
JBoss ESB 4.2 Milestone Release 2

Programmers Guide

JBESB-PG-5/8/07

JBESB-PG-5/8/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2 Milestone Release 2

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents..iv

About This Guide...........................5

What This Guide Contains.............................5
Audience..............................5
Prerequisites......................................5
Organization...5
Documentation Conventions..........................5
Additional Documentation.............................6
Contacting Us..6

Service Oriented Architecture...............8

Overview..8
Why SOA?............................10
Basics of SOA.............................11
Advantages of SOA.............................12
Interoperability....................................12
Efficiency12
Standardization..13

The Enterprise Service Bus.......................14

Overview...14
Architectural requirements...................16
Registries and repositories...........................17
Versioning of Services.................................17
Incorporating legacy services.......................18

When to use JBossESB......................19

Introduction....................................19

JBossESB..23

Rosetta..23
The core of JBossESB in a nutshell..............24
JBossESB components.................25
Configuration.......................25
The Message Store.................26
ESB­aware and ESB­unaware users.............28
Endpoint References..................................... 29
Mapping of EPR to Service..........................31
Gateways to the ESB.......................33
The Message..34
The Message Header...............37
The Message payload................38
The MessageFactory................................... ..39
Message Formats..................................40

MessageType.JAVA_SERIALIZED....40
MessageType.JBOSS_XML.................40

Data Transformation....................................41
Listener, Courier and Action Classes...........41

Process Engine Support.................................46

jBPM..46

Configuration.....................................47

Overview..47
Providers..............................48
Services......................................49
Transport Specific Type Implementations. . .54
Transitioning From The Old Configuration

Model..56

Frequently Asked Questions (FAQs)...........57

Glossary...58

Index..62

About This Guide
What This Guide Contains

The Programmers Guide contains descriptions on the principles behind Service
Oriented Architecture and Enterprise Service Bus, as well as how they relate to
JBossESB. This guide also contains information on how to use JBoss ESB 4.2
Milestone Release 2.

Audience

This guide is most relevant to engineers who are responsible for using JBoss ESB 4.2
Milestone Release 2 installations and want to know how it relates to SOA and ESB
principles.

Prerequisites

None.

Organization

This guide contains the following chapters:

• Chapter 1, What is SOA?: JBossESB is a SOA infrastructure. This
chapter gives an overview of SOA and the benefits it can provide.

• Chapter 2, The Enterprise Service Bus: an overview of what constitutes
an ESB and how JBossESB may differ from traditional ESB definitions.

• Chapter 3, JBossESB core: a description of the core components within
JBossESB and how they are intended to be used.

• Chapter 4, Configuration: a description of the configuration options
within JBossESB.

Documentation Conventions

The following conventions are used in this guide:

JBESB-PG-5/8/07 5

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2
Milestone Release 2 documentation set:

1. JBoss ESB 4.2 Milestone Release 2 Trailblazer Guide:
Provides guidance for using the trailblazer example.

2. JBoss ESB 4.2 Milestone Release 2 Getting Started Guide:
Provides a quick start reference to configuring and using the ESB.

3. JBoss ESB 4.2 Milestone Release 2 Administration Guide:
How to manage JBossESB.

4. JBoss ESB 4.2 Milestone Release 2 Release Notes:
Information on the differences between this release and previous releases.

5. JBoss ESB 4.2 Milestone Release 2 Services Guides: Various
documents related to the services available with the ESB.

JBESB-PG-5/8/07 6

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the
following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Contacting Us

Questions or comments about JBoss ESB 4.2 Milestone Release 2 should be directed
to our support team.

JBESB-PG-5/8/07 7

JBESB-PG-5/8/07 8

Chapter 1

Service Oriented
Architecture

Overview
JBossESB is a Service Oriented Architecture (SOA) infrastructure. SOA represents a
popular architectural paradigm1 for applications, with Web Services as probably the
most visible way of achieving an SOA2. Web Services implement capabilities that are
available to other applications (or even other Web Services) via industry standard
network and application interfaces and protocols. SOA advocates an approach in
which a software component provides its functionality as a service that can be
leveraged by other software components. Components (or services) represent reusable
software building blocks.

SOA allows the integration of existing systems, applications and users into a flexible
architecture that can easily accommodate changing needs. Integrated design, reuse of
existing IT investments and above all, industry standards are the elements needed to
create a robust SOA.

As enterprises slowly emerge from the mad rush of cost reduction into a more stable
period of cost management, many of them find themselves in unfamiliar territory.
Prior to the economic slow down, most firms understood the options they had for IT
investment. Many embarked on major package implementations (e.g., Siebel,
Peoplesoft and so on), while others built on the legacy systems they have trusted for
years. Either way, most firms recognized the return promised and made the
investment. Today, the appetite for such large investment is gone.

However, enterprises still need to make forward progress and keep ahead of the
competition. SOA (and typically Web Services as a concrete implementation of those
principles) make this possible. The result is dramatic improvements in collaboration
between users, applications and technology components, generating significant value
for any business creating competitive advantage.

Imagine a company that has existing software from a variety of different vendors, e.g.,
SAP, PeopleSoft. Some of these software packages may be useful to conduct business
with other companies (customers, suppliers, etc.) and therefore what the company
would like to do is to take those existing systems and make them available to other
companies, by exposing them as services. A service here is some software component
with a stable, published interface that can be invoked by clients (other software
components). So, requesting and executing services involves software components
owned by one company talking to components owned by another company, i.e.,
business-to-business (B2B) transactions.

1 The principles behind SOA have been around for many years, but Web Services have
popularised it.
2 It is possible to build non-SOA applications using Web Services.

JBESB-PG-5/8/07 9

Conventional distributed system infrastructures (middleware) are not sufficient for
these cross-organizational exchanges. For instance

• You would need agreement between the parties involved on the
middleware platform

• There is an implicit (and sometimes explicit) lack of trust between the
parties involved.

• Business data is confidential and should only to be seen by the intended
recipient.

• Many assumptions of conventional middleware are invalid in cross­
organizational interactions. Transactions, for instance, last longer ­
possibly for hours or days so conventional transaction protocols such as
two phase commit are not applicable.

So, in B2B exchanges the lack of standardization across middleware platforms makes
point-to-point solutions costly to realize in practice. The Internet alleviated some of
these problems by providing standard interaction protocols (HTTP) and data formats
(XML) but by themselves these standards are not enough to support application
integration. They don't define interface definition languages, name and directory
services, transaction protocols, etc,. It is the gap between what the Web provides and
what application integration requires that Web services are trying to fill.

However, whilst the challenge and ultimate goal of SOA is inter-company
interactions, services do not need to be accessed through the Internet. They can be
made available to clients residing on a local LAN. Indeed, at this current moment in
time, many Web services are being used in this context - intra-company integration
rather than inter-company exchanges.

An example of how Web services can connect applications both intra-company and
inter-company can be understood by considering a stand-alone inventory system. If
you don't connect it to anything else, it's not as valuable as it could be. The system can
track inventory, but not much more. Inventory information may have to be entered
separately in the accounting and customer relationship management systems. The
inventory system may be unable to automatically place orders to suppliers. The
benefits of such an inventory system are diminished by high overhead costs.

However, if you connect your inventory system to your accounting system with XML,
it gets more interesting. Now, whenever you buy or sell something, the implications
for your inventory and your cash flow can be tracked in one step. If you go further,
and connect your warehouse management system, customer ordering system, supplier
ordering systems, and your shipping company with XML, suddenly that inventory
management system is worth a lot. You can do end-to-end management of your
business while dealing with each transaction only once, instead of once for every
system it affects. A lot less work and a lot less opportunity for errors. These
connections can be made easily using Web services.

Businesses are waking up to the benefits of SOA. These include:

JBESB-PG-5/8/07 10

• opening the door to new business opportunities by making it easy to
connect with partners;

• saving time and money by cutting software development time and
consuming a service created by others;

• increasing revenue streams by easily making your own services available.

Why SOA?
The problem space can be categorized by past IT investments in the area of
eProcurement, eSourcing, Supply Chain Management, Customer Relationship
Management (CRM) and Internet computing in general. All of these investments were
made in a silo. Along with the incremental growth in these systems to meet short-term
(tactical) requirements, the decisions made in this space hurt the long-term viability of
the applications and infrastructure.

The three key drivers for implementing an SOA approach are:

1) Cost Reduction: Achieved by the ways services talk to each other. The
direct cost effect is delivered through enhanced operations productivity,
effective sourcing options, and a significantly enhanced ability to shift
ongoing costs to a variable model.

2) Delivering IT solutions faster and smarter: A standards based approach will
allow organizations to connect and share information and business
processes much faster and easier than before. IT delivery productivity is
markedly improved through simplification of the developer’s role by
providing standard frameworks and interfaces. Delivery timescales have
been drastically reduced by easing the integration load of individual
functionality, and applying accelerated delivery techniques within the
environment.

3) Maximizing return on investment: Web Services opens the way for new
business opportunities by enabling new business models. Web Services
present the ability to measure value and discrete return much differently
than traditional functional­benefit methods. Typical Total Cost of
Ownership (TCO) models do not take into account the lifetime value
generated by historical investment. This cost centric view destroys many
opportunities to exploit these past investments and most enterprises end up
building redundancy into their architecture, not out of necessity, but of
perceived need. These same organizations focus the value proposition of
their IT investment on a portfolio of applications, balanced by the overhead
of infrastructure. An approach based on Web Services takes into account
the lifetime contribution of legacy IT investment and promotes an
evolution of these investments rather than a planned replacement.

JBESB-PG-5/8/07 11

SOA/Web Services fundamentally changes the way enterprise software is developed
and deployed. SOA has evolved where new applications will not be developed using
monolithic approaches, but instead become a virtualized on-demand execution model
that breaks the current economic and technological bottleneck caused by traditional
approaches.

Software as a service has become pervasive as a model for forward looking
enterprises to streamline operations, lower cost of ownership and provides competitive
differentiation in the marketplace. Web Services offers a viable opportunity for
enterprises to drive significant costs out of software acquisitions, react to rapidly
changing market conditions and conduct transactions with business partners at will.
Loosely coupled, standards-based architectures are one approach to distributed
computing that will allow software resources available on the network to be
leveraged. Applications that separate business processes, presentation rules, business
rules and data access into separate loosely coupled layers will not only assist in the
construction of better software but also make it more adaptable to future change.

SOA will allow for combining existing functions with new development efforts,
allowing the creation of composite applications. Leveraging what works lowers the
risks in software development projects. By reusing existing functions, it leads to faster
deliverables and better delivery quality.

Loose coupling helps preserve the future by allowing parts to change at their own
pace without the risks linked to costly migrations using monolithic approaches. SOA
allows business users to focus on business problems at hand without worrying about
technical constraints. For the individuals who develop solutions, SOA helps in the
following manner:

• Business analysts focus on higher order responsibilities in the development
lifecycle while increasing their own knowledge of the business domain.

• Separating functionality into component­based services that can be tackled
by multiple teams enables parallel development.

