
JBoss ESB 4.2 Milestone Release 3

Message Transformation Guide

JBESB-MTG-7/19/07

JBESB-MTG-7/19/07 i

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here as
a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2 Milestone Release 3

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

2

Contents
Table of Contents

Contents...iv

About This Guide....................6

What This Guide Contains.......................6

Audience.....................................6

Prerequisites...6

Organization...6

Documentation Conventions................................7

Additional Documentation...................................7

Contacting Us....................................8

Introduction...9

Overview...9

Smooks...10

Introduction...10

The Smooks Transformation Model..............10
Message Profiles.......................................11
Integration..........................12
SmooksTransformer Configuration...............12
Smooks Resource Configurations..................13
Manual Resource Configuration....................14
JBoss ESB Administration Console...............14

Console Home Page................................15
Use Case 1: Defining an XSLT Fragment
Transformation..17

Introduction...30

Binary Format Transformations.......................31

Introduction...31

3

4

About This Guide
What This Guide Contains

A common obstacle encountered during Enterprise Integration is that of bridging the
gaps created by the fact that business constructs from different application domains
representing the same data are typically represented through different data formats.
Bridging this gap is one of the key features of JBoss ESB, as well as the subject of
this guide.

Audience

This guide is most relevant to engineers who are responsible for using JBoss ESB 4.2
Milestone Release 3 installations and want to know how it relates to SOA and ESB
principles.

Prerequisites

None.

Organization

This guide contains the following chapters:

1. Chapter 1, Overview: An overview of the message transformation
solutions provided by JBoss ESB..

2. Chapter 2, Smooks: Using the Smooks Transformation Management
Framework to manage your message transformation logic.

3. Chapter 3, XSL Transformations: Performing message transformation
XSLT.

4. Chapter 4, Binary Format Transformations: Performing binary format
transformations.

5

Documentation Conventions

The following conventions are used in this guide:

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2
Milestone Release 3 documentation set:

1. JBoss ESB 4.2 Milestone Release 3 Trailblazer Guide:
Provides guidance for using the trailblazer example.

2. JBoss ESB 4.2 Milestone Release 3 Getting Started Guide:
Provides a quick start reference to configuring and using the ESB.

3. JBoss ESB 4.2 Milestone Release 3 Programmers Guide:
How to use JBossESB.

6

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are being
referenced. When used in conjunction with the Code text described
below, italics identify a variable that should be replaced by the user
with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open function
from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of the
following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

4. JBoss ESB 4.2 Milestone Release 3 Release Notes:
Information on the differences between this release and previous releases.

5. JBoss ESB 4.2 Milestone Release 3 Administration Guide:
How to manage the ESB.

Contacting Us

Questions or comments about JBoss ESB 4.2 Milestone Release 3 should be directed
to our support team.

7

Introduction
Overview

JBoss ESB supports message data transformation through a number of mechanisms:

1. Smooks: Milyn Smooks is a Fragment based Data Transformation and
Analysis tool (XML and non-XML). It can also be thought of as a
management tool that allows you manage transformations across your entire
message set using techniques such as message profiling. It supports
transformation logic implementation through raw Java, XSLT, Groovy and
more.

2. XSLT: JBoss ESB supports message transformation through the standard
XSLT usage model.

3. ActionProcessor Data Transformation: Transformations involving binary
data formats are most easily performed through implementation of the
org.jboss.soa.esb.actions.ActionProcessor Java interface. The
org.jboss.soa.esb.actions package (in the “Listeners” module) has a number
of out-of-the-box ActionProcessor based transformers.

8

http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks

Smooks
Introduction

Milyn Smooks is integrated into JBoss ESB as one of it's out-of-the-box data
Transformation solutions. Some of the terms and concepts presented in this
section of the document may require you to refer to the Smooks
documentation.

As outlined on the Milyn Smooks website, Smooks is a framework for both
“Implementing” and “Managing” a flexible XML (and non-XML) data
Transformation solution across an enterprise message set.

From an “implementation” perspective, Smooks' goal is to provide a
framework in which messages can be transformed using the transformation
technology most appropriate to the transformation required e.g. it may be
easier to transform one part of the message using XSLT and another part using
raw Java code.

