
JBoss ESB 4.2.1 GA
Content Based Routing

JBESB-CBR-10/31/07

JBESB-CBR-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................5

What This Guide Contains..........5
Audience.................................5
Prerequisites......................................5
Organization...5
Documentation Conventions.........5
Additional Documentation...........6

Contacting Us..6

Content Based Routing....................................8

Introduction...8
JBossRules based Router............................... .8
Create a Content-Based Router......................8
Create a ruleSet...........................9
Use the XPath Custom Rule Language.........11
Use the Content Based Router..............11
Splitter..12
Aggregator ... 12

About This Guide
What This Guide Contains

The Content Based Routing contains contain important information on changes to
JBoss ESB 4.2.1 GA since the last release and information on any outstanding
issues.

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
ESB 4.2.1 GA installations.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, What is Content-Based Routing: An overview of why you
would want to use CBR.

• Chapter 2, Content-Based Routing: this chapter contains informat ion on
how to use the content based routing capabi lities in JBossESB.

Documentation Conventions

The following conventions are used in this guide:

JBESB-RS-10/31/07 5

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2.1
GA documentation set:

1. JBoss ESB 4.2.1 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBoss ESB 4.2.1 GA Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

3. JBoss ESB 4.2.1 GA Programmers Guide: How to use JBossESB.

4. JBoss ESB 4.2.1 GA Release Notes: Information on the differences
between this release and previous releases.

5. JBoss ESB 4.2.1 GA Administration Guide: How to manage the ESB.

Contacting Us

Questions or comments about JBoss ESB 4.2.1 GA should be directed to our support
team.

JBESB-RS-10/31/07 6

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-RS-10/31/07 7

Chapter 1

What is Content-Based
Routing?

Introduction
Typically information with the ESB is conveniently packaged, transferred, and
stored in the form of a message. Messages are addressed to Endpoint References
(services or clients), that identify the machine/process/object that will ultimately
deal with the content of the message. However, what happens if the specified address
is no longer valid? For example, the service has failed or been removed from
service? It is also possible that the service no longer deals with messages of that
particular type; in which case, presumably some other service still handles the
original function, but how should the message be handled? What if other services
besides the intended recipient are interested in the message's content? What if no
destination is specified?

One possible solution to these problems is content-based routing. Content-based
routing seeks to route messages, not by a specified destination, but by the actual
content of the message itself. In a typical application, a message is routed by opening
it up and applying a set of rules to its content to determi ne the parties interested in its
content.

The ESB can determine the destination of a given message based on the content of
that message, freeing the sending application from having to know anything about
where a message is going to end up.

Content-based routing and filtering networks are extremely flexible and very
powerful. When built upon established technologies such as MOM (Message
Oriented Middleware), JMS (Java Message Services), and XML (Extensible Markup
Language) they are also reasonably easy to implement.

Simple example
Content-based routing systems are typically built around two types of entities:
routers (of which there may be only one) and services (of which there is usually
more than one). Services are the ultimate consumers of messages. How services
publish their interest in specifi c types of messages with the routers is impl ementation
dependent, but some mapping must exist between message type (or some aspect of
the message content) and services in order for the router to direct the flow of
incoming messages.

Routers, as their name suggests, route messages. They examine the content of the
messages they receive, apply rules to that content, and forward the messages as the
rules dictate.

In addition to routers and services, some systems may also include harvesters, which
specialize in finding interesting information, packaging it up as a formatted message

JBESB-RS-10/31/07 8

before sending it to a router. Harvesters mine many sources of information including
mail transfer agent message stores, news servers, databases and other legacy
systems.

The diagram below illustrates a typical CBR architecture using an ESB. At the heart
of the system, represented by the cloud, is the ESB. Messages are sent from the
client into the ESB, which directs them to the Router. This is then responsible for
sending the messages to their ultimate destination (or destinations, as shown in this
example).

JBESB-RS-10/31/07 9

Chapter 2

Content Based Routing
using Drools

Introduction
The Content Based Router (CBR) in the JBossESB uses JBossRules/Drools as its
evaluation engine. JBossESB integrates with Drools through

● three different routing action classes,

● a routing rule set, written in Drools drl (and opti onally dsl) language.

● The EsbMessage content, either the serialized XML, or objects in the
message, which is the data going into the rules engine.

● destination(s) which is the resul t coming out of the rules engine.

When a message gets send to the CBR, a certain rule set will evaluate the message
content and return a set of Service destinations. We discuss how a target rule set can
be targeted, how the message content is evaluated and what is done with the
destination results.

