform 6 to JBoss Developer Studio. The
Install… button on the new project wizard is probably the
easiest, but you can use any of the methods you are familiar
with!

To add JBoss Enterprise Application Platform, click on the Install… button, or if you have not yet downloaded and unzipped the server, click on the Download and Install… button.
Caution
The download option only works with the community application
server. Although the enterprise application server is listed, it
still needs to be manually downloaded.

Selecting Install… will pop up the JBoss Runtime Detection section of Preferences. You can always get back to this dialog by selecting Preferences → JBoss Tools → JBoss Tools Runtime Detection.
Figure 8.3. JBoss Tools Runtime Detection
[image: gfx/introduction/jboss_tools_runtime_detection.png]

Select the Add button which will take you to a file browser dialog where you should locate your unzipped JBoss server.
Figure 8.4. Runtime Open Dialog
[image: gfx/introduction/runtime_open_dialog.png]

Select Open and JBoss Developer Studio will pop up the Searching for runtimes… window.
Figure 8.5. Searching for runtimes window
[image: gfx/introduction/searching_for_runtimes_dialog.png]

Simply select OK. You should see the added runtime in the Paths list.
Figure 8.6. JBoss Tools Runtime Detection Completed
[image: gfx/introduction/jboss_tools_runtime_detection_after.png]

Select OK to close the Preferences dialog, and you will be returned to the New Project Example dialog, with the the server/runtime found.
Figure 8.7. JBoss AS 7.0/7.1 or EAP 6 Found
[image: gfx/introduction/as_eap_found.png]

The Target Runtime allows you to choose between JBoss Enterprise Application Platform and JBoss AS 7. If it is left empty, JBoss AS 7 will be elected.
Proceed to select the EAP 6.3 runtime, you just created.
Figure 8.8. JBoss EAP 6 runtime selected
[image: gfx/introduction/as_eap_selected.png]

Caution
Choosing an enterprise application server as the runtime will require you to
configure Maven to use the JBoss Enterprise Maven repositories. For detailed instructions on
configure the Maven repositories, visit the JBoss Enterprise Application Platform 6.3 documentation.

You may see a warning (like the one in the screenshot), if you do not have the JBoss Enterprise Maven repository configured in your environment. Should this be the case, select the repository link in the warning, to open the JBoss Maven Integration wizard. The wizard dialog will prompt you to add the JBoss Enterprise Maven repository.
Figure 8.9. Add the JBoss Enterprise Maven repository
[image: gfx/introduction/jboss_maven_repository.png]

Click Ok.
You’ll now be shown the proposed changes to your Maven settings.xml file. Click Finish after reviewing the proposed updates.
Figure 8.10. Update the Maven settings.xml file
[image: gfx/introduction/jboss_maven_repo_settings_xml.png]

You’ll be prompted to confirm the update. Click Yes.
Figure 8.11. Confirm the changes to the Maven settings.xml file
[image: gfx/introduction/prompt_update_settings_xml.png]

The updates will now be persisted, and you’ll be returned to the original wizard.
Now, select Next in the New Project wizard to proceed to the next step.
Figure 8.12. New Project Wizard Step 2
[image: gfx/introduction/new_project_example_step_2.png]

The default Project name is jboss-javaee6-webapp. If this field appears blank, it is because your workspace already contains a "jboss-javaee6-webapp" in which case just provide another name for your project. Change the project name to ticket-monster, and the package name to org.jboss.examples.ticketmonster.
Select Finish.
JBoss Tools/JBoss Developer Studio will now generate the template project and import it into the workspace. You will see it pop up into the Project Explorer and a message that asks if you would like to open the cheatsheet file associated with the project.
Figure 8.13. New Project Wizard Step 3
[image: gfx/introduction/prompt_for_cheatsheet.png]

Select Finish

Chapter 9. Exploring the newly generated project

Using the Project Explorer, open up the generated project, and double-click on the pom.xml.
The generated project is a Maven-based project with a pom.xml in its root directory.
Figure 9.1. Project Explorer
[image: gfx/introduction/newly_generated_project_explorer.png]

JBoss Developer Studio and JBoss Tools include m2e and m2e-wtp. m2e is the Maven Eclipse plug-in and provides a graphical editor for editing pom.xml files, along with the ability to run maven goals directly from within Eclipse. m2e-wtp allows you to deploy your Maven-based project directly to any Web Tools Project (WTP) compliant application server. This means you can drag & drop, use Run As → Run on Server and other mechanisms to have the IDE deploy your application.
The pom.xml editor has several tabs along its bottom edge.
Figure 9.2. pom.xml Editor Tabs
[image: gfx/introduction/pom_xml_tabs.png]

For this tutorial, we do not need to edit the pom.xml as it already provides the Java EE 6 APIs that we will need (e.g. JPA, JAX-RS, CDI). You should spend some time exploring the Dependencies and the pom.xml (source view) tabs.
One key element to make note of is <version.jboss.bom.eap>6.3.2.GA</version.jboss.bom.eap> which establishes the version of the JBoss Enterprise Application Platform dependencies. The BOM (Bill of Materials) specifies the versions of the Java EE (and other) APIs defined in the dependency section.
If you are using community version of the JBoss Application Server and you selected that as your Target Runtime, you will find a different property as the version string.
Caution
The specific version of the BOM (e.g. 6.3.2.GA) is likely to change, so do not
be surprised if the version is slightly different.
The recommended version of the BOM for a runtime (EAP 6) can be
obtained by visiting the JBoss Stacks site.

Figure 9.3. Project Explorer Java Packages
[image: gfx/introduction/project_explorer_java_packages.png]

Using the Project Explorer, drill-down into src/main/java under Java Resources.
The initial project includes the following Java packages:
	
.controller

	
 contains the backing beans for #{newMember} and #{memberRegistration} in the JSF page index.xhtml

	
.data

	
 contains a class which uses @Produces and @Named to return the list of members for index.xhtml

	
.model

	
 contains the JPA entity class, a POJO annotated with @Entity, annotated with Bean Validation (JSR 303) constraints

	
.rest

	
 contains the JAX-RS endpoints, POJOs annotated with @Path

	
.service

	
 handles the registration transaction for new members

	
.util

	
 contains Resources.java which sets up an alias for @PersistenceContext to be injectable via @Inject

Now, let’s explore the resources in the project.
Figure 9.4. Project Explorer Resources
[image: gfx/introduction/project_explorer_resources.png]

Under src you will find:
	
main/resources/import.sql

	
 contains insert statements that provides initial database data. This is particularly useful when hibernate.hbm2dll.auto=create-drop is set in persistence.xml. hibernate.hbm2dll.auto=create-drop causes the schema to be recreated each time the application is deployed.

	
main/resources/META-INF/persistence.xml

	
 establishes that this project contains JPA entities and it identifies the datasource, which is deployed alongside the project. It also includes the hibernate.hbm2dll.auto property set to create-drop by default.

	
test/java/test

	
 provides the .test package that contains MemberRegistrationTest.java, an Arquillian based test that runs both from within JBoss Developer Studio via Run As → JUnit Test and at the command line:

mvn test –Parq-jbossas-remote
Note that you will need to start the JBoss Enterprise Application Platform 6.3 server before running the test.

	
src/main/webapp

	
 contains index.xhtml, the JSF-based user interface for the sample application. If you double-click on that file you will see Visual Page Editor allows you to visually navigate through the file and see the source simultaneously. Changes to the source are immediately reflected in the visual pane.

In src/main/webapp/WEB-INF, you will find three key files:
	
beans.xml

	
 is an empty file that indicates this is a CDI capable EE6 application

	
faces-config.xml

	
 is an empty file that indicates this is a JSF capable EE6 application

	
ticket-monster-ds.xml

	
 when deployed, creates a new datasource within the JBoss container

Chapter 10. Adding a new entity using Forge

There are several ways to add a new JPA entity to your project:
	
Starting from scratch

	
 Right-click on the .model package and select New → Class. JPA entities are annotated POJOs so starting from a simple class is a common approach.

	
Reverse Engineering

	
 Right-click on the "model" package and select New → JPA Entities from Tables. For more information on this technique see this video

	
Using Forge

	
 to create a new entity for your project using a CLI (we will explore this in more detail below)

	
Reverse Engineering with Forge

	
 Forge has a Hibernate Tools plug-in that allows you to script the conversion of RDBMS schema into JPA entities. For more information on this technique see this video.

For the purposes of this tutorial, we will take advantage of Forge to add a new JPA entity. This requires the least keystrokes, and we do not yet have a RDBMS schema to reverse engineer. There is also an optional section for adding an entity using New → Class.
Select the project in the Project Navigator view of JBoss Developer Studio and enter the Ctrl + 4 (in Windows/Linux) or Cmd + 4 (Mac) key combination.
This will launch Forge if it is not started already.
Figure 10.1. Starting Forge for the first time
[image: gfx/introduction/forge_is_starting.png]

The list of commands that you can execute in Forge will be visible in the Forge quick action menu.
Figure 10.2. Forge action menu
[image: gfx/introduction/forge_action_menu.png]

Tip
If you do not see a lot of commands in the quick action menu, then you may not have selected the project.
The Forge quick action menu is contextual in nature, and therefore, it displays commands relevant to the current selection in the project explorer.
When nothing is selected, then fewer commands are shown.

Tip
An alternative method to activate Forge is:
	
Window → Show View → Forge Console. Click the Start button in the view.

Figure 10.3. Launch the Show View dialog
[image: gfx/introduction/show_forge_view.png]

Figure 10.4. Select the Forge Console view
[image: gfx/introduction/select_forge_view.png]

Note: Activating Forge this way displays the Forge console that allows you to
execute the same commands via a shell interface.

Tip
You can always start Forge using the green arrow (or
stop via the red square) in the Forge Console tab.
Figure 10.5. Show Forge Start/Stop
[image: gfx/introduction/forge_console_tab.png]

Forge is a multi-faceted rapid application development tool that allows you to enter commands that generate classes and code. You could use either a GUI within your IDE that offers a familar wizard and dialog based UI, or a shell-like interface to perform operations. It will automatically update the IDE for you. A key feature is "contentual command activation", launched by running the Forge shortcut (Ctrl + 4 or Cmd + 4). For instance, launching Forge on a selected project activates different commands, than launching it in isolation, or for that matter launching Forge with a selected Java source file.
We’ll generate an entity using the Forge GUI. Let’s work through this, step by step.
We start by selecting the TicketMonster project. Launch Forge through the shortcut (Ctrl + 4 or Cmd + 4).
Type jpa in the command filter textbox located in the menu. The menu will filter out irrelevant entries, leaving you with JPA-specific commands.
Figure 10.6. Filter commands in the Forge menu
[image: gfx/introduction/forge_quick_action_menu_filter_jpa.png]

Select the "JPA: New Entity" entry in the menu. Click it or hit the Enter key to execute the command. You will be presented with a dialog where you can provide certain inputs that control how the new entity would be generated, like the package where the entity would be created, the name of the JPA entity/class, the primary-key strategy used for the entity etc.
Figure 10.7. The new JPA entity command in Forge
[image: gfx/introduction/forge_jpa_new_entity.png]

Specify the value of the entity as Event and click Finish. The defaults for other values are sufficient - note how Forge intelligently constructs the value for the package field from the Maven group Id and artifact Id values of the project.
Figure 10.8. Create the Event entity in Forge
[image: gfx/introduction/forge_jpa_new_entity_event.png]

You should see a notification bubble in Eclipse when Forge completes the action.
Figure 10.9. The Forge notification bubble in Eclipse
[image: gfx/introduction/forge_jpa_new_entity_created.png]

Forge would have created a JPA entity as instructed, and it would also open the Java source file in Eclipse. Note that it would have created not only a new class with the @Entity annotation, but also created a primary-key field named id, a version field, along with getters and setters for both, in addition to equals, hashCode and toString methods.
Figure 10.10. The newly created Event entity
[image: gfx/introduction/forge_event_entity_source.png]

Let’s add a new field to this entity. Select the Event class in the project navigator and launch the Forge menu once again. Filter on jpa as usual, and launch the "JPA: New Field" command.
Specify the field name as name, to store the name of the event. The defaults are sufficient for other input fields. Click Finish or hit the Enter button as usual.
Figure 10.11. The JPA field wizard in Forge
[image: gfx/introduction/forge_jpa_new_field_name.png]

You will now notice that the Event class is enhanced with a name field of type String, as well as a getter and setter, along with modifications to the toString method.
Figure 10.12. The newly created field in the Event class
[image: gfx/introduction/forge_added_name.png]

Let’s now add Bean Validation (JSR-303) capabilities to the project. Launch the Forge menu, and filter for the "Constraint: Setup" command. Execute the command.
Figure 10.13. Filter for constraint commands in the Forge menu
[image: gfx/introduction/forge_quick_action_menu_filter_constraint.png]

You’ll be presented with a choice on what Bean Validation providers you’d like to setup in the project. The defaults are sufficient - we’ll use the Bean Validation provider supplied by the Java EE application. Click Finish or hit Enter to setup Bean valdiation.
Figure 10.14. Setup Bean Validation
[image: gfx/introduction/forge_setup_constraint_wizard.png]

We’ll now add a constraint on the newly added name field in the Event class. Select the Event class in the project navigator and proceed to launch the "Constraint: Add" command from the Forge menu. Note that selecting the Event class allows Forge to provide commands relevant to this class in the action menu, as well as populating this class in input fields where it is fit to populate them.
Figure 10.15. Select the Event class and launch the "Constraint: Add" wizard
[image: gfx/introduction/forge_add_constraint_on_event.png]

This launches a wizard where one can add Bean Validation constraints. The class to operate on will default to the currently selected class, i.e. Event. If you want to switch to a different class, you can do so in the wizard. There is no need to re-launch the wizard.
Figure 10.16. The constraint is added to the selected class
[image: gfx/introduction/forge_select_event_entity_for_constraint.png]

Proceed to select the name field, on which we add a NotNull constraint. Click Finish or hit Enter.
Figure 10.17. Add a NotNull constraint on Event name
[image: gfx/introduction/forge_constraint_add_notnull_on_name.png]

Similarly, add a Size constraint with min and max values of 5 and 50 respectively on the name field.
Figure 10.18. Add a Size constraint on Event name
[image: gfx/introduction/forge_constraint_add_size_on_name.png]

Figure 10.19. Specify attribute values for the Size constraint
[image: gfx/introduction/forge_constraint_add_set_size_attributes_on_name.png]

From this point forward, we will assume you have the basics of using Forge’s menu and the commands executed thus far. Add a new field description to the Event class.
Figure 10.20. Add the description field to Event
[image: gfx/introduction/forge_jpa_new_field_description.png]

Add a Size constraint on the description field to the event class, with min and max values of 20 and 1000 respectively.
Figure 10.21. Add a Size constraint on Event name
[image: gfx/introduction/forge_constraint_add_size_on_description.png]

Figure 10.22. Specify attribute values for the Size constraint
[image: gfx/introduction/forge_constraint_add_set_size_attributes_on_description.png]

Add a new boolean field major. Note - you will need to change the type to boolean from the default value of String.
Figure 10.23. Add the major field to Event
[image: gfx/introduction/forge_jpa_new_field_major.png]

Add another field picture to the Event class.
Figure 10.24. Add the picture field to Event
[image: gfx/introduction/forge_jpa_new_field_picture.png]

The easiest way to see the results of Forge operating on the Event.java JPA Entity is to use the Outline View of JBoss Developer Studio. It is normally on the right-side of the IDE when using the JBoss Perspective.
Figure 10.25. Outline View
[image: gfx/introduction/outline_of_event.png]

Alternatively, you could perform the same sequence of operations in the Forge Console, using these commands:
jpa-new-entity --named Event --targetPackage org.jboss.examples.ticketmonster.model ;
jpa-new-field --named name ;
constraint-setup ;
constraint-add --onProperty name --constraint NotNull ;
constraint-add --onProperty name --constraint Size --min 5 --max 50 --message "An event's name must contain between 5 and 50 characters" ;
jpa-new-field --named description ;
constraint-add --onProperty description --constraint Size --min 20 --max 1000 --message "An event's description must contain between 20 and 1000 characters" ;
jpa-new-field --named major --type boolean ;
jpa-new-field --named picture ;

Chapter 11. Reviewing persistence.xml & updating import.sql

By default, the entity classes generate the database schema, and is controlled by src/main/resources/persistence.xml.
The two key settings are the <jta-data-source> and the hibernate.hbm2ddl.auto property. The datasource maps to the datasource defined in src\main\webapp\ticket-monster–ds.xml.
The hibernate.hbm2ddl.auto=create-drop property indicates that all database tables will be dropped when an application is undeployed, or redeployed, and created when the application is deployed.
The import.sql file contains SQL statements that will inject sample data into your initial database structure. Add the following insert statements:
insert into Event (id, name, description, major, picture, version) values (1, 'Shane''s Sock Puppets', 'This critically acclaimed masterpiece...', true, 'http://dl.dropbox.com/u/65660684/640px-Carnival_Puppets.jpg', 1);
insert into Event (id, name, description, major, picture, version) values (2, 'Rock concert of the decade', 'Get ready to rock...', true, 'http://dl.dropbox.com/u/65660684/640px-Weir%2C_Bob_(2007)_2.jpg', 1);

Chapter 12. Adding a new entity using JBoss Developer Studio

Alternatively, we can add an entity with JBoss Developer Studio or JBoss Tools.
First, right-click on the .model package and select New → Class. Enter the class name as Venue - our concerts & shows happen at particular stadiums, concert halls and theaters.
First, add some private fields representing the entities properties, which translate to the columns in the database table.
package org.jboss.examples.ticketmonster.model;

public class Venue {
 private Long id;
 private String name;
 private String description;
 private int capacity;
}
Now, right-click on the editor itself, and from the pop-up, context menu select Source → Generate Getters and Setters.
Figure 12.1. Generate Getters and Setters Menu
[image: gfx/introduction/generate_getters_setters.png]

This will create accessor and mutator methods for all your fields, making them accessible properties for the entity class.
Figure 12.2. Generate Getters and Setters Dialog
[image: gfx/introduction/getter_setter_dialog.png]

Click Select All and then OK.
Figure 12.3. Venue.java with gets/sets
[image: gfx/introduction/venue_after_getters_setters.png]

Now, right-click on the editor, from the pop-up context menu select Source → Generate Hibernate/JPA Annotations.
If you are prompted to save Venue.java, simply select OK.
Figure 12.4. Save Modified Resources
[image: gfx/introduction/save_modified_resources.png]

The Hibernate: add JPA annotations wizard will start up. First, verify that Venue is the class you are working on.
Figure 12.5. Hibernate: add JPA annotations
[image: gfx/introduction/hibernate_add_jpa_annotations.png]

Select Next.
The next step in the wizard will provide a sampling of the refactored sources – describing the basic changes that are being made to Venue.
Figure 12.6. Hibernate: add JPA annotations Step 2
[image: gfx/introduction/hibernate_add_jpa_annotations_step2.png]

Select Finish.
Now you may wish to add the Bean Validation constraint annotations, such as @NotNull to the fields.

Chapter 13. Deployment

At this point, if you have not already deployed the application, right click on the project name in the Project Explorer and select Run As → Run on Server. If needed, this will startup the application server instance, compile & build the application and push the application into the JBOSS_HOME/standalone/deployments directory. This directory is scanned for new deployments, so simply placing your war in the directory will cause it to be deployed.
Caution
If you have been using another application server or web server
such as Tomcat, shut it down now to avoid any port conflicts.

Figure 13.1. Run As → Run on Server
[image: gfx/introduction/run_as_run_on_server.png]

Now, deploy the h2console webapp. It can be found in the JBoss EAP quickstarts. You can read more on how to do this in the h2console quickstart.
Figure 13.2. Obtain the H2 console app for deployment
[image: gfx/introduction/quickstarts_directory_layout.png]

You need to deploy the h2console.war application, located in the quickstarts, to the JBoss Application Server. You can deploy this application by copying the WAR file to the $JBOSS_HOME/standalone/deployments directory.
Figure 13.3. Deploy the H2 console app
[image: gfx/introduction/h2console_deployments.png]

The Run As → Run on Server option will also launch the internal Eclipse browser with the appropriate URL so that you can immediately begin interacting with the application.
Figure 13.4. Eclipse Browser after Run As → Run on Server
[image: gfx/introduction/result_run_on_server.png]

Now, go to http://localhost:8080/h2console to start up the h2 console.
Figure 13.5. h2console in browser
[image: gfx/introduction/h2console_in_browser.png]

Use jdbc:h2:mem:ticket-monster as the JDBC URL (this is defined in src/main/webapp/WEB-INF/ticket-monster-ds.xml), sa as the username and sa as the password.
Click Connect
You will see both the EVENT table, the VENUE table and the MEMBER tables have been added to the H2 schema.
And if you enter the SQL statement: select * from event and select the Run (Ctrl-Enter) button, it will display the data you entered in the import.sql file in a previous step. With these relatively simple steps, you have verified that your new EE 6 JPA entities have been added to the system and deployed successfully, creating the supporting RDBMS schema as needed.
Figure 13.6. h2console Select * from Event
[image: gfx/introduction/h2console_select_from_event.png]

Chapter 14. Adding a JAX-RS RESTful web service

The goal of this section of the tutorial is to walk you through the creation of a POJO with the JAX-RS annotations.
Right-click on the .rest package, select New → Class from the context menu, and enter EventService as the class name.
Figure 14.1. New Class EventService
[image: gfx/introduction/new_class_eventservice.png]

Select Finish.
Replace the contents of the class with this sample code:
package org.jboss.examples.ticketmonster.rest;

@Path("/events")
@RequestScoped
public class EventService {
 @Inject
 private EntityManager em;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<Event> getAllEvents() {
 final List<Event> results =
 em.createQuery(
 "select e from Event e order by e.name").getResultList();
 return results;
 }
}
This class is a JAX-RS endpoint that returns all Events.
Figure 14.2. EventService after Copy and Paste
[image: gfx/introduction/event_service_copy_paste.png]

You’ll notice a lot of errors, relating to missing imports. The easiest way to solve this is to right-click inside the editor and select Source → Organize Imports from the context menu.
Figure 14.3. Source → Organize → Imports
[image: gfx/introduction/source_organize_imports.png]

Some of the class names are not unique. Eclipse will prompt you with any decisions around what class is intended. Select the following:
	
javax.ws.rs.core.MediaType

	
org.jboss.examples.ticketmonster.model.Event

	
javax.ws.rs.Produces

	
java.util.List

	
java.inject.Inject

	
java.enterprise.context.RequestScoped

The following screenshots illustrate how you handle these decisions. The Figure description indicates the name of the class you should select.
Figure 14.4. javax.ws.rs.core.MediaType
[image: gfx/introduction/organize_imports_1.png]

Figure 14.5. org.jboss.examples.ticketmonster.model.Event
[image: gfx/introduction/organize_imports_2.png]

Figure 14.6. javax.ws.rs.Produces
[image: gfx/introduction/organize_imports_3.png]

Figure 14.7. java.util.List
[image: gfx/introduction/organize_imports_4.png]

Figure 14.8. javax.inject.Inject
[image: gfx/introduction/organize_imports_5.png]

Figure 14.9. javax.enterprise.context.RequestScoped
[image: gfx/introduction/organize_imports_6.png]

You should end up with these imports:
import java.util.List;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.persistence.EntityManager;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.examples.ticketmonster.model.Event;
Once these import statements are in place you should have no more compilation errors. When you save EventService.java, you will see it listed in JAX-RS REST Web Services in the Project Explorer.
Figure 14.10. Project Explorer JAX-RS Services
[image: gfx/introduction/project_explorer_jax_rs_services.png]

This feature of JBoss Developer Studio and JBoss Tools provides a nice visual indicator that you have successfully configured your JAX-RS endpoint.
You should now redeploy your project via Run As → Run on Server, or by right clicking on the project in the Servers tab and select Full Publish.
Figure 14.11. Full Publish
[image: gfx/introduction/full_publish.png]

Using a browser, visit http://localhost:8080/ticket-monster/rest/events to see the results of the query, formatted as JSON (JavaScript Object Notation).
Figure 14.12. JSON Response
[image: gfx/introduction/json_event_results.png]

Note
The rest prefix is setup in a file called JaxRsActivator.java which contains
a small bit of code that sets up the application for JAX-RS endpoints.

Chapter 15. Adding a jQuery Mobile client application

Now, it is time to add a HTML5, jQuery based client application that is optimized for the mobile web experience.
There are numerous JavaScript libraries that help you optimize the end-user experience on a mobile web browser. We have found that jQuery Mobile is one of the easier ones to get started with but as your skills mature, you might investigate solutions like Sencha Touch, Zepto or Jo. This tutorial focuses on jQuery Mobile as the basis for creating the UI layer of the application.
The UI components interact with the JAX-RS RESTful services (e.g. EventService.java).
Tip
For more information on building HTML5 + REST applications with JBoss technologies, check
out Aerogear.

These next steps will guide you through the creation of a file called mobile.html that provides a mobile friendly version of the application, using jQuery Mobile.
First, using the Project Explorer, navigate to src/main/webapp, and right-click on webapp, and choose New HTML file.
Figure 15.1. New HTML File
[image: gfx/introduction/new_html_file.png]

Caution
In certain versions of JBoss Developer Studio, the New HTML File Wizard may start
off with your target location being m2e-wtp/web-resources, this is an
incorrect location and it is a bug, JBIDE-11472.
This issue has been corrected in JBoss Developer Studio 6.

Change directory to ticket-monster/src/main/webapp and enter name the file mobile.html.
Figure 15.2. New HTML File src/main/webapp
[image: gfx/introduction/new_html_file_correct_location.png]

Select Next.
On the Select HTML Template page of the New HTML File wizard, select New HTML File (5). This template will get you started with a boilerplate HTML5 document.
Figure 15.3. Select New HTML File (5) Template
[image: gfx/introduction/select_html_template.png]

Select Finish.
The document must start with <!DOCTYPE html> as this identifies the page as HTML 5 based. For this particular phase of the tutorial, we are not introducing a bunch of HTML 5 specific concepts like the new form fields (type=email), websockets or the new CSS capabilities. For now, we simply wish to get our mobile application completed as soon as possible. The good news is that jQuery and jQuery Mobile make the consumption of a RESTful endpoint very simple.
You will now notice the Palette View visible in the JBoss perspective. This view contains a collection of popular jQuery Mobile widgets that can be dragged and dropped into the HTML pages to speed up construction of jQuery Mobile pages.
Figure 15.4. The jQuery Mobile Palette
[image: gfx/introduction/jquery_mobile_palette.png]

Tip
For a deeper dive into the jQuery Mobile palette feature in
JBoss Developer Studio review this video.

Let us first set the title of the HTML5 document as:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>TicketMonster</title>
</head>
<body>

</body>
</html>
We shall now add the jQuery and jQuery Mobile JavaScript and CSS files to the HTML document. Luckily for us we can do this by clicking the JS/CSS widget in the palette.
Figure 15.5. Click the JS/CSS widget
[image: gfx/introduction/js_css_widget.png]

Figure 15.6. Select the versions of libraries to add
[image: gfx/introduction/js_css_widget_library_versions.png]

This results in the following document with the jQuery JavaScript file and the jQuery Mobile JavaScript and CSS files being added to the head element.
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.css" />
 <script src="http://code.jquery.com/jquery-2.0.3.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.js"></script>
 <meta charset="UTF-8">
 <title>TicketMonster</title>
</head>
<body>

</body>
</html>
We shall now proceed to setup the page layout. Click the page widget in the palette to do so. Ensure that the cursor is in the <body> element of the document when you do so.
Figure 15.7. Click the page widget
[image: gfx/introduction/jquery_mobile_page_widget.png]

Caution
When you click some of the widgets in the palette, it is important
to have the cursor in the right element of the document.
Failing to observe this will result in the widget being added in
undesired locations. Alternatively, you can drag and drop the
widget to the desired location in the document.

This opens a dialog to configure the jQuery Mobile page.
Figure 15.8. Create a new jQuery Mobile page
[image: gfx/introduction/jquery_mobile_page.png]

Set the page title as "TicketMonster", footer as blank, and the ID as "page1". Click Finish to add a new jQuery Mobile page to the document. The layout is now established.
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.css" />
 <script src="http://code.jquery.com/jquery-2.0.3.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.js"></script>
 <meta charset="UTF-8">
 <title>TicketMonster</title>
</head>
<body>
 <div data-role="page" id="page1">
 <div data-role="header">
 <h1>TicketMonster</h1>
 </div>
 <div data-role="content">
 <p>Page content goes here.</p>
 </div>
 <div data-role="footer">
 <h4></h4>
 </div>
 </div>
</body>
</html>
To populate the page content, remove the paragraph element: <p>Page content goes here.</p> to start with a blank content section. Click the Listview widget in the palette to start populating the content section.
Figure 15.9. Click the Listview widget
[image: gfx/introduction/jquery_mobile_listview_widget.png]

This opens a new dialog to configure the jQuery Mobile listview widget.
Figure 15.10. Add a jQuery Mobile Listview widget
[image: gfx/introduction/jquery_mobile_listview.png]

Select the inset checkbox to display the list as an inset list. Inset lists do not span the entire widget of the display. Set the ID as "listOfItems". Retain the number of items in the list as three, modify the label values to One, Two and Three respectively, and finally, set the URL values to #. Retain the default values for the other fields, and click Finish. This will create a listview widget with 3 item entries in the list. The jQuery Mobile page is now structurally complete.
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.css" />
 <script src="http://code.jquery.com/jquery-2.0.3.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.4.4/jquery.mobile-1.4.4.min.js"></script>
 <meta charset="UTF-8">
 <title>TicketMonster</title>
</head>
<body>
 <div data-role="page" id="page1">
 <div data-role="header">
 <h1>TicketMonster</h1>
 </div>
 <div data-role="content">
 <ul data-role="listview" id="listOfItems" data-inset="true">
 One
 Two
 Three

 </div>
 <div data-role="footer">
 <h4></h4>
 </div>
 </div>
</body>
</html>
You might notice that in the Visual Page Editor, the visual portion is not that attractive, this is because the majority of jQuery Mobile magic happens at runtime and our visual page editor simply displays the HTML without embellishment.
Visit http://localhost:8080/ticket-monster/mobile.html.
Note
Note: Normally HTML files are deployed automatically, if you find it missing,
just use Full Publish or Run As Run on Server as demonstrated in previous steps.

As soon as the page loads, you can view the jQuery Mobile enhanced page.
Figure 15.11. jQuery Mobile Template
[image: gfx/introduction/jquery_mobile_template.png]

One side benefit of using a HTML5 + jQuery-based front-end to your application is that it allows for fast turnaround in development. Simply edit the HTML file, save the file and refresh your browser.
Now the secret sauce to connecting your front-end to your back-end is simply observing the jQuery Mobile pageinit JavaScript event and including an invocation of the previously created Events JAX-RS service.
Insert the following block of code as the last item in the <head> element
<head>
 ...
 <title>TicketMonster</title>
 <script type="text/javascript">
 $(document).on("pageinit", "#page1", function(event){
 $.getJSON("rest/events", function(events) {
 // console.log("returned are " + events);
 var listOfEvents = $("#listOfItems");
 listOfEvents.empty();
 $.each(events, function(index, event) {
 // console.log(event.name);
 listOfEvents.append("" + event.name + "");
 });
 listOfEvents.listview("refresh");
 });
 });
 </script>
</head>
Note:
	
On triggering pageinit on the page having id "page1"

	
using $.getJSON("rest/events") to hit the EventService.java

	
a commented out // console.log, causes problems in IE

	
Getting a reference to listOfItems which is declared in the HTML using an id attribute

	
Calling .empty on that list - removing the exiting One, Two, Three items

	
For each event - based on what is returned in step 1

	
another commented out // console.log

	
append the found event to the UL in the HTML

	
refresh the listOfItems

Note
You may find the .append("...") syntax unattractive, embedding HTML inside
of the JS .append method, this can be corrected using various JS templating
techniques.

The result is ready for the average mobile phone. Simply refresh your browser to see the results.
Figure 15.12. jQuery Mobile REST Results
[image: gfx/introduction/jquery_mobile_results.png]

JBoss Developer Studio and JBoss Tools includes BrowerSim to help you better understand what your mobile application will look like. Look for a "phone" icon in the toolbar, visible in the JBoss Perspective.
Figure 15.13. Mobile BrowserSim icon in Eclipse Toolbar
[image: gfx/introduction/mobile_browsersim_in_toolbar.png]

Note
The BrowserSim tool takes advantage of a locally installed Safari (Mac & Windows)
on your workstation. It does not package a whole browser by itself. You will
need to install Safari on Windows to leverage this feature – but that is more
economical than having to purchase a MacBook to quickly look at your mobile-web
focused application!

Figure 15.14. Mobile BrowserSim
[image: gfx/introduction/mobile_browsersim.png]

The Mobile BrowserSim has a Devices menu, on Mac it is in the top menu bar and on Windows it is available via right-click as a pop-up menu. This menu allows you to change user-agent and dimensions of the browser, plus change the orientation of the device.
Figure 15.15. Mobile BrowserSim Devices Menu
[image: gfx/introduction/mobile_browsersim_devices_menu.png]

Figure 15.16. Mobile BrowserSim on Windows 7
[image: gfx/introduction/mobile_browsersim_windows_menu.png]

You can also add your own custom device/browser types.
Figure 15.17. Mobile BrowserSim Custom Devices Window
[image: gfx/introduction/mobile_browsersim_custom_devices.png]

Under the File menu, you will find a View Page Source option that will open up the mobile-version of the website’s source code inside of JBoss Developer Studio. This is a very useful feature for learning how other developers are creating their mobile web presence.
Figure 15.18. Mobile BrowserSim View Source
[image: gfx/introduction/mobile_browsersim_bofa_source.png]

Chapter 16. Conclusion

This concludes our introduction to building HTML5 Mobile Web applications using Java EE 6 with Forge and JBoss Developer Studio. At this point, you should feel confident enough to tackle any of the additional exercises to learn how the TicketMonster sample application is constructed.
16.1. Cleaning up the generated code

Before we proceed with the tutorial and implement TicketMonster, we need to clean up some of the archetype-generated code. The Member management code, while useful for illustrating the general setup of a Java EE 6 web application, will not be part of TicketMonster, so we can safely remove some packages, classes, and resources:
	
All the Member-related persistence and business code:

	
src/main/java/org/jboss/examples/ticketmonster/controller/

	
src/main/java/org/jboss/examples/ticketmonster/data/

	
src/main/java/org/jboss/examples/ticketmonster/model/Member.java

	
src/main/java/org/jboss/examples/ticketmonster/rest/MemberResourceRESTService.java

	
src/main/java/org/jboss/examples/ticketmonster/service/MemberRegistration.java

	
src/test/java/org/jboss/examples/ticketmonster/test/MemberRegistrationTest.java

	
Generated web content

	
src/main/webapp/index.html

	
src/main/webapp/index.xhtml

	
src/main/webapp/WEB-INF/templates/

	
JSF configuration

	
src/main/webapp/WEB-INF/faces-config.xml

	
Prototype mobile application (we will generate a proper mobile interface)

	
src/main/webapp/mobile.html

Also, we will update the src/main/resources/import.sql file and remove the Member entity insertion:
insert into Member (id, name, email, phone_number) values (0, 'John Smith', 'john.smith@mailinator.com', '2125551212'
The data file should contain only the Event data import:
insert into Event (id, name, description, major, picture, version) values (1, 'Shane''s Sock Puppets', 'This critically acclaimed masterpiece...', true, 'http://dl.dropbox.com/u/65660684/640px-Carnival_Puppets.jpg', 1);
insert into Event (id, name, description, major, picture, version) values (2, 'Rock concert of the decade', 'Get ready to rock...', true, 'http://dl.dropbox.com/u/65660684/640px-Weir%2C_Bob_(2007)_2.jpg', 1);

Part III. Building the persistence layer with JPA2 and Bean Validation

Chapter 17. What will you learn here?

You have set up your project successfully. Now it is time to begin working on the TicketMonster
application, and the first step is adding the persistence layer. After reading this guide,
you’ll understand what design and implementation choices to make. Topics covered include:
	
RDBMS design using JPA entity beans

	
How to validate your entities using Bean Validation

	
How to populate test data

	
Basic unit testing using JUnit

We’ll round out the guide by revealing the required, yet short and sweet, configuration.
The tutorial will show you how to perform all these steps in JBoss Developer Studio, including
screenshots that guide you through. For those of you who prefer to watch and learn, the included
videos show you how we performed all the steps.
TicketMonster contains 14 entities, of varying complexity. In the introduction, you have seen
the basic steps for creating a couple of entities (Event and Venue) and interacting with them.
In this tutorial we’ll go deeper into domain model design, we’ll classify the entities, and
walk through designing and creating one of each group.

Chapter 18. Your first entity

The simplest kind of entities are often those representing lookup tables. TicketCategory is a classic lookup table that defines the ticket types available (e.g. Adult, Child, Pensioner). A ticket category has one property - description.
What’s in a name?
Using a consistent naming scheme for your entities can help another developer get up
to speed with your code base. We’ve named all our lookup tables XXXCategory to allow
us to easily spot them.

Let’s start by creating a JavaBean to represent the ticket category:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

public class TicketCategory {

 /* Declaration of fields */

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 */
 private String description;

 /* Boilerplate getters and setters */

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Override
 public String toString() {
 return description;
 }
}

We’re going to want to keep the ticket category in collections (for example, to present it as part of drop down in the UI), so it’s important that we properly implement equals() and hashCode(). At this point, we need to define a property (or group of properties) that uniquely identifies the ticket category. We refer to these properties as the "entity’s natural identity".
Defining an entity’s natural identity
Using an ORM introduces additional constraints on object identity. Defining the
properties that make up an entity’s natural identity can be tricky, but is very
important. Using the object’s identity, or the synthetic identity (database generated
primary key) identity can introduce unexpected bugs into your application, so you
should always ensure you use a natural identity. You can read more about the issue at
https://community.jboss.org/wiki/EqualsAndHashCode.

For ticket category, the choice of natural identity is easy and obvious - it must be the one property, description that the entity has! Having identified the natural identity, adding an equals() and hashCode() method is easy. In Eclipse, choose Source → Generate hashCode() and equals()…
Generate hashCode() and equals() in Eclipse. image::gfx/eclipse-generate-hashcode-equals.png
Now, select the properties to include:
Generate hashCode() and equals() in Eclipse. image::gfx/eclipse-generate-hashcode-equals-2.png
Now that we have a JavaBean, let’s proceed to make it an entity. First, add the @Entity annotation to the class:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 ...

}

And, add the synthetic id:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 ...

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 ...

}

As we decided that our natural identifier was the description, we should introduce a unique constraint on the property:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 ...

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 */
 @Column(unique = true)
 private String description;

 ...

}

It’s very important that any data you place in the database is of the highest quality - this data is probably one of your organisations most valuable assets! To ensure that bad data doesn’t get saved to the database by mistake, we’ll use Bean Validation to enforce constraints on our properties.
What is Bean Validation?
Bean Validation (JSR 303) is a Java EE specification which:
	
provides a unified way of declaring and defining constraints on an object model.

	
defines a runtime engine to validate objects

Bean Validation includes integration with other Java EE specifications, such as JPA.
Bean Validation constraints are automatically applied before data is persisted to the
database, as a last line of defence against bad data.

The description of the ticket category should not be empty for two reasons. Firstly, an empty ticket category description is no use to a person trying to book a ticket - it doesn’t convey any information. Secondly, as the description forms the natural identity, we need to make sure the property is always populated.
Let’s add the Bean Validation constraint @NotEmpty:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

@Entity
public class TicketCategory {

 /* Declaration of fields */

 ...

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 * <p>
 * The description must not be null and must be one or more characters, the Bean Validation constraint <code>@NotEmpty</code>
 * enforces this.
 * </p>
 *
 */
 @Column(unique = true)
 @NotEmpty
 private String description;

 ...
}

And that is our first entity! Here is the complete entity:
src/main/java/org/jboss/examples/ticketmonster/model/TicketCategory.java.

/**
 * <p>
 * A lookup table containing the various ticket categories. E.g. Adult, Child, Pensioner, etc.
 * </p>
 */
@Entity
public class TicketCategory {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The description of the of ticket category.
 * </p>
 *
 * <p>
 * The description forms the natural id of the ticket category, and so must be unique.
 * </p>
 *
 * <p>
 * The description must not be null and must be one or more characters, the Bean Validation constraint <code>@NotEmpty</code>
 * enforces this.
 * </p>
 *
 */
 @Column(unique = true)
 @NotEmpty
 private String description;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 /* toString(), equals() and hashCode() for TicketCategory, using the natural identity of the object */

 @Override
 public String toString() {
 return description;
 }

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result
 + ((description == null) ? 0 : description.hashCode());
 return result;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (!(obj instanceof TicketCategory))
 return false;
 TicketCategory other = (TicketCategory) obj;
 if (description == null) {
 if (other.description != null)
 return false;
 } else if (!description.equals(other.description))
 return false;
 return true;
 }
}

TicketMonster contains another lookup tables, EventCategory. It’s pretty much identical to TicketCategory, so we leave it as an exercise to the reader to investigate, and understand. If you are building the application whilst following this tutorial, copy the source over from the TicketMonster example.

Chapter 19. Database design & relationships

First, let’s understand the the entity design.
An Event may occur at any number of venues, on various days and at various times. The intersection between an event and a venue is a Show, and each show can have a Performance which is associated with a date and time.
Venues are a separate grouping of entities, which, as mentioned, intersect with events via shows. Each venue consists of groupings of seats, each known as a Section.
Every section, in every show is associated with a ticket category via the TicketPrice entity.
Users must be able to book tickets for performances. A Booking is associated with a performance, and contains a collection of tickets.
Finally, both events and venues can have "media items", such as images or videos attached.
Figure 19.1. Entity-Relationship Diagram
[image: gfx/database-design.png]

19.1. Media items

Storing large binary objects, such as images or videos in the database isn’t advisable (as it can lead to performance issues), and playback of videos can also be tricky, as it depends on browser capabilities. For TicketMonster, we decided to make use of existing services to host images and videos, such as YouTube or Flickr. All we store in the database is the URL the application should use to access the media item, and the type of the media item (note that the URL forms a media items natural identifier). We need to know the type of the media item in order to render the media correctly in the view layer.
In order for a view layer to correctly render the media item (e.g. display an image, embed a media player), it’s likely that special code has had to have been added. For this reason we represent the types of media that TicketMonster understands as a closed set, unmodifiable at runtime. An enum is perfect for this!
Luckily, JPA has native support for enums, all we need to do is add the @Enumerated annotation:
src/main/java/org/jboss/examples/ticketmonster/model/MediaItem.java.

 ...

 /**
 * <p>
 * The type of the media, required to render the media item correctly.
 * </p>
 *
 * <p>
 * The media type is a closed set - as each different type of media requires support coded into the view layers, it
 * cannot be expanded upon without rebuilding the application. It is therefore represented by an enumeration. We instruct
 * JPA to store the enum value using it's String representation, so that we can later reorder the enum members, without
 * changing the data. Of course, this does mean we can't change the names of media items once the app is put into
 * production.
 * </p>
 */
 @Enumerated(STRING)
 private MediaType mediaType;

 ...

@Enumerated(STRING) or @Enumerated(ORDINAL)?
JPA can store an enum value using it’s ordinal (position in the list of declared enums)
or it’s STRING (the name it is given). If you choose to store an ordinal, you musn’t alter
the order of the list. If you choose to store the name, you musn’t change the enum name.
The choice is yours!

The rest of MediaItem shouldn’t present a challenge to you. If you are building the application whilst following this tutorial, copy both MediaItem and MediaType from the TicketMonster project.

19.2. Events

In the section Chapter 18, Your first entity, we saw how to build simple entities with properties, identify and apply constraints using Bean Validation, identify the natural id and add a synthetic id. From now on we’ll assume you know how to build simple entities - for each new entity that we build, we will start with it’s basic structure and properties filled in.
So, here we modify the Event class (from where we left at the end of the introduction). The below listing also includes some comments reflecting the explanations above. We will remove a few fields - version, major and picture, update the annotations on the id field, and update the toString, equals and hashCode methods to use the natural key of the object):
src/main/java/org/jboss/examples/ticketmonster/model/Event.java.

@Entity
public class Event {

 /* Declaration of fields */

 /**
 * The synthetic ID of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the name must not be null.
 * <code>@Size</code> — the name must be at least 5 characters and no more than 50 characters. This allows for
 * better formatting consistency in the view layer.
 *
 */
 @Column(unique = true)
 @NotNull
 @Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50 characters")
 private String name;

 /**
 * <p>
 * A description of the event.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the description must not be null.
 * <code>@Size</code> — the name must be at least 20 characters and no more than 1000 characters. This allows for
 * better formatting consistency in the view layer, and also ensures that event organisers provide at least some description
 * - a classic example of a business constraint.
 *
 */
 @NotNull
 @Size(min = 20, max = 1000, message = "An event's description must contain between 20 and 1000 characters")
 private String description;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 /* toString(), equals() and hashCode() for Event, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Event event = (Event) o;

 if (name != null ? !name.equals(event.name) : event.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 return name != null ? name.hashCode() : 0;
 }

 @Override
 public String toString() {
 return name;
 }
}

First, let’s add a media item to Event. As multiple events (or venues) could share the same media item, we’ll model the relationship as many-to-one - many events can reference the same media item.
Relationships supported by JPA
JPA can model four types of relationship between entities - one-to-one, one-to-many,
many-to-one and many-to-many. A relationship may be bi-directional (both sides of the
relationship know about each other) or uni-directional (only one side knows about the
relationship).
Many database models are hierarchical (parent-child), as is TicketMonster’s. As a result,
you’ll probably find you mostly use one-to-many and many-to-one relationships, which
allow building parent-child models.

