
JBossESB 4.8

Programmers Guide

JBESB-PG-3/26/10

JBESB-PG-3/26/10

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBossESB 4.8

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2010 JBoss Inc.

Contents
Table of Contents

Contents..iii

About This Guide...6

What This Guide Contains.............................6
Audience..6
Prerequisites...6
Organization...6
Documentation Conventions..........................6
Additional Documentation.............................7
Contacting Us...7

The Enterprise Service Bus.................................8

What is an ESB?...8
When would you use JBossESB?...................8

JBossESB..13

Rosetta..13
The core of JBossESB in a nutshell..............14

Services and Messages.......................................17

Introduction..17
The Service...17
The Message...18
Getting and Setting Data on the Message

Body...23
Extensions to Body.......................................23
The Message Header....................................24

LogicalEPR..26
Default FaultTo....................................26
Default ReplyTo..................................26

The Message payload...................................27
The MessageFactory.....................................28

Message Formats..29
MessageType.JAVA_SERIALIZED...29
MessageType.JBOSS_XML................29

Building and Using Services..............................31

Listeners, Routers/Notifiers and Actions......31
Listeners...31
Routers...31
Notifiers...31
Actions and Messages..................................35
Handling responses.......................................36
Error handling when processing actions.......36
Metadata and Filters....................................37
What is a Service?..38
ServiceInvoker...39
Transactions...40
Services and ServiceInvoker........................40
InVM Transport..41

InVM Scope...41
InVM Transacted.................................42
Transaction Semantics.........................42
Threading...42
Lock-step Delivery..............................42
Load Balancing....................................43
Pass-by-Value/Pass-by-Reference.......43

Service Contract Definition..........................43
Message validation..............................44
Exposing an ESB service as a
webservice ..44

Other Components...46

Introduction..46
The Message Store.......................................46
Data Transformation.....................................46
Contentbased Routing.................................46
The Registry...47

Example..48

How to use the Message...............................48
The Message structure..................................48
The Service...49
Unpicking the payload..................................50
The Client...51
Configuration for a remote ServiceInvoker. .51
Hints and Tips..53

Advanced Topics..54

Introduction..54
Failover and loadbalancing support...........54
Services, EPRs, listeners and actions...........54
Replicated Services......................................55
Figure 72: Two service instance each on a

different node..56
Protocol Clustering.......................................57
Clustering...60
Channel Failover and Load Balancing........60
Message Redelivery.....................................62
Scheduling of Services.................................63
Simple Schedule...64
Cron Schedule..64
Scheduled Listener.......................................65
Example Configurations...............................65
Quartz Scheduler Property Configuration....65

Faulttolerance and Reliability.........................67

Introduction..67
Failure classification....................................67
JBossESB and the Fault Models...................68
Failure Detectors and Failure Suspectors.....69
Reliability guarantees...................................70
Message loss...71
Suspecting Endpoint Failures.......................72
Supported Crash Failure Modes...................72
Component Specifics....................................72
Gateways..72
ServiceInvoker...72
JMS Broker..72
Action Pipelining..72
Recommendations..72

Defining Service Configurations.......................75

Overview..75
Providers..76
Services..77
Transport Specific Type Implementations....80
JMS Message filter configuration................81
FTP configuration82
FTP Listener configuration83
Readonly FTP Listener...............................83
Readonly FTP Listener Configuration83
UDP Gateway...85
UDP Gateway configuration........................85
JBoss Remoting (JBR) Configuration85
HTTP Gateway...87
Basic Configuration......................................87
URL Patterns..87
Request Handling...87

Request Information............................88
Response Handling.......................................90

Asynchronous Response Handling......90
Synchronous Response Handling........91

Security Handling...93
Protected Methods & Allowed User
Roles..94
Authentication Method and Security
Domain...94
Transport Guarantee............................95

Transitioning From The Old Configuration
Model..96

Configuration...96

Web Services Support.......................................98

JBossWS..98

Outofthebox Actions......................................99

Transformers & Converters..........................99
ByteArrayToString.......................................99
LongToDateConverter..................................99
ObjectInvoke..99
ObjectToCSVString...................................100
ObjectToXStream.......................................101
XStreamToObject.......................................102
XsltAction..103
SmooksTransformer...................................106
SmooksAction..107
SmooksAction Configuration.....................107
Message Input Payload...............................108

XML, EDI, CSV etc Input Payloads...........108
Java Input Payload......................................108
Specifying the Result Type........................109
PersistAction..109
Business Process Management...................110
jBPM BpmProcessor................................110
Scripting...112
GroovyActionProcessor.............................112
ScriptingAction..112
Services..114
EJBProcessor..114
Routing...115
Aggregator..115
EchoRouter...115
HttpRouter..115

JBoss Remoting HttpRouter
(Deprecated).......................................115
Apache Commons HttpRouter...........115

JMSRouter..116
EmailRouter...117
ContentBasedRouter...................................119
StaticRouter..121
SyncServiceInvoker....................................121
StaticWiretap..122
EmailWiretap...122
Notifier...123
Webservices/SOAP....................................127
SOAPProcessor..127
SOAPProcessor Action Configuration.......127
Dependencies...128
"ESB Message Aware" Webservice Endpoints

..128
Webservice Endpoint Deployment.............128
Endpoint Publishing...................................128
SOAPClient..128
Optional Properties.....................................128
SOAP Operation Parameters......................129

JAXB Annotation Introductions........131
Quickstarts..131
SOAPClient..132
Endpoint Operation Specification..............132
SOAP Request Message Construction........132
SOAP Response Message Consumption....134

HttpClient Configuration............................136
SOAPProxy..136
Miscellaneous...138
SystemPrintln...138
SchemaValidationAction............................138

Developing Custom Actions............................140

Configuring Actions Using Properties........141

Connectors and Adapters................................143

Introduction..143
The Gateway...143
Gateway Data Mappings............................144
How to change the Gateway Data Mappings

..145
Connecting via JCA....................................145
Configuration...146
Mapping Standard activation properties.....147

Appendix A...149

Writing JAXB Annotation Introduction
Configurations..149

Appendix B...151

Service Oriented Architecture Overview....151
Why SOA?...152
Basics of SOA..154
Advantages of SOA....................................154
Interoperability...154
Efficiency ..155
Standardization...155
Statefull and Stateless services...................155
JBossESB and its relationship with SOA.. .157

Glossary..158

Index...162

About This Guide
What This Guide Contains

The Programmers Guide contains information on how to use JBossESB 4.8.

Audience

This guide is most relevant to engineers who are responsible for using JBossESB 4.8
installations and want to know how it relates to SOA and ESB principles.

Prerequisites

None.

Organization

This guide contains the following chapters:

• Chapter 1, The ESB: an overview of the ESB concept.

• Chapter 2, JBossESB: a description of the core components within JBossESB and
how they are intended to be used.

• Chapter 3, Services and Messages: a discussion on the two core concepts within
JBossESB.

• Chapter 4, Building and Using Services: How to use listeners and actions to
develop services and consumers.

• Chapter 5, Other Components: An overview of the other services within
JBossESB.

• Chapter 6, Example: A worked example using some of the principles examined so
far.

• Chapter 7, Advanced Topics: Some advanced concepts available within JBossESB,
such as automatic failover and scheduling.

• Chapter 8, Faulttolerance and Reliability: A discussion of how failures may
affect applications developed on an ESB and how JBossESB can help tolerate them.

• Chapter 9, Defining Service Configurations: a description of the configuration
options within JbossESB.

• Chapter 10, Web Services Support

JBESB-PG-3/26/10 6

• Chapter 11, Outofthebox Actions

• Chapter 12, Developing Custom Actions

• Chapter 13, Connectors and Adapters

Documentation Conventions

The following conventions are used in this guide:

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBossESB 4.8
documentation set:

1. JBossESB 4.8 Trailblazer Guide: Provides guidance for using the trailblazer
example.

2. JBossESB 4.8 Getting Started Guide: Provides a quick start reference to
configuring and using the ESB.

3. JBossESB 4.8 Administration Guide: How to manage JBossESB.

JBESB-PG-3/26/10 7

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

4. JBossESB 4.8 Release Notes: Information on the differences between this
release and previous releases.

5. JBossESB 4.8 Services Guides: Various documents related to the services
available with the ESB.

Contacting Us

Questions or comments about JBossESB 4.8 should be directed to our support team.

JBESB-PG-3/26/10 8

Chapter 1

The Enterprise Service
Bus

What is an ESB?

The ESB is seen as the next generation of EAI – better and without the vendor-lockin
characteristics of old. As such, many of the capabilities of a good ESB mirror those of existing
EAI offerings. Traditional EAI stacks consist of: Business Process Monitoring, Integrated
Development Environment, Human Workflow User Interface, Business Process Management,
Connectors, Transaction Manager, Security, Application Container, Messaging Service,
Metadata Repository, Naming and Directory Service, Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels. It is about
infrastructure logic. Although there are many different definitions of what constitutes an ESB,
what everyone agrees on now is that an ESB is part of an SOA infrastructure. However, SOA
is not simply a technology or a product: it's a style of design, with many aspects (such as
architectural, methodological and organisational) unrelated to the actual technology. But
obviously at some point it becomes necessary to map the abstract SOA to a concrete
implementation and that's where the ESB comes in to play.

Note: You can learn more about SOA principles and ESB architectures in the SOA
Background Concepts document.

When would you use JBossESB?

The figures below illustrate some concrete examples where JBossESB would be useful.
Although these examples are specific to interactions between participants using non-
interoperable JMS implementations, the principles are general and can be applied to other
transports such as FTP and HTTP.

The first diagram shows simple file movement between two systems where messaging
queuing is not involved.

The next diagram illustrates how transformation can be injected into the same scenario using
JBossESB.

JBESB-PG-3/26/10 9

JBoss ESBFile system File system

System A System B

In the next series of examples, we use a queuing system (e.g., a JMS implementation).

The diagram below shows transformation and queuing in the same situation.

JBESB-PG-3/26/10 10

System B

MQ Client MQ Client

System A

MQ Cluster

BA

JBoss ESB

Transformation engine

MQ Client MQ Client

MQ Cluster

BA

System
A

System B

JBossESB can be used in more than multi-party scenarios. For example, the diagram below shows
basic data transformation via the ESB using the file system.

The final scenario is again a single party example using transformation and a queuing system.

JBESB-PG-3/26/10 11

JBoss ESBFile system

Transformation engine

System A

MQ Client

System A

MQ Cluster

BA

JBoss ESB

Transformation engine

In the following chapters we shall look at the core concepts within JBossESB and how they
can be used to develop SOA-based applications.

JBESB-PG-3/26/10 12

Chapter 2

JBossESB
Rosetta

The core of JBossESB is Rosetta, an ESB that has been in commercial deployment at a
mission critical site for over 3 years. The architectCommitted revision 28034. ure of Rosetta is
shown below in Figure 1:

Note: In the diagram, processor classes refer to the Action classes within the core that are
responsible for processing on triggered events.

JBESB-PG-3/26/10 13

Notification
services

(triggers events)

External Processes
Trigger events
Links to events

Use Rosetta services through
appropriate transport adapters

Rosetta Listeners
 Triggered by events

Invoke Processor classes Resources

Base Rosetta classes

(jars)

Common

Utility

Notification

Parameters

Helpers

Factories

Service Business delegates

RM – Filesystem - RDBMS - TCP – Http - etc

General purpose
Object persistence

services

Batch Handling
services Parameter

repository

There are many reasons why users may want disparate applications, services and components
to interoperate, e.g., leveraging legacy systems in new deployments. Furthermore, such
interactions between these entities may occur both synchronously or asynchronously. As with
most ESBs, Rosetta was developed to facilitate such deployments, but providing an
infrastructure and set of tools that could:

• Be easily configured to work with a wide variety of transport mechanisms (e.g.,
email and JMS).

• Offer a general purpose object repository.

• Enable pluggable data transformation mechanisms.

• Support logging of interactions.

To date, Rosetta has been used in mission critical deployments using Oracle Financials. The
multi platform environment included an IBM mainframe running z/OS, DB2 and Oracle
databases hosted in the mainframe and in smaller servers, with additional Windows and Linux
servers and a myriad of third party applications that offered dissimilar entry points for
interoperation. It used JMS and MQSeries for asynchronous messaging and Postgress for
object storage. Interoperation with third parties outside of the corporation’s IT infrastructure
was made possible using IBM MQSeries, FTP servers offering entry points to pick up and
deposit files to/from the outside world and attachments in e-mail messages to ‘well known’ e-
mail accounts.

