JBossSESB 4.3 GA

jBPM Integration Guide

JBESB-JBPMG-5/20/08

JBESB-JBPMG-5/20/08

. . a division of Red Hat

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version
JBossESB 4.3 GA
Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2008 JBoss Inc.

Contents

Table of Contents

Contents v JBPM t0 JBOSSESB.......ooiiiiiiiiiiiieeee 16
ESBNOtIfier......ccoovveiiiiiiiiiiiiceiiieeeee, 16
EsbActionHandler...........cccoceevviiieiiennnnnenee. 18
Exception Handling jBPM -> JBossESB......19
About This Guide e e 5 Scenario 1. Time-out..........ccccvveeeeeeeieeiennnnnns 19
Scenario 2. Exception Transition.................. 20
What This Guide Contains..........ccceveeeeennnnne. 5 Scenario 3. Exception Decision................... 21
AUAIENCE.eeiieieieiiiiieiceee e 5
PrereqUiSites......oorururururereierececececceeeteeereeenes 5 Service Orchestration..........cuuecessssssees 22
Organization..........cceeeeeeveeeerieeeeniiieeeeeinneeeeeens 5
Documentation Conventions. 5 Introduction.......cccceeeevienienienienieiieeenee. 22
Additional Documentation.................c.c......... 6 Orchestration Diagram..........co..ovevveininnnn. 22
Contacting US.......oevueeeiieiiiieiceieeie e 7 Process Deployment and Instantiation......... 30
CoNCIUSION.....ceeriiieiiieiiieeie e 32
JBPM Integration........ccceesercessnnccssnsresssascssssensses 8
Known Issues .34
Introduction.........cocoueerieiniiiniieniieiec e 8
Integration Configuration........c...cceeceeeeenunnee. 8
JBPM configuration..........c.ccceeveeeiieeniienennn. 11 References 35
Creation and Deployment of a Process
Definition.......cooviieriiiniieieeeeeeeeeeen 11
JBOSSESB t0 jJBPM.......coociiiiiiiiiiiiicieeene 14 11T PR 36

Exception Handling JBossESB to jBPM16

About This Guide

What This Guide Contains

The jBPM Integration Guide document captures how jBPM integrates with
JBossESB.

Audience

This guide is most relevant to engineers who are responsible for using JBossESB 4.3
GA installations and want to know how jBPM can be used in JBossESB.

Prerequisites
None.
Organization

This guide contains the following chapters:

« Chapter 1, jBPM-Integration: A description of how jJBPM is integration
into JBossESB, and how it can be used.

« Chapter 2, Service Orchestration: An overview on how jBPM can be
used to orchestrate JBossESB Services.

Documentation Conventions

The following conventions are used in this guide:

JBESB-JBPMG-5/20/08 5

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

()and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note: A note highlights important supplemental information.

Caution:

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBossESB 4.3 GA
documentation set:

1. JBossESB 4.3 GA Trailblazer Guide: Provides guidance for using
the trailblazer example.

2. JBossSESB 4.3 GA Programmer's Guide: Provides guidance for
developing applications using JBossESB.

3. JBossESB 4.3 GA Gerting Started Guide: Provides a quick start
reference to configuring and using the ESB.

4.)JBossESB 4.3 GA Administration Guide: How to manage JBossESB.

5. JBossESB 4.3 GA Release Notes: Information on the differences
between this release and previous releases.

6. JBOSSESB 4.3 GA Services Guides: Various documents related to the
services available with the ESB.

JBESB-JBPMG-5/20/08 6

Contacting Us

Questions or comments about JBossESB 4.3 GA should be directed to our support
team.

JBESB-JBPMG-5/20/08 7

Chapter 1

JBPM Integration

Introduction

JBoss jBPM is a powerful workflow and BPM (Business Process Management)
engine. It enables the creation of business processes that coordinate between people,
applications and services. With its modular architecture, JBoss jBPM combines easy
development of workflow applications with a flexible and scalable process engine.
The JBoss jJBPM process designer graphically represents the business process steps
to facilitate a strong link between the business analyst and the technical developer.
This document assumes that you are familiar with jJBPM. If you are not you should
read the jBPM documentation [TB-JBPM-USER] first. JBossESB integrates the
jBPM so that it can be used for two purposes:

1. Service Orchestration: ESB services can be orchestrated using jBPM. You
can create a JBPM process definition which makes calls into ESB services.

2. Human Task Management : jBPM allows you to incorporate human task
management integrated with machine based services.

Integration Configuration

The jbpm.esb deployment that ships with the ESB includes the full jBPM runtime
and the jBPM console. The runtime and the console share a common jBPM database.
The ESB Databaselnitializer mbean creates this database on startup. The
configuration for this mbean is found in the file jbpm.esb/jbpm-service.xml.

<classpath codebase="deploy" archives="jbpm.esb"/>
<classpath codebase="deploy/jbossesb.sar/lib" archives="jbossesb-
rosetta. jar"/>
<mbean code=
"org. jboss.internal.soa.esb.dependencies.DatabaseInitializer"”
name="jboss.esb:service=JBPMDatabaseInitializer">
<attribute name="Datasource'>java:/JbpmDS</attribute>
<attribute name="ExistsSql'">
select * from JBPM _ID USER</attribute>
<attribute name='"SqlFiles'">
jbpm-sql/jbpm. jpdl.hsqldb.sql, jbpm-sql/import. sql
</attribute>
<depends>
jboss. jca:service=DataSourceBinding, name=JbpmDS
</depends>
</mbean>
<mbean code=
"org. jboss.soa.esb.services. jbpm.configuration. JbpmService"
name="jboss.esb:service=JbpmService">
</mbean>

JBESB-JBPMG-5/20/08 8

The first Mbean configuration element contains the configuration for the
Databaselnitializer. By default the attributes are configured as follows:

« “Datasource” - use a datasource called JbpmDS,

« “ExistsSql” - check if the database exists by running the sql: “Select * from
JBPM_ID_USER”

« “SqlFiles” - if the database does not exist it will attempt to run the files
jbpm.jpdl.hsqldb.sql and import.sql. These files reside in the jbpm.esb/jbpm-
sql directory and can be modified if needed. Note that slightly different ddl
files are provided for the various databases.