Creating a many-to-one relationship is very easy in JPA. Just add the @ManyToOne annotation to the field. JPA will take care of the rest. Here’s the property for Event:
src/main/java/org/jboss/examples/ticketmonster/model/Event.java.

 ...

 /**
 * <p>
 * A media item, such as an image, which can be used to entice a browser to book a ticket.
 * </p>
 *
 * <p>
 * Media items can be shared between events, so this is modeled as a <code>@ManyToOne</code> relationship.
 * </p>
 *
 * <p>
 * Adding a media item is optional, and the view layer will adapt if none is provided.
 * </p>
 *
 */
 @ManyToOne
 private MediaItem mediaItem;

 ...

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem picture) {
 this.mediaItem = picture;
 }

 ...

There is no need for a media item to know who references it (in fact, this would be a poor design, as it would reduce the reusability of MediaItem), so we can leave this as a uni-directional relationship.
An event will also have a category. Once again, many events can belong to the same event category, and there is no need for an event category to know what events are in it. To add this relationship, we add the eventCategory property, and annotate it with @ManyToOne, just as we did for MediaItem:
src/main/java/org/jboss/examples/ticketmonster/model/Event.java.

 ...

 /**
 * <p>
 * The category of the event
 * </p>
 *
 * <p>
 * Event categories are used to ease searching of available of events, and hence this is modeled as a relationship
 * </p>
 *
 * <p>
 * The Bean Validation constraint <code>@NotNull</code> indicates that the event category must be specified.
 */
 @ManyToOne
 @NotNull
 private EventCategory category;

 ...

 public EventCategory getCategory() {
 return category;
 }

 public void setCategory(EventCategory category) {
 this.category = category;
 }

 ...

And that’s Event created. Here is the full source:
src/main/java/org/jboss/examples/ticketmonster/model/Event.java.

/**
 * <p>
 * Represents an event, which may have multiple performances with different dates and venues.
 * </p>
 *
 * <p>
 * Event's principal members are it's relationship to {@link EventCategory} - specifying the type of event it is - and
 * {@link MediaItem} - providing the ability to add media (such as a picture) to the event for display. It also contains
 * meta-data about the event, such as it's name and a description.
 * </p>
 *
 */
@Entity
public class Event {

 /* Declaration of fields */

 /**
 * The synthetic ID of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the name must not be null.
 * <code>@Size</code> — the name must be at least 5 characters and no more than 50 characters. This allows for
 * better formatting consistency in the view layer.
 *
 */
 @Column(unique = true)
 @NotNull
 @Size(min = 5, max = 50, message = "An event's name must contain between 5 and 50 characters")
 private String name;

 /**
 * <p>
 * A description of the event.
 * </p>
 *
 * <p>
 * Two constraints are applied using Bean Validation
 * </p>
 *
 *
 * <code>@NotNull</code> — the description must not be null.
 * <code>@Size</code> — the name must be at least 20 characters and no more than 1000 characters. This allows for
 * better formatting consistency in the view layer, and also ensures that event organisers provide at least some description
 * - a classic example of a business constraint.
 *
 */
 @NotNull
 @Size(min = 20, max = 1000, message = "An event's name must contain between 20 and 1000 characters")
 private String description;

 /**
 * <p>
 * A media item, such as an image, which can be used to entice a browser to book a ticket.
 * </p>
 *
 * <p>
 * Media items can be shared between events, so this is modeled as a <code>@ManyToOne</code> relationship.
 * </p>
 *
 * <p>
 * Adding a media item is optional, and the view layer will adapt if none is provided.
 * </p>
 *
 */
 @ManyToOne
 private MediaItem mediaItem;

 /**
 * <p>
 * The category of the event
 * </p>
 *
 * <p>
 * Event categories are used to ease searching of available of events, and hence this is modeled as a relationship
 * </p>
 *
 * <p>
 * The Bean Validation constraint <code>@NotNull</code> indicates that the event category must be specified.
 */
 @ManyToOne
 @NotNull
 private EventCategory category;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem picture) {
 this.mediaItem = picture;
 }

 public EventCategory getCategory() {
 return category;
 }

 public void setCategory(EventCategory category) {
 this.category = category;
 }

 /* toString(), equals() and hashCode() for Event, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Event event = (Event) o;

 if (name != null ? !name.equals(event.name) : event.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 return name != null ? name.hashCode() : 0;
 }

 @Override
 public String toString() {
 return name;
 }
}

19.3. Venue

Now, let’s build out the entities to represent the venue.
We start by adding an entity to represent the venue. A venue needs to have a name, a description,
a capacity, an address, an associated media item and a set of sections in which people can sit. If
you completed the introduction chapter, you should already have some of these properties set, so
we will update the Venue class to look like in the definition below.
src/main/java/org/jboss/examples/ticketmonster/model/Venue.java.

/**
 * <p>
 * Represents a single venue
 * </p>
 *
 */
@Entity
public class Venue {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The name of the event.
 * </p>
 *
 * <p>
 * The name of the event forms it's natural identity and cannot be shared between events.
 * </p>
 *
 * <p>
 * The name must not be null and must be one or more characters, the Bean Validation
 * constraint <code>@NotEmpty</code> enforces this.
 * </p>
 */
 @Column(unique = true)
 @NotEmpty
 private String name;

 /**
 * The address of the venue
 */
 @Embedded
 private Address address = new Address();

 /**
 * A description of the venue
 */
 private String description;

 /**
 * <p>
 * A set of sections in the venue
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * Collection members are fetched eagerly, so that they can be accessed even after the
 * entity has become detached. This relationship is bi-directional (a section knows which
 * venue it is part of), and the <code>mappedBy</code> attribute establishes this. We
 * cascade all persistence operations to the set of performances, so, for example if a venue
 * is removed, then all of it's sections will also be removed.
 * </p>
 */
 @OneToMany(cascade = ALL, fetch = EAGER, mappedBy = "venue")
 private Set<Section> sections = new HashSet<Section>();

 /**
 * The capacity of the venue
 */
 private int capacity;

 /**
 * An optional media item to entice punters to the venue. The <code>@ManyToOne</code> establishes the relationship.
 */
 @ManyToOne
 private MediaItem mediaItem;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public MediaItem getMediaItem() {
 return mediaItem;
 }

 public void setMediaItem(MediaItem description) {
 this.mediaItem = description;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public Set<Section> getSections() {
 return sections;
 }

 public void setSections(Set<Section> sections) {
 this.sections = sections;
 }

 public int getCapacity() {
 return capacity;
 }

 public void setCapacity(int capacity) {
 this.capacity = capacity;
 }

 /* toString(), equals() and hashCode() for Venue, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Venue venue = (Venue) o;

 if (address != null ? !address.equals(venue.address) : venue.address != null)
 return false;
 if (name != null ? !name.equals(venue.name) : venue.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = name != null ? name.hashCode() : 0;
 result = 31 * result + (address != null ? address.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return name;
 }
}

In creating this entity, we’ve followed all the design and implementation decisions previously discussed, with one new concept. Rather than add the properties for street, city, postal code etc. to this object, we’ve extracted them into the Address object, and included it in the Venue object using composition. This would allow us to reuse the Address object in other places (such as a customer’s address).
A RDBMS doesn’t have a similar concept to composition, so we need to choose whether to represent the address as a separate entity, and create a relationship between the venue and the address, or whether to map the properties from Address to the table for the owning entity, in this case Venue. It doesn’t make much sense for an address to be a full entity - we’re not going to want to run queries against the address in isolation, nor do we want to be able to delete or update an address in isolation - in essence, the address doesn’t have a standalone identity outside of the object into which it is composed.
To embed the Address into Venue we add the @Embeddable annotation to the Address class. However, unlike a full entity, there is no need to add an identifier. Here’s the source for Address:
src/main/java/org/jboss/examples/ticketmonster/model/Address.java.

/**
 * <p>
 * A reusable representation of an address.
 * </p>
 *
 * <p>
 * Addresses are used in many places in an application, so to observe the DRY principle, we model Address as an embeddable
 * entity. An embeddable entity appears as a child in the object model, but no relationship is established in the RDBMS..
 * </p>
 */
@Embeddable
public class Address {

 /* Declaration of fields */
 private String street;
 private String city;
 private String country;

 /* Declaration of boilerplate getters and setters */

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }

 /* toString(), equals() and hashCode() for Address, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Address address = (Address) o;

 if (city != null ? !city.equals(address.city) : address.city != null)
 return false;
 if (country != null ? !country.equals(address.country) : address.country != null)
 return false;
 if (street != null ? !street.equals(address.street) : address.street != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = street != null ? street.hashCode() : 0;
 result = 31 * result + (city != null ? city.hashCode() : 0);
 result = 31 * result + (country != null ? country.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return street + ", " + city + ", " + country;
 }
}

19.4. Sections

A venue consists of a number of seating sections. Each seating section has a name, a description, the number of rows in the section, and the number of seats in a row. It’s natural identifier is the name of section combined with the venue (a venue can’t have two sections with the same name). Section doesn’t introduce any new concepts, so go ahead and copy the source from the below listing:
src/main/java/org/jboss/examples/ticketmonster/model/Section.java.

@SuppressWarnings("serial")
@Entity
@Table(uniqueConstraints=@UniqueConstraint(columnNames={"name", "venue_id"}))
public class Section implements Serializable {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = IDENTITY)
 private Long id;

 /**
 * <p>
 * The short name of the section, may be a code such as A12, G7, etc.
 * </p>
 *
 * <p>
 * The
 * <code>@NotEmpty<code> Bean Validation constraint means that the section name must be at least 1 character.
 * </p>
 */
 @NotEmpty
 private String name;

 /**
 * <p>
 * The description of the section, such as 'Rear Balcony', etc.
 * </p>
 *
 * <p>
 * The
 * <code>@NotEmpty<code> Bean Validation constraint means that the section description must be at least 1 character.
 * </p>
 */
 @NotEmpty
 private String description;

 /**
 * <p>
 * The venue to which this section belongs. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the venue must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Venue venue;

 /**
 * The number of rows that make up the section.
 */
 private int numberOfRows;

 /**
 * The number of seats in a row.
 */
 private int rowCapacity;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public int getNumberOfRows() {
 return numberOfRows;
 }

 public void setNumberOfRows(int numberOfRows) {
 this.numberOfRows = numberOfRows;
 }

 public int getRowCapacity() {
 return rowCapacity;
 }

 public void setRowCapacity(int rowCapacity) {
 this.rowCapacity = rowCapacity;
 }

 public int getCapacity() {
 return this.rowCapacity * this.numberOfRows;
 }

 public Venue getVenue() {
 return venue;
 }

 public void setVenue(Venue venue) {
 this.venue = venue;
 }

 /* toString(), equals() and hashCode() for Section, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Section section = (Section) o;

 if (venue != null ? !venue.equals(section.venue) : section.venue != null)
 return false;
 if (name != null ? !name.equals(section.name) : section.name != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = name != null ? name.hashCode() : 0;
 result = 31 * result + (venue != null ? venue.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return name;
 }

}

19.5. Shows

A show is an event at a venue. It consists of a set of performances of the show. A show also contains the list of ticket prices available.
Let’s start building Show. Here’s is our starting point:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

/**
 * <p>
 * A show is an instance of an event taking place at a particular venue. A show can have multiple performances.
 * </p>
 */
@Entity
public class Show {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Event event;

 /**
 * <p>
 * The venue where this show takes place. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the venue must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Venue venue;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Event getEvent() {
 return event;
 }

 public void setEvent(Event event) {
 this.event = event;
 }

 public Venue getVenue() {
 return venue;
 }

 public void setVenue(Venue venue) {
 this.venue = venue;
 }

 /* toString(), equals() and hashCode() for Show, using the natural identity of the object */
 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Show show = (Show) o;

 if (event != null ? !event.equals(show.event) : show.event != null)
 return false;
 if (venue != null ? !venue.equals(show.venue) : show.venue != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = event != null ? event.hashCode() : 0;
 result = 31 * result + (venue != null ? venue.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return event + " at " + venue;
 }
}

If you’ve been paying attention, you’ll notice that there is a problem here. We’ve identified that the natural identity of this entity is formed of two properties - the event and the venue, and we’ve correctly coded the equals() and hashCode() methods (or had them generated for us!). However, we haven’t told JPA that these two properties, in combination, must be unique. As there are two properties involved, we can no longer use the @Column annotation (which operates on a single property/table column), but now must use the class level @Table annotation (which operates on the whole entity/table). Change the class definition to read:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

...

@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show {

 ...
}

You’ll notice that JPA requires us to use the column names, rather than property names here. The column names used in the @UniqueConstraint annotation are those generated by default for properties called event and venue.
Additionally, Show is a reserved word in certain databases, most notable MySQL. We’ll specify a different table name as a result, so that Hibernate will generate correct DDL statements:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

...

@Entity
@Table(name="Appearance", uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show {

 ...
}

Now, let’s add the set of performances to the event. Unlike previous relationships we’ve seen, the relationship between a show and it’s performances is bi-directional. We chose to model this as a bi-directional relationship in order to improve the generated database schema (otherwise you end with complicated mapping tables which makes updates to collections hard). Let’s add the set of performances:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

 ...

 /**
 * <p>
 * The set of performances of this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship. Collection members
 * are fetched eagerly, so that they can be accessed even after the entity has become detached.
 * This relationship is bi-directional (a performance knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this.
 * </p>
 *
 */
 @OneToMany(fetch=EAGER, mappedBy = "show", cascade = ALL)
 @OrderBy("date")
 private Set<Performance> performances = new HashSet<Performance>();

 ...

 public Set<Performance> getPerformances() {
 return performances;
 }

 public void setPerformances(Set<Performance> performances) {
 this.performances = performances;
 }

 ...

As the relationship is bi-directional, we specify the mappedBy attribute on the @OneToMany annotation, which informs JPA to create a bi-directional relationship. The value of the attribute is name of property which forms the other side of the relationship - in this case, not unsuprisingly show!
As Show is the owner of Performance (and without a show, a performance cannot exist), we add the cascade = ALL attribute to the @OneToMany annotation. As a result, any persistence operation that occurs on a show, will be propagated to it’s performances. For example, if a show is removed, any associated performances will be removed as well.
When retrieving a show, we will also retrieve its associated performances by adding the fetch = EAGER attribute to the @OneToMany annotation. This is a design decision which required careful consideration. In general, you should favour the default lazy initialization of collections: their content should be accessible on demand. However, in this case we intend to marshal the contents of the collection and pass it across the wire in the JAX-RS layer, after the entity has become detached, and cannot initialize its members on demand.
We’ll also need to add the set of ticket prices available for this show. Once more, this is a bi-directional relationship, owned by the show. It looks just like the set of performances:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

 ...

 /**
 * <p>
 * The set of ticket prices available for this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * This relationship is bi-directional (a ticket price category knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this. We cascade all persistence operations to the set of performances, so, for example if a show
 * is removed, then all of it's ticket price categories are also removed.
 * </p>
 */
 @OneToMany(mappedBy = "show", cascade = CascadeType.ALL, fetch = FetchType.EAGER)
 private Set<TicketPrice> ticketPrices = new HashSet<TicketPrice>();

 ...

 public Set<TicketPrice> getTicketPrices() {
 return ticketPrices;
 }

 public void setTicketPrices(Set<TicketPrice> ticketPrices) {
 this.ticketPrices = ticketPrices;
 }

 ...

Here’s the full source for Show:
src/main/java/org/jboss/examples/ticketmonster/model/Show.java.

/**
 * <p>
 * A show is an instance of an event taking place at a particular venue. A show can have multiple performances.
 * </p>
 *
 * <p>
 * A show contains a set of performances, and a set of ticket prices for each section of the venue for this show.
 * </p>
 *
 * <p>
 * The event and venue form the natural id of this entity, and therefore must be unique. JPA requires us to use the class level
 * <code>@Table</code> constraint.
 * </p>
 *
 */
/*
 * We suppress the warning about not specifying a serialVersionUID, as we are still developing this app, and want the JVM to
 * generate the serialVersionUID for us. When we put this app into production, we'll generate and embed the serialVersionUID
 */
@SuppressWarnings("serial")
@Entity
@Table(name="Appearance", uniqueConstraints = @UniqueConstraint(columnNames = { "event_id", "venue_id" }))
public class Show implements Serializable {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Event event;

 /**
 * <p>
 * The event of which this show is an instance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the event must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Venue venue;

 /**
 * <p>
 * The set of performances of this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship. TODO Explain EAGER fetch.
 * This relationship is bi-directional (a performance knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this. We cascade all persistence operations to the set of performances, so, for example if a show
 * is removed, then all of it's performances will also be removed.
 * </p>
 *
 * <p>
 * Normally a collection is loaded from the database in the order of the rows, but here we want to make sure that
 * performances are ordered by date - we let the RDBMS do the heavy lifting. The
 * <code>@OrderBy<code> annotation instructs JPA to do this.
 * </p>
 */
 @OneToMany(fetch = EAGER, mappedBy = "show", cascade = ALL)
 @OrderBy("date")
 private Set<Performance> performances = new HashSet<Performance>();

 /**
 * <p>
 * The set of ticket prices available for this show.
 * </p>
 *
 * <p>
 * The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * This relationship is bi-directional (a ticket price category knows which show it is part of), and the <code>mappedBy</code>
 * attribute establishes this. We cascade all persistence operations to the set of performances, so, for example if a show
 * is removed, then all of it's ticket price categories are also removed.
 * </p>
 */
 @OneToMany(mappedBy = "show", cascade = ALL, fetch = EAGER)
 private Set<TicketPrice> ticketPrices = new HashSet<TicketPrice>();

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Event getEvent() {
 return event;
 }

 public void setEvent(Event event) {
 this.event = event;
 }

 public Venue getVenue() {
 return venue;
 }

 public void setVenue(Venue venue) {
 this.venue = venue;
 }

 public Set<Performance> getPerformances() {
 return performances;
 }

 public void setPerformances(Set<Performance> performances) {
 this.performances = performances;
 }

 public Set<TicketPrice> getTicketPrices() {
 return ticketPrices;
 }

 public void setTicketPrices(Set<TicketPrice> ticketPrices) {
 this.ticketPrices = ticketPrices;
 }

 /* toString(), equals() and hashCode() for Show, using the natural identity of the object */
 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Show show = (Show) o;

 if (event != null ? !event.equals(show.event) : show.event != null)
 return false;
 if (venue != null ? !venue.equals(show.venue) : show.venue != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = event != null ? event.hashCode() : 0;
 result = 31 * result + (venue != null ? venue.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return event + " at " + venue;
 }
}

19.6. TicketPrices

The Show entity references two classes - TicketPrice and Performance, that are not yet created. Let’s first create the TicketPrice class which represents the price for a ticket in a particular Section at a Show for a specific TicketCategory. It does not introduce any new concepts, so go ahead and copy the source from the below listing:
src/main/java/org/jboss/examples/ticketmonster/model/TicketPrice.java.

/**
 * <p>
 * Contains price categories - each category represents the price for a ticket in a particular section at a particular venue for
 * a particular event, for a particular ticket category.
 * </p>
 *
 * <p>
 * The section, show and ticket category form the natural id of this entity, and therefore must be unique. JPA requires us to use the class level
 * <code>@Table</code> constraint
 * </p>
 *
 */
/*
 * We suppress the warning about not specifying a serialVersionUID, as we are still developing this app, and want the JVM to
 * generate the serialVersionUID for us. When we put this app into production, we'll generate and embed the serialVersionUID
 */
@SuppressWarnings("serial")
@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "section_id", "show_id", "ticketcategory_id" }))
public class TicketPrice implements Serializable {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The show to which this ticket price category belongs. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the show must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Show show;

 /**
 * <p>
 * The section to which this ticket price category belongs. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the section must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Section section;

 /**
 * <p>
 * The ticket category to which this ticket price category belongs. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The <code>@NotNull</code> Bean Validation constraint means that the ticket category must be specified.
 * </p>
 */
 @ManyToOne
 @NotNull
 private TicketCategory ticketCategory;

 /**
 * The price for this category of ticket.
 */
 private float price;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Show getShow() {
 return show;
 }

 public void setShow(Show show) {
 this.show = show;
 }

 public Section getSection() {
 return section;
 }

 public void setSection(Section section) {
 this.section = section;
 }

 public TicketCategory getTicketCategory() {
 return ticketCategory;
 }

 public void setTicketCategory(TicketCategory ticketCategory) {
 this.ticketCategory = ticketCategory;
 }

 public float getPrice() {
 return price;
 }

 public void setPrice(float price) {
 this.price = price;
 }

 /* equals() and hashCode() for TicketPrice, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 TicketPrice that = (TicketPrice) o;

 if (section != null ? !section.equals(that.section) : that.section != null)
 return false;
 if (show != null ? !show.equals(that.show) : that.show != null)
 return false;
 if (ticketCategory != null ? !ticketCategory.equals(that.ticketCategory) : that.ticketCategory != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = show != null ? show.hashCode() : 0;
 result = 31 * result + (section != null ? section.hashCode() : 0);
 result = 31 * result + (ticketCategory != null ? ticketCategory.hashCode() : 0);
 return result;
 }

 @Override
 public String toString() {
 return "$ " + price + " for " + ticketCategory + " in " + section;
 }
}

19.7. Performances

Finally, let’s create the Performance class, which represents an instance of a Show. Performance is pretty straightforward. It contains the date and time of the performance, and the show of which it is a performance. Together, the show, and the date and time, make up the natural identity of the performance. Here’s the source for Performance:
src/main/java/org/jboss/examples/ticketmonster/model/Performance.java.

/**
 * <p>
 * A performance represents a single instance of a show.
 * </p>
 *
 * <p>
 * The show and date form the natural id of this entity, and therefore must be unique. JPA requires us to use the class level
 * <code>@Table</code> constraint.
 * </p>
 *
 */
@SuppressWarnings("serial")
@Entity
@Table(uniqueConstraints = @UniqueConstraint(columnNames = { "date", "show_id" }))
public class Performance implements Serializable {

 /* Declaration of fields */

 /**
 * The synthetic id of the object.
 */
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 /**
 * <p>
 * The date and start time of the performance.
 * </p>
 *
 * <p>
 * A Java {@link Date} object represents both a date and a time, whilst an RDBMS splits out Date, Time and Timestamp.
 * Therefore we instruct JPA to store this date as a timestamp using the <code>@Temporal(TIMESTAMP)</code> annotation.
 * </p>
 *
 * <p>
 * The date and time of the performance is required, and the Bean Validation constraint <code>@NotNull</code> enforces this.
 * </p>
 */
 @Temporal(TIMESTAMP)
 @NotNull
 private Date date;

 /**
 * <p>
 * The show of which this is a performance. The <code>@ManyToOne<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The show of which this is a performance is required, and the Bean Validation constraint <code>@NotNull</code> enforces
 * this.
 * </p>
 */
 @ManyToOne
 @NotNull
 private Show show;

 /* Boilerplate getters and setters */

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public void setShow(Show show) {
 this.show = show;
 }

 public Show getShow() {
 return show;
 }

 public Date getDate() {
 return date;
 }

 public void setDate(Date date) {
 this.date = date;
 }

 /* equals() and hashCode() for Performance, using the natural identity of the object */

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Performance that = (Performance) o;

 if (date != null ? !date.equals(that.date) : that.date != null)
 return false;
 if (show != null ? !show.equals(that.show) : that.show != null)
 return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = date != null ? date.hashCode() : 0;
 result = 31 * result + (show != null ? show.hashCode() : 0);
 return result;
 }
}

Of interest here is the storage of the date and time.
A Java Date represents "a specific instance in time, with millisecond precision" and is the recommended construct for representing date and time in the JDK. A RDBMS’s DATE type typically has day precision only, and uses the DATETIME or TIMESTAMP types to represent an instance in time, and often only to second precision.
As the mapping between Java date and time, and database date and time isn’t straightforward, JPA requires us to use the @Temporal annotation on any property of type Date, and to specify whether the Date should be stored as a date, a time or a timestamp (date and time).

19.8. Booking, Ticket & Seat

There aren’t many new concepts to explore in Booking, Ticket and Seat, so if you are following along with the tutorial, you should copy in the Booking, Ticket and Seat classes.
Once the user has selected an event, identified the venue, and selected a performance, they have the opportunity to request a number of seats in a given section, and select the category of tickets required. Once they’ve chosen their seats, and entered their email address, a Booking is created.
A booking consists of the date the booking was created, an email address (as TicketMonster doesn’t yet have fully fledged user management), a set of tickets and the associated performance. The set of tickets shows us how to create a uni-directional one-to-many relationship:
src/main/java/org/jboss/examples/ticketmonster/model/Booking.java.

 ...

 /**
 * <p>
 * The set of tickets contained within the booking. The <code>@OneToMany<code> JPA mapping establishes this relationship.
 * </p>
 *
 * <p>
 * The set of tickets is eagerly loaded because FIXME . All operations are cascaded to each ticket, so for example if a
 * booking is removed, then all associated tickets will be removed.
 * </p>
 *
 * <p>
 * This relationship is uni-directional, so we need to inform JPA to create a foreign key mapping. The foreign key mapping
 * is not visible in the {@link Ticket} entity despite being present in the database.
 * </p>
 *
 */
 @OneToMany(fetch = EAGER, cascade = ALL)
 @JoinColumn
 @NotEmpty
 @Valid
 private Set<Ticket> tickets = new HashSet<Ticket>();

 ...

We add the @JoinColumn annotation, which sets up a foreign key in Ticket, but doesn’t expose the booking on Ticket. This prevents the use of messy mapping tables, whilst preserving the integrity of the entity model.
A ticket embeds the seat allocated, and contains a reference to the category under which it was sold. It also contains the price at which it was sold.

19.9. SectionAllocation and SeatAllocationException

Finally, we’d like to track the seats to be allocated from a section during the course of booking tickets. We’ll use the SectionAllocation entity to track the allocations in every section for every performance. You can copy in the SectionAllocation class from the project sources.
The notable member in this class is the two-dimensional array, named allocated. It tracks the state of the section - the first dimension represents the rows in the section, and the second represents the state of every seat in the row. A typical RDBMS would have to store such a structure as a LOB (Large Object) or a BLOB (Binary Large Object), since a n-dimensional array does not map easily to a native data type supported by the database. Thus, we denote the field as a @Lob using the JPA annotation:
src/main/java/org/jboss/examples/ticketmonster/model/SectionAllocation.java.

 ...

 @Lob
 private long[][] allocated;

 ...

The rest of the class contains business logic to update the state of the allocated field. These methods will come in handy later, when we write the business services.
Remember to also copy the SeatAllocationException class, that is referenced in this class, from the project sources. This class represents an Application exception that will be recognized by the EJB container as one that should force a transaction rollback. When this exception is thrown by the business logic in the SectionAllocation entity, and propagated to the EJB container, it will implcitly cause the current transaction to roll back. It is to be noted that, this exception class is not a checked exception (it extends RuntimeException), and thus the compiler does not complain when it is uncaught in the business services that will consume the methods in the SectionAllocation entity.

Chapter 20. Connecting to the database

In this example, we are using the in-memory H2 database, which is very easy to set up on JBoss AS. JBoss AS allows you deploy a datasource inside your application’s WEB-INF directory. You can locate the source in src/main/webapp/WEB-INF/ticket-monster-ds.xml (which should have been created in the previous chapter):
src/main/webapp/WEB-INF/ticket-monster-ds.xml.

<datasources xmlns="http://www.jboss.org/ironjacamar/schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.org/ironjacamar/schema http://docs.jboss.org/ironjacamar/schema/datasources_1_0.xsd">
 <!-- The datasource is bound into JNDI at this location. We reference
 this in META-INF/persistence.xml -->
 <datasource jndi-name="java:jboss/datasources/ticket-monsterDS"
 pool-name="ticket-monster" enabled="true" use-java-context="true">
 <connection-url>
 jdbc:h2:mem:ticket-monster;DB_CLOSE_ON_EXIT=FALSE;DB_CLOSE_DELAY=-1
 </connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
</datasources>

The datasource configures an H2 in-memory database, called ticket-monster, and registers a datasource in JNDI at the address:
java:jboss/datasources/ticket-monsterDS
Now we need to configure JPA to use the datasource. This is done in src/main/resources/META-INF/persistence.xml:
src/main/resources/persistence.xml.

<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="primary">
 <!-- If you are running in a production environment, add a managed
 data source, this example data source is just for development and testing! -->
 <!-- The datasource is deployed as WEB-INF/ticket-monster-ds.xml, you
 can find it in the source at src/main/webapp/WEB-INF/ticket-monster-ds.xml -->
 <jta-data-source>java:jboss/datasources/ticket-monsterDS</jta-data-source>
 <properties>
 <!-- Properties for Hibernate -->
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="false" />
 </properties>
 </persistence-unit>
</persistence>

As our application has only one datasource, and hence one persistence unit, the name given to the persistence unit doesn’t really matter. We call ours primary, but you can change this as you like. We tell JPA about the datasource bound in JNDI.
Hibernate includes the ability to generate tables from entities, which we have configured here. We don’t recommend using this outside of development. Updates to databases in production should be done in a staged manner by a database administrator.

Chapter 21. Populating test data

Whilst we develop our application, it’s useful to be able to populate the database with test data. Luckily, Hibernate makes this easy. Just add a file called import.sql onto the classpath of your application (we keep it in src/main/resources/import.sql). In it, we just write standard sql statements suitable for the database we are using. To do this, you need to know the generated column and table names for your entities. The best way to work these out is to look at the h2console.
The h2console is included in the JBoss AS quickstarts, along with instructions on how to use it. For more information, see http://www.jboss.org/quickstarts/eap/h2-console/
Where do I look for my data?
The database URL is jdbc:h2:mem:ticket-monster. After
you have downloaded h2console.war and deployed it on the server, make sure that the
application is running on the server and use this value to connect to your running application’s
database.
Figure 21.1. h2console settings
[image: gfx/h2console_settings.png]

You should copy over the import.sql file from the project sources, to populate the database with the same data, as the one used in the OpenShift-hosted TicketMonster application. The contents of this file already account for the generated table and column names.

Chapter 22. Conclusion

You now have a working data model for your TicketMonster application, our next tutorial will show you how to create the business services layer or something like that - it seems to end abruptly.

Part IV. Building The Business Services With JAX-RS

Chapter 23. What Will You Learn Here?

We’ve just defined the domain model of the application and created its persistence layer. Now we need to define the services that implement the business logic of the application and expose them to the front-end. After reading this, you’ll understand how to design the business layer and what choices to make while developing it. Topics covered include:
	
Encapsulating business logic in services and integrating with the persistence tier

	
Using CDI for integrating individual services

	
Integration testing using Arquillian

	
Exposing RESTful services via JAX-RS

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through.

Chapter 24. Business Services And Their Relationships

TicketMonster’s business logic is implemented by a number of classes, with different responsibilities:
	
managing media items

	
allocating tickets

	
handling information on ticket availability

	
remote access through a RESTful interface

The services are consumed by various other layers of the application:
	
the media management and ticket allocation services encapsulate complex functionality, which in turn is exposed externally by RESTful services that wrap them

	
RESTful services are mainly used by the HTML5 view layer

	
the ticket availability service is used by the HTML5 and JavaScript based monitor

Where to draw the line?
A business service is an encapsulated, reusable logical component that groups
together a number of well-defined cohesive business operations. Business services
perform business operations, and may coordinate infrastructure services such as
persistence units, or even other business services as well. The boundaries drawn
between them should take into account whether the newly created services represent
, potentially reusable components.

As you can see, some of the services are intended to be consumed within the business layer of the application, while others provide an external interface as JAX-RS services. We will start by implementing the former, and we’ll finish up with the latter. During this process, you will
discover how CDI, EJB and JAX-RS make it easy to define and wire together our services.

Chapter 25. Preparations

25.1. Adding Jackson Core

The first step for setting up our service architecture is to add Jackson Core as a dependency in the project. Adding Jackson Core as a provided dependency will enable you to use the Jackson annotations in the project. This is necessary to obtain a certain degree of control over the content of the JSON responses. We can bring in the same version of Jackson Core as the one used in RESTEasy, by adding org.jboss.resteasy:resteasy-jackson-provider and org.jboss.resteasy:resteasy-jaxrs as provided-scope dependencies, through the org.jboss.bom.eap:jboss-javaee-6.0-with-resteasy BOM. The versions of these dependencies would depend on the version of the JBoss BOMs we use in our project. Using the same version of the JBoss BOM as the one we will deploy to production, will ensure that we use the right dependencies during compilation and build.
pom.xml.

<project ...>
 ...

 <dependencyManagement>
 ...

 <dependency>
 <groupId>org.jboss.bom.eap</groupId>
 <artifactId>jboss-javaee-6.0-with-resteasy</artifactId>
 <version>${version.jboss.bom.eap}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencyManagement>

 <dependencies>

 ...

 <!-- RESTEasy dependencies that bring in Jackson Core and RESTEasy APIs+SPIs, which we use for
 fine tuning the content of the JSON responses -->
 <dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-jackson-provider</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-jaxrs</artifactId>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 ...
</project>

Why do you need the Jackson annotations?
JAX-RS does not specify mediatype-agnostic annotations for certain use cases. You will
encounter atleast one of them in the project. The object graph contains
cyclic/bi-directional relationships among entities like Venue, Section, Show,
Performance and TicketPrice. JSON representations for these objects will need
tweaking to avoid stack oVerflow errors and the like, at runtime.
JBoss Enterprise Application 6 uses Jackson to perform serialization and
dserialization of objects, thus requiring use of Jackson annotations to modify this
behavior. @JsonIgnoreProperties from Jackson will be used to suppress serialization
and deserialization of one of the fields involved in the cycle.

25.2. Verifying the versions of the JBoss BOMs

The next step is to verify if we’re using the right version of the JBoss BOMs in the project.
Using the right versions of the BOMs ensures that you work against a known set of tested dependencies.
Verify that the property version.jboss.bom.eap contains the value 6.3.2.GA or higher:
pom.xml.

<project ...>
 ...
 <properties>
 ...
 <version.jboss.bom.eap>6.3.2.GA</version.jboss.bom.eap>
 ...
 </properties>
 ...
</project>

25.3. Enabling CDI

The next step is to enable CDI in the deployment by creating a beans.xml file in the WEB-INF folder of the web application.
src/main/webapp/WEB-INF/beans.xml.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

If you used the Maven archetype
If you used the Maven archetype to create the project, this file will exist already
in the project - it is added automatically.

You may wonder why the file is empty! Whilst beans.xml can specify various deployment-time configuration (e.g. activation of interceptors,
decorators or alternatives), it can also act as a marker file, telling the container to enable CDI for the deployment (which it doesn’t do, unless beans.xml is present).
Contexts and Dependency Injection (CDI)
As it’s name suggests, CDI is the contexts and dependency injection standard for Java
EE. By enabling CDI in your application, deployed classes become managed components
and their lifecycle and wiring becomes the responsibility of the Java EE server.
In this way, we can reduce coupling between components, which is a requirement o a
well-designed architecture. Now, we can focus on implementing the responsibilities of
the components and describing their dependencies in a declarative fashion. The
runtime will do the rest for you: instantiating and wiring them together, as well as
disposing of them as needed.

25.4. Adding utility classes

Next, we add some helper classes providing low-level utilities for the application. We won’t get in their implementation details here, but you can study their source code for details.
Copy the following classes from the original example to src/main/java/org/jboss/examples/ticketmonster/util:
	
Base64

	
CircularBuffer

	
ForwardingMap

	
MultivaluedHashMap

	
Reflections

	
Resources

Chapter 26. Internal Services

We begin the service implementation by implementing some helper services.
26.1. The Media Manager

First, let’s add support for managing media items, such as images. The persistence layer simply stores URLs, referencing media items stored by online services. The URL look like http://dl.dropbox.com/u/65660684/640px-Roy_Thomson_Hall_Toronto.jpg.
Now, we could use the URLs in our application, and retrieve these media items from the provider. However, we would prefer to cache these media items in order to improve application performance and increase resilience to external failures - this will allow us to run the application
successfully even if the provider is down. The MediaManager is a good illustration of a business service; it performs the retrieval and caching of media objects, encapsulating the operation from the rest of the application.
We begin by creating MediaManager:
src/main/java/org/jboss/examples/ticketmonster/service/MediaManager.java.

/**
 * <p>
 * The media manager is responsible for taking a media item, and returning either the URL
 * of the cached version (if the application cannot load the item from the URL), or the
 * original URL.
 * </p>
 *
 * <p>
 * The media manager also transparently caches the media items on first load.
 * </p>
 *
 * <p>
 * The computed URLs are cached for the duration of a request. This provides a good balance
 * between consuming heap space, and computational time.
 * </p>
 *
 */
public class MediaManager {

 /**
 * Locate the tmp directory for the machine
 */
 private static final File tmpDir;

 static {
 String dataDir = System.getenv("OPENSHIFT_DATA_DIR");
 String parentDir = dataDir != null ? dataDir : System.getProperty("java.io.tmpdir");
 tmpDir = new File(parentDir, "org.jboss.examples.ticket-monster");
 if (tmpDir.exists()) {
 if (tmpDir.isFile())
 throw new IllegalStateException(tmpDir.getAbsolutePath() + " already exists, and is a file. Remove it.");
 } else {
 tmpDir.mkdir();
 }
 }

 /**
 * A request scoped cache of computed URLs of media items.
 */
 private final Map<MediaItem, MediaPath> cache;

 public MediaManager() {

 this.cache = new HashMap<MediaItem, MediaPath>();
 }

 /**
 * Load a cached file by name
 *
 * @param fileName
 * @return
 */
 public File getCachedFile(String fileName) {
 return new File(tmpDir, fileName);
 }

 /**
 * Obtain the URL of the media item. If the URL h has already been computed in this
 * request, it will be looked up in the request scoped cache, otherwise it will be
 * computed, and placed in the request scoped cache.
 */
 public MediaPath getPath(MediaItem mediaItem) {
 if (cache.containsKey(mediaItem)) {
 return cache.get(mediaItem);
 } else {
 MediaPath mediaPath = createPath(mediaItem);
 cache.put(mediaItem, mediaPath);
 return mediaPath;
 }
 }

 /**
 * Compute the URL to a media item. If the media item is not cacheable, then, as long
 * as the resource can be loaded, the original URL is returned. If the resource is not
 * available, then a placeholder image replaces it. If the media item is cachable, it
 * is first cached in the tmp directory, and then path to load it is returned.
 */
 private MediaPath createPath(MediaItem mediaItem) {
 if(mediaItem == null) {
 return createCachedMedia(Reflections.getResource("not_available.jpg").toExternalForm(), IMAGE);
 } else if (!mediaItem.getMediaType().isCacheable()) {
 if (checkResourceAvailable(mediaItem)) {
 return new MediaPath(mediaItem.getUrl(), false, mediaItem.getMediaType());
 } else {
 return createCachedMedia(Reflections.getResource("not_available.jpg").toExternalForm(), IMAGE);
 }
 } else {
 return createCachedMedia(mediaItem);
 }
 }

 /**
 * Check if a media item can be loaded from it's URL, using the JDK URLConnection classes.
 */
 private boolean checkResourceAvailable(MediaItem mediaItem) {
 URL url = null;
 try {
 url = new URL(mediaItem.getUrl());
 } catch (MalformedURLException e) {
 }

 if (url != null) {
 try {
 URLConnection connection = url.openConnection();
 if (connection instanceof HttpURLConnection) {
 return ((HttpURLConnection) connection).getResponseCode() == HttpURLConnection.HTTP_OK;
 } else {
 return connection.getContentLength() > 0;
 }
 } catch (IOException e) {
 }
 }
 return false;
 }

 /**
 * The cached file name is a base64 encoded version of the URL. This means we don't need to maintain a database of cached
 * files.
 */
 private String getCachedFileName(String url) {
 return Base64.encodeToString(url.getBytes(), false);
 }

 /**
 * Check to see if the file is already cached.
 */
 private boolean alreadyCached(String cachedFileName) {
 File cache = getCachedFile(cachedFileName);
 if (cache.exists()) {
 if (cache.isDirectory()) {
 throw new IllegalStateException(cache.getAbsolutePath() + " already exists, and is a directory. Remove it.");
 }
 return true;
 } else {
 return false;
 }
 }

 /**
 * To cache a media item we first load it from the net, then write it to disk.
 */
 private MediaPath createCachedMedia(String url, MediaType mediaType) {
 String cachedFileName = getCachedFileName(url);
 if (!alreadyCached(cachedFileName)) {
 URL _url = null;
 try {
 _url = new URL(url);
 } catch (MalformedURLException e) {
 throw new IllegalStateException("Error reading URL " + url);
 }

 try {
 InputStream is = null;
 OutputStream os = null;
 try {
 is = new BufferedInputStream(_url.openStream());
 os = new BufferedOutputStream(getCachedOutputStream(cachedFileName));
 while (true) {
 int data = is.read();
 if (data == -1)
 break;
 os.write(data);
 }
 } finally {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 }
 } catch (IOException e) {
 throw new IllegalStateException("Error caching " + mediaType.getDescription(), e);
 }
 }
 return new MediaPath(cachedFileName, true, mediaType);
 }

 private MediaPath createCachedMedia(MediaItem mediaItem) {
 return createCachedMedia(mediaItem.getUrl(), mediaItem.getMediaType());
 }

 private OutputStream getCachedOutputStream(String fileName) {
 try {
 return new FileOutputStream(getCachedFile(fileName));
 } catch (FileNotFoundException e) {
 throw new IllegalStateException("Error creating cached file", e);
 }
 }

}

The service delegates to a number of internal methods that do the heavy lifting, but exposes a simple API, to the external observer it simply converts the MediaItem entities into MediaPath data structures, that can be used by the application to load the binary data of the media item. The service will retrieve and cache the data locally in the filesystem, if possible (e.g. streamed videos aren’t cacheable!).
src/main/java/org/jboss/examples/ticketmonster/service/MediaPath.java.

public class MediaPath {

 private final String url;
 private final boolean cached;
 private final MediaType mediaType;

 public MediaPath(String url, boolean cached, MediaType mediaType) {
 this.url = url;
 this.cached = cached;
 this.mediaType = mediaType;
 }

 public String getUrl() {
 return url;
 }

 public boolean isCached() {
 return cached;
 }

 public MediaType getMediaType() {
 return mediaType;
 }

}

The service can be injected by type into the components that depend on it.
We should also control the lifecycle of this service. The MediaManager stores request-specific state, so should be scoped to the web request, the CDI @RequestScoped is perfect.
src/main/java/org/jboss/examples/ticketmonster/service/MediaManager.java.

 ...
@RequestScoped
public class MediaManager {
 ...
}

26.2. The Seat Allocation Service

The seat allocation service finds free seats at booking time, in a given section of the venue. It is a good example of how a service can coordinate infrastructure services (using the injected persistence unit to get access to the SeatAllocation instance) and domain objects (by invoking the allocateSeats method on a concrete allocation instance).
Isolating this functionality in a service class makes it possible to write simpler, self-explanatory code in the layers above and opens the possibility of replacing this code at a later date with a more advanced implementation (for example one using an in-memory cache).
src/main/java/org/jboss/examples/ticketmonster/service/SeatAllocationService.java.