• Quality assurance and unit testing become more efficient; errors can be
detected earlier in the development lifecycle

• Development teams can deviate from initial requirements without incurring
additional risk

• Components within architecture can aid in becoming reusable assets in
order to avoid reinventing the wheel

• Functional decomposition of services and their underlying components
with respect to the business process helps preserve the flexibility, future
maintainability and eases integration efforts

• Security rules are implemented at the service level and can solve many
security considerations within the enterprise

JBESB-PG-5/8/07 12

Basics of SOA

Traditional distributed computing environments have been tightly coupled in that they
do not deal with a changing environment well. For instance, if an application is
interacting with another application, how do they handle data types or data encoding if
data types in one system change? How are incompatible data-types handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider,
and broker.

• Service Provider: A service provider allows access to services, creates a
description of a service and publishes it to the service broker.

• Service Requestor: A service requester is responsible for discovering a
service by searching through the service descriptions given by the service
broker. A requester is also responsible for binding to services provided by
the service provider.

• Service Broker: A service broker hosts a registry of service descriptions. It
is responsible for linking a requestor to a service provider.

Advantages of SOA

SOA provide several significant benefits for distributed enterprise systems. Some of
the most notable benefits include: interoperability, efficiency, and standardization. We
will briefly explore each of these in this section.

Interoperability

Interoperability is the ability of software on different systems to communicate by
sharing data and functionality. SOA/Web Services are as much about interoperability
as they are about the Web and Internet scale computing. Most companies will have
numerous business partners throughout the life of the company. Instead of writing a
new addition to your applications every time you gain a new partner, you can write
one interface using Web service technologies like SOAP. So now your partners can
dynamically find the services they need using UDDI and bind to them using SOAP.
You can also extend the interoperability of your systems by implementing Web
services within your corporate intranet. With the addition of Web services to your
intranet systems and to your extranet, you can reduce the cost integration, increase
communication and increase your customer base.

It is also important to note that the industry has even established the Web Services
Interoperability Organization.

“The Web Services Interoperability Organization is an open industry effort chartered
to promote Web Services interoperability across platforms, applications, and
programming languages. The organization brings together a diverse community of
Web services leaders to respond to customer needs by providing guidance,
recommended practices, and supporting resources for developing interoperable Web
services.” (www.ws-i.org)

The WS-I will actually determine whether a Web service conforms to WS-I standards
as well as industry standards. In order to establish integrity and acceptance,

JBESB-PG-5/8/07 13

companies will seek to build their Web services in compliance with the WS-I
standards.

Efficiency

SOA will enable you to reuse your existing applications. Instead of creating totally
new applications, you can create them using various combinations of services exposed
by your existing applications. Developers can be more efficient because they can
focus on learning industry standard technology. They will not have to spend a lot of
time learning every new technology that arises. For a manager this means a reduction
in the cost of buying new software and having to hire new developers with new skill
sets. This approach will allow developers to meet changing business requirements
and reduce the length of development cycles for projects. Overall, SOA provides for
an increase in efficiency by allowing applications to be reused, decreasing the
learning curve for developers and speeding up the total development process.

Standardization

For something to be a true standard, it must be accepted and used by the majority of
the industry. One vendor or small group of vendors must not control the evolution of
the technology or specification. Most if not all of the industry leaders are involved in
the development of Web service specifications. Almost all businesses use the Internet
and World Wide Web in one form or another. The underlying protocol for the WWW
is of course HTTP. The foundation of Web services is built upon HTTP and XML.
Although SOA does not mandate a particular implementation framework,
interoperability is important and SOAP is one of the few protocols that all good SOA
implementations can agree on.

JBESB-PG-5/8/07 14

Chapter 2

The Enterprise Service
Bus

Overview

The ESB is seen as the next generation of EAI – better and without the vendor-lockin
characteristics of old. As such, many of the capabilities of a good ESB mirror those of
existing EAI offerings. Traditional EAI stacks consist of: Business Process
Monitoring, Integrated Development Environment, Human Workflow User Interface,
Business Process Management, Connectors, Transaction Manager, Security,
Application Container, Messaging Service, Metadata Repository, Naming and
Directory Service, Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels. It
is about infrastructure logic. Although there are many different definitions of what
constitutes an ESB, what everyone agrees on now is that an ESB is part of an SOA
infrastructure. However, SOA is not simply a technology or a product: it's a style of
design, with many aspects (such as architectural, methodological and organisational)
unrelated to the actual technology. But obviously at some point it becomes necessary
to map the abstract SOA to a concrete implementation and that's where the ESB
comes in to play.

By considering ESB in terms of an SOA infrastructure, then we have the flexibility to
abstract away from given implementation choices, such as JMS, SOAP etc. Then we

JBESB-PG-5/8/07 15

define the capabilities that we want from our SOA infrastructure, which become the
capabilities for the ESB. However, because of their heritage, ESBs typically come
with a few assumptions that are not inherent to SOA:

• Java specific.

• Run­time message mediator.

• Message translation.

• Security model translation.

Loose coupling does not require a mediator to route messages, although that is
dominant ESB architecture. This is also a requirement within the JBI specification.
The ESB model should not restrict the SOA model, but should be seen as a concrete
representation of SOA. As a result, if there is a conflict between the way SOA would
approach something and the way in which it may be done in a traditional ESB, the
SOA approach will win within JBossESB.

Therefore, in JBossESB mediation (e.g., content based routing) is a deployment
choice and not a mandatory requirement. Obviously for compliance with certain
specifications it may be configured by default, but if developers don't need that
compliance point, they should be able to remove it (generally or on a per service
basis).

The abstract view of the ESB/SOA infrastructure is shown below in Figure 1:

At its core, a good SOA should have a good messaging infrastructure (MI), and JMS
is a fairly good example of a standards-compliant MI. But it obviously will not be the
only implementation supported. Other capabilities that an ESB provides include:

• Process orchestration, typically via WS­BPEL.

• Protocol translation.

• Adapters.

• Change management (hot deployment, versioning, lifecycle management).

• Quality of service (transactions, failover).

• Qualify of protection (message encryption, security).

• Management.

Access control lists (ACLs) are important and complimentary to security protocols,
such as WS-Security/WS-Trust, and often overlooked by existing implementations.
JBossESB will support ACLs are part of the security capabilities.

Many of these capabilities can be obtained by plugging in other services or layering
existing functionality on the ESB. We should see the ESB as the fabric for building,

JBESB-PG-5/8/07 16

deploying and managing event-driven SOA applications and systems. There are many
different ways in which these capabilities can be realized, and the JBossESB does not
mandate one implementation over another. Therefore, all capabilities will be accessed
as services which will give plug-and-play configuration and extensibility options.

Figure 2: ESB components and multi-bus support.

Architectural requirements

In a distributed environment services can communicate with each other using a variety
of message passing protocols. With the aid of client and server stub code, RPC
semantics can be used to maintain the abstraction of local procedure calls across
address space boundaries. Client stub code is a local proxy for the remote object,
which is controlled by the corresponding server stub code. It is the responsibility of
the client stub to marshal information which identifies the remote method and its
parameters, transmit this information across the network to the object, receive the
reply message, and un-marshal the reply to return to the invoker.

However, SOA does not imply a specific carrier protocol and neither does it imply
RPC semantics (in fact, loose coupling of services forces developers into an

JBESB-PG-5/8/07 17

asynchronous message passing pattern3). Therefore, multiple protocols should be
supported simultaneously. In most cases, clients will know the communication
protocol to use when interacting with a service; however, in some situations this may
not be the case, and the communication stack may need to be assembled dynamically
(via a hand-shake protocol, where the client stub may have to be dynamically
constructed4).

At the core of JBossESB is a messaging infrastructure (MI), but this MI is abstract,
in that it does not force us into just JMS or SOAP styles. For example, a pure-play
Web Services deployment within the ESB can be supported. As such, JBossESB
assumes a single MI abstraction, but the capabilities may be provided by multiple
different implementations. This is further support for the notion of having multiple
buses within the ESB (each bus may be controlled by a separate MI implementation).

The service description and service contract are extremely important in the context of
SOA and therefore ESB. In general, the developers create the contracts and the ESB
maps it to whatever technology is being used to implement the SOA, e.g., WSDL.
JBossESB allows this mapping to technology to be configurable and dynamic, i.e., it
supports multiple SOA implementation technologies.

Registries and repositories

There are actually two different aspects to the service bus: first, turning legacy
systems and services into services that work within the SOA infrastructure; secondly,
there is taking the services and adding policy and mediation control between those
services. Integral to this is the notion of SOA Repositories: a repository is a persistent
representation of an SOA Registry, which is needed to publish, discover and consume
services. JBossESB will support a range of registry implementations, with UDDI as
one of the first.

Versioning of Services

Using the ESB/SOA actually consists of two phases: the initial creation phase and the
maintenance phase, which may have different requirements from the creation phase.
Services evolve over time and it is often difficult or impossible to find a quiescent
period in which to replace a service. As such, in any enterprise deployment there is
likely going to be multiple versions of services being used by clients at the same time.
Some of the version mismatch may be hidden by suitable routing and on-the-fly
message modifications. JBossESB will address the challenge of versioning of
services, something that other implementations tend to ignore. Services will be
identifiable via major and minor version numbers, with pattern matching capabilities
provided by a pluggable rules engine, e.g., a default rule would be that all minor
versions are compatible within the scope of the same major version number, but that
can be overridden with a specific rule by the service provider or system administrator.

Incorporating legacy services

One of the key aspects of SOA is the ability to leverage existing infrastructural
investments. Being required to cast aside software systems in order to incorporate a

3 Actually true asynchrony is often not necessary: synchronous one-way (void returns)
RPCs can be used and often are in Web Services.
4 Services may be available via multiple different protocols simultaneously, e.g., CORBA
IIOP and JMS. A service repository (aka Name Service/Trading Service) will maintain service
identities with their endpoint references and contract definitions (CORBA IDL, WSDL, etc.)

JBESB-PG-5/8/07 18

new technology such as an ESB, is not good practice and we would caution against
using such systems since they could lead to vendor lock-in.

JBossESB will allow existing services to be incorporated within the ESB environment
without modification to those services. Likewise, clients and services that are
deployed within JBossESB will be able to use services that are external to the ESB in
an automatic manner. This is illustrated in the figure below and explained in more
detail in subsequent chapters.

JBESB-PG-5/8/07 19

Chapter 3

When to use JBossESB
Introduction

We have already discussed when SOA principles and an ESB implementation may be
useful. The table below illustrates some further, concrete examples where JBossESB
would be useful. Although these examples are specific to interactions between
participants using non-interoperable JMS implementations, the principles are general.

The diagram below shows simple file movement between two systems where
messaging queuing is not involved.

The next diagram illustrates how transformation can be injected into the same scenario
using JBossESB.

In the next series of examples, we use a queuing system (e.g., a JMS implementation).

JBESB-PG-5/8/07 20

The diagram below shows transformation and queuing in the same situation.

JBossESB can be used in more than multi-party scenarios. For example, the diagram
below shows basic data transformation via the ESB using the file system.

JBESB-PG-5/8/07 21

The final scenario is again a single party example using transformation and a queuing
system.

JBESB-PG-5/8/07 22

JBESB-PG-5/8/07 23

Chapter 4

JBossESB
Rosetta

The core of JBossESB is Rosetta5, an ESB that has been in commercial deployment
at a mission critical site for over 3 years. The architecture of Rosetta is shown below
in Figure 3:

Note: In the diagram, processor classes refer to the Action classes within
the core that are responsible for processing on triggered events.