Three different routing action classes
JBossESB ships with three slightly different routing action classes. Each of these
action classes implements a Enterprise Integration Pattern. For more information of
the Enterprise Integration Pattern you can check the JBossESB Wiki. The following
actions are supported:

org.jboss.soa.esb.actions.ContentBasedRouter
Implements the Content Based Routing pattern. It routes a message to one or more
destination services based on the message content and the rule set it is evaluating it
against. The CBR throws an exception when no destinations are matched for a given
rule set/message combination. This action will terminate any further pipeline
processing, so it should the last action of your pipeline.

org.jboss.soa.esb.actions.ContentBasedWireTap

Implements the WireTap pattern. The WireTap is a Enterprise Integration Pattern
(EIP) where a copy of the message is send to a control channel. The CBR-WT is
identical in functionality to the ContentBasedRouter, however it does not terminate
the pipeline which makes it suitable to be used as a WireTap.

org.jboss.soa.esb.actions.MessageFilter.
Implements the Message-Filter pattern. The Message Filter pattern represents the
case where messages can simply be dropped if certain content requirements are not

JBESB-RS-10/31/07 10

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBEIP
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBEIP
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBEIP

met. The CBR-MF is identical in functionality to the ContentBasedRouter, but it
does not throw an exception if the rule set does not match any destinations. In this
case the message is simply filter out.

Rule Set Creation
A rule set can be created using the JBossIDE or Red Hat Developer Studio which
includes a plug-in for JBossRules. Figure 1 shows a screen shot the plug-in. For a
detailed discussion on rule creation and the Drools language itself please see the
Drools documention. To turn a regular ruleSet into a Countent Based Routing
RuleSet you must be evaluating an EsbMessage and the rule match should result in a
creating a List of Strings containing the service destination names. To do this you
need to make sure to remember two things:

● your rule set imports the EsbMessage

import org.jboss.soa.esb.message.Message

● andyour rule set defines

global java.util.List destinationServices;

which will make the list of destinations available to the ESB

Figure 1. Create a new ruleSet using JbossIDE or Red Hat Developer Studio

JBESB-RS-10/31/07 11

The message will be asserted into the working memory of the rules engine. Figure 2
shows an example where the MessageType is used to determine to which destination
the Message is going to be send. This particular ruleSet is shipped in the
JBossESBRules.drl file and the rule checks if the type is XML or Serializable.

XPath Domain Specific Language
For XML-based messages it is convenient to do XPath based evaluation. To support
this we ship a “Domain Specific Language” implementation which allows us to use
XPath expressions in the rule file. defined in the XPathLanguage.dsl. To use it you
need to reference it in your ruleSet with:

expander XPathLanguage.dsl

Currently the XPath Language makes sure the message is of the type JBOSS_XML
and it defines

1. xpathMatch “<element>”: yields true if is an element by this name is
matched.

2. xpathEquals “<element>”, “<value>”): yields true if the element is
found and it's value equals the value.

3. xpathGreaterThan “<element>”, “<value>”): yields true if the element
is found and it's value is greater than the val ue.

4. xpathLowerThan “<element>”, “<value>”): yields true if the element is
found and it's value is lower then the value.

The XPathLanguage.dsl is defined in a file called XPathLanguage.dsl, and can be
customized if needed, or you can define your own DSL altogether. The Quickstart
called fun_cbr demonstrates this use of XPath.

Configuration
Now that we have seen all the individual pieces how does it all tie together? It
basically all comes down to configuration at this point, which is all done in your
jboss-esb.xml. Figure 1 shows a service configuration fragment. In this fragment the
service is listening on a JMS queue.

Each EsbMessage is passed on to in this case the ContentBasedRouter action class
which is loaded with the a certain rule set. It sets the EsbMessage into Working
Memory, fires the rules, obtains the list of destinations and routes copies of the
EsbMessage to these services. It uses the rule set JbossESBRules.drl, which matches
two destinations, name 'xml-destination' and 'serialized-destination'. These names
are mapped to real service names in the 'route-to' section.

JBESB-RS-10/31/07 12

 <service
 category="MessageRouting"
 name="YourServiceName"
 description="CBR Service">
 <listeners>
 <jms-listener name="CBR-Listener"
 busidref="QueueA" maxThreads="1">

 </jms-listener>
 </listeners>

<actions>
 <action class="org.jboss.soa.esb.actions.ContentBasedRouter"

 name="YourActionName">
 <property name="ruleSet" value="JBossESBRules.drl"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="xml-destination"

 service-category="category01"
 service-name="jbossesbtest1" />

 <route-to destination-name="serialized-destination"
 service-category="category02"

 service-name="jbossesbtest2" />
 </property>
 <property name="object-paths">

<object-path path="body.test1" />
<object-path path="body.test2" />

 </property>
 </action>

</actions>
 </service>

Figure 2. Example Content Based Routing Service configuration.