The Databaselnitializer mbean is configured in jbpm-service.xml to wait for the
JbpmDS to be deployed, before deploying itself. The second mbean “JbpmService”
ties the lifecycle of the jBPM job executor to the jbpm.esb lifecycle - it starts a job
executor instance on startup and stops it on shutdown. The JbpmDS datasource is
defined in the jbpm-ds.xml and by default it uses a HSQL database. In production
you will want change to a production strength database. All jbpm.esb deployments
should share the same database instance so that the various ESB nodes have access
to the same processes definitions and instances.

The jJBPM console is a web application accessible at http://localhost:8080/jbpm-
console when you start the server. The login screen is shown in Fig. 1.

Welcome to the jBPM Console

Log In as an Example User

User Name

Choose an example user from the list to log in as:

Password

User Name Password Group(s
user

manager manager manager
admin

user user user

zshipper zhipper user

admin admin U=Er
admin

To remove this login name list, edit the
wek.xml file and locate the section entitled
"Example Login page".

JBoss jEPM Administration Console

Figure 1. The jBPM Console

Please check the jBPM documentation [TB-JBPM-USER] to change the security
settings for this application, which will involve change some settings in the
conf/login-config.xml. The console can be used for deploying and monitoring jBPM

JBESB-JBPMG-5/20/08 9

http://localhost:8080/jbpm-console
http://localhost:8080/jbpm-console

processes, but is can also be used for human task management. For the different
users a customized task list will be shown and they can work on these tasks. The
quickstart bpm_orchestration4 [JBESB-QS] demonstrates this feature.

The jbpm.esb/META-INF directory contains the deployment.xml and the jboss-
esb.xml. The deployment.xml specifies the resources this esb archive depends on:

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbossesb.esb</depends>
<depends>jboss. jca:service=DataSourceBinding, name=JbpmDS</depends>
</jbossesb-deployment>

which are the jbossesb.esb and the JbpmDS datasource. This information is used to
determine the deployment order.

The jboss-esb.xml deploys one internal service called “JBpmCallbackService”:

<services>
<service category="JBossESB-Internal"
name="JBpmCallbackService"
description="Service which makes Callbacks into jBPM">
<listeners>
<jms-listener name='"JMS-DCQListener"
busidref="jBPMCallbackBus"
maxThreads="1"
/>
</listeners>
<actions mep="OneWay'>
<action name="action" class="
org. jboss.soa.esb.services. jbpm.actions.JBpmCallback"/>
</actions>
</service>
</services>

This service listens to the jJBPMCallbackBus, which by default is a JMS Queue on
either a JBossMQ (jbmg-queue-service.xml) or a JbossMessaging (jbm-queue-
service.xml) messaging provider. Make sure only one of these files gets deployed in
your jbpm.esb archive. If you want to use your own provider simple modify the
provider section in the jboss-esb.xml to reference your JMS provider.

<providers>
<!-— change the following element to jms-jca-provider to
enable transactional context -->
<jms-provider name="CallbackQueue-JMS-Provider"

connection-factory="ConnectionFactory">
<jms-bus busid="jBPMCallbackBus'">
<jms-message-filter
dest-type="QUEUE"
dest-name="queue/CallbackQueue"
/>
</jms-bus>
</jms-provider>
</providers>

For more details on what the JbpmCallbackService does, please see the “iBPM to
ESB” section later on in this chapter.

JBESB-JBPMG-5/20/08 10

jBPM configuration

The configuration of jBPM itself is managed by three files, the jbpm.cfg.xml and the
hibernate.cfg.xml and the jbpm.mail.templates.xml.

By default the jbpm.cfg.xml is set to use the JTA transacion manager, as defined in
the section:

<service name="persistence'>
<factory>
<bean class="
org. jbpm.persistence. jta.JtaDbPersistenceServiceFactory">
<field name="isTransactionEnabled"><false/></field>
<field name="isCurrentSessionEnabled"><true/></field>
<!--field name="sessionFactoryJndiName'>
<string value="java:/myHibSessFactJndiName" />
</field-——>
</bean>
</factory>
</service>

Other settings are left to the default jJBPM settings.

The hibernate.cfg.xml is also slightly modified to use the JTA transaction manager

<!-- JTA transaction properties (begin) ===
==== JTA transaction properties (end) -->
<property name="hibernate.transaction.factory class">
org.hibernate.transaction.JTATransactionFactory</property>
<property name="hibernate.transaction.manager lookup class'>
org.hibernate. transaction.JBossTransactionManagerLookup</property>

Hibernate is not used to create the database schema, instead we use our own
Databaselnitiazer mbean, as mentioned in the previous section.

The jbpm.mail.templates.xml is left empty by default. For each more details on each
of these configuration files please see the jJBPM documentation.

Note that the configuration files that usually ship with the jbpm-console.war have
been removed so that all configuration is centralized in the configuration files in the
root of the jbpm.esb archive.

Creation and Deployment of a Process Definition

To create a Process Definition we recommend using the eclipse based jBPM Process
Designer Plugin [KA-JBPM-GPD]. You can either download and install it to eclipse
yourself, or use JBoss Developer Studio. Figure 2 shows the graphical editor.

JBESB-JBPMG-5/20/08 11

% Java - jppm4/processDefinition/processdefinition.xml - Red Hat Developer... |'._||'E|[Z|
File Edit View Mavigate Search Project Run Window Help

3 IS éﬁ'ﬁ*%" Q;* @|ﬁJJava|
N C - Sy ® @ @F‘.EdHatDeue...
RS a © & -
|F| processDefinition 52 = 0O EE o3 =0
L} Select % Swimlanes
{1 Marguee O ==5lart State=> = @@ Nodes
L+
Start start O start
(3 star ¥ Intake C
O S E Review
End {C} ==Node== . <=<Task Mode== 'IICHI' Calculat
{2 Fork Intake Order = Review Order ¥ Review
%} Join £} ship 1t
7 Dedsion u{ 8 fend |
@ Events
7 Node <<Node=> . <<Task Node>> & oo
) 2 . i ction Eleme
. Task Mode Calculate Discount " Review Discount p-l
== wez| Tasks
& Mail Node
=] Process
State 'IECJ:I' <=Mode==
<ds Super Ship It
State
— Transition
=<End State=>
end
Diagram | Deployment | Design | Source {_ | 3
& Problems | & Javadoc @ Dedaration | Bl console &3 “'J IBoss Server View = B
Mo consoles to display at this time. - Fﬁ- -

B

Figure 2. jBPM Grapical Editor

The graphical editor allows you to create a process definition visually. Nodes and
transitions between nodes can be added, modified or removed. The process
definition saves as an XML document which can be stored on a file system and
deployed to a jBPM instance (database). Each time you deploy the process instance
jBPM will version it and will keep the older copies. This allows processes that are in
flight to complete using the process instance they were started on. New process
instances will use the latest version of the process definition.