There are many reasons why users may want disparate applications, services and
components to interoperate, e.g., leveraging legacy systems in new deployments.
Furthermore, as we have seen such interactions between these entities may occur both
synchronously or asynchronously. As with most ESBs, Rosetta was developed to
facilitate such deployments, but providing an infrastructure and set of tools that could:

5 Rosetta borrowed its name from the stone found in 1799 by French soldiers in the Nile
delta’s town of Rosetta (French for Rashid) that was instrumental in Jean-François Champollion
deciphering of Egyptian hieroglyphs.

JBESB-PG-5/8/07 24

• Be easily configured to work with a wide variety of transport mechanisms
(e.g., email and JMS).

• Offer a general purpose object repository.

• Enable pluggable data transformation mechanisms.

• Provide a batch handling capability.

• Support logging of interactions.

To date, Rosetta has been used in mission critical deployments using Oracle
Financials. The multi platform environment included an IBM mainframe running
z/OS, DB2 and Oracle databases hosted in the mainframe and in smaller servers, with
additional Windows and Linux servers and a myriad of third party applications that
offered dissimilar entry points for interoperation. It used JMS and MQSeries for
asynchronous messaging and Postgress for object storage. Interoperation with third
parties outside of the corporation’s IT infrastructure was made possible using IBM
MQSeries, FTP servers offering entry points to pick up and deposit files to/from the
outside world and attachments in e-mail messages to ‘well known’ e-mail accounts.

As we shall see when examining the JBossESB core, which is based on Rosetta, the
challenge was to provide a set of tools and a methodology that would make it simple
to isolate business logic from transport and triggering mechanisms, to log business
and processing events that flowed through the framework and to allow flexible plug
ins of ad hoc business logic and data transformations. Emphasis was placed on
ensuring that it possible (and simple) for future users to replace/extend the standard
base classes that come with the framework (and are used for the toolset), and to
trigger their own ‘action classes’ that can be unaware of transport and triggering
mechanisms.

The core of JBossESB in a nutshell

Rosetta is built on three core architectural components:

• Message Listener and Message Filtering code. Message Listeners act as
“inbound” message routers that listen for messages (e.g. on a JMS
Queue/Topic, or on the filesystem) and present the message to a message
processing pipeline that filters the message and routes it (“outbound”
router) to another message endpoint.

• Data transformation via the SmooksTransformer action processor. See the
Message Transformation Guide.

• A Content Based Routing Service. See the CBR Guide.

• A Message Repository, for saving messages/events exchanged within the
ESB.

JBESB-PG-5/8/07 25

These capabilities are offered through a set of business classes, adapters and
processors, which will be described in detail later. Interactions between clients and
services are supported via a range of different approaches, including JMS, flat-file
system and email.

A typical JBossESB deployment is shown below. We shall return to this diagram in
subsequent sections.

Note: Some of the components in the diagram (e.g., LDAP server) are
configuration choices and may not be provided out-of-the-box.
Furthermore, the Processor and Action distinction shown in the above
diagram is merely an illustrative convenience to show the concepts
involved when an incoming event (message) triggers the underlying ESB
to invoke higher-level services.

Figure 4: ESB Core components.

JBossESB components

In the following sections we shall examine the core components of JBossESB.

Configuration

All components within the core receive their configuration parameters as XML. How
these parameters are provided to the system is hidden by the
org.jboss.soa.esb.parameters.ParamRepositoryFactory:

JBESB-PG-5/8/07 26

public abstract class ParamRepositoryFactory
{
 public static ParamRepository getInstance();
}

This returns implementations of the
org.jboss.soa.esb.parameters.ParamRepository interface which allows for
different implementations:

public interface ParamRepository
{
 public void add(String name, String value) throws
 ParamRepositoryException;
 public String get(String name) throws ParamRepositoryException;
 public void remove(String name) throws ParamRepositoryException;
}

Within this version of the JBossESB, there is only a single implementation, the
org.jboss.soa.esb.parameters.ParamFileRepository, which expects to be
able to load the parameters from a file. The implementation to use may be overridden
using the org.jboss.soa.esb.paramsRepository.class property.

Note: we recommend that you construct your ESB configuration file using
Eclipse or some other XML editor. The JBossESB configuration
information is supported by an annotated XSD which should help if using
a basic editor.

The Message Store

The message store mechanism in JBossESB is designed with audit tracking purposes
in mind. As with other ESB services, it is a pluggable service, which allows for you,
the developer to plug in your own persistence mechanism should you have special
needs. The implementation supplied with JBossESB is a database persistence
mechanism. If you require say, a file persistence mechanism, then it’s just a matter of
you writing your own service to do this, and override the default behaviour with a
configuration change.

One thing to point out with the Message Store – this is a base implementation. We will
be working with the community and partners to drive the feature functionality set of
the message store to support advanced audit and management requirements. This is
meant to be a starting point.

First, let’s discuss the Message Store interface. It is quite simple:

The interface, part of the Rosetta core, is defined as follows:

package org.jboss.soa.esb.services.persistence;

public interface MessageStore {
public URI addMessage(Message message);
public Message getMessage(URI uid) throws Exception;

}

It can read and write messages, returning or taking a standard URI. This URI is used
as the “key” for that message in the database, for the default database implementation.

JBESB-PG-5/8/07 27

The class which implements this interface, providing the out of the box
implementation, can be found in the Services tree under the package
org.jboss.internal.soa.esb.persistence.format.db. The methods in this
implementation make the required DB connections (using a pooled Database Manager
DBConnectionManager), inserting the Message, and retrieving the message.

To configure your Message Store, you can change and override the default service
implementation through the following settings found in the jbossesb-
properties.xml:

<properties name="dbstore">
<property name="org.jboss.soa.esb.persistence.messagestore.factory"
value="org.jboss.internal.soa.esb.persistence.format.MessageStoreFac
toryImpl"/>
<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>
<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="org.hsqldb.jdbcDriver"/>
<property name="org.jboss.soa.esb.persistence.db.user" value="sa"/>
<property name="org.jboss.soa.esb.persistence.db.pwd"
value=""/>
<property name="org.jboss.soa.esb.persistence.db.pool.initial.size"
value="2"/>
<property name="org.jboss.soa.esb.persistence.db.pool.min.size"
value="2"/>
<property name="org.jboss.soa.esb.persistence.db.pool.max.size"
value="5"/>
<property name="org.jboss.soa.esb.persistence.db.pool.test.table"
value="pooltest"/>
<property
name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"
value="5000"/>
</properties>

The section in the property file called “dbstore” has all the settings required by the
database implementation of the message store. The standard settings, like URL, db
user, password, pool sizes can all be modified here.

The scripts for the required database schema, are again, very simple. They can be
found under ESB_ROOT/install/message-store/sql/<db_type>/ create_database.sql.
Only Hypersonic SQL and PostgresSQL are provided, but you should be able to
create your own database specific table definition very easily.

The structure of the table is:

Column Name Type
uuid TEXT
type TEXT
message text

the uuid column is used to store a unique key for this message, in the format of a
standard URI. A key for a message would look like:

urn:jboss:esb:message:UID: + UUID.randomUUID()

JBESB-PG-5/8/07 28

This logic uses the new UUID random number generator in jdk 1.5.the type will be
the type of the stored message. JBossESB ships with JBOSS_XML and
JAVA_SERIALIZED currently.

The “message” column will contain the actual message content.

The supplied database message store implementation works by invoking a connection
manager to your configured database. Supplied with Jboss ESB is a standalone
connection manager, and another for using a JNDI datasource.

To configure the database connection manager, you need to provide the connection
manager implementation in the jbossesb-properties.xml. The properties that you
would need to change are:

<!-- connection manager type -->
<property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.internal.soa.esb.persistence.format.db.StandaloneCo
nnectionManager"/>
<!-- property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/
-->
<!-- this property is only used if using the j2ee connection manager
-->
<property name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBossesbDS"/>

The two supplied connection managers for managing the database pool are

org.jboss.soa.esb.persistence.manager.J2eeConnectionManager
org.jboss.soa.esb.persistence.manager.StandaloneConnectionManager

The Standalone manager uses C3PO to manage the connection pooling logic, and the
J2eeConnectionManager uses a datasource to manage it's connection pool. This is
intended for use when deploying your ESB endpoints inside a container such as Jboss
AS or Tomcat, etc. You can plug in your own connection pool manager by
implementing the interface:

org.jboss.internal.soa.esb.persistence.manager.ConnectionManager

Once you have implemented this interface, you update the properties file with your
new class, and the connection manager factory will now use your implementation.

ESB-aware and ESB-unaware users

One of the aims of JBossESB is to allow a wide variety of clients and services to
interact. JBossESB does not require that all such clients and services be written using
JBossESB or any ESB for that matter. There is an abstract notion of an
Interoperability Bus within JBossESB, such that endpoints that may not be
JBossESB-aware can still be “plugged in to” the bus.

Note: in what follows, the terms “within the ESB” or “inside the ESB” refer to
ESB-aware endpoints.

JBESB-PG-5/8/07 29

All JBossESB-aware clients and services communicate with one another using
Messages, to be described later. A Message is simply a standardized format for
information exchange, containing a header, body (payload), attachments and other
data. Furthemore, all JBossESB-aware services are identified using Endpoint
References (EPRs), to be described later.

It is important for legacy interoperability scenarios that a SOA infrastructure such as
JBossESB allow ESB-unaware clients to use ESB-aware services, or ESB-aware
clients to use ESB-unaware services. The concept that JBossESB uses to facilitate this
interoperability is through Gateways. A gateway is a service that can bridge between
the ESB-aware and ESB-unaware worlds and translate to/from Message formats and
to/from EPRs.

Endpoint References

All clients and services within JBossESB are addressed using Endpoint References
(EPRs). An EPR has the following XML-based composition:

• [address] : URI (mandatory). An address URI that identifies the endpoint.
This may be a network address or a logical address.

• [reference properties] : xs:any (0..unbounded). A reference may contain a
number of individual properties that are required to identify the entity or

JBESB-PG-5/8/07 30

resource being conveyed. Reference identification properties are element
information items that are named by QName and are required to properly
dispatch messages to endpoints at the endpoint side of the interaction.
Reference properties are provided by the issuer of the endpoint reference and
are otherwise assumed to be opaque to consuming applications. The
interpretation of these properties (as the use of the endpoint reference in
general) is dependent upon the protocol binding and data encoding used to
interact with the endpoint. Consuming applications should assume that
endpoints represented by endpoint references with different [reference
properties] may accept different sets of messages or follow a different set of
policies, and consequently may have different associated metadata (e.g.,
WSDL, XML Schema, and WS-Policy policies).

• [reference parameters] : xs:any (0..unbounded). A reference may contain
a number of individual parameters which are associated with the endpoint
to facilitate a particular interaction. Reference parameters are element
information items that are named by QName and are required to properly
interact with the endpoint. Reference parameters are also provided by the
issuer of the endpoint reference and are otherwise assumed to be opaque to
consuming applications. The use of reference parameters is dependent upon
the protocol binding and data encoding used to interact with the endpoint.
Unlike [reference properties], the [reference parameters] of two endpoint
references may differ without an implication that different XML Schema,
WSDL or policies apply to the endpoints.