From a “management” perspective, Smooks' goal is to provide a framework in
which an “enterprise message set” can be “profiled”, with transformations
being applied based on these profiles. In this way, transformation resources
can be more easily reused and transformation configuration can be reduced.
More on message profiles later.

Smooks achieves its goals by applying a processing model different from that
applied by the likes of XSLT.

The Smooks Transformation Model
With XSLT, message transformation is performed in batch and “targeted” at a
“whole” document i.e. at the document level. In general, XSLT
transformations are thought about, defined and applied with the whole
message in mind.

Smooks applies (targets) transformation logic at the element level i.e. at the
document fragment level. Smooks transforms the “whole” message through
the application of multiple “mini” transformations that have been “targeted” at
specific message fragments. Smooks uses a message's “profile set” to decide
whether or not an individual “mini” transformation should be applied to a
given message fragment. So what is a message “profile”?

9

http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks

Message Profiles
Central to how Smooks functions is the concept of a message “profile”. A
message profile is simply a unique name applied to a group of messages to
which common transformation resources1 need to be targeted.

So how does the concept of a message profile map into the world of JBoss
ESB Transformations? Within the context of JBoss ESB, message
transformations are performed in order to make a messages "produced" by one
entity "A", "consumable" by another entity "B". We refer to this interaction as
a "Message Exchange", with entities "A" and "B" being the "Message
Exchange Participants". Therefore, all JBoss ESB Transformations are
defined in terms of a "Message Exchange". They are defined with respect to
the two Participants involved in that Message Exchange, as well as the
message typing information associated with the message being exchanged
between the 2 participants2. Therefore, the 4 properties of all Message
Exchanges are:

1. from: Message producer participant name,
2. from-type: Message producer message type (message type produced),
3. to: Message consumer participant name,
4. to-type: Message consumer message type (message type consumed),

It is these 4 properties that map JBoss ESB messages into the Smooks world of
“Message Profiles”. Each one of these properties translates directly into a
message profile.

As you can imagine, multiple messages can potentially share an intersecting
subset of profiles. Using the 4 message exchange based message profiles
above , JBoss ESB can specify and target all transformations that need to be
applied to all messages “from” (produced by) a particular message exchange
participant using a single set configurations. In this case, the details relating to
the transformation requirements of the message consumer (where the message
is going to “to”) can be handled by a separate set of configurations targeted at
the “to” and/or “to-type” message exchange profiles.

1 The definition of a “transformation resource” applies to anything that can be targeted at a
message profile and used in the course of that message's transformation. Typically this
will be units of transformation “logic” (XSLT, Java), but is not limited to that. They can
also be things like profile-based parameters or configurations.
2 Note that any message exchange participant can potentially produce or consume multiple
message types

10

Integration
Smooks is integrated into JBoss ESB through an ActionProcessor class called
org.jboss.soa.esb.actions..convertersSmooksTransformer.

SmooksTransformer Configuration
SmooksTransformer actions are configured into a listener action pipeline in
the standard way as follows:

<action class="org.jboss.soa.esb.actions.converters.SmooksTransformer"
from-type="Acme-Order-XML"
from="Acme"
to-type="PartnerX-Order-XML"
to="PartnerX"
/>

From this you can see that the SmooksTransformer requires 4 properties,
corresponding directly with the JBoss ESB message exchange profiles
mentioned earlier. How to create these Transformation Resource
Configurations is outlined in the following sections.

11

Smooks Resource Configurations
Smooks is configured (transformation resources are targets) using a set of
XML configuration files listed in a file called “smooks-cdr.lst”. The folder
containing this file must be specified in the classpath i.e. this file must be in
the root of the classpath.

The smooks-cdr.lst file simply specifies a set of Smooks resource
configuration URIs to be loaded into the Smooks context. Each list entry URI
can load a configuration set over the standard protocols supported by the
java.net.URL class (“http”, “file” etc), with the addition of support for loading
resources from the classpath. The following is a simple example of the
smooks-cdr.lst file:

Load from the classpath – note “classpath” is the default protocol...
/com/acme/integr/smooks/messages_from_partnerx.cdrl
classpath:/com/acme/integr/smooks/messages_to___partnerx.cdrl

Load over http – from the JBoss ESB Admin Console...
http://localhost:8080/jboss-esb-console/transform/smooks-config.jsp

The individual files should not be interpreted as being separate
transformations; this is purely a configuration grouping scheme. Having them
all in a single XML file might not be so easy to navigate or maintain. It is the
combined contents of these files that matters. They constitute an effective
Smooks Configuration “Database”.