JBESB-JBPMG-5/20/08 12

To deploy a process definition the server needs to be up and running. Only then can
you go to the 'Deployment’ tab in the graphical designer to deploy a process archive
(par). Figure 3 shows the “Deployment” tab view.

[F| processDefinition &2 =08
Deployment
Files and Folders Java Classes and Resources
Select the files and folders to indude in the Select the Java dasses and resources to
process archive, include in the process archive.
|¥] .gpd.test.xml] src

Review_Order.xhtml
[X]| forms.xml

|X] gpd.xml

|X| processdefinition.xml
51| processimage.jpa

Reset Defaults Reset Defaults

Local Save Settings Deployment Server Settings

Choose if and where you wish to save the Specfy the settings of the server you wish to

process archive locally, deploy to,

[]save Process Archive Locally Server Mame: | localhost |

Location: | Server Port: | 8080 |
Server Deplaoyer: | fibpm-console jupload |

Test Connection...]

[Deploy Process Archive...

Diagram | Deployment | Design | Source

Figure 3. The Deployment View

In some cases it would suffice to deploy just the processdefinition.xml, but in most
cases you will be deploying other type of artifacts as well, such as task forms. It is
also possible to deploy Java classes in a par, which means that they end up in the
database where they will be stored and versioned. However it is strongly discouraged
to do this in the ESB environment as you will risk running into class loading issues.
Instead we recommend deploying your classes in the lib directory of the server. You
can deploy a process definition

« straight from the eclipse plugin, by clicking on the “Test Connection..”
button and, on success, by clicking on the “Deploy Process Archive” button,

+ by saving the deployment to a par file and using the jJBPM console to deploy
the archive, see Figure 4, or finally,

JBESB-JBPMG-5/20/08 13

by using the DeployProcessToServer jBPM ant task.

Manage:

Processes | Tasks | Jobs

Deploy New Process Definition

File to upload:

JBoss jBPM Administration Conscle

Figure 4. Someone with administrative privileges can deploy new process definition.

JBossESB to jBPM

JBossESB can make calls into jJBPM using the BpmProcessor action. This action
uses the jBPM command API to make calls into jBPM. The following jBPM
commands have been implemented:

NewProcessInstanceCommand - Start a new ProcessInstance given a process
definition that was already deployed to jBPM. The NewProcessInstance-
Command leaves the Process Instance in the start state, which would be
needed if there is an task associated to the Start node (i.e. some task on some
actor's tasklist). In most cases however you would like the new Process
Instance to move to the first node, which is where the next command comes
in.

StartProcessInstanceCommand - Identical to the NewProcesslInstance-
Command, but additionally the new Process Instance is moved from the
Start position into the first Node.

CancelProcessInstanceCommand - Cancel a ProcessInstance. i.e. when an
event comes in which should result in the cancellation of the entire
Processlnstance. This action requires some jJBPM context variables to be set
on the message, in particular the ProcessInstance Id. Details on that are
discussed later.

The configuration for this action in the jboss-esb.xml looks like

<act

ion name='create new_process_ instance"
class="org. jboss.soa.esb.services. jbpm.actions.BpmProcessor'>
<property name="command'" value="StartProcessInstanceCommand" />
<property name='"process—-definition-name"
value="processDefinition2"/>
<property name="actor" value="FrankSinatra"/>
<property name="esbToBpmVars'"'>
<!-- esb-name maps to getBody () .get ("eVarl") -->
<mapping esb="eVarl" bpm="counter" default="45" />
<mapping esb="BODY_CONTENT" bpm="theBody" />
</property>

</action>

JBESB-JBPMG-5/20/08 14

There are two required action attributes:

name - required attribute. You are free to use any value for the name
attribute as long as it is unique in the action pipeline.

class - required attribute. This attributes needs to be set to
“org.jboss.soa.esb.services.jbpm.actions.BpmProcessor”

Furthermore one can configure the following configuration properties:

command — required property. Needs to be one of: NewProcessInstance-
Command, StartProcessInstanceCommand or CancelProcessInstance-
Command.

processdefinition — required property for the New- and Start-
ProcessInstanceCommands if the process-definition-id property is not used.
The value of this property should reference a process definition that is
already deployed to jBPM and of which you want to create a new instance.
This property does not apply to the Signal- and CancelProcessInstance-
Commands.

process-definition-id — required property for the New- and Start-
ProcessInstanceCommands if the processdefinition property is not used. The
value of this property should reference a processdefintion id in jJBPM of
which you want to create a new instance. This property does not apply to the
Signal- and CancelProcessInstanceCommands.

actor — optional property to specify the jJBPM actor id, which applies to the
New- and StartProcessInstanceCommands only.

key — optional property to specify the value of the jJBPM key. For example
one can pass a unique invoice id as the value for this key. On the jBPM side
this key is as the “business” key id field. The key is a string based business
key property on the process instance. The combination of business key +
process definition must be unique if a business key is supplied. The key
value can hold an MVEL expression to extract the desired value from the
EsbMessage. For example if you have a named parameter called
“businessKey” in the body of your message you would use
“body.businessKey”. Note that this property is used for the New- and
StartProcessInstanceCommands only.

transition-name — optional property. This property only applies to the
StartProcessInstance- and Signal Commands, and is of use only if there are
more then one transition out of the current node. If this property is not
specified the default transition out of the node is taken. The default
transition is the first transition in the list of transition defined for that node in
the jBPM processdefinition.xml.

esbToBpmVars - optional property for the New- and
StartProcessInstanceCommands. This property defines a list of variables that
need to be extracted from the EsbMessage and set into jBPM context for the

JBESB-JBPMG-5/20/08 15

particular process instance. The list consists of mapping elements. Each
mapping element can have the following attributes:

« esb —required attribute which can contain an MVEL expression to
extract a value anywhere from the EsbMessage.