An EPR is essentially an address, to which messages are delivered by the ESB. How
the message is delivered (e.g., FTP or JMS) is part of the binding of the EPR to
messaging infrastructure and is typically reflected within the To component of the
EPR, e.g., jms://foo.bar. The binding aspect is important because it imparts important
semantic information as to the delivery characteristics for the message. For example,
if using HTTP and the ultimate recipient of the message (e.g., business object) is not
available, attempts to deliver the message will fail. If using JMS, it may be possible to
deposit the message within a queue without delivery to the ultimate destination taking
place. Obviously failure to deliver the message may subsequently occur, but unlike in
the case of HTTP the sender will not be immediately notified of such a failure.

JBossESB uses the org.jboss.soa.esb.addressing.EPR and
org.jboss.soa.esb.addressing.PortReference classes to represent endpoint
references.

public class EPR
{

public EPR ();
public EPR (PortReference addr);
public EPR (URI uri);

public void setAddr (PortReference uri);
public PortReference getAddr () throws URISyntaxException;

public void copy (EPR from);

JBESB-PG-5/8/07 31

public boolean equals (Object obj);
}

Note: The use of EPRs is based on the WS-Addressing specification from
the W3C. However, in the 4.0 release the JBossESB implementation of
EPRs is closer to the 2004 version of the specification from IBM,
Microsoft et al.

Mapping of EPR to Service

How services map to EPRs can be a very important aspect of any application based on
Service Oriented Architecture principles. Too tight a coupling can lead to brittle
applications, whereas too loose a coupling can result in more development effort at the
higher levels of the application.

It has long been recognized that the World Wide Web is probably the most successful
distributed system created. It is inherently loosely coupled (clients and servers
frequently interact across the globe) and highly scaleable (many thousands of Web
sites). There are a number of factors that can be attributed to the Web’s success, but
two of the most important are:

• Sessions between clients and servers are maintained only long enough
to transfer an HTML page and are dropped immediately afterward.
This means that costly resources (e.g., TCP/IP connections, threads,
processes) are not maintained for long durations, particularly when
there are many users interacting with a service.

• Server interactions are either stateless, meaning that any instance of a
Web server offering a particular service, e.g., airline reservation, can
field the request, or information required to identify a previous user
(and possibly state) is propagated with the invocation, e.g., the cookie.

Both of these factors mean that clusters of servers can relatively easily be used to
distribute the load and provide improved availability/fault-tolerance to users. Web
servers offering critical services are typically deployed over a cluster of machines. A
locally distributed cluster of machines with the illusion of a single IP address and
capable of working together to host a Web site provides a practical way of scaling up
processing power and sharing load at a given site. Commercially available server
clusters rely on a specially designed gateway router to distribute the load using a
mechanism known as network address translation (NAT). The mechanism operates
by editing the IP headers of packets so as to change the destination address before the
IP to host address translation is performed. Similarly, return packets are edited to
change their source IP address. Such translations can be performed on a per session
basis so that all IP packets corresponding to a particular session are consistently
redirected.

Most proponents of Web Services agree that it is important that its architecture is as
scalable and flexible as the Web. As a result, the current interaction pattern for Web
Services is based on coarse-grained services or components. The architecture is
deliberately not prescriptive about what happens behind service endpoints: Web
Services are ultimately only concerned with the transfer of structured data between

JBESB-PG-5/8/07 32

parties, plus any meta-level information to safeguard such transfers (e.g., by
encrypting or digitally signing messages). This gives flexibility of implementation,
allowing systems to adapt to changes in requirements, technology etc. without directly
affecting users. Furthermore, most businesses will not want to expose their back-end
implementation decisions and strategies to users for a variety of reasons.

In distributed systems such as CORBA, J2EE and DCOM, interactions are typically
between stateful objects that resided within containers. In these architectures, objects
are exposed as individually referenceable entities, tied to specific containers and
therefore often to specific machines. Because most Web Services applications are
written using object-oriented languages, it is natural to think about extending that
architecture to Web Services. Therefore a service exposes Web Services resources
that represent specific states. The result is that such architectures produce tight
coupling between clients and services, making it difficult for them to scale to the level
of the World Wide Web.

Right now there are two primary models for the session concept that are being defined
by companies participating in defining Web services: the WS-Addressing
EndpointReference with ReferenceProperties/ReferenceParameters and the WS-
Context explicit context structure, both of which are supported within JBossESB. The
WS-Addressing session model provides coupling between the web service endpoint
information and the session data, which is analogous to object references in
distributed object systems.

WS-Context provides a session model that is an evolution of the session models found
in HTTP servers, transaction, and MOM systems. On the other hand, WS-Context
allows a service client to more naturally bind the relationship to the service
dynamically and temporarily. The client’s communication channel to the service is not
impacted by a specific session relationship.

This has important implications as we consider scaling Web services from intra-
domain deployments to general services offered on the Internet. The current
interaction pattern for Web Services is based on coarse-grained services or
components. The architecture is deliberately not prescriptive about what happens
behind service endpoints: Web Services are ultimately only concerned with the
transfer of structured data between parties, plus any meta-level information to
safeguard such transfers (e.g., by encrypting or digitally signing messages). This gives
flexibility of implementation, allowing systems to adapt to changes in requirements,
technology etc. without directly affecting users. It also means that issues such as
whether or not a service maintains state on behalf of users or their (temporally
bounded) interactions, has been an implementation choice not typically exposed to
users.

If a session-like model based on WS-Addressing were to be used when interacting
with stateful services, then the tight coupling between state and service would impact
on clients. As in other distribution environments where this model is used (e.g.,
CORBA or J2EE), the remote reference (address) that the client has to the service
endpoint must be remembered by the client for subsequent invocations. If the client
application interacts with multiple services within the same logical session, then it is
often the case that the state of a service has relevance to the client only when used in
conjunction with the associated states of the other services. This necessarily means
that the client must remember each service reference and somehow associate them
with a specific interaction; multiple interactions will obviously result in different
reference sets that may be combined to represent each sessions.

JBESB-PG-5/8/07 33

For example, if there are N services used within the same application session, each
maintaining m different states, the client application will have to maintain N*m
reference endpoints. It is worth remembering that the initial service endpoint
references will often be obtained from some bootstrap process such as UDDI. But in
this model, these references are stateless and of no use beyond starting the application
interactions. Subsequent visits to these sites that require access to specific states must
use different references in the WS-Addressing model.

This obviously does not scale to an environment the size of the Web. However, an
alternative approach is to use WS-Context and continue to embrace the inherently
loosely-coupled nature of Web Services. As we have shown, each interaction with a
set of services can be modeled as a session, and this in turn can be modeled as a WS-
Context activity with an associated context. Whenever a client application interacts
with a set of services within the same session, the context is propagated to the services
and they map this context to the necessary states that the client interaction requires.

How this mapping occurs is an implementation specific choice that need not be
exposed to the client. Furthermore, since each service within a specific session gets
the same context, upon later revisiting these services and providing the same context
again, the client application can be sure to return to a consistent set of states. So for
the N services and m states in our previous example, the client need only maintain N
endpoint references and as we mentioned earlier, typically these will be obtained from
the bootstrap process anyway. Thus, this model scales much better.

Gateways to the ESB

Not all users of JBossESB will be ESB-aware. In order to facilitate those users
interacting with services provided by the ESB, JBossESB has the concept of a
Gateway: specialised servers that can accept messages from non-ESB clients and
services and route them to the required destination.

A Gateway is a specialised listener process, that behaves very similarly to an ESB
aware listener. There are some important differences however:

● Gateway classes can pick up arbitrary objects contained in files, JMS
messages, SQL tables etc (each 'gateway class' is specialized for a
specific transport), whereas JBossESB listeners can only process
JBossESB normalized Messages as described in “The Message”
section of this document. However, those Messages can contain
arbitrary data.

● Only one action class is invoked to perform the 'message composing'
action. ESB listeners are able to execute an action processing pipeline.

● Objects that are 'picked up' will be used to invoke a single 'composer
class' (the action) that will return an ESB Message object, which will
be delivered to a target service that must be an ESB aware service. The
target service defined at configuration time, will be translated at
runtime into an EPR (or a list of EPRs) by the Registry. The
underlying concept is that the EPR returned by the Registry is
analogous to the 'toEPR' contained in the header of ESB Messages, but

JBESB-PG-5/8/07 34

because incoming objects are 'ESB unaware' and there is thus no
dynamic way to determine the toEPR, this value is provided to the
gateway at configuration time and included in all outgoing messages.

There are a few off the shelf composer classes: the default 'file' composer class will
just package the file contents into the Message body; same idea for JMS messages.
Default message composing class for a SQL table row is to package contents of all
columns specified in configuration, into a java.util.Map.

Although these default composer classes will be enough for most use cases, it is
relatively straightforward for users to provide their own message composing classes.
The only requirements are a) they must have a constructor that takes a single
ConfigTree argument, and b) they must provide a 'Message composing' method
(default name is 'process' but this can be configured differently in the 'process'
attribute of the <action> element within the ConfigTree provided at constructor
time. The processing method must take a single argument of type Object, and return
a Message value.

The Message

All interactions between clients and services within JBossESB occur through the
exchange of messages. In order to encourage loose coupling we recommend a
message-exchange pattern based on one-way messages, i.e., requests and responses
are independent messages, correlated where necessary by the infrastructure or
application. Applications constructed in this way are less brittle and can be more
tolerant of failures, giving developers more flexibility in their deployment and
message delivery requirements.

To ensure loose coupling of services and develop SOA applications, it is necessary to:

• Use one­way message exchanges rather than request­response.

• Keep the contract definition within the exchanged messages. Try not to
define a service interface that exposed back­end implementation choices,
because that will make changing the implementation more difficult later.

• Use an extensible message structure for the message payload so that
changes to it can be versioned over time, for backward compatibility.

• Do not develop fine­grained services: this is not a distributed­object
paradigm, which can lead to brittle applications.

In order to use a one-way message delivery pattern with requests and responses, it is
obviously necessary to encode information about where responses should be sent.
That information may be present in the message body (the payload) and hence dealt
with solely by the application, or part of the initial request message and typically dealt
with by the ESB infrastructure.

Therefore, central to the ESB is the notion of a message, whose structure is similar to
that found in SOAP:

JBESB-PG-5/8/07 35

<xs:complexType name="Envelope">
<xs:attribute ref="Header" use="required"/>
<xs:attribute ref="Context" use="required"/>
<xs:attribute ref="Body" use="required"/>
<xs:attribute ref="Attachment" use="optional"/>
<xs:attribute ref="Properties" use="optional"/>
<xs:attribute ref="Fault" use="optional"/>

</xs:complexType>

Pictorially the basic structure of the Message can be represented as shown below. In
the rest of this section we shall examine each of these components in more detail.

Each message is an implementation of the
org.jboss.soa.esb.message.Message interface. Within that package are
interfaces for the various fields within the Message as shown below:

public interface Message
{

public Header getHeader ();
public Context getContext ();
public Body getBody ();
public Fault getFault ();
public Attachment getAttachment ();
public URI getType ();
public Properties getProperties ();

}

The Header contains routing and addressing information for this message. As we saw
earlier, JBossESB uses an addressing scheme based on the WS-Addressing standard
from W3C. We shall discuss the org.jboss.soa.esb.addressing.Call class in
the next section.

public interface Header
{

public Call getCall ();
public void setCall (Call call);

}

JBESB-PG-5/8/07 36

The Context contains session related information, such as transaction or security
contexts.

Note: The 4.x release of JBossESB does not support user-enhanced
Contexts. This will be a feature of the 5.0 release.