@SuppressWarnings("serial")
public class SeatAllocationService implements Serializable {

 @Inject
 EntityManager entityManager;

 public AllocatedSeats allocateSeats(Section section, Performance performance, int seatCount, boolean contiguous) {
 SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section, performance);
 List<Seat> seats = sectionAllocation.allocateSeats(seatCount, contiguous);
 return new AllocatedSeats(sectionAllocation, seats);
 }

 public void deallocateSeats(Section section, Performance performance, List<Seat> seats) {
 SectionAllocation sectionAllocation = retrieveSectionAllocationExclusively(section, performance);
 for (Seat seat : seats) {
 if (!seat.getSection().equals(section)) {
 throw new SeatAllocationException("All seats must be in the same section!");
 }
 sectionAllocation.deallocate(seat);
 }
 }

 private SectionAllocation retrieveSectionAllocationExclusively(Section section, Performance performance) {
 SectionAllocation sectionAllocationStatus = null;
 try {
 sectionAllocationStatus = (SectionAllocation) entityManager.createQuery(
 "select s from SectionAllocation s where " +
 "s.performance.id = :performanceId and " +
 "s.section.id = :sectionId")
 .setParameter("performanceId", performance.getId())
 .setParameter("sectionId", section.getId())
 .getSingleResult();
 } catch (NoResultException noSectionEx) {
 // Create the SectionAllocation since it doesn't exist
 sectionAllocationStatus = new SectionAllocation(performance, section);
 entityManager.persist(sectionAllocationStatus);
 entityManager.flush();
 }
 entityManager.lock(sectionAllocationStatus, LockModeType.PESSIMISTIC_WRITE);
 return sectionAllocationStatus;
 }
}

Next, we define the AllocatedSeats class that we use for storing seat reservations for a booking, before they are made persistent.
src/main/java/org/jboss/examples/ticketmonster/service/AllocatedSeats.java.

public class AllocatedSeats {

 private final SectionAllocation sectionAllocation;

 private final List<Seat> seats;

 public AllocatedSeats(SectionAllocation sectionAllocation, List<Seat> seats) {
 this.sectionAllocation = sectionAllocation;
 this.seats = seats;
 }

 public SectionAllocation getSectionAllocation() {
 return sectionAllocation;
 }

 public List<Seat> getSeats() {
 return seats;
 }

 public void markOccupied() {
 sectionAllocation.markOccupied(seats);
 }
}

Chapter 27. JAX-RS Services

The majority of services in the application are JAX-RS web services. They are critical part of the design, as they next service is used for provide communication with the HTML5 view layer. The JAX-RS services range from simple CRUD to processing bookings and media items.
To pass data across the wire we use JSON as the data marshalling format, as it is less verbose and easier to process than XML by the JavaScript client-side framework.
27.1. Initializing JAX-RS

We shall ensure that the required dependencies are present in the project POM, to setup JAX-RS in the project:
pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.spec.javax.ws.rs</groupId>
 <artifactId>jboss-jaxrs-api_1.1_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet</groupId>
 <artifactId>jboss-servlet-api_3.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 ...
</project>

Some of these may already be present in the project POM, and should not be added again.
To activate JAX-RS we add the class below, which instructs the container to look for JAX-RS
annotated classes and install them as endpoints. This class should exist already in your
project, as it is generated by the archetype, so make sure that it is there and it contains the
code below:
src/main/java/org/jboss/examples/ticketmonster/rest/JaxRsActivator.java.

@ApplicationPath("/rest")
public class JaxRsActivator extends Application {
 /* class body intentionally left blank */
}

All the JAX-RS services are mapped relative to the /rest path, as defined by the @ApplicationPath annotation.

27.2. A Base Service For Read Operations

Most JAX-RS services must provide both a (filtered) list of entities or individual entity (e.g. events, venues and bookings). Instead of duplicating the implementation into each individual service we create a base service class and wire the helper objects in.
src/main/java/org/jboss/examples/ticketmonster/rest/BaseEntityService.java.

/**
 * <p>
 * A number of RESTful services implement GET operations on a particular type of entity. For
 * observing the DRY principle, the generic operations are implemented in the <code>BaseEntityService</code>
 * class, and the other services can inherit from here.
 * </p>
 *
 * <p>
 * Subclasses will declare a base path using the JAX-RS {@link Path} annotation, for example:
 * </p>
 *
 * <pre>
 * <code>
 * @Path("/widgets")
 * public class WidgetService extends BaseEntityService<Widget> {
 * ...
 * }
 * </code>
 * </pre>
 *
 * <p>
 * will support the following methods:
 * </p>
 *
 * <pre>
 * <code>
 * GET /widgets
 * GET /widgets/:id
 * GET /widgets/count
 * </code>
 * </pre>
 *
 * <p>
 * Subclasses may specify various criteria for filtering entities when retrieving a list of them, by supporting
 * custom query parameters. Pagination is supported by default through the query parameters <code>first</code>
 * and <code>maxResults</code>.
 * </p>
 *
 * <p>
 * The class is abstract because it is not intended to be used directly, but subclassed by actual JAX-RS
 * endpoints.
 * </p>
 *
 */
public abstract class BaseEntityService<T> {

 @Inject
 private EntityManager entityManager;

 private Class<T> entityClass;

 public BaseEntityService() {}

 public BaseEntityService(Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 public EntityManager getEntityManager() {
 return entityManager;
 }

}

Now we add a method to retrieve all entities of a given type:
src/main/java/org/jboss/examples/ticketmonster/rest/BaseEntityService.java.

public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for retrieving all entities of a given type. Supports the query parameters
 * <code>first</code>
 * and <code>maxResults</code> for pagination.
 * </p>
 *
 * @param uriInfo application and request context information (see {@see UriInfo} class
 * information for more details)
 * @return
 */
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<T> getAll(@Context UriInfo uriInfo) {
 return getAll(uriInfo.getQueryParameters());
 }

 public List<T> getAll(MultivaluedMap<String, String> queryParameters) {
 final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
 Root<T> root = criteriaQuery.from(entityClass);
 Predicate[] predicates = extractPredicates(queryParameters, criteriaBuilder, root);
 criteriaQuery.select(criteriaQuery.getSelection()).where(predicates);
 criteriaQuery.orderBy(criteriaBuilder.asc(root.get("id")));
 TypedQuery<T> query = entityManager.createQuery(criteriaQuery);
 if (queryParameters.containsKey("first")) {
 Integer firstRecord = Integer.parseInt(queryParameters.getFirst("first"))-1;
 query.setFirstResult(firstRecord);
 }
 if (queryParameters.containsKey("maxResults")) {
 Integer maxResults = Integer.parseInt(queryParameters.getFirst("maxResults"));
 query.setMaxResults(maxResults);
 }
 return query.getResultList();
 }

 /**
 * <p>
 * Subclasses may choose to expand the set of supported query parameters (for adding more filtering
 * criteria) by overriding this method.
 * </p>
 * @param queryParameters - the HTTP query parameters received by the endpoint
 * @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker
 * @param root @{link Root} used by the invoker
 * @return a list of {@link Predicate}s that will added as query parameters
 */
 protected Predicate[] extractPredicates(MultivaluedMap<String, String> queryParameters,
 CriteriaBuilder criteriaBuilder, Root<T> root) {
 return new Predicate[]{};
 }

}

The newly added method ‘getAll` is annotated with @GET which instructs JAX-RS to call it when a GET HTTP requests on the JAX-RS’ endpoint base URL /rest/<entityRoot> is performed. But remember, this is not a true JAX-RS endpoint. It is an abstract class and it is not mapped to a path. The classes that extend it are JAX-RS endpoints, and will have to be mapped to a path, and are able to process requests.
The @Produces annotation defines that the response sent back by the server is in JSON format. The JAX-RS implementation will automatically convert the result returned by the method (a list of entities) into JSON format.
As well as configuring the marshaling strategy, the annotation affects content negotiation and method resolution. If the client requests JSON content specifically, this method will be invoked.
Note
Even though it is not shown in this example, you may have multiple methods that
handle a specific URL and HTTP method, whilst consuming and producing different types
of content (JSON, HTML, XML or others).

Subclasses can also override the extractPredicates method and add own support for additional query parameters to GET /rest/<entityRoot> which can act as filter criteria.
The getAll method supports retrieving a range of entities, which is especially useful when we need to handle very large sets of data, and use pagination. In those cases, we need to support counting entities as well, so we add a method that retrieves the entity count:
src/main/java/org/jboss/examples/ticketmonster/rest/BaseEntityService.java.

public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for counting all entities of a given type
 * </p>
 *
 * @param uriInfo application and request context information (see {@see UriInfo} class information for more details)
 * @return
 */
 @GET
 @Path("/count")
 @Produces(MediaType.APPLICATION_JSON)
 public Map<String, Long> getCount(@Context UriInfo uriInfo) {
 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<Long> criteriaQuery = criteriaBuilder.createQuery(Long.class);
 Root<T> root = criteriaQuery.from(entityClass);
 criteriaQuery.select(criteriaBuilder.count(root));
 Predicate[] predicates = extractPredicates(uriInfo.getQueryParameters(), criteriaBuilder, root);
 criteriaQuery.where(predicates);
 Map<String, Long> result = new HashMap<String, Long>();
 result.put("count", entityManager.createQuery(criteriaQuery).getSingleResult());
 return result;
 }

}

We use the @Path annotation to map the new method to a sub-path of /rest/<entityRoot>. Now all the JAX-RS endpoints that subclass BaseEntityService will be able to get entity counts from '/rest/<entityRoot>/count. Just like getAll, this method also delegates to extractPredicates, so any customizations done there by subclasses
Next, we add a method for retrieving individual entities.
src/main/java/org/jboss/examples/ticketmonster/rest/BaseEntityService.java.

 ...
public abstract class BaseEntityService<T> {

 ...

 /**
 * <p>
 * A method for retrieving individual entity instances.
 * </p>
 * @param id entity id
 * @return
 */
 @GET
 @Path("/{id:[0-9][0-9]*}")
 @Produces(MediaType.APPLICATION_JSON)
 public T getSingleInstance(@PathParam("id") Long id) {
 final CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 final CriteriaQuery<T> criteriaQuery = criteriaBuilder.createQuery(entityClass);
 Root<T> root = criteriaQuery.from(entityClass);
 Predicate condition = criteriaBuilder.equal(root.get("id"), id);
 criteriaQuery.select(criteriaBuilder.createQuery(entityClass).getSelection()).where(condition);
 return entityManager.createQuery(criteriaQuery).getSingleResult();
 }
}

This method is similar to getAll and getCount, and we use the @Path annotation to map it to a sub-path of /rest/<entityRoot>. The annotation attribute identifies the expected format of the URL (here, the last segment has to be a number) and binds a portion of the URL to a variable (here named id). The @PathParam annotation allows the value of the variable to be passed as a method argument. Data conversion is performed automatically.
Now, all the JAX-RS endpoints that subclass BaseEntityService will get two operations for free:
	
GET /rest/<entityRoot>

	
retrieves all entities of a given type

	
GET /rest/<entityRoot>/<id>

	
retrieves an entity with a given id

27.3. Retrieving Venues

Adding support for retrieving venues is now extremely simple. We refactor the class we created during the introduction, and make it extend BaseEntityService, passing the entity type to the superclass constructor. We remove the old retrieval code, which is not needed anymore.
src/main/java/org/jboss/examples/ticketmonster/rest/VenueService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Venue}s. Inherits the actual
 * methods from {@link BaseEntityService}.
 * </p>
 */
@Path("/venues")
/**
 * <p>
 * This is a stateless service, so a single shared instance can be used in this case.
 * </p>
 */
@Stateless
public class VenueService extends BaseEntityService<Venue> {

 public VenueService() {
 super(Venue.class);
 }

}

We add the @Path annotation to the class, to indicate that this is a JAX-RS resource which can serve URLs starting with /rest/venues.
We define this service (along with all the other JAX-RS services) as an EJB (see how simple is that in Java EE 6!) to benefit from automatic transaction enrollment. Since the service is fundamentally stateless, we take advantage of the new EJB 3.1 singleton feature.
Before we proceed, . Retrieving shows from URLs like /rest/venues or /rest/venues/1 almost always results in invalid JSON responses.
The root cause is the presence of a bi-directional relationship in the Venue entity. A Venue contains a 1:M relationship with Section s that also links back to a Venue. JSON serialiers like Jackson (the one used in JBoss Enterprise Application Platform) need to be instructed on how to handle such cycles in object graphs, failing which the serializer will traverse between the entities in the cycle, resulting in an infinite loop (and often an OutOfMemoryError or a StackOverflowError). We’ll address this, by instructing Jackson to not serialize the venue field in a Section, through the @JsonIgnoreProperties annotation on the Section entity:
src/main/java/org/jboss/examples/ticketmonster/model/Section.java.

...
@JsonIgnoreProperties("venue")
public class Section implements Serializable {

...

}

Now, we can retrieve venues from URLs like /rest/venues or rest/venues/1.

27.4. Retrieving Events

Just like VenueService, the EventService implementation we use for TicketMonster is a direct subclass of BaseEntityService. Refactor the existing class, remove the old retrieval code and make it extend BaseEntityService.
One additional functionality we will implement is querying events by category. We can use URLs like /rest/events?category=1 to retrieve all concerts, for example (1 is the category id of concerts). This is done by overriding the extractPredicates method to handle any query parameters (in this case, the category parameter).
src/main/java/org/jboss/examples/ticketmonster/rest/EventService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Event}s. Inherits the actual
 * methods from {@link BaseEntityService}, but implements additional search
 * criteria.
 * </p>
 */
@Path("/events")
/**
 * <p>
 * This is a stateless service, we declare it as an EJB for transaction demarcation
 * </p>
 */
@Stateless
public class EventService extends BaseEntityService<Event> {

 public EventService() {
 super(Event.class);
 }

 /**
 * <p>
 * We override the method from parent in order to add support for additional search
 * criteria for events.
 * </p>
 * @param queryParameters - the HTTP query parameters received by the endpoint
 * @param criteriaBuilder - @{link CriteriaBuilder} used by the invoker
 * @param root @{link Root} used by the invoker
 * @return
 */
 @Override
 protected Predicate[] extractPredicates(
 MultivaluedMap<String, String> queryParameters,
 CriteriaBuilder criteriaBuilder,
 Root<Event> root) {
 List<Predicate> predicates = new ArrayList<Predicate>() ;

 if (queryParameters.containsKey("category")) {
 String category = queryParameters.getFirst("category");
 predicates.add(criteriaBuilder.equal(root.get("category").get("id"), category));
 }

 return predicates.toArray(new Predicate[]{});
 }
}

27.5. Retrieving Shows

The ShowService follows the same pattern and we leave the implementation as an exercise to the reader (knowing that its contents can always be copied over to the appropriate folder).
Just like the Venue entity, a Show also contains bi-directional relationships that need to be handled as a special case for the JSON serializer. A Show contains a 1:M relationship with Performance s that also links back to a Show; a Show also contains a 1:M relationship with TicketPrice s that also links back to a Show. We’ll address this, by instructing Jackson to not serialize the show field in a Performance, through the @JsonIgnoreProperties annotation on the Performance entity:
src/main/java/org/jboss/examples/ticketmonster/model/Performance.java.

...
@JsonIgnoreProperties("show")
public class Performance implements Serializable {

...

}

Likewise, we’ll also instruct Jackson to not serialize the Show in a TicketPrice:
src/main/java/org/jboss/examples/ticketmonster/model/TicketPrice.java.

...
@JsonIgnoreProperties("show")
public class TicketPrice implements Serializable {

...

}

27.6. Creating and deleting bookings

Of course, we also want to change data with our services - we want to create and delete bookings as well!
To create a booking, we add a new method, which handles POST requests to /rest/bookings. This is not a simple CRUD method, as the client does not send a booking, but a booking request. It is the responsibility of the service to process the request, reserve the seats and return the full booking details to the invoker.
src/main/java/org/jboss/examples/ticketmonster/rest/BookingService.java.

/**
 * <p>
 * A JAX-RS endpoint for handling {@link Booking}s. Inherits the GET
 * methods from {@link BaseEntityService}, and implements additional REST methods.
 * </p>
 */
@Path("/bookings")
/**
 * <p>
 * This is a stateless service, we declare it as an EJB for transaction demarcation
 * </p>
 */
@Stateless
public class BookingService extends BaseEntityService<Booking> {

 @Inject
 SeatAllocationService seatAllocationService;

 @Inject @Created
 private Event<Booking> newBookingEvent;

 public BookingService() {
 super(Booking.class);
 }

 /**
 * <p>
 * Create a booking. Data is contained in the bookingRequest object
 * </p>
 * @param bookingRequest
 * @return
 */
 @SuppressWarnings("unchecked")
 @POST
 /**
 * <p> Data is received in JSON format. For easy handling, it will be unmarshalled in the support
 * {@link BookingRequest} class.
 */
 @Consumes(MediaType.APPLICATION_JSON)
 public Response createBooking(BookingRequest bookingRequest) {
 try {
 // identify the ticket price categories in this request
 Set<Long> priceCategoryIds = bookingRequest.getUniquePriceCategoryIds();

 // load the entities that make up this booking's relationships
 Performance performance = getEntityManager().find(Performance.class, bookingRequest.getPerformance());

 // As we can have a mix of ticket types in a booking, we need to load all of them that are relevant,
 // id
 Map<Long, TicketPrice> ticketPricesById = loadTicketPrices(priceCategoryIds);

 // Now, start to create the booking from the posted data
 // Set the simple stuff first!
 Booking booking = new Booking();
 booking.setContactEmail(bookingRequest.getEmail());
 booking.setPerformance(performance);
 booking.setCancellationCode("abc");

 // Now, we iterate over each ticket that was requested, and organize them by section and category
 // we want to allocate ticket requests that belong to the same section contiguously
 Map<Section, Map<TicketCategory, TicketRequest>> ticketRequestsPerSection
 = new TreeMap<Section, java.util.Map<TicketCategory, TicketRequest>>(SectionComparator.instance());
 for (TicketRequest ticketRequest : bookingRequest.getTicketRequests()) {
 final TicketPrice ticketPrice = ticketPricesById.get(ticketRequest.getTicketPrice());
 if (!ticketRequestsPerSection.containsKey(ticketPrice.getSection())) {
 ticketRequestsPerSection
 .put(ticketPrice.getSection(), new HashMap<TicketCategory, TicketRequest>());
 }
 ticketRequestsPerSection.get(ticketPrice.getSection()).put(
 ticketPricesById.get(ticketRequest.getTicketPrice()).getTicketCategory(), ticketRequest);
 }

 // Now, we can allocate the tickets
 // Iterate over the sections, finding the candidate seats for allocation
 // The process will acquire a write lock for a given section and performance
 // Use deterministic ordering of sections to prevent deadlocks
 Map<Section, AllocatedSeats> seatsPerSection =
 new TreeMap<Section, org.jboss.examples.ticketmonster.service.AllocatedSeats>(SectionComparator.instance());
 List<Section> failedSections = new ArrayList<Section>();
 for (Section section : ticketRequestsPerSection.keySet()) {
 int totalTicketsRequestedPerSection = 0;
 // Compute the total number of tickets required (a ticket category doesn't impact the actual seat!)
 final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = ticketRequestsPerSection.get(section);
 // calculate the total quantity of tickets to be allocated in this section
 for (TicketRequest ticketRequest : ticketRequestsByCategories.values()) {
 totalTicketsRequestedPerSection += ticketRequest.getQuantity();
 }
 // try to allocate seats

 AllocatedSeats allocatedSeats =
 seatAllocationService.allocateSeats(section, performance, totalTicketsRequestedPerSection, true);
 if (allocatedSeats.getSeats().size() == totalTicketsRequestedPerSection) {
 seatsPerSection.put(section, allocatedSeats);
 } else {
 failedSections.add(section);
 }
 }
 if (failedSections.isEmpty()) {
 for (Section section : seatsPerSection.keySet()) {
 // allocation was successful, begin generating tickets
 // associate each allocated seat with a ticket, assigning a price category to it
 final Map<TicketCategory, TicketRequest> ticketRequestsByCategories = ticketRequestsPerSection.get(section);
 AllocatedSeats allocatedSeats = seatsPerSection.get(section);
 allocatedSeats.markOccupied();
 int seatCounter = 0;
 // Now, add a ticket for each requested ticket to the booking
 for (TicketCategory ticketCategory : ticketRequestsByCategories.keySet()) {
 final TicketRequest ticketRequest = ticketRequestsByCategories.get(ticketCategory);
 final TicketPrice ticketPrice = ticketPricesById.get(ticketRequest.getTicketPrice());
 for (int i = 0; i < ticketRequest.getQuantity(); i++) {
 Ticket ticket =
 new Ticket(allocatedSeats.getSeats().get(seatCounter + i), ticketCategory, ticketPrice.getPrice());
 // getEntityManager().persist(ticket);
 booking.getTickets().add(ticket);
 }
 seatCounter += ticketRequest.getQuantity();
 }
 }
 // Persist the booking, including cascaded relationships
 booking.setPerformance(performance);
 booking.setCancellationCode("abc");
 getEntityManager().persist(booking);
 newBookingEvent.fire(booking);
 return Response.ok().entity(booking).type(MediaType.APPLICATION_JSON_TYPE).build();
 } else {
 Map<String, Object> responseEntity = new HashMap<String, Object>();
 responseEntity.put("errors", Collections.singletonList("Cannot allocate the requested number of seats!"));
 return Response.status(Response.Status.BAD_REQUEST).entity(responseEntity).build();
 }
 } catch (ConstraintViolationException e) {
 // If validation of the data failed using Bean Validation, then send an error
 Map<String, Object> errors = new HashMap<String, Object>();
 List<String> errorMessages = new ArrayList<String>();
 for (ConstraintViolation<?> constraintViolation : e.getConstraintViolations()) {
 errorMessages.add(constraintViolation.getMessage());
 }
 errors.put("errors", errorMessages);
 // A WebApplicationException can wrap a response
 // Throwing the exception causes an automatic rollback
 throw new WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
 } catch (Exception e) {
 // Finally, handle unexpected exceptions
 Map<String, Object> errors = new HashMap<String, Object>();
 errors.put("errors", Collections.singletonList(e.getMessage()));
 // A WebApplicationException can wrap a response
 // Throwing the exception causes an automatic rollback
 throw new WebApplicationException(Response.status(Response.Status.BAD_REQUEST).entity(errors).build());
 }
 }

 /**
 * Utility method for loading ticket prices
 * @param priceCategoryIds
 * @return
 */
 private Map<Long, TicketPrice> loadTicketPrices(Set<Long> priceCategoryIds) {
 List<TicketPrice> ticketPrices = (List<TicketPrice>) getEntityManager()
 .createQuery("select p from TicketPrice p where p.id in :ids")
 .setParameter("ids", priceCategoryIds).getResultList();
 // Now, map them by id
 Map<Long, TicketPrice> ticketPricesById = new HashMap<Long, TicketPrice>();
 for (TicketPrice ticketPrice : ticketPrices) {
 ticketPricesById.put(ticketPrice.getId(), ticketPrice);
 }
 return ticketPricesById;
 }
}

You should also copy over the BookingRequest, TicketRequest and SectionComparator classes referenced in these methods, from the project sources.
We won’t get into the details of the inner workings of the method - it implements a fairly complex algorithm - but we’d like to draw attention to a few particular items.
We use the @POST annotation to indicate that this method is executed on inbound HTTP POST requests. When implementing a set of RESTful services, it is important that the semantic of HTTP methods are observed in the mappings. Creating new resources (e.g. bookings) is typically associated with HTTP POST invocations. The @Consumes annotation indicates that the type of the request content is JSON and identifies the correct unmarshalling strategy, as well as content negotiation.
The BookingService delegates to the SeatAllocationService to find seats in the requested section, the required SeatAllocationService instance is initialized and supplied by the container as needed. The only thing that our service does is to specify the dependency in form
of an injection point - the field annotated with @Inject.
We would like other parts of the application to be aware of the fact that a new booking has been created, therefore we use the CDI to fire an event. We do so by injecting an Event<Booking> instance into the service (indicating that its payload will be a booking). In order to individually identify this event as referring to event creation, we use a CDI qualifier, which we need to add:
src/main/java/org/jboss/examples/ticketmonster/util/qualifier/Created.java.

/**
 * {@link Qualifier} to mark a Booking as new (created).
 */
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Created {

}

What are qualifiers?
CDI uses a type-based resolution mechanism for injection and observers. In order to
distinguish between implementations of an interface, you can use qualifiers, a type
of annotations, to disambiguate. Injection points and event observers can use
qualifiers to narrow down the set of candidates

We also need allow the removal of bookings, so we add a method:
src/main/java/org/jboss/examples/ticketmonster/rest/BookingService.java.

@Singleton
public class BookingService extends BaseEntityService<Booking> {
 ...

 @Inject @Cancelled
 private Event<Booking> cancelledBookingEvent;
 ...
 /**
 * <p>
 * Delete a booking by id
 * </p>
 * @param id
 * @return
 */
 @DELETE
 @Path("/{id:[0-9][0-9]*}")
 public Response deleteBooking(@PathParam("id") Long id) {
 Booking booking = getEntityManager().find(Booking.class, id);
 if (booking == null) {
 return Response.status(Response.Status.NOT_FOUND).build();
 }
 getEntityManager().remove(booking);
 cancelledBookingEvent.fire(booking);
 return Response.noContent().build();
 }
}

We use the @DELETE annotation to indicate that it will be executed as the result of an HTTP DELETE request (again, the use of the DELETE HTTP verb is a matter of convention).
We need to notify the other components of the cancellation of the booking, so we fire an event, with a different qualifier.
src/main/java/org/jboss/examples/ticketmonster/util/qualifier/Cancelled.java.

/**
 * {@link Qualifier} to mark a Booking as cancelled.
 */
@Qualifier
@Target({ElementType.FIELD,ElementType.PARAMETER,ElementType.METHOD,ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Cancelled {

}

The other services, including the MediaService that handles media items follow roughly the same patterns as above, so we leave them as an exercise to the reader.

Chapter 28. Testing the services

We’ve now finished implementing the services and there is a significant amount of functionality in the application. Before taking any step forward, you need to make sure the services work correctly: we need to test them.
Testing enterprise services be a complex task as the implementation is based on services provided by a container: dependency injection, access to infrastructure services such as persistence, transactions etc. Unit testing frameworks, whilst offering a valuable infrastructure for running tests, do not provide these capabilities.
One of the traditional approaches has been the use of mocking frameworks to simulate what will happen in the runtime environment. While certainly providing a solution mocking brings its own set of problems (e.g. the additional effort required to provide a proper simulation or the risk of introducing errors in the test suite by incorrectly implemented mocks.
What to test?
A common asked question is: how much application functionality should we test? The
truth is, you can never test too much. That being said, resources are always limited
and tradeoffs are part of an engineer’s work. Generally speaking, trivial
functionality (setters/getters/toString methods) is a big concern compared to the
actual business code, so you probably want to focus your efforts on the business
code. Testing should include individual parts (unit testing), as well as
aggregates (integration testing).

Fortunately, Arquillian provides the means to testing your application code within the container, with access to all the services and container features. In this section we will show you how to create a few Arquillian tests for your business services.
New to Arquillian?
The Arquillian project site contains several tutorials to help you get started.
If you’re new to Arquillian and Shrinkwrap, we recommend going through the
beginner-level Arquillian guides, at the very least.

28.1. Adding ShrinkWrap Resolvers

We’ll need to use an updated version of the ShrinkWrap Resolvers project, that is not provided by the existing org.jboss.bom.eap:jboss-javaee-6.0-with-tools BOM. Fortunately, the JBoss WFK project provides this for us. It provides us with the shrinkwrap-resolver-depchain module, which allows us to use ShrinkWrap resolvers in our project through a single dependency. We can bring in the required version of ShrinkWrap Resolvers, by merely using the org.jboss.bom.wfk:jboss-javaee-6.0-with-tools BOM instead of the pre-existing tools BOM from EAP:
pom.xml.

<project ...>
 ...
 <properties>
 ...
 <version.jboss.bom.wfk>2.7.0-redhat-1</version.jboss.bom.wfk>
 ...
 </properties>

 <dependencyManagement>
 ...

 <dependency>
 <groupId>org.jboss.bom.wfk</groupId>
 <artifactId>jboss-javaee-6.0-with-resteasy</artifactId>
 <version>${version.jboss.bom.wfk}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencyManagement>

 ...

 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-depchain</artifactId>
 <type>pom</type>
 <scope>test</scope>
 </dependency>
 </dependencies>
 ...

</project>

Remember to remove the original Tools BOM with the org.jboss.bom.eap groupId.

28.2. A Basic Deployment Class

In order to create Arquillian tests, we need to define the deployment. The code under test, as well as its dependencies is packaged and deployed in the container.
Much of the deployment contents is common for all tests, so we create a helper class with a method that creates the base deployment with all the general content.
src/test/java/org/jboss/examples/ticketmonster/test/TicketMonsterDeployment.java.

public class TicketMonsterDeployment {

 public static WebArchive deployment() {
 return ShrinkWrap
 .create(WebArchive.class, "test.war")
 .addPackage(Resources.class.getPackage())
 .addAsResource("META-INF/test-persistence.xml", "META-INF/persistence.xml")
 .addAsResource("import.sql")
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml")
 // Deploy our test datasource
 .addAsWebInfResource("test-ds.xml");
 }
}

Remember to copy over the test-persistence.xml file into the src/test/resources directory of your project.
Arquillian uses Shrinkwrap to define the contents of the deployment. At runtime, when the test executes, Arquillian employs Shrinkwrap to create a WAR file that will be deployed to a running instance of JBoss Enterprise Application Platform. The WAR file would be composed of:
	
all classes from the org.jboss.examples.ticketmonster.util package,

	
the test persistence.xml file that defines a JPA persistence unit against a test datasource,

	
the import.sql file,

	
an empty beans.xml file to activate CDI

	
and, a test data source definition.

We use a separate data source for our integration tests, and we recommend the same for real applications. This would allow you to run your tests against a pristine test environment, without having to clean your development, or worse, your production environment!

28.3. Writing RESTful service tests

For testing our JAX-RS RESTful services, we need to add the corresponding application classes to the deployment. Since we need to do that for each test we create, we abide by the DRY principles and create a utility class.
src/test/java/org/jboss/examples/ticketmonster/test/rest/RESTDeployment.java.

public class RESTDeployment {

 public static WebArchive deployment() {
 return TicketMonsterDeployment.deployment()
 .addPackage(Booking.class.getPackage())
 .addPackage(BaseEntityService.class.getPackage())
 .addPackage(MultivaluedHashMap.class.getPackage())
 .addPackage(SeatAllocationService.class.getPackage());
 }

}

Now, we create the first test to validate the proper retrieval of individual events.
src/test/java/org/jboss/examples/ticketmonster/test/rest/VenueServiceTest.java.

@RunWith(Arquillian.class)
public class VenueServiceTest {

 @Deployment
 public static WebArchive deployment() {
 return RESTDeployment.deployment();
 }

 @Inject
 private VenueService venueService;

 @Test
 public void testGetVenueById() {

 // Test loading a single venue
 Venue venue = venueService.getSingleInstance(1l);
 assertNotNull(venue);
 assertEquals("Roy Thomson Hall", venue.getName());
 }

}

In the class above we specify the deployment, and we define the test method. The test supports CDI injection - one of the strengths of Arquillian is the ability to inject the object being tested.
Now, we test a more complicated use cases, query parameters for pagination.
src/test/java/org/jboss/examples/ticketmonster/test/rest/VenueServiceTest.java.

...
@RunWith(Arquillian.class)
public class VenueServiceTest {

 ...

 @Test
 public void testPagination() {

 // Test pagination logic
 MultivaluedMap<String, String> queryParameters = new MultivaluedHashMap<String, String>();

 queryParameters.add("first", "2");
 queryParameters.add("maxResults", "1");

 List<Venue> venues = venueService.getAll(queryParameters);
 assertNotNull(venues);
 assertEquals(1, venues.size());
 assertEquals("Sydney Opera House", venues.get(0).getName());
 }

}

We add another test method (testPagination), which tests the retrieval of all venues, passing the
search criteria as parameters. We use a Map to simulate the passing of query parameters.
Now, we test more advanced use cases such as the creation of a new booking. We do so by adding a new test for bookings
src/test/java/org/jboss/examples/ticketmonster/test/rest/BookingServiceTest.java.

@RunWith(Arquillian.class)
public class BookingServiceTest {

 @Deployment
 public static WebArchive deployment() {
 return RESTDeployment.deployment();
 }

 @Inject
 private BookingService bookingService;

 @Inject
 private ShowService showService;

 @Test
 @InSequence(1)
 public void testCreateBookings() {
 BookingRequest br = createBookingRequest(1l, 0, new int[]{4, 1}, new int[]{1,1}, new int[]{3,1});
 bookingService.createBooking(br);

 BookingRequest br2 = createBookingRequest(2l, 1, new int[]{6,1}, new int[]{8,2}, new int[]{10,2});
 bookingService.createBooking(br2);

 BookingRequest br3 = createBookingRequest(3l, 0, new int[]{4,1}, new int[]{2,1});
 bookingService.createBooking(br3);
 }

 @Test
 @InSequence(10)
 public void testGetBookings() {
 checkBooking1();
 checkBooking2();
 checkBooking3();
 }

 private void checkBooking1() {
 Booking booking = bookingService.getSingleInstance(1l);
 assertNotNull(booking);
 assertEquals("Roy Thomson Hall", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Rock concert of the decade", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 // Test the ticket requests created

 assertEquals(3 + 2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("A @ 219.5 (Adult)");
 requiredTickets.add("A @ 219.5 (Adult)");
 requiredTickets.add("D @ 149.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");
 requiredTickets.add("C @ 179.5 (Adult)");

 checkTickets(requiredTickets, booking);
 }

 private void checkBooking2() {
 Booking booking = bookingService.getSingleInstance(2l);
 assertNotNull(booking);
 assertEquals("Sydney Opera House", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Rock concert of the decade", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 assertEquals(3 + 2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("S2 @ 197.75 (Adult)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S6 @ 145.0 (Child 0-14yrs)");
 requiredTickets.add("S4 @ 145.0 (Child 0-14yrs)");

 checkTickets(requiredTickets, booking);
 }

 private void checkBooking3() {
 Booking booking = bookingService.getSingleInstance(3l);
 assertNotNull(booking);
 assertEquals("Roy Thomson Hall", booking.getPerformance().getShow().getVenue().getName());
 assertEquals("Shane's Sock Puppets", booking.getPerformance().getShow().getEvent().getName());
 assertEquals("bob@acme.com", booking.getContactEmail());

 assertEquals(2 + 1, booking.getTickets().size());

 List<String> requiredTickets = new ArrayList<String>();
 requiredTickets.add("B @ 199.5 (Adult)");
 requiredTickets.add("D @ 149.5 (Adult)");
 requiredTickets.add("B @ 199.5 (Adult)");

 checkTickets(requiredTickets, booking);
 }

 @Test
 @InSequence(10)
 public void testPagination() {

 // Test pagination logic
 MultivaluedMap<String, String> queryParameters = new MultivaluedHashMap<java.lang.String, java.lang.String>();

 queryParameters.add("first", "2");
 queryParameters.add("maxResults", "1");

 List<Booking> bookings = bookingService.getAll(queryParameters);
 assertNotNull(bookings);
 assertEquals(1, bookings.size());
 assertEquals("Sydney Opera House", bookings.get(0).getPerformance().getShow().getVenue().getName());
 assertEquals("Rock concert of the decade", bookings.get(0).getPerformance().getShow().getEvent().getName());
 }

 @Test
 @InSequence(20)
 public void testDelete() {
 bookingService.deleteBooking(2l);
 checkBooking1();
 checkBooking3();
 try {
 bookingService.getSingleInstance(2l);
 } catch (Exception e) {
 if (e.getCause() instanceof NoResultException) {
 return;
 }
 }
 fail("Expected NoResultException did not occur.");
 }

 private BookingRequest createBookingRequest(Long showId, int performanceNo, int[]... sectionAndCategories) {
 Show show = showService.getSingleInstance(showId);

 Performance performance = new ArrayList<Performance>(show.getPerformances()).get(performanceNo);

 BookingRequest bookingRequest = new BookingRequest(performance, "bob@acme.com");

 List<TicketPrice> possibleTicketPrices = new ArrayList<TicketPrice>(show.getTicketPrices());
 int i = 1;
 for (int[] sectionAndCategory : sectionAndCategories) {
 for (TicketPrice ticketPrice : possibleTicketPrices) {
 int sectionId = sectionAndCategory[0];
 int categoryId = sectionAndCategory[1];
 if(ticketPrice.getSection().getId() == sectionId && ticketPrice.getTicketCategory().getId() == categoryId) {
 bookingRequest.addTicketRequest(new TicketRequest(ticketPrice, i));
 i++;
 break;
 }
 }
 }

 return bookingRequest;
 }

 private void checkTickets(List<String> requiredTickets, Booking booking) {
 List<String> bookedTickets = new ArrayList<String>();
 for (Ticket t : booking.getTickets()) {
 bookedTickets.add(new StringBuilder().append(t.getSeat().getSection()).append(" @ ").append(t.getPrice()).append(" (").append(t.getTicketCategory()).append(")").toString());
 }
 System.out.println(bookedTickets);
 for (String requiredTicket : requiredTickets) {
 Assert.assertTrue("Required ticket not present: " + requiredTicket, bookedTickets.contains(requiredTicket));
 }
 }

}

First we test booking creation in a test method of its own (testCreateBookings). Then, we test that the previously created bookings
are retrieved correctly (testGetBookings and testPagination). Finally, we test that deletion takes place correctly (testDelete).
The other tests in the application follow roughly the same pattern and are left as an exercise to the reader. You could in fact copy over the EventServiceTest and ShowServiceTest classes from the project sources.

28.4. Running the tests

If you have followed the instructions in the introduction and used the Maven archetype to generate the project structure, you should have two profiles already defined in your application.
/pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 ...
 <profile>
 <!-- An optional Arquillian testing profile that executes tests
 in your JBoss AS instance -->
 <!-- This profile will start a new JBoss AS instance, and execute
 the test, shutting it down when done -->
 <!-- Run with: mvn clean test -Parq-jbossas-managed -->
 <id>arq-jbossas-managed</id>
 <dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-arquillian-container-managed</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 </profile>

 <profile>
 <!-- An optional Arquillian testing profile that executes tests
 in a remote JBoss AS instance -->
 <!-- Run with: mvn clean test -Parq-jbossas-remote -->
 <id>arq-jbossas-remote</id>
 <dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-arquillian-container-remote</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 </profile>

 </profiles>
</project>

If you haven’t used the archetype, or the profiles don’t exist, create them.
Each profile defines a different Arquillian container. In both cases the tests execute in an application server instance. In one case (arq-jbossas-managed) the server instance is started and stopped by the test suite, while in the other (arq-jbossas-remote), the test suite expects an already started server instance.
Once these profiles are defined, we can execute the tests in two ways:
	
from the command-line build

	
from an IDE

28.4.1. Executing tests from the command line

You can now execute the test suite from the command line by running the Maven build with the appropriate target and profile, as in one of the following examples.
After ensuring that the JBOSS_HOME environment variable is set to a valid JBoss EAP 6.2 installation directory), you can run the following command:
mvn clean test -Parq-jbossas-managed
Or, after starting a JBoss EAP 6.2 instance, you can run the following command
mvn clean test -Parq-jbossas-remote
These tests execute as part of the Maven build and can be easily included in an automated build and test harness.

28.4.2. Running Arquillian tests from within Eclipse

Running the entire test suite as part of the build is an important part of the development process - you may want to make sure that everything is working fine before releasing a new milestone, or just before committing new code. However, running the entire test suite all the time
can be a productivity drain, especially when you’re trying to focus on a particular problem. Also, when debugging, you don’t want to leave the comfort of your IDE for running the tests.
Running Arquillian tests from JBoss Developer Studio or JBoss tools is very simple as Arquillian builds on JUnit (or TestNG).
First enable one of the two profiles in the project. In Eclipse, select the project, right-click on it to open the context menu, drill down into the Maven sub-menu:
Select the Maven profiles for the project. image::gfx/eclipse-project-maven-profiles.png
Activate the profile as shown in the picture below.
Update Maven profiles in Eclipse. image::gfx/eclipse-maven-profile-update.png
The project configuration will be updated automatically.
Now, you can click right on one of your test classes, and select Run As → JUnit Test.
The test suite will run, deploying the test classes to the application server, executing the tests and finally producing the much coveted green bar.
Figure 28.1. Running the tests
[image: gfx/eclipse-green-bar.png]

Part V. Building The User UI Using HTML5

Chapter 29. What Will You Learn Here?

We’ve just implemented the business services of our application, and exposed them through RESTful endpoints. Now we need to implement a flexible user interface that can be easily used with both desktop and mobile clients. After reading this tutorial, you will understand our front-end design and the choices that we made in its implementation. Topics covered include:
	
Creating single-page applications using HTML5, JavaScript and JSON

	
Using JavaScript frameworks for invoking RESTful endpoints and manipulating page content

	
Feature and device detection

	
Implementing a version of the user interface that is optimized for mobile clients using JavaScript frameworks such as jQuery mobile

The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through.

Chapter 30. First, the basics

In this tutorial, we will build a single-page application. All the necessary code: HTML, CSS and JavaScript is retrieved within a single page load. Rather than refreshing the page every time the user changes a view, the content of the page will be redrawn by manipulating the DOM in JavaScript. The application uses REST calls to retrieve data from the server.
Figure 30.1. Single page application
[image: gfx/single-page-app.png]

30.1. Client-side MVC Support

Because this is a moderately complex example, which involves multiple views and different types of data, we will use a client-side MVC framework to structure the application, which provides amongst others:
	
routing support within the single page application;

	
event-driven interaction between views and data;

	
simplified CRUD invocations on RESTful services.

In this application we use the client-side MVC framework "backbone.js".
Figure 30.2. Backbone architecture
[image: gfx/backbone-usage.png]

30.2. Modularity

In order to provide good separation of concerns, we split the JavaScript code into modules. Ensuring that all the modules of the application are loaded properly at runtime becomes a complex task, as the application size increases. To conquer this complexity, we use the Asynchronous Module Definition mechanism as implemented by the "require.js" library.
Asynchronous Module Definition
The Asynchronous Module Definition (AMD) API specifies a mechanism for defining modules such that the module, and its dependencies, can be asynchronously loaded. This is particularly well suited for the browser where synchronous loading of modules incurs performance, usability, debugging, and cross-domain access problems.

30.3. Templating

Instead of manipulating the DOM directly, and mixing up HTML with the JavaScript code, we create HTML markup fragments separately as templates which are applied when the application views are rendered.
In this application we use the templating support provided by "underscore.js".

30.4. Mobile and desktop versions

The page flow and structure, as well as feature set, are slightly different for mobile and desktop, and therefore we will build two variants of the single-page-application, one for desktop and one for mobile. As the application variants are very similar, we will cover the desktop version of the application first, and then we will explain what is different in the mobile version.

Chapter 31. Setting up the structure

Before we start developing the user interface, we need to set up the general application structure and add the JavaScript libraries. First, we create the directory structure:
Figure 31.1. File structure for our web application
[image: gfx/ui-file-structure.png]

We put stylesheets in resources/css folder, images in resources/img, and HTML view templates in resources/templates. resources/js contains the JavaScript code, split between resources/js/libs - which contains the libraries used by the application, resources/js/app - which contains the application code, and resources/js/configurations which contains module definitions for the different versions of the application - i.e. mobile and desktop. The resources/js/app folder will contain the application modules, in subsequent subdirectories, for models, collections, routers and views.
The first step in implementing our solution is adding the stylesheets and JavaScript libraries to the resources/css and resources/js/libs:
	
require.js

	
 AMD support, along with the plugin:

	
text - for loading text files, in our case the HTML templates

	
jQuery

	
 general purpose library for HTML traversal and manipulation

	
Underscore

	
 JavaScript utility library (and a dependency of Backbone)

	
Backbone

	
 Client-side MVC framework

	
Bootstrap

	
 UI components and stylesheets for page structuring

	
Modernizr

	
 JavaScript library for HTML5 and CSS3 feature detection

You can copy these libraries (with associated stylesheets) from the project sources. You can also copy the CSS stylesheet in screen.css, since we’ll include this stylesheet in the HTML. Addtionally, copy the images from the src/main/webapp/resources/img directory in the project sources to the equivalent one in your workspace.
Now, we create the main page of the application (which is the URL loaded by the browser):
src/main/webapp/index.html.

<!DOCTYPE html>
<html>
<head>
 <title>Ticket Monster</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=0"/>

 <script type="text/javascript" src="resources/js/libs/modernizr-2.8.3.min.js"></script>
 <script type="text/javascript" src="resources/js/libs/require.js"
 data-main="resources/js/configurations/loader"></script>
</head>
<body>
</body>
</html>

As you can see, the page does not contain much. It loads Modernizr (for HTML5 and CSS3 feature detection) and RequireJS (for loading JavaScript modules in an asynchronous manner). Once RequireJS is loaded by the browser, it will configure itself to use a baseUrl of resources/js/configurations (specified via the data-main attribute on the script tag). All scripts loaded by RequireJS will use this baseUrl unless specified otherwise.
RequireJS will then load a script having a module ID of loader (again, specified via the data-main attribute):
src/main/webapp/resources/js/configurations/loader.js.

//detect the appropriate module to load
define(function () {

 /*
 A simple check on the client. For touch devices or small-resolution screens)
 show the mobile client. By enabling the mobile client on a small-resolution screen
 we allow for testing outside a mobile device (like for example the Mobile Browser
 simulator in JBoss Tools and JBoss Developer Studio).
 */

 var environment;

 if (Modernizr.touch || Modernizr.mq("only all and (max-width: 480px)")) {
 environment = "mobile"
 } else {
 environment = "desktop"
 }

 require([environment]);
});

This script detects the current client (mobile or desktop) based on its capabilities (touch or not) and loads another JavaScript module (desktop or mobile) defined in the resources/js/configurations folder (aka the baseUrl) depending on the detected features. In the case of the desktop client, the code is loaded from resources/js/configurations/desktop.js.
src/main/webapp/resources/js/configurations/desktop.js.