As we shall see when examining the JBossESB core, which is based on Rosetta, the challenge
was to provide a set of tools and a methodology that would make it simple to isolate business
logic from transport and triggering mechanisms, to log business and processing events that
flowed through the framework and to allow flexible plug ins of ad hoc business logic and data
transformations. Emphasis was placed on ensuring that it is possible (and simple) for future
users to replace/extend the standard base classes that come with the framework (and are used
for the toolset), and to trigger their own ‘action classes’ that can be unaware of transport and
triggering mechanisms.

Note: Within JBossESB source we have two trees: org.jboss.internal.soa.esb and
org.jboss.soa.esb. You should limit your use of anything within the
org.jboss.internal.soa.esb package because the contents are subject to change without
notice. Alternatively anything within the org.jboss.soa.esb is covered by our deprecation
policy.

The core of JBossESB in a nutshell

Rosetta is built on four core architectural components:

JBESB-PG-3/26/10 14

• Message Listener and Message Filtering code. Message Listeners act as “inbound”
message routers that listen for messages (e.g. on a JMS Queue/Topic, or on the file
system) and present the message to a message processing pipeline that filters the
message and routes it (“outbound” router) to another message endpoint.

• Data transformation via the SmooksAction action processor. See the “Message
Transformation” chapter in the ServicesGuide for further details.

• A Content Based Routing Service. See the “What is ContentBased Routing” chapter
in the ServicesGuide for further information.

• A Message Repository, for saving messages/events exchanged within the ESB. See
the “What is the Registry” chapter in the ServicesGuide for further details.

These capabilities are offered through a set of business classes, adapters and processors,
which will be described in detail later. Interactions between clients and services are supported
via a range of different approaches, including JMS, flat-file system and email.

A typical JBossESB deployment is shown below. We shall return to this diagram in
subsequent sections.

Note: Some of the components in the diagram (e.g., LDAP server) are configuration choices
and may not be provided out-of-the-box. Furthermore, the Processor and Action
distinction shown in the above diagram is merely an illustrative convenience to show the
concepts involved when an incoming event (message) triggers the underlying ESB to
invoke higher-level services.

JBESB-PG-3/26/10 15

Action ClassProcessor

2

1

JMS / MQ

Web
 Services

Processor Action Class

Processor

Processor

Processor

Action Class

Action Class

Action Class

Action Class

CONTROLLER
For each LDAP chapter
creates a listener

Passive Listeners
Asynch Messages

Current implementation is
a JMS listener

listens

listens

listens

File Drop
Subdirectories

Subdirectory_1

Subdirectory_2

Subdirectory_n

Active Listeners

Action ClassInvokes Invokes

HTTP

Monitors

Monitors

Monitors

Current
implementation in a
Directory Poller

LDAP
Passive

Active

n

Notification
on failure

Notification
on success

Notification
Framework

through:

SMTP:eMail
JMS
FTP

Notification
on success

Invokes

Invokes

Invokes Invokes

Invokes

Invokes

Post Processing

Object Store
Persistence Handler

Post Processing

Stores
(optional)

Reads
(optional)

Reads
(optional)

Relational
Database

SMTP

Web
Services

Async MQ
Messaging

Others
As required

Transformation
Library

Relational
Database

ITER8
XSLT

transformation
library

Resource
 Layer

Figure 2: ESB Core components.

In the following chapters we shall look at the various components within JBossESB and show
how they interact and can be used to develop SOA-based applications.

JBESB-PG-3/26/10 16

Chapter 3

Services and Messages
Introduction

In keeping with SOA principles, everything within JBossESB is considered to be either a
service or a message. Services encapsulate the business logic or points of integration with
legacy systems. Messages are the way in which clients and services communicate with each
other.

In the following sections we shall look at how Services and Messages are supported within
JBossESB.

The Service

A “Service” in JBossESB is defined as a list of “Action” classes that process an ESB Message
in a sequential manner (see below). This list of Action classes is referred to as an “Action
Pipeline”. A Service can define a list of “Listeners”, which act as inbound routers for the
Service, routing messages to the Action Pipeline.

The following is a very simple JBossESB configuration that defines a single Service that
simply prints the contents of the ESB Message to the console.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb
xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1
.xsd" invmScope=”GLOBAL”>

<services>
 <service category="Retail" name="ShoeStore" description="Acme Shoe Store Service">
 <actions>
 <action name="println" class="org.jboss.soa.esb.actions.SystemPrintln" />
 </actions>
 </service>
</services>

</jbossesb>

As you can see from the above example, a Service has “category” and “name” attributes.
When JBossESB deploys the Service, it uses these attributes to register the Service endpoints
(listeners) in the Service Registry (see Registry Guide). Clients can invoke the Service using
the ServiceInvoker as follows.

ServiceInvoker invoker = new ServiceInvoker(“Retail”, “ShoeStore”);
Message message = MessageFactory.getInstance().getMessage();

message.getBody().add(“Hi there!”);
invoker.deliverAsync(message);

The ServiceInvoker uses the Service Registry (see ServicesGuide) to lookup the available
Endpoint addresses for the “Retail:ShoeStore” Service. It takes care of all the transport details
of getting the message from the Client to one of the available Service Endpoints (JMS, FTP,
HTTP etc), hiding all of the lower level details from the Client.

The Endpoint addresses made available to the ServiceInvoker will depend on the list of
listeners configured on the Service such as JMS, FTP or HTTP. No listeners are configured
on the Service in the above example, but its InVM listener has been enabled using

JBESB-PG-3/26/10 17

http://anonsvn.labs.jboss.com/labs/jbossesb/

invmScope="GLOBAL"1. To add additional Endpoints for the Service, we need to explicitly
add listener configurations on the Service. JBossESB supports two forms of listener
configuration:

1. Gateway Listeners: These listener configurations configure a “Gateway” Endpoint.
These Endpoint types can be used to get messages onto an ESB bus. It is responsible
for “normalizing” the message payload by wrapping it into an ESB Message (see
below) before shipping it to the Service's Action Pipeline.

2. ESB Aware Listeners: These listener configurations configure an “ESB Aware”
Endpoint. These Endpoint types are used to exchange ESB Messages (see below)
between ESB Aware components e.g. exchanging messages on the bus.

The following is an example of how a JMS Gateway listener can be added to the above
ShoeStore Service.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/
 trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd">

<providers>
 <jms-provider name="JBossMQ" connection-factory="ConnectionFactory">
 <jms-bus busid="shoeStoreJMSGateway">
 <jms-message-filter dest-type="QUEUE" dest-name="queue/shoeStoreJMSGateway"/>
 </jms-bus>
 </jms-provider>
</providers>

<services>
 <service category="Retail" name="ShoeStore" description="Acme Shoe Store Service"
 invmScope=”GLOBAL”>

<listeners>
 <jms-listener name="shoeStoreJMSGateway" busidref="shoeStoreJMSGateway"
 is-gateway="true"/>
</listeners>

 <actions>
 <action name="println" class="org.jboss.soa.esb.actions.SystemPrintln" />
 </actions>
 </service>
</services>

</jbossesb>

In the above configuration, we added a bus <providers> section to the configuration. This is
where we configure the transport level details for Endpoints. In this case we added a <jms-
provider> section that defines a single <jms-bus> for the Shoe Store JMS Queue. This bus is
then referenced in the <jms-listener> defined on the Shoe Store Service. The Shoe Store is
now invocable via two Endpoints – the InVM Endpoint and the JMS Gateway Endpoint. The
ServiceInvoker will always use a Service's local InVM Endpoint, if available, in preference to
other Endpoint types.

The Message

All interactions between clients and services within JBossESB occur through the exchange of
Messages. In order to encourage loose coupling we recommend a message-exchange pattern
based on one-way messages, i.e., requests and responses are independent messages, correlated
where necessary by the infrastructure or application. Applications constructed in this way are
less brittle and can be more tolerant of failures, giving developers more flexibility in their
deployment and message delivery requirements.

To ensure loose coupling of services and develop SOA applications, it is necessary to:

1The InVM transport is a new feature since JBossESB 4.3 that provides communication
between services running on the same JVM. Section 4.3.3, "InVM Transport" contains more
information about this feature.

JBESB-PG-3/26/10 18

http://anonsvn.labs.jboss.com/labs/jbossesb/

• Use oneway message exchanges rather than requestresponse.

• Keep the contract definition within the exchanged messages. Try not to define a
service interface that exposed backend implementation choices, because that will
make changing the implementation more difficult later.

• Use an extensible message structure for the message payload so that changes to it
can be versioned over time, for backward compatibility.

• Do not develop finegrained services: this is not a distributedobject paradigm,
which can lead to brittle applications.

In order to use a one-way message delivery pattern with requests and responses, it is
obviously necessary to encode information about where responses should be sent. That
information may be present in the message body (the payload) and hence dealt with solely by
the application, or part of the initial request message and typically dealt with by the ESB
infrastructure.

Therefore, central to the ESB is the notion of a message, whose structure is similar to that
found in SOAP:

<xs:complexType name="Envelope">
<xs:attribute ref="Header" use="required"/>
<xs:attribute ref="Context" use="required"/>
<xs:attribute ref="Body" use="required"/>
<xs:attribute ref="Attachment" use="optional"/>
<xs:attribute ref="Properties" use="optional"/>
<xs:attribute ref="Fault" use="optional"/>

</xs:complexType>

Pictorially the basic structure of the Message can be represented as shown below. In the rest
of this section we shall examine each of these components in more detail.

In UML, the Message structure can be represented as:

JBESB-PG-3/26/10 19

Each message is an implementation of the org.jboss.soa.esb.message.Message
interface. Within that package are interfaces for the various fields within the Message as
shown below:

public interface Message
{

public Header getHeader ();
public Context getContext ();
public Body getBody ();
public Fault getFault ();
public Attachment getAttachment ();
public URI getType ();
public Properties getProperties ();

public Message copy () throws Exception;
}

Note: In JBossESB, Attachments and Properties are not treated differently from the
Body. The general concepts they embody are currently being re-evaluated and may
change significantly in future releases. As such, we recommend developers do not use
Attachments.

The Header contains routing and addressing information for this message. As we saw earlier,
JBossESB uses an addressing scheme based on the WS-Addressing standard from W3C. We
shall discuss the org.jboss.soa.esb.addressing.Call class in the next section.

public interface Header
{

public Call getCall ();
public void setCall (Call call);

}

The Context contains session related information, such as transaction or security contexts.

Note: The 4.x release of JBossESB does not support user-enhanced Contexts. This will be
a feature of the 5.0 release.

The Body typically contains the payload of the message. It may contain a list of Objects of
arbitrary types. How these objects are serialized to/from the message body when it is
transmitted is up to the specific Object type.

Note: You should be extremely careful about sending Serialized objects within the Body: not
everything that can be Serialized will necessarily be meaningful at the receiver, e.g.,
database connections.

public interface Body
{
 public static final String DEFAULT_LOCATION =
"org.jboss.soa.esb.message.defaultEntry";

JBESB-PG-3/26/10 20

public void add (String name, Object value);
public Object get (String name);

public byte[] getContents();
public void add (Object value);
public Object get ();
public Object remove (String name);
public void replace (Body b);
public void merge (Body b);

 public String[] getNames ();
}

A Body can be used to convey arbitrary information types and arbitrary numbers of each type,
i.e., it is not necessary to restrict yourself to sending and receiving single data items within a
Body.

Note: The byte array component of the Body was deprecated in JBossESB 4.2.1. If you wish
to continue using a byte array in conjunction with other data stored in the Body, then
simply use add with a unique name. If your clients and services want to agree on a
location for a byte array, then you can use the one that JBossESB uses:
ByteBody.BYTES_LOCATION.

Note: The default named Object (DEFAULT_LOCATION) should be used with care so that
multiple services or Actions do not overwrite each other's data.

The Fault can be used to convey error information. The information is represented within the
Body.

public interface Fault
{

public URI getCode ();
public void setCode (URI code);

public String getReason ();
public void setReason (String reason);

 public Throwable getCause ();
 public void setCause (Throwable ex);
}

Note: In JBossESB, Attachments and Properties are not treated differently from the
Body. The general concepts they embody are currently being re-evaluated and may
change significantly in future releases. As such, we recommend developers do not use
Attachments or Properties.

A set of message properties, which can be used to define additional meta-data for the
message.

public interface Properties
{

public Object getProperty(String name);
public Object getProperty(String name, Object defaultVal);

public Object setProperty(String name, Object value);

JBESB-PG-3/26/10 21

public Object remove(String name);

public int size();
public String[] getNames();

}

Note: JBossESB does not implement Properties as java.util.Properties for the same reason
Web Services stacks do not: it places restrictions on the types of clients and services that
can used. If you need to send java.util.Properties then you can embed them within the
current abstraction.