JBoss ESB offers 2 methods of creating Smooks Configurations:
1. Manual creation of the XML configurations and their listings in the

smooks-cdr.lst file.
2. Through the JBoss ESB Administration Console.

Both these options are available to JBoss ESB at the same time i.e. you can
have most of your configurations maintained through the JBoss ESB
Administration Console, while at the same time having a small subset
maintained manually. This is possible simply because Smooks (and therefore
the SmooksTransformer) loads it's configurations as XML streams via the URI
set listed in the smooks-cdr.lst file, with the JBoss ESB Administration
Console making the configuration set under its control available over HTTP
(http://<host>:<port>/jboss-esb-console/transform/smooks-
config.jsp). As outlined above, HTTP is one of the protocols supported by
the smooks-cdr.lst file.

12

Manual Resource Configuration
The best reference on manual creation of Smooks Resource Configurations
can be found on the Milyn Smooks website.

JBoss ESB Administration Console
The JBoss ESB Administration Console is the easiest way to create Smooks
Resource Configurations. This application is a J2EE Web Application. This
application persists all configurations to a database using the Hibernate
persistence framework. The application currently runs on JBoss Application
Server ONLY 3 .

In order to use the ESB Administration Console, it needs to be packaged (from
the release distribution) for your local environment. Here are the steps to
packaging, deploying and configuring the console application4:

1. Open a command terminal.
2. Change directory to the “tools” folder of your expanded JBoss ESB

distribution.
3. run “ant”5.
4. Answer the environment specific questions presented by the script.
5. On completion of the script execution, copy “jboss-esb-console.war”

from the root of the distribution “tools” folder to your JBoss App
Server “deploy” folder. If this script produces a “jboss-esb-console-
ds.xml” Datasource descriptor file, be sure to also copy this file to the
JBoss App Server “deploy” folder.

6. Once the application is deployed and running, the required database
tables will be automatically created in the target Database (by
Hibernate). Populate these database tables by running the
tools/CONSOLE-import.sql script. If deploying to Hypersonic, this
step is not required.

7. That's it!

Direct your browser to the following URL:

http://<host>:<port>/jboss-esb-console/

There are a number of useful Flash demonstrations available online at JBoss
Labs. Some of these Flash demos are also packaged inside the Administration
Console application itself – available on the “About” page.
Smooks Configurations maintained by the Administration Console can be
loaded by the SmooksTransformer by specifying the following URL in the
smooks-cdr.lst file:

3Tested against version 4.0.5.GA of the JBoss Application Server (EJB3 installed).
4Note that these instructions are specific to building the console deployment from a release
distribution i.e. not from source.
5Before running the “ant” command to package the console application for your
environment, be sure to set the JAVA_HOME (JDK5) and ANT_HOME (v1.6.5) settings
in your environment.

13

http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demos.html
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks

http://<host>:<port>/jboss-esb-console/transform/smooks-config.jsp

The following sections illustrate how to create Smooks Resource
Configurations through the Administration Console.

Console Home Page

The Console Home appears as follows:

The basic steps involved in defining and targeting any Smooks Configuration
through the Admin Console are the same:

1. Create the Message Exchange Participants. This is done through the
"Manage Message Exchange Participants" wizard off the console main
menu. Obviously, this only needs to be done once for the lifetime of
each participant. If the participant is a Service, use the Service Logical
Name. Otherwise, simply make up a meaningful unique name for the
Participant (e.g. the component name).

2. Configure the Message Contracts associated with each Message
Exchange Participant . This is done through the "Configure New
Message Contract" wizard off the console main menu. This is basically

14

a process of defining the types of messages that a Participant can
produce or consume6.

3. Set the active Message Exchange for the browser session. This sets
the Message Exchange to be associated with all future transformation
configurations made on this browser session. If not already set, the
console will automatically redirect the user to set the active Message
Exchange.

4. Configure and target the new Resource. This is a 4 step process:
● Select "Configure New Resource" from the console main menu.
● Select a template upon which to base the new configuration. For

example, if you simply wish to specify an XSLT transformation,
select one of the XSLT Resource templates from the list.

● Fill in the template. This may include setting execution parameters
for the resource.