- bpm - optional attribute containing the name which be used on the
JBPM side. If omitted the esb name is used.

+ default — optional attribute which can hold a default value if the esb
MVEL expression does not find a value set in the EsbMessage.

Finally some variables can be set on the body of the EsbMessage:

- jbpmProcessInstld — required parameter which applies to the Cancel-
ProcessInstanceCommand only. It is up to the user make sure this value is
set as a named parameter on the EsbMessage body.

Exception Handling JBossESB to jBPM

For ESB calls into jBPM an exception of the type JbpmException can be thrown
from the jJBPM Command API. This exception is not handled by the integration and
we let it propagate into the ESB Action Pipeline code. The action pipeline will log
the error, send the message to the DeadLetterService (DLS), and send the an error
message to the faultTo EPR, if a faultTo EPR is set on the message.

jBPM to JBossESB

The JBossESB to jBPM maybe interesting but the other way around is probably far
more interesting jJBPM to JBossESB communication provides us with the capability
to use jJBPM for service orchestration. Service Orchestration itself will be discussed
in more detail in the next chapter and here we're focusing on the details of the
integration first. The integration implements two jBPM action handler classes. The
classes are “EsbActionHandler” and “EsbNotifier”. The EsbActionHandler is a
request-reply type action, which drops a message on a Service and then waits for a
response while the EsbNotifier only drops a message on a Service and continues its
processing. The interaction with JBossESB is asynchronous in nature and does not
block the process instance while the Service executes. First we'll discuss the
EsbNotifier as it implements a subset of the configuration of EsbActionHandler
class.

EsbNotifier

The EsbNotifier action should be attached to an outgoing transition. This way the
JBPM processing can move along while the request to the ESB service is processed
in the background. In the jBPM processdefinition.xml we would need attach the
EsbNotifier to the outgoing transition. For example the configuration for a “Ship It”
node could look like:

<node name="ShipIt'>
<transition name="ProcessingComplete" to="end'">

JBESB-JBPMG-5/20/08 16

<action name="ShipItAction" class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>ShippingService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb='"customer'" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
</bpmToEsbVars>
</action>
</transition>
</node>

The following attributes can be specified:
« name — required attribute. User specified name of the action

« class —required attribute. Required to be set to
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier

The following subelements can be specified:

- esbCategoryName — required element. The category name of the ESB
service

- esbServiceName — required element. The name of the ESB service.

« globalProcessScope - optional element. This boolean valued parameter sets
the default scope in which the bpmToEsbVars are looked up. If the
globalProcessScope is set to true the variables are looked for up the token
hierarchy (= process-instance scope). If set to false it retrieves the variables
in the scope of the token. If the given token does not have a variable for the
given name, the variable is searched for up the token hierarchy. If omitted
the globalProcessScope is set to false.

« bpmToEsbVars — optional element. This element takes a list of mapping
subelements to map a jBPM context variable to a location in the
EsbMessage. Each mapping element can have the following attributes:

« bpm - required attribute. The name of the variable in jBPM context. The
name can be MVEL type expression so you can extract a specific field
from a larger object. The MVEL root is set to the jBPM
“Contextlnstance”, so for example you can use mapping like:

<mapping bpm="token.name" esb="TokenName" />
<mapping bpm="node.name" esb="NodeName" />
<mapping bpm="node.id" esb="esbNodeIld" />
<mapping bpm="node.leavingTransitions[0].name"

esb="transName" />
<mapping bpm="processInstance.id"

esb="piIld" />
<mapping bpm="processInstance.version"

esb="piVersion" />

and one can reference jBPM context variable names directly.

+ esb — optional attribute. The name of the variable on the EsbMessage.
The name can be a MVEL type expression. By default the variable is set

JBESB-JBPMG-5/20/08 17

as a named parameter on the body of the EsbMessage. If you decide to
omit the esb attribute, the value of the bpm attribute is used.

+ default — optional attribute. If the variable is not found in jBPM context
the value of this field is taken instead.

- process-scope — optional attribute. This boolean valued parameter can
override the setting of the setting of the globalProcessScope for this

mapping.

When working on variable mapping configuration it is recommended to turn on
debug level logging.

EsbActionHandler

The EsbActionHandler is designed to work as a reply-response type call into
JBossESB. The EsbActionHandler should be attached to the node. When this node is
entered this action will be called. The EsbActionHandler executes and leaves the
node waiting for a transition signal. The signal can come from any other thread of
execution, but under normal processing the signal will be send by the JBossESB
callback Service. An example configuration for the EsbActionHandler could look

like:

<node name="Intake Order'">
<action name="esbAction" class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler">

<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_ CONTENT" />
</bpmToEsbVars>
<esbToBpmVars>
<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsXML" />
<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />
<mapping esb="body.customer" bpm="entireCustomerAsObject" />
<mapping esb="body.order_ orderId" bpm="order orderid" />
</esbToBpmVars>

</action>

<transition name="" to="Review Order"></transition>
</node>

The configuration for the EsbActionHandler action extends the EsbNotifier
configuration. The extensions are the following subelements:

esbToBpmVars — optional element. This subelement is identical to the
esbToBpmVars property mention in the previous section “JBossESB to
jBPM” for the BpmProcessor configuration. The element defines a list of
variables that need to be extracted from the EsbMessage and set into jBPM
context for the particular process instance. The list consists of mapping
elements. Each mapping element can have the following attributes:

« esb —required attribute which can contain an MVEL expression to
extract a value anywhere from the EsbMessage.

JBESB-JBPMG-5/20/08 18

« bpm - optional attribute containing the name which be used on the
jBPM side. If omitted the esb name is used.

« default — optional attribute which can hold a default value if the esb
MVEL expression does not find a value set in the EsbMessage.

« exceptionTransition — optional element. The name of the transition that
should be taken if an exception occurs while processing the Service. This
requires the current node to have more then one outgoing transition where
one of the transition handles “exception processing”.

Optionally you may want to specify a timeout value for this action. For this you can
use a jJBPM native Timer on the node. If for example you only want to wait 10
seconds for the Service to complete you could add

<timer name='timeout' duedate='10 seconds' transition='time-out'/>

to the node element. Now if no signal is received within 10 seconds of entering this
node, the transition called “time-out” is taken.