Messages may contain attachments that do not appear in the main payload body. For example,
imagines, drawings, binary document formats, zip files etc. The Attachment interface
supports both named and unnamed attachments.

public interface Attachment
{

Object get(String name);
Object put(String name, Object value);

Object remove(String name);

String[] getNames();

Object itemAt (int index) throws IndexOutOfBoundsException;
Object removeItemAt (int index) throws IndexOutOfBoundsException
Object replaceItemAt(int index, Object value)

throws IndexOutOfBoundsException;

void addItem (Object value);
void addItemAt (int index, Object value)

throws IndexOutOfBoundsException;
public int getUnnamedCount();
public int getNamedCount();

}

Attachments may be used for a number of reasons (some of which have been outlined above).
At a minimum, they may be used to more logically structure your message and improve
performance of large messages, e.g., by streaming the attachments between endpoints.

Note: At present JBossESB does not support specifying other encoding mechanisms for the
Message or attachment streaming. This will be added in later releases and where
appropriate will be tied in to the SOAP-with-attachments delivery mechanism. Therefore,
currently attachments are treated in the same way as named objects within the Body.

Given that there are attachments, properties, and named objects, you may be wondering where
should you put your payload? The answer is fairly straightforward:

• As a service developer, you define the contract that clients use in order to interact
with your service. As part of that contract, you will specify both functional and non
functional aspects of the service, e.g., that it is an airline reservation service
(functional) and that it is transactional (nonfunctional). You'll also define the
operations (messages) that the service can understand. As part of the message
definition, you stipulate the format (e.g., Java Serialized message versus XML) and
the content (e.g., transaction context, seat number, customer name etc.) When

JBESB-PG-3/26/10 22

defining the content, you can specify where in the Message your service will expect
to find the payload. That can be in the form of attachments or specific named objects
(even the default named object if you so wish). It is entirely up to the service
developer to determine. The only restrictions are that objects and attachments must
be globally uniquely named, or one service (or Action) may inadvertently pick up a
partial payload meant for another if the same Message Body is forwarded across
multiple hops.

• As a service users, you obtain the contract definition about the service (e.g., through
UDDI or outofband communication) and this will define where in the message the
payload must go. Information placed in other locations will likely be ignored and
result in incorrect operation of the service.

There is more information about how to define your Message payload in the Message
Payload section of this document.

Getting and Setting Data on the Message Body

By default, all JBossESB 4.2.1GA+ components (Actions, Listeners, Gateways, Routers,
Notifiers etc) get and set data on the message through the messages “Default Payload
Location”.

All ESB components use the MessagePayloadProxy to manage getting and setting of the
payload on the message. It handles the default case, as outlined above, but also allows this to
be overridden in a uniform manner across all components. It allows the “get” and “set”
location for the message payload to be overridden in a uniform way using the following
component properties:

1. “get-payload-location”: The location from which to retrieve the message payload.

2. “set-payload-location”: The location on which to set the message payload.

Prior to JBossESB 4.2.1GA there was no default message payload exchange pattern in place.
JBossESB 4.2.1GA+ can be configured to exchange payload data according to the pre
4.2.1GA approach (i.e. is backward compatible with) by setting the
“use.legacy.message.payload.exchange.patterns” property to “true” in the “core”
section/module of the jbossesb-properties.xml file (found in the jbossesb.sar).

Extensions to Body

Although you can manipulate the contents of a Message Body directly in terms of bytes or
name/value pairs, it is often more natural to use one of the following predefined Message
structures, which are simply different views onto the data contained in the underlying Body.

As well as the basic Body interface, JBossESB supports the following interfaces, which are
extensions on the basic Body interface:

• org.jboss.soa.esb.message.body.content.TextBody: the content of the
Body is an arbitrary String, and can be manipulated via the getText and
setText methods.

• org.jboss.soa.esb.message.body.content.ObjectBody: the content of the
Body is a Serialized Object, and can be manipulated via the getObject and
setObject methods.

JBESB-PG-3/26/10 23

• org.jboss.soa.esb.message.body.content.MapBody: the content of the
Body is a Map<String, Serialized), and can be manipulated via the setMap
and other methods.

• org.jboss.soa.esb.message.body.content.BytesBody: the content of the
Body is a byte stream that contains arbitrary Java datatypes. It can be manipulated
using the various setter and getter methods for the datatypes. Once created, the
BytesMessage should be placed into either a readonly or writeonly mode,
depending upon how it needs to be manipulated. It is possible to change between
these modes (using readMode and writeMode), but each time the mode is changed
the buffer pointer will be reset. In order to ensure that all of the updates have been
pushed into the Body, it is necessary to call flush when finished.

You can create Messages that have Body implementations based on one of these specific
interfaces through the XMLMessageFactory or SerializedMessageFactory classes. The
need for two different factories is explained in the section on Message Formats, which is
described later in the document.

For each of the various Body types, you will find an associated create method (e.g.,
createTextBody) that allows you to create and initialize a Message of the specific type.
Once created, the Message can be manipulated directly through the raw Body or via the
specific interface. If the Message is transmitted to a recipient, then the Body structure will be
maintained, e.g., it can be manipulated as a TextBody.

The XMLMessageFactory and SerializedMessageFactory are more convenient ways in
which to work with Messages than the MessageFactory and associated classes, which are
described in the following sections.

Note: these extensions to the base Body interface are provided in a complimentary manner to
the original Body. As such they can be used in conjunction with existing clients and
services. Message consumers can remain unaware of these new types if necessary
because the underlying data structure within the Message remains unchanged. It is
important to realise that these extensions do not store their data in the default location;
data should be retrieved using the corresponding getters on the extension instance.

The Message Header

As we saw above, the Header of a Message contains a reference to the
org.jboss.soa.esb.addressing.Call class:

public class Call
{

public Call ();
public Call (EPR epr);
public Call (Call copy);
public void setTo (EPR epr);
public EPR getTo () throws URISyntaxException;

public void setFrom (EPR from);
public EPR getFrom () throws URISyntaxException;

public void setReplyTo (EPR replyTo);
public EPR getReplyTo () throws URISyntaxException;

JBESB-PG-3/26/10 24

public void setFaultTo (EPR uri);
public EPR getFaultTo () throws URISyntaxException;

public void setRelatesTo (URI uri);
public URI getRelatesTo () throws URISyntaxException;
public void copy();
public void setAction (URI uri);
public URI getAction () throws URISyntaxException;
public final boolean empty();
public void setMessageID (URI uri);
public URI getMessageID () throws URISyntaxException;

public String toString();

public String stringForum();
public boolean valid();
public void copy (Call from);

}

The properties below support both one way and request reply interaction patterns:

• [To] : EPR (mandatory). The address of the intended receiver of this message.

• [From] : endpoint reference (0..1). Reference of the endpoint where the message
originated from.

• [ReplyTo] : endpoint reference (0..1). An endpoint reference that identifies the
intended receiver for replies to this message. If a reply is expected, a message must
contain a [ReplyTo]. The sender must use the contents of the [ReplyTo] to formulate
the reply message. If the [ReplyTo] is absent, the contents of the [From] may be used
to formulate a message to the source. This property may be absent if the message has
no meaningful reply. If this property is present, the [MessageID] property is
required.

• [FaultTo] : endpoint reference (0..1). An endpoint reference that identifies the
intended receiver for faults related to this message. When formulating a fault
message the sender must use the contents of the [FaultTo] of the message being
replied to to formulate the fault message. If the [FaultTo] is absent, the sender may
use the contents of the [ReplyTo] to formulate the fault message. If both the
[FaultTo] and [ReplyTo] are absent, the sender may use the contents of the [From] to
formulate the fault message. This property may be absent if the sender cannot
receive fault messages (e.g., is a one-way application message). If this property is
present, the [MessageID] property is required.

• [Action] : URI (mandatory). An identifier that uniquely (and opaquely) identifies the
semantics implied by this message.

• [MessageID] : URI (0..1). A URI that uniquely identifies this message in time and
space. No two messages with a distinct application intent may share a [MessageID]
property. A message may be retransmitted for any purpose including
communications failure and may use the same [MessageID] property. The value of

JBESB-PG-3/26/10 25

this property is an opaque URI whose interpretation beyond equivalence is not
defined. If a reply is expected, this property must be present.

The relationship between the Header and the various EPRs can be illustrated as follows in
UML:

When working with Messages, you should consider the role of the header when developing
and using your clients and services. For example, if you require a synchronous interaction
pattern based on request/response, you will be expected to set the ReplyTo field, or a default
EPR will be used; even with request/response, the response need not go back to the original
sender, if you so choose. Likewise, when sending one-way messages (no response), you
should not set the ReplyTo field because it will be ignored.

Note: Please see details on the LogicalEPR.

Note: The Message Header is formed in conjunction with the Message by the creator and
is immutable once transmitted between endpoints. Although the interfaces allow the
recipient to modify the individual values, JBossESB will ignore such modifications. In
future releases it is likely that such modifications will be disallowed by the API as well
for improved clarity. These rules are laid down in the WS-Addressing standards.

LogicalEPR

A LogicalEPR is an EPR that simply specifies the name and category of an ESB
Service/Endpoint. It contains no physical addressing information.

Clients setting the ReplyTo or FaultTo EPRs should always use the LogicalEPR, as
opposed to one of the Physical EPRs (JMSEpr etc). The LogicalEPR is the preferred option
because it makes no assumptions about the capabilities of the user of the EPR (typically the
ESB itself, but not necessarily), or when the EPR will be used i.e. a physical EPR may no
longer be valid by the time it gets used. By it's non-Physical nature, a LogicalEPR is also a lot
easier to “handle” from a user perspective. The user of the LogicalEPR can use the Service
name and category details supplied in the EPR to lookup the physical endpoint details for that
Service/Endpoint at the point in time when they intend making the invocation i.e. they will get
relevant addressing information. The user will also be able to select an endpoint type that suits
it i.e. if it's easier for the user to make the invocation using a file based transport (Vs e.g.
JMS), then they can select that type of transport.

Default FaultTo

When sending Messages, it is possible that errors will occur, either during the transmission
or reception/processing of the Message. JBossESB will route any faults to the EPR
mentioned in the FaultTo field of the incoming message. If this is not set, then it will use the
ReplyTo field or, failing that, the From field. If no valid EPR is obtained as a result of
checking all of these fields, then the error will be output to the console. If you do not wish to
be informed about such faults, such as when sending a one-way message, you may wish to use
the DeadLetter Queue Service EPR as your FaultTo. In this way, any faults that do occur
will be saved for later processing.

Note:Please see details on the LogicalEPR.

JBESB-PG-3/26/10 26

Default ReplyTo

Because the recommended interaction pattern within JBossESB is based on one-way message
exchange, responses to messages are not necessarily automatic: it is application dependent as
to whether or not a sender expects a response. As such, a reply address (EPR) is an optional
part of the header routing information and applications should be setting this value if
necessary. However, in the case where a response is required and the reply EPR (ReplyTo
EPR) has not been set, JBossESB supports default values for each type of transport. Some of
these ReplyTo defaults require system administrators to configure JBossESB correctly.

 For JMS, it is assumed to be a queue with a name based on the one used to deliver the
original request: <request queue name>_reply

 For JDBC, it is assumed to be a table in the same database with a name based on the
one used to deliver the original request: <request table name>_reply_table. The new
table needs the same columns as the request table.

 For files (both local and remote), no administration changes are required: responses
will be written into the same directory as the request but with a unique suffix to ensure
that only the original sender will pick up the response.

Note:Please see details on the LogicalEPR.

The Message payload

From an application/service perspective the message payload is a combination of the Body
and Attachments. In this section we shall give an overview of best practices when
constructing and using the message payload.

Note: In JBossESB, Attachments and Properties are not treated differently from the
Body. The general concepts they embody are currently being re-evaluated and may
change significantly in future releases. As such we shall not be considering the
Attachments as part of the payload in the rest of this discussion.

The UML representation of the payload is shown below:

More complex content may be added through the add method, which supports named
Objects. Using <name, Object> pairs allows for a finer granularity of data access. The
type of Objects that can be added to the Body can be arbitrary: they do not need to be Java
Serializable. However, in the case where non-Serializable Objects are added, it is necessary
to provide JBossESB with the ability to marshal/unmarshal the Message when it flows across
the network. See the section of Message Formats for more details.

If no name is supplied to set or get, then the default name defined by DEFAULT_LOCATION
will be used.

Note: be careful when using Serialized Java objects in messages because it constrains the
service implementations.

In general you will find it easier to work with the Message Body through the named Object
approach. You can add, remove and inspect individual data items within the Message payload
without having to decode the entire Body. Furthermore, you can combine named Objects
within the payload with the byte array.

JBESB-PG-3/26/10 27

Note: in the current release of JBossESB only Java Serialized objects may be attachments.
This restriction will be removed in a subsequent release.