The Body typically contains the payload of the message. It may contain a byte array
for arbitrary data. How that array is interpreted by the service is implementation
specific and outside the scope of the ESB to enforce. It may also contain a list of
Objects of arbitrary types. How these objects are serialized to/from the message body
when it is transmitted is up to the specific Object type.

public interface Body
{

public void add (String name, Object value);
public Object get (String name);
public Object remove (String name);
public void setContents (byte[] content);
public byte[] getContents ();
public void replace (Body b);
public void merge (Body b);

}

The Fault can be used to convey error information.

public interface Fault
{

public URI getCode ();
public void setCode (URI code);

public String getReason ();
public void setReason (String reason);

}

A set of message properties, which can be used to define additional meta-data for the
message.

public interface Properties
{

public Object getProperty(String name);
public Object getProperty(String name, Object defaultVal);

public Object setProperty(String name, Object value);
public Object remove(String name);

public int size();
public String[] getNames();

}

Messages may contain attachments that do not appear in the main payload body. For
example, binary document formats, zip files etc. The Attachment interface supports
both named and unnamed attachments.

public interface Attachment
{

JBESB-PG-5/8/07 37

Object get(String name);
Object put(String name, Object value);

Object remove(String name);

String[] getNames();

Object itemAt (int index) throws IndexOutOfBoundsException;
Object removeItemAt (int index) throws IndexOutOfBoundsException
Object replaceItemAt(int index, Object value)

throws IndexOutOfBoundsException;

void addItem (Object value);
void addItemAt (int index, Object value)

throws IndexOutOfBoundsException;

public int getNamedCount();
}

The Message Header

As we saw above, the Header of a Message contains a reference to the
org.jboss.soa.esb.addressing.Call class:

public class Call
{

public Call ();
public Call (EPR epr);

public void setTo (EPR epr);
public EPR getTo () throws URISyntaxException;

public void setFrom (EPR from);
public EPR getFrom () throws URISyntaxException;

public void setReplyTo (EPR replyTo);
public EPR getReplyTo () throws URISyntaxException;

public void setFaultTo (EPR uri);
public EPR getFaultTo () throws URISyntaxException;

public void setRelatesTo (URI uri);
public URI getRelatesTo () throws URISyntaxException;

public void setAction (URI uri);
public URI getAction () throws URISyntaxException;

public void setMessageID (URI uri);
public URI getMessageID () throws URISyntaxException;

public void copy (Call from);
}

The properties below support one way, request reply, and any other interaction
pattern:

• [To] : URI (mandatory). The address of the intended receiver of this
message.

JBESB-PG-5/8/07 38

• [From] : endpoint reference (0..1). Reference of the endpoint where the
message originated from.

• [ReplyTo] : endpoint reference (0..1). An endpoint reference that identifies
the intended receiver for replies to this message. If a reply is expected, a
message must contain a [ReplyTo]. The sender must use the contents of the
[ReplyTo] to formulate the reply message. If the [ReplyTo] is absent, the
contents of the [From] may be used to formulate a message to the source.
This property may be absent if the message has no meaningful reply. If this
property is present, the [MessageID] property is required.

• [FaultTo] : endpoint reference (0..1). An endpoint reference that identifies
the intended receiver for faults related to this message. When formulating a
fault message the sender must use the contents of the [FaultTo] of the
message being replied to to formulate the fault message. If the [FaultTo] is
absent, the sender may use the contents of the [ReplyTo] to formulate the
fault message. If both the [FaultTo] and [ReplyTo] are absent, the sender
may use the contents of the [From] to formulate the fault message. This
property may be absent if the sender cannot receive fault messages (e.g., is a
one-way application message). If this property is present, the [MessageID]
property is required.

• [Action] : URI (mandatory). An identifier that uniquely (and opaquely)
identifies the semantics implied by this message.

• [MessageID] : URI (0..1). A URI that uniquely identifies this message in
time and space. No two messages with a distinct application intent may share
a [MessageID] property. A message may be retransmitted for any purpose
including communications failure and may use the same [MessageID]
property. The value of this property is an opaque URI whose interpretation
beyond equivalence is not defined. If a reply is expected, this property must
be present.

Note: In the 4.0 release of JBossESB not all of the routing and addressing
rules are applied by the ESB.

The Message payload

From an application/service perspective the message payload is a combination of the
Body and Attachments. In this section we shall give an overview of best practices
when constructing and using the message payload.

The byte array component of the Body is a convenience. It allows an unnamed and
arbitrary encoding of information to be inserted within the payload. It is neither a
recommended nor discouraged practice to use the setContents/getContents
methods. Neither is the setting of a byte array necessary for inserting named objects
within the rest of the payload. The two approaches can be used together or in
isolation. The best approach will depend upon the service or application being
developed.

More complex content may be added through the add method, which supports named
Objects. Names must be unique on behalf of a given Message or an appropriate
exception will be thrown. Using <name, Object> pairs allows for a finer granularity

JBESB-PG-5/8/07 39

of data access. The type of Objects that can be added to the Body can be arbitrary:
they do not need to be Java Serializable. However, in the case where non-Serializable
Objects are added, it is necessary to provide JBossESB with the ability to
marshal/unmarshal the Message when it flows across the network. See the section of
Message Formats for more details.

Note: we discourage the general use of Serialized Java objects in
messages because it constrains the service implementations. Use with
care.

In general you will find it easier to work with the Message Body through the named
Object approach. You can add, remove and inspect individual data items within the
Message payload without having to decode the entire Body. Furthermore, you can
combine named Objects within the payload with the byte array.

Attachments are additional information that flows with the message but is not
embedded within the Body. Although ESB meta-data may be encoded within an
attachment, e.g., security tokens, this is not their normal use case: attachments should
be considered an adjunct to the Body. As with the Body, Attachments can be
uniquely named. Furthermore it is possible to iterate over all of a message's
attachments.

Attachments can be used to contain data that naturally represents a resource in its own
right or which is cumbersome to represent within the primary message body. The
latter can be due to the size, type, or format of the data; a secondary part may be an
audio clip, an image, or a very large view of a database, for example.

While the attachment relationship is expected to be commonly used, the model makes
no assumption about the nature of the semantic relationship between the primary
message body and attachments, or between attachments in the same message.

The compound message structure model does not require that a receiver process,
dereference, or otherwise verify any attachment parts of a compound message
structure. It is up to the receiver to determine, based on the processing context
provided by the primary message Body, which operations must be performed (if any)
on the attachment(s).

Note: in the 4.0 release of JBossESB only Java Serialized objects may be
attachments. This restriction will be removed in a subsequen release.

The MessageFactory

Internally to an ESB component, the message is a collection of Java objects. However,
messages need to be serialized for a number of reasons, e.g., transmitted between
address spaces (processes) or saved to a persistent datastore for auditing or debugging
purposes. The external representation of a message may be influenced by the
environment in which the ESB is deployed. Therefore, JBossESB does not impose a
specific normalized message format, but supports a range of them.

All implementations of the org.jboss.soa.esb.message.Message interface are
obtained from the org.jboss.soa.esb.message.format.MessageFactory
class:

public abstract class MessageFactory
{

JBESB-PG-5/8/07 40

public abstract Message getMessage ();
public abstract Message getMessage (URI type);

public static MessageFactory getInstance ();
}

Message serialization implementations are uniquely identified by a URI. The type of
implementation required may be specified when requesting a new instance, or the
configured default implementation may be used. Currently JBossESB provides two
implementations, which are defined in the
org.jboss.soa.esb.message.format.MessageType class:

• MessageType.JBOSS_XML: this uses an XML representation of the
Message on the wire. The schema for the message is defined in the
message.xsd within the schemas directory.

• MessageType.JAVA_SERIALIZED: this implementation requires that all
components of a Message are Serializable. It obviously requires that
recipients of this type of Message have sufficient information (the Java
classes) to be able to de­serialize the Message.

Other Message implementations may be provided at runtime through the
org.jboss.soa.esb.message.format.MessagePlugin:

public interface MessagePlugin
{

public static final String MESSAGE_PLUGIN =
 "org.jboss.soa.esb.message.format.plugin";

public Message getMessage ();
public URI getType ();

}

Each plug-in must uniquely identify the type of Message implementation it provides
(via getMessage), using the getType method. Plug-in implementations must be
identified to the system via the jbossesb-properties.xml file using property
names with the org.jboss.soa.esb.message.format.plugin extension.

Message Formats

As mentioned previously, JBossESB supports two serialized message formats:
MessageType.JBOSS_XML and MessageType.JAVA_SERIALIZED. In the
following sections we shall look at each of these formats in more detail.

MessageType.JAVA_SERIALIZED

This implementation requires that all contents are Java Serializable. Any attempt to
add a non-Serializable object to the Message will result in a
IllegalParameterException being thrown.

MessageType.JBOSS_XML

This implementation uses an XML representation of the Message on the wire. The
schema for the message is defined in the message.xsd within the schemas

JBESB-PG-5/8/07 41

directory. Arbitrary objects may be added to the Message, i.e., they do not have to be
Serializable. Therefore, it may be necessary to provide a mechanism to
marshal/unmarshal such objects to/from XML when the Message needs to be
serialized. This support can be provided through the
org.jboss.soa.esb.message.format.xml.marshal.MarshalUnmarshalPlu
gin:

public interface MarshalUnmarshalPlugin
{

public static final String MARSHAL_UNMARSHAL_PLUGIN =
 "org.jboss.soa.esb.message.format.xml.plugin";

public boolean marshal (Element doc, Object param)
throws MarshalException;

public Object unmarshal (Element doc) throws UnmarshalException;

public URI type ();
}

Note: Java Serialized objects are supported by default.

Plug-ins can be registered with the system through the jbossesb- properties.xml
configuration file. They should have attribute names that start with the
MARSHAL_UNMARSHAL_PLUGIN. When packing objects in XML, JBossESB runs
through the list of registered plug-ins until it finds one that can deal with the object
type (or faults). When packing, the name (type) of the plug-in that packed the object is
also attached to facilitate unpacking at the Message receiver.

Data Transformation

Often clients and services will communicate using the same vocabulary. However,
there are situations where this is not the case and on-the-fly transformation from one
data format to another will be required. It is unrealistic to assume that a single data
format will be suitable for all business objects, particularly in a large scale or long
running deployment. Therefore, it is necessary to provide a mechanism for
transforming from one data format to another.

In JBossESB this is the role the Transformation Service. This version of the ESB is
shipped with an out-of-the-box Transformation Service based on Milyn Smooks.
Smooks is a Transformation Implementation and Management framework. It allows
you implement your transformation logic in XSLT, Java etc and provides a
management framework through which you can centrally manage the transformation
logic for your message-set.

For more details see the Message Transformation Guide.

Listener, Courier and Action Classes

Listeners encapsulate the endpoints for message reception. Upon receipt of a message,
a Listener feeds that message into a “pipeline” of message processors that process the
message before routing the result to the “replyTo” endpoint. The action processing
that takes place in the pipeline may consist of steps wherein the message gets
transformed in one processor, some business logic is applied in the next processor,

JBESB-PG-5/8/07 42

before the result gets routed to the next step in the pipeline, or to another endpoint.
Listeners rely on the Courier interface to pick up and deliver Messages.