Exception Handling jBPM -> JBossESB

There are two types of scenarios where exceptions can arise.

« The first type of exception is a MessageDeliveryException which is thrown
by the Servicelnvoker. If this occurs it means that delivery of the message to
the ESB failed. If this happens things are pretty bad and you have probably
misspelled the name of the Service you are trying to reach. This type of
exception can be thrown from both the EsbNotifier as well as the
EsbActionHandler. In the jBPM node one can add an ExceptionHandler |,
[TB-JBPM-USER] to handle this exception.

- The second type of exception is when the Service received the request, but
something goes wrong during processing. Only if the call was made from the
EsbActionHandler it makes sense to report back the exception to jBPM. If
the call was made from the EsbNotifier jJBPM processing has already moved
on, and it is of little value to notify the process instance of the exception.
This is why the exception-transition can only be specified for EsbAction-
Handler.

To illustrate the type of error handling that is now possible using standard jBPM
features we will discuss some scenarios illustrated in Figure 5.

Scenario 1. Time-out

When using the EsbActionHandler action and the node is waiting for a callback, it
maybe that you want to limit how long you want to wait for. For this scenario you
can add a timer to the node. This is how Servicel is setup in Figure 5. The timer can

JBESB-JBPMG-5/20/08 19

http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html

be set to a certain due date. In this case it is set to 10 seconds. The process definition
configuration would look like
<node name="Servicel">
<action class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler'">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
</action>
<timer name='timeout' duedate='10 seconds'
transition='time-out-transition'/>
<transition name="ok'" to="Servicel2'></transition>
<transition name="time-out-transition" to="ExceptionHandling'"/>
</node>

Node “Servicel” has 2 outgoing transitions. The first one is called “ok” while the
second one is called “time-out-transition”. Under normal processing the call back
would signal the default transition, which is the “ok” transition since it is defined
first. However if the execution of the service takes more then 10 seconds the timer
will fire. The transition attribute of the timer is set to “time-out-transition”,so this
transition will be taken on time-out. In Figure 5 this means that the processing ends
up in the “ExceptionHandling” node in which one can perform compensating work.

= ==Start State== ==Mode==
ok]
o start * Service1

time-out-transition

ok
==fode== exception ==End State==
Service2 ExceptionHandling
ok exceptionCondition
==Mode== = iZio== <<= tate==
'-CF.‘E‘ ak I.;?.l DnlEC o = ok m End State
Service3 exceptionDecision end

Figure 5. Three exception handling scenarios: time-out, exception-transition and
exception-decision.

Scenario 2. Exception Transition

To handle exception that may occur during processing of the Service, one can define
an exceptionTransition. When doing so the faultTo EPR is set on the message such
that the ESB will make a callback to this node, signaling it with the
exceptionTransition. Service2 has two outgoing transitions. Transition “ok” will be

JBESB-JBPMG-5/20/08 20

taken under normal processing, while the “exception” transition will be taken when
the Service processing throws an exception. The definition of Service2 looks like

<node name="Service2'">
<action class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler'">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
<exceptionTransition>exception</exceptionTransition>
</action>
<transition name="ok" to="Service3"></transition>
<transition name="exception" to="ExceptionHandling"/>
</node>

where in the action, the exceptionTransition is set to “exception”. In this scenario the
process also ends in the “ExceptionHandling” node.

Scenario 3. Exception Decision

Scenario 3 is illustrated in the configuration of Service3 and the
“exceptionDecision” node that follows it. The idea is that processing of Service3
completes normally and the default transition out of node Service3 is taken.
However, somewhere during the Service execution an errorCode was set, and the
“exceptionDecision” node checks if a variable called “errorCode” was set. The
configuration would look like
<node name="Service3">
<action class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler'">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
<esbToBpmVars>
<mapping esb="SomeExceptionCode" bpm="errorCode"/>
</esbToBpmVars>
</action>
<transition name="ok" to="exceptionDecision'"></transition>
</node>

<decision name="exceptionDecision">
<transition name="ok" to="end"></transition>
<transition name="exceptionCondition" to="ExceptionHandling'">
<condition>#{ errorCode!=void }</condition>
</transition>
</decision>
where the esbToBpmVars mapping element extracts the errorCode called “Some-
ExceptionCode” from the EsbMessage body and sets in the jBPM context, if this
“SomeExceptionCode” is set that is. In the next node “exceptionDecision” the “ok”
transition is taken under normal processing, but if a variable called “errorCode” is
found in the jBPM context, the “exceptionCondition™ transition is taken. This is
using the decision node feature of jBPM where transition can nest a condition. Here
we check for the existence of the “errorCode” variable using the condition

<condition>#{ errorCode!=void }</condition>

For more details on conditional transitions please see the jBPM documentation [TB-
JBPM-USER].

JBESB-JBPMG-5/20/08 21

Chapter 2

Service Orchestration

Introduction

Service Orchestration is the arrangement of business processes. Traditionally BPEL
is used to execute SOAP based WebServices. In the Guide 'Service Orchestration'
you can obtain more details on how to use ActiveBPEL with JBossESB [TF-BPEL].
If you want to orchestrate JBossESB regardless of their end point type, then it makes
more sense to use jBPM. This chapter explains how to use the integration discussed
in Chapter 1 to do Service Orchestration using jBPM.

Orchestration Diagram

A key component of Service Orchestration is to use a flow-chart like design tool to
design and deploy processes. The jBPM IDE can be used for just this. Figure 6
shows an example of such a flow-chart, which represents a simplified order process.
This example is taken from the bpm_orchestration4 quick start [JBESB-QS] which
ships with JBossESB.

==Start State=>
G start

<<Node>>

Intake Order

==M\ode==
Calculate Discount

we —=lask Node==
Review Order

we <=Task Mode==
~ Review Discount

==Mode==

3 e

o Ship It

= ==End State==
end

Figure 6. “Order Process” Service Orchestration using jBPM

In the “Order Process” Diagram three of the nodes are JBossESB Services, the
“Intake Order”, “Calculate Discount” and the “Ship It” nodes. For these nodes the

JBESB-JBPMG-5/20/08 22

regular “Node” type was used, which is why these are labeled with “<<Node>>".
Each of these nodes have the EsbActionHandler attached to the node itself. This
means that the jJBPM node will send a request to the Service and then it will remain
in a wait state, waiting for the ESB to call back into the node with the response of the
Service. The response of the service can then be used within jBPM context. For
example when the Service of the “Intake Order” responds, the response is then used
to populate the “Review Order” form. The “Review Order” node is a “Task Node”.
Task Nodes are designed for human interaction. In this case someone is required to
review the order before the Order Process can process.