The MessageFactory

Internally to an ESB component, the message is a collection of Java objects. However,
messages need to be serialized for a number of reasons, e.g., transmitted between address
spaces (processes) or saved to a persistent datastore for auditing or debugging purposes. The
external representation of a message may be influenced by the environment in which the ESB
is deployed. Therefore, JBossESB does not impose a specific normalized message format, but
supports a range of them.

All implementations of the org.jboss.soa.esb.message.Message interface are obtained
from the org.jboss.soa.esb.message.format.MessageFactory class:

public abstract class MessageFactory
{

public abstract Message getMessage ();
public abstract Message getMessage (URI type);
public abstract void reset();
public static MessageFactory getInstance ();

}

Message serialization implementations are uniquely identified by a URI. The type of
implementation required may be specified when requesting a new instance, or the configured
default implementation may be used. Currently JBossESB provides two implementations,
which are defined in the org.jboss.soa.esb.message.format.MessageType class:

• MessageType.JBOSS_XML: this uses an XML representation of the Message on
the wire. The schema for the message is defined in the message.xsd within the
schemas directory. The URI is urn:jboss/esb/message/type/JBOSS_XML.

• MessageType.JAVA_SERIALIZED: this implementation requires that all
components of a Message are Serializable. It obviously requires that recipients
of this type of Message have sufficient information (the Java classes) to be able to
deserialize the Message. The URI is
urn:jboss/esb/message/type/JAVA_SERIALIZED.

Note: You should be wary about using the JAVA_SERIALIZED version of the Message
format because it more easily ties your applications to specific service implementations,
i.e., it breaks loose coupling.

Other Message implementations may be provided at runtime through the
org.jboss.soa.esb.message.format.MessagePlugin:

public interface MessagePlugin
{

public static final String MESSAGE_PLUGIN =
 "org.jboss.soa.esb.message.format.plugin";

public Object createBodyType(Message msg, String type);
public Message getMessage ();
public URI getType ();

}

JBESB-PG-3/26/10 28

Each plug-in must uniquely identify the type of Message implementation it provides (via
getMessage), using the getType method. Plug-in implementations must be identified to the
system via the jbossesb-properties.xml file using property names with the
org.jboss.soa.esb.message.format.plugin extension.

Note: The default Message type is JBOSS_XML. However, this can be changed by setting
the property org.jboss.soa.esb.message.default.uri to the desired URI.

Message Formats

As mentioned previously, JBossESB supports two serialized message formats:
MessageType.JBOSS_XML and MessageType.JAVA_SERIALIZED. In the following
sections we shall look at each of these formats in more detail.

MessageType.JAVA_SERIALIZED

This implementation requires that all contents are Java Serializable. Any attempt to add a non-
Serializable object to the Message will result in a IllegalParameterException being
thrown.

MessageType.JBOSS_XML

This implementation uses an XML representation of the Message on the wire. The schema for
the message is defined in the message.xsd within the schemas directory. Arbitrary objects
may be added to the Message, i.e., they do not have to be Serializable. Therefore, it may be
necessary to provide a mechanism to marshal/unmarshal such objects to/from XML when the
Message needs to be serialized. This support can be provided through the
org.jboss.soa.esb.message.format.xml.marshal.MarshalUnmarshalPlugin:

public interface MarshalUnmarshalPlugin
{

public static final String MARSHAL_UNMARSHAL_PLUGIN =
 "org.jboss.soa.esb.message.format.xml.plugin";

public boolean canPack(final Object value);
public boolean marshal (Element doc, Object param)

throws MarshalException;

public Object unmarshal (Element doc) throws UnmarshalException;

public URI type ();
}

Note: Java Serialized objects are supported by default.

Plug-ins can be registered with the system through the jbossesb-properties.xml
configuration file. They should have attribute names that start with the
MARSHAL_UNMARSHAL_PLUGIN. When packing objects in XML, JBossESB runs through the
list of registered plug-ins until it finds one that can deal with the object type (or faults). When
packing, the name (type) of the plug-in that packed the object is also attached to facilitate
unpacking at the Message receiver.

Now that we have looked at the concepts behind services and Messages, we shall examine
how to construct services using the framework provided by Rosetta in the following Chapter.

JBESB-PG-3/26/10 29

Chapter 4

Building and Using
Services

Listeners, Routers/Notifiers and Actions

Listeners

Listeners encapsulate the endpoints for ESB-aware message reception. Upon receipt of a
message, a Listener feeds that message into a “pipeline” of message processors that process
the message before routing the result to the “replyTo” endpoint. The action processing that
takes place in the pipeline may consist of steps wherein the message gets transformed in one
processor, some business logic is applied in the next processor, before the result gets routed to
the next step in the pipeline, or to another endpoint.

Note: various parameters can be configured for listeners, such as the number of active
worker threads. See the chapter on Defining Service Configurations for a full range of
these options.

Routers

Routers are the way in which either the ESB Message itself of its payload can be routed to an
endpoint. Some routers support the 'unwrap' property. If this property is true then the ESB
Message payload will be extracted and only the payload will be sent to the ESB-unaware
endpoint. Setting 'unwrap' to false will pass the ESB Message as is and the receiving endpoint
must be ESB-aware so that it can deal with the message.

No further processing of the action pipeline will occur after the router action even if you there
are action after it in the configuration. If this sort of splitting is required you should use the
StaticWiretap action.

Other routers like StaticWiretap, StaticRouter are only for routing to other services. There are
also router that can be used for dynamic routing based on the message content. Please see the
section “What is Content Based Routing” in the ServicesGuide for more formation on content
based routers.

For information about the usage of different routers please see the routers section in Chapter
11 “Out-of-the-box Actions”.

Notifiers

Notifiers are the way in which success or error information may be propagated to ESB-
unaware endpoints. You should not use Notifiers for communicating with ESB-aware
endpoints. This may mean that you cannot have ESB-aware and ESB-unaware endpoints
listening on the same channel. Consider using Couriers or the ServiceInvoker within your
Actions if you want to communicate with ESB-aware endpoints.

Not all ESB-aware transports are supported for Notifiers (and vice versa). Notifiers are
deliberately simple in what they allow to be transported: either a byte[] or a String (obtained
by calling toString() on the payload).

JBESB-PG-3/26/10 30

Note: JMSNotifier was sending the type of JMS message (TextMessage or ObjectMessage)
depending upon the type of ESB Message (XML or Serializable, respectively). This was
wrong, as the type of ESB Message should not affect the way in which the Notifier sends
responses. As of JBossESB 4.2.1CP02, the message type to be used by the Notifier can be
set as a property (org.jboss.soa.esb.message.transport.jms.nativeMessageType)
on the ESB message. Possible values are NotifyJMS.NativeMessage.text or
NotifyJMS.NativeMessage.object. For backward compatibility with previous releases, the
default value depends upon the ESB Message type: object for Serializable and text for
XML. However, we encourage you not to rely on defaults.

As outlined above, the responsibility of a listener is to act as a message delivery endpoint and
to deliver messages to an “Action Processing Pipeline”. Each listener configuration needs to
supply information for:

● the Registry (see servicecategory, servicename, servicedescription and EPR
description tag names). If you set the optional removeoldservice tag name to
true then the ESB will remove any existing service entry from the Registry prior
to adding this new instance. However, this should be used with care, because the
entire service will be removed, including all EPRs.

● instantiation of the listener class (see listenerClass tag name).

● the EPR that the listener will be servicing. This is transport specific. The
following example corresponds to a JMS EPR (see connectionfactory,
destinationtype, destinationname, jnditype, jndiURL and messageselector
tag names).

● the “action processing pipeline”. One or more <action> elements each that must
contain at least the 'class' tagname that will determine which action class will be
instantiated for that step in the processing chain.

<?xml version = "1.0" encoding = "UTF-8"?>

<jbossesb
xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/x
ml/jbossesb-1.0.1.xsd" parameterReloadSecs="5">

 <providers>
 <jms-provider name="JBossMQ"
 connection-factory="ConnectionFactory"
 jndi-URL="jnp://127.0.0.1:1099"
 jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
 jndi-pkg-prefix="org.jboss.naming:org.jnp.interfaces">

 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_gw"
 />
 </jms-bus>
 <jms-bus busid="quickstartEsbChannel">
 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_esb"

JBESB-PG-3/26/10 31

 />
 </jms-bus>

 </jms-provider>
 </providers>

 <services>
 <service
 category="FirstServiceESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jms-listener name="JMS-Gateway"
 busidref="quickstartGwChannel"
 maxThreads="1"
 is-gateway="true"
 />
 <jms-listener name="helloWorld"
 busidref="quickstartEsbChannel"
 maxThreads="1"
 />
 </listeners>
 <actions>
 <action name="action1"
class="org.jboss.soa.esb.samples.quickstart.helloworld.MyJMSListenerAction"
 process="displayMessage"
 />
 <action name="notificationAction"

class="org.jboss.soa.esb.actions.Notifier">
<property name="okMethod" value="notifyOK" />
<property name="notification-details">

 <NotificationList type="ok">
<target class="NotifyConsole"/>

</NotificationList>
<NotificationList type="err">

<target class="NotifyConsole"/>
</NotificationList>

</property>
 </action>

 </actions>
 </service>
 </services>

</jbossesb>

This example configuration will instantiate a listener object (jms-listener attribute) that will
wait for incoming ESB Messages, serialized within a javax.jms.ObjectMessage, and will
deliver each incoming message to an ActionProcessingPipeline consiting of two steps
(<action> elements):

1. action1. MyJMSListenerAction (a trivial example follows)

2. notificationAction. An org.jboss.soa.esb.actions.SystemPrintln

JBESB-PG-3/26/10 32

The following trivial action class will prove useful for debugging your XML action
configuration

public class MyJMSListenerAction
{
 ConfigTree _config;

 public MyJMSListenerAction(ConfigTree config) { _config = config; }

 public Message process (Message message) throws Exception
 {
 System.out.println(message.getBody().get());
 return message;
 }
}

Action classes are the main way in which ESB users can tailor the framework to their specific
needs. The ActionProcessingPipeline class will expect any action class to provide at least the
following:

● A public constructor that takes a single argument of type ConfigTree

● One or more public methods that take a Message argument, and return a
Message result

Optional public callback methods that take a Message argument will be used for notification
of the result of the specific step of the processing pipeline (see items 5 and 6 below).

The org.jboss,soa.esb.listeners.message.ActionProcessingPipeline class
will perform the following steps for all steps configured using <action> elements

1. Instantiate an object of the class specified in the 'class' attribute with a
constructor that takes a single argument of type ConfigTree

2. Analyze contents of the 'process' attribute.

Contents can be a comma separated list of public method names of the
instantiated class (step 1), each of which must take a single argument of type
Message, and return a Message object that will be passed to the next step in the
pipeline

If the 'process' attribute is not present, the pipeline will assume a single
processing method called “process”

Using a list of method names in a single <action> element has some advantages
compared to using successive <action> elements, as the action class is
instantiated once, and methods will be invoked on the same instance of the class.
This reduces overhead and allows for state information to be kept in the instance
objects.

JBESB-PG-3/26/10 33

This approach is useful for user supplied (new) action classes, but the other
alternative (list of <action> elements) continues to be a way of reusing other
existing action classes.

3. Sequentially invoke each method in the list using the Message returned by the
previous step

4. If the value returned by any step is null the pipeline will stop processing
immediately.

5. Callback method for success in each <action> element: If the list of methods in
the 'process' attribute was executed successfully, the pipeline will analyze
contents of the 'okMethod' attribute. If none is specified, processing will
continue with the next <action> element. If a method name is provided in the
'okMethod' attribute, it will be invoked using the Message returned by the last
method in step 3. If the pipeline succeeds then the okMethod notification will be
called on all handlers from the last one back to the initial one.

6. Callback method for failure in each <action> element: If an Exception occurs
then the exceptionMethod notification will be called on all handlers from the
current (failing) handler back to the initial handler. At present time, if no
exceptionMethod was specified, the only output will be the logged error. If an
ActionProcessingFaultException is thrown from any process method then an
error message will be returned as per the rules defined in the next section. The
contents of the error message will either be whatever is returned from the
getFaultMessage of the exception, or a default Fault containing the information
within the original exception.

Action classes supplied by users to tailor behaviour of the ESB to their specific needs, might
need extra run time configuration (for example the Notifier class in the XML above needs the
<NotificationList> child element). Each <action> element will utilize the attributes mentioned
above and will ignore any other attributes and optional child elements. These will be however
passed through to the action class constructor in the require ConfigTree argument. Each action
class will be instantiated with it's corresponding <action> element and thus does not see (in
fact must not see) sibling action elements.

Note: In JBossESB 4.3 the name of the property used to enclose NotificationList elements in
the <action> target is not validated.