The Courier interface encapsulates transport details from listeners.

public interface Courier
{

public boolean deliver(Message message) throws CourierException;
}

The TwoWayCourier class that extends Courier, can also pickup Messages from an
EPR. It is useful when a response is expected from the target of the outgoing Message
(see for example org.jboss.soa.esb.actions.CbrProxyAction).

public interface TwoWayCourier extends Courier
{

...
public Message pickup(long waitTime, EPR epr) throws

CourierException, CourierTimeoutException;
...

}

The CourierFactory class will return an appropriate Courier (or TwoWayCourier)
class for specific EPRs.

public class CourierFactory
{

....

public static Courier getCourier(EPR toEPR) throws
CourierException

{

...
}

public static TwoWayCourier getCourier(EPR toEPR, EPR replyToEPR)
throws CourierException

{
...

}
...

}

The default internal TwoWayCourierImpl checks if the transport specific courier has a
public 'void cleanup()' method and if so, invokes it to do housekeeping that need not
be implemented for all transports. See
org.jboss.internal.soa.esb.couriers.JmsCourier for example.

Transport specific classes that implement the Courier or TwoWayCourier interfaces
can publish other utility methods that are specific for that particular transport.

JBESB-PG-5/8/07 43

As outlined above, the responsibility of a listener is to act as a message delivery
endpoint and to deliver messages to an “Action Processing Pipeline”. Each listener
configuration needs to supply information for:

● the Registry (see service­category, service­name, service­description
and EPR­description tag names)

● instantiation of the listener class (see listenerClass tag name)

● the EPR that the listener will be servicing. This is transport specific.
The following example corresponds to a JMS EPR (see connection­
factory, destination­type, destination­name, jndi­type, jndi­URL and
message­selector tag names)

● the “action processing pipeline”. One or more <action> elements each
that must contain at least the 'class' tagname that will determine which
action class will be instantiated for that step in the processing chain

 <ExampleActionConfig

service-category="my category"
service-name="testJmsGateway"
service-description="My Example Service Name (optional)"
epr-description="Verbose (optional) description of the EPR"

listenerClass="org.jboss.soa.esb.listeners.message.JmsQueueListener"

connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"
jndi-type="jboss"
jndi-URL="localhost"
message-selector="serviceId='xyz'"
>
<!-- -->
 <action

class="org.jboss.soa.esb.listeners.gateway.JmsGatewayListenerUnitTest$M
ockMessageAwareAction" process="writeToDisk" />

 <action class="org.jboss.soa.esb.actions.Notifier"
okMethod="notifyOK">

 <NotificationList type="OK">
<target class="NotifyConsole" />

</NotificationList>
 </action>

 </ExampleActionConfig>

This example configuration will instantiate a JmsQueueListener object (listenerClass
attribute) that will wait for inconimg ESB Messages, serialized within a
javax.jms.ObjectMessage, and will deliver each incoming message to an
ActionProcessingPipeline consiting of two steps (<action> elements):

JBESB-PG-5/8/07 44

1. A MockMessageAwareAction (a trivial example follows)

2. An org.jboss.soa.esb.actions.Notifier the child
<NotificationList> element is ignored by the pipeline, but passed to and
used only by the class specified in the 'class' attribute

The following trivial action class will prove useful for debugging your XML action
configuration

public class MockMessageAwareAction
{
 ConfigTree _config;

 public MockMessageAwareAction(ConfigTree config) { _config =
config; }

 public Message process (Message message) throws Exception
 {
 System.out.println(message.getBody().getContents());
 return message;
 }
}

Action classes are the main way in which ESB users can tailor the framework to their
specific needs. The ActionProcessingPipeline class will expect any action class to
provide at least the following:

● A public constructor that takes a single argument of type ConfigTree

● One or more public methods that take a Message argument, and return
a Message result

Optional public callback methods that take a Message argument will be used for
notification of the result of the specific step of the processing pipeline (see items 5 and
6 below).

The org.jboss,soa.esb.listeners.message.ActionProcessingPipeline
class will perform the following steps for all steps configured using <action> elements

1. Instantiate an object of the class specified in the 'class' attribute with a
constructor that takes a single argument of type ConfigTree

2. Analyze contents of the 'process' attribute.

Contents can be a comma separated list of public method names of the
instantiated class (step 1), each of which must take a single argument of
type Message, and return a Message object that will be passed to the
next step in the pipeline

JBESB-PG-5/8/07 45

If the 'process' attribute is not present, the pipeline will assume a single
processing method called “process”

Using a list of method names in a single <action> element has some
advantages compared to using successive <action> elements, as the
action class is instantiated once, and methods will be invoked on the
same instance of the class. This reduces overhead and allows for state
information to be kept in the instance objects.

This approach is useful for user supplied (new) action classes, but the
other alternative (list of <action> elements) continues to be a way of
reusing other existing action classes.

3. Sequentially invoke each method in the list using the Message returned
by the previous step

4. If the value returned by any step is null the pipeline will stop
processing immediately.

5. Callback method for success in each <action> element: If the list of
methods in the 'process' attribute was executed successfully, the
pipeline will analyze contents of the 'okMethod' attribute. If none is
specified, processing will continue with the next <action> element. If a
method name is provided in the 'okMethod' attribute, it will be invoked
using the Message returned by the last method in step 3

6. Callback method for failure in each <action> element: If an Exception
was thrown at any point in the pipeline, processing will be interrupted
at that point, an error message will be logged, and contents of the
'exceptionMethod' tag will be analyzed and if present in the current
action class, the method will be invoked using the Message returned by
the last method in step 3. At present time, if no exceptionMethod was
specified, the only output will be the logged error. If an
ActionProcessingFaultException is thrown from any process method
then an error message will be returned as per the rules defined in the
next section. The contents of the error message will either be whatever is
returned from the getFaultMessage of the exception, or a default Fault
containing the information within the original exception.

Action classes supplied by users to tailor behaviour of the ESB to their specific needs,
might need extra run time configuration (for example the Notifier class in the XML
above needs the <NotificationList> child element). Each <action> element will utilize
the attributes mentioned above and will ignore any other attributes and optional child
elements. These will be however passed through to the action class constructor in the
require ConfigTree argument. Each action class will be instantiated with it's

JBESB-PG-5/8/07 46

corresponding <action> element and thus does not see (in fact must not see) sibling
action elements.

Handling responses

Any non-error responses that are generated from the processing of incoming messages
through the Action processing pipeline are handled in the following way:

• If the response message has a ReplyTo EPR set, then this will be used.

• In the case where the response message has no ReplyTo EPR defined, then
the ReplyTo EPR on the received message will be used. If that is not set
then the From EPR must be set and this will be used. In the event that there
is no way to route responses, an error message will be logged by the
system.

Error handling when processing actions

When processing an action chain, it is possible that errors may occur. Within an
Action, those errors should be represented within the Fault component of the Message.
If the system detects a Fault present on any Message during any stage of the Action
processing, it will halt processing and send the Message.

If it is important for information about errors to be returned to the sender (or some
intermediary) then the FaultTo EPR should be set. If this is not set, then JBossESB
will attempt to deliver error messages based on the ReplyTo EPR and, if that is also
not set, the From EPR. If none of these EPRs has been set, then error information will
be logged locally.

Error messages of various types can be returned from the Action implementations.
However, JBossESB supports the following “system” error messages, all of which
may be identified by the mentioned URI in the message Fault:

• urn:action/error/actionprocessingerror: this means that an action in the
chain threw an ActionProcessingFaultException but did not include a fault
message to return. The exception details will be contained within the
“reason” String of the Fault.

• urn:action/error/unexpectederror: an unexpected exception was caught
during the processing. Details about the exception can be found in the
“reason” String of the Fault.

• urn:action/error/disabled: action processing is disabled.

Meta-data and filters

As a message flows through the ESB it may be useful to attach meta-data to it, such
as the time it entered the ESB and the time it left. Furthermore, it may be necessary to
dynamically augment the message; for example, adding transaction or security
information. Both of these capabilities are supported in JBossESB through the filter
mechanism.

JBESB-PG-5/8/07 47

The class org.jboss.soa.esb.couriers.filter.InputOutputFilter has
two methods:

• public Message onOutput (Message msg) throws
CourierException which is called as a message flows to the transport.
An implementation may modify the message and return a new version.

• public Message onInput (Message msg) throws
CourierException which is called as a message flows from the transport.
An implementation may modify the message and return a new version.

Filters are defined in the filters section of the jbossesb-properties.xml file using the
property org.jboss.soa.esb.courier.filter.<number>, where <number>
can be any value and is used to indicate the order in which multiple filters are to be
called (lowest to highest).

JBossESB ships with
org.jboss.internal.soa.esb.message.metadata.MetaDataFilter which
adds the following meta-data to the message as properties with the indicated property
names:

• org.jboss.soa.esb.message.transport.type: this can be File, FTP,
JMS or SQL.

• org.jboss.soa.esb.message.source: this is the source of the
message, e.g., the file from which is was read.

• org.jboss.soa.esb.message.time.dob: this is the time the message
entered the ESB, i.e., the time it was sent.

• org.jboss.soa.esb.message.time.dob: this is the time the message
left the ESB, i.e., the time it was received.

More meta-data can be added to the message by creating and registering suitable
filters.

JBESB-PG-5/8/07 48

Chapter 5

Process Engine
Support

jBPM

Interoperation with jBPM is now possible using the CommandInterpreter and
BaseActionHandler classes in the org.jboss.soa.esb.actions.jbpm package. Both use
the org.jboss.soa.esb.util.jbpm.CommandVehicle class as a standard to talk each other.
CommandVehicle has a constructor that takes a Message as argument, and inherits the
toCommandMessage() method (that serializes the object into a Message) from it's
parent class.

jBPM api calls that are available can be found in CommandVehicle.java.
CommandInterpreter has now basic functionality, and is intended to grow to include
more and more of the jBPM api power. Whenever a new call needs to be implemented
we should a) add the operation in the 'Operation' enumeration in CommandVehicle
and b) modify the process(Message) method in the CommandInterpreter class to do
what's necessary to invoke the jBPM method, and place return values in the reply
Message. Sometimes new getters/setters might also be needed in the
CommandVehicle class.

The jbpm_simple1 quickstart illustrates how to use the jBPM interface classes to
deply a process definition, create a process instance, signal a token (and/or process)
through it's states, and at any point check if the process has completed (i.e. if it's in an
end state).

The BaseActionHandler class extends jBPM ActionHandler, and can be used to send
an ESB Message to a registered service from jBPM. It implements an outgoing only
message; future versions will include quasi synchronous two way communication. It
assumes that two jBPM context variables are set ('esbCategoryName' and
'esbServiceName'), and will include another context variable in the Message payload.
The variable name to be included is rendered by this class' getContentVariableName()
method and has a default value of "esbUserObjectVariable". Should users wish to
include a different context variable in the message, simply extend this class, override
the getContentVariableName() method, and use your class as the jBPM
ActionHandler.

Using jBPM from within ESB allows (among several other features) persisting
process state and handling timers and wait states; powerful features that are needed in
(and essential part of) many business processes and don't seem to fall in the realm of
ESB itself.

JBESB-PG-5/8/07 49

Chapter 6

Configuration
Overview

JBoss ESB 4.0 GA configuration is based on the jbossesb-1.0 XSD.

The basic elements/types of the configuration schema have the following
relationships, with the <jbossesb> element/type at the root of the model.

JBoss ESB Configuration Model

From this, you can see that the model has 2 main sections:

1. <providers>: This part of the model centrally defines all the message
<bus>6 providers used by the message <listener>s, defined within the
<services> section of the model.