To create the diagram in Figure 6, select File > New > Other, and from the Selection
wizard select “JBoss jBPM “Process Definition” as shown in Figure 7. The wizard
will direct you to save the process definition. From an organizational point of view it
is recommended use one directory per process definition, as you will typically end
up with multiple files per process design.

JBESB-JBPMG-5/20/08 23

Select a wizard

A wizard that creates a process diagram

Wizards:

|1:§.r|:|e filter text

[~ Connection Profiles

[

o- & &8585 -

= Cvs
[= Edlipse Modeling Framework
=-EB
[~ Example EMF Model Creation Wizards
[= Hibernate
(= 12EE
= Java -
[~ Java Emitter Templates
== JavaServer Faces
[== IBoss jBPM
ge
:3 Process Project
[~ JBoss Tools

[%

Figure 7. Select new JBoss jBPM Process Definition

After creating a new process definition. You can drag and drop any item from menu,
shown in Figure 8, into the process design view. You can switch between the design
and source modes if needed to check the XML elements that are being added, or to
add XML fragments that are needed for the integration. Recently a new type of node
was created by Koen Aers called “ESB Service" [KA-BLOG]. Currently this works
with the old jJBPM integration, from before this document was written. Some small
updates will be needed to make it work with the current implementation. So please
check Koen'} [select [on this.

i) Marguee

) start
- State
End

ofjg Fork
2t Join
*2, Dedsion

1} Node

E Task Mode
&% Mail Node
it Process State 24
%% Super State

JBESB-JBPMG

— Transition

Figure 8. jJBPM IDE menu palette.

Before building the “Order Process” diagram of Figure 6, we'd need to create and
test the three Services. These services are 'ordinary’ ESB services and are defined in
the jboss-esb.xml. Check the jboss-esb.xml of the bpm_orchestration4 quick start
[JBESB-QS] if you want details on them, but they only thing of importance to the
Service Orchestration are the Services names and categories as shown in the
following jboss-esb.xml fragment:

<services>

<service category="BPM orchestration4 Starter._ Service"
name="Starter_ Service"
description="BPM Orchestration Sample 4: Use this service to
start a process instance'">

</service>
<service category="BPM Orchestration4" name="IntakeService"

description="IntakeService: transforms, massages, calculates
priority'">

</service>

<service category="BPM Orchestration4" name="DiscountService"
description="DiscountService'">

</service>

<service category="BPM Orchestration4" name="ShippingService"
description="ShippingService">

</service>
</services>

These Service can be referenced using the EsbActionHandler or EsbNotifier Action
Handlers as discussed in Chapter 1. The EsbActionHandler is used when jBPM
expects a response, while the EsbNotifier can be used if no response back to jBPM is
needed.

Now that the ESB services are known we drag the “Start” state node into the design
view. A new process instance will start a process at this node. Next we drag in a
“Node” (or “ESB Service “if available). Name this Node “Intake Order”. We can
connect the Start and the Intake Order Node by selecting “Transition” from the menu
and by subsequently clicking on the Start and Intake Order Node. You should now
see an arrow connecting these two nodes, pointing to the Intake Order Node.

Next we need to add the Service and Category names to the Intake Node. Select the
“Source” view. The “Intake Order Node should look like
<node name="Intake Order">

<transition name="" to="Review Order'"></transition>
</node>

and we add the EsbHandlerAction class reference and the subelement configuration
for the Service Category and Name, BPM_Orchestration4 and“IntakeService”
respectively

<node name="Intake Order'">

<action name="esbAction" class="
org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler">

JBESB-JBPMG-5/20/08 25

<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>

<!-- async call of IntakeService —-->
</action>
<transition name="" to="Review Order"></transition>

</node>

Next we want to send the some jBPM context variables along with the Service call.
In this example we have a variable named “entireOrderAsXML” which we want to
set in the default position on the EsbMessage body. For this to happen we add

<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_ CONTENT" />

</bpmToEsbVars>

which will cause the XML content of the variable “entireOrderAsXML” to end up in
the body of the EsbMessage, so the IntakeService will have access to it, and the
Service can work on it, by letting it flow through each action in the Action Pipeline.
When the last action is reached it the replyTo is checked and the EsbMessage is send
to the JBpmCallBack Service, which will make a call back into jBPM signaling the
“Intake Order” node to transition to the next node (“Review Order”). This time we
will want to send some variables from the EsbMessage to jBPM. Note that you can
send entire objects as long both contexts can load the object's class. For the mapping
back to jBPM we add an “esbToEsbVars” element. Putting it all together we end up
with:

<node name='"Intake Order'">

<action name="esbAction" class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_ CONTENT" />
</bpmToEsbVars>
<esbToBpmVars>
<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsXML'"/>
<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />
<mapping esb="body.customer" bpm="entireCustomerAsObject" />
<mapping esb="body.order orderId" bpm="order orderid" />
<mapping esb="body.order totalAmount" bpm="order_ totalamount" />
<mapping esb="body.order orderPriority" bpm="order priority" />
<mapping esb="body.customer. firstName'" bpm="customer. firstName" />
<mapping esb="body.customer._lastName" bpm='"customer. lastName" />
<mapping esb="body.customer_status" bpm="customer_status" />
</esbToBpmVars>
</action>
<transition name="" to="Review Order'"></transition>
</node>

So after this Service returns we have the following variables in the jJBPM context for
this process: entireOrderAsXML, entireOrderAsObject, entireCustomerAsObject,
and for demo purposes we also added some flattened variables: order_orderid,
order_totalAmount, order_priority, customer_firstName, customer_lastName and
customer_status.