Actions and Messages

Actions are triggered by the arrival of a Message. The specific Action implementation is
expected to know where the data resides within a Message. Because a Service may be
implemented using an arbitrary number of Actions, it is possible that a single input
Message could contain information on behalf of more than one Action. In which case it is
incumbent on the Action developer to choose one or more unique locations within the
Message Body for its data and communicate this to the Service consumers.

Furthermore, because Actions may be chained together it is possible that an Action earlier
in the chain modifies the original input Message, or replaces it entirely.

JBESB-PG-3/26/10 34

Note: From a security perspective, you should be careful about using unknown Actions
within your Service chain. We recommend encrypting information.

If Actions share data within an input Message and each one modifies the information as it
flows through the chain, by default we recommend retaining the original information so that
Actions further down the chain still have access to it. Obviously there may be situations
where this is either not possible or would be unwise. Within JBossESB, Actions that modify
the input data can place this within the org.jboss.soa.esb.actions.post named Body
location. This means that if there are N Actions in the chain, Action N can find the original
data where it would normally look, or if Action N-1 modified the data then N will find it
within the other specified location. To further facilitate Action chaining, Action N can see
if Action N-2 modified the data by looking in the org.jboss.soa.esb.actions.pre
named Body location.

Note: As mentioned earlier, you should use the default named Body location with care when
chaining Actions in case chained Actions use it in a conflicting manner.

Handling responses

There are two processing mechanisms supported for handling responses in the action pipeline,
implicit processing (based on the response of the actions) and explicit processing.

If the processing is implicit then responses will be processed as follows: -

• If any action in the pipeline returns a null message then no response will be sent.

• If the final action in the pipeline returned a nonerror response then a reply will be
sent to the ReplyTo EPR of the request message or, if not set, to the From EPR of the
request message. In the event that there is no way to route responses, an error
message will be logged by the system.

If the processing is explicit then responses will be processed as follows: -

• If the action pipeline is specified as 'OneWay' then the pipeline will never send a
response

• If the pipeline is specific as 'RequestResponse' then a reply will be sent to the
ReplyTo EPR of the request message or, if not set, to the From EPR of the request
message. In the event that there is no EPR is specified then no error message will be
logged by the system.

We recommend that all action pipelines should use the explicit processing mechanism. This
can be enabled by simply adding the 'mep' attribute to the 'actions' element in the jboss-
esb.xml file. The value of this attribute should be either 'OneWay' or 'RequestResponse'.

Error handling when processing actions

When processing an action chain, it is possible that errors may occur. Such errors should be
thrown as exceptions from the Action pipeline, thus terminating the processing of the pipeline.
As mentioned earlier, a Fault Message may be returned within an
ActionProcessingFaultException. If it is important for information about errors to be returned
to the sender (or some intermediary) then the FaultTo EPR should be set. If this is not set, then
JBossESB will attempt to deliver error messages based on the ReplyTo EPR and, if that is

JBESB-PG-3/26/10 35

also not set, the From EPR. If none of these EPRs has been set, then error information will be
logged locally.

Error messages of various types can be returned from the Action implementations. However,
JBossESB supports the following “system” error messages, all of which may be identified by
the mentioned URI in the message Fault, in the case that an exception is thrown and no
application specific Fault Message is present:

• urn:action/error/actionprocessingerror: this means that an action in the
chain threw an ActionProcessingFaultException but did not include a fault
message to return. The exception details will be contained within the “reason” String
of the Fault.

• urn:action/error/unexpectederror: an unexpected exception was caught
during the processing. Details about the exception can be found in the “reason”
String of the Fault.

• urn:action/error/disabled: action processing is disabled.

If an exception is thrown within your Action chain, then it will be propagated back to the
client within a FaultMessageException, which is re-thrown from the Courier or
ServiceInvoker classes. This exception, which is also thrown whenever a Fault message
is received, will contain the Fault code and reason, as well as any propagated exception.

Meta-data and Filters

As a message flows through the ESB it may be useful to attach meta-data to it, such as the
time it entered the ESB and the time it left. Furthermore, it may be necessary to dynamically
augment the message; for example, adding transaction or security information. Both of these
capabilities are supported in JBossESB through the filter mechanism, for both gateway and
ESB nodes.

Note: the filter property name, the package for the InputOutputFilter and its signature
all changed in JBossESB 4.2 MR3 from earlier milestone releases.

The class org.jboss.soa.esb.filter.InputOutputFilter has two methods:

• public Message onOutput (Message msg, Map<String, Object>
params) throws CourierException which is called as a message flows to the
transport. An implementation may modify the message and return a new version.
Additional information may be provided by the caller in the form of extra
parameters.

• public Message onInput (Message msg, Map<String, Object>
params) throws CourierException which is called as a message flows from
the transport. An implementation may modify the message and return a new version.
Additional information may be provided by the caller in the form of extra
parameters.

Filters are defined in the filters section of the jbossesb-properties.xml file (typically located in
the jbossesb.sar archive) using the property org.jboss.soa.esb.filter.<number>,
where <number> can be any value and is used to indicate the order in which multiple filters
are to be called (lowest to highest).

JBESB-PG-3/26/10 36

Note: you will need to place any changes to your jbossesb-properties.xml file on each ESB
instance that is deployed in your environment. This will ensure that all ESB instances can
process the same meta-data.

JBossESB ships with
org.jboss.internal.soa.esb.message.filter.MetaDataFilter and
org.jboss.internal.soa.message.filter.GatewayFilter and
org.jboss.internal.soa.esb.message.filter.EntryExitTimeFilter which add
the following meta-data to the Message as Properties with the indicated property names
and the returned String values.

Message Property Name Value

org.jboss.soa.esb.message.transport.ty
pe

File, FTP, JMS, SQL, or Hibernate.

org.jboss.soa.esb.message.source The name of the file from which the message
was read.

org.jboss.soa.esb.message.time.dob The time the message entered the ESB, e.g.,
the time it was sent, or the time it arrived at a
gateway.

org.jboss.soa.esb.message.time.dod The time the message left the ESB, e.g., the
time it was died.

org.jboss.soa.esb.gateway.original.fil
e.name

If the message was received via a file related
gateway node, then this element will contain
the name of the original file from which the
message was sourced.

org.jboss.soa.esb.gateway.original.que
ue.name

If the message was received via a JMS
gateway node, then this element will contain
the name of the queue from which it was
received.

org.jboss.soa.esb.gateway.original.url If the message was received via a SQL
gateway node, then this element will contain
the original database URL.

Note: Although it is safe to deploy the GatewayFilter on all ESB nodes, it will only add
information to a Message if it is deployed on a gateway node.

More meta-data can be added to the message by creating and registering suitable filters. Your
filter can determine whether or not it is running within a gateway node through the presence
(or absence) of the following named entries within the additional parameters.

Name Value
org.jboss.soa.esb.gateway.file The File from which the Message was sourced.

This will only be present if this gateway is file
based.

org.jboss.soa.esb.gateway.config The ConfigTree that was used to initialize the
gateway instance.

JBESB-PG-3/26/10 37

Note: Only file based, JMS and SQL gateways have support for the GatewayFilter in
JBossESB 4.8.

What is a Service?

JBossESB does not impose restrictions on what constitutes a service. As we discussed earlier
in this document, the ideal SOA infrastructure encourages a loosely coupled interaction
pattern between clients and services, where the message is of critical importance and
implementation specific details are hidden behind an abstract interface. This allows for the
implementations to change without requiring clients/users to change. Only changes to the
message definitions necessitate updates to the clients.

As such and as we have seen, JBossESB uses a message driven pattern for service definitions
and structures: clients send Messages to services and the basic service interface is essentially
a single process method that operates on the Message received. Internally a service is
structured from one or more Actions, that can be chained together to process incoming the
incoming Message. What an Action does is implementation dependent, e.g., update a
database table entry, or call an EJB.

When developing your services, you first need to determine the conceptual interface/contract
that it exposes to users/consumers. This contract should be defined in terms of Messages,
e.g., what the payload looks like, what type of response Message will be generated (if any)
etc.

Note: Once defined, the contract information should be published within the registry. At
present JBossESB does not have any automatic way of doing this.

Clients can then use the service as long as they do so according to the published contract. How
your service processes the Message and performs the work necessary, is an implementation
choice. It could be done within a single Action, or within multiple Actions. There will be the
usual trade-offs to make, e.g., manageability versus re-useability.

Note: in subsequent releases we will be improving tool support to facilitate the development
of services.

ServiceInvoker

From a clients perspective, the Courier interface and its various implementations can be used
to interact with services. However, this is still a relatively low-level approach, requiring
developer code to contact the registry and deal with failures. Furthermore, since JBossESB
has fail-over capabilities for stateless services, this would again have to be managed by the
application. See the Advanced chapter for more details on fail-over.

In JBossESB 4.2, the ServiceInvoker was introduced to help simplify the development
effort. The ServiceInvoker hides much of the lower level details and opaquely works with
the stateless service fail-over mechanisms. As such, ServiceInvoker is the recommended
client-side interface for using services within JBossESB.

 public class ServiceInvoker
 {
 public ServiceInvoker(Service service) throws
MessageDeliverException;
 public ServiceInvoker(String serviceCategory, String serviceName)
throws MessageDeliverException;

 public ServiceInvoker(Service service, List<PortReference.Extension>
extensions);

JBESB-PG-3/26/10 38

 public Message deliverSync(Message message, long timeoutMillis)
throws MessageDeliverException, RegistryException, FaultMessageException;
 public void deliverAsync(Message message) throws
MessageDeliverException;

public Service getService();

public String getServiceCategory();
 }

An instance of ServiceInvoker can be created for each service with which the client
requires interactions. Once created, the instance contacts the registry where appropriate to
determine the primary EPR and, in the case of fail-overs, any alternative EPRs.

Once created, the client can determine how to send Messages to the service: synchronously
(via deliverSync) or asynchronously (via deliverAsync). In the synchronous case, a
timeout must be specified which represents how long the client will wait for a response. If no
response is received within this period, a MessageDeliverException is thrown.

Note: From JBossESB 4.5 onwards the ResponseTimeoutException is thrown, which is
derived from MessageDeliverException.

Failures to contact the Registry or to successfully look up the service are indicated by
throwing a RegistryException from deliverSync. Timeout values may indicate that the
service has failed, simply overloaded and cannot respond in the time or that the work
requested takes longer than the timeout allowed. In some cases the problem will be transient
and trying again later may be sufficient.

Any other type of failure during communication with the service cause a
FaultMessageException to be thrown.

Note: When using the deliverAsync method all errors are thrown as
MessageDeliverExcepion instances, with the actual exception embedded within it.

As mentioned earlier in this document, when sending a Message it is possible to specify
values for To, ReplyTo, FaultTo etc. within the Message header. When using the
ServiceInvoker, because it has already contacted the registry at construction time, the To
field is unnecessary. In fact, when sending a Message through ServiceInvoker, the To
field will be ignored in both the synchronous and asynchronous delivery modes. In a future
release of JBossESB it may be possible to use any supplied To field as an alternate delivery
destination should the EPRs returned by the registry fail to resolve to an active service.

We will discuss the fail-over properties of JBossESB in the Advanced section and how
ServiceInvoker can opaquely mask failures of individual service instances if multiple
copies appear in the registry. However, in some cases it may be desired to prevent automatic
fail-over and inform the application immediately that a failure occurs. This can be set at the
global level by setting the org.jboss.soa.esb.exceptionOnDeliverFailure property
to true in the JBossESB property file. Alternatively this can be configured on a per message
basis by setting the same property in the specific Message property to true. In both cases the
default is false.

JBESB-PG-3/26/10 39

Transactions

Some Couriers support transactional delivery semantics, e.g., InVM and JMS. The current
delivery semantics for such Couriers is based on JMS transacted sessions, i.e., the message is
placed on a queue within the scope of a transaction but not actually delivered until the
enclosing transaction has committed; it is then pulled by the receiver in the scope of a separate
transaction. Unfortunately for synchronous request/response interactions this can result in a
timeout waiting for the response since the sender blocks waiting for the response before it can
terminate the delivery transaction.

From JBossESB 4.5 onwards we attempt to detect these blocking situations and throw the
IncompatibleTransactionScopeException. The application should catch this and act
accordingly.

Services and ServiceInvoker

In a client-service environment the terms client and service are used to represent roles and a
single entity can be a client and a service simultaneously. As such, you should not consider
ServiceInvoker to be the domain of “pure” clients: it can be used within your Services and
specifically within Actions. For example, rather than using the built-in Content Based
Routing, an Action may wish to re-route an incoming Message to a different Service based
on evaluation of certain business logic. Or an Action could decide to route specific types of
fault Messages to the Dead Letter Queue for later administration.

The advantage of using ServiceInvoker in this way is that your Services will be able to
benefit from the opaque fail-over mechanism described in the Advanced chapter. This means
that one-way requests to other Services, faults etc. can be routed in a more robust manner
without imposing more complexity on the developer.