/**
 * Shortcut alias definitions - will come in handy when declaring dependencies
 * Also, they allow you to keep the code free of any knowledge about library
 * locations and versions
 */
requirejs.config({
 baseUrl: "resources/js",
 paths: {
 jquery:'libs/jquery-2.0.3',
 underscore:'libs/underscore',
 text:'libs/text',
 bootstrap: 'libs/bootstrap',
 backbone: 'libs/backbone',
 utilities: 'app/utilities',
 router:'app/router/desktop/router'
 },
 // We shim Backbone.js and Underscore.js since they don't declare AMD modules
 shim: {
 'backbone': {
 deps: ['jquery', 'underscore'],
 exports: 'Backbone'
 },

 'underscore': {
 exports: '_'
 }
 }
});

define("initializer", ["jquery"],
 function ($) {
 // Configure jQuery to append timestamps to requests, to bypass browser caches
 // Important for MSIE
 $.ajaxSetup({cache:false});
 $('head').append('<link rel="stylesheet" href="resources/css/bootstrap.css" type="text/css" media="all"/>');
 $('head').append('<link rel="stylesheet" href="resources/css/bootstrap-theme.css" type="text/css" media="all"/>');
 $('head').append('<link rel="stylesheet" href="resources/css/screen.css" type="text/css" media="all"/>');
 $('head').append('<link href="http://fonts.googleapis.com/css?family=Rokkitt" rel="stylesheet" type="text/css">');
});

// Now we load the dependencies
// This loads and runs the 'initializer' and 'router' modules.
require([
 'initializer',
 'router'
], function(){
});

define("configuration", {
 baseUrl : ""
});

The module loads all the utility libraries, converting them to AMD modules where necessary (like it is the case for Backbone). It also defines two modules of its own - an initializer that loads the application stylesheets for the page, and the configuration module that allows customizing the REST service URLs (this will become in handy in a further tutorial).
We also define some utility JavaScript functions that are used in the rest of the front-end in a utilities module (also referenced in the desktop module above). For convenience, copy the utilities.js file from the src/main/webapp/resources/js/app/ directory in the project sources.
Before we add any functionality, let us create a first landing page. We will begin by setting up a critical piece of the application, the router.
31.1. Routing

The router allows for navigation in our application via bookmarkable URLs, and we will define it as follows:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 'jquery',
 'underscore',
 'configuration',
 'utilities',
 'text!../templates/desktop/main.html'
],function ($,
 _,
 config,
 utilities,
 MainTemplate) {

 $(document).ready(new function() {
 utilities.applyTemplate($('body'), MainTemplate)
 })

 /**
 * The Router class contains all the routes within the application -
 * i.e. URLs and the actions that will be taken as a result.
 *
 * @type {Router}
 */

 var Router = Backbone.Router.extend({
 initialize: function() {
 //Begin dispatching routes
 Backbone.history.start();
 },
 routes:{
 }
 });

 // Create a router instance
 var router = new Router();

 return router;
});

Remember, this is a single page application. You can either navigate using urls such as http://localhost:8080/ticket-monster/index.html#events or using relative urls (from within the application, this being exactly what the main menu does). The fragment after the hash sign represents the url within the single page, on which the router will act, according to the mappings set up in the routes property.
During the router set up, we load the page template for the entire application. TicketMonster uses a templating library in order to separate application logic from it’s actual graphical content. The actual HTML is described in template files, which are applied by the application, when necessary, on a DOM element - effectively populating it’s content. So the general content of the page, as described in the body element is described in a template file too. Let us define it.
src/main/webapp/resources/templates/desktop/main.html.

<!--
 The main layout of the page - contains the menu and the 'content' <div/> in which all the
 views will render the content.
-->
<div id="logo"><div class="wrap"><h1>Ticket Monster</h1></div></div>
<div id="container">
 <div id="menu">
 <div class="navbar">
 <!-- Toggle get grouped for better mobile display -->
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#navbar-items">
 Toggle navigation

 </button>
 </div>

 <!-- Collect the nav links, forms, and other content for toggling -->
 <div id="navbar-items" class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 About
 Events
 Venues
 Bookings
 Monitor
 Administration

 </div>
 </div>
 </div>
 <div id="content" class="container">
 </div>
</div>

<footer style="">
 <div style="text-align: center;"></div>
</footer>

The actual HTML code of the template contains a menu definition which will be present on all the pages, as well as an empty element named content, which is the placeholder for the application views. When a view is displayed, it will apply a template and populate the content element.

Chapter 32. Setting up the initial views

Let us complete our application setup by creating an initial landing page. The first thing that we will need to do is to add a view component.
src/main/resources/js/app/views/desktop/home.js.

/**
 * The About view
 */
define([
 'utilities',
 'text!../../../../templates/desktop/home.html'
], function (utilities, HomeTemplate) {

 var HomeView = Backbone.View.extend({
 render:function () {
 utilities.applyTemplate($(this.el),HomeTemplate,{});
 return this;
 }
 });

 return HomeView;
});

Functionally, this is a very basic component - it only renders the splash page of the application, but it helps us
introduce a new concept that will be heavily used throughout the application views. One main role of a view is to
describe the logic for manipulating the page content. It will do so by defining a function named render which
will be invoked by the application. In this very simple case, all that the view does is to create the content of the splash page.
You can proceed by copying the content of src/main/webapp/resources/templates/desktop/home.html to your project.
Backbone Views
Views are logical representations of user interface elements that can
interact with data components, such as models in an event-driven fashion.
Apart from defining the logical structure of your user interface, views handle
events resulting from the user interaction (e.g. clicking a DOM element or selecting
an element into a list), translating them into logical actions inside the
application.

Once we defined a view, we must tell the router to navigate to it whenever requested. We will add the following dependency and mapping to the router:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 'jquery',
 'underscore',
 'configuration',
 'utilities',
 'app/views/desktop/home',
 'text!../templates/desktop/main.html'
],function ($,
 _,
 config,
 utilities,
 HomeView,
 MainTemplate) {

 ...
 var Router = Backbone.Router.extend({
 ...
 routes : {
 "":"home",
 "about":"home"
 },
 home : function () {
 utilities.viewManager.showView(new HomeView({el:$("#content")}));
 }
 });
 ...

We have just told the router to invoke the home function whenever the user navigates to the root of the application or
uses a #about hash. The method will simply cause the HomeView defined above to render.
Now you can navigate to http://localhost:8080/ticket-monster/#about or http://localhost:8080/ticket-monster and see the results.

Chapter 33. Displaying Events

The first use case that we implement is event navigation. The users will be able to view the list of events and select the one that they want to attend. After doing so, they will select a venue, and will be able to choose a performance date and time.
33.1. The Event model

We define a Backbone model for holding event data. Nearly all domain entities (booking, event, venue) are represented by a corresponding Backbone model:
src/main/webapp/resources/js/app/models/event.js.

/**
 * Module for the Event model
 */
define([
 'configuration',
 'backbone'
], function (config) {
 /**
 * The Event model class definition
 * Used for CRUD operations against individual events
 */
 var Event = Backbone.Model.extend({
 urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations
 });
 // export the Event class
 return Event;
});

The Event model can perform CRUD operations against the REST services we defined earlier.
Backbone Models
Backbone models contain data as well as much of the logic surrounding
it: conversions, validations, computed properties, and access control.
They also perform CRUD operations with the REST service.

33.2. The Events collection

We define a Backbone collection for handling groups of events (like the events list):
src/main/webapp/resources/js/app/collections/events.js.

/**
 * Module for the Events collection
 */
define([
 // The collection element type and configuration are dependencies
 'app/models/event',
 'configuration'
], function (Event, config) {
 /**
 * Here we define the Bookings collection
 * We will use it for CRUD operations on Bookings
 */
 var Events = Backbone.Collection.extend({
 url: config.baseUrl + "rest/events", // the URL for performing CRUD operations
 model: Event,
 id:"id", // the 'id' property of the model is the identifier
 comparator:function (model) {
 return model.get('category').id;
 }
 });
 return Events;
});

By mapping the model and collection to a REST endpoint you can perform CRUD operations without having to invoke the services explicitly. You will see how that works a bit later.
Backbone Collections
Collections are ordered sets of models. They can handle events which are
fired as a result of a change to a individual member, and can perform
CRUD operations for syncing up contents against RESTful services.

33.3. The EventsView view

Now that we have implemented the data components of the example, we need to create the view that displays them.
src/main/webapp/resources/js/app/views/desktop/events.js.

define([
 'utilities',
 'bootstrap',
 'text!../../../../templates/desktop/events.html'
], function (
 utilities,
 bootstrap,
 eventsTemplate) {

 var EventsView = Backbone.View.extend({
 events:{
 "click a":"update"
 },
 render:function () {
 var categories = _.uniq(
 _.map(this.model.models, function(model){
 return model.get('category')
 }), false, function(item){
 return item.id
 });
 utilities.applyTemplate($(this.el), eventsTemplate, {categories:categories, model:this.model})
 $(this.el).find('.item:first').addClass('active');
 $(".carousel").carousel();
 $("a[rel='popover']").popover({trigger:'hover',container:'body'});
 return this;
 },
 update:function () {
 $("a[rel='popover']").popover('hide')
 }
 });

 return EventsView;
});

As we explained, earlier, the view is attached to a DOM element (the el property). When the render method is invoked, it manipulates the DOM and renders the view. We could have achieved this by writing these instructions directly in the method, but that would make it hard to change the page design later on. Instead, we create a template and apply it, thus separating the HTML view code from the view implementation. Note the dependency on the Bootstrap module - we initialize the Bootstrap carousel and popover components when this view is rendered.
src/main/webapp/resources/templates/desktop/events.html.

<div class="row">
 <div class="col-md-3 col-md-offset-1">
 <div class="panel" id="itemMenu">

 <%
 _.each(categories, function (category) {
 %>
 <div class="panel panel-default">
 <div class="panel-heading">
 <a class="panel-toggle"
 data-target="#category-<%=category.id%>-collapsible" data-toggle="collapse"
 data-parent="#itemMenu"><%= category.description %>
 </div>
 <div id="category-<%=category.id%>-collapsible" class="panel-collapse collapse">
 <div id="category-<%- category.id%>" class="panel-body">

 <%
 _.each(model.models, function (model) {
 if (model.get('category').id == category.id) {
 %>
 <p><a href="#events/<%- model.attributes.id%>" rel="popover"
 data-content="<%- model.attributes.description%>"
 data-original-title="<%- model.attributes.name%>"><%=model.attributes.name%></p>
 <% }
 });
 %>
 </div>
 </div>
 </div>
 <% }); %>
 </div>
 </div>

 <div id='itemSummary' class="col-md-8 hidden-sm hidden-xs">
 <div class="carousel-container">
 <div id="eventCarousel" class="carousel slide">
 <!-- Carousel items -->
 <div class="carousel-inner">
 <%_.each(model.models, function(model) {
 if(model.get('mediaItem')) {
 %>
 <div class="item">
 <img src='rest/media/<%=model.attributes.mediaItem.id%>'/>

 <div class="carousel-caption">
 <div class="row">
 <div class="col-md-9">
 <h4><%=model.attributes.name%></h4>
 <p><%=model.attributes.description%></p>
 </div>
 <div class="col-md-2">
 <a class="btn btn-danger action" href="#events/<%=model.id%>">Book tickets
 </div>
 </div>
 </div>
 </div>
 <%
 }
 });
 %>
 </div>
 <!-- Carousel nav -->

 </div>
 </div>
 </div>
</div>

As well as applying the template and preparing the data that will be used to fill it in (the categories and model entries in the map), the render method also performs the JavaScript calls that are required to initialize the UI components (in this case the Bootstrap carousel and popover).
A view can also listen to events fired by the children of it’s root element (el). In this case, the update method is configured to listen to clicks on anchors. The configuration occurs within the events property of the class.
Now that the views are in place, we need to add another routing rule to the application.
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'utilities',
 'app/collections/events',
 'app/views/desktop/home',
 'app/views/desktop/events',
 ...
 'text!../templates/desktop/main.html'
],function ($,
 ...
 utilities,
 Events,
 HomeView,
 EventsView,
 ...
 MainTemplate) {

 var Router = Backbone.Router.extend({
 ...
 routes : {
 ...,
 "events":"events"
 },
 ...,
 events:function () {
 var events = new Events();
 var eventsView = new EventsView({model:events, el:$("#content")});
 events.on("reset",
 function () {
 utilities.viewManager.showView(eventsView);
 }).fetch({
 reset : true,
 error : function() {
 utilities.displayAlert("Failed to retrieve events from the TicketMonster server.");
 }
 });
 }
 });

The events function handles the #events fragment and will retrieve the events in our application via a REST call. We don’t manually perform the REST call as it is triggered the by invocation of fetch on the Events collection, as discussed earlier.
The reset event on the collection is invoked when the data from the server is received, and the collection is populated. This triggers the rendering of the events view (which is bound to the #content div).
The whole process is event orientated - the models, views and controllers interact through events.

Chapter 34. Viewing a single event

With the events list view now in place, we can add a view to display the details of each individual event, allowing the user to select a venue and performance time.
We already have the models in place so all we need to do is to create the additional view and expand the router. First, we’ll implement the view:
src/main/webapp/resources/js/app/views/desktop/event-detail.js.

define([
 'utilities',
 'require',
 'text!../../../../templates/desktop/event-detail.html',
 'text!../../../../templates/desktop/media.html',
 'text!../../../../templates/desktop/event-venue-description.html',
 'configuration',
 'bootstrap'
], function (
 utilities,
 require,
 eventDetailTemplate,
 mediaTemplate,
 eventVenueDescriptionTemplate,
 config,
 Bootstrap) {

 var EventDetail = Backbone.View.extend({

 events:{
 "click input[name='bookButton']":"beginBooking",
 "change select[id='venueSelector']":"refreshShows",
 "change select[id='dayPicker']":"refreshTimes"
 },

 render:function () {
 $(this.el).empty()
 utilities.applyTemplate($(this.el), eventDetailTemplate, this.model.attributes);
 $("#bookingOption").hide();
 $("#venueSelector").attr('disabled', true);
 $("#dayPicker").empty();
 $("#dayPicker").attr('disabled', true)
 $("#performanceTimes").empty();
 $("#performanceTimes").attr('disabled', true)
 var self = this
 $.getJSON(config.baseUrl + "rest/shows?event=" + this.model.get('id'), function (shows) {
 self.shows = shows
 $("#venueSelector").empty().append("<option value='0' selected>Select a venue</option>");
 $.each(shows, function (i, show) {
 $("#venueSelector").append("<option value='" + show.id + "'>" + show.venue.address.city + " : " + show.venue.name + "</option>")
 });
 $("#venueSelector").removeAttr('disabled')
 })
 return this;
 },
 beginBooking:function () {
 require("router").navigate('/book/' + $("#venueSelector option:selected").val() + '/' + $("#performanceTimes").val(), true)
 },
 refreshShows:function (event) {
 event.stopPropagation();
 $("#dayPicker").empty();

 var selectedShowId = event.currentTarget.value;

 if (selectedShowId != 0) {
 var selectedShow = _.find(this.shows, function (show) {
 return show.id == selectedShowId
 });
 this.selectedShow = selectedShow;
 utilities.applyTemplate($("#eventVenueDescription"), eventVenueDescriptionTemplate, {venue:selectedShow.venue});
 var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function (performance) {
 return (new Date(performance.date).withoutTimeOfDay()).getTime()
 }), function (item) {
 return item
 }));
 utilities.applyTemplate($("#venueMedia"), mediaTemplate, selectedShow.venue)
 $("#dayPicker").removeAttr('disabled')
 $("#performanceTimes").removeAttr('disabled')
 _.each(times, function (time) {
 var date = new Date(time)
 $("#dayPicker").append("<option value='" + date.toYMD() + "'>" + date.toPrettyStringWithoutTime() + "</option>")
 });
 this.refreshTimes()
 $("#bookingWhen").show(100)
 } else {
 $("#bookingWhen").hide(100)
 $("#bookingOption").hide()
 $("#dayPicker").empty()
 $("#venueMedia").empty()
 $("#eventVenueDescription").empty()
 $("#dayPicker").attr('disabled', true)
 $("#performanceTimes").empty()
 $("#performanceTimes").attr('disabled', true)
 }

 },
 refreshTimes:function () {
 var selectedDate = $("#dayPicker").val();
 $("#performanceTimes").empty()
 if (selectedDate) {
 $.each(this.selectedShow.performances, function (i, performance) {
 var performanceDate = new Date(performance.date);
 if (_.isEqual(performanceDate.toYMD(), selectedDate)) {
 $("#performanceTimes").append("<option value='" + performance.id + "'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" + performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")
 }
 })
 }
 $("#bookingOption").show()
 }

 });

 return EventDetail;
});

This view is more complex than the global events view, as portions of the page need to be updated when the user chooses a venue.
Figure 34.1. On the event details page some fragments are re-rendered when the user selects a venue
[image: gfx/ui-event-details.png]

The view responds to three different events:
	
changing the current venue triggers a reload of the venue details and the venue image, as well as the performance times. The application retrieves the performance times through a REST call.

	
changing the day of the performance causes the performance time selector to reload.

	
once the venue and performance date and time have been selected, the user can navigate to the booking page.

The corresponding templates for the three fragments rendered above are:
src/main/webapp/resources/templates/desktop/event-detail.html.

<div class="row">
 <h2 class="page-header special-title light-font"><%=name%></h2>
</div>
<div class="row">
 <div class="col-md-4">
 <div class="well">
 <div class="row">
 <h3 class="page-header col-md-6">What?</h3>
 <% if(mediaItem) { %><img width="100" src='rest/media/<%=mediaItem.id%>'/><% } %>
 </div>
 <div class="row top5">
 <div class="col-md-12"><%= description %></div>
 </div>
 </div>
 </div>
 <div class="col-md-4">
 <div class="well">
 <div class="row">
 <h3 class="page-header col-md-6">Where?</h3>
 <div class="col-md-6" id='venueMedia'/>
 </div>
 <div class="row top5">
 <div class="col-md-12">
 <select id="venueSelector" class="form-control"/>
 </div>
 </div>
 <div class="row top5">
 <div class="col-md-12">
 <div id="eventVenueDescription"/>
 </div>
 </div>
 </div>
 </div>
 <div id='bookingWhen' style="display: none;" class="col-md-4">
 <div class="well">
 <div class="row">
 <h3 class="page-header col-md-6">When?</h3>
 </div>

 <div class="row top5">
 <div class="col-md-12">
 <select class="form-control" id="dayPicker"/>
 </div>
 </div>
 <div class="row top5">
 <div class="col-md-12">
 <select class="form-control" id="performanceTimes"/>
 </div>
 </div>

 <div id="bookingOption" class="row top5">
 <div class="col-md-6">
 <input name="bookButton" class="btn btn-primary" type="button" value="Order tickets">
 </div>
 </div>
 </div>
 </div>
</div>

src/main/webapp/resources/templates/desktop/event-venue-description.html.

<address>
 <p><%= venue.description %></p>
 <p>Address:</p>
 <p><%= venue.address.street %></p>
 <p><%= venue.address.city %>, <%= venue.address.country %></p>
</address>

src/main/webapp/resources/templates/desktop/media.html.

<%if (mediaItem) { %><img width="100" src='rest/media/<%=mediaItem.id%>'/><% } %>

Now that the view exists, we add it to the router:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/models/event',
 ...,
 'app/views/desktop/event-detail',
 ...
],function (
 ...
 Event,
 ...
 EventDetailView,
 ...) {

 var Router = Backbone.Router.extend({
 ...
 routes:{
 ...
 "events/:id":"eventDetail",
 },
 ...
 eventDetail:function (id) {
 var model = new Event({id:id});
 var eventDetailView = new EventDetailView({model:model, el:$("#content")});
 model.on("change",
 function () {
 utilities.viewManager.showView(eventDetailView);
 }).fetch({
 error : function() {
 utilities.displayAlert("Failed to retrieve the event from the TicketMonster server.");
 }
 });
 }
 }
 ...
);

As you can see, this is very similar to the previous view and route, except that now the application can accept parameterized URLs (e.g. http://localhost:8080/ticket-monster/index#events/1). This URL can be entered directly into the browser, or it can be navigated to as a relative path (e.g. #events/1) from within the applicaton.
With this in place, all that remains is to implement the final view of this use case, creating the bookings.

Chapter 35. Creating Bookings

The user has chosen the event, the venue and the performance time, and must now create the booking. Users can select one of the available sections for the show’s venue, and then enter the number of tickets required for each category available for this show (Adult, Child, etc.). They then add the tickets to the current order, which causes the summary view to be updated. Users can also remove tickets from the order. When the order is complete, they enter their contact information (e-mail address) and submit the order to the server.
First, we add the new view:
src/main/webapp/resources/js/app/views/desktop/create-booking.js.

define([
 'utilities',
 'require',
 'configuration',
 'text!../../../../templates/desktop/booking-confirmation.html',
 'text!../../../../templates/desktop/create-booking.html',
 'text!../../../../templates/desktop/ticket-categories.html',
 'text!../../../../templates/desktop/ticket-summary-view.html',
 'bootstrap'
],function (
 utilities,
 require,
 config,
 bookingConfirmationTemplate,
 createBookingTemplate,
 ticketEntriesTemplate,
 ticketSummaryViewTemplate){

 var TicketCategoriesView = Backbone.View.extend({
 id:'categoriesView',
 intervalDuration : 100,
 formValues : [],
 events:{
 "change input":"onChange"
 },
 render:function () {
 if (this.model != null) {
 var ticketPrices = _.map(this.model, function (item) {
 return item.ticketPrice;
 });
 utilities.applyTemplate($(this.el), ticketEntriesTemplate, {ticketPrices:ticketPrices});
 } else {
 $(this.el).empty();
 }
 this.watchForm();
 return this;
 },
 onChange:function (event) {
 var value = event.currentTarget.value;
 var ticketPriceId = $(event.currentTarget).data("tm-id");
 var modifiedModelEntry = _.find(this.model, function (item) {
 return item.ticketPrice.id == ticketPriceId
 });
 // update model
 if ($.isNumeric(value) && value > 0) {
 modifiedModelEntry.quantity = parseInt(value);
 }
 else {
 delete modifiedModelEntry.quantity;
 }
 // display error messages
 if (value.length > 0 &&
 (!$.isNumeric(value) // is a non-number, other than empty string
 || value <= 0 // is negative
 || parseFloat(value) != parseInt(value))) { // is not an integer
 $("#error-input-"+ticketPriceId).empty().append("Please enter a positive integer value");
 $("#ticket-category-fieldset-"+ticketPriceId).addClass("error");
 } else {
 $("#error-input-"+ticketPriceId).empty();
 $("#ticket-category-fieldset-"+ticketPriceId).removeClass("error");
 }
 // are there any outstanding errors after this update?
 // if yes, disable the input button
 if (
 $("div[id^='ticket-category-fieldset-']").hasClass("error") ||
 _.isUndefined(modifiedModelEntry.quantity)) {
 $("input[name='add']").attr("disabled", true)
 } else {
 $("input[name='add']").removeAttr("disabled")
 }
 },
 watchForm: function() {
 if($("#sectionSelectorPlaceholder").length) {
 var self = this;
 $("input[name*='tickets']").each(function(index,element) {
 if(element.value !== self.formValues[element.name]) {
 self.formValues[element.name] = element.value;
 $("input[name='"+element.name+"']").change();
 }
 });
 this.timerObject = setTimeout(function() {
 self.watchForm();
 }, this.intervalDuration);
 } else {
 this.onClose();
 }
 },
 onClose: function() {
 if(this.timerObject) {
 clearTimeout(this.timerObject);
 delete this.timerObject;
 }
 }
 });

 var TicketSummaryView = Backbone.View.extend({
 tagName:'tr',
 events:{
 "click i":"removeEntry"
 },
 render:function () {
 var self = this;
 utilities.applyTemplate($(this.el), ticketSummaryViewTemplate, this.model.bookingRequest);
 },
 removeEntry:function () {
 this.model.bookingRequest.tickets.splice(this.model.index, 1);
 }
 });

 var CreateBookingView = Backbone.View.extend({

 intervalDuration : 100,
 formValues : [],
 events:{
 "click input[name='submit']":"save",
 "change select[id='sectionSelect']":"refreshPrices",
 "keyup #email":"updateEmail",
 "change #email":"updateEmail",
 "click input[name='add']":"addQuantities",
 "click i":"updateQuantities"
 },
 render:function () {

 var self = this;
 $.getJSON(config.baseUrl + "rest/shows/" + this.model.showId, function (selectedShow) {

 self.currentPerformance = _.find(selectedShow.performances, function (item) {
 return item.id == self.model.performanceId;
 });

 var id = function (item) {return item.id;};
 // prepare a list of sections to populate the dropdown
 var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'), id), true, id);
 utilities.applyTemplate($(self.el), createBookingTemplate, {
 sections:sections,
 show:selectedShow,
 performance:self.currentPerformance});
 self.ticketCategoriesView = new TicketCategoriesView({model:{}, el:$("#ticketCategoriesViewPlaceholder") });
 self.ticketSummaryView = new TicketSummaryView({model:self.model, el:$("#ticketSummaryView")});
 self.show = selectedShow;
 self.ticketCategoriesView.render();
 self.ticketSummaryView.render();
 $("#sectionSelector").change();
 self.watchForm();
 });
 return this;
 },
 refreshPrices:function (event) {
 var ticketPrices = _.filter(this.show.ticketPrices, function (item) {
 return item.section.id == event.currentTarget.value;
 });
 var sortedTicketPrices = _.sortBy(ticketPrices, function(ticketPrice) {
 return ticketPrice.ticketCategory.description;
 });
 var ticketPriceInputs = new Array();
 _.each(sortedTicketPrices, function (ticketPrice) {
 ticketPriceInputs.push({ticketPrice:ticketPrice});
 });
 this.ticketCategoriesView.model = ticketPriceInputs;
 this.ticketCategoriesView.render();
 },
 save:function (event) {
 var bookingRequest = {ticketRequests:[]};
 var self = this;
 bookingRequest.ticketRequests = _.map(this.model.bookingRequest.tickets, function (ticket) {
 return {ticketPrice:ticket.ticketPrice.id, quantity:ticket.quantity}
 });
 bookingRequest.email = this.model.bookingRequest.email;
 bookingRequest.performance = this.model.performanceId
 $("input[name='submit']").attr("disabled", true)
 $.ajax({url: (config.baseUrl + "rest/bookings"),
 data:JSON.stringify(bookingRequest),
 type:"POST",
 dataType:"json",
 contentType:"application/json",
 success:function (booking) {
 this.model = {}
 $.getJSON(config.baseUrl +'rest/shows/performance/' + booking.performance.id, function (retrievedPerformance) {
 utilities.applyTemplate($(self.el), bookingConfirmationTemplate, {booking:booking, performance:retrievedPerformance })
 });
 }}).error(function (error) {
 if (error.status == 400 || error.status == 409) {
 var errors = $.parseJSON(error.responseText).errors;
 _.each(errors, function (errorMessage) {
 $("#request-summary").append('<div class="alert alert-error">×Error! ' + errorMessage + '</div>')
 });
 } else {
 $("#request-summary").append('<div class="alert alert-error">×Error! An error has occured</div>')
 }
 $("input[name='submit']").removeAttr("disabled");
 })

 },
 addQuantities:function () {
 var self = this;
 _.each(this.ticketCategoriesView.model, function (model) {
 if (model.quantity != undefined) {
 var found = false;
 _.each(self.model.bookingRequest.tickets, function (ticket) {
 if (ticket.ticketPrice.id == model.ticketPrice.id) {
 ticket.quantity += model.quantity;
 found = true;
 }
 });
 if (!found) {
 self.model.bookingRequest.tickets.push({ticketPrice:model.ticketPrice, quantity:model.quantity});
 }
 }
 });
 this.ticketCategoriesView.model = null;
 $('option:selected', 'select').removeAttr('selected');
 this.ticketCategoriesView.render();
 this.updateQuantities();
 },
 updateQuantities:function () {
 // make sure that tickets are sorted by section and ticket category
 this.model.bookingRequest.tickets.sort(function (t1, t2) {
 if (t1.ticketPrice.section.id != t2.ticketPrice.section.id) {
 return t1.ticketPrice.section.id - t2.ticketPrice.section.id;
 }
 else {
 return t1.ticketPrice.ticketCategory.id - t2.ticketPrice.ticketCategory.id;
 }
 });

 this.model.bookingRequest.totals = _.reduce(this.model.bookingRequest.tickets, function (totals, ticketRequest) {
 return {
 tickets:totals.tickets + ticketRequest.quantity,
 price:totals.price + ticketRequest.quantity * ticketRequest.ticketPrice.price
 };
 }, {tickets:0, price:0.0});

 this.ticketSummaryView.render();
 this.setCheckoutStatus();
 },
 updateEmail:function (event) {
 if ($(event.currentTarget).is(':valid')) {
 this.model.bookingRequest.email = event.currentTarget.value;
 $("#error-email").empty();
 } else {
 $("#error-email").empty().append("Please enter a valid e-mail address");
 delete this.model.bookingRequest.email;
 }
 this.setCheckoutStatus();
 },
 setCheckoutStatus:function () {
 if (this.model.bookingRequest.totals != undefined && this.model.bookingRequest.totals.tickets > 0 && this.model.bookingRequest.email != undefined && this.model.bookingRequest.email != '') {
 $('input[name="submit"]').removeAttr('disabled');
 }
 else {
 $('input[name="submit"]').attr('disabled', true);
 }
 },
 watchForm: function() {
 if($("#email").length) {
 var self = this;
 var element = $("#email");
 if(element.val() !== self.formValues["email"]) {
 self.formValues["email"] = element.val();
 $("#email").change();
 }
 this.timerObject = setTimeout(function() {
 self.watchForm();
 }, this.intervalDuration);
 } else {
 this.onClose();
 }
 },
 onClose: function() {
 if(this.timerObject) {
 clearTimeout(this.timerObject);
 delete this.timerObject;
 }
 this.ticketCategoriesView.close();
 }
 });

 return CreateBookingView;
});

The code above may be surprising! After all, we said that we were going to add a single view, but instead, we added three! This view makes use of two subviews (TicketCategoriesView and TicketSummaryView) for re-rendering parts of the main view. Whenever the user changes the current section, the list of available tickets is updated. Whenever the user adds the tickets to the booking, the booking summary is re-rendered. Changes in quantities or the target email may enable or disable the submission button - the booking is validated whenever changes to it are made. We do not create separate modules for the subviews, since they are not referenced outside the module itself.
The booking submission is handled by the save method which constructs a JSON object, as required by a POST to http://localhost:8080/ticket-monster/rest/bookings, and performs the AJAX call. In case of a successful response, a confirmation view is rendered. On failure, a warning is displayed and the user may continue to edit the form.
The corresponding templates for the views above are shown below:
src/main/webapp/resources/templates/desktop/booking-confirmation.html.

<div class="row">
 <h2 class="special-title light-font">Booking #<%=booking.id%> confirmed!</h2>
</div>
<div class="row">
 <div class="col-md-6">
 <div class="well">
 <h4 class="page-header">Checkout information</h4>
 <p>Email: <%= booking.contactEmail %></p>
 <p>Event: <%= performance.event.name %></p>
 <p>Venue: <%= performance.venue.name %></p>
 <p>Date: <%= new Date(booking.performance.date).toPrettyString() %></p>
 <p>Created on: <%= new Date(booking.createdOn).toPrettyString() %></p>
 </div>
 </div>
 <div class="col-md-6">
 <div class="well">
 <h4 class="page-header">Ticket allocations</h4>
 <table class="table table-striped table-bordered" style="background-color: #fffffa;">
 <thead>
 <tr>
 <th>Ticket #</th>
 <th>Category</th>
 <th>Section</th>
 <th>Row</th>
 <th>Seat</th>
 </tr>
 </thead>
 <tbody>
 <% $.each(_.sortBy(booking.tickets, function(ticket) {return ticket.id}), function (i, ticket) { %>
 <tr>
 <td><%= ticket.id %></td>
 <td><%=ticket.ticketCategory.description%></td>
 <td><%=ticket.seat.section.name%></td>
 <td><%=ticket.seat.rowNumber%></td>
 <td><%=ticket.seat.number%></td>
 </tr>
 <% }) %>
 </tbody>
 </table>
 </div>
 </div>
</div>
<div class="row" style="padding-bottom:30px;">
 <div class="col-md-2">Home</div>
</div>

src/main/webapp/resources/templates/desktop/create-booking.html.

<div class="row">
 <div class="col-md-12">
 <h2 class="special-title light-font"><%=show.event.name%>
 <small><%=show.venue.name%>, <%=new Date(performance.date).toPrettyString()%></p></small>
 </h2>
 </div>
</div>
<div class="row">
 <div class="col-md-4">
 <div class="well">
 <h3 class="page-header">Select tickets</h3>
 <form class="form-horizontal">
 <div id="sectionSelectorPlaceholder">
 <div class="form-group">
 <label class="col-md-3 control-label" for="sectionSelect">Section</label>
 <div class="col-md-9">
 <select id="sectionSelect" class="form-control">
 <option value="-1" selected="true">Choose a section</option>
 <% _.each(sections, function(section) { %>
 <option value="<%=section.id%>"><%=section.name%> - <%=section.description%></option>
 <% }) %>
 </select>
 </div>
 </div>
 </div>
 </form>
 <div id="ticketCategoriesViewPlaceholder"></div>
 </div>
 </div>
 <div id="request-summary" class="col-md-5 col-md-offset-1">
 <div class="well">
 <h3 class="page-header">Order summary</h3>
 <div id="ticketSummaryView" class="row"/>
 <h3 class="page-header">Checkout</h3>
 <div class="row">
 <div class="col-md-12">
 <form>
 <div class="form-group">
 <input type='email' id="email" class="form-control" placeholder="Email" required/>
 <p class="help-block error-notification" id="error-email"></p>
 </div>
 <div class="form-group">
 <input type='button' class="btn btn-primary" name="submit" value="Checkout"
 disabled="true"/>
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
</div>

src/main/webapp/resources/templates/desktop/ticket-categories.html.

<% if (ticketPrices.length > 0) { %>
<form class="form-horizontal">
 <% _.each(ticketPrices, function(ticketPrice) { %>
 <div class="form-group" id="ticket-category-fieldset-<%=ticketPrice.id%>">
 <label class="col-md-3 control-label"><%=ticketPrice.ticketCategory.description%></label>

 <div class="col-md-9">
 <div class="input-group">
 <input class="form-control col-md-6" rel="tooltip" title="Enter value"
 data-tm-id="<%=ticketPrice.id%>"
 placeholder="Number of tickets"
 name="tickets-<%=ticketPrice.ticketCategory.id%>"/>
 @ $<%=ticketPrice.price%>

 <p class="help-block" id="error-input-<%=ticketPrice.id%>"></p>
 </div>
 </div>
 </div>
 <% }) %>

<p> </p>

<div class="form-group">
 <div class="col-md-offset-2">
 <input type="button" class="btn btn-primary" disabled="true" name="add" value="Add tickets"/>
 </div>
</div>
</div>
</form>
<% } %>

src/main/webapp/resources/templates/desktop/ticket-summary-view.html.

<div class="col-md-12">
 <% if (tickets.length>0) { %>
 <table class="table table-bordered table-condensed" style="background-color: #fffffa;">
 <thead>
 <tr>
 <th colspan="7">Requested tickets</th>
 </tr>
 <tr>
 <th>Section</th>
 <th>Category</th>
 <th>Quantity</th>
 <th>Price</th>
 <th></th>
 </tr>
 </thead>
 <tbody id="ticketRequestSummary">
 <% _.each(tickets, function (ticketRequest, index, tickets) { %>
 <tr>
 <td><%= ticketRequest.ticketPrice.section.name %></td>
 <td><%= ticketRequest.ticketPrice.ticketCategory.description %></td>
 <td><%= ticketRequest.quantity %></td>
 <td>$<%=ticketRequest.ticketPrice.price%></td>
 <td><span class="glyphicon glyphicon-trash" data-index='<%= index %>'/></td>
 </tr>
 <% }); %>
 </tbody>
 </table>
 <p/>
 <div class="row">
 <div class="col-md-5">Total ticket count: <%= totals.tickets %></div>
 <div class="col-md-5">Total price: $<%=totals.price%></div>
 </div>
 <% } else { %>
 No tickets requested.
 <% } %>
</div>

Finally, once the view is available, we can add it’s corresponding routing rule:
src/main/webapp/resources/js/app/router/desktop/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/views/desktop/create-booking',
 ...
],function (
 ...
 CreateBookingView,
 ...
) {

 var Router = Backbone.Router.extend({
 ...
 routes:{
 ...
 "book/:showId/:performanceId":"bookTickets",
 },
 ...
 bookTickets:function (showId, performanceId) {
 var createBookingView =
 new CreateBookingView({
 model:{ showId:showId,
 performanceId:performanceId,
 bookingRequest:{tickets:[]}},
 el:$("#content")
 });
 utilities.viewManager.showView(createBookingView);
 }
 }
 ...
);

This concludes the implementation of the booking use case. We started by listing the available events, continued by selecting a venue and performance time, and ended by choosing tickets and completing the order.
The other use cases: a booking starting from venues and view existing bookings are conceptually similar, so you can just copy the logic for the following routes from src/main/webapp/resources/js/app/routers/desktop/router.js:
	
venues

	
venues/:id

	
bookings

	
bookings/:id

Finally, copy the following files in the src/main/webapp/resources/js/app/models, src/main/webapp/resources/js/app/collections,
src/main/webapp/resources/js/app/views/desktop and src/main/webapp/resources/templates:
	
src/main/webapp/resources/js/app/models/booking.js

	
src/main/webapp/resources/js/app/models/venue.js

	
src/main/webapp/resources/js/app/collections/bookings.js

	
src/main/webapp/resources/js/app/collections/venues.js

	
src/main/webapp/resources/js/app/views/desktop/bookings.js

	
src/main/webapp/resources/js/app/views/desktop/booking-detail.js

	
src/main/webapp/resources/js/app/views/desktop/venues.js

	
src/main/webapp/resources/js/app/views/desktop/venue-detail.js

	
src/main/webapp/resources/templates/desktop/booking-details.html

	
src/main/webapp/resources/templates/desktop/booking-table.html

	
src/main/webapp/resources/templates/desktop/venues.html

	
src/main/webapp/resources/templates/desktop/venue-detail.html

	
src/main/webapp/resources/templates/desktop/venue-event-description.html

Chapter 36. Mobile view

The mobile version of the application uses approximately the same architecture as the desktop version. Any differences are due to the functional changes in the mobile version and the use of jQuery mobile.
36.1. Setting up the structure

The first step in implementing our solution is to copy the CSS and JavaScript libraries to resources/css and resources/js/libs:
	
require.js

	
 AMD support, along with the plugin:

	
text - for loading text files, in our case the HTML templates

	
jQuery

	
 general purpose library for HTML traversal and manipulation

	
Underscore

	
 JavaScript utility library (and a dependency of Backbone)

	
Backbone

	
 Client-side MVC framework

	
jQuery Mobile

	
 user interface system for mobile devices;

(If you have already built the desktop application, some files may already be in place.)
For mobile clients, the main page will display the mobile version of the application, by loading the mobile AMD module of the application. Let us create it.
src/main/webapp/resources/js/configurations/mobile.js.

/**
 * Shortcut alias definitions - will come in handy when declaring dependencies
 * Also, they allow you to keep the code free of any knowledge about library
 * locations and versions
 */
require.config({
 baseUrl:"resources/js",
 paths: {
 jquery:'libs/jquery-2.0.3',
 jquerymobile:'libs/jquery.mobile-1.4.2',
 text:'libs/text',
 underscore:'libs/underscore',
 backbone: 'libs/backbone',
 utilities: 'app/utilities',
 router:'app/router/mobile/router'
 },
 // We shim Backbone.js and Underscore.js since they don't declare AMD modules
 shim: {
 'backbone': {
 deps: ['underscore', 'jquery'],
 exports: 'Backbone'
 },

 'underscore': {
 exports: '_'
 }
 }
});

define("configuration", function() {
 if (window.TicketMonster != undefined && TicketMonster.config != undefined) {
 return {
 baseUrl: TicketMonster.config.baseRESTUrl
 };
 } else {
 return {
 baseUrl: ""
 };
 }
});

define("initializer", [
 'jquery',
 'utilities',
 'text!../templates/mobile/main.html'
], function ($,
 utilities,
 MainTemplate) {
 // Configure jQuery to append timestamps to requests, to bypass browser caches
 // Important for MSIE
 $.ajaxSetup({cache:false});
 $('head').append('<link rel="stylesheet" href="resources/css/jquery.mobile-1.4.2.css"/>');
 $('head').append('<link rel="stylesheet" href="resources/css/m.screen.css"/>');
 // Bind to mobileinit before loading jQueryMobile
 $(document).bind("mobileinit", function () {
 // Prior to creating and starting the router, we disable jQuery Mobile's own routing mechanism
 $.mobile.hashListeningEnabled = false;
 $.mobile.linkBindingEnabled = false;
 $.mobile.pushStateEnabled = false;

 // Fix jQueryMobile header and footer positioning issues for iOS.
 // See: https://github.com/jquery/jquery-mobile/issues/4113 and
 // https://github.com/jquery/jquery-mobile/issues/5532
 $(document).on('blur', 'input, textarea, select', function() {
 setTimeout(function() {
 window.scrollTo(document.body.scrollLeft, document.body.scrollTop);
 }, 0);
 });

 utilities.applyTemplate($('body'), MainTemplate);
 });
 // Then (load jQueryMobile and) start the router to finally start the app
 require(['router']);
});

// Now we declare all the dependencies
// This loads and runs the 'initializer' module.
require(['initializer']);

In this application, we combine Backbone and jQuery Mobile. Each framework has its own strengths; jQuery Mobile provides UI components and touch support, whilst Backbone provides MVC support. There is some overlap between the two, as jQuery Mobile provides its own navigation mechanism which we disable.
We also define a configuration module which allows the customization of the base URLs for RESTful invocations. This module does not play any role in the mobile web version. We will come to it, however, when discussing hybrid applications.
We also define a special initializer module (initializer) that, when loaded, adds the stylesheets and applies the template for the general structure of the page in the body element. In the initializer module we make customizations in order to get the two frameworks working together - disabling the jQuery Mobile navigation. Let us add the template definition for the template loaded by the initializer module.
src/main/webapp/resources/templates/mobile/main.html.

<!--
 The main layout of the page - contains the menu and the 'content' <div/> in which all the
 views will render the content.
-->
<div id="container" data-role="page" data-ajax="false"></div>

Copy over the m.screen.css file referenced in the initializer module, from the project sources, to the appropriate location in the workspace.
Next, we create the application router.
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the mobile application.
 *
 */
define("router",[
 'jquery',
 'jquerymobile',
 'underscore',
 'utilities'
],function ($,
 jqm,
 _,
 utilities) {

 /**
 * The Router class contains all the routes within the application - i.e. URLs and the actions
 * that will be taken as a result.
 *
 * @type {Router}
 */
 var Router = Backbone.Router.extend({
 initialize: function() {
 //Begin dispatching routes
 Backbone.history.start();
 },
 execute : function(callback, args) {
 $.mobile.loading("show");
 window.setTimeout(function() {
 if (callback) {
 callback.apply(this, args);
 }
 $.mobile.loading("hide");
 }, 300);
 }
 });

 // Create a router instance
 var router = new Router();

 return router;
});

In the router code we add the execute method to the router for handling transitions between routes. Here, we will display the jQuery Mobile loader widget before displaying any Backbone view, and then hide it once the view is rendered.
Next, we need to create a first page.

36.2. The landing page

The first page in our application is the landing page. First, we add the template for it:
src/main/webapp/resources/templates/mobile/home-view.html.

<div data-role="header">
 <h3>Ticket Monster</h3>
</div>
<div class="ui-content">

 <h4>Find events</h4>
 <ul data-role="listview">

 By Category

 By Location

</div>

Now we have to add the page to the router:
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the mobile application.
 *
 */
define("router",[
 ...
 'text!../templates/mobile/home-view.html'
],function (
 ...
 HomeViewTemplate) {

 ...
 var Router = Backbone.Router.extend({
 ...
 routes:{
 "":"home"
 },
 ...
 home:function () {
 utilities.applyTemplate($("#container"), HomeViewTemplate);
 $("#container").enhanceWithin();
 }
 });
 ...
});

Because jQuery Mobile navigation is disabled, we must tell jQuery Mobile explicitly to enhance the page content in order to create the mobile view. Here, we enhance the page using the enhanceWithin method, to ensure that the page gets the appropriate look and feel.

36.3. The events view

First, we display a list of events (just as in the desktop view). Since mobile interfaces are more constrained, we will just show a simple list view:
src/main/webapp/resources/js/app/views/mobile/events.js.

define([
 'utilities',
 'text!../../../../templates/mobile/events.html'
], function (
 utilities,
 eventsView) {

 var EventsView = Backbone.View.extend({
 render:function () {
 var categories = _.uniq(
 _.map(this.model.models, function(model){
 return model.get('category');
 }), false, function(item){
 return item.id;
 });
 utilities.applyTemplate($(this.el), eventsView, {categories:categories, model:this.model});
 $(this.el).enhanceWithin();
 return this;
 }
 });

 return EventsView;
});

As you can see, the view is very similar to the desktop view, the main difference being the explicit hint to jQuery mobile through the pagecreate event invocation.
Next, we add the template for rendering the view:
src/main/webapp/resources/templates/mobile/events.html.