● Target the new resource configuration at a Message Exchange (and
Fragment within the message). The Message Exchange details will
be pre-populated based on the active Message Exchange selection,
but can be manually tweaked in order to widen or narrow the
selection.

Obviously, steps 1 and 2 do not have to be repeated for every configuration, as
well as the fact that the Message Exchange is set on the browser session.
Therefore, the typical usage scenario, for the most part, would involve
multiple iterations of step 4.

6 Note that a Participant can potentially produce or consume more than 1 message type.

15

Use Case 1: Defining an XSLT Fragment Transformation

This usage example will outline how to define an XSL Transform for an XML
message fragment and target the transform at the message fragment for a
specific “Message Exchange”.

So in this example, the message exchange properties are as follow:

from-type="text/csv:fullFillOrder"
from="DVDStore:OrderDispatchService"
to-type="text/xml:recordOrder"
to="DataWarehouse:OrderTrackingService"

We have a Coma Separated Value (“text/csv:fullFillOrder”) message produced
by “DVDStore:OrderDispatchService” which needs to be transformed into a
“text/xml:recordOrder” message for consumption by
“DataWarehouse:OrderTrackingService”.

This means we need to define 2 Message Exchange Participants
(“DVDStore:OrderDispatchService” and
“DataWarehouse:OrderTrackingService”) and 2 Message Contracts associated
with each of these Participants.

The Message Exchange Participants are created and maintained through the
“Manage Message Exchange Participants” wizard:

Once the Message Exchange Participants are defined, the Message Contracts
associated with these Participants can be defined through the “Configure New
Message Contract” wizard.

16

Configure the contract for the “text/csv:fullFillOrder“ message
“PRODUCED” by “DVDStore:OrderDispatchService”:

17

Configure the contract for the “text/xml:recordOrder“ message
“CONSUMED” by “DataWarehouse:OrderTrackingService”:

18

The new Message Contracts can then be reviewed from the “Manage Message
Contracts” view:

We are now ready to add the XSLT Transform and target it at the message
fragment on the Message Exchange. We do this through the “Configure New
Resource” wizard. At this point however, we haven't set the active Message
Exchange for the browser session. To do this simply click on the link to
access the “Configure New Resource” wizard. You'll notice that instead of
this wizard being shown, you will be redirected to set the Message Exchange
for the browser session. Just click your way through the screens to select the
message exchange we wish to target (click the links and then press the
“Continue..” button):

Select the “from” message exchange properties (the from contract):

19

Select the “to” message exchange properties (the “to” contract):

Verify the selected message exchange and press “Continue” to start creating
the resource configurations:

20

After verifying the active message exchange and pressing “Continue”, you'll
be brought to the “Select Message Transformation/Analysis Template” page.

As outlined above, the first step in creating a transformation configuration is
always that of selecting a configuration template upon which to base the
configuration. However, before continuing, we need to decide on how to
handle this message to get it from the CSV format produced by
“DVDStore:OrderDispatchService”, to the XML format consumed by the
“DataWarehouse:OrderTrackingService”. To do this we will need to
configure 2 resources and target them at the Message Exchange:

1. A CSV SAX Parser Configuration: This will “suck” the CSV
record(s) into a W3C DOM, allowing the records to be transformed
into the “DataWarehouse:OrderTrackingService” XML format using
XSLT.

2. An XSLT Configuration: This will perform the transformation on
the DOM produced by the CSV Parser to produce the
“DataWarehouse:OrderTrackingService” XML. In this case, the
“fragment” we will target will be the whole message, simply by
targeting the root of the DOM.

21

To configure a CSV Parser for this message, select the “CSV Message Parser”
template (1st in list). This will bring you to the “Configure New Resource”
form, from where you can configure the CSV fields, and target the Parser
Configuration at the Message Exchange as follows:

Click “Set” on the “fields” execution parameter and enter the
“DVDStore:OrderDispatchService” Order CVS field name mappings:

22

Once the “fields” parameter has been added to the configuration you will be
brought back to the “Configure New Resource” form:

Press “Target Configuration...” to move on to the “Target New Configuration”
form:

23

Note how the “Message Exchange Useragent Expression” is pre-populated
with the details of the selected message exchange7. Just press “Save
Configuration” to complete the process of creating the CSV Parser Smooks
Configuration. You will return to the Console Home Page.