The action attributes to the action tag are show in Table 1. The attributes specify
which action is to be used and which name this act ion is to be given.

Attribute Description
Class Action class, one of :

org.jboss.soa.esb.actions.ContentBasedRouter

org.jboss.soa.esb.actions.ContentBasedWireTap

org.jboss.soa.esb.actions.MessageFilter

Name Custom action name

Table 1. CBR action configuration attributes.

The action properties are shown in Table 2. The properties specify the set of rules
(ruleSet) to be used in this action.

Property Description
ruleSet Name of the filename containing the Drools ruleSet. The set

of rules that is used to evaluate the cont ent. Only 1 ruleSet
can be given for each CBR instance.

JBESB-RS-10/31/07 13

ruleLanguage Optional reference to a file containing the definition of a
Domain Specific Language to be used for evaluating the rule
set.

ruleReload Optional property which can be to true to enable 'hot'
redeployment of rule sets. Note that this feature will cause
some overhead on the rules processing. Note that rules will
also reload if the .esb archive in which they li ve is
redeployed.

destinations A set of route-to properties each containing the logical name
of the destination along with the Service category and name
as referenced in the registry. The logical name is the name
which should be used in the rule set.

object-paths Optional property to pass Message objects into Drools
WorkingMemory.

Table 2. CBR action configuration properties.

Object Paths
Note that JBossRules treats objects as shallow objects to achieve highly optimized
performance, so what if you want to evaluate an object deeper in the object tree? An
the optional 'object-paths' property can be used, which results in the extraction of
objects from the message, using an “ESB Message Object Path”. MVEL is used to
extract the object and the path used should follow the syntax:

location.objectname.[beanname].[beanname]...

where,

location : one of {body, header, properties, attachment}

objectname: name of the object name, attachments can be named or numbered, so for
attachments this can be a number too.

beannames: optionally you traverse a bean graph by speci fying bean names

examples :

properties.Order, gets the property object named "Order"

attachment.1, gets the first attachment Object

attachment.FirstAttachment, gets the attachment named 'FirstAttachment'

attachment.1.Order, gets getOrder() return object on the attached Object.

body.Order1.lineitem, obtains the object named "Order1" from the body of the
message. Next it will call getLineitem() on this object. More elements can be added
to the query to traverse the bean graph.

It is important to remember that you have to add java import statements on the
objects you import into your rule set. Finally, the Object Mapper cannot flatten out

JBESB-RS-10/31/07 14

entire collections, so if you need to do that you have to a (Smooks-) transformation
on the message first, to unroll the collecti on.

Executing Business Rules
Related to rule execution for routing is the rule execution to simply modifying data in
the message according to business rules. An example Quickstart called
business_rule_service demonstrates this use case. This quickstart uses the action
class
org.jboss.soa.esb.actions.BusinessRulesProcessor

The functionality of the Business Rule Processor (BRP) is identical to the Content Based
Router, but it does not do any routing, but instead returns the modified EsbMessage for furter
action pipeline processing. You may mix business and routing rules in one rule set if you wish
to do so, but routing will only occur if you use one of the three routing action classes
mentioned earlier.

Deployment and Packaging
It is recommended that you package up your code into units of functionality, using
.esb packages. The idea is to package up your routing rules alongside the rule
services that use the rule sets. Figure 3 shows a layout of the simple_cbr quickstart to
demonstrate a typical package.

 simple_cbr.esb
| jbm-queue-service.xml
| SimpleCBRRules-XPath.drl
| SimpleCBRRules.drl
|
+---META-INF
| deployment.xml
| jboss-esb.xml
| MANIFEST.MF
|
\---org
 \---jboss
 \---soa
 \---esb
 \---samples
 \---quickstart
 \---simplecbr
 | MyJMSListenerAction.class
 | ReturnJMSMessage.class
 | RouteExpressShipping.class
 | RouteNormalShipping.class
 |
 \---test
 ReceiveJMSMessage$1.class
 ReceiveJMSMessage.class
 SendJMSMessage.class

Figure 3. Typical .esb archive which uses Drools.

Finally make sure to deploy and reference the jbrules.esb in your deployment .xml.
 <jbossesb-deployment>
 <depends>jboss.esb:deployment=jbrules.esb</depends>
 </jbossesb-deployment>

JBESB-RS-10/31/07 15

	Simple example
	org.jboss.soa.esb.actions.ContentBasedRouter
	org.jboss.soa.esb.actions.ContentBasedWireTap
	org.jboss.soa.esb.actions.MessageFilter.