<div data-role="header">
 Home
 <h3>Categories</h3>
</div>
<div class="ui-content">
 <div id="itemMenu" data-role="collapsible-set" data-inset="false">
 <%
 _.each(categories, function (category) {
 %>
 <div data-role="collapsible">
 <h2><%= category.description %></h2>
 <ul id="categoryMenu" data-role="listview" data-inset="true">
 <%
 _.each(model.models, function (model) {
 if (model.get('category').id == category.id) {
 %>

 <a href="#events/<%=model.attributes.id%>"><%=model.attributes.name%>

 <% }
 });
 %>

 </div>
 <% }); %>
 </div>
</div>

And finally, we need to instruct the router to invoke the page:
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 ...
 'app/collections/events',
 ...
 'app/views/mobile/events'
 ...
],function (
 ...,
 Events,
 ...,
 EventsView,
 ...) {

 ...
 var Router = Backbone.Router.extend({
 ...
 routes:{
 ...
 "events":"events"
 ...
 },
 ...
 events:function () {
 var events = new Events;
 var eventsView = new EventsView({model:events, el:$("#container")});
 events.on("reset", function() {
 utilities.viewManager.showView(eventsView);
 }).fetch({
 reset : true,
 error : function() {
 utilities.displayAlert("Failed to retrieve events from the TicketMonster server.");
 }
 });
 }
 ...
 });
 ...
});

Just as in the case of the desktop application, the list of events will be accessible at #events (i.e. http://localhost:8080/ticket-monster/#events).

36.4. Displaying an individual event

Now, we create the view to display an event:
src/main/webapp/resources/js/app/views/mobile/event-detail.js.

define([
 'utilities',
 'require',
 'configuration',
 'text!../../../../templates/mobile/event-detail.html',
 'text!../../../../templates/mobile/event-venue-description.html'
], function (
 utilities,
 require,
 config,
 eventDetail,
 eventVenueDescription) {

 var EventDetailView = Backbone.View.extend({
 events:{
 "click a[id='bookButton']":"beginBooking",
 "change select[id='showSelector']":"refreshShows",
 "change select[id='performanceTimes']":"performanceSelected",
 "change select[id='dayPicker']":'refreshTimes'
 },
 render:function () {
 $(this.el).empty()
 utilities.applyTemplate($(this.el), eventDetail, _.extend({}, this.model.attributes, config));
 $(this.el).enhanceWithin();
 $("#bookButton").addClass("ui-disabled");
 var self = this;
 $.getJSON(config.baseUrl + "rest/shows?event=" + this.model.get('id'), function (shows) {
 self.shows = shows;
 $("#showSelector").empty().append("<option data-placeholder='true'>Choose a venue ...</option>");
 $.each(shows, function (i, show) {
 $("#showSelector").append("<option value='" + show.id + "'>" + show.venue.address.city + " : " + show.venue.name + "</option>");
 });
 $("#showSelector").selectmenu('refresh', true)
 $("#dayPicker").selectmenu('disable')
 $("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show date ...</option>")
 $("#performanceTimes").selectmenu('disable')
 $("#performanceTimes").empty().append("<option data-placeholder='true'>Choose a show time ...</option>")
 });
 $("#dayPicker").empty();
 $("#dayPicker").selectmenu('disable');
 $("#performanceTimes").empty();
 $("#performanceTimes").selectmenu('disable');
 $(this.el).enhanceWithin();
 return this;
 },
 performanceSelected:function () {
 if ($("#performanceTimes").val() != 'Choose a show time ...') {
 $("#bookButton").removeClass("ui-disabled")
 } else {
 $("#bookButton").addClass("ui-disabled")
 }
 },
 beginBooking:function () {
 require('router').navigate('book/' + $("#showSelector option:selected").val() + '/' + $("#performanceTimes").val(), true)
 },
 refreshShows:function (event) {

 var selectedShowId = event.currentTarget.value;

 if (selectedShowId != 'Choose a venue ...') {
 var selectedShow = _.find(this.shows, function (show) {
 return show.id == selectedShowId
 });
 this.selectedShow = selectedShow;
 var times = _.uniq(_.sortBy(_.map(selectedShow.performances, function (performance) {
 return (new Date(performance.date).withoutTimeOfDay()).getTime()
 }), function (item) {
 return item
 }));
 utilities.applyTemplate($("#eventVenueDescription"), eventVenueDescription, _.extend({},{venue:selectedShow.venue},config));
 $("#detailsCollapsible").show()
 $("#dayPicker").removeAttr('disabled')
 $("#performanceTimes").removeAttr('disabled')
 $("#dayPicker").empty().append("<option data-placeholder='true'>Choose a show date ...</option>")
 _.each(times, function (time) {
 var date = new Date(time)
 $("#dayPicker").append("<option value='" + date.toYMD() + "'>" + date.toPrettyStringWithoutTime() + "</option>")
 });
 $("#dayPicker").selectmenu('refresh')
 $("#dayPicker").selectmenu('enable')
 this.refreshTimes()
 } else {
 $("#detailsCollapsible").hide()
 $("#eventVenueDescription").empty()
 $("#dayPicker").empty()
 $("#dayPicker").selectmenu('disable')
 $("#performanceTimes").empty()
 $("#performanceTimes").selectmenu('disable')
 }

 },
 refreshTimes:function () {
 var selectedDate = $("#dayPicker").val();
 $("#performanceTimes").empty().append("<option data-placeholder='true'>Choose a show time ...</option>")
 if (selectedDate) {
 $.each(this.selectedShow.performances, function (i, performance) {
 var performanceDate = new Date(performance.date);
 if (_.isEqual(performanceDate.toYMD(), selectedDate)) {
 $("#performanceTimes").append("<option value='" + performance.id + "'>" + performanceDate.getHours().toZeroPaddedString(2) + ":" + performanceDate.getMinutes().toZeroPaddedString(2) + "</option>")
 }
 })
 $("#performanceTimes").selectmenu('enable')
 }
 $("#performanceTimes").selectmenu('refresh')
 this.performanceSelected()
 }

 });

 return EventDetailView;
});

Once again, this is very similar to the desktop version. Now we add the page templates:
src/main/webapp/resources/templates/mobile/event-detail.html.

<div data-role="header" data-position="fixed">
 Home
 <h3>Book tickets</h3>
</div>
<div class="ui-content">
 <h3><%=name%></h3>
 <img width='100px' src='<%=baseUrl%>rest/media/<%=mediaItem.id%>'/>
 <p><%=description%></p>
 <div class="ui-field-contain">
 <label for="showSelector">Where</label>
 <select id='showSelector' data-mini='true'/>
 </div>

 <div data-role="collapsible" data-content-theme="c" style="display: none;"
 id="detailsCollapsible">
 <h3>Venue details</h3>

 <div id="eventVenueDescription">
 </div>
 </div>

 <div data-role='fieldcontain'>
 <fieldset data-role='controlgroup'>
 <legend>When</legend>
 <label for="dayPicker">When:</label>
 <select id='dayPicker' data-mini='true'/>

 <label for="performanceTimes">When:</label>
 <select id="performanceTimes" data-mini='true'/>

 </fieldset>
 </div>

</div>
<div data-role="footer" data-position="fixed">
 <div class="ui-grid-b">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c">
 Book
 </div>
 </div>
</div>

src/main/webapp/resources/templates/mobile/event-venue-description.html.

<img width="100" src="<%=baseUrl%>rest/media/<%=venue.mediaItem.id%>"/></p>
<%= venue.description %>
<address>
 <p>Address:</p>
 <p><%= venue.address.street %></p>
 <p><%= venue.address.city %>, <%= venue.address.country %></p>
</address>

Finally, we add this to the router, explicitly indicating to jQuery Mobile that a transition has to take place after the view is rendered - in order to allow the page to render correctly after it has been invoked from the listview.
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application.
 *
 */
define("router",[
 ...
 'app/models/event',
 ...
 'app/views/mobile/event-detail'
 ...
],function (
 ...,
 Event,
 ...,
 EventDetailView,
 ...) {

 ...
 var Router = Backbone.Router.extend({
 ...
 routes:{
 ...
 "events/:id":"eventDetail",
 ...
 },
 ...
 eventDetail:function (id) {
 var model = new Event({id:id});
 var eventDetailView = new EventDetailView({model:model, el:$("#container")});
 model.on("change",
 function () {
 utilities.viewManager.showView(eventDetailView);
 $("body").pagecontainer("change", "#container", {transition:'slide', changeHash:false});
 }).fetch({
 error : function() {
 utilities.displayAlert("Failed to retrieve the event from the TicketMonster server.");
 }
 });
 }
 ...
 });
 ...
});

Just as the desktop version, the mobile event detail view allows users to choose a venue and a performance time. The next step is to allow the user to book some tickets.

36.5. Booking tickets

The views to book tickets are simpler than the desktop version. Users can select a section and enter the number of tickets for each category however, there is no way to add or remove tickets from an order. Once the form is filled out, the user can only submit it.
First, we create the views:
src/main/webapp/resources/js/app/views/mobile/create-booking.js.

define([
 'utilities',
 'configuration',
 'require',
 'text!../../../../templates/mobile/booking-details.html',
 'text!../../../../templates/mobile/create-booking.html',
 'text!../../../../templates/mobile/confirm-booking.html',
 'text!../../../../templates/mobile/ticket-entries.html',
 'text!../../../../templates/mobile/ticket-summary-view.html'
], function (
 utilities,
 config,
 require,
 bookingDetailsTemplate,
 createBookingTemplate,
 confirmBookingTemplate,
 ticketEntriesTemplate,
 ticketSummaryViewTemplate) {

 var TicketCategoriesView = Backbone.View.extend({
 id:'categoriesView',
 events:{
 "change input":"onChange"
 },
 render:function () {
 var views = {};

 if (this.model != null) {
 var ticketPrices = _.map(this.model, function (item) {
 return item.ticketPrice;
 });
 utilities.applyTemplate($(this.el), ticketEntriesTemplate, {ticketPrices:ticketPrices});
 } else {
 $(this.el).empty();
 }
 return this;
 },
 onChange:function (event) {
 var value = event.currentTarget.value;
 var ticketPriceId = $(event.currentTarget).data("tm-id");
 var modifiedModelEntry = _.find(this.model, function(item) { return item.ticketPrice.id == ticketPriceId});
 if ($.isNumeric(value) && value > 0) {
 modifiedModelEntry.quantity = parseInt(value);
 }
 else {
 delete modifiedModelEntry.quantity;
 }
 }
 });

 var TicketSummaryView = Backbone.View.extend({
 render:function () {
 utilities.applyTemplate($(this.el), ticketSummaryViewTemplate, this.model.bookingRequest)
 }
 });

 var CreateBookingView = Backbone.View.extend({

 currentView: "CreateBooking",
 intervalDuration : 100,
 formValues : [],
 events:{
 "click a[id='confirmBooking']":"checkout",
 "change select":"refreshPrices",
 "change input[type='number']":"updateForm",
 "change input[name='email']":"updateForm",
 "click a[id='saveBooking']":"saveBooking",
 "click a[id='goBack']":"back",
 "click a[data-action='delete']":"deleteBooking"
 },
 render: function() {
 if (this.currentView === "CreateBooking") {
 this.renderCreateBooking();
 } else if(this.currentView === "ConfirmBooking") {
 this.renderConfirmBooking();
 }
 return this;
 },
 renderCreateBooking:function () {

 var self = this;

 $.getJSON(config.baseUrl + "rest/shows/" + this.model.showId, function (selectedShow) {
 self.model.performance = _.find(selectedShow.performances, function (item) {
 return item.id == self.model.performanceId;
 });
 self.model.email = self.model.email || "";
 var id = function (item) {return item.id;};
 // prepare a list of sections to populate the dropdown
 var sections = _.uniq(_.sortBy(_.pluck(selectedShow.ticketPrices, 'section'), id), true, id);

 utilities.applyTemplate($(self.el), createBookingTemplate, { show:selectedShow,
 performance:self.model.performance,
 sections:sections,
 email:self.model.email});
 $(self.el).enhanceWithin();
 self.ticketCategoriesView = new TicketCategoriesView({model:{}, el:$("#ticketCategoriesViewPlaceholder") });
 self.model.show = selectedShow;
 self.ticketCategoriesView.render();
 $('a[id="confirmBooking"]').addClass('ui-disabled');
 $("#sectionSelector").change();
 self.watchForm();
 });

 },
 refreshPrices:function (event) {
 if (event.currentTarget.value != "Choose a section") {
 var ticketPrices = _.filter(this.model.show.ticketPrices, function (item) {
 return item.section.id == event.currentTarget.value;
 });
 var ticketPriceInputs = new Array();
 _.each(ticketPrices, function (ticketPrice) {
 var model = {};
 model.ticketPrice = ticketPrice;
 ticketPriceInputs.push(model);
 });
 $("#ticketCategoriesViewPlaceholder").show();
 this.ticketCategoriesView.model = ticketPriceInputs;
 this.ticketCategoriesView.render();
 $(this.el).enhanceWithin();
 } else {
 $("#ticketCategoriesViewPlaceholder").hide();
 this.ticketCategoriesView.model = new Array();
 this.updateForm();
 }
 },
 checkout:function () {
 var savedTicketRequests = this.model.bookingRequest.tickets = this.model.bookingRequest.tickets || [];
 _.each(this.ticketCategoriesView.model, function(newTicketRequest){
 var matchingRequest = _.find(savedTicketRequests, function(ticketRequest) {
 return ticketRequest.ticketPrice.id == newTicketRequest.ticketPrice.id;
 });
 if(newTicketRequest.quantity) {
 if(matchingRequest) {
 matchingRequest.quantity += newTicketRequest.quantity;
 } else {
 savedTicketRequests.push(newTicketRequest);
 }
 }
 });
 this.model.bookingRequest.totals = this.computeTotals(this.model.bookingRequest.tickets);
 this.currentView = "ConfirmBooking";
 this.render();
 },
 updateForm:function () {
 var valid = true;
 this.model.email = $("input[type='email']").val();
 $("input[type='number']").each(function(idx,element) {
 var quantity = $(this).val();
 if(quantity.length > 0 &&
 (!$.isNumeric(quantity) // is a non-number, other than empty string
 || quantity <= 0 // is negative
 || parseFloat(quantity) != parseInt(quantity))) {
 $("#error-" + element.id).empty().append("Should be a positive number.");
 valid = false;
 } else {
 $("#error-" + element.id).empty();
 }
 });
 try {
 var validElements = document.querySelectorAll(":valid");
 var $email = $("#email");
 var emailElem = $email.get(0);
 var validEmail = false;
 for (var ctr=0; ctr < validElements.length; ctr++) {
 if (emailElem === validElements[ctr]) {
 validEmail = true;
 }
 }
 if(validEmail) {
 this.model.email = $email.val();
 $("#error-email").empty();
 } else {
 $("#error-email").empty().append("Please enter a valid e-mail address");
 delete this.model.email;
 valid = false;
 }
 }
 catch(e) {
 // For browsers like IE9 that do fail on querySelectorAll for CSS pseudo selectors,
 // we use the regex defined in the HTML5 spec.
 var emailRegex = new RegExp("[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*");
 var emailValue = $("#email").val();
 if(emailRegex.test(emailValue)) {
 this.model.email = emailValue;
 $("#error-email").empty();
 } else {
 $("#error-email").empty().append("Please enter a valid e-mail address");
 delete this.model.email;
 valid = false;
 }
 }
 var totals = this.computeTotals(this.ticketCategoriesView.model);
 if (totals.tickets > 0 && valid) {
 $('a[id="confirmBooking"]').removeClass('ui-disabled');
 } else {
 $('a[id="confirmBooking"]').addClass('ui-disabled');
 }
 },
 computeTotals: function(ticketRequestCollection) {
 var totals = _.reduce(ticketRequestCollection, function (partial, model) {
 if (model.quantity != undefined) {
 partial.tickets += model.quantity;
 partial.price += model.quantity * model.ticketPrice.price;
 return partial;
 } else {
 return partial;
 }
 }, {tickets:0, price:0.0});
 return totals;
 },
 renderConfirmBooking:function () {
 utilities.applyTemplate($(this.el), confirmBookingTemplate, this.model);
 this.ticketSummaryView = new TicketSummaryView({model:this.model, el:$("#ticketSummaryView")});
 this.ticketSummaryView.render();
 $(this.el).enhanceWithin();
 if (this.model.bookingRequest.totals.tickets > 0) {
 $('a[id="saveBooking"]').removeClass('ui-disabled');
 } else {
 $('a[id="saveBooking"]').addClass('ui-disabled');
 }
 return this;
 },
 back:function () {
 this.currentView = "CreateBooking";
 this.render();
 },
 saveBooking:function (event) {
 var bookingRequest = {ticketRequests:[]};
 var self = this;
 _.each(this.model.bookingRequest.tickets, function (model) {
 if (model.quantity != undefined) {
 bookingRequest.ticketRequests.push({ticketPrice:model.ticketPrice.id, quantity:model.quantity})
 }
 });

 bookingRequest.email = this.model.email;
 bookingRequest.performance = this.model.performanceId;
 $.ajax({url:(config.baseUrl + "rest/bookings"),
 data:JSON.stringify(bookingRequest),
 type:"POST",
 dataType:"json",
 contentType:"application/json",
 success:function (booking) {
 utilities.applyTemplate($(self.el), bookingDetailsTemplate, booking);
 $(self.el).enhanceWithin();
 }}).error(function (error) {
 try {
 var response = JSON.parse(error.responseText);
 var displayMessage = "";
 if(response && response.errors) {
 var errors = response.errors;
 for(var idx = 0; idx < errors.length; idx++) {
 displayMessage += errors[idx] + "\n";
 }
 alert(displayMessage);
 } else {
 alert("Failed to perform the bookng.");
 }
 } catch (e) {
 alert("Failed to perform the bookng.");
 }
 });
 },
 deleteBooking: function(event) {
 var deletedIdx = $(event.currentTarget).data("ticketpriceid");
 this.model.bookingRequest.tickets = _.reject(this.model.bookingRequest.tickets, function(ticketRequest) {
 return ticketRequest.ticketPrice.id == deletedIdx;
 });
 this.model.bookingRequest.totals = this.computeTotals(this.model.bookingRequest.tickets);
 this.renderConfirmBooking();
 return false;
 },
 watchForm: function() {
 if($("#sectionSelect").length) {
 var self = this;
 $("input").each(function(index,element) {
 if(element.value !== self.formValues[element.id]) {
 self.formValues[element.id] = element.value;
 $("input[id='"+element.id+"']").change();
 }
 });
 this.timerObject = setTimeout(function() {
 self.watchForm();
 }, this.intervalDuration);
 } else {
 this.onClose();
 }
 },
 onClose: function() {
 if(this.timerObject) {
 clearTimeout(this.timerObject);
 delete this.timerObject;
 }
 }
 });
 return CreateBookingView;
});

The views follow the structure the desktop application, except that the summary view is not rendered inline but after a page
transition.
Next, we create the page fragment templates. First, the actual page:
src/main/webapp/resources/templates/mobile/create-booking.html.

<div data-role="header" data-position="fixed">
 Home
 <h1>Book tickets</h1>
</div>
<div class="ui-content">
 <p>
 <h3><%=show.event.name%></h3>
 </p>
 <p>
 <%=show.venue.name%>
 <p>

 <p>
 <small><%=new Date(performance.date).toPrettyString()%></small>
 </p>
 <div id="sectionSelectorPlaceholder">
 <div class="ui-field-contain">
 <label for="sectionSelect">Section</label>
 <select id="sectionSelect">
 <option value="-1" selected>Choose a section</option>
 <% _.each(sections, function(section) { %>
 <option value="<%=section.id%>"><%=section.name%> - <%=section.description%></option>
 <% }) %>
 </select>
 </div>

 </div>
 <div id="ticketCategoriesViewPlaceholder" style="display:none;"></div>

 <div class="fieldcontain">
 <label>Contact email</label>
 <input type='email' id='email' name='email' required placeholder="Email" value="<%=email%>" />

 </div>
</div>

<div data-role="footer" data-position="fixed">
 <div class="ui-grid-a">
 <div class="ui-block-a">Cancel</div>
 <div class="ui-block-b">Checkout</div>
 </div>
</div>

Next, the fragment that contains the input form for tickets, which is re-rendered whenever the section is changed:
src/main/webapp/resources/templates/mobile/ticket-entries.html.

<% if (ticketPrices.length > 0) { %>
 <form name="ticketCategories" id="ticketCategories">
 <h4>Select tickets by category</h4>
 <% _.each(ticketPrices, function(ticketPrice) { %>
 <div id="ticket-category-input-<%=ticketPrice.id%>"/>

 <fieldset class="ui-field-contain">
 <label for="ticket-<%=ticketPrice.id%>"><%=ticketPrice.ticketCategory.description%>($<%=ticketPrice.price%>)</label>
 <input id="ticket-<%=ticketPrice.id%>" data-tm-id="<%=ticketPrice.id%>" type="number" min="0" placeholder="Enter value"
 name="tickets"/>
 <span id="error-ticket-<%=ticketPrice.id%>" class="error" />
 </fieldset>
 <% }) %>
 </form>
<% } %>

Before submitting the request to the server, the order is confirmed:
src/main/webapp/resources/templates/mobile/confirm-booking.html.

<div data-role="header" data-position="fixed">
 Home
 <h1>Confirm order</h1>
</div>
<div class="ui-content">
 <h3><%=show.event.name%></h3>
 <p><%=show.venue.name%></p>
 <p><small><%=new Date(performance.date).toPrettyString()%></small></p>
 <p>Buyer: <emphasis><%=email%></emphasis></p>
 <div id="ticketSummaryView"/>

</div>

<div data-role="footer" data-position="fixed">
 <div class="ui-grid-b">
 <div class="ui-block-a">Cancel</div>
 <div class="ui-block-b">Back</div>
 <div class="ui-block-c">Buy!</div>
 </div>
</div>

The confirmation page contains a summary subview:
src/main/webapp/resources/templates/mobile/ticket-summary-view.html.

<ul data-role="listview" data-split-icon="delete" data-split-theme="c" data-inset="true">
 <% _.each(tickets, function(model) { %>

 <p>Section <%= model.ticketPrice.section.name %></p>
 <p>Category <%= model.ticketPrice.ticketCategory.description %></p>
 <p>Price <%= model.ticketPrice.price %></p>
 <p>Quantity <%= model.quantity %></p>

 <a href="#" data-action="delete" data-ticketpriceid="<%= model.ticketPrice.id %>">

 <% }); %>

<div>
 <h4>Totals</h4>
 <p>Total tickets: <%= totals.tickets %></p>
 <p>Total price: $ <%= totals.price %></p>
</div>

Finally, we create the page that displays the booking confirmation:
src/main/webapp/resources/templates/mobile/booking-details.html.

<div data-role="header" data-position="fixed">
 Home
 <h1>Booking complete</h1>
</div>
<div class="ui-content">
 <table id="confirm_tbl">
 <thead>
 <tr>
 <td colspan="5" align="center">Booking <%=id%></td>
 <tr>
 <tr>
 <th>Ticket #</th>
 <th>Category</th>
 <th>Section</th>
 <th>Row</th>
 <th>Seat</th>
 </tr>
 </thead>
 <tbody>
 <% $.each(_.sortBy(tickets, function(ticket) {return ticket.id}), function (i, ticket) { %>
 <tr>
 <td><%= ticket.id %></td>
 <td><%=ticket.ticketCategory.description%></td>
 <td><%=ticket.seat.section.name%></td>
 <td><%=ticket.seat.rowNumber%></td>
 <td><%=ticket.seat.number%></td>
 </tr>
 <% }) %>
 </tbody>
 </table></div>
<div data-role="footer" data-position="fixed">

 <div class="ui-block-b">
 Back
 </div>

</div>

The last step is registering the view with the router:
src/main/webapp/resources/js/app/router/mobile/router.js.

/**
 * A module for the router of the desktop application
 */
define("router", [
 ...
 'app/views/mobile/create-booking',
 ...
],function (
 ...
 CreateBookingView
 ...) {

 var Router = Backbone.Router.extend({
 ...
 routes:{
 ...
 "book/:showId/:performanceId":"bookTickets",
 ...
 },
 ...
 bookTickets:function (showId, performanceId) {
 var createBookingView = new CreateBookingView({model:{showId:showId, performanceId:performanceId, bookingRequest:{tickets:[]}}, el:$("#container")});
 utilities.viewManager.showView(createBookingView);
 },
 ...
 });
 ...
});

The other use case: a booking starting from venues is conceptually similar, so you can just copy the rest of the logic from src/main/webapp/resources/js/app/routers/mobile/router.js, and the rest of the files files in the src/main/webapp/resources/js/app/views/mobile and src/main/webapp/resources/templates/mobile directories.

Part VI. Building the Administration UI using Forge

Chapter 37. What Will You Learn Here?

You’ve just defined the domain model of your application, and all the entities managed directly by the end-users. Now it’s time to build an administration GUI for the TicketMonster application using JAX-RS and AngularJS. After reading this guide, you’ll understand how to use JBoss Forge to create the JAX-RS resources from the entities and how to create an AngularJS based UI.
We’ll round out the guide by revealing the required, yet short and sweet, configuration.
The tutorial will show you how to perform all these steps in JBoss Developer Studio, including screenshots that guide you through.

Chapter 38. Setting up Forge

38.1. JBoss Developer Studio

Forge is available in JBoss Developer Studio 8. You would have already used Forge in the Introductory chapter.
You can start Forge in JBoss Developer Studio, using the Ctrl + 4 (Windows/Linux) or Cmd + 4 (Mac OS X) key stroke combination. This would launch the Forge action menu from where you can choose the desired commands to run in a particular context.
Or alternatively, to use the Forge Console, navigate to Window → Show View → Other, locate Forge Console and click OK. Then click the Start button in top right corner of the view.

Chapter 39. Getting started with Forge

Forge is a powerful rapid application development (aimed at Java EE 6) and project comprehension tool. It can operate both on projects it creates, and on existing projects, such as TicketMonster. If you want to learn more about Forge, head over to the JBoss Forge site.
Forge can scaffold an entire app for you from a set of existing resources. For instance, it can generate a HTML5 scaffold with RESTful services, based on existing JPA entities. We shall see how to use this feature to generate the administration section of the TicketMonster application.

Chapter 40. Generating the CRUD UI

Forge Scripts

Forge supports the execution of scripts. The generation of the CRUD UI is provided
as a Forge script in TicketMonster, so you don’t need to type the commands everytime
you want to regenerate the Admin UI. The script will also prompt you to apply all
changes to the generated CRUD UI that listed later in this chapter. This would relieve
us of the need to manually type in the changes.
To run the script:
run admin_layer.fsh

40.1. Scaffold the AngularJS UI from the JPA entities

Scaffolding capabilities are available through the "Scaffold: Setup" and "Scaffold: Generate" commands in the Forge action menu. The first command is used to set up the pre-requisites for a scaffold in a project - usually static files and libraries that can be installed separately and are not modified by subsequent scaffolding operations. The second command is used to generate various source files in a project, based on some input files (in this case JPA entities).
In the case of the AngularJS scaffold, an entire CRUD app (a HTML5 UI with a RESTful backend using a database) can be generated from JPA entities.
Forge can detect whether the scaffold was initially setup during scaffold generation and adjust for missing capabilities in the project. Let’s therefore go ahead and launch the "Scaffold: Generate" command from the Forge action menu:
Figure 40.1. Filter the Scaffold: Generate command in the menu
[image: gfx/forge_scaffold_generate_action_menu.png]

We’re now prompted to select which scaffold to generate. Forge supports AngularJS and JSF out of the box. Choose AngularJS. The generated scaffold can be placed in any directory under the web root path (which corresponds to the src/main/webapp directory of the project). We’ll choose to generate the scaffold in the admin directory.
Figure 40.2. Launch the Scaffold: Generate command
[image: gfx/forge_scaffold_generate.png]

Figure 40.3. Select the scaffold to generate and the web root path
[image: gfx/forge_scaffold_generate_input_webroot.png]

Click the Next button, and proceed to choose the JPA entities that we would use as the basis for the scaffold. You can either scaffold the entities one-by-one, which allows you to control which UIs are generated, or you can generate a CRUD UI for all the entities. We’ll do the latter. We’ll also choose to generate REST resources for the entities, since the existing REST resources are not suitable for CRUD operations:
Figure 40.4. Select the JPA entities to use for generation
[image: gfx/forge_scaffold_generate_select_entities.png]

Click the Next button, to configure the nature of the REST resources generated by the scaffold. Multiple strategies exist in Forge for generating REST resources from JPA entities. We’ll choose the option to generate and expose DTOs for the JPA entities, since it is more suitable for the TicketMonster object model. Provide a value of org.jboss.examples.ticketmonster.rest as the target package for the generated REST resources, if not already specified. Click Finish to generate the scaffold.
Figure 40.5. Choose the REST resource generation strategy
[image: gfx/forge_scaffold_generate_choose_rest_strategy.png]

Note
The Root and Nested DTO resource representation enables Forge to create REST resources for complex object graphs without adding Jackson annotations to avoid cycles in the graph. Without this constrained representation, one would have to add annotations like @JsonIgnore (to ignore certain undesirable object properties), or @JsonIdentity (to represent cycles in JSON without succumbing to StackOverflowErrors or similar such errors/exceptions).

The scaffold generation command performs a multitude of activities, depending on the previous state of the project:
	
It copies the css, images and JavaScript libraries used by the scaffold, to the project. It does this if you did not setup the scaffold in a separate step (this is optional; the generate command will do this for you).

	
It generates JAX-RS resources for all the JPA entities in the project. The resources would be represented in JSON to enable the AngularJS-based front-end to communicate with the backend services. Each resource representation is structured to contain the representation of the corresponding JPA entity (the root) and any associated entities (that are represneted as nested objects).

	
It generates the AngularJS-based front-end that contains HTML based Angular templates along with AngularJS factories, services and controllers.

We now have a database-driven CRUD UI for all the entities used in TicketMonster!

Chapter 41. Test the CRUD UI

Let’s test our UI on our local JBoss AS instance. As usual, we’ll build and deploy using Maven:
mvn clean package jboss-as:deploy

Chapter 42. Make some changes to the UI

Let’s add support for images to the Admin UI. Events and Venues have `MediaItem`s associated with them, but they’re only displayed as URLs. Let’s display the corresponding images in the AngularJS views, by adding the required bindings:
src/main/webapp/admin/views/Event/detail.html.

 ...
 <div id="mediaItemControls" class="controls">
 <select id="mediaItem" name="mediaItem" ng-model="mediaItemSelection" ng-options="m.text for m in mediaItemSelectionList" >
 <option value="">Choose a Media Item</option>
 </select>

 </div>
 ...

src/main/webapp/admin/views/Venue/detail.html.

 ...
 <div id="mediaItemControls" class="controls">
 <select id="mediaItem" name="mediaItem" ng-model="mediaItemSelection" ng-options="m.text for m in mediaItemSelectionList" >
 <option value="">Choose a Media Item</option>
 </select>

 </div>
 ...

Now that the bindings are set, we’ll modify the underlying controllers to provide the URL of the MediaItem when the {{mediaItemSelection.text}} expression is evaluated:
src/main/webapp/admin/scripts/scripts/controllers/editEventController.js.

...
 MediaItemResource.queryAll(function(items) {
 $scope.mediaItemSelectionList = $.map(items, function(item) {
 ...
 var labelObject = {
 value : item.id,
 text : item.url
 };
 ...
 });
 });
...

src/main/webapp/admin/scripts/scripts/controllers/editVenueController.js.

...
 MediaItemResource.queryAll(function(items) {
 $scope.mediaItemSelectionList = $.map(items, function(item) {
 ...
 var labelObject = {
 value : item.id,
 text : item.url
 };
 ...
 });
 });
...

The admin site will now display the corresponding image if a media item is associated with the venue or event.
Tip
The location of the MediaItem is present in the text property of the mediaItemSelection object.
The parameter to the ngSrc directive is set to this value. This ensures that the browser fetches the image present at this location.
The expression src={{mediaItemSelection.text}} should be avoided since the browser would attempt to fetch the URL with the literal text {{hash}} before AngularJS replaces the expression with the actual URL.

Let’s also modify the UI to make it more user-friendly. Shows and Performances are displayed in a non-intuitive manner at the moment. Shows are displayed as their object identities, while performances are displayed as date-time values. This makes it difficult to identify them in the views. Let’s modify the UI to display more semantically useful values.
These values will be computed at the server-side, since these are already available in the toString() implementations of these classes. This would be accomplished by adding a read-only property displayTitle to the Show and Performance REST resource representations:
src/main/java/org/jboss/examples/ticketmonster/rest/dto/ShowDTO.java.

 ...
 private Set<NestedPerformanceDTO> performances = new HashSet<NestedPerformanceDTO>();
 private NestedVenueDTO venue;
 private String displayTitle;

 public ShowDTO()
 ...
 }
 this.venue = new NestedVenueDTO(entity.getVenue());
 this.displayTitle = entity.toString();
 }
 }
 ...
 public String getDisplayTitle()
 {
 return this.displayTitle;
 }
}

src/main/java/org/jboss/examples/ticketmonster/rest/dto/PerformanceDTO.java.

 ...
 private NestedShowDTO show;
 private Date date;
 private String displayTitle;

 public PerformanceDTO()
 ...
 this.show = new NestedShowDTO(entity.getShow());
 this.date = entity.getDate();
 this.displayTitle = entity.toString();
 }
 }
 ...
 public String getDisplayTitle()
 {
 return this.displayTitle;
 }
}

And let us do the same for the nested representations:
src/main/java/org/jboss/examples/ticketmonster/rest/dto/NestedPerformanceDTO.java.

 ...
 private Long id;
 private Date date;
 private String displayTitle;

 public NestedPerformanceDTO()
 ...
 this.id = entity.getId();
 this.date = entity.getDate();
 this.displayTitle = entity.toString();
 }
 }
 ...
 public String getDisplayTitle()
 {
 return this.displayTitle;
 }
}

src/main/java/org/jboss/examples/ticketmonster/rest/dto/NestedShowDTO.java.

 ...
 private Long id;
 private String displayTitle;

 public NestedShowDTO()
 ...
 {
 this.id = entity.getId();
 this.displayTitle = entity.toString();
 }
 }
 ...
 public String getDisplayTitle()
 {
 return this.displayTitle;
 }
}

We shall now proceed to modify the AngularJS views to use the new properties in the resource representations:
src/main/webapp/admin/scripts/controllers/editPerformanceController.js.

 ...
 var labelObject = {
 value : item.id,
 text : item.displayTitle
 };
 if($scope.performance.show && item.id == $scope.performance.show.id) {
 ...

src/main/webapp/admin/scripts/controllers/editSectionAllocationController.js.

 ...
 var labelObject = {
 value : item.id,
 text : item.displayTitle
 };
 if($scope.sectionAllocation.performance && item.id == $scope.sectionAllocation.performance.id) {
 ...

src/main/webapp/admin/scripts/controllers/editShowController.js.

 ...
 var labelObject = {
 value : item.id,
 text : item.displayTitle
 };
 if($scope.show.performances){
 ...

src/main/webapp/admin/scripts/controllers/editTicketPriceController.js.

 ...
 var labelObject = {
 value : item.id,
 text : item.displayTitle
 };
 if($scope.ticketPrice.show && item.id == $scope.ticketPrice.show.id) {
 ...

src/main/webapp/admin/scripts/controllers/newPerformanceController.js.

 ...
 $scope.showSelectionList = $.map(items, function(item) {
 return ({
 value : item.id,
 text : item.displayTitle
 });
 });
 ...

src/main/webapp/admin/scripts/controllers/newSectionAllocationController.js.

 ...
 $scope.performanceSelectionList = $.map(items, function(item) {
 return ({
 value : item.id,
 text : item.displayTitle
 });
 });
 ...

src/main/webapp/admin/scripts/controllers/newShowController.js.

 ...
 $scope.performancesSelectionList = $.map(items, function(item) {
 return ({
 value : item.id,
 text : item.displayTitle
 });
 });
 ...

src/main/webapp/admin/scripts/controllers/newTicketPriceController.js.

 ...
 $scope.showSelectionList = $.map(items, function(item) {
 return ({
 value : item.id,
 text : item.displayTitle
 });
 });
 ...

src/main/webapp/admin/views/Performance/search.html.

 <label for="show" class="control-label">Show</label>
 <div class="controls">
 <select id="show" name="show" ng-model="search.show" ng-options="s as s.displayTitle for s in showList">
 <option value="">Choose a Show</option>
 </select>
 ...
 <tbody id="search-results-body">
 <tr ng-repeat="result in searchResults | searchFilter:searchResults | startFrom:currentPage*pageSize | limitTo:pageSize">
 <td>{{result.show.displayTitle}}</td>
 <td>{{result.date| date:'yyyy-MM-dd HH:mm:ss Z'}}</td>
 </tr>

src/main/webapp/admin/views/SectionAllocation/search.html.

 <label for="performance" class="control-label">Performance</label>
 <div class="controls">
 <select id="performance" name="performance" ng-model="search.performance" ng-options="p as p.displayTitle for p in performanceList">
 <option value="">Choose a Performance</option>
 </select>
 ...
 <tbody id="search-results-body">
 <tr ng-repeat="result in searchResults | searchFilter:searchResults | startFrom:currentPage*pageSize | limitTo:pageSize">
 <td>{{result.occupiedCount}}</td>
 <td>{{result.performance.displayTitle}}</td>
 <td>{{result.section.name}}</td>
 </tr>

src/main/webapp/admin/views/TicketPrice/search.html.

 <label for="show" class="control-label">Show</label>
 <div class="controls">
 <select id="show" name="show" ng-model="search.show" ng-options="s as s.displayTitle for s in showList">
 <option value="">Choose a Show</option>
 </select>
 ...
 <tbody id="search-results-body">
 <tr ng-repeat="result in searchResults | searchFilter:searchResults | startFrom:currentPage*pageSize | limitTo:pageSize">
 <td>{{result.show.displayTitle}}</td>
 <td>{{result.section.name}}</td>
 <td>{{result.ticketCategory.description}}</td>

42.1. Fixing the landing page of the Administration site

The generated administration site contains a landing page - app.html that works well as a standalone site.
However, we need to fix this page to make it work with the rest of the site.
For brevity, the significant sections of the corrected page are listed below:
src/main/webapp/admin/app.html.

<!DOCTYPE html>
<html lang="en" ng-app="ticketmonster">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Ticket-monster</title>
 <link href='http://fonts.googleapis.com/css?family=Rokkitt' rel='stylesheet' type='text/css'/>
 <link href="styles/bootstrap.css" rel="stylesheet" media="screen">
 <link href="styles/bootstrap-theme.css" rel="stylesheet" media="screen">
 <link href="styles/main.css" rel="stylesheet" media="screen">
 <link href="styles/custom-forge.css" rel="stylesheet" media="screen">
</head>
<body>
 <div id="wrap">

 <div id="logo" class="hidden-xs"><div class="wrap"><h1>Ticket Monster</h1></div></div>
 <div class="navbar">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle pull-left" data-toggle="collapse" data-target="#navbar-items">
 Links
 </button>
 <button type="button" class="navbar-toggle" data-toggle="offcanvas">
 TicketMonster Entities
 </button>
 </div>

 <!-- Collect the nav links, forms, and other content for toggling -->
 <div id="navbar-items" class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 About
 Events
 Venues
 Bookings
 Monitor
 Administration

 </div>
 </div>

 <div class="container">

 ...

 </div>

 ...

</body>
</html>

It is sufficient to copy the corrected page from the project sources. Additionally, do not forget to copy the src/main/webapp/admin/styles/custom-forge.css file, that we now reference it in the corrected page.

Chapter 43. Updating the ShrinkWrap deployment for the test suite

We’ve added classes to the project that should be in the ShrinkWrap deployment used in the test suite. Let us update the ShrinkWrap deployment to reflect this.
src/test/java/org/jboss/examples/ticketmonster/test/rest/RESTDeployment.java.

public class RESTDeployment {

 public static WebArchive deployment() {
 return TicketMonsterDeployment.deployment()
 .addPackage(Booking.class.getPackage())
 .addPackage(BaseEntityService.class.getPackage())
 .addPackage(MultivaluedHashMap.class.getPackage())
 .addPackage(SeatAllocationService.class.getPackage())
 .addPackage(VenueDTO.class.getPackage());
 }

}

We can test these changes by executing
mvn clean test -Parq-jbossas-managed
or (against an already running JBoss EAP 6.2 instance)
mvn clean test -Parq-jbossas-remote
as usual.

Part VII. Building The Statistics Dashboard Using HTML5 and JavaScript

Chapter 44. What Will You Learn Here?

You’ve just built the administration view, and would like to collect real-time information about ticket sales and attendance. Now it would be good to implement a dashboard that can collect data and receive real-time updates. After reading this tutorial, you will understand our dashboard design and the choices that we made in its implementation. Topics covered include:
	
Adding a RESTful API to your application for obtaining metrics

	
Adding a non-RESTful API to your application for controlling a bot

	
Creating Backbone.js models and views to interact with a non-RESTful service

In this tutorial, we will create a booking monitor using Backbone.js, and add it to the TicketMonster application. It will show live updates on the booking status of all performances and shows. These live updates are powered by a short polling solution that pings the server on regular intervals to obtain updated metrics.

Chapter 45. Implementing the Metrics API

The Metrics service publishes metrics for every show. These metrics include the capacity of the venue for the show, as well as the occupied count. Since these metrics are computed from persisted data, we’ll not create any classes to represent them in the data model. We shall however create new classes to serve as their representations for the REST APIs:
src/main/java/org/jboss/examples/ticketmonster/rest/ShowMetric.java.

package org.jboss.examples.ticketmonster.rest;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.jboss.examples.ticketmonster.model.Performance;
import org.jboss.examples.ticketmonster.model.Show;

/**
 * Metric data for a Show. Contains the identifier for the Show to identify it,
 * in addition to the event name, the venue name and capacity, and the metric
 * data for the performances of the Show.
 */
class ShowMetric {

 private Long show;
 private String event;
 private String venue;
 private int capacity;
 private List<PerformanceMetric> performances;

 // Constructor to populate the instance with data
 public ShowMetric(Show show, Map<Long, Long> occupiedCounts) {
 this.show = show.getId();
 this.event = show.getEvent().getName();
 this.venue = show.getVenue().getName();
 this.capacity = show.getVenue().getCapacity();
 this.performances = convertFrom(show.getPerformances(), occupiedCounts);
 }

 private List<PerformanceMetric> convertFrom(Set<Performance> performances,
 Map<Long, Long> occupiedCounts) {
 List<PerformanceMetric> result = new ArrayList<PerformanceMetric>();
 for (Performance performance : performances) {
 Long occupiedCount = occupiedCounts.get(performance.getId());
 result.add(new PerformanceMetric(performance, occupiedCount));
 }
 return result;
 }

 // Getters for Jackson
 // NOTE: No setters and default constructors are defined since
 // deserialization is not required.

 public Long getShow() {
 return show;
 }

 public String getEvent() {
 return event;
 }

 public String getVenue() {
 return venue;
 }

 public int getCapacity() {
 return capacity;
 }

 public List<PerformanceMetric> getPerformances() {
 return performances;
 }
}

The ShowMetric class is used to represent the structure of a Show in the metrics API. It contains the show identifier, the Event name for the Show, the Venue name for the Show, the capacity of the Venue and a collection of PerformanceMetric instances to represent metrics for individual Performance s for the Show.
The PerformanceMetric is represented as:
src/main/java/org/jboss/examples/ticketmonster/rest/PerformanceMetric.java.

package org.jboss.examples.ticketmonster.rest;

import java.util.Date;

import org.jboss.examples.ticketmonster.model.Performance;

/**
 * Metric data for a Performance. Contains the datetime for the performance to
 * identify the performance, as well as the occupied count for the performance.
 */
class PerformanceMetric {

 private Date date;
 private Long occupiedCount;

 // Constructor to populate the instance with data
 public PerformanceMetric(Performance performance, Long occupiedCount) {
 this.date = performance.getDate();
 this.occupiedCount = (occupiedCount == null ? 0 : occupiedCount);
 }

 // Getters for Jackson
 // NOTE: No setters and default constructors are defined since
 // deserialization is not required.

 public Date getDate() {
 return date;
 }

 public Long getOccupiedCount() {
 return occupiedCount;
 }

}

This class represents the date-time instance of Performance in addition to the count of occupied seats for the venue.
The next class we need is the MetricsService class that responds with representations of ShowMetric instances in response to HTTP GET requests:
src/main/java/org/jboss/examples/ticketmonster/rest/MetricsService.java.

package org.jboss.examples.ticketmonster.rest;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.ejb.Stateless;
import javax.inject.Inject;
import javax.persistence.EntityManager;
import javax.persistence.Query;
import javax.persistence.TypedQuery;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.examples.ticketmonster.model.Show;

/**
 * A read-only REST resource that provides a collection of metrics for shows occuring in the future. Updates to metrics via
 * POST/PUT etc. are not allowed, since they are not meant to be computed by consumers.
 *
 */
@Path("/metrics")
@Stateless
public class MetricsService {

 @Inject
 private EntityManager entityManager;

 /**
 * Retrieves a collection of metrics for Shows. Each metric in the collection contains
 *
 * the show id,
 * the event name of the show,
 * the venue for the show,
 * the capacity for the venue
 * the performances for the show,
 *
 * the timestamp for each performance,
 * the occupied count for each performance
 *
 *
 *
 *
 * @return A JSON representation of metrics for shows.
 */
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<ShowMetric> getMetrics() {
 return retrieveMetricsFromShows(retrieveShows(),
 retrieveOccupiedCounts());
 }

 private List<ShowMetric> retrieveMetricsFromShows(List<Show> shows,
 Map<Long, Long> occupiedCounts) {
 List<ShowMetric> metrics = new ArrayList<ShowMetric>();
 for (Show show : shows) {
 metrics.add(new ShowMetric(show, occupiedCounts));
 }
 return metrics;
 }

 private List<Show> retrieveShows() {
 TypedQuery<Show> showQuery = entityManager
 .createQuery("select DISTINCT s from Show s JOIN s.performances p WHERE p.date > current_timestamp", Show.class);
 return showQuery.getResultList();
 }

 private Map<Long, Long> retrieveOccupiedCounts() {
 Map<Long, Long> occupiedCounts = new HashMap<Long, Long>();

 Query occupiedCountsQuery = entityManager
 .createQuery("select b.performance.id, SIZE(b.tickets) from Booking b "
 + "WHERE b.performance.date > current_timestamp GROUP BY b.performance.id");

 List<Object[]> results = occupiedCountsQuery.getResultList();
 for (Object[] result : results) {
 occupiedCounts.put((Long) result[0],
 ((Integer) result[1]).longValue());
 }

 return occupiedCounts;
 }
}

This REST resource responds to a GET request by querying the database to retrieve all the shows and the performances associated with each show. The metric for every performance is also obtained; the performance metric is simply the sum of all tickets booked for the performance. This query result is used to populate the ShowMetric and PerformanceMetric representation instances that are later serialized as JSON responses by the JAX-RS provider.