Select “Manage Configurations” and you will be able to see the new
configuration:

Next we need to create the XSLT configuration and target it at the same
Message Exchange. Note that when this resource is applied by Smooks, the
CSV message will be in a W3C DOM. The XML representation of this DOM
will be of the following form (see Smooks CSVParser Docs):

 <cvsset>
 <cvsrecord>
 <name>Tom Fennelly</name>
 <address>Ireland</address>
 <productid>V1234</productid>
 <quantity>3</quantity>
 <cvsrecord>
 <cvsrecord>
 <name>Joe Bloggs</name>
 <address>England</address>
 <productid>D9123</productid>
 <quantity>7</quantity>
 <cvsrecord>
 </cvsset>

7Note that we could target the CSV Parser configuration at just the 1st half of the message
exchange i.e. to cover all message exchanges where the source message is a
“text/csv:fullFillOrder” message produced by “DVDStore:OrderDispatchService”.

24

http://milyn.codehaus.org/javadoc/smooks-cartridges/csv/org/milyn/csv/CSVParser.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/csv/org/milyn/csv/CSVParser.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/csv/org/milyn/csv/CSVParser.html

To configure an XSLT Transform Configuration to transform this message on
the selected message exchange, click to access the “Configure New Resource”
wizard again (screen shot above). This time select the “XSLT (Templatelet)”
template (towards the end of the list). Once you select the template you'll be
brought to the “Configure New Resource” wizard, from where you can fil in
the template:

On this resource you need to set 2 Execution Parameters: “resdata” and
“action”.

25

Set the “resdata” parameter. Note, with the XSLT Templatelet, there's no
need to define all the stylesheet – see Smooks docs:

Set the “action” parameter to “replace” (see Smooks docs).

26

http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html
http://milyn.codehaus.org/javadoc/smooks-cartridges/templating/org/milyn/templating/xslt/XslContentDeliveryUnitCreator.html

After adding both Execution Parameters, press the “Target Configuration...”
button and move on to the “Target New Resource Configuration” form. This
time you'll notice that the “Execution Selector” field is empty and needs to be
populated. We want to target this XSL Transformation resource at the root the
CSV Order DOM i.e. the “csv-set” element:

Note again that the “Message Exchange Useragent Expression” is pre-
populated for the current Message Exchange.

Press “Save Configuration” to complete the process. At this point you can
return to the “Manage Configurations” form to review the configurations you
just added:

27

In order to allow the SmooksTransformer JBoss ESB ActionProcessor to
leverage these configurations, simply make sure the smooks-cdr.lst file (in the
root of the classpath) contains a list entry of http://<host>:<port>/jboss-esb-
console/transform/smooks-config.jsp. where host and port refer to the
address of the running Admin Conosle application.

An SmooksTransformer action configuration to execute these resources on this
message flow would appear in your ESB Listener Configuration as follows:

<action class="org.jboss.soa.esb.actions.converters.SmooksTransformer"
from-type="text/csv:fullFillOrder"
from="DVDStore:OrderDispatchService"
to-type="text/xml:recordOrder"
to="DataWarehouse:OrderTrackingService"
/>

28

XSL Transformations
 following sections illustrate how to create Smooks Resource

Introduction
In this release of JBossESB, XSL Transformations are supported through
Smooks. In later releases we will be supporting XSLT natively. Support for
XSLT can be provided by creating a custom
org.jboss.soa.esb.actions.ActionProcessor implementation.

29

http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks

Binary Format
Transformations

Introduction
Binary Transformations are currently supported through custom
implementation of the org.jboss.soa.esb.actions.ActionProcessor interface.

JBossESB is shipped with a number of out-of-the-box binary transformers e.g.
org.jboss.soa.esb.actions.ObjectToXStream and
org.jboss.soa.esb.actions.ObjectToCSVString.

30

	What This Guide Contains
	Audience
	Prerequisites
	Organization
	Documentation Conventions
	Additional Documentation
	Contacting Us
	Overview
	Introduction
	The Smooks Transformation Model
	Message Profiles

	Integration
	SmooksTransformer Configuration
	Smooks Resource Configurations
	Manual Resource Configuration
	JBoss ESB Administration Console
	Console Home Page
	Use Case 1: Defining an XSLT Fragment Transformation

	Introduction
	Introduction