2. <services>: This part of the model centrally defines all of the services
under the control of a single instance of JBoss ESB. Each <service>
instance contains either a “Gateway” or “Message Aware” listener
definition7.

By far the easiest way to create configurations based on this model, is to use an XSD
aware XML Editor such as the XML Editor in the Eclipse IDE. This provides the
author with auto-completion features when editing the configuration. Right mouse-
click on the file -> Open With -> XML Editor.

6A message bus defines the details of a specific message channel/transport.
7The fact that each <service> instance can only contain a single listener definition
(Gateway or Message Aware) is a known bug in version 4.0 GA of JBoss ESB. The first
patch of this release will contain a fix for this issue such that all of the Gateway Listeners
(and the Message Aware Listener) can be defined under a single <service> instance.

JBESB-PG-5/8/07 50

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd

Providers

The <providers> part of the configuration defines all of the bus <provider> and <bus>
instances for a single instance of the ESB. A <provider> can contain multiple <bus>
definitions. The <provider> can also be decorated with <property>8 instances relating
to provider specific properties that are common across all <bus> instances defined on
that <provider> (e.g. for JMS - “connection-factory”, “jndi-context-factory” etc).
Likewise, each <bus> instance can be decorated with <property> instances specific to
that <bus> instance (e.g. for JMS - “destination-type”, “destination-name” etc).

As an example, a provider configuration for JMS would be as follows9:

<providers>
 <provider name="JBossMQ">

<property name="connection-factory" value="ConnectionFactory" />
<property name="jndi-URL" value="jnp://localhost:1099" />
<property name="protocol" value="jms" />
<property name="jndi-pkg-prefix" value="com.xyz" />

<bus busid="local-jms">
 <property name="destination-type" value="topic" />
 <property name="destination-name" value="queue/B" />
 <property name="message-selector" value="service='Reconciliation'" />
</bus>

 </provider>
</providers>

The above example uses the “base” <provider> and <bus> types. This is perfectly
legal, but we recommend use of the specialized extensions of these types for creating
real configurations, namely <jms-provider> and <jms-bus> for JMS. The most
important part of the above configuration is the busid attribute defined on the <bus>
instance. This is a required attribute on the <bus> element/type (including all of its
specializations - <jms-bus> etc). This attribute is used within the <listener>
configurations to refer to the <bus> instance on which the listener receives its
messages. More on this later.

8A <property> is typically just a simple name-value-pair. However, it also supports free
form (xsd:any) style content.
9This JMS example is only for demonstration purposes. We recommend that people use
the more strongly typed JMS specific extensions of <provider> and <bus> i.e. <jms-
provider> and <jms-bus>.

JBESB-PG-5/8/07 51

Services

The <services> part of the configuration defines each of the Services under the
management of this instance of the ESB. It defines them as a series of <service>
configurations. A <service> can also be decorated with the following attributes.

Name Description Type Required

name The Service Name under which the
Service is Registered in the Service
Registry.

xsd:string true

category The Service Category under which the
Service is Registered in the Service
Registry.

xsd:string true

description Human readable description of the
Service. Stored in the Registry.

xsd:string true

Service Attributes (<service>)

A <service> may define a set of <listeners>10 and a set of <actions>. The
configuration model defines a “base” <listener> type, as well as specializations for
each of the main supported transports i.e. <jms-listener>, <sql-listener> etc.11

The “base” <listener> defines the following attribute. These attribute definitions are
inherited by all <listener> extensions.

Name Description Type Required

name The name of the listener. This attribute is
required primarily for logging purposes.

xsd:string true

busrefid Reference to the busid of the <bus>
through which the listener instance

xsd:string true

10As stated earlier, in the 4.0 GA release of the ESB, each <service> instance can only
contain a single listener definition under the <listeners> section (Gateway or Message
Aware). This is a known bug and will be fixed in the first 4.0 GA patch releaseof this
release will contain a fix for this issue such that all of the Gateway Listeners (and the
Message Aware Listener) can be defined under a single <service> instance.
11New listener implementations (as well as all existing) can be supported using the “base”
listener type. The specializations are only there to aid usability and

JBESB-PG-5/8/07 52

Name Description Type Required

receives messages.

maxThreads The max number of concurrent message
processing threads that the listener can
have active.

xsd:int True

is-gateway Whether or not the listener instance is a
“Gateway” or “Message Aware” Listener.
See footnote #5.

xsd:boolea
n

true

Listener Attributes (<listener>)

Listeners can define a set of zero or more <property> elements (just like the
<provider> and <bus> elements/types). These are used to define listener specific
properties.

Note: For each gateway listener defined in a service, an ESB
aware listener (or “native”) listener must also be defined
as gateway listeners do not define bidirectional endpoints,
but rather “startpoints” into the ESB. From within the ESB
you cannot send a message to a Gateway. Also, note that
since a gateway is not an endpoints, it does not have an
Endpoint Reference (EPR) persisted in the registry.

JBESB-PG-5/8/07 53

An example of a <listener> reference to a <bus> can be seen in the following
illustration (using “base” types only).

JBESB-PG-5/8/07 54

A Service will do little without a list of one or more <actions>. The actions are
effectively the “meat” of the Service. <action>s typically contain the logic for
processing the payload of the messages received by the service (through it's listeners).
Alternatively, it may contain the transformation or routing logic for messages to be
consumed by an external Service/entity.

The <action> element/type defines the following attributes.

Name Description Type Required

name The name of the action. This attribute is
required primarily for logging purposes.

xsd:string true

class The
org.jboss.soa.esb.actions.ActionProcesso
r implementation class name.

xsd:string true

process The name of the “process” method that
will be reflectively called for message
processing.
(Default is the “process” method as
defined on the ActionProcessor class)12.

xsd:int false

In a list of <action> instances within an <actions> set, the actions are called (their
“process” method is called) in the order in which the <action> instances appear in the
<actions> set. The message returned from each <action> is used as the input message
to the next <action> in the list.

Like a number of other elements/types in this model, the <action> type can also
contain zero or more <property> element instances. The <property> element/type can
define a standard name-value-pair, or contain free form content (xsd:any). According
to the XSD, this free form content is valid child content for the <property>
element/type no matter where it is in the configuration (on any of <provider>, <bus>,
<listener> and any of their derivatives). However, it is only on <action> defined
<property> instances that this free form child content is used.

12It is recommended to not use the optional “process” attribute on <action> configurations.
Instead, stick with the default “process” method as explicitly defined on the
ActionProcessor implementation. It is very likely that this “process” attribute will be
removed from this type in a future release. Reflection is great, but the lack of compile
time checking is not adequately repaid in this case. If you find that you need to define
more than one “process” method on an ActionProcessor implementation, you should
consider the possibility that the action in question is really 1+ separate actions.

JBESB-PG-5/8/07 55

As stated in the <action> definition above, actions are implemented through
implementing the org.jboss.soa.esb.actions.ActionProcessor class. All
implementations of this interface must contain a public constructor of the following
form:

public ActionZ(org.jboss.soa.esb.helpers.ConfigTree configuration);

It is through this constructor supplied ConfigTree instance that all of the action
attributes are supplied, including the free form content from the action <property>
instances. The free form content is supplied as child content on the ConfigTree
instance13.

So an example of an <actions> configuration might be as follows:
<actions>
 <action name="MyAction-1" class="com.acme.MyAction1"/>
 <action name="MyAction-2" class="com.acme.MyAction2">
 <property name=”propA” value=”propAVal” />
 </action>
 <action name="MyAction-3" class="com.acme.MyAction3">
 <property name=”propB” value=”propBVal” />
 <property name=”propC”>
 <!-- Free form child content... -->
 <some-free-form-element>zzz<some-free-form-element>
 </property>
 </action>
</actions>

13In its current implementation, it really only makes sense to supply free form content on
one <property> instance within a list of <action> <property> instances. If defined on more
than one property, the child content will be appended to the child content of the
ConfigTree instance supplied to the action.

JBESB-PG-5/8/07 56

Transport Specific Type Implementations

The JBoss ESB configuration model defines transport specific specializations of the
“base” types <provider>, <bus> and <listener> (JMS, SQL etc). This allows us to
have stronger validation on the configuration, as well as making configuration easier
for those that use an XSD aware XML Editor (e.g. the Eclipse XML Editor). These
specializations explicitly define the configuration requirements for each of the
transports supported by JBoss ESB out of the box. It is recommended to use these
specialized types over the “base” types when creating JBoss ESB configurations, the
only alternative being where a new transport is being supported outside an official
JBoss ESB release.

The same basic principals that apply when creating configurations from the “base”
types also apply when creating configurations from the transport specific alternatives:

1. Define the provider configuration e.g. <jms­provder>.

2. Add the bus configurations to the new provider (e.g. <jms­bus>),
assigning a unique busid attribute value.

3. Define your <services> as normal, adding transport specific listener
configurations (e.g. <jms­listener> that reference (using busrefid) the
new bus configurations you just made e.g. <jms­listener> referencing a
<jms­bus>.

The only rule that applies when using these transport specific types is that you cannot
cross reference from a listener of one type, to a bus of another type i.e. you can only
reference a <jms-bus> from a <jms-listener>. A runtime error will result where cross
references are made.

So the transport specific implementations that are in place in this release are:

1. JMS: <jms­provider>, <jms­bus>, <jms­listener> and <jms­message­
filter>: The <jms­message­filter> can be added to either the <jms­bus>
or <jms­listener> elements. Where the <jms­provider> and <jms­bus>
specify the JMS connection properties, the <jms­message­filter>
specifies the actual message QUEUE/TOPIC and selector details.

2. SQL: <sql­provider>, <sql­bus>, <sql­listener> and <sql­message­
filter>: The <sql­message­filter> can be added to either the <sql­bus>
or <sql­listener> elements. Where the <sql­provider> and <ftp­bus>
specify the JDBC connection properties, the <sql­message­filter>
specifies the message/row selection and processing properties14.

3. FTP: <ftp­provider>, <ftp­bus>, <ftp­listener> and <ftp­message­
filter>: The <ftp­message­filter> can be added to either the <ftp­bus>

14The message processing attributes on <sql-message-filter> should really be on the <sql-
bus>. This will be rectified in the GA release.

JBESB-PG-5/8/07 57

or <ftp­listener> elements. Where the <ftp­provider> and <ftp­bus>
specify the FTP access properties, the <ftp­message­filter> specifies
the message/file selection and processing properties15.

4. File System: <fs­provider>, <fs­bus>, <fs­listener> and <fs­message­
filter> The <fs­message­filter> can be added to either the <fs­bus> or
<fs­listener> elements. Where the <fs­provider> and <sql­bus>
specify the File System access properties, the <fs­message­filter>
specifies the message/file selection and processing properties16.

As you'll notice, all of the currently implemented transport specific types include an
additional type not present in the “base” types, that being <*-message-filter>. This
element/type can be added inside either the <*-bus> or <*-listener>. Allowing this
type to be specified in both places means you can specify message filtering globally
for the bus (for all listeners using that bus), or locally on a listener by listener basis.

Note: In order to list and describe the attributes for each transport specific
type, you can use the jbossesb-1.0 XSD, which is fully annotated with
descriptions of each of the attributes. Using an XSD aware XML Editor
such as the Eclipse XML Editor makes working with these types far
easier.