Chapter 46. Creating the Bot service

We’d also like to implement a Bot service that would mimic a set of real users. Once started, the Bot would attempt to book tickets at periodic intervals, until it is ordered to stop. The Bot should also be capable of deleting all Bookings so that the system could be returned to a clean state.
We will implement the Bot as an EJB that will utlize the container-provided TimerService to periodically perform bookings of a random number of tickets on randomly selected performances:
src/main/java/org/jboss/examples/ticketmonster/service/Bot.java.

package org.jboss.examples.ticketmonster.service;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.TimeUnit;

import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerConfig;
import javax.ejb.TimerService;
import javax.enterprise.event.Event;
import javax.inject.Inject;
import javax.ws.rs.core.Response;

import org.jboss.examples.ticketmonster.model.Performance;
import org.jboss.examples.ticketmonster.model.Show;
import org.jboss.examples.ticketmonster.model.TicketPrice;
import org.jboss.examples.ticketmonster.rest.*;
import org.jboss.examples.ticketmonster.util.MultivaluedHashMap;
import org.jboss.examples.ticketmonster.util.qualifier.BotMessage;

@Stateless
public class Bot {

 private static final Random random = new Random(System.nanoTime());

 /** Frequency with which the bot will book **/
 public static final long DURATION = TimeUnit.SECONDS.toMillis(3);

 /** Maximum number of ticket requests that will be filed **/
 public static int MAX_TICKET_REQUESTS = 100;

 /** Maximum number of tickets per request **/
 public static int MAX_TICKETS_PER_REQUEST = 100;

 public static String [] BOOKERS = {"anne@acme.com", "george@acme.com", "william@acme.com", "victoria@acme.com", "edward@acme.com", "elizabeth@acme.com", "mary@acme.com", "charles@acme.com", "james@acme.com", "henry@acme.com", "richard@acme.com", "john@acme.com", "stephen@acme.com"};

 @Inject
 private ShowService showService;

 @Inject
 private BookingService bookingService;

 @Inject @BotMessage
 Event<String> event;

 @Resource
 private TimerService timerService;

 public Timer start() {
 String startMessage = new StringBuilder("==========================\n")
 .append("Bot started at ").append(new Date().toString()).append("\n")
 .toString();
 event.fire(startMessage);
 return timerService.createIntervalTimer(0, DURATION, new TimerConfig(null, false));
 }

 public void stop(Timer timer) {
 String stopMessage = new StringBuilder("==========================\n")
 .append("Bot stopped at ").append(new Date().toString()).append("\n")
 .toString();
 event.fire(stopMessage);
 timer.cancel();
 }

 @Timeout
 public void book(Timer timer) {
 // Select a show at random
 Show show = selectAtRandom(showService.getAll(MultivaluedHashMap.<String, String>empty()));

 // Select a performance at random
 Performance performance = selectAtRandom(show.getPerformances());

 String requestor = selectAtRandom(BOOKERS);

 BookingRequest bookingRequest = new BookingRequest(performance, requestor);

 List<TicketPrice> possibleTicketPrices = new ArrayList<TicketPrice>(show.getTicketPrices());

 List<Integer> indicies = selectAtRandom(MAX_TICKET_REQUESTS < possibleTicketPrices.size() ? MAX_TICKET_REQUESTS : possibleTicketPrices.size());

 StringBuilder message = new StringBuilder("==========================\n")
 .append("Booking by ")
 .append(requestor)
 .append(" at ")
 .append(new Date().toString())
 .append("\n")
 .append(performance)
 .append("\n")
 .append("~~~~~~~~~~~~~~~~~~~~~~~~~\n");

 for (int index : indicies) {
 int no = random.nextInt(MAX_TICKETS_PER_REQUEST);
 TicketPrice price = possibleTicketPrices.get(index);
 bookingRequest.addTicketRequest(new TicketRequest(price, no));
 message
 .append(no)
 .append(" of ")
 .append(price.getSection())
 .append("\n");

 }
 Response response = bookingService.createBooking(bookingRequest);
 if(response.getStatus() == Response.Status.OK.getStatusCode()) {
 message.append("SUCCESSFUL\n")
 .append("~~~~~~~~~~~~~~~~~~~~~~~~~\n");
 }
 else {
 message.append("FAILED:\n")
 .append(((Map<String, Object>) response.getEntity()).get("errors"))
 .append("~~~~~~~~~~~~~~~~~~~~~~~~~\n");
 }
 event.fire(message.toString());
 }

 private <T> T selectAtRandom(List<T> list) {
 int i = random.nextInt(list.size());
 return list.get(i);
 }

 private <T> T selectAtRandom(T[] array) {
 int i = random.nextInt(array.length);
 return array[i];
 }

 private <T> T selectAtRandom(Collection<T> collection) {
 int item = random.nextInt(collection.size());
 int i = 0;
 for(T obj : collection)
 {
 if (i == item)
 return obj;
 i++;
 }
 throw new IllegalStateException();
 }

 private List<Integer> selectAtRandom(int max) {
 List<Integer> indicies = new ArrayList<Integer>();
 for (int i = 0; i < max;) {
 int r = random.nextInt(max);
 if (!indicies.contains(r)) {
 indicies.add(r);
 i++;
 }
 }
 return indicies;
 }
}

The start() and stop(Timer timer) methods are used to control the lifecycle of the Bot. When invoked, the start() method creates an interval timer that is scheduled to execute every 3 seconds. The complementary stop(Timer timer) method accepts a Timer handle, and cancels the associated interval timer. The book(Timer timer) is the callback method invoked by the container when the interval timer expires; it it therefore invoked every 3 seconds. The callback method selects a show at random, an associated performance for the chosen show at random, and finally attempts to perform a booking of a random number of seats.
The Bot also fires CDI events containing log messages. To qualify the String messages produced by the Bot, we’ll use the BotMesssage qualifier:
src/main/java/org/jboss/examples/ticketmonster/util/qualifier/BotMessage.java.

package org.jboss.examples.ticketmonster.util.qualifier;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Qualifier
@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
@Documented
public @interface BotMessage {

}

The next step is to create a facade for the Bot that invokes the Bot’s start and stop methods:
src/main/java/org/jboss/examples/ticketmonster/service/BotService.java.

package org.jboss.examples.ticketmonster.service;

import java.util.List;
import java.util.logging.Logger;

import javax.ejb.Asynchronous;
import javax.ejb.Singleton;
import javax.ejb.Timer;
import javax.enterprise.event.Event;
import javax.enterprise.event.Observes;
import javax.inject.Inject;

import org.jboss.examples.ticketmonster.model.Booking;
import org.jboss.examples.ticketmonster.rest.BookingService;
import org.jboss.examples.ticketmonster.util.CircularBuffer;
import org.jboss.examples.ticketmonster.util.MultivaluedHashMap;
import org.jboss.examples.ticketmonster.util.qualifier.BotMessage;

/**
 * A Bot service that acts as a Facade for the Bot, providing methods to control the Bot state as well as to obtain the current
 * state of the Bot.
 */
@Singleton
public class BotService {

 private static final int MAX_LOG_SIZE = 50;

 private CircularBuffer<String> log;

 @Inject
 private Bot bot;

 @Inject
 private BookingService bookingService;

 @Inject
 private Logger logger;

 @Inject
 @BotMessage
 private Event<String> event;

 private Timer timer;

 public BotService() {
 log = new CircularBuffer<String>(MAX_LOG_SIZE);
 }

 public void start() {
 synchronized (bot) {
 if (timer == null) {
 logger.info("Starting bot");
 timer = bot.start();
 }
 }
 }

 public void stop() {
 synchronized (bot) {
 if (timer != null) {
 logger.info("Stopping bot");
 bot.stop(timer);
 timer = null;
 }
 }
 }

 @Asynchronous
 public void deleteAll() {
 synchronized (bot) {
 stop();
 // Delete 10 bookings at a time
 while(true) {
 MultivaluedHashMap<String,String> params = new MultivaluedHashMap<String, String>();
 params.add("maxResults", Integer.toString(10));
 List<Booking> bookings = bookingService.getAll(params);
 for (Booking booking : bookings) {
 bookingService.deleteBooking(booking.getId());
 event.fire("Deleted booking " + booking.getId() + " for "
 + booking.getContactEmail() + "\n");
 }
 if(bookings.size() < 1) {
 break;
 }
 }
 }
 }

 public void newBookingRequest(@Observes @BotMessage String bookingRequest) {
 log.add(bookingRequest);
 }

 public List<String> fetchLog() {
 return log.getContents();
 }

 public boolean isBotActive() {
 return (timer != null);
 }

}

The start and stop methods of this facade wrap calls to the start and stop methods of the Bot. These methods are synchronous by nature. The deleteAll method is an asynchronous business method in this EJB. It first stops the Bot, and then proceeds to delete all Bookings. Bookings can take quite a while to be deleted depending on the number of existing ones, and hence declaring this method as @Asynchronous would be appropriate in this situation. Moreover, retrieving all Bookings in one execution run for deletion can lead to Out-of-Memory errors with a constrained heap space. The deleteAll method works around this by chunking the bookings to be deleted to a batch size of 10. You shall see how Java Batch (JSR-352) will aid you here, in a future version of TicketMonster that runs on a Java EE 7 compliant app server. For now, we will manage the batching manually.
This facade also exposes the log messages produced by the Bot via the fetchLog() method. The contents of the log are backed by a CircularBuffer. The facade observes all @BotMessage events and adds the contents of each event to the buffer.
Finally, the facade also provides an interface to detect if the bot is active or not: isBotActive that returns true if a Timer handle is present.
We shall now proceed to create a BotStatusService class that exposes the operations on the Bot as a web-service. The BotStatusService will always return the current status of the Bot - whether the Bot has been started or stopped, and the messages in the Bot’s log. The service also allows the client to change the state of the bot - to start the bot, or to stop it, or even delete all the bookings.
The BotState is just an enumeration:
src/main/java/org/jboss/examples/ticketmonster/rest/BotState.java.

package org.jboss.examples.ticketmonster.rest;

/**
 * An enumeration that represents the possible states for the Bot.
 */
public enum BotState {
 RUNNING, NOT_RUNNING, RESET
}

The RUNNING and NOT_RUNNING values are obvious. The RESET value is used to represent the state where the Bot will be stopped and the Bookings would be deleted. Quite naturally, the Bot will eventually enter the NOT_RUNNING state after it is RESET.
The BotStatusService will be located at the /bot path. It would respond to GET requests at the /messages sub-path with the contents of the Bot’s log. It will respond to GET requests at the /status sub-path with the JSON representation of the current BotState. And finally, it will respond to PUT requests containing the JSON representation of the BotState, provided tothe /status sub-path, by triggering a state change; a HTTP 204 response is returned in this case.
src/main/java/org/jboss/examples/ticketmonster/rest/BotStatusService.java.

package org.jboss.examples.ticketmonster.rest;

import java.util.List;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

import org.jboss.examples.ticketmonster.service.BotService;

/**
 * A non-RESTful service for providing the current state of the Bot. This service also allows the bot to be started, stopped or
 * the existing bookings to be deleted.
 */
@Path("/bot")
public class BotStatusService {

 @Inject
 private BotService botService;

 /**
 * Produces a JSON representation of the bot's log, containing a maximum of 50 messages logged by the Bot.
 *
 * @return The JSON representation of the Bot's log
 */
 @Path("messages")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<String> getMessages() {
 return botService.fetchLog();
 }

 /**
 * Produces a representation of the bot's current state. This is a string - "RUNNING" or "NOT_RUNNING" depending on whether
 * the bot is active.
 *
 * @return The represntation of the Bot's current state.
 */
 @Path("status")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response getBotStatus() {
 BotState state = botService.isBotActive() ? BotState.RUNNING
 : BotState.NOT_RUNNING;
 return Response.ok(state).build();
 }

 /**
 * Updates the state of the Bot with the provided state. This may trigger the bot to start itself, stop itself, or stop and
 * delete all existing bookings.
 *
 * @param updatedStatus The new state of the Bot. Only the state property is considered; any messages provided are ignored.
 * @return An empty HTTP 201 response.
 */
 @Path("status")
 @PUT
 public Response updateBotStatus(BotState updatedState) {
 if (updatedState.equals(BotState.RUNNING)) {
 botService.start();
 } else if (updatedState.equals(BotState.NOT_RUNNING)) {
 botService.stop();
 } else if (updatedState.equals(BotState.RESET)) {
 botService.deleteAll();
 }
 return Response.noContent().build();
 }

}

Should the BotStatusService use JAX-RS?
The BotStatusService appears to be a RESTful service, but on closer examination it does not
obey the constraints of such a service. It represents a single resource - the Bot and not a collection of resources
where each item in the collected is uniquely identified. In other words, no resource like
/bot/1 exists, and neither does a HTTP POST to /bot creates a new bot. This affects
the design of the Backbone.js models in the client, as we shall later see.
Therefore, it is not necessary to use JAX-RS in this scenario. JAX-RS certainly makes it
easier, since we can continue to use the same programming model with minor changes. There is
no need to parse requests or serialize responses or lookup EJBs; JAX-RS does this for us.
The alternative would be to use a Servlet or a JSON-RPC endpoint.
We would recommend adoption alternatives in real-life scenarios should they be more suitable.

Chapter 47. Displaying Metrics

We are set up now and ready to start coding the client-side section of the dashboard. The users will be able to view the list of performances and view the occupied count for that performance.
47.1. The Metrics model

We’ll define a Backbone model to represent the metric data for an individual show.
src/main/webapp/resources/js/app/models/metric.js.

/**
 * Module for the Metric model
 */
define([
 // Configuration is a dependency
 'configuration',
 'backbone'
], function (config) {

 /**
 * The Metric model class definition
 * Used for CRUD operations against individual Metric
 */
 var Metric = Backbone.Model.extend({
 idAttribute: "show"
 });

 return Metric;

});

We’ve specified the show property as the idAttribute for the model. This is necessary since every resource in the collection is uniquely identified by the show property in the representation.
Also note that the Backbone model does not define a urlRoot property unlike other Backbone models. The representation for an individual metric resource cannot be obtained by navigating to /metrics/X, but the metrics for all shows can be obtained by navigating to /metrics.

47.2. The Metrics collection

We now define a Backbone collection for handling the metrics collection:
src/main/webapp/resources/js/app/collections/metrics.js.

/**
 * The module for a collection of Metrics
 */
define([
 'app/models/metric',
 'configuration',
 'backbone'
], function (Metric, config) {

 // Here we define the Metrics collection
 // We will use it for CRUD operations on Metrics

 var Metrics = Backbone.Collection.extend({
 url: config.baseUrl + 'rest/metrics',
 model: Metric
 });

 return Metrics;
});

We have thus mapped the collection to the MetricsService REST resource, so we can perform CRUD operations against this resource. In practice however, we’ll need to only query this resource.

47.3. The MetricsView view

Now that we have the model and the collection, let’s create the view to display the metrics:
src/main/webapp/resources/js/app/views/desktop/metrics.js.

define([
 'backbone',
 'configuration',
 'utilities',
 'text!../../../../templates/desktop/metrics.html'
], function (
 Backbone,
 config,
 utilities,
 metricsTemplate) {

 var MetricsView = Backbone.View.extend({
 intervalDuration : 3000,
 initialize : function() {
 _.bind(this.render, this);
 _.bind(this.liveUpdate, this);
 this.collection.on("add remove change", this.render, this);
 var self = this;
 $.when(this.collection.fetch({
 error : function() {
 utilities.displayAlert("Failed to retrieve metrics from the TicketMonster server.");
 }
 })).done(function(){
 self.liveUpdate();
 });
 },
 liveUpdate : function() {
 this.collection.fetch({
 error : function() {
 utilities.displayAlert("Failed to retrieve metrics from the TicketMonster server.");
 }
 });
 var self = this;
 this.timerObject = setTimeout(function(){
 self.liveUpdate();
 }, this.intervalDuration);
 },
 render : function () {
 utilities.applyTemplate($(this.el), metricsTemplate, {collection:this.collection});
 return this;
 },
 onClose : function() {
 if(this.timerObject) {
 clearTimeout(this.timerObject);
 delete this.timerObject;
 }
 }
 });

 return MetricsView;
});

Like other Backbone views, the view is attached to a DOM element (the el property). When the render method is invoked, it manipulates the DOM and renders the view. The metricsTemplate template is used to structure the HTML, thus separating the HTML view code from the view implementation.
The render method is invoked whenever the underlying collection is modified. The view is associated with a timer that is executed repeatedly with a predetermined interval of 3 seconds. When the timer is triggered, it fetches the updated state of the collection (the metrics) from the server. Any change in the collection at this point, now triggers a refresh of the view as pointed out earlier.
When the view is closed/destroyed, the associated timer if present is cleared.
src/main/webapp/resources/templates/desktop/metrics.html.

<div class="col-md-12">
 <h3 class="page-header light-font special-title">Booking status</h3>
 <div id="status-content">
 <%
 _.each(collection.models, function (show) {
 %>
 <div class="show-status">
 <div class="show-status-header"><%=show.get('event')%> @ <%=show.get('venue')%></div>
 <%_.each(show.get('performances'), function (performance) {%>
 <div class="row">
 <div class="col-md-4"><%=new Date(performance.date).toLocaleString()%></div>
 <div class="col-md-4">
 <div class="progress">
 <div style="width: <%=(performance.occupiedCount)/(show.get('capacity'))*100%>%;" class="progress-bar progress-bar-success"></div>
 </div>
 </div>
 <div class="col-md-4"><%=performance.occupiedCount%> of <%=show.get('capacity')%> tickets booked</div>
 </div>
 <% }); %>
 </div>
 <% }); %>
 </div>
</div>

The HTML for the view groups the metrics by show. Every performance associated with the show is displayed in this group, with the occupied count used to populate a Bootstrap progress bar. The width of the bar is computed with the occupied count for the performance and the capacity for the show (i.e. capacity for the venue hosting the show).

Chapter 48. Displaying the Bot interface

48.1. The Bot model

We’ll define a plain JavaScript object to represent the Bot on the client-side. Recalling the earlier discussion, the Bot service at the server is not a RESTful service. Since it cannot be identified uniquely, it would require a few bypasses in a Backbone model (like overriding the url property) to communicate correctly with the service. Additionally, obtaining the Bot’s log messages would require using jQuery since the log messages also cannot be represented cleanly as a REST resource. Given all these factors, it would make sense to use a plain JavaScript object to represent the Bot model.
src/main/webapp/resources/js/app/models/bot.js.

/**
 * Module for the Bot model
 */
define([
 'jquery',
 'configuration',
], function ($, config) {

 /**
 * The Bot model class definition
 * Used perform operations on the Bot.
 * Note that this is not a Backbone model.
 */
 var Bot = function() {
 this.statusUrl = config.baseUrl + 'rest/bot/status';
 this.messagesUrl = config.baseUrl + 'rest/bot/messages';
 }

 /*
 * Start the Bot by sending a request to the Bot resource
 * with the new status of the Bot set to "RUNNING".
 */
 Bot.prototype.start = function() {
 $.ajax({
 type: "PUT",
 url: this.statusUrl,
 data: "\"RUNNING\"",
 dataType: "json",
 contentType: "application/json"
 });
 }

 /*
 * Stop the Bot by sending a request to the Bot resource
 * with the new status of the Bot set to "NOT_RUNNING".
 */
 Bot.prototype.stop = function() {
 $.ajax({
 type: "PUT",
 url: this.statusUrl,
 data: "\"NOT_RUNNING\"",
 dataType: "json",
 contentType: "application/json"
 });
 }

 /*
 * Stop the Bot and delete all bookings by sending a request to the Bot resource
 * with the new status of the Bot set to "RESET".
 */
 Bot.prototype.reset = function() {
 $.ajax({
 type: "PUT",
 url: this.statusUrl,
 data: "\"RESET\"",
 dataType: "json",
 contentType: "application/json"
 });
 }

 /*
 * Fetch the log messages of the Bot and invoke the callback.
 * The callback is provided with the log messages (an array of Strings).
 */
 Bot.prototype.fetchMessages = function(callback) {
 $.get(this.messagesUrl, function(data) {
 if(callback) {
 callback(data);
 }
 });
 }

 return Bot;

});

The start, stop and rest methods issue HTTP requests to the Bot service at the rest/bot/status URL with jQuery. The fetchMessages method issues a HTTP request to the Bot service at the rest/bot/messages URL with jQuery; it accepts a callback method as a parameter and invokes the callback once it receives a response from the server.

48.2. The BotView view

Now that we have the model, let’s create the view to control the Bot:
src/main/webapp/resources/js/app/views/desktop/bot.js.

define([
 'jquery',
 'underscore',
 'backbone',
 'configuration',
 'utilities',
 'text!../../../../templates/desktop/bot.html'
], function (
 $,
 _,
 Backbone,
 config,
 utilities,
 botTemplate) {

 var BotView = Backbone.View.extend({
 intervalDuration : 3000,
 initialize : function() {
 _.bind(this.liveUpdate, this);
 _.bind(this.startBot, this);
 _.bind(this.stopBot, this);
 _.bind(this.resetBot, this);
 utilities.applyTemplate($(this.el), botTemplate, {});
 this.liveUpdate();
 },
 events: {
 "click #start-bot" : "startBot",
 "click #stop-bot" : "stopBot",
 "click #reset" : "resetBot"
 },
 liveUpdate : function() {
 this.model.fetchMessages(this.renderMessages);
 var self = this;
 this.timerObject = setTimeout(function() {
 self.liveUpdate();
 }, this.intervalDuration);
 },
 renderMessages : function(data) {
 var displayMessages = data.reverse();
 var botLog = $("textarea").get(0);
 // The botLog textarea element may have been removed if the user navigated to a different view
 if(botLog) {
 botLog.value = displayMessages.join("");
 }
 },
 onClose : function() {
 if(this.timerObject) {
 clearTimeout(this.timerObject);
 delete this.timerObject;
 }
 },
 startBot : function() {
 this.model.start();
 // Refresh the log immediately without waiting for the live update to trigger.
 this.model.fetchMessages(this.renderMessages);
 },
 stopBot : function() {
 this.model.stop();
 // Refresh the log immediately without waiting for the live update to trigger.
 this.model.fetchMessages(this.renderMessages);
 },
 resetBot : function() {
 this.model.reset();
 // Refresh the log immediately without waiting for the live update to trigger.
 this.model.fetchMessages(this.renderMessages);
 }
 });

 return BotView;
});

This view is similar to other Backbone views in most aspects, except for a few. When the view initialized, it manipulates the DOM and renders the view; this is unlike other views that are not rendered on initialization. The botTemplate template is used to structure the HTML. An interval timer with a pre-determined duration of 3 seconds is also created when the view is initialized. When the view is closed/destroyed, the timer if present is cleared out.
When the timer is triggered, it fetches the Bot’s log messages. The renderMessages method is provided as the callback to the fetchMessages invocation. The renderMessages callback method is provided with the log messages from the server, and it proceeds to update a textarea with these messages.
The startBot, stopBot and resetBot event handlers are setup to handle click events on the associated buttons in the view. They merely delegate to the model to perform the actual operations.
src/main/webapp/resources/templates/desktop/bot.html.

<div class="col-md-12">
 <h3 class="page-header light-font special-title">Bot</h3>
 <div id="bot-content">
 <div class="btn-group">
 <button id="start-bot" type="button" class="btn btn-danger" title="Start the bot">Start bot</button>
 <button id="stop-bot" type="button" class="btn btn-danger">Stop bot</button>
 <button id="reset" type="button" class="btn btn-danger" title="Delete all bookings (stops the bot first)">Delete all bookings</button>
 </div>
 <div class="bot-console">
 <div class="bot-label">Bot Log</div>
 <textarea style="width: 400px; height: 300px;" readonly=""></textarea>
 </div>
 </div>
</div>

The HTML for the view creates a button group for the actions possible on the Bot. It also carries a text area for displaying the Bot’s log messages.

Chapter 49. Creating the dashboard

Now that we have the constituent views for the dashboard, let’s wire it up into the application.
49.1. Creating a composite Monitor view

Let’s create a composite Backbone view to hold the MetricsView and BotView as it’s constituent sub-views.
src/main/webapp/resources/js/app/views/desktop/monitor.js.

define([
 'backbone',
 'configuration',
 'utilities',
 'app/models/bot',
 'app/collections/metrics',
 'app/views/desktop/bot',
 'app/views/desktop/metrics',
 'text!../../../../templates/desktop/monitor.html'
], function (
 Backbone,
 config,
 utilities,
 Bot,
 Metrics,
 BotView,
 MetricsView,
 monitorTemplate) {

 var MonitorView = Backbone.View.extend({
 render : function () {
 utilities.applyTemplate($(this.el), monitorTemplate, {});
 var metrics = new Metrics();
 this.metricsView = new MetricsView({collection:metrics, el:$("#metrics-view")});
 var bot = new Bot();
 this.botView = new BotView({model:bot,el:$("#bot-view")});
 return this;
 },
 onClose : function() {
 if(this.botView) {
 this.botView.close();
 }
 if(this.metricsView) {
 this.metricsView.close();
 }
 }
 });

 return MonitorView;
});

The render method of this Backbone view creates the two sub-views and renders them. It also initializes the necessary models and collections required by the sub-views. All other aspects of the view like event handling and updates to the DOM are handled by the sub-views. When the composite view is destroyed, it also closes the sub-views gracefully.
The HTML template used by the composite just lays out a structure for the sub-views to control two distinct areas of the DOM - a div with id metrics-view for displaying the metrics, and another div with id bot-view to control the bot:
src/main/webapp/resources/templates/desktop/monitor.html.

<div class="container">
 <div class="row">
 <div id="metrics-view" class="col-md-7"></div>
 <div id="bot-view" class="col-md-5"></div>
 </div>
</div>

49.2. Configure the router

Finally, let us wire up the router to display the monitor when the user navigates to the monitor route in the Backbone application:
src/main/webapp/resources/js/app/router/desktop/router.js.

define("router", [
 ...
 'app/views/desktop/monitor',
 ...
],function (...
 MonitorView,
 ...) {

 ...

 var Router = Backbone.Router.extend({
 ...
 routes : {
 ...,
 "monitor":"displayMonitor"
 },
 ...,
 displayMonitor:function() {
 var monitorView = new MonitorView({el:$("#content")});
 utilities.viewManager.showView(monitorView);
 },
 });

With this configuration, the user can now navigate to the monitor section of the application, where the metrics and the bot controls would be displayed. The underlying sub-views would poll against the server to update themselves in near real-time offering a dashboard solution to TicketMonster.

Part VIII. Creating hybrid mobile versions of the application with Apache Cordova

Chapter 50. What will you learn here?

You finished creating the front-end for your application, and it has mobile support. You would now like to provide native client applications that your users can download from an application store. After reading this tutorial, you will understand how to reuse the existing HTML5 code for create native mobile clients for each target platform with Apache Cordova.
You will learn how to:
	
make changes to an existing web application to allow it to be deployed as a hybrid mobile application

	
create a native application for Android and iOS with Apache Cordova

Chapter 51. What are hybrid mobile applications?

Hybrid mobile applications are developed in HTML5 - unlike native applications that are compiled to platform-specific binaries. The client code - which consists exclusively of HTML, CSS, and JavaScript - is packaged and installed on the client device just as any native application, and executes in a browser process created by a surrounding native shell.
Besides wrapping the browser process, the native shell also allows access to native device capabilities, such as the accelerometer, GPS, contact list, etc., made available to the application through JavaScript libraries.
In this example, we use Apache Cordova to implement a hybrid application using the existing HTML5 mobile front-end for TicketMonster, interacting with the RESTful services of a TicketMonster deployment running on JBoss A7 or JBoss EAP.
Figure 51.1. Architecture of hybrid TicketMonster
[image: gfx/ticket_monster_hybrid.png]

Chapter 52. Tweak your application for remote access

Before we make the application hybrid, we need to make some changes in the way in which it accesses remote services. Note that the changes have already been implemented in the user front end, here we show you the code that we needed to modify.
In the web version of the application the client code is deployed together with the server-side code, so the models and collections (and generally any piece of code that will perform REST service invocations) can use URLs relative to the root of the application: all resources are serviced from the same server, so the browser will do the correct invocation. This also respects the same origin policy enforced by default by browsers, to prevent cross-site scripting attacks.
If the client code is deployed separately from the services, the REST invocations must use absolute URLs (we will cover the impact on the same-origin policy later). Furthermore, since we want to be able to deploy the application to different hosts without rebuilding the source, it must be configurable.
You already caught a glimpse of this in the user front end chapter, where we defined the configuration module for the mobile version of the application.
src/main/webapp/resources/js/configurations/mobile.js.

...
define("configuration", function() {
 if (window.TicketMonster != undefined && TicketMonster.config != undefined) {
 return {
 baseUrl: TicketMonster.config.baseRESTUrl
 };
 } else {
 return {
 baseUrl: ""
 };
 }
});
...

This module has a baseURL property that is either set to an empty string for relative URLs or to a prefix, such as a domain name, depending on whether a global variable named TicketMonster has already been defined, and it has a baseRESTUrl
property.
All our code that performs REST services invocations depends on this module, thus the base REST URL can be configured in a single place and injected throughout the code, as in the following code example:
src/main/webapp/resources/js/app/models/event.js.

/**
 * Module for the Event model
 */
define([
 'configuration',
 'backbone'
], function (config) {
 /**
 * The Event model class definition
 * Used for CRUD operations against individual events
 */
 var Event = Backbone.Model.extend({
 urlRoot: config.baseUrl + 'rest/events' // the URL for performing CRUD operations
 });
 // export the Event class
 return Event;
});

The prefix is used in a similar fashion by all the other modules that perform REST service invocations. You don’t need to do anything right now, because the code we created in the user front end tutorial was written like this originally. Be warned, if you have a mobile web application that uses any relative URLs, you will need to refactor them to include some form of URL configuration.

Chapter 53. Install Hybrid Mobile Tools and CordovaSim

Hybrid Mobile Tools and CordovaSim are not installed as part of JBoss Developer Studio yet. They can be installed from JBoss Central as shown below:
	
To install these plug-ins, drag the following link into JBoss Central: https://devstudio.jboss.com/central/install?connectors=org.jboss.tools.aerogear.hybrid. Alternatively, in JBoss Central select the Software/Update tab. In the Find field, type JBoss Hybrid Mobile Tools or scroll through the list to locate JBoss Hybrid Mobile Tools + CordovaSim. Select the corresponding check box and click Install.

Figure 53.1. Start the Hybrid Mobile Tools and CordovaSim Installation Process with the Link
[image: gfx/start-hybrid-mobile-tools-cordovasim-installation-with-link.png]

Figure 53.2. Find Hybrid Mobile Tools and CordovaSim in JBoss Central Software/Update Tab
[image: gfx/find-hybrid-mobile-tools-cordovasim.png]

	
In the Install wizard, ensure the check boxes are selected for the software you want to install and click Next. It is recommended that you install all of the selected components.

	
Review the details of the items listed for install and click Next. After reading and agreeing to the license(s), click I accept the terms of the license agreement(s) and click Finish. The Installing Software window opens and reports the progress of the installation.

	
During the installation process you may receive warnings about installing unsigned content. If this is the case, check the details of the content and if satisfied click OK to continue with the installation.

Figure 53.3. Warning Prompt for Installing Unsigned Content
[image: gfx/warning-prompt-unsigned-content.png]

	
Once the installation is complete, you will be prompted to restart the IDE. Click Yes to restart now and No if you need to save any unsaved changes to open projects. Note that changes do not take effect until the IDE is restarted.

Once installed, you must inform Hybrid Mobile Tools of the Android SDK location before you can use Hybrid Mobile Tools actions involving Android.
To set the Android SDK location, click Window → Preferences and select Hybrid Mobile. In the Android SDK Directory field, type the path of the installed SDK or click Browse to navigate to the location. Click Apply and click OK to close the Preferences window.
Figure 53.4. Hybrid Mobile Pane of Preferences Window
[image: gfx/hybrid-mobile-pane-preferences-window.png]

Chapter 54. Creating a Hybrid Mobile project

	
To create a new Hybrid Mobile Project, click File → New → Other and select "Hybrid Mobile (Cordova) Application Project".

Figure 54.1. Starting a new Hybrid Mobile Application project
[image: gfx/start-new-hybrid-mobile-application-project.png]

	
Enter the project information: application name, project name, package.

	
Project Name

	
 TicketMonster-Cordova

	
Name

	
 TicketMonster-Cordova

	
ID

	
 org.jboss.examples.ticketmonster.cordova

Figure 54.2. Creating a new Hybrid Mobile Application project
[image: gfx/create-new-hybrid-mobile-application-project.png]

Click Next to choose the Hybrid Mobile engine for the project. If you have never setup a Hybrid Mobile engine in JBoss Developer Studio before, you will be prompted to download or search for engines to use. We’ll click on the Download button to perform the former.
Figure 54.3. Setting up a Hybrid Mobile engine for the first time
[image: gfx/setup_hybrid_mobile_engine_from_scratch.png]

You’ll be prompted with a dialog where you can download all available hybrid mobile engines.
Figure 54.4. Choose the Hybrid Mobile engine to download
[image: gfx/setup_hybrid_mobile_engine_version.png]

We’ll choose Android and iOS variants of version 3.4.0.
Figure 54.5. Select Android and iOS for 3.4.0
[image: gfx/setup_hybrid_mobile_engine_340.png]

Now that we have downloaded and setup a hybrid mobile engine, let’s use it in our project. Select the newly configured engine and click Next.
Figure 54.6. Creating a new Hybrid Mobile Application project
[image: gfx/select_hybrid_mobile_engine_for_project.png]

We will now be provided the opportunity to add Cordova plug-ins to our project.
Figure 54.7. Adding Cordova plugins when a new Hybrid Mobile Application project
[image: gfx/cordova_choose_to_add_plugins.png]

We will be using the Status Bar plugin from Cordova, to ensure that the status bar on iOS 7 does not overlap the UI. The Device plugin will be used to obtain device information for use in device detection. We’ll also use the Notification plugin to display alerts and notifications to the end-user using the native mobile UI. We’ll proceed to add the required Cordova plugins to the project.
Figure 54.8. Add Cordova Device plugin
[image: gfx/cordova_add_device_plugin.png]

Figure 54.9. Add Cordova Notification plugin
[image: gfx/cordova_add_notifications_plugin.png]

Figure 54.10. Add Cordova StatusBar plugin
[image: gfx/cordova_add_statusbar_plugin.png]

Let’s proceed to add these, by searching for them and selecting them. Click Next once you have finished selecting the necessary plug-ins. We will now confirm the plugins to be added to the project. Click Finish to create the new Hybrid Mobile application project.
Figure 54.11. Confirm plugins to add
[image: gfx/cordova_confirm_plugin_versions.png]

Once you have finished creating the project, navigate to the www directory, that will contain the HTML5 code of the application. Since we are reusing the TicketMonster code you can simply replace the www directory with a symbolic link to the webapp directory of TicketMonster; the config.xml file and res directory would need to be copied over to the webapp directory of TicketMonster. Alternatively, you can copy the code of TicketMonster and make all necessary changes there (however, in that case you will have to maintain the code of the application in both places); on Windows, it would be easier to do this.

$ cp config.xml $TICKET_MONSTER_HOME/demo/src/main/webapp
$ cp res $TICKET_MONSTER_HOME/demo/src/main/webapp
$ cd ..
$ rm -rf www
$ ln -s $TICKET_MONSTER_HOME/demo/src/main/webapp www
Figure 54.12. The result of linking www to the webapp directory
[image: gfx/link-www-directory-to-webapp.png]

The Hybrid Mobile tooling requires that the cordova.js file be loaded in the application’s start page.
Since we do not want to load this file in the existing index.html file, we shall create a new start page to be used only by the Cordova app.
src/main/webapp/mobileapp.html.

<!DOCTYPE html>
<html>
<head>
 <title>Ticket Monster</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no"/>

 <script type="text/javascript" src="resources/js/libs/modernizr-2.8.3.min.js"></script>
 <script type="text/javascript" src="resources/js/libs/require.js"
 data-main="resources/js/configurations/loader"></script>
</head>
<body>
</body>
</html>

Let’s now modify the Hybrid Mobile project configuration to use this page as the application start page.
Additionally, we will add our REST service URL to the domain whitelist in the config.xml file (you can use "*" too, for simplicity, during development) :
src/main/webapp/config.xml.

<?xml version="1.0" encoding="utf-8"?>
<widget xmlns="http://www.w3.org/ns/widgets" xmlns:gap="http://phonegap.com/ns/1.0"
 id="org.jboss.examples.ticketmonster.cordova" version="2.0.0">

 ...

 <!-- The application start page -->
 <content src="mobileapp.html" />

 <!--
 Add the TicketMonster cloud app to the domain whitelist.
 Domains are assumed blocked unless set otherwise.
 -->
 <access origin="http://ticketmonster-jdf.rhcloud.com"/>

 ...

</widget>

Next, we need to load the library in the application. We will create a separate module, that will load the rest of the mobile application, as well as the Apache Cordova JavaScript library for Android. We also need to configure a base URL for the application. For this example, we will use the URL of the cloud deployment of TicketMonster.
src/main/webapp/resources/js/configurations/hybrid.js.

// override configuration for RESTful services
var TicketMonster = {
 config:{
 baseRESTUrl:"http://ticketmonster-jdf.rhcloud.com/"
 }
};

require(['../../../cordova'], function() {

 var bootstrap = {
 initialize: function() {
 document.addEventListener('deviceready', this.onDeviceReady, false);
 },
 onDeviceReady: function() {
 // Detect if iOS 7 or higher and disable overlaying the status bar
 if(window.device && window.device.platform.toLowerCase() == "ios" &&
 parseFloat(window.device.version) >= 7.0) {
 StatusBar.overlaysWebView(false);
 StatusBar.styleDefault();
 StatusBar.backgroundColorByHexString("#e9e9e9");
 }
 // Load the mobile module
 require (["mobile"]);
 }
 };

 bootstrap.initialize();
});

Note
We’ll use the OpenShift hosted version of the TicketMonster application because it is easier to access in all environments - the smartphone simulators and emulators can also access it with relatively little or no configuration. On the other hand, accessing the locally running JBoss EAP instance may require some complicated network configuration, especially if the instance needs to be opened up to the internet for access from smartphones through a mobile internet link.

The above snippet of code contains a device-specific check for iOS 7.
Finally, we’ll configure the loader module launched from mobileapp.html to use the above defined hybrid module:
src/main/webapp/resources/js/configurations/loader.js.

//detect the appropriate module to load
define(function () {

 /*
 A simple check on the client. For touch devices or small-resolution screens)
 show the mobile client. By enabling the mobile client on a small-resolution screen
 we allow for testing outside a mobile device (like for example the Mobile Browser
 simulator in JBoss Tools and JBoss Developer Studio).
 */

 var environment;

 if (document.URL.indexOf("mobileapp.html") > -1) {
 environment = "hybrid";
 }
 else if (Modernizr.touch || Modernizr.mq("only all and (max-width: 768px)")) {
 environment = "mobile";
 } else {
 environment = "desktop";
 }

 require([environment]);
});

In the above code snippet, we detect if the URL of the page contains mobileapp.html or not, and then proceed to activate the hybrid module if so. Since Apache Cordova is configured to use mobileapp.html as the application start page, the desired objective is achieved. This way, we avoid loading the mobile or desktop modules that do not have any logic in them to detect the deviceready event of Cordova.
The final step will involve adjusting src/main/webapp/resources/js/configurations/loader.js to load this module when running on Android, using the query string we have already configured in the project. We’ll also tweak src/main/webapp/resources/js/app/utilities.js to use the Notification plugin to display alerts in the context of a Hybrid Mobile app.
src/main/webapp/resources/js/configurations/loader.js.

//detect the appropriate module to load
define(function () {

 /*
 A simple check on the client. For touch devices or small-resolution screens)
 show the mobile client. By enabling the mobile client on a small-resolution screen
 we allow for testing outside a mobile device (like for example the Mobile Browser
 simulator in JBoss Tools and JBoss Developer Studio).
 */

 var environment;

 if (document.URL.indexOf("mobileapp.html") > -1) {
 environment = "hybrid";
 }
 else if (Modernizr.touch || Modernizr.mq("only all and (max-width: 768px)")) {
 environment = "mobile";
 } else {
 environment = "desktop";
 }

 require([environment]);
});

We’ll now examine the displayAlert function in the utilities object. It is set to use the Notification plugin when available:
src/main/webapp/resources/js/app/utilities.js.

...
 // utility functions for rendering templates
 var utilities = {
 ...
 applyTemplate:function (target, template, data) {
 return target.empty().append(this.renderTemplate(template, data));
 },
 displayAlert: function(msg) {
 if(navigator.notification) {
 navigator.notification.alert(msg);
 } else {
 alert(msg);
 }
 }
 };
...

The function automatically works in non-mobile environments due to the absence of the navigator.notification object in such environments.

Chapter 55. Run the hybrid mobile application

You are now ready to run the application. The hybrid mobile application can be run on devices and simulators using the Hybrid Mobile Tools.
55.1. Run on an Android device or emulator

What do you need for Android?
For running on an Android device or emulator, you need to install the Android
Developer Tools, which require an Eclipse instance (JBoss Developer Studio could be used), and can run on
Windows (XP, Vista, 7), Mac OS X (10.5.8 or later), Linux (with GNU C Library - glibc 2.7 or
later, 64-bit distributions having installed the libraries for running 32-bit applications).
You must have Android API 17 or later installed on your system to use the Run on Android Emulator action.

To run the project on a device, in the Project Explorer view, right-click the project name and click Run As → Run on Android Device. This option calls the external Android SDK to package the workspace project and run it on an Android device if one is attached. Note that the Android SDK must be installed and the IDE correctly configured to use the Android SDK for this option to execute successfully.
To run the project on an emulator, in the Project Explorer view, right-click the project name and click Run As → Run on Android Emulator.
Figure 55.1. Running the application on an Android emulator
[image: gfx/run-on-android-emulator.png]

This requires that you create an Android AVD to run the application in a virtual device.
Once deployed, the application is now available for interaction in the emulator.
Figure 55.2. The app running on an Android AVD
[image: gfx/android-emulator.png]

55.2. Run on an iOS Simulator

What do you need for iOS?
This option is only displayed when using OS X operating systems, for which the iOS Simulator is available.
You must install Xcode 4.5+ which includes the iOS 6 SDK. You must also install a Simulator for iOS 5.x or higher, to run the project on a simulator.
Depending on various Cordova plugins that you may use, you may need higher versions of simulators to run your applications.

In the Project Explorer view, right-click the project name and click Run As → Run on iOS Emulator.
Figure 55.3. Running the application on an iOS simulator
[image: gfx/run-on-ios-simulator.png]

This option calls the external iOS SDK to package the workspace project into an XCode project and run it on the iOS Simulator.
Figure 55.4. The app running on an iOS Simulator
[image: gfx/ios-simulator.png]

55.3. Run on CordovaSim

CordovaSim allows you to run your hybrid mobile applications in your local workspace. You can develop the application without requiring a deployment to a real device or even to emulators and simulators to realize your application’s behavior.
There are some limitations on what you can achieve with CordovaSim, for instance, some Cordova plugins may not work with CordovaSim. But for the most part, you get to experience a faster development cycle.
In the Project Explorer view, right-click the project name and click Run As → Run with CordovaSim. This opens the application in CordovaSim, which is composed of a BrowserSim simulated device and a device input panel.
Figure 55.5. The app running on CordovaSim
[image: gfx/cordovasim.png]

Chapter 56. Conclusion

This concludes our tutorial for building a hybrid application with Apache Cordova. You have seen how we have turned a working HTML5 web application into one that can run natively on Android and iOS.