JBESB-JBPMG-5/20/08 26

Manage: Processes | Tasks | Jobs
Process Instance Summary
Instance Link jii]

i:i' =<3lart Slate==
Key 2 start

Process bpm4 ESBOrderProcess vi
Status Running

Start Date Jan 16, 2008 5:39:23 PM ==flode=> 7 ==Task Mode==
End Date Intake Order = Review Order

asks
Comments & ==Node=> . <=Task Node==
Tokens Calculate Discount "= Review Discount

Process Image
Process Variables

Suspend this process instance ;
End this process instance Ship It
Delete this process instance

—

_E:P <=Noge=>

= <=End State==
end

Figure 9. The Order process reached the “Review Order” node

In our Order process we require a human to review the order. We therefore add a
“Task Node” and add the task “Order Review”, which needs to be performed by
someone with actor_id “user”. The XML-fragment looks like

<task—-node name="Review Order'>
<task name="Order Review'>
<assignment actor-id="user'"></assignment>
<controller>
<variable name='"customer firstName"
access="read, write, required'"></variable>
<variable name='"customer lastName'"
access="read, write, required">
<variable name="customer status'" access="read'></variable>
<variable name='"order totalamount" access='"read'"></variable>
<variable name="order priority" access='"read'"></variable>
<variable name="order orderid" access="read"></variable>
<variable name='"order discount" access='"read'></variable>
<variable name="entireOrderAsXML'" access="read'"></variable>
</controller>
</task>
<transition name="" to="Calculate Discount'"></transition>
</task-node>

In order to display these variables in a form in the jbpm-console we need to create an
xhtml dataform (see the Review_Order.xhtml file in the bpm_orchestration4 quick
start [JBESB-QS] and tie this for this TaskNode using the forms.xml file:

<forms>

JBESB-JBPMG-5/20/08 27

<form task="Order Review" form="Review Order.xhtml"/>
<form task="Discount Review" form="Review Order.xhtml"/>
</forms>

Note that in this case the same form is used in two task nodes. The variables are
referenced in the Review Order form like

<jbpm:datacell>
<f:facet name="header'">
<h:outputText value='"customer._ firstName'/>
</f:facet>
<h:inputText value="#{var['customer firstName']}" />

</jbpm:datacell>

which references the variables set in the jJBPM context.

When the process reaches the “Review Node”, as shown in Figure 9. When the 'user'
user logs into the jbpm-console the user can click on "Tasks” to see a list of tasks, as
shown in Figure 10. The user can 'examine' the task by clicking on it and the user
will be presented with a form as shown in Figure 11. The user can update some of
the values and click “Save and Close” to let the process move to the next Node.

Manage: Processes | Tasks

Pooled - Start|End =
ID | Name Actors Assigned To |Status Date | Date Actions
N R 5 I:l E Apply Filter Clear Filter
1 |Order Review user Mot Started Examine | Suspend |2—:a rt

Figure 10. The task list for user 'user'

JBESB-JBPMG-5/20/08 28

Processes

Task Summary
Task Link ID1
Name Order Review customer_firstName |Rex
Status Not Started
Assigned To user

Order Review

customer_lastName |Myer5

Token D 1 customer_status |EU

Process Instance Jli|

Process bpm4 ESBOrderProcess vi1
Created Date Jan 16, 2008 6:39:48 PM

order_priority |3

order_orderid |2

Task For
Comments
Variables
Transitions

Suspend this task
Start this task
Reassign this task to:

|
|
|
order_totalamount |E4.92 |
|
|
|

order_discount |

entireOrder |<:Order netAmDuntZ"59_9T|

Actions [Save][Cancel][Save and Close

|[Save]

JEBoss iBEPM Administration Conscle
Figure 11. The “Order Review” form.

The next node is the “Calculate Discount” node. This is an ESB Service node again
and the configuration looks like

<node name="Calculate Discount'">
<action name="esbAction" class="
org. jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>DiscountService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="BODY_ CONTENT" />
</bpmToEsbVars>
<esbToBpmVars>
<mapping esb="order"
bpm="entireOrderAsObject" />
<mapping esb="body.order orderDiscount"
bpm="order._discount" />
</esbToBpmVars>
</action>
<transition name="" to="Review Discount"></transition>
</node>

The Service receives the customer and orderHeader objects as well as the
entireOrderAsXML, and computes a discount. The response maps the
body.order_orderDiscount value onto a jBPM context variable called “order_-
discount”, and the process is signaled to move to the “Review Discount” task node.

JBESB-JBPMG-5/20/08 29

Discount Review

customer_firstName JIR=4

customer_lastName JWEE

customer_status 60

order_totalamount QSRR

order_priority 3

order_orderid 2

order_discount 8.5

entireOrder <0rder netAmount="59.97

Actions [Save][Cancel][Save and Close

Figure 12. The Discount Review form

The user is asked to review the discount, which is set to 8.5. On “Save and Close”
the process moves to the “Ship It” node, which again is an ESB Service. If you don't
want the Order process to wait for the Ship It Service to be finished you can use the
EsbNotifier action handler and attach it to the outgoing transition:

<node name="ShipIt'>
<transition name="ProcessingComplete" to="end">
<action name="ShipItAction" class=
"org. jboss.soa.esb.services. jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM Orchestration4</esbCategoryName>
<esbServiceName>ShippingService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb='"customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader'" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
</bpmToEsbVars>
</action>
</transition>
</node>

After notifying the ShippingService the Order process moves to the 'end' state and
terminates. The ShippingService itself may still be finishing up. In
bpm_orchestration4 [JBESB-QS] it uses drools to determine whether this order
should be shipped 'normal’ or 'express'.

Process Deployment and Instantiation

In the previous paragraph we create the process definition and we quietly assumed
we had an instance of it to explain the process flow. But now that we have created
the processdefinition.xml, we can deploy it to jBPM using the IDE, ant or the jbpm-
console (as explained in Chapter 1). In this example we use the IDE and deployed
the files: Review_Order.xhtml, forms.xml, gpd.xml, processdefinition.xml and the
processimage.jpg. On deployment the IDE creates a par achive and deploys this to

JBESB-JBPMG-5/20/08 30

the jBPM database. We do not recommend deploying Java code in par archives as it

may cause class loading issues. Instead we recommend deploying classes in jar or
esb archives.