15The message processing attributes on <ftp-message-filter> should really be on the <ftp-
bus>. This will be rectified in the GA release.
16The message processing attributes on <fs-message-filter> should really be on the <fs-
bus>. This will be rectified in the GA release.

JBESB-PG-5/8/07 58

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.xsd

Transitioning From The Old Configuration Model

This section is aimed at developers that are familiar with the old JBoss ESB non-XSD
based configuration model.

The old configuration model used a free form (un validateable) XML configuration
with ESB components receiving thier configurations via an instance of
org.jboss.soa.esb.helpers.ConfigTree. The new configuration model is XSD based,
however the underlying component configuration pattern is still via an instance of
org.jboss.soa.esb.helpers.ConfigTree. This means that at the moment, the XSD based
configurations are mapped/transformed into ConfigTree style configurations.

Developers that were used to using the old model now need to keep the following in
mind:

1. Read all of the docs on the new configuration model. Don't assume you can
infer the new configurations based on your knowledge of the old.

2. The only location where free-form markup is supported in the new
configuration is on the <property> element/type. This type is allowed on
<provider>, <bus> and <listener> types (and sub-types). However, the only
location in which <property> based free form markup is mapped into the
ConfigTree configurations is where the <property> exists on an <action>. In
this case, the <property> content is mapped into the target ConfigTree
<action>. Note however, if you have 1+ <property> elements with free form
child content on an <action>, all this content will be concatenated together on
the target ConfigTree <action>.

3. When developing new Listener/Action components, you must ensure that the
ConfigTree based configuration these components depend on can be mapped
from the new XSD based configurations. An example of this is how in the
ConfigTree configuration model, you could decide to supply the configuration
to a listener component via attributes on the listener node, or you could decide
to do it based on child nodes within the listener configuration – all depending
on how you were feeling on the day. This type of free form configuration on
<listener> components is not supports on the XSD to ConfigTree mapping i.e.
the child content in the above example would not be mapped from the XSD
configuration to the ConfigTree style configuration. Infact, the XSD
configuration simply would not accept the arbitrary content, unless it was in a
<property> and even in that case (on a <listener>), it would simply be ignored
by the mapping code.

JBESB-PG-5/8/07 59

Frequently Asked Questions (FAQs)
Question 1: I was used to using the old configuration
model. How do I transition to using the new XSD based
model?

Answer: See Transitioning From The Old Configuration
Model.

Question 2: Can I put whatever markup I like, wherever I
like, in the new XSD based configuration?

Answer: No! The new XSD based configuration only
supports free-form markup on <property> elements/types
and even there, the XSD to ConfigTree mapping that's
currently in place, only supports mapping from <property>
elements contained within an <action> i.e. the free form
<property> child content is not mapped from <bus> or
<listener> elements.
See Transitioning From The Old Configuration Model.

Question 3: Why does the XSD based configuration
specify <listeners> and <actions>, as well as an optional
“service-class” attribute on the <service> type?

Answer: Sorry, but the answer to this question is quite
convoluted. The reason the “service-class” attribute is on
the <service> element is down to 2 factors:

1. A known issue in the ESB
(http://jira.jboss.com/jira/browse/JBESB-280).

2. The need to be able to override the default listener
class for a Gateway or Message Aware Listener.

In hindsight however, adding this attribute here may not
have been the best workaround. Hopefully the “service-
class” attribute is only a short term feature of the XSD
configuration.

Question 4: Why does the XSD based configuration
specify “target-service-name” and “target-service-
category” attributes on the <service> type?

Answer: As a workaround to a known issue in the ESB
(http://jira.jboss.com/jira/browse/JBESB-280).

JBESB-PG-5/8/07 60

http://jira.jboss.com/jira/browse/JBESB-280
http://jira.jboss.com/jira/browse/JBESB-280
http://jira.jboss.com/jira/browse/JBESB-280
http://jira.jboss.com/jira/browse/JBESB-280
http://jira.jboss.com/jira/browse/JBESB-280
http://jira.jboss.com/jira/browse/JBESB-280

Chapter 7

Glossary
 ACL Access Control List. A mean of determining the

appropriate access rights to a given object depending
on certain aspects of the process that is making the
request.

 Action Classes A component that is responsible for doing a certain
type of work after a receipt of a message inside the
ESB.

 Bus A subsystem that transfers data between computer
components inside a computer or between
computers. Unlike a point-to-point connection, a bus
can logically connect several components over the
same structure.

 Content Based Router (CBR) A pluggable service inside the ESB that provides
capabilities for message routing based on the content
of the message.

 CORBA Common Object Request Broker Architecture. A
standard defined by the Object Management Group
that enables software components written in multiple
computer languages and running on multiple
computers to interoperate.

 CORBA IDL CORBA Interface Definition Language. A computer
language used to describe a software component's
interface. It describes an interface in a language-
neutral way, enabling communication between
software components written in different languages.

 EAI Enterprise Application Integration. A practice that
makes use of software and computer systems
architectural principles to integrate a set of different
enterprise computer applications.

 Endpoint Reference (EPR) A standard XML structure used to identify and
address services inside the ESB. This includes the
destination address of the message, any additional
parameters (reference properties) necessary to route
the message to the destination, and optional
metadata (reference parameters) about the service.

 ESB Enterprise Service Bus. An abstraction layer on top
of an implementation of an enterprise messaging
system that provides the features with which Service
Oriented Architectures may be implemented.

 Fault A type of message that express an error condition
inside a Web Service. Similar to the Exception

JBESB-PG-5/8/07 61

object in some programming languages.
 Gateway A specialized ESB listener process that can accept

messages from non-ESB clients and services and
route them to the required destination inside the
ESB, taking care of the appropriate bridging of
message types and EPRs.

 J2EE/JEE Java Platform Enterprise Edition (formerly known as
Java 2 Platform Enterprise Edition). A programming
platform, based on the Java language, for developing
and running distributed multi-tier Java applications.
It is based largely on modular software components
running on an application server.

 JBI Java Business Integration. An API that provides a
standard pluggable architecture to build integration
systems that hosts service producers and consumers
components. Components interoperate through
mediated normalized message exchanges.

 JMS Java Message Service. An API for sending messages
between two or more systems.

 JTA Java Transaction API. An API that allows distributed
transactions to be done across multiple XA resources

 Listener Classes A component that encapsulates the endpoints for
message reception on the ESB.

 Message A data item that is sent (usually asynchronously) to a
communication endpoint. This concept is the higher-
level version of a datagram except that messages can
be larger than a packet and can optionally be made
reliable, durable, secure, and/or transacted.

 Message Factory A service inside the ESB that can build specific
types of messages according to their serialization
capabilities.

 Message Store A pluggable service inside the ESB that persists
messages for auditing and tracking purposes.

 MOM Message Oriented Middleware. A software
component that makes possible inter-application
communication relying on asynchronous message-
passing.

 Quality of Service A term that refers to control mechanisms that can
provide different priority to different users or data
flows, or guarantee a certain level of performance to
a data flow in accordance with requests from the
application program.

 RPC Remote Procedure Call. A protocol that allows a
computer program running on one computer to call a
subroutine on another computer without the
programmer explicitly coding the details for this
interaction.

 SCA Service Component Architecture. A set of

JBESB-PG-5/8/07 62

specifications that describe a model for building
applications and systems using Service-Oriented
Architecture. It encourages an SOA organization of
applications based on components that offer their
capabilities through service-oriented interfaces and
which consume functions offered by other
components through service-oriented interfaces,
called service references.

 Service Registry A persistent repository of Service information. Used
by ESB components to publish, discover and
consume services.

 SOA Service Oriented Architecture. A perspective of
software architecture that defines the use of loosely
coupled software services to support the
requirements of the business processes and software
users. In an SOA environment, resources on a
network are made available as independent services
that can be accessed without knowledge of their
underlying platform implementation.

 SOAP A protocol for exchanging XML-based messages
over computer network, normally using HTTP.
SOAP forms the foundation layer of the Web
services stack, providing the basic messaging
framework.

 Transformation Service A pluggable service inside the ESB that provides
capabilities for transforming messages from one data
format to another.

 UDDI Universal Description, Discovery, and Integration. A
platform-independent, XML-based registry and core
Web Services standard. It is designed to be
interrogated by SOAP messages and to provide
access to Web Services Description Language
documents describing the protocol bindings and
message formats required to interact with the web
services listed in its directory.

 WS-Addressing A Web Service specification for addressing web
services and messages in a transport-neutral manner.
This specification enables messaging systems to
support message transmission through networks that
include processing nodes such as endpoint
managers, firewalls, and gateways.

 WS-BPEL Web Services Business Process Execution
Language. A choreography language for the formal
specification of business processes and business
interaction protocols using Web Services. Thus
BPEL's messaging facilities depend on the use of
Web Services Description Language (WSDL) 1.1 to
describe incoming and outgoing messages.

JBESB-PG-5/8/07 63

 WS-Context A Web Service specification that provides a
definition, a structuring mechanism, and a software
service definition for organizing and sharing context
across multiple Web Services endpoints.
The context contains information (such as a unique
identifier) that allows a series of operations to share
a common outcome.

 WSDL Web Services Description Language. An XML
format for describing the public interface to a Web
services based on how to communicate using the
web service; namely, the protocol bindings and
message formats required to interact with it.

 WS-Policy A Web Service specification that allows web
services to advertise their policies (on security,
Quality of Service, etc.) and for web service
consumers to specify their policy requirements.

 WS-Security A Web Service specification that provides a set of
mechanisms to secure SOAP message exchanges.
Specifically, it describes enhancements to provide
quality of protection through the application of
message integrity, message confidentiality, and
single message authentication to SOAP messages.

 WS-Trust A Web Service specification that uses the secure
messaging mechanisms of WS-Security to define
additional primitives and extensions for the issuance,
exchange and validation of security tokens.

 XA An X/Open specification for distributed transaction
processing. It describes the interface between the
global transaction manager and the local resource
manager to support a two-phase commit protocol.

 XML Extensible Markup Language. A general-purpose
markup language that supports a wide variety of
applications. Its primary purpose is to facilitate the
sharing of data across different information systems.

JBESB-PG-5/8/07 64

Index
Architectural components 25
Configuring JBossESB 27
ESB Overview 15
Format adapters 43
JBossESB

Access Control Lists 16
contract definition language 18
implementation flexibility 16
multi-bus support 18

Rosetta
history 25

SOA Overview 9
SOA Overview

basics 13
benefts 11
Why SOA? 11

JBESB-PG-5/8/07 65

	Why SOA?
	Basics of SOA
	Advantages of SOA
	Interoperability
	Efficiency
	Standardization

	Architectural requirements
	Registries and repositories
	Versioning of Services
	Incorporating legacy services
	The core of JBossESB in a nutshell
	Configuration

	The Message Store
	ESB-aware and ESB-unaware users
	Endpoint References
	Mapping of EPR to Service

	Gateways to the ESB
	The Message
	The Message Header
	The Message payload
	The MessageFactory
	Message Formats
	MessageType.JAVA_SERIALIZED
	MessageType.JBOSS_XML

	Data Transformation
	Listener, Courier and Action Classes
	Handling responses
	Error handling when processing actions

	Meta-data and filters
	Providers
	Services
	Transport Specific Type Implementations
	Transitioning From The Old Configuration Model
	Frequently Asked Questions (FAQs)