InVM Transport

The InVM transport is a new feature since JBossESB 4.3 that provides communication
between services running on the same JVM. This means that instances of ServiceInvoker can
invoke a service from within the same JVM without any networking or message serialization
overhead.

Note: It is important to realize that InVM achieves its performance benefits by optimizing
the internal data structures that are used to facilitate inter-service communication. For
example, the queue used to store messages is not persistent (durable) which means that
Messages may be lost in the event of failures. Furthermore if a service is shutdown
before the queue is emptied, those Messages will not be delivered. Further limitations
are mentioned throughout this section within corresponding Notes. Because JBossESB
allows services to be invoked across multiple different transports concurrently you should
be able to design your services such that you can achieve high performance and reliability
by the suitable choice of transport for specific Message types.

Earlier versions of the ESB did not support this transport and required every service to be
configured with at least one Message Aware listener. This is not longer a requirement;
Services can now be configured without any <listeners> configuration and still be invokable
from within their VM e.g.

<service category="ServiceCat" name="ServiceName" description="Test Service">
 <actions mep="RequestResponse">
 <action name="action" class="org.jboss.soa.esb.listeners.SetPayloadAction">
 <property name="payload" value="Tom Fennelly" />
 </action>

JBESB-PG-3/26/10 40

 </actions>
</service>

This makes Service configuration a little more straightforward.

InVM Scope

InVM Service invocation scope can be controlled through the “invmScope” attribute on the
<service> element. The ESB currently supports 2 scopes:

1. NONE: The Service is not invokable over the InVM transport.

2. GLOBAL: (Default) The Service is invokable over the InVM transport from within
the same Classloader scope.

A “LOCAL” scope will be added in a future release, which will restrict invocation to within
the same .esb deployment.

Each service can specify their own InVM scope in the invmScope attribute on the <service>
element of their services configuration:

 <service category="ServiceCat" name="ServiceName" invmScope="GLOBAL"
 description="Test Service">
 <actions mep="RequestResponse">
 <action name="action"
 class="org.jboss.soa.esb.listeners.SetPayloadAction">
 <property name="payload" value="Tom Fennelly" />
 </action>
 </actions>
 </service>

The default InVM Scope for an ESB deployment can be set in the jbossesb-properties.xml file
through the “core:jboss.esb.invm.scope.default” config property. If not defined, the default
scope is “GLOBAL”.

InVM Transacted

The InVM listener can execute within a transacted or non-transacted scope in the same manner
as the other transports which support transactions. This behaviour can be controlled through
explicit or implicit configuration.

The explicit configuration of the transacted scope is controlled through the definition of the
“invmTransacted” attribute on the <service> element and will always take precedence over
the implicit configuration.

The ImVM listener will be implicitly transacted if there is another transacted transport
configured on the service. At present these additional transports can be jms, scheduled or sql.

Transaction Semantics

The InVM transport in JBossESB is not transactional and the message queue is held only in
volatile memory. This means that the Message Queue for this transport will be lost in the case
of system failure or shutdown.

Note: You may not be able to achieve all of the ACID semantics, particularly when used in
conjunction with other transactional resources such as databases, because of the volatility
aspect of the InVM queue. But the performance benefits of InVM should outweigh this
downside in the majority of cases. In the situations where full ACID semantics are
required, we recommend that you use one of the other transactional transports, such as
JMS or database.

JBESB-PG-3/26/10 41

When using InVM within a transaction, the message will not appear on the receiver's queue
until the transaction commits, although the sender will get an immediate acknowledgement
that the message has been accepted to be later queued. If a receiver attempts to pull a message
from the queue within the scope of a transaction, then the message will be automatically
placed back on the queue if that transaction subsequently rolls back. If either a sender or
receiver of a message needs to know the transaction outcome then they should either monitor
the outcome of the transaction directly, or register a Synchronization with the transaction.

Note: When a message is placed back on the queue by the transaction manager, it may not go
back into the same location. This is a deliberate choice in order to maximize performance.
If your application needs specific ordering of messages then you should consider a
different transport or group related messages into a single “wrapper” message.

Threading

To change the number of listener threads associated with an InVM transport,

<service category="HelloWorld" name="Service2"
description="Service 2" i nvmScope="GLOBAL">
 <property name="maxThreads" value="100" />
 <listeners>...
 <actions>...

Lock-step Delivery

The InVM Transport delivers messages with low overhead to an in-memory message queue.
This is very fast and the message queue can become overwhelmed if delivery is happening too
quickly for the Service consuming the messages. To mitigate these situations the InVM
transport provides a "Lock-Step" delivery mechanism.

The "Lock-Step" delivery method attempts to ensure that messages are not delivered to a
service faster than the service is able to retreive them. It does this by blocking message
delivery until the receiving Service picks up the message or a timeout period expires.

This is not a synchronous delivery method. It does not wait for a response or for the service to
process the message. It only blocks until the message is removed from the queue by the
service.

Lock Step delivery is disabled by default, but can be easily enabled for a service using it's
<property> settings on the <service>:

● inVMLockStep: A boolean value controlling whether LockStep delivery is enabled

● inVMLockStepTimeout: The maximum number of milliseconds that message
delivery will be blocked while waiting for a message to be retreived.

<service category="ServiceCat" name="Service2" description="Test Service">
 <property name="inVMLockStep" value="true" />
 <property name="inVMLockStepTimeout" value="4000" />

 <actions mep="RequestResponse">
 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
</service>

Note: If using InVM within the scope of a transaction, lock-step delivery is disabled. This is
because the insertion of a message in to the queue is contingent on the commit of the
enclosing transaction, which may occur an arbitrary time before or after the expected
lock-step wait period.

JBESB-PG-3/26/10 42

Load Balancing

One of the features of the ServiceInvoker is that of load balancing invocations in situations
where there are multiple endpoints available for the target Service. The ServiceInvoker
supports a number of load balancing strategies as part of this feature.

When using the ServiceInvoker, preference is always given to invoking a service over its
InVM transport if one is available. Other load balancing strategies are only be applied in the
absence of an InVM endpoint for the target Service.

Pass-by-Value/Pass-by-Reference

By default, the InVM transport passes Messages “by reference”. In some situations, this can
cause data integrity issues, not to mention class cast issues where messages are being
exchanged across ClassLoader boundaries.

Message passing “by value” (and so avoid issues such as those listed above) can be turned on
by setting the “inVMPassByValue” property on the service in question to “true”:

<service category="ServiceCat" name="Service2" description="Test Service">
 <property name="inVMPassByValue" value="true" />

 <actions mep="RequestResponse">
 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
</service>

Service Contract Definition

A contract definition can be specified on a service by the inclusion of XML schema
definitions representing the incoming request, outgoing response and fault detail messages
which are supported by the corresponding service. The schemas representing the request and
response messages are used to define the format of the contents for the main body section of
the message and can enforce validation of that content.

The schemas are declared by specifying the following attributes on the <actions> element
associated with the service

Name Description Type

inXsd The resource containing the schema for the
request message, representing a single
element.

xsd:string

outXsd The resource containing the schema for the
response message, representing a single
element.

xsd:string

faultXsd A comma separated list of schemas, each
representing one or more fault elements.

xsd:string

requestLocation The location of the request contents within the
body, if not the default location.

xsd:string

responseLocation The location of the response contents within
the body, if not the default location.

xsd:string

JBESB-PG-3/26/10 43

Message validation

The contents of the request and response messages can be automatically validated providing
that the associated schema has been declared on the '<actions>' element. The validation can
be enabled by specifying the 'validate' attribute on the '<actions>' element with a value of
'true'.

Validation is disabled by default.

Exposing an ESB service as a webservice

Declaration of the contract schemas will automatically enable the exposure of the ESB service
through a webservice endpoint, the contract for which can be located through the contract web
application. This functionality can modified by specifying the 'webservice' attribute, the
values for which are as follows.

Value Description

false No webservice endpoint will be published

true A webservice endpoint is published (default)

By default the webservice endpoint does not support WS-Addressing but this can be enabled
through use of the 'addressing' attribute.

Value Description

false No support for WS-Addressing (default)

true Require WS-Addressing support.

When support for addressing is enabled, the WS-Addressing Message Id, Relates To URIs
and relationship types will be added as properties of the incoming messages.

Property Name Description

org.jboss.soa.esb.gateway.ebws.messageID The WS-Addressing message id

org.jboss.soa.esb.gateway.ebws.relatesTo A String array containing the WS-
Addressing RelatesTo URIs.

org.jboss.soa.esb.gateway.ebws.relationshipType A String array containing the WS-
Addressing Relationship Types
corresponding to the RelatesTo URIs.

The following example illustrates the declaration of a service which wishes to validate the
request/response messages but without exposing the service through a webservice endpoint.

<service category="ServiceCat" name="ServiceName" description="Test Service">
 <actions mep="RequestResponse" inXsd="/request.xsd" outXsd="/response.xsd"
 webservice="false" validate="true">

 </actions>
</service>

JBESB-PG-3/26/10 44

The following example illustrates the declaration of a service which wishes to validate the
request/response messages and expose the service through a webservice endpoint. In addition
the service expects the request to be provided in the named body location 'REQUEST' and
will return its response in the named body location 'RESPONSE'.

<service category="ServiceCat" name="ServiceName" description="Test Service">
 <actions mep="RequestResponse" inXsd="/request.xsd" outXsd="/response.xsd"
 validate="true" requestLocation=”REQUEST” responseLocation=”RESPONSE”>

 </actions>
</service>

JBESB-PG-3/26/10 45

Chapter 5

Other Components
Introduction

In this Chapter we shall look at other infrastructural components and services within
JBossESB. Several of these services have their own documentation which you should also
read: the aim of this Chapter is to simply give an overview of what else is available to
developers.

The Message Store

The message store mechanism in JBossESB is designed with audit tracking purposes in mind.
As with other ESB services, it is a pluggable service, which allows for you, the developer to
plug in your own persistence mechanism should you have special needs. The implementation
supplied with JBossESB is a database persistence mechanism. If you require say, a file
persistence mechanism, then it’s just a matter of you writing your own service to do this, and
override the default behaviour with a configuration change.

One thing to point out with the Message Store – this is a base implementation. We will be
working with the community and partners to drive the feature functionality set of the message
store to support advanced audit and management requirements. This is meant to be a starting
point.

Data Transformation

Often clients and services will communicate using the same vocabulary. However, there are
situations where this is not the case and on-the-fly transformation from one data format to
another will be required. It is unrealistic to assume that a single data format will be suitable
for all business objects, particularly in a large scale or long running deployment. Therefore, it
is necessary to provide a mechanism for transforming from one data format to another.

In JBossESB this is the role the Transformation Service. This version of the ESB is shipped
with an out-of-the-box Transformation Service based on Smooks. Smooks is a Transformation
Implementation and Management framework. It allows you implement your transformation
logic in XSLT, Java etc and provides a management framework through which you can
centrally manage the transformation logic for your message-set.

For more details see the “Message Transformations” chapter in the ServicesGuide.

Content-based Routing

Sometimes it is necessary for the ESB to dynamically route messages to their sources. For
example, the original destination may no longer be available, the service may have moved, or
the application simply wants to have more control over where messages go based on content,
time-of-day etc. The Content-based Routing mechanism within JBossESB can be used to route
Messages based on arbitrarily complex rules, which can be defined within XPath or JBoss
Rules (Drools) notation.

JBESB-PG-3/26/10 46

http://www.smooks.org/

The Registry

In the context of SOA, a registry provides applications and businesses a central point to store
information about their services. It is expected to provide the same level of information and
the same breadth of services to its clients as that of a conventional market place. Ideally a
registry should also facilitate the automated discovery and execution of e-commerce
transactions and enabling a dynamic environment for business transactions. Therefore, a
registry is more than an “e-business directory”. It is an inherent component of the SOA
infrastructure.

In many ways, the Registry Service is at the heart of JBossESB: services can self-publish their
endpoint references (EPRs) into the Registry when they are activated, and remove them when
they are taken out of service. Consumers can introspect over the Registry to determine the
EPR for the right service for the work at hand.

JBESB-PG-3/26/10 47

Chapter 6

Example

How to use the Message

The Message is a critical component in the SOA development approach. In contains
application specific data sent from clients to services and vice versa. In some cases that data
may be as simple as “turn on the light”, or as complex as “search this start chart for any
anomalous data that may indicate a planet.” What goes into a Message is entirely application
specific and represents an important aspect of the contract between a service and its clients. In
this section we shall describe some best practices around the Message and how to use it.

Let's consider the following example which uses a Flight Reservation service. This service
supports the following operations:

• reserveSeat: this takes a flight number and seat number and returns success or failure
indication.

• querySeat: this takes a flight number and a seat number and returns an indication of
whether or not the seat is currently reserved.