Part IX. Appendix A - Deploying to JBoss EAP locally

Chapter 57. What Will You Learn Here?

This appendix demonstrates how to import, develop and deploy the TicketMonster example using JBoss Developer Studio:
	
Obtain and import the TicketMonster example source code

	
Deploy the application to JBoss EAP with JBoss Server Tools

Chapter 58. Pre-requisites

We don’t recommend using the Internal Web Browser, although it is configured as the default web browser in the IDE.
In certain environments, it may lack features present in modern web browsers, thus providing a sub-optimal user and developer experience.
We shall therefore set the IDE default web browser to be your default system web browser. Click Window → Web
Browser → Default system web browser.

Chapter 59. Import the Project source code

Once the TicketMonster source code is obtained and unpackaged, you must import it into JBoss
Developer Studio, as detailed in the procedure below. TicketMonster is a Maven-based project so a
specific Import Maven Project wizard is used for the import.
	
Click File → Import to open the Import wizard.

	
Expand Maven, select Existing Maven Projects and click Next.

	
In the Root Directory field, enter the path to the TicketMonster source code. Alternatively,
click Browse to navigate to the source code location. The Import Maven Project wizard
recursively searches the path for a pom.xml file. The pom.xml file identifies the project as a
Maven project. The file is listed under Projects once it is found.

Figure 59.1. pom.xml File Listed in the Projects Pane
[image: gfx/pom-file-projects-pane.png]

	
Click Finish. When the import process is complete, the project is listed in the Project Explorer view.

Chapter 60. Deploying to JBoss EAP using JBoss Developer Studio

Once you have imported the TicketMonster source code into JBoss Developer Studio, the project
application can be deployed to the JBoss EAP server and the running application viewed in the
default system web browser, as detailed in the procedure below:
	
In the Project Explorer view, right-click ticket-monster and click Run As → Run on
Server.

	
Under How do you want to select the server?, ensure Choose an existing
server is selected.

	
In the Server table, expand localhost, select jboss-eap-version where version
denotes the JBoss EAP version, and click Next.

Figure 60.1. JBoss EAP 6.x Server Selected
[image: gfx/jboss-eap-selected-deployment.png]

	
Ensure ticket-monster is listed in the Configured column and click Finish. The
Console view automatically becomes the view in focus and displays the output from the
JBoss EAP server. Once deploying is complete, the web application opens in the default
system web browser.

Figure 60.2. ticket-monster Listed in the Configured Column
[image: gfx/ticketmonster-configured-jboss-eap.png]

Chapter 61. Deploying to JBoss EAP using the command-line

Start JBoss Enterprise Application Platform 6.3.
	
Open a command line and navigate to the root of the JBoss server directory.

	
The following shows the command line to start the server with the web profile:

For Linux: JBOSS_HOME/bin/standalone.sh
For Windows: JBOSS_HOME\bin\standalone.bat

Then, deploy TicketMonster.
	
Make sure you have started the JBoss Server as described above.

	
Type this command to build and deploy the archive into a running server instance.

mvn clean package jboss-as:deploy
(You can use the arq-jbossas-remote profile for running tests as well)
If you have not configured the Maven settings, to use the Red Hat Enterprise Maven repositories:
mvn clean package jboss-as:deploy -s TICKETMONSTER_MAVEN_PROJECT_ROOT/settings.xml

	
This will deploy target/ticket-monster.war to the running instance of the server.

	
Now you can see the application running at http://localhost:8080/ticket-monster.

Chapter 62. Using MySQL as the database

You can deploy TicketMonster to JBoss EAP, making use of a real database like MySQL, instead of the default in-memory H2 database. You can follow the procedure outlined as follows:
	
Install the MySQL JBDC driver as a new JBoss module.

	
Define a new JBoss module named com.mysql under the modules directory of the JBoss EAP installation. Under the modules/system/layers/base directory structure, create a directory named com, containing sub-directory named mysql, containing a sub-directory named main. Place the MySQL JBDC driver in the main directory. Finally, define the module via a module.xml file with the following contents:

EAP_HOME/system/layers/base/com/mysql/main/module.xml.

<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.34-bin.jar"/>

 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

This module declares the MySQL JDBC driver as a resource (from which to load classes) for the module. It also declares a dependency on the javax.api and javax.transaction.api modules, since the JDBC driver depends on classes from these modules. Remember to make corrections to the JBDC driver resource path, if you are using a driver JAR with a different name.
The JBoss EAP directory structure should now look like this:
modules
+---system
¦ +---layers
¦ ¦ +---base
¦ ¦ ¦ +---com
¦ ¦ ¦ ¦ +---mysql
¦ ¦ ¦ ¦ ¦ +---main
¦ ¦ ¦ ¦ ¦ ¦ +-------module.xml
¦ ¦ ¦ ¦ ¦ ¦ +-------mysql-connector-java-5.1.34-bin.jar

	
Register the MySQL datasource used by the application. Edit the server configuration file (standalone.xml), to add the datasource definition:

<datasources>
 <datasource jndi-name="java:jboss/datasources/TicketMonsterMySQLDS" pool-name="MySQLDS">
 <connection-url>jdbc:mysql://localhost:3306/ticketmonster</connection-url>
 <driver>com.mysql</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>100</max-pool-size>
 <prefill>true</prefill>
 </pool>
 <security>
 <user-name>test</user-name>
 <password>test</password>
 </security>
 <statement>
 <prepared-statement-cache-size>32</prepared-statement-cache-size>
 <share-prepared-statements/>
 </statement>
 </datasource>
 <drivers>
 <driver name="com.mysql" module="com.mysql">
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>
 </driver>
 </drivers>
</datasources>
Replace the values for the connection-url, user-name and password with the correct ones for your environment.
. Build and deploy the application, using the mysql profile defined in the project POM :
.. In JBoss Developer Studio, you can do this by opening the project’s context menu: right-click on the project, click Maven → Select Maven Profiles…, and activate the mysql profile by selecting it’s checkbox. Once you have activated the profile, you can publish the project to a JBoss EAP instance from JBoss Developer Studio in the same manner described previously.
.. If you are building and deploying from the command-line, activate the mysql profile, by specifying it during the build command like so:
mvn clean package jboss-as:deploy -Pmysql
	
If you have not configured the Maven settings, to use the Red Hat Enterprise Maven repositories:

mvn clean package jboss-as:deploy -Pmysql -s TICKETMONSTER_MAVEN_PROJECT_ROOT/settings.xml

Chapter 63. Using PostgreSQL as the database

Just like MySQL, you can deploy TicketMonster to JBoss EAP, making use of a real database like PostgreSQL, instead of the default in-memory H2 database. You can follow the procedure outlined as follows:
	
Install the PostgreSQL JBDC driver as a new JBoss module.

	
Define a new JBoss module named com.mysql under the modules directory of the JBoss EAP installation. Under the modules/system/layers/base directory structure, create a directory named org, containing sub-directory named postgresql, containing a sub-directory named main. Place the PostgreSQL JBDC driver in the main directory. Finally, define the module via a module.xml file with the following contents:

EAP_HOME/system/layers/base/com/mysql/main/module.xml.

<module xmlns="urn:jboss:module:1.0" name="org.postgresql">
 <resources>
 <resource-root path="postgresql-9.3-1102.jdbc4.jar"/>
 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

This module declares the PostgreSQL JDBC driver as a resource (from which to load classes) for the module. It also declares a dependency on the javax.api and javax.transaction.api modules, since the JDBC driver depends on classes from these modules. Remember to make corrections to the JBDC driver resource path, if you are using a driver JAR with a different name.
The JBoss EAP directory structure should now look like this:
modules
+---system
¦ +---layers
¦ ¦ +---base
¦ ¦ ¦ +---org
¦ ¦ ¦ ¦ +---postgresql
¦ ¦ ¦ ¦ ¦ +---main
¦ ¦ ¦ ¦ ¦ ¦ +-------module.xml
¦ ¦ ¦ ¦ ¦ ¦ +-------postgresql-9.3-1102.jdbc4.jar

	
Register the PostgreSQL datasource used by the application. Edit the server configuration file (standalone.xml), to add the datasource definition:

<datasources>
 <datasource jndi-name="java:jboss/datasources/TicketMonsterPostgreSQLDS" pool-name="PostgreSQLDS">
 <connection-url>jdbc:postgresql://localhost:5432/ticketmonster</connection-url>
 <driver>org.postgresql</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>100</max-pool-size>
 <prefill>true</prefill>
 </pool>
 <security>
 <user-name>test</user-name>
 <password>test</password>
 </security>
 <statement>
 <prepared-statement-cache-size>32</prepared-statement-cache-size>
 <share-prepared-statements/>
 </statement>
 </datasource>
 <drivers>
 <driver name="org.postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-class>
 </driver>
 </drivers>
</datasources>
Replace the values for the connection-url, user-name and password with the correct ones for your environment.
. Build and deploy the application, using the postgresql profile defined in the project POM :
.. In JBoss Developer Studio, you can do this by opening the project’s context menu: right-click on the project, click Maven → Select Maven Profiles…, and activate the postgresql profile by selecting it’s checkbox. Once you have activated the profile, you can publish the project to a JBoss EAP instance from JBoss Developer Studio in the same manner described previously.
.. If you are building and deploying from the command-line, activate the postgresql profile, by specifying it during the build command like so:
mvn clean package jboss-as:deploy -Ppostgresql
	
If you have not configured the Maven settings, to use the Red Hat Enterprise Maven repositories:

mvn clean package jboss-as:deploy -Ppostgresql -s TICKETMONSTER_MAVEN_PROJECT_ROOT/settings.xml

Part X. Appendix B - Deploying to OpenShift

Chapter 64. What Will You Learn Here?

This appendix demonstrates how to import, develop and deploy the TicketMonster example using JBoss Developer Studio:
	
Obtain and import the TicketMonster example source code

	
Deploy the application to OpenShift Online with OpenShift Tools

Chapter 65. Import the Project source code

Once the TicketMonster source code is obtained and unpackaged, you must import it into JBoss
Developer Studio, as detailed in the procedure below. TicketMonster is a Maven-based project so a
specific Import Maven Project wizard is used for the import.
	
Click File*→*Import to open the Import wizard.

	
Expand Maven, select Existing Maven Projects and click Next.

	
In the Root Directory field, enter the path to the TicketMonster source code. Alternatively,
click Browse to navigate to the source code location. The Import Maven Project wizard
recursively searches the path for a pom.xml file. The pom.xml file identifies the project as a
Maven project. The file is listed under Projects once it is found.

Figure 65.1. pom.xml File Listed in the Projects Pane
[image: gfx/pom-file-projects-pane.png]

	
Click Finish. When the import process is complete, the project is listed in the Project Explorer view.

Chapter 66. Pre-requisites

We will be pushing the TicketMonster sources to a git repository on OpenShift, where the application would be built and deployed.
The build on OpenShift, and hence the git push can timeout, since Maven dependencies will have to be fetched from the Red Hat Enterprise Maven repository or other repositories.
We’ll get around this drawback by configuring JBoss Developer Studio to not time out sooner. To do do, set the Git connection timeout to 300 seconds. Click Window → Preferences, expand Team and
select Git. In the Remote connection timeout (seconds) field, type 300 and click Apply and click OK.
Figure 66.1. Modify the git remote connection timeout
[image: gfx/git-remote-connection-timeout.png]

Chapter 67. Deploying to OpenShift using JBoss Developer Studio

To deploy TicketMonster to OpenShift Online, you must create a new OpenShift Online application based on the existing workspace project using OpenShift Tools, as detailed in the procedure below.
Note
This procedure documents the deploying process for first-time OpenShift Online users. This
includes one-time steps, such as signing up for an OpenShift Online account, creating an
OpenShift Online domain and uploading SSH keys. If you have previously used OpenShift
Online and OpenShift Tools, omit the one-time steps as appropriate.

	
In JBoss Central, under Start from scratch, click OpenShift Application.

	
Click the Please sign up here link to create an OpenShift Online account and follow the
instructions on the OpenShift web page displayed in your default system web browser. Once
you have completed the sign-up process, restart the New OpenShift Application wizard.

	
Complete the fields about your OpenShift Online account as follows:

	
From the Connection list, select New Connection.

	
Ensure the Use default server check box is selected.

	
In the Username and Password fields, type your account credentials.

Figure 67.1. Completed Username and Password Fields
[image: gfx/completed-username-password-fields.png]

	
Click Next.

	
In the Domain Name field, type a name for your new OpenShift Online domain and click Finish. The provided domain name must be unique across all domains on OpenShift Online; if it is not unique, you will be instructed to provide a unique domain name.

	
From the Type list, select JBoss Enterprise Application Platform 6 (jbosseap-6).

Figure 67.2. Completed Fields in the New OpenShift Application Wizard
[image: gfx/completed-fields-application-wizard.png]

	
Click Next.

	
Complete the fields about the new OpenShift Online application as follows:

	
In the Domain name field, select an existing OpenShift Online domain.

	
In the Name field, type ticketmonster.

	
From the Domain list, ensure the domain you have previously created is selected.

	
From the Gear profile list, select small.

Figure 67.3. Completed Fields in the New OpenShift Application Wizard
[image: gfx/completed-fields-application-wizard-step2.png]

	
Click Next.

	
Clear the Create a new project check box.

	
In the Use existing project field, type ticket-monster. Alternatively, click Browse to select the ticket-monster project.

	
Ensure the Create and set up a server for easy publishing check box is selected.

Figure 67.4. Completed Fields in the New OpenShift Application Wizard
[image: gfx/completed-fields-application-wizard-step3.png]

	
Click Next.

	
Click SSH Keys wizard and click New.

	
Complete the fields about the SSH Keys to be created as follows:

	
In the Name field, type a name for the SSH key.

	
From the Key Type list, ensure SSH_RSA is selected.

	
In the SSH2 Home field, ensure your .ssh directory path is shown.

	
In the Private Key File Name field, type a name for the private key file name. The Public Key File Name field populates automatically with the name of the private key file name with .pub appended.

	
Click Finish.

	
Click OK to close the Manage SSH Keys window.

	
Click Finish to create the new OpenShift application based on the existing workspace ticket-monster project. This process may take some time to complete.

Figure 67.5. New OpenShift Application Wizard
[image: gfx/new-openshift-application-wizard.png]

	
At the prompt stating OpenShift application ticketmonster will be enabled on project ticket-monster …, click OK. This configures the workspace ticket-monster project for OpenShift and connects it to the OpenShift Online Git repository system used for version control.

Figure 67.6. Import OpenShift Application Prompt
[image: gfx/import-openShift-application-prompt.png]

	
At the prompt stating the authenticity of the host cannot be established and asking if you are sure you want to continue connecting, verify the host information is correct and click Yes.

	
At the prompt asking if you want to publish committed changes to OpenShift, click Yes. The Console view automatically becomes the view in focus and displays the output from the OpenShift Online server. Once the OpenShift Online ticketmonster application is created and deployed, the Console view displays the following message:

Deployment completed with status: success
Figure 67.7. New OpenShift Application Wizard
[image: gfx/completed-deployment-openshift.png]

Chapter 68. Deploying to OpenShift using the command-line

To deploy TicketMonster to OpenShift Online, you must create a new OpenShift Online application based on the existing workspace project using OpenShift Tools, as detailed in the procedure below.
Note
This procedure documents the deploying process for first-time OpenShift Online users. This
includes one-time steps, such as signing up for an OpenShift Online account, creating an
OpenShift Online domain and uploading SSH keys. If you have previously used OpenShift
Online and OpenShift Tools, omit the one-time steps as appropriate.

68.1. Create an OpenShift Account and Domain

If you do not yet have an OpenShift account and domain, browse to OpenShift to create the account and domain.
Get Started with OpenShift details how to install the OpenShift Client tools.

68.2. Create the OpenShift Application

Note
The following variables are used in these instructions. Be sure to replace them as follows:
	
YOUR_DOMAIN_NAME should be replaced with the OpenShift domain name.

	
APPLICATION_UUID should be replaced with the UUID generated by OpenShift for your application, for example: 52864af85973ca430200006f

	
TICKETMONSTER_MAVEN_PROJECT_ROOT is the location of the Maven project sources for the TicketMonster application.

Open a shell command prompt and change to a directory of your choice. Enter the following command to create a JBoss EAP 6 application:
rhc app create -a ticketmonster -t jbosseap-6
Note
The domain name for this application will be ticketmonster-YOUR_DOMAIN_NAME.rhcloud.com

This command creates an OpenShift application named ticketmonster and will run the application inside the jbosseap-6 container. You should see some output similar to the following:
Application Options
\-------------------
Domain: YOUR_DOMAIN
Cartridges: jbosseap-6 (addtl. costs may apply)
Gear Size: default
Scaling: no

Creating application 'ticketmonster' ... done

Waiting for your DNS name to be available ... done

Cloning into 'ticketmonster'...
Warning: Permanently added the RSA host key for IP address '54.90.10.115' to the list of known hosts.

Your application 'ticketmonster' is now available.

 URL: http://ticketmonster-YOUR_DOMAIN.rhcloud.com/
 SSH to: APPLICATION_UUID@ticketmonster-YOURDOMAIN.rhcloud.com
 Git remote: ssh://APPLICATION_UUID@ticketmonster-YOUR_DOMAIN.rhcloud.com/~/git/ticketmonster.git/
 Cloned to: /Users/vineet/openshiftapps/ticketmonster

Run 'rhc show-app ticketmonster' for more details about your app.
The create command creates a git repository in the current directory with the same name as the application.
You do not need the generated default application, so navigate to the new git repository directory created by the OpenShift command and tell git to remove the source and pom files:
cd ticketmonster
git rm -r src pom.xml
Copy the TicketMonster application sources into this new git repository:
cp -r TICKETMONSTER_MAVEN_PROJECT_ROOT/src .
cp -r TICKETMONSTER_MAVEN_PROJECT_ROOT/pom.xml .
You can now deploy the changes to your OpenShift application using git as follows:
git add src pom.xml
git commit -m "TicketMonster on OpenShift"
git push
The final push command triggers the OpenShift infrastructure to build and deploy the changes.
Note that the openshift profile in pom.xml is activated by OpenShift, and causes the WAR build by OpenShift to be copied to the deployments/ directory, and deployed without a context path.
Now you can see the application running at http://ticketmonster-YOUR_DOMAIN.rhcloud.com/.

Chapter 69. Using MySQL as the database

You can deploy TicketMonster to OpenShift, making use of a real database like MySQL, instead of the default in-memory H2 database within the JBoss EAP cartridge. You can follow the procedure outlined as follows, to first deploy the TicketMonster application to a JBoss EAP cartridge, and to then add a :
	
Create the OpenShift application from the TicketMonster project sources, as described in the previous sections.

	
Add the MySQL cartridge to the application.

	
If you are using JBoss Developer Studio, select the ticketmonster application in the OpenShift Explorer view. Open the context-menu by right-clicking on it, and navigate to the Edit Embedded Cartridges… menu item.

Figure 69.1. Edit Embedded Cartidges for an OpenShift application
[image: gfx/edit-embedded-cartridge-openshift.png]

Select the MySQL 5.5 cartidge, and click Finish.
Figure 69.2. Add MySQL cartridge
[image: gfx/add-mysql-embedded-cartridge.png]

	
If you are using the command-line, execute the following command, to add the MySQL 5.5 cartridge to the ticketmonster application:

rhc cartridge add mysql-5.5 -a ticketmonster

	
Configure the OpenShift build process, to use the mysql-openshift profile within the project POM. As you would know, the Maven build on OpenShift uses the openshift profile by default - this profile does not contain any instructions or configuration to create a WAR file with the JPA deployment descriptor for MySQL on OpenShift. The mysql-openshift profile contains this configuration. Since it is not activated during the build on OpenShift, we need to instruct OpenShift to use it as well.

To do so, create a file named pre_build_jbosseap under the .openshift/action_hooks directory located in the git repository of the OpenShift application, with the following contents:
TICKET_MONSTER_OPENSHIFT_GIT_REPO/.openshift/build_hooks/pre_build_jbosseap.

export MAVEN_ARGS="clean package -Popenshift,mysql-openshift -DskipTests"

This OpenShift action hook sets up the MAVEN_ARGS environment variable used by OpenShift to configure the Maven build process. The exported variable now activates the mysql-openshift profile, in addition to the default values originally present in the variable.
. Publish the changes to OpenShift:
.. If you are using JBoss Developer Studio, right-click the project, go to Team → Commit… to commit the changes. Select the pre_build_jbosseap file to add to the commit. Choose the Commit and Push button during committing, to push the changes to the OpenShift repository.
.. If you are using the command line, add the pre_build_jbosseap file to the git index, and commit it, and push to the OpenShift repository, as follows:
cd <TICKET_MONSTER_OPENSHIFT_GIT_REPO>
git add .openshift/build_hooks/pre_build_jbosseap
git commit -m "Added pre-build action hook for MySQL"
git push

Note
On Windows, you will need to run the following command to set the executable bit to the pre_build_jbosseap file:
git update-index --chmod=+x .openshift/build_hooks/pre_build_jbosseap
This ensures the executable bit is recognized on OpenShift even though the file was committed in Windows.
Since JBoss Developer Studio does not have a git console, you will need to run this from the command line.

Chapter 70. Using PostgreSQL as the database

You can deploy TicketMonster to OpenShift, making use of a real database like PostgreSQL, instead of the default in-memory H2 database within the JBoss EAP cartridge. You can follow the procedure outlined as follows:
	
Create the OpenShift application from the TicketMonster project sources, as described in the previous sections.

	
Add the PostgreSQL cartridge to the application.

	
If you are using JBoss Developer Studio, select the ticketmonster application in the OpenShift Explorer view. Open the context-menu by right-clicking on it, and navigate to the Edit Embedded Cartridges… menu item.

Figure 70.1. Edit Embedded Cartidges for an OpenShift application
[image: gfx/edit-embedded-cartridge-openshift.png]

Select the PostgreSQL 9.2 cartidge, and click Finish.
Figure 70.2. Add PostgreSQL cartridge
[image: gfx/add-postgresql-embedded-cartridge.png]

	
If you are using the command-line, execute the following command, to add the PostgreSQL 9.2 cartridge to the ticketmonster application:

rhc cartridge add postgresql-9.2 -a ticketmonster

	
Configure the OpenShift build process, to use the postgresql-openshift profile within the project POM. As you would know, the Maven build on OpenShift uses the openshift profile by default - this profile does not contain any instructions or configuration to create a WAR file with the JPA deployment descriptor for MySQL on OpenShift. The postgresql-openshift profile contains this configuration. Since it is not activated during the build on OpenShift, we need to instruct OpenShift to use it as well.

To do so, create a file named pre_build_jbosseap under the .openshift/action_hooks directory located in the git repository of the OpenShift application, with the following contents:
TICKET_MONSTER_OPENSHIFT_GIT_REPO/.openshift/build_hooks/pre_build_jbosseap.

export MAVEN_ARGS="clean package -Popenshift,postgresql-openshift -DskipTests"

This OpenShift action hook sets up the MAVEN_ARGS environment variable used by OpenShift to configure the Maven build process. The exported variable now activates the postgresql-openshift profile, in addition to the default values originally present in the variable.
. Publish the changes to OpenShift:
.. If you are using JBoss Developer Studio, right-click the project, go to Team → Commit… to commit the changes. Select the pre_build_jbosseap file to add to the commit. Choose the Commit and Push button during committing, to push the changes to the OpenShift repository.
.. If you are using the command line, add the pre_build_jbosseap file to the git index, and commit it, and push to the OpenShift repository, as follows:
cd <TICKET_MONSTER_OPENSHIFT_GIT_REPO>
git add .openshift/build_hooks/pre_build_jbosseap
git commit -m "Added pre-build action hook for PostgreSQL"
git push

Note
On Windows, you will need to run the following command to set the executable bit to the pre_build_jbosseap file:
git update-index --chmod=+x .openshift/build_hooks/pre_build_jbosseap
This ensures the executable bit is recognized on OpenShift even though the file was committed in Windows.
Since JBoss Developer Studio does not have a git console, you will need to run this from the command line.

OEBPS/gfx/introduction/organize_imports_5.png
Choose type to import: Page 5 of 6

@ [<mk | [News) [Gnel] | fmsn

OEBPS/gfx/introduction/event_service_copy_paste.png
) Bvensenvce.ava 3%

package org. jboss.examples. ticketmonster. rest;

@ ePath('/events"
‘o ReavestScoped
public class EventService {
Elniect.
private Entitylanager en;

Juges(MediaType. APPLICATION_JSON)
¢ List<Event> getAllEventsO) {
Final List<Event> results =

en.createQuery(

"select e fron Event e order by c.nane").getResultList();
return results;

PEres 2

]

oo

poooao

OEBPS/gfx/introduction/jbds8_mobile_browsersim.png
S 1010018 001863 10 6ol V04 B A

OEBPS/gfx/ticket-monster-user-use-cases.png
User

Reserve
Seats

OEBPS/gfx/h2console_settings.png
[‘Englisn] Preferences Tools Help

‘Saved Settings: Generic H2 (Server) =
SettingName: | Goneric iz (Server) save| |Remove
Driver Class: orgh2Driver
JDBC URL: jdbchz:meniicket-monster
P,

o

OEBPS/gfx/single-page-app.png
\ge HTMLS REST
page senvices

OEBPS/gfx/link-www-directory-to-webapp.png
@
&
q
1
o

(25 Project Explorer 33| % Package Explorer

» i ickes-monster
v (2 TicketMonster-Cordova
» B JavaScript Resources.
» (& merges.
> = plugins
I
» (= admin
P Eres
» (= resources
¥ (= WEB-INF
4 config.xmi
Hfaviconico
i index.

OEBPS/gfx/pom-file-projects-pane.png
6006 Import Maven Projects

Maven Projects
Select Maven projects

Root Diectary: | Usrs/vineet/ Appicaions ticket-morster o) [mowse..
Projects:
& Jdemolpomaxml ora ooss examples icket-monsterZ 6.0 Fralwar s]

Deselect All

Select Tree

Deselect Tree

Refresh

() Add project(s) to working set

ticket-monster 02

b Advanced

®@ <Back Next > Cancel | [msh)

OEBPS/gfx/introduction/jboss_maven_repository.png
8006 Maven Repository

Edit Maven Repository ,ﬁ

Profile

Profile ID: | redhat-techpreview-all-repository | ¥ Active by default

Repository

1D: | redhat-techpreview-all-repository

Name: [Red Hat Tech Preview repository (all)

URL: | http:/ /maven.repository.redhat.com/techpreview/all
» Advanced

[cnce | 0T

OEBPS/gfx/introduction/jquery_mobile_page.png
<div dato-role="poge” 1d="pagel>
<t doko-rote="heoders.
hiTickethonster /n>
i
6 dato-rote-"content>
<pipage content goes here. </
Py
6 dato-roteat rooters
anbo /i

TicketMonster

Page content goes here.

hse e osscss (asmeden)

OEBPS/gfx/introduction/as_eap_found.png
8606
Java EE Web Project

New Project Example

Create a Maven-based Java EE 6 web application project

Description:

“This is your projectl IFs a sample, deployable Maven 3 project to help you get your foot in the door developing with
JavalEE 6 on JBoss Enterprise Application Platform 6 or J8oss Application Server 7.1

“This project i setup to allow you to Create a compliant Java EE 6 application using JSF 2.0, COI 1.0, §8 3.1, JPA 2.0
and Bean Validation 1.0.

Project based on the org jboss.spec.archetypes jboss-javaee6-webapp-archetype:7. 3. Final Maven archetype
() Create a blank project

Target Runtime |

Requirements

Type Description Found?
Server/runtime example requires JBoss Enterprise Appli

plugin “This project example requires m2e >= 1.0. “
plugin “This project example reuires m2e-wtp >= 0.16.0.]
plugin “This project examle requires Jioss Maven Tools. V]

<t | @R (G) [Fish

OEBPS/gfx/completed-fields-application-wizard.png
6006 New Openshift Application

Existing or new applicat
Create a new Openshift Application.

OPENSHIFT

) Use my existing Openshift application:
We wil clone and import your existing application to a workspace project.

Browse.

(@ Create a new Openshift application:

You can create an application form scratch or handpick from existing cartridges you need.

Qeype filter text

VBasic Cartridges
Do-lt-Yourself 0.1 diy-0.1
JBoss Application Server 7 jbossas-7
jBoss Data Virtualization 6 Jboss-dv-6.0.0
JBoss Enterprise Application Platform 6 Jbosseas
Tomeat 6 (Boss EWS 1.0) joossews-1.0
Tomeat 7 (Boss EWS 2.0) joossews-2.0
Vertx 2.1 jboss-vertx-2.1
WildFly Application Server 8.1.0.Final jboss-wildfly-&
Jenkins Server jenkins-1
Node.js 0.10 nodejs-0.10
Perl 5.10 perl-5.10
PHP 5.3 php-5.3

Details

JBoss Enterprise Application Platform 6

Market-leading open source enterprise platform for next-generation, highly transactional
enterprise Java applications. Build and deploy enterprise Java in the cloud.

@ [<Back | [CNet>] [Cancel | | Finisn

OEBPS/gfx/introduction/outline_of_event.png
=

o version: int
o name : sting

o description String
o major boolean

o picture : String

© getld): Long

© setd(Long) : void

© getversion0 : int

© setversion(ing - void

© equals(Object) : boolean
©.hashCode(- int
getName(- String

© setName(string) - void
© getDescription - String

© setDescription(string) void
© isMajor(: boolean
°
°
°
°

setMajor(boolean) - void
getPictured - String
setpicture(string) - void.
stoString0 : String

OEBPS/gfx/introduction/h2console_in_browser.png
@ hutp:/ localhost:8080/h2console /console/login.jspjsessionid~efb7daf 5 | =

L]

G 8 & [hup:/localhost:8080/hzconsole/console/login spTisess

(eEn0ksh —]

Preferences Tools Help

Saved Settings: | Generic H2 (Embedded) B
SGNaMS: | sonei iz Embeddd) [5ave] [romore)
Driver Ciass: org.h2.Driver

JDBC URL: Jdbc:h2:memticket-monster

e

o

OEBPS/gfx/git-remote-connection-timeout.png
8006 Preferences

type fiter text Git G
»rorge
Freowarker Cloning repositories
»Help R R
Hal editor Default repositary folder: |/Users/vineet/ait] [) [vaniable...]
> Hybrid Mobile
»install/Update Remote connections.
»iava
»lava €€ Remote connection timeout (seconds):
»Java Persistence
»lavascript Automatic refresh
»J8oss Tools
JVM Monitor o Refresh resources when index changes
»Maven
» Plug-in Development ¥ Refresh only when workbench is active
Project Archives.
» Remote Systems Merge
> Run/Debug
»server Merge tool content: | Last HEAD (unmerged)
VTeam
rovs Blame Annotations.
File Content
»Git (] Ignore whitespace changes
lgnored Resources
Models Secure Store
Terminal
»TestNG (0] Store credentials in secure store by default
Validation
»web
> Web Services [Restore Defaults | [Apply
»xm =

©) [| [moe)

OEBPS/gfx/database-design.png
MediaType
e

Administration

Address
o

Venue

— Wedten
u/ show

Booking

Ticket

Seat

Performance

TicketPriceCategory

SectionAllocation

TicketCategory

OEBPS/gfx/introduction/project_explorer_jax_rs_services.png
& o o 5|13 rckage e

43

3 o e

25 5 et 10,
> e b e e
s s
S it

=0 D cemsecesna 2

e ——

B —
= 1’3 e s

(o oo

ety reve e S

L e——

S

RSt e

o asiatye oscarion 50
T S

PRy
TR SN . s b o RO

OEBPS/gfx/introduction/forge_jpa_new_entity.png
© 0 O JPA: New Entity [Current Selection: /ticket-monster]

JPA: New Entity

Crste a new pA Entty @

9

Target package: ‘org.Jboss.examples.ticketmonster.model | |_Browse..

ID Column Generation Strategy: | AUTO)

Table Name:

Cancel Finish

OEBPS/gfx/completed-username-password-fields.png
6006 New Openshift Appli

Sign in to Openhift
Please provide your Openshift credentials.

OPENSHIFT

1f you do not have an account on Openshift, please sign up here.

Connection: [<New Connection>

4 Use default server
Server: htps://openshift.redhat.com =

Username:

Password,

] save password (could trigger secure storage login)

® <vacc | NS (Gt) [rinsh

OEBPS/gfx/introduction/new_html_file.png
(25 Project explorer 32 | [£ Package Explorer

v ¥ ticket-monster
> ZBIAX-RS Web Services
» g Deployment Descriptor: ticket-monster
> 2 JAX-WS Web Services
» . Web Resources
» ¢ IPA Content

]
o

&
q

» 2 st vso (] = Project..

» 28 java Resources
» (5 Deployed Resourt G Into
v
v g=main Show In
> iava
» = resources Copy

» = resource

> (= WEB-INF @ Paste
indecny % Delete
Gindexxn Build Path
> Gtest Move...
> Gtarger Rename...
8 pom.xnl
@rerome.m 2 Import.
. Export...

&) Refresh

CTTMMl & Copy Qualified Name

— [File
EW > Folder
sc [RSQLFile

& JPA ORM Mapping File
B8V

g N—
> (BUsPFile

4 XHTML Page
[

File beans.xm|

OEBPS/gfx/create-new-hybrid-mobile-application-project.png
6006 Hybrid Mobile (Cordova) Application Project
Create Hybrid Mobile Application Project

mobile development

Project name: [TicketMonster-Cordova]

4 Use default location
Location: | /Users/vineet/workspaces J8DSB.0.0.GA TicketMonster-Cord: | _Browse...
Choose file system: | default

Mobile Application

Name: [TicketMonster-Cordova]

1D:{org jboss.examples.ticketmonster.cordova.

® (<mo) e [cnel) (s

OEBPS/gfx/introduction/new_html_file_correct_location.png
806 __ New HTML File _

Create a new HTML file.

Enter or select the parent folder:

[ticket-monster/src/main/webapp.

Boo
 ramoresystemsTempfies
v tckes-monster
(= settings.
M=
v Emain
> Ejava
¥ (= resources
> (= webapp
P Etest
> =target

e
N

® <sace | [New>) (Conce] (ommsnn)

OEBPS/gfx/introduction/js_css_widget.png
Outline £ Palette 5 =g
Qoype fiter toxt
7 JQuery Mobile v o

HesderBar Footerbar Nmwbar Sdect
Smm

O 000 a
Sutn Butons Formbutn Lk
ao @

Togse Rade Chedbor Checkbores
[=o_e:)

Sider Tertnput

HTML

OEBPS/gfx/run-on-ios-simulator.png
ﬂ
Go Into

[t Project £ 33 t:mkﬁ

Show In W >
oy, LS
> EhJavaScript Resourcet — Copy Qualified Name
: ?:"'1“ % Paste £
SEna Delete ®
> i admin Move...
> Gores Renam: R
» > resources
»‘gmm 2 Import...
4 config.xmi 4 Export...
S favicon.ico
i index.huml) Refresh s
Close Project
Close Unrelated Projects
%, Mark as Deployable
Validate
Show in Remote Systems view
Profile As >
Debug As >
% 1 Run on Android Device
Team » # 2 Run on Android Emulator
Campare it g
Restore from Local History... &'4' R with CordovasinT
Configure
Source > Run Configurations.

OEBPS/gfx/start-hybrid-mobile-tools-cordovasim-installation-with-link.png
£, JBoss Central 58 =0
- s deystuia hosscom/copral na
- Welcome to JBoss [fige/Asistiaion sa’?:q Shocs ool erdgbathyond Show on Startup

Start from scratch ot

OEBPS/gfx/introduction/organize_imports_3.png
@ [<mk | CNews) [Gnel] | fmsn |

OEBPS/gfx/introduction/hibernate_add_jpa_annotations.png
600 Hibernate: add JPA annotations

“The following classes will be changed

Hibernate: add JPA annotations to the related set of entities Q

Preferred location of Annotations: Fields
Default string length (2535 by default): 255

Enable optimistic locking:

@ [<Back | [Next> | [Cancel | [Fmish]

OEBPS/gfx/introduction/forge_constraint_add_size_on_name.png
© O O Constraint: Add [Current Selection: /ticket-monster/src/main/java/...

Select constrained field

Seec th property you wish to constrain ?
On Property: « | name ol
Constraint: «| Size B

) Add constraint on the property accessor?

[<Back | [Newt> | [Cancel | [[Finish]

OEBPS/gfx/introduction/forge_jpa_new_entity_created.png
6 JPA: New Entity [Cu...n: /ticket-monster]

Entity org.jboss.examples.ticketmonster.model.Event
created

OEBPS/gfx/jboss-eap-selected-deployment.png
6006 Run On Server

Run On Server
Select which server to use

How do you want o select the server?
(© Choose an existing server

O Manually define a new server

Select the server that you want t0 use:

type filter text

Server

v (5 localhost
Stopped

J80ss Enterprise Application Platform (EAP) 6.1+

] Always use this server when running this project

@ <sack | [New> | [Cancel | [Cmmsh

OEBPS/gfx/introduction/jquery_mobile_listview_widget.png
Outline £ Palette 5 =g

Q type filter text.
7 jQuery Mobile. 1av o
A
g = =4
&) [Fzadng]|
& []
B O o e

Bution o Lk
ao
Togse Rede | Chadbor Checkbores
[=o _o:}
Sider Tertnput

L TN—— . a—

OEBPS/gfx/hybrid-mobile-pane-preferences-window.png
8006 Preferences

ype filter text Android G

» General
* androd Android settings for Hybrid Mabile Application development

»Ant TPy rm————m—.
ooy Management Android SDK Directory: |/Users/vineet/android-sdks
»Forge

FreeMarker
»Help

HL editor
¥ Hybrid Mobile

Engines

> Install/Update
Pava
»lava €€
P lava persistence
»avascript
» JBoss Tools

OEBPS/gfx/introduction/forge_is_starting.png
0.0.6 Starting JBoss Forge 2.12.1.Final

Please wait while Forge 2.12.1.Final is started.

() Always run in background

[Cancel | [Dewils>> | [RuminBackground |

OEBPS/gfx/introduction/forge_action_menu.png
| Current selection: ticket-monster -

‘Database/Connections & Connection: Create Profle
5 Connection: Remove Profile
Forge/Generate % Addon: New Ul Command
Test Setup
Forge/Manage and Insall an Addon
% Install an Addon
% Install an Addon from GIT
- Remove an Addon
&-Addon: Add Dependency
-Java: Add Annotation
- Java: Generate Equals and HashCode
- Java: Generate Getters and Setters
-Java: New Annotation
- Java: New Class
Java: New Enum
-Java: New Enum Const
G-lava: New Field
G-lava: New Interface.
Java €€ S-JavagE: sewp
Java E€/Bean Validation - Constraint: Add
& Constrain: Setup.

OEBPS/gfx/introduction/runtime_open_dialog.png
006 Open

Add a new path

EEEE -

~ || [11jboss-eap-6.3 BRCY

Do [-installation 3
[appclient .
All My Files 3 bin »
#\ Applications {1 bundles »
[Desktop i docs »
{2 domain »
(5! Documents 3 Jooss-modules ar
© Downloads JBOSSEULA.txt
LICENSE txt
{2 modules »
{3 standalone »
I — version.txt
© Remote Disc | [welcome-content "
| New Folder | Cancel E

OEBPS/gfx/introduction/mobile_browsersim_windows_menu.png
JBoas. 1234

amazoncom
=5

s
R GetAmazon Apps

OEBPS/gfx/introduction/jboss_dev_studio_jboss_central.png
J8oss Central 32 <o

£ Welcome to JBoss @ Search 50ss Commniy @ K o showon sunup.

Start from scratch ol
B Hmus project S Openshift Application

G Anguinsforge 1 v EE Wb projet
1 aven et ibrid Mabie Proect

Start from a sample g Tuoral
o Appiatons | Kitchensink E—
Mt Applcatons | greeter
Backens Apicatons | helloworld 2

Kchensink-rf

JBoss Buzz WD @ Otherresources
i wesk i JBoss (23 October 20141 Transiton from Summer o Winer 2 days ag0 Ross developer websie
by Ko Conner o e
€ JRoss Tool and Develaper Sudio for Elpse L days ago by masandersen S
% JBoss Tools Integration Stack 4.1.6.Final / JBoss Developer Studio Integration Stack oo
70T EA' weeks 390 by peacs roductdocumentaon

= Getting Started | ¥ Software/Update

OEBPS/gfx/introduction/forge_constraint_add_notnull_on_name.png
© O O Constraint: Add [Current Selection: /ticket-monster/src/main/java/...

Select constrained field

Seec th property you wish to constrain %
On Property: « | name ol
Constraint: « [Notwull 3

) Add constraint on the property accessor?

[<Back | [Newt>] [Cancel | [[Finish]

OEBPS/gfx/introduction/forge_setup_constraint_wizard.png
© O O Constraint: Setup [Current Sele

n: /ticket-monster]

Constraint: Setup

Setup Bean Valdaton n your prject §>

Bean Validation provider. +[Generic java €€

4 Provided by Application Server?

Message Interpolator Class: Browse.
Traversable Resolver Class: Browse.
Constraint Validator Factory Class: Browse.

OEBPS/gfx/introduction/new_class_eventservice.png
600 New Java Class

Java Class.

Create a new Java class.

Source folder: ticket-monster/src/main/java (
Package: org Jboss.examples.ticketmonster.rest (
(] Enclosing type: Browse.

Name:

Modifers: @public Opackage () private () protected
() abstract (] final static

Superciass: Javalang.Object (

Interfaces:

Remove

Which method stubs would you like to create?
] public static void main(String() args)
[Constructors from superclass.
 Inherited abstract methods

Do you want to add comments? (Configure templates and defauit value here)

[Generate comments

@ [T

OEBPS/gfx/setup_hybrid_mobile_engine_340.png
Download Hybrid Mobile Engine

Download a new engine version or add a platform to an existing one.

version: [3.4.0

Platform

O 4 Android

@ i 105 xcode)

® |

OEBPS/gfx/cordova_confirm_plugin_versions.png
8006

Hybrid Mobile (Cordova) Application Project

Confirm plug-ins to be downloaded from registry
Confirm the plug-ins to be downloaded and installed from registry or go back L]

to select again.

[0212

| org.apache.cordova.device

Cordova Device Plugin

leenseAssche 20

lo.

o

| org.apache.cordovadialogs

Cordova Notification Plugin

GeenseAssche 20

lo.

| org.apache.cordova.statusbar

Cordova StatusBar Plugin

leenseAssche 20

[<Bak][WNea> | [Cancel

OEBPS/gfx/introduction/source_organize_imports.png
) pvenservicejava 3
package org. boss. examples. ticketmonster. rests

Press &8 g8

epath(*/events™

“RequestSconed

pubtic class v
st
private ot

oGET

eProduses

public List
Final §

o

return

< Undo Typing

Revert File
Save

Open Declaration
Open Type Hierarchy

%2

S

"
e

Open Call Hierarchy ~ ~CH
Show in Breadcrumb %8

Quick Outline
Quick Type Hierarchy
Open With

Show In W

Cut
Copy
Copy Qualified Name
Paste

Local History

References
Declarations

B Add to Snippets.

%0
=T

£e").getResulbListO);

Toggle Comment %/
Remove Block Comment ~%\
Generate Element Comment %)

Correct Indenation w

Format ORF
Format Element.

Add Import 0 %M
Sort Members.

Clean Up.

[N

toona

OEBPS/gfx/introduction/mobile_browsersim_custom_devices.png
Preferences

{ Devices [T

Oevces
Name Widh Height
Desktop (Default User-A... 1024 768

1024
1024

Apple iPhone 4

HTC One(M8) 1920
Samsung Galaxy SV 1080 1920
Samsung Galaxy SIl 720 1280
Samsung Galaxy Nexus 720 1280
Samsung Galaxy Note Il 1080 1920
Samsung Calaxy Note Il 800 1280

Skins options

M use skins

Truncate the device window when t does ot fi dispay
() Aiways truncate () Never truncate (&) Prompt

Pixl Ratio

1
1
1
2
3
3
2
2
3
2

User-Agent
DEFAULT
Mozilla/5.0 (Pad; U..
Mozilla/5.0

[Remove |
Mozilla/5.0 (Phone;
Mozilla/5.0 (Linux;... Galaxy || Revert All |
Mozilla/5.0 (Linux;... Galax)
Mozilla/5.0 (Linux;
Mozilla/5.0 (Linux;
Mozilla/5.0 (Linux:... ~ Galaxy
Mozilla/5.0 (Linux;... Calax)
Load Defaults |

o) [o]

OEBPS/gfx/setup_hybrid_mobile_engine_from_scratch.png
6006 Hybrid Mobile (Cordova) Apy

Select a Hybrid Mobile Engine
© Please select a Hybrid Mobile Engine

Available Engines:

Name Platforms (Downioad-]

Search,

Remove

Next > Cancel Finish

OEBPS/gfx/ui-event-details.png
Venue image

[N g

]

Event details

Section
Selector

I

Ticket quantty
inputs

Ticket Summary

Create booking

OEBPS/gfx/ui-file-structure.png
Vst
v g main
¥ {2 webapp
?ﬁamm
v = resources
P s
» zimg
veis
v app
» (& collections
» (& models
» & router
P views
(3 utities js
¥ (= configurations.
¥ i templates
> (= desiaop
b = mobile

OEBPS/gfx/forge_scaffold_generate_select_entities.png
© 0 O Scaffold: Generate [Current Selection: /ticket-monster]

Select JPA entities.