Files and Folders Java Classes and Resources
Select the files and folders to include in the process Select the Java dasses and resources to indude in
archive, the process archive.

|¥| .gpd.test.xml] & src

Review_Order, xhtml
[X| forms.xml

%] gpd.xml
|X] processdefinition, xml
9 processimage.jpg

Reset Defaults Reset Defaults

Local Save Settings Deployment Server Settings
Choose if and where you wish to save the process Spedfy the settings of the server you wish to
archive locally. deploy to.
[]save Process Archive Locally Server Mame: localhaost
Location: Server Port: 3080
Server Deployer: Jibpm-console fupload
Test Connection...]

|§Depln:n,-' Process Archive... |

Figure 13. Deployment of the “Order Process”

When the process definition is deployed a new process instance can be created. It is
interesting to note that we can use the 'StartProcessInstanceCommand” which allows
us to create a process instance with some initial values already set. Take a look at

<service category="BPM orchestration4 Starter Service"
name="'Starter Service'"
description="BPM Orchestration Sample 4: Use this service to
start a process instance'">
<listeners>

</listeners>
<actions>
<action name="setup_ key" class=
"org. jboss.soa.esb.actions.scripting.GroovyActionProcessor'">
<property name='"script"
value="/scripts/setup key.groovy" />
</action>
<action name="start a new order process" class=
"org. jboss.soa.esb.services. jbpm.actions.BpmProcessor'">
<property name='"command"
value="StartProcessInstanceCommand" />
<property name='"process—definition—name"

JBESB-JBPMG-5/20/08 31

value="bpm4_ ESBOrderProcess'" />
<property name="key" value="body.businessKey" />
<property name='"esbToBpmVars'>

<mapping esb="BODY_ CONTENT" bpm="entireOrderAsXML" /

</property>
</action>
</actions>
</service>

where new process instance is invoked and using some groovy script, and the jJBPM
key is set to the value of 'Orderld’ from an incoming order XML, and the same XML
is subsequently put in jBPM context using the esbToBpmVars mapping. In the
bpm_orchestration4 quickstart [JBESB-QS] the XML came from the Seam DVD
Store and the “SampleOrder.xml” looks like
<Order orderId="2" orderDate="Wed Nov 15 13:45:28 EST 2006"
statusCode="0" netAmount="59.97" totalAmount="64.92" tax="4.95">
<Customer userName="userl'" firstName="Rex'" lastName="Myers"
state="SD"/>
<OrderLines>
<OrderLine position="1" quantity="1">
<Product productId="364" title="Superman Returns"
price="29.98"/>
</OrderLine>
<OrderLine position="2" quantity="1">
<Product productId="299" title="Pulp Fiction" price="29.99"/>
</OrderLine>
</OrderLines>
</0rder>

Note that both ESB as well as jBPM deployments are hot. An extra feature of jBPM
is that process deployments are versioned. Newly created process instances will use
the latest version while existing process instances will finish using the process
deployment on which they where started.

Conclusion

We have demonstrated how jBPM can be used to orchestrate Services as well as do
Human Task Management. Note that you are free to use any jBPM feature. For
instance look at the quick start bpm_orchestration2 [JBESB-QS] how to use the
jBPM fork and join concepts.

JBESB-JBPMG-5/20/08 32

JBESB-JBPMG-5/20/08

33

We'll add them when we have them.

JBESB-JBPMG-5/20/08

Chapter 3

Known Issues

34

References

[JBESB-QS], JBossESB QuickStarts,
http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB 3 GA/product/sam
ples/quickstarts/

[KA-BLOG] ESB Service Node, Koen Aers,
http://koentsje.blogspot.com/2008/01/esb-service-node-in-jbpm-ijpdl-

gpd-312.html

[KA-JBPM-GPD], JBoss jBPM Graphical Process Designer, Koen Aers,
http://docs.jboss.com/jbpm/v3/gpd/

[TB-JBPM-USER] jBPM User Documentation, Tom Baaijens
http://docs.jboss.com/ibpm/v3/userguide/

[TE-BPEL], Service Orchestration using ActiveBPEL, Tom Fennely,
http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB 4 3 GA/product/do
cs/services/ WS-BPEL.pdf

JBESB-JBPMG-5/20/08 35

http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB_4_3_GA/product/docs/services/WS-BPEL.pdf
http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB_4_3_GA/product/docs/services/WS-BPEL.pdf
http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/gpd/
http://koentsje.blogspot.com/2008/01/esb-service-node-in-jbpm-jpdl-gpd-312.html
http://koentsje.blogspot.com/2008/01/esb-service-node-in-jbpm-jpdl-gpd-312.html
http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB_3_GA/product/samples/quickstarts/
http://anonsvn.labs.jboss.com/labs/jbossesb/branches/JBESB_3_GA/product/samples/quickstarts/

Index

ActiveBPEL 21
actor 14
BpmProcessor 13
bpmToEsbVars 16
CancelProcessInstanceCommand 13
conditional transitions 20
create a Process Definition 10
database 7
Databaselnitializer 7
deploy a process definition 12
Deployment of a Process Definition 10
design tool 21
EsbActionHandler 15, 16
esbCategoryName 16
EsbNotifier 15
esbServiceName 16
esbToBpmVars 14, 17
Exception Decision 19
Exception Handling 15, 18
Exception Transition 19
exceptionTransition 17
flow-chart 21
globalProcessScope 16
hibernate.cfg.xml 9
Human Task Management 7
JBoss Developer Studio 10
jboss-esb.xml 13
jBPM configuration 9
jBPM console 8
jbpm-ds.xml 8
jbpm.cfg.xml 9
jbpm.esb 7
jbpm.mail.templates.xml 9
JBPMCallbackBus 9
JBpmCallbackService 9
JbpmDS datasource 8
jbpmProcessInstld 15

JBESB-JBPMG-5/20/08 36

JTA transacion manager

key

mapping
NewProcessInstanceCommand
Orchestration Diagram
Process Designer Plugin
process-definition-id
process-scope
processdefinition
processdefinition.xml

replyTo

security settings

Service Orchestration
StartProcessInstanceCommand
Time-out

timeout

Timer

transition-name

WebServices

JBESB-JBPMG-5/20/08

14
14
13
21
10
14
16
14
12,15
24

7,21
13
18
17
17
14
21

37

	EsbNotifier
	EsbActionHandler
	Scenario 1. Time-out
	Scenario 2. Exception Transition
	Scenario 3. Exception Decision