• upgradeSeat: this takes a flight number and two seat numbers (the currently reserved
seat and the one to move to).

When developing this service, it will likely use technologies such as EJB3, Hibernate etc. to
implement the business logic. In this example we shall ignore how the business logic is
implemented and concentrate on the service.

The role of the service is to plug the logic into the bus. In order to do this, we must determine
how the service is exposed on to the bus, i.e., what contract it defines for clients. In the current
version of JBossESB, that contract takes the form of the Messages that clients and services
can exchange. There is no formal specification for this contract within the ESB, i.e., at present
it is something that the developer defines and must communicate to clients out-of-band from
the ESB. This will be rectified in subsequent releases.

The Message structure

From a service perspective, of all the components within a Message, the Body is probably the
most important, since it is used to convey information specific to the business logic. In order
to interact, both client and service must understand each other. This takes the form of agreeing
on the transport (e.g., JMS or HTTP), as well as agreeing on the dialect (e.g., where in the
Message data will appear and what format it will take).

If we take the simple case of a client sending a Message directly to our Flight Reservation
service, then we need to determine how the service can determine which of the operations the
Message concerns. In this case the developer decides that the opcode (operation code) will
appear within the Body as a String (“reserve”, “query”, “upgrade”) at the location

JBESB-PG-3/26/10 48

“org.example.flight.opcode”. Any other String value (or the absence of any value) will be
considered an illegal Message.

Note: It is important that all values within a Message are given unique names, to avoid
clashes with other clients or services.

The Message Body is the primary way in which data should be exchanged between clients
and services. It is flexible enough to contain any number of arbitrary data type. The other
parameters necessary for carrying out the business logic associated with each operation would
also be suitably encoded.

• “org.example.flight.seatnumber” for the seat number, which will be an integer.

• “org.example.flight.flightnumber” for the flight number, which will be a String.

• “org.example.flight.upgradenumber” for the upgraded seat number, which will be an
integer.

Operation org.example.flig
ht.opcode

org.example.flig
ht.seatnumber

org.example.flight.fl
ightnumber

org.example.flig
ht.upgradenum
ber

reserveSeat String: reserve integer String N/A

querySeat String: query integer String N/A

upgradeSeat String: upgrade integer String integer

As we have mentioned, all of these operations return information to the client. Such
information will likewise be encapsulated within a Message. The determination of the format
of such response Messages will go through the same processes as we are currently
describing. For simplification purposes we shall not consider the response Messages further.

From a JBossESB Action perspective, the service may be built using one or more Actions.
For example, one Action may pre-process the incoming Message and transform the content
in some way, before passing it on to the Action which is responsible for the main business
logic. Each of these Actions may have been written in isolation (possibly by different groups
within the same organization or by completely different organizations). In such an architecture
it is important that each Action has its own unique view of where the Message data resides
that is of interest only to that Action or it is entirely possible for chained Actions to
overwrite or interfere with one another.

The Service

At this point we have enough information to construct the service. For simplicity, we shall
assume that the business logic is encapsulated within the following pseudo-object:

class AirlineReservationSystem
{
 public void reserveSeat (...);
 public void querySeat (...);
 public void upgradeSeat (...);
}

JBESB-PG-3/26/10 49

Note: You could develop your business logic from POJOs, EJBs, Spring etc. JBossESB
provides support for many of these approaches out of the box. You should examine the
relevant documentation and examples.

The process method of the service Action (we'll assume no chaining of Actions) then
becomes (ignoring error checking):

public Message process (Message message) throws Exception
{

String opcode = message.getBody().get(“org.example.flight.opcode”);

 if (opcode.equals(“reserve”))
 reserveSeat(message);
 else
 if (opcode.equals(“query”))
 querySeat(message);
 else
 if (opcode.equals(“upgrade”))
 upgradeSeat(message);
 else
 throw new InvalidOpcode();

 return null;
}

Note: As with WS-Addressing, rather than embed the opcode within the Message Body, you
could use the Action field of the Message Header. This has the drawback that it does
not work if multiple JBossESB Actions are chained together and each needs a different
opcode.

Unpicking the payload

As you can see, the process method is only the start. Now we must provide methods to
decode the incoming Message payload (the Body):

public void reserveSeat (Message message) throws Exception
{

 int seatNumber = message.getBody().get(“org.example.flight.seatnumber”);
 String flight = message.getBody().get(“org.example.flight.flightnumber”);

 boolean success = airlineReservationSystem.reserveSeat(seatNumber,
flight);

 // now create a response Message

 Message responseMessage = ...

 responseMessage.getHeader().getCall().setTo(message.getHeader().getCall()
.getReplyTo());
 responseMessage.getHeader().getCall().setRelatesTo(message.getHeader().ge
tCall().getMessageID());

 // now deliver the response Message
}

What this method illustrates is how the information within the Body is extracted and then
used to invoke a method on some business logic. In the case of reserveSeat, a response is

JBESB-PG-3/26/10 50

expected by the client. This response Message is constructed using any information returned
by the business logic as well as delivery information obtained from the original received
Message. In this example, we need the To address for the response, which we take from the
ReplyTo field of the incoming Message. We also need to relate the response with the
original request and we accomplish this through the RelatesTo field of the response and the
MessageID of the request.

All of the other operations supported by the service will be similarly coded.

The Client

As soon as we have the Message definitions supported by the service, we can construct the
client code. The business logic used to support the service is never exposed directly by the
service (that would break one of the important principles of SOA: encapsulation). This is
essentially the inverse of the service code:

ServiceInvoker flightService = new ServiceInvoker(...);
Message request = // create new Message of desired type

request.getBody().add(“org.example.flight.seatnumber”, 1);
request.getBody().add(“ org.example.flight.flightnumber”, “BA1234”);

request.getHeader().getCall().setMessageID(1234);
request.getHeader().getCall().setReplyTo(myEPR);

Message response = null;

do
{
 response = flightService.deliverSync(request, 1000);

 if (response.getHeader().getCall().getRelatesTo() == 1234)
 {
 // it's out response!

 break;
 }
 else
 response = null; // and keep looping

} while maximumRetriesNotExceeded;

Note: Much of what we have outlined above may seem similar to those who have worked
with traditional client/server stub generators. In those systems, the low-level details, such
as opcodes and parameters, would be hidden behind higher level stub abstractions. In
future releases of JBossESB we intend to support such abstractions to easy the
development approach. As such, working with the raw Message components, such as
Body and Header, will be hidden from the majority of developers.

Configuration for a remote ServiceInvoker

Using the ServiceInvoker from within actions in the ESB does not require any additional
configuration and will work out of the box. But using the ServiceInvoker from a remote JVM,
such as from a stand-alone Java application, a servlet, an EJB etc, will require the following
jars need to be available:

• jbossesb-rosetta.jar

JBESB-PG-3/26/10 51

• jbossesb-config-model-1.0.1.jar

• jbossts-common.jar

• log4j-1.2.14.jar

• stax-1.2.0.jar

• stax-api-1.0.1.jar

• jbossall-client.jar

• scout-1.2.0.aop.jar

• xbean-2.2.0.jar

• commons-logging-1.1.jar

• jboss-aop-jdk50-1.5.6.GA.jar

• javassist-3.6.0.GA.jar

• trove.jar

• juddi-client-3.0.1.aop.jar

• juddi-core-3.0.1.jar

• uddi-ws-3.0.1.jar

• commons-configuration-1.5.jar

• commons-lang-2.3.jar

• jboss-messaging-client.jar

• jboss-remoting.jar

• commons-codec-1.3.jar

• wstx-asl-3.2.0.jar

• xercesImpl-2.8.0.jar

The following configuration file is also required to be available on the classpath:

• jbossesb-properties.xml

• META-INF/uddi.xml

Sample Client

The following Java program can be used to verify that the configuration of a remote client.
This assumes that the helloworld quickstart has been deployed and that the ESB server is
running.

package org.jboss.esb.client;

import org.jboss.soa.esb.client.ServiceInvoker;
import org.jboss.soa.esb.listeners.message.MessageDeliverException;
import org.jboss.soa.esb.message.Message;
import org.jboss.soa.esb.message.format.MessageFactory;

JBESB-PG-3/26/10 52

public class EsbClient
{
 public static void main(String[] args)
 {
 System.setProperty("javax.xml.registry.ConnectionFactoryClass",
 "org.apache.ws.scout.registry.ConnectionFactoryImpl");
 try
 {
 Message message = MessageFactory.getInstance().getMessage();
 message.getBody().add("Sample payload");
 ServiceInvoker invoker = new ServiceInvoker("FirstServiceESB", "SimpleListener");
 invoker.deliverAsync(message);
 }
 catch (final MessageDeliverException e)
 {
 e.printStackTrace();
 }
 }
}

Hints and Tips

You may find the following useful when developing your clients and services.

• When developing your Actions make sure that any payload information specific to
an Action is maintained in unique locations within the Message Body.

• Try not to expose any backend service implementation details within your
Message. This will make it difficult to change the implementation without affecting
clients. Message definitions (contents, formats etc.) which are implementation
agnostic help to maintain loose coupling.

• For stateless services, use the ServiceInvoker as it will opaquely handle failover.

• When building request/response applications, use the correlation information
(MessageID and RelatesTo) within the Message Header.

• Consider using the Header Action field for your main service opcode.

• If using asynchronous interactions in which there is no delivery address for
responses, consider sending any errors to the MessageStore so that they can be
monitored later.

• Until JBossESB provides more automatic support for service contract definitions and
dissemination, consider maintaining a separate repository of these definitions that is
available to developers and users.

JBESB-PG-3/26/10 53

Chapter 7

Advanced Topics
Introduction

In this Chapter we shall look at some more advanced concepts within JBossESB.

Fail-over and load-balancing support
In mission critical systems it is important to design with redundancy in mind. JBossESB
4.2.GA is the first version with built-in fail-over, load balancing and delayed message
redelivery to help you build a robust architecture. When you use SOA it is implied that the
Service has become the building unit. JBossESB allows you to replicate identical services
across many nodes. Where each node can be a virtual or physical machine running an instance
of JBossESB. The collective of all these JBossESB instances is called "The Bus". Services
within the bus use different delivery channels to exchange messages. In ESB terminology one
such channel maybe JMS, FTP, HTTP, etc. These different "protocols" are provided by
systems external to the ESB; the JMS-provider, the FTP server, etc. Services can be
configured to listen to one or more protocols. For each protocol that it is configured to listen
on, it creates an End Point Reference (EPR) in the Registry.

Services, EPRs, listeners and actions

As we have discussed previously, within the jboss-esb.xml each service element consists of
one or more listeners and one or more actions. Let's take a look at the JBossESBHelloworld
example. The configuration fragment below is loosely based on the configuration of the
JBossESBHelloworld example. When the service initializes it registers the category, name
and description to the UDDI registry. Also for each listener element it will register a
ServiceBinding to UDDI, in which it stores an EPR. In this case it will register a JMSEPR for
this service, as it is a jms-listener. The jms specific like queue name etc are not shown, but
appeared at the top of the jboss-esb.xml where you can find the 'provider' section. In the jms-
listener we can simply reference the "quickstartEsbChannel" in the busidref attribute.

Figure 7-1: Hello World configuration fragment, one service instance on one node.

...
<service category="FirstServiceESB" name="SimpleListener" description="Hello
World">
 <listeners>
 <jms-listener name="helloWorld" busidref="quickstartEsbChannel"
maxThreads="1"/>
 </listeners>
 <actions>
 <action name="action1"
class="org.jboss.soa.esb.actions.SystemPrintln"/>
 </actions>
</service>
...

JBESB-PG-3/26/10 54

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld

Given the category and service name, another service can send a message to our Hello World
Service by looking up the Service in the Registry. It will receive the JMSEPR and it can use
that to send a message to. All this heavy lifting is done in the ServiceInvoker class. When our
HelloWorld Service receives a message over the quickstartEsbChannel, it will hand this
message to the process method of the first action in the ActionPipeline, which is the
SystemPrintln action.

Note: Because ServiceInvoker hides much of the fail-over complexity from users, it
necessarily only works with native ESB Messages. Furthermore, in JBossESB 4.2.1 not
all gateways have been modified to use the ServiceInvoker, so incoming ESB-unaware
messages to those gateway implementations may not always be able to take advantage of
service fail-over.

Replicated Services

In our example we have this service running on let's say Node1. What happens if we simply
take the helloworld.esb and deploy it to Node2 as well (see figure 7-2)? Let's say we're using
jUDDI for our Registry and we have configured all our nodes to access one central jUDDI
database (it is recommended to use a clustered database for that). Node2 will find that the
FirstServiceESB - SimpleListener Service is already registered! It will simply add a second
ServiceBinding to this service. So now we have 2 ServiceBindings for this Service. We now
have our first replicated Service! If Node1 goes down, Node2 will keep on working.