(i) Some of the selected entities
{076 jooss.examplesicketmonster.model.Booking,

ora ihass.examoles ricketmonster model Fuent

Targets

@ org.jboss.examples.ticketmonster.model Booking
@ org.jboss.examples.ticketmonster.model.Event
@ org.jboss.examples.ticketmonster.model EventCategory T
@ org.jboss.examples.ticketmonster.model.edialtem [_select None |
@ org.jboss.examples.ticketmonster.model.Performance
@ org.jboss.examples.ticketmonster.model. Section
@ org.jboss.examples.ticketmonster.model. SectionAllocation
@ org.jboss.examples.ticketmonster.model.Show
@ org.jboss.examples.ticketmonster.model.Ticket
@ org.jboss.examples.ticketmonster.model.TicketCategory
+ & org.jboss.examples.ticketmonster.model. TicketPrice
@ org.jboss.examples.ticketmonster.model. Venue

[selectall |

4 Generate REST resources

[<Back | [Next> | [Cancel | [Fmsh)

OEBPS/gfx/cordova_add_device_plugin.png
6006 Hybrid Mobile (Cordova) Application Project

Install Cordova Plug.

Discover and Install Cordova Plug-ins

e ity KT

@ org.apache.cordovadevice
Cordova Device Plugin

i

[—

() org.apache.cordova.device-motion
Cordova Device Motion Plugin

[

() org.apache.cordova.device-orientation
Cordova Device Orientation Plugin

@ [<Back | [New> | [Cancel | [ommisho)

OEBPS/gfx/introduction/hibernate_add_jpa_annotations_step2.png
806

Hibernate: add JPA annotations

Hibernate: add JPA annotations to the related set of entities
‘The following changes are necessary to perform the refactoring.

Changes to be performed

[Venue java

HALR

Original Source

[Refactored source

PubTic class Vemue T
private Long id;
private String nane;
private String description;
private int capacitys
public Long getld) {
return id;

3

this.id - id;

3

public String getName() {
return name;

public void setId(Long id) {

Tmport javax.persistence Entity;
import javax.persistence.Generated)
import javax.persistence.1d;

=1

BEntity
public closs Venwe { |
e1d
EGeneratedvalue
private Long id;
private String name;
private String description;
private int capacity;
public Long getldO) {

< Back

Next >

OEBPS/gfx/introduction/forge_jpa_new_field_picture.png
P New Field

=5 =3

TIME O TIMESTAMP.

Embedded () One-t0-One () One-to-Many () Many-to-One () Many-to-Many

Enum Type: ©) ORDINAL () STRING

<ok) [Nem> | (ol) ()

OEBPS/gfx/ios-simulator.png
Ticket Monster

RED WAT JBOSS
ENTERPRISE
APPLICATION PLATFORM

Find events

By Category

By Location

10:41AM -

OEBPS/gfx/introduction/as_eap_selected.png
8606
Java EE Web Project

New Project Example

Create a Maven-based Java EE 6 web application project

Description:

“This is your projectl IFs a sample, deployable Maven 3 project to help you get your foot in the door developing with
JavalEE 6 on JBoss Enterprise Application Platform 6 or J8oss Application Server 7.1

“This project i setup to allow you to Create a compliant Java EE 6 application using JSF 2.0, COI 1.0, §8 3.1, JPA 2.0
and Bean Validation 1.0.

Project based on the org Jboss archetype.eap:jboss-javaeeS-webapp-archetype 6.3.0.A Maven archetype
() Create a blank project

Target Runtime [jboss-eap-

Requirements

Type Description Found?
Server/runtime 055 Enterprise Appli... | &
plugin “This project example requires m2e >= 1.0. “
plugin “This project example reuires m2e-wtp >= 0.16.0.]
plugin “This project examle requires Jioss Maven Tools. V]

“This project has a dependency on org Jooss.bom.capjboss-javace-6.0-with-tools:pom:6.3.0.GA, which cannot be
found. This indicates you do not have access to the proper Maven repository or that repository is incomplete.
This can cause build problems. This can be fixed by adding the recommended reository in your settings.xm.

<t | @Neme) (G) [Fish

OEBPS/gfx/forge_scaffold_generate_action_menu.png
Scaffold/Setup - Seaffold: Setup. M

OEBPS/gfx/introduction/forge_quick_action_menu_filter_jpa.png
Current Selection: /ticket-monster

L —

Jova EE1PA G JPA: Generate Entiies From Tables
5 JPA: New Embeddable
o JPA: New Eniy
&

S JPA New iea
nsewn (TN

A - JPA: New Mapped Superciass

OEBPS/gfx/eclipse-green-bar.png
[Markers | T properties |41 Servers I Data Source Explorer [Snippets
Finished afer 2,461 seconds

s 212 P— a rares: 0 ——

¥ BFforg Joss Jdf dcketmonster est.rest VenueSenvceTest Ranmer. JUnt = Failre Trace

{EtestGenvenuedyid (0.064 =)
{testpagination (0,082 5

OEBPS/gfx/introduction/getter_setter_dialog.png
806

Generate Getters and Setters

Select getters and setters to create:

™ » o capacity
& > o description
™ »ooid

& > o name

Insertion point:

[select Al
[Deselect All
[select Getters |

[Select Setters |

Allow setters for final fields (remove ‘final modifier from fields if necessary)

[Last member

Sort by:

| Fields in getter/setter pairs

Access modifier

@ public

) final

O proteced
() synchronized

() Generate method comments

(O package

O privaee

‘The format of the getters/setters may be configured on the Code Templates preference page.

i 8of 8 selected.

@

| Cancel

)

OEBPS/gfx/add-postgresql-embedded-cartridge.png
806

Embedded Cartridges

Embed Cartridges

Please select the cartridges to embed into your application ticketmonster

OPENSHIFT

) Code Anything (Downioadable Cartridge)
(] 10gen Mongo Monitoring Service Agent (10gen-mms-agent-0.1)
() Cron 1.4 (cron-1.4)

) Jenkins Client Genkins-client-1)

) MongoDB 2.4 (mongodb-2.4)

Deselect All

SwitchYard 0.8.0 (switchyard-0)
Web Load Balancer (haproxy-1.4)
() phpMyAdrmin 4.0 (phpmyadrmin-4)

Selected Cartridge:

PostgreSQL 9.2 (postgresql-9.2)
PostgreSQL s an advanced Object-Relational database management system

©) [l [

OEBPS/gfx/cordova_choose_to_add_plugins.png
6006 Hybrid Mobile (Cordova) Application Project

Install Cordova Plug.

Discover and Install Cordova Plug-ins

ity KT

() org.apache.cordova.battery-status
Cordova Battery Plugin

oot o baten
oorg.apache.cordova.camera
Cordova Camera Plugin
[
[} org.apache.cordova.console
Cordova Console Plugin
[cancel | [Finish]

@ ([<Back) [New>

OEBPS/gfx/introduction/project_explorer_resources.png
(25 Project Explorer 33| 4 Package Explorer

v 5 ticket-monster
» DIAX-RS Web Services
» ‘%z Deployment Descriptor: ticket-monster
> 2 JAX-WS Web Services
» (8 Web Resources
> ¢ IPA Content
¥ 25 Java Resources
» g8 src/main/java
¥ G src/mainjresources.
¥ (& META-INF
B persistence.xml
[Bimportsal
v @sreest/iava
v 3 org.jboss.examples ticketmonster.test
> 1] MemberRegistrationTest java
v @ srctest/resources
¥ (& META-INF
[8] test-persistence.xmi
(8] arquilian xml
(8] test-ds.xml
> EhLibraries
» B JavaScript Resources.
» (5 Deployed Resources
v
v = main
> Biava
» (= resources
v & webapp

i index.huml
i index.xhtml
P Etest

]

o

&

q

OEBPS/gfx/forge_scaffold_generate_input_webroot.png
© 0 O Scaffold: Generate [Current Selection: /ticket-monster]

Scaffold: Generate
Generates the scaffold

Scaffold Type: « | Angulans

Web Root Path: | adrmir]

<vacc) [(Gt) (_rnsh

OEBPS/gfx/completed-deployment-openshift.png
151 problems [Properties 4% servers | E) Console 3% | & Forge Console 5 Openshift Explorer O R0
icketmonsterat Openshit

[INFO] Copying webapp resources [/var/lib/openshift/S45c7a49500446896900034b/app-raot/runtime/repo/src/main/webapp.
[INFO] Webapp assembled in [663 msecs]

[INFO] Building war: /var/lib/openshiFt/S45c7a49500446896900034b/app-raot/runtime/repo/deployments/RO0T . war

[INF0] -

[INFO] BUILD SUCCESS

[INF0]
[INFO] Total time: 1:27.770s

[INFO] Finished at: Fri Nov 07 02:58:11 EST 2014
[INFO] Final Memory: 22M/165M

[INFO]
Preparing build for deployment

Deployment id is 01e8776a

Activating deployment

Deploying jbosseap cartridge

Starting jbosseap cartridge

Found 127.7.210.1:8080 listening port

Found 127.7.210.1:9999 listening port

/var/ib/openshi ft/545c7a49500446896900034b/ jbosseap/standalone/deployments /var/ib/openshi ft/545c7a49500446896900034b/ jbosseap
/var/ib/openshi ft/545c7a49500446896900034b/ bosseap

Artifacts deployed: ./RO0T.war

Git Post-Receive Result: success
Activation status: success
Deployment completed with status: success

OEBPS/gfx/introduction/installer_wizard_page1.png
600 Red Hat JBoss Developer Studio 8.0.0.GA

axo e sscss Nl
e

Introduction

Step 10f 9

[Please read the following information:

This installer will guide you through the installation of Red Hat JBoss Developer Studio 8.0.0.GA.

(Click the "Next” button to proceeded to the next screen. If you want to change something on a previous screen, click
the "Previous” button.

You may stop this installation at any time by clicking the *Quit” button,

Jooss by Red Hat

OEBPS/gfx/android-emulator.png
800 5554:Android-4.4.2

Ticket Monster

RED AT JBOSS'
ENTERPRISE
APPLICATION PLATFORM

Find events

By Category

By Location

J
D

OEBPS/gfx/introduction/jboss_tools_runtime_detection_after.png
8006 Preferences
ype fiter text JBoss Runtime Detection D v
» General
»Ant Description
» Data Management
Srorge Each path on thislst will be automatically scanned for runtimes when
o arker 2 new workspace is created o if selected at every Eclipse startup.
i Click Edit to configure ules fiters for the search.
Ha editor
Pinstall/Update B
:E‘ « Path Every start aid)
o persistence /Applications odevstudios.0.0.GA. %
»Javascript T

¥ 1Boss Tools
Browsersim/Cordovasim
»CDI (Context and Depenc
PIAX-RS
J8oss Central
JBoss Maven Integration
J80ss Portiet
180ss Runtime Detection
Openshift
> Project Examples
Remote Debug
Remote Repositories
Source Lookup
Usage Reporting
»Web
VM Monitor
»Maven
> Plug-in Development
Project Archives
> Remote Systems
> Run/Debug
»Server
»Team
Terminal
P TestNG
Validation
»Web
»Web Services
XML

Available runtime detectors

Type Link
] JBoss AS “Link
& seam

@ Tomeat

Crestore it | (oo

o | ES0S

OEBPS/gfx/introduction/newly_generated_project_explorer.png
[r— tlen v=n —

e
Bt e

& e covaons ot o

rrriteers
Sres—re———————]

OEBPS/gfx/introduction/select_forge_view.png
(Cype filter text

» & General
> EAn

b (AP Tools
rEovs

» (= Data Management
» & Debug

v (= Forge

> =Gt
» G Help

» (= Hibernate

> v

» = Java Browsing

» = JavaScript

b (= Javaserver Faces
» (= J8oss Tools

cancel | [0k)

OEBPS/gfx/start-new-hybrid-mobile-application-project.png
806 New

Select a wizard <>

T

Wizards:

(Cype filter text

¥ (= J8oss Tools Web
> A
» &= Maven

> (= Openshift
» (= Plug-in Development

» (= Remote System Explorer
¥ (5AR | MBean Components.
» = seam

» = server

» (5L Development

b (= TestNG

> (= User Assistance

® <vacc) R (G) (rnsh

OEBPS/gfx/find-hybrid-mobile-tools-cordovasim.png
JBoss Central 52 =g

Welcome to JBoss QSearch J8oss Community @ K showon startup
Features Available B
Find:

() Show installed

Mobile Development
Plug-ins to support HTMLS Hybrid Mobile application development

() 1) Android Development Tools by Google, Inc., EPL, Other (Free), External
1P Ao Development Toos, 0DV, Herarchy Vewer, OpenGL Tracer Tracview

o JBoss Hybrid Mobile Tools + CordovaSim by JBoss by Red Hat, EPL (Free), Supported
Create and test hybrid mobile applications with Apache Cordova for Android + 105

Web Development
‘Additional plug-ins to support web development

o Angular)s for Web Tools by JBoss by Red Hat, EPL (Free), Sunported
Angular)s Tooling support for lonic framework

o Spring IDE by Spring IDE Developers, EPL, Other (Free), Tested
Tool support for the Spring Framework

Source Control Management
Plug-ins for source control systems

Select All Deselect All () Enable Early Access

43 Install/Update (1) || Uninstall (0)

" Getting Stared | ¥ SoftwareUpcate

OEBPS/gfx/introduction/save_modified_resources.png
6006 Save Modified Resources

Some modified resources must be saved before this operation.

] Venue java

] Always save all modified resources automatically prior to refactoring

® (e) o)

OEBPS/gfx/completed-fields-application-wizard-step2.png
8006

New or existing Openshift Apj
Create a new Openshift Application.

OPENSHIFT
Domain: [joossjdf +] Manage Domains
Name:
Type: J8oss Enterprise Application Platform 6
Gear profile: | small] ([Enable scaling

Embedded Cartridges

T

Remove

— e e

OEBPS/gfx/introduction/jquery_mobile_results.png
i mobilehtml @ TicketMonster 5% =a)

& 9 [t/ /localhost:8080)ticket-monster/mobile.htmi |+ | B>

TicketMonster

Rock concert of the decade

Shane's Sock Puppets

OEBPS/gfx/introduction/jquery_mobile_template.png
i mobilehtml @ TicketMonster 5% =a)

& & [/ flocalhost:8080 ticket-monster/mobile htmi [+ | B>

TicketMonster

OEBPS/gfx/introduction/mobile_browsersim_devices_menu.png
LU Tools

Rotate Left
Rotate Right

 Use Skins
Desktop (Default User-Agent)
Apple iPad 4 Retina
Apple iPad mini
v Apple iPhone 5 [
Apple iPhone 4
HTC One(M8)
Samsung Galaxy S IV
Samsung Galaxy S Il
Samsung Galaxy Nexus
Samsung Galaxy Note Il
Samsung Galaxy Note II
Rockca Samsung Galaxy Tab 10.1

Shane's Sock Puppets

OEBPS/gfx/introduction/pom_xml_tabs.png
Ovevew| Dependenis| Depencency ierarcy e POM pomc

[#1 Problems 52 Properties 44 Servers & Forge Console 3 OpenShift Explorer

0 errors, 2 warnings, 0 others

OEBPS/gfx/introduction/organize_imports_2.png
8006 Organize Imports

Choose type to import: Page 2 of 6
r 1

[© com.sun jdi.event.Event

© java.awt.Event

O javax.enterprise.event.Event

© org.jboss.arquillian.core.api.Event

© org.jboss.arquillian.core.spi.event.Event
&*

<

o

org.jboss.as.controller.services.path. PathManager.Event

‘org.w3c.dom.events.Event

@ [<mck | [CNeas] [cancel | Finish

OEBPS/gfx/run-on-android-emulator.png
ﬂ
Go Into

[t Project £ 33 Hhckaj

Show In W >
(Cony, LS
> BhJavascript Resources - Copy Qualified Name
e ?:‘"1“ 73 Paste Ei%
,gwﬁ‘"’ % Delete =3
~ = admin Move...
> Gores Rename... 2
» > resources
»gwn—wr 22 Import.
4 config.xmi 2 Expor
S favicon.ico
i index.huml) Refresh s

Close Project
Close Unrelated Projects

@, Mark as Deployable

Validate
Show in Remote Systems view
Profile As >
Debug As >

% 1 Run on Android Device
Team ;
Compare With X > 3 Run on iOS Simulator
Restore from Local History... # 4 Run with CordovaSim
Configure
Source > Run Configurations...

| tunLonngurations...

OEBPS/gfx/introduction/h2console_select_from_event.png
@ 2 comsle 22
G [ocahost s080ihzconsoeconsl oo deTsessionefo7dalocd304500951699020435342

11| & | AAdocommt Sy 7 | Maxrows: (1000 ¢ O W | ¥ [Auto complets [Normal : | ()

0 iaocnzmemckatmonster |Run (CuvEnton)] Gar| SQL statomen:

& 0 event [eeecr Fmow Even
® [T MEMBER U
2) NFORMATION SCHENA

15 e

@ v

@ ¥ 13 000wz orzar

SELECT * FROM EVENT.

0 DESCRPTION [WAJOR [NAVE [PGTURE VERSioN
T Macrical TRUE |Shanes Sook i dopbox comuisseso0nmidgs. 1
sccamed Pupos | Came Pupoets
rasoocs

2 Gelready orock.. | TRUE |Rockconcert i ropboxcomusSe60684/oa0px. 1
ofhe decade | Werk2C_Bob_(2007) 2100

@rows,21m8)

[ean

OEBPS/gfx/introduction/forge_jpa_new_field_name.png
P New Field

=5 =3

TIME O TIMESTAMP.

Embedded () One-t0-One () One-to-Many () Many-to-One () Many-to-Many

Enum Type: ©) ORDINAL () STRING

<ok) [Nem> | (ol) ()

OEBPS/gfx/introduction/jquery_mobile_page_widget.png
Outline 45 Palette 3

Qtype filter text.

7 jQuery Mobile 14

ColprbleSet Tabs
o o e
WesderBar Focter@ar Nawbr Selct
O 000 @
Buton Butons Formmuton Lk

a e

Toggle Rado Checkbox Checkbores

OEBPS/gfx/warning-prompt-unsigned-content.png
8006 Security Warning

Warning: You are installing software that contains unsigned content. The
authenticity or validity of this software cannot be established. Do you want to
continue with the installation?

o) (o) o)

OEBPS/gfx/introduction/forge_constraint_add_size_on_description.png
© O O Constraint: Add [Current Selection: /ticket-monster/src/main/java/...

Select constrained field

Seec th property you wish to constrain ?
On Property:« | description o
Constraint: «| Size B

) Add constraint on the property accessor?

[<Back | [New>] [Cancel | [[Finish]

OEBPS/gfx/backbone-usage.png
[backbonels

events user action

OEBPS/gfx/ticket-monster-architecture.png
User Front-end (HTMLS) Monitoring

Dashboard
(HTMLS,
Backbone Js)

‘Admin Front-end
(HTMLS,
AnguiarJs)

Business Layer (CDI,

Persistence (JPA)

OEBPS/gfx/introduction/forge_select_event_entity_for_constraint.png
© O O Constraint: Add [Current Selection: /ticket-monster/src/main/java/...

Constraint: Add

Add a sean Validation constraint ?

Class:.« [0rg jboss.examples.ticketmonster.model.Event ™)

<ok | [New> | [Gncs | [Cmmsh])

OEBPS/gfx/introduction/jquery_mobile_palette.png
Outline £ Palette 5 =g

(Quype filter text

£ jauery Mobile v @
Q DE_M Popn
H &
arid Panel e Colapsble
0 [Fading]|
© \]
Colspaiet Tabe Headng
[o o e
WesderBar Focter@ar Nawbr Selct
@W
O 000 a
Buton Butons Formmuton Lk
ao @
Toggle Rado Chackhox Chackhoxes
cComo
Sider Testinpt

o s0v

OEBPS/gfx/introduction/select_html_template.png
600 New HTML

Select HTML Template

Select a template as initial content in the HTML page.

4 Use HTML Template

Templates:
Description

New Facelet Header Creates a header for use with the Facelet t

New Facelet Template Creates a basic header/content/footer Fac.

New HTML File (4.01 frameset) html 4.01 frameset

New HTML File (4.01 strict) html 4.01 strict

New HTML File (4.01 transitional) html 4.01 transitional

New HTML File (5)

New XHTML File (1.0 frameset) xntml 1.0 frameset

New XHTML File (1.0 strict) xitmi 1.0 strict

New XHTML File (1.0 transitional) xhtml 1.0 transitional

Preview:

<TDOCTYPE htnl>

<htnl>

<head>

<meta charset="${encoding} ">
<titlesInsert title here</titles
</head>

Templates are ‘New HTML' templates found in the HTML Templates preference page.

@ [<dack] | Nea> | [Cancel | (C_mmsn]

OEBPS/gfx/introduction/json_event_results.png
@ hup://localhost:8080/ticket-monster/rest/events 53 =0

&

& [flocalhost:8080 ticket-monsterjrestjevents |+ | B>

[{"id":2,"version":1, "name": "Rock concert of the
decade", "description”: "Get ready to

picture": "http: //dl.dropbox.con/u/6

Puppets”, "description’:"This critically acclaimed

nasterpiece...", "major”:true, "picture":"http://dl.dropbox.
com/u/65660684/640px-Carnival_Puppets.jpg"}]

OEBPS/gfx/introduction/jquery_mobile_listview.png
Insert Tag

T dato-role-"Tistvien” (d-1ist0ftens" dota-tnset-"erue™>

Nombered:) Resdeont: O Qirea hretatsoOnec/onartin
Qv et Tradm
Anothiders: Searn e
=l = Qira hrafr o Thrae <o N>
e s

o stOfems

LR
©oo

JU———

<moc | [

OEBPS/gfx/introduction/forge_console_tab.png
| Fogeconsole 1| - %5 B B[0

OEBPS/gfx/forge_scaffold_generate_choose_rest_strategy.png
600 Scaffold: Generate [Current Selecti

Iticket-monster]

REST: Generate Endpoints From Entities

Generate REST endpaints from 1A entities §>

Generator: +[Expose DTOs for JPA entities in the REST resources ¢ |
Target Package Name: | org jboss.examples.ticketmonster. [Browse.

Persistence Unit: « | primary

[<Back [Next> [cancel | [Finish]

OEBPS/gfx/introduction/organize_imports_6.png
Choose type to import: Page 6 0f 6

RequestScoped
@ javax.faces.bean RequestScoped

@ [<Back | | Next> | [Cancel | [CFmish.]

OEBPS/gfx/introduction/h2console_deployments.png
(L deployments o
FAVORITES, & Installation &5 coniguration 105, Store.
2 AllMyFiles || (5 apclient [data h2console.war

. SEE
@ bin - fB
@ Airdrop. (3 bundies. v @b © [tcket-monsterwar +

5 docs 109
£ domain & mp
@ jboss-modules.jar

* Jostulata

) LICENSE.txt.

modules .

(L standalone
. version.txt
2 welcome-coment -

OEBPS/gfx/introduction/forge_jpa_new_field_major.png
P New Field
Create 3 new field

TargetEntty: | org boss.examples.tcketmonster.model Event

Field Name: +/major]

edTe:
mporal Type: (2 DATE () TvE () TESTAMP

CotumnName: |]

Length: 255 6]

Relationship Type: (&) Basic () Embedded () One-to-One () One-to-Many () Many-to-One () Many-to-Many
()15 08

()1 Transients

Enum Type: ©) ORDINAL () STRING

s e | [o) ()

OEBPS/gfx/select_hybrid_mobile_engine_for_project.png
6006 Hybrid Mobile (Cordova) Application Project

Select a Hybrid Mobile Engine

Select a hybrid mobile engine that will be used for building the mobile
application

Available Engines:

Name Platforms
& Apache Cordova (3.4.0] android ios. i

@ [<Back) [New> | [Cancel | [Fmish]

OEBPS/gfx/introduction/forge_constraint_add_set_size_attributes_on_description.png
© O O Constraint: Add [Current Selecti

icket-monster/src/main/java/.

Configure the constraint

Set the propertis for the chosen constsaint %

aroups

message:

payload

[<Back [Next> [cancel | [_Finish]

OEBPS/gfx/introduction/forge_quick_action_menu_filter_constraint.png
Java EE/Bean Valdation - Constraint: Add
& Constraint Setp

Java/Bean Validation - Constraint: New Annotaton
& Constraint: New Group

OEBPS/gfx/introduction/forge_added_name.png
public String getName()

1
return name;
3
public void setName(String nane)
1
this.name = name;
3
eoverride
public String toStringQ)
1

String result = getClassQ).getSimpleNane() + * "3
iF (d 1= null)
result += 'id: "+ id;
result += ", version: " + version;
iF (name 1= null 8& Iname.trinQ). isEmpty())
result += ", name: " + name;
return result;

OEBPS/gfx/introduction/forge_jpa_new_field_description.png
P New Field
Create 3 new field

TargetEntty: | org boss.examples.tcketmonster.model Event

s

Field Type: Vstring | [Browse...
mporai Type: (5 DATE () TE O TESTAME

Golumaane: []
Length: 255 6]

Relationship Type: (&) Basic () Embedded () One-to-One () One-to-Many () Many-to-One () Many-to-Many
()15 08

()1 Transients

Enum Type: ©) ORDINAL () STRING

s e | [) (e

OEBPS/gfx/introduction/show_forge_view.png
| Window ILL A

Minimize JTicketMonster
Zoom R———
Toggle Full Screen ~%F

New Window
Editor >
Hide Toolbar

Open Perspective

L Bookmarks

Customize Perspective... © Console \8QC

Save Perspective As. [& Declaration x®QD

Reset Perspective... . Navigator

Close Perspective g Outline \#QO

Close All Perspectives 1% Package Explorer X'%Q P

Navigation N [2 Problems X2QX
% Project Explorer

Web Browser > [Properties

Bring All to Front 4 Search X%Qs
4 Servers

% Type Hierarchy \%QT
Other #QQ

OEBPS/gfx/introduction/organize_imports_4.png
D00 s O GENIZE RO s

Choose type to import: Page 4 of 6

(@ com.sun.tools javac.util.List
© javaawt.List

@ [<mck | [@Newsi) (Cancel | [Fmsh |

OEBPS/gfx/introduction/jboss_tools_runtime_detection.png
8006 Preferences
ype fiter text 1Boss Runtime Detection caco
» Genera
»nt Deseription
» Data Management
5 ach path on thislstwill be automatically scanned for runtimes when
TOrge e a newworkspace I created of If selected atevery Eclipse statup.
s Clck Edt o configure rulesiters forthe search.
HaL editor
¥ Install/Update Puths
> Path Eeysan |
»Java EE 7] Add J
»java persistence —
> pavaseipt)
¥JBoss Tools

Browsersim/Cordovasim
»CDI (Context and Depenc
PIAX-RS

J8oss Central
JBoss Maven Integration
J80ss Portiet
180ss Runtime Detection
Openshift
> Project Examples
Remote Debug
Remote Repositories
Source Lookup
Usage Reporting
»Web
VM Monitor
»Maven
> Plug-in Development
Project Archives

> Remote Systems

> Run/Debug

»Server

»Team

Terminal

P TestNG

Validation

»Web

»Web Services

XML

Available runtime detectors

Type Link
] JBoss AS Link
& seam

@ Tomeat

[Restore Defaults | [Apply.

o | ES0S

OEBPS/gfx/forge_scaffold_generate.png
© 0 O Scaffold: Generate [Current Selection: /ticket-monster]

Scaffold: Generate
Generates the scaffold

Scaffold Type: « | Angulans

<vacc) e (Ca] (s

OEBPS/gfx/ticket_monster_hybrid.png
TicketMonster
HTMLS.
Client

Ticket Monster
Installed Appiication

Mobile device

REST Services

TicketMonster WAR

JBoss ASTIEAP/Openshift

OEBPS/gfx/introduction/new_project_example_step_2.png
606 New Project Example

Java EE Web Project
Create a Maven-based Java EE 6 web application project

Projectname [tcket-monster

Package org jboss examples.ticketmonste

4 Use default Workspace location

Location: < [Browse.

() Add project(s) to working set

Working set: +] [More..

b Advanced

(C<back) (nea>] [Cancel] (GG

OEBPS/gfx/cordova_add_notifications_plugin.png
6006 Hybrid Mobile (Cordova) Application Project

Install Cordova Plug.

Discover and Install Cordova Plug-ins

! Registry | Directory.

Find: (Q Notification

@ org.apache.cordovadialogs
Cordova Notification Plugin

[————

() corealtime.plugins.cordovapush

“This Cordova plugin should be used with the i0S platform
together with the Realtime Messaging library (ORT) for Push Notifications

support.

[com.blackberry.notification
BlackBerry 10 Notification APIs

@ [<Back | [New> | [Cancel | [_Fmish]

OEBPS/gfx/cordovasim.png
=l [0 684 0 G @ E6 56 @d-bme D - G -

[project 52| % Package = O =8

Outline

o@E -
> ticket-monster [icket-monster
v > TicketMonster-Cordova ficket-
» =i avascript Resources
>y merges
» Gy > lugins
v e il JBoss 12:34 PM
» &3> admin
>G> res
>G> resources
» B> WEB-INF
 config.xm
% favicon.ico
i index.huml
& maileann. b

Ticket Monster

RED WAT JBOSS
ENTERPRISE
APPLICATION PLATFORM

CordovaSim

d events

+ Plattorm Settings By Category

g Device & Network Settings
By Location
App Name: TicketMonster-Cordova Geo Location
App Version: 200
Config

User Agent: Mozill/5.0 (Phons; U CPU IPhone OS

4.0 like Mac OS X; en-us) Battery Status

~AppIWabKIV32.9 (KHTMIL, ko Gocko)

Version/4.0.5 Mobil/8A283

Saferf6531.227

OEBPS/gfx/introduction/forge_event_entity_source.png
2 reec xlorer B2 13 pacage xplorer =0 Do

S v pockoge org.iboss. exeaples. ticketmonster model;

" e monsr [——

> ks we s
> Liosimen descor sk monsr ity

» s sevcs L ctons et sopsents erstiaaie
i ¢

» b raconen -

O rin SGeneratedtuegstrotegy - GenerationType. ATD

Coluncrone = “id", updatabe - false, nulleble = false)
private Long 16
o Eversion

85 org s exsmples ketmonster conrler
> 83 0rg s examples cketmonser dita

L e ————— ColumnCnone = “version”)
T —— private.int version

> 3 ember a2

S public Long get1d0
8 org jboss examples.ticketmonster service €

e return this.id;

» Bscimanirarces ’
> @scesios S public vold settdCfirel Long)
[T — i
> e wnis.id - id;
S —)
Lt S e ot getversiond
e 5
»Eua eturn this ersia
5 somnt

OEBPS/gfx/introduction/result_run_on_server.png
@ http:/ /localhost:8080/ticket-monster/index.jsf &3

(g localhost 8080/ ticket-monsterindex.jsf

Welcome to JBoss!

You have successfully deployed a Java EE 6 Enterprise Application.

Membor Rogistration

Enforces annotaton-based constrains defned on the model cass.

ane:
-
| Register |
Members.
[l Thame ——Temat == = Trrores Tresrun

0 Johnsmith john.smith@mailinator.com 2125551212 /rest/members/0

[#] problems [Properties 41 Servers 23 [Console % Forge Console 3 Openshift Explorer

jboss-eap-

[Started, Synchronized]
(i ticket-monster [Synchronized)

» ¥ XML Configuration

¥ (= Server Details

> i Flesets
@ IMx(Disconnected]

OEBPS/gfx/introduction/forge_constraint_add_set_size_attributes_on_name.png
© O O Constraint: Add [Current Selection: /ticket-monster/src/main/javal...

Configure the constraint

Set the properties for the chosen constraint

. @
max [so0 @

message:

payload

[<Back [Next> [cancel | [_Finish |

OEBPS/gfx/import-openShift-application-prompt.png
6.0.0 Import OpenShift Application

‘Openshift application ticketmonster will be enabled on project ticket-monster by
copying Openshift configuration from server to local project and connecting local
project to OpenShift Gt repository.

The local project will be committed to local Git repository upon confirmation and
further publishing wil eventually override existing remote content.

“This cannot be undone. Do you wish to continue?

el) oy

OEBPS/gfx/completed-fields-application-wizard-step3.png
6006 New Openshift Appli

Set up Project for new Openshift Application

Configure your project and server adapter settings for application “ticketmonster”.

OPENSHIFT

(] Create a new project

Use existing project:

 Create and set up a server adapter for easy publishing

] Disable automatic maven build when pushing to Openshift

©) <m) Cves) [Gameel] [rinsh

OEBPS/gfx/ticketmonster-configured-jboss-eap.png
6006 Run On Server

Add and Remove

Modify the resources that are configured on the server

Move resaurces to the righ to configure them on the server
Avalable: Configured:
| Ty ticket-monster

Add >

< Remove

Add All >>

<< Remove All

@ [<Back] [Next> [Cancel | [_Fmish]

OEBPS/gfx/edit-embedded-cartridge-openshift.png
121 problems [propertes % Servers E) Console & Forge Console | G Openshif Explorer 33 | @) Eror Log

v G vineet.reynolds https://openshift.redhat.com (default)

v & jbossidf joossidf rhcloud.com
tcketmonster Ji

n Platform 6 (bossea

New > [
Show In >
G Delete Application(s)... ®

B Import Application...

 Port Forwarding...

& Tail Files...

(] List All Environment Variables.

(2 Edit User Environment Variables...

O Restart Application .

& Refresh

Snapshot >

A Details...

OEBPS/gfx/cordova_add_statusbar_plugin.png
6006 Hybrid Mobile (Cordova) Application Project

Install Cordova Plug.

Discover and Install Cordova Plug-ins

ity KT T

@ org.apache.cordova.statusbar
Cordova Statusgar Plugin

[——

() deappplant.cordova plugin.hidden-statusbar-overlay
Cordova 3.x.x plugin to hide the statusbar and overlay on i0S.

[T

@ [<sack | [Nex> | [Cancel | [[Fmish)

OEBPS/gfx/introduction/project_explorer_java_packages.png
(25 Project Explorer 33| 4 Package Explorer =

v i ticket-monster
> ZJAXRS Web Services.
» & Deployment Descriptor: icket-monster
b 22 JAX-WS Web Services
») Web Resources
» 4 JPA Content
v 98 java Resources
v B src/mainjava
» £ org jboss.examples.ticketmonster.controller
» £ org jboss.examples.ticketmonster.data
» £ org jboss.examples.ticketmonster.model
> 85 org Jooss.examples.ticketmonster.rest
» £ org jboss.examples.ticketmonster.service
> {35 org Jboss.examples.ticketmonster.il
» @ src/main/resources
» @ src/test/java
» @ src/test/resources
» B Libraries
» i JavaScript Resources
» (3 Deployed Resources
» s
> o target
L Poomam]

@ reaomema

OEBPS/gfx/add-mysql-embedded-cartridge.png
806

Embedded Cartridges

Embed Cartridges

Please select the cartridges to embed into your application ticketmonster

OPENSHIFT

) Code Anything (Downioadable Cartridge)
(] 10gen Mongo Monitoring Service Agent (10gen-mms-agent-0.1)
() Cron 1.4 (cron-1.4)

) Jenkins Client Genkins-client-1)

) MongoDB 2.4 (mongodb-2.4)

Deselect All

) PostgresQL 8.4 (postgresql-8.4)
) PostgresQL 9.2 (postgresql-9.2)
) RockMongo 1.1 (rockmongo-1.1)
SwitchYard 0.8.0 (switchyard-0)
Web Load Balancer (haproxy-1.4)

() phpMyAdrmin 4.0 (phpmyadrmin-4)

Selected Cartridge:

MySQL 5.5 (mysal-
MySQL is a multi-user, multi~threaded SQL database server.

.5)

©) (G| [msh]

OEBPS/gfx/ticket-monster-administration-use-cases.png
Manage
Venues

Manage

Administrator Evens -

Manage
_.ausess >\ Layout

Manage
Shows.

Monitor
sales

OEBPS/gfx/introduction/full_publish.png
50 problems [properties | # Servers 32 | B Console. & Forge Console 3 Openshif Explorer

v £ Jboss-eap-6.3 [Started, Synchronized]
7 ticket-monster [Started, Synchronized]

New >
e Sowin W
» [Filesets. -
@ MX[Disconnected] O Start
® Stop
‘-74; Restart
% Remove ®

%y Incremental Publish

| “oFull Publish |

Properties el

OEBPS/gfx/introduction/mobile_browsersim_in_toolbar.png
Qi@ e oioaywe ol - cwe

OEBPS/gfx/introduction/prompt_for_cheatsheet.png
8006 New Project Example

Java EE Web Project
‘Java EE Web Project’ Project is now ready

Show the Quick Fix dialog
4 Showticket-monster/.cheatsheet.xmi'for further instructions

() Do ot show this page again

® [caea) ()

OEBPS/gfx/introduction/venue_after_getters_setters.png
D eentjaa 1) venvejaa 2
package org.jboss. examples. ticketmonster model;

public class Venue {
a private Long id;
private String nane;
private String description;
private int capacity;
= public Long getldO {
return id;
3

= public void setld(Long id) {
this.id - i

a

3
= public String gethane() {
return nome;

3
© public void sethame(String nase) {
this.nose - none;

3
© public String getDescriptionQ) {
return description;

3

© public void setDescription(String description) {
this.description - description;

3
= public int getCapacityO) {
return capacity;

3
= public void setCopacityCint capacity) {
this.capacity = capacity;
¥

OEBPS/gfx/introduction/mobile_browsersim_bofa_source.png
LEG oo tib R B4

Y o

= it ® (o

Gat o Mabie

sen [

OEBPS/gfx/introduction/prompt_update_settings_xml.png
8.0.0 Confirm

Update

Are you sure you want to update the file /Users vineet/.m2/settings.xml"?

e) e

OEBPS/gfx/introduction/forge_add_constraint_on_event.png

OEBPS/gfx/introduction/jboss_maven_repo_settings_xml.png
Configure Maven Repositories. E

User stings: /Users vineet/.m2 setings.xml
Reposiories

Red Hat Tech Preview repository (all)-hitp/ /maven.repository.redhat.com/techpreview/all/

0 sextings]

OEBPS/gfx/introduction/searching_for_runtimes_dialog.png
6006 Searching for runtimes

L new runtime found. Pess OK to create the runtimes with a checkmark.
Searching runtimes s fiished.

¥ Hide already created runtimes

[seiani | [Dessaal | [Gl | (o060

OEBPS/gfx/introduction/run_as_run_on_server.png
2 Project Explorer 52 [Package Explorer =a

e v
New >
T amcrswe Golnto
> Gzpeploymer
» Z2pocwswe Open In Cheat Sheets view
» e Resou Show In NEW >
» 45 A Conter
"8 maresos [Copy s#C
2y Copy Qualfed Name
yaZseimal - Paste 8V
ST X -
e uild Path >
» mivascre Refactor <%t >
» (5 Deployed |
oo, Import >
» (> target Export L]
St Refresh s
Close Project
Close Unrelated Projects
%, Mark as Deployable
Validate
Show in Remote Systems view
Dabug e 5 i Runonsener 0k
B2 0eim Aoplet EXA
Team w3 Java Application ~X)
Restore from Local History... Ju 4 Uit Test #XT
© mxavigaor 2 payen > 25 Maven build XXM
Tpemati | Java EE Tools > 2 6 Maven build...
»Plocatprocess JPATOOlS > 27 Maven clean
5 Server Conner COMPare With > w2 8 Maven clean verify ‘
2 User-Defined §°““9“" > 29 Maven generate-sources
ource > e Maven install
TestNG > e Maven test

5 eker-monster | PrOPeTtiEs % Run Configurations.

OEBPS/gfx/new-openshift-application-wizard.png
6006 New Openshift Application

Configure the cloning settings by specifying the clone estination f you create a new
project, and the git remote name If you're using an existing project.

OPENSHIFT
Cloning settings
¥/ Use default clone destination
Git Clone Destination: /Users vineet/Applications ticket-monster/demo. Browse.

4 Use default remote name.

Remote name: openshift

Make sure that you have SSH keys added to your OpenShift account vineet.reynolds via SSH Keys |
‘wizard|and that the private keys are listed in S5H2 Preferences

@ <Back] [Next> [cancel | [Fmish]

OEBPS/gfx/introduction/mobile_browsersim.png
ull JBoss 12:34 PM.

TicketMonster

hitp:ocalhost8080icket-monsterimobile.htr X

TicketMonster

Rock concert of the decade

Shane's Sock Puppets

OEBPS/gfx/introduction/organize_imports_1.png
000 s O GANZE \DOMS e mssssnmm s

Choose type to import: Page 1of6

[G java.awt PageAtributes MediaType

@ [<sk | CNews) [Gnel] [fmsh |

OEBPS/gfx/introduction/forge_jpa_new_entity_event.png
© 0 O JPA: New Entity [Current Selection: /ticket-monster]

JPA: New Entity

Crste a new pA Entty ?

ety e

9

Target package: org jboss.examples.ticketmonster.model | [Browse.

ID Column Generation Strategy: | AUTO)

Table Name:

OEBPS/gfx/introduction/generate_getters_setters.png
) e) venuejava 53
package org. jboss..exanples. ticketanster.model;

public clase Vonun ©

@ < Undo Typing %2
I Revert File
t Save s
3
Open Declaration n
Open Type Hierarchy £

Open Call Hierarchy ~ ~H
Show in Breadcrumb 328

Quick Outline %0
Quick Type Hierarchy ~ #T
Open With >
Show In NEW >
cut %X
Copy %C | Toagl

§ oggle Comment %/
Copy Qualiied Name Remove Block Comment ~%\
Paste %V Generate Element Comment %)
Quick Fi #L_ - Correct Indentation =l

ot on

Refactor Format Element

Local History
Add Import peon

Refernces v e s omw

Declarations > Sort Members...

5 Add to Snippets... Clean Up...

Profile As L Generate Hibernate/JPA annotations.

Debug As % Override/Implement Method:

Run As > enerzta Getters and Setters.

enerate Delegate Methods..

Validat
Tom » Generate hashCode) and equals(...
Compare With L Generate toString(...

Replace With » Generate Constructor using Fields...
Generate Constructors from Superclass...

Preferences.
Externalize Strings...

noon

OEBPS/gfx/introduction/quickstarts_directory_layout.png
606 (& h2-console

3 helloworld-mbean
3 helloworld-mdo

3 helloworld-osa
- —porsmring

Last opened 09/12/13 11:46 am

P S s
ebincear LS v
Al
Lt & eb-in-war * ® READMEm
@ Aiorop 0 dbmusener
#\ Applications : e-remote »
a-securty .
g Ci 5 eb-secury-nercetors -
Documents 5 eb-throws-exception
© Downloads 3 elo-timer . JAR
& it 8 o
greeter -
23 git-repos 8 oude . Name nacomole s
e r . e
a .
Creses oa/12/13 1148 am
© Remote Disc 3 helloworig-jms : Modfed 09/12/13 11:46 am

OEBPS/gfx/octocat_social.png

OEBPS/gfx/introduction/js_css_widget_library_versions.png
S Ko T —
Add References 10 J5/CS5.

Seec loraries o b added to <heads. Th st ofal avllsble orais s defined at J5/CSS'prefernce page. Navigate to k10 3dd | </
more s,

heads

o iquery “meta name-"viemport" content"widthedevice-width,
initiolscole-1"/>

@ sauery Mosie <acript srea"http://code. jauery. con/jauery-2.0.3.min. 35"/

‘onfioure Avalable 51655 seript

srea"http://code. Jauery. con/aobile/1.4.4/jauery.mobile-1.4.4
Uink el stylesheet” typerttext/css®
refa"hetp://code. jauery. con/mobile/1. 4. 4/ query. obile-1.4.
</hcads

OEBPS/gfx/introduction/new_project_wizard.png
8606
Java EE Web Project

New Project Example

Create a Maven-based Java EE 6 web application project

Description:

“This is your projectl IFs a sample, deployable Maven 3 project to help you get your foot in the door developing with
JavalEE 6 on JBoss Enterprise Application Platform 6 or J8oss Application Server 7.1

“This project i setup to allow you to Create a compliant Java EE 6 application using JSF 2.0, COI 1.0, §8 3.1, JPA 2.0
and Bean Validation 1.0.

Project based on the org jboss.spec.archetypes jboss-javaee6-webapp-archetype:7. 3. Final Maven archetype
() Create a blank project

Target Runtime |

Requirements

Type Description Found?
Server/runtime example requires JBoss Enterprise Appli

plugin “This project example requires m2e >= 1.0. “
plugin “This project example reuires m2e-wtp >= 0.16.0.]
plugin “This project examle requires Jioss Maven Tools. V]

<o | ENems) (G) [Fish

OEBPS/gfx/setup_hybrid_mobile_engine_version.png
Download Hybrid Mobile Engine

Download a new engine version or add a platform to an existing one.

Version: | J

Platform

©) (Cancel

oK