Figure 7-2: Two service instance each on a different node.

You will get load balancing as both service instances listen to the same queue. However this
means that we still have a single point of failure in our setup. This is where Protocol
Clustering maybe an option, which we shall describe in the next section.

This type of replication can be used to increase the availability of a service or to provide load
balancing. To further illustrate, consider the diagram below which has a logical service
(Application Service) that is actually comprised of 4 individual services, each of which
provides the same capabilities and conforms to the same service contract. They differ only in
that they do not need to share the same transport protocol. However, as far as the users of
Application Service are concerned they see only a single service, which is identified by the
service name and category. The ServiceInvoker hides the fact that Application Service is
actually composed of 4 other services from the clients. It masks failures of the individual
services and will allow clients to make forward progress as long as at least one instance of the
replicated service group remains available.

Note: this type of replication should only be used for stateless services.

Replication of services may be defined by service providers outside of the control of service
consumers. As such, there may be times when the sender of a message does not want to
silently fail-over to using an alternative service if one is mentioned within the Registry. As
such, if the Message property org.jboss.soa.esb.exceptionOnDeliverFailure is
set to true then no retry attempt will be made by the ServiceInvoker and
MessageDeliverException will be thrown. If you want to specify this approach for all
Messages then the same property can be defined within the Core section of the JBossESB
property file.

JBESB-PG-3/26/10 55

Protocol Clustering

Some JMS providers can be clustered. JBossMessaging is one of these providers, which is
why we use this as our default JMS provider in JBossESB. When you cluster JMS you
remove a single point of failure from your architecture, see Figure 7-3.

Figure 7-3: Protocol clustering: Here we cluster JMS.

Please read the documentation on Clustering for JBossMessaging if you want to enable JMS
clustering. Both JBossESB replication and JMS clustering can be used together, as illustrated
in the following figure. In this example, Service A is identified in the registry by a single
JMSEpr. However, opaquely to the client, that JMSEpr points to a clustered JMS queue,
which has been separately configured (in an implementation manner) to support 3 services.
This is a federated approach to availability and load balancing. In fact masking the replication
of services from users (the client in the case of the JBossESB replication approach, and
JBossESB in the case of the JMS clustering) is in line with SOA principles: hiding these
implementation details behind the service endpoint and not exposing them at the contract
level.

Note: If using JMS clustering in this way you will obviously need to ensure that your
configuration is correctly configured. For instance, if you place all of your ESB services
within a JMS cluster then you cannot expect to benefit from ESB replication.

Other examples of Protocol Clustering would be a NAS for the FileSystem protocol, but what
if your provider simply cannot provide any clustering? Well in that case you can add multiple
listeners to your service, and use multiple (JMS) providers. However this will require fail-
over and load-balancing across providers which leads us to the next section.

Clustering

If you would like to run the same service on more than one node in a cluster you have to wait
for service registry cache revalidation before the service is fully working in the clustered
environment. You can setup this cache revalidation timeout in deploy/jbossesb.sar/jbossesb-
properties.xml:

<properties name="core">

<property name="org.jboss.soa.esb.registry.cache.life" value="60000"/>

</properties>

60 seconds is the default timeout.

Channel Fail-over and Load Balancing

Our HelloWorld Service can listen to more then 1 protocol. Here we have added a JMS
channel.

...

JBESB-PG-3/26/10 56

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

<service category="FirstServiceESB" name="SimpleListener" description="Hello
World">
 <listeners>
 <jms-listener name="helloWorld" busidref="quickstartEsbChannel"
maxThreads="1"/>
 <jms-listener name="helloWorld2" busidref="quickstartFtpChannel2"
maxThreads="1"/>
 </listeners>
...

Now our Service is simultaneously listening to two JMS queues. Now these queues can be
provided by JMS providers on different physical boxes! So we now have a made a redundant
JMS connection between two services. We can even mix protocols in this setup, so we can
also add and ftp-listener to the mix.

Figure 7-5: Adding an 2 FTP servers to the mix.
...
<service category="FirstServiceESB" name="SimpleListener" description="Hello
World">
 <listeners>
 <jms-listener name="helloWorld" busidref="quickstartEsbChannel"
maxThreads="1"/>
 <jms-listener name="helloWorld2" busidref="quickstartJmsChannel2"
maxThreads="1"/>
 <ftp-listener name="helloWorld3" busidref="quickstartFtpChannel3"
maxThreads="1"/>
 <ftp-listener name="helloWorld4" busidref="quickstartFtpChannel3"
maxThreads="1"/>
 </listeners>
...

When the ServiceInvoker tries to deliver a message to our Service it will get a choice of 8
EPRs now (4 EPRs from Node1 and 4 EPRs from Node2). How will it decide which one to
use? For that you can configure a Policy. In the jbossesb-properties.xml you can set the
'org.jboss.soa.esb.loadbalancer.policy'. Right now three Policies are provided, or you can
create your own.

• First Available. If a healthy ServiceBinding is found it will be used unless it dies,
and it will move to the next EPR in the list. This Policy does not provide any load
balancing between the two service instances.

• Round Robin. Typical Load Balance Policy where each EPR is hit in order of the
list.

• Random Robin. Like the other Robin but then random.

The EPR list the Policy works with may get smaller over time as dead EPRs will be removed
from the (cached) list. When the list is exhausted or the time-to-live of the list cache is
exceeded, the ServiceInvoker will obtain a fresh list of EPRs from the Registry. The
'org.jboss.soa.esb.registry.cache.life' can be set in the jbossesb-properties file, and is defaulted
to 60,000 milliseconds. What if none of the EPRs work at the moment? This is where we may
use Message Redelivery Service.

JBESB-PG-3/26/10 57

Message Redelivery
If the list of EPRs contains nothing but dead EPRs the ServiceInvoker can do one of two
things:

• If you are trying to deliver the message synchronously it will send the message to the
DeadLetterService, which by default will store to the DLQ MessageStore, and it will
send a failure back to the caller. Processing will stop. Note that you can configure
the DeadLetterService in the jbossesb.esb if for instance you want it to go to a JMS
queue, or if you want to receive a notification.

• If you are trying to deliver the message asynchronously (recommended), it too will
send the message to the DeadLetterService, but the message will get stored to the
RDLVR MessageStore. The Redeliver Service (jbossesb.esb) will retry sending the
message until the maximum number of redelivery attempts is exceeded. In that case
the message will get stored to the DLQ MessageStore and processing will stop.

Figure 7-6. If all the EPRs are bad at a given moment, async requests can be store in the
MessageStore for redelivery at a later time.

Note: The DeadLetterService is turned on by default, however in the jbossesb-properties.xml
you could set org.jboss.soa.esb.dls.redeliver to false to turn off its use. If you want to
control this on a per message basis then set the org.jboss.soa.esb.dls.redeliver property in
the specific Message properties accordingly. The Message property will be used in
preference to any global setting. The default is to use the value set in the configuration
file.

Scheduling of Services
JBossESB 4.8 supports 2 types of providers:

1. Bus Providers, which supply messages to action processing pipelines via messaging
protocols such as JMS and HTTP. This provider type is “triggered” by the underlying
messaging provider.

2. Schedule Providers, which supply messages to action processing pipelines based on a
schedule driven model i.e. where the underlying message delivery mechanism (e.g.
the file system) offers no support for triggering the ESB when messages are available
for processing, a scheduler periodically triggers the listener to check for new
messages.

Scheduling is new to 4.2 of the ESB and not all of the listeners have been migrated over to
this model yet.

JBossESB 4.8 offers a <schedule-listener> as well as 2 <schedule-provider> types - <simple-
schedule> and <cron-schedule>. The <schedule-listener> is configured with a “composer”
class, which is an implementation of the
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer interface.

JBESB-PG-3/26/10 58

Simple Schedule

This schedule type provides a simple scheduling capability based on a the following
attributes:

1. “scheduleid”: A unique identifier string for the schedule. Used to reference a
schedule from a listener.

2. “frequency”: The frequency (in seconds) with which all schedule listeners should be
triggered.

3. “execCount”: The number of times the schedule should be executed.

4. “startDate”: The schedule start date and time. The format of this attribute value is
that of the XML Schema type “dateTime”. See dateTime.

5. “endDate”: The schedule end date and time. The format of this attribute value is
that of the XML Schema type “dateTime”. See dateTime.

Example:
 <providers>
 <schedule-provider name="schedule">
 <simple-schedule scheduleid="1-sec-trigger" frequency="1" execCount="5" />
 </schedule-provider>
 </providers>

Cron Schedule

This schedule type provides scheduling capability based on a CRON expression. The
attributes for this schedule type are as follows:

1. “scheduleid”: A unique identifier string for the schedule. Used to reference a
schedule from a listener.

2. “cronExpression”: CRON expression.

3. “startDate”: The schedule start date and time. The format of this attribute value is
that of the XML Schema type “dateTime”. See dateTime.

4. “endDate”: The schedule end date and time. The format of this attribute value is
that of the XML Schema type “dateTime”. See dateTime.

Example:
 <providers>
 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
 </schedule-provider>
 </providers>

Scheduled Listener

The <scheduled-listener> can be used to perform scheduled tasks based on a <simple-
schedule> or <cron-schedule> configuration.

It's configured with an “event-processor” class, which can be an implementation of one of
org.jboss.soa.esb.schedule.ScheduledEventListener or
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer.

JBESB-PG-3/26/10 59

http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html

● ScheduledEventListener: Event Processors that implement this interface are simply
triggered through the “onSchedule” method. No action processing pipeline is
executed.

● ScheduledEventMessageComposer: Event Processors that implement this interface
are capable of “composing” a message for the action processing pipeline associated
with the listener.

The attributes of this listener are:

1. “name”: The name of the listener instance.

2. “event-processor”: The event processor class that's called on every schedule trigger.
Se above for implementation details.

3. One of:

● “scheduleidref”: I the scheduleid of the schedule to use for triggering this
listener.

● “schedule-frequency”: Schedule frequency (in seconds). A convenient way of
specifying a simple schedule directly on the listener.

Example Configurations

The following is an example configuration involving the <scheduled-listener> and the <cron-
schedule>.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd">

 <providers>
 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
 </schedule-provider>
 </providers>

 <services>
 <service category="ServiceCat" name="ServiceName" description="Test Service">

 <listeners>
 <scheduled-listener name="cron-schedule-listener" scheduleidref="cron-trigger"
 event-processor="org.jboss.soa.esb.schedule.MockScheduledEventMessageComposer" />
 </listeners>

 <actions>
 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
 </service>
 </services>

</jbossesb>

Quartz Scheduler Property Configuration

The Scheduling functionality in JBossESB is built on top of the Quartz Scheduler. The
default Quartz Scheduler instance configuration used by JBossESB is as follows:

org.quartz.scheduler.instanceName = DefaultQuartzScheduler
org.quartz.scheduler.rmi.export = false
org.quartz.scheduler.rmi.proxy = false
org.quartz.scheduler.wrapJobExecutionInUserTransaction = false

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 2
org.quartz.threadPool.threadPriority = 5
org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread = true

org.quartz.jobStore.misfireThreshold = 60000

org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

JBESB-PG-3/26/10 60

http://www.opensymphony.com/quartz/

Any of these Scheduler configurations can be overridden, or/and new ones can be added. You
can do this by simply specifying the configuration directly on the <schedule-provider>
configuration as a <property> element. For example, if you wish to increase the thread pool
size to 5:

<schedule-provider name="schedule">
 <property name=”org.quartz.threadPool.threadCount” value=”5” />
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
</schedule-provider>

JBESB-PG-3/26/10 61

Chapter 8

Fault-tolerance and
Reliability

Introduction
In this Chapter we shall look at the reliability characteristics of JBossESB. We shall examine
what failure modes you should expect to be tolerated with this release and give advice on how
to improve the fault tolerance of your applications. However, in order to proceed we need to
define some important terms. If you wish to skip the following sections because you
understand this topic already, you may go straight to the Reliability Guarantees section.

Dependability is defined as the trustworthiness of a component such that reliance can be
justifiably placed on the service (the behavior as perceived by a user) it delivers. The
reliability of a component is a measure of its continuous correct service delivery. A failure
occurs when the service provided by the system no longer complies with its specification. An
error is that part of a system state which is liable to lead to failure, and a fault is defined as
the cause of an error.

A fault-tolerant system is one which is designed to fulfill its specified purpose despite the
occurrence of component failures. Techniques for providing fault-tolerance usually require
mechanisms for consistent state recovery mechanisms, and detecting errors produced by faulty
components. A number of fault-tolerance techniques exist, including replication and
transactions.

Failure classification

Given a (distributed) system, it would be useful if we were able to describe its behavior
formally in a way that will help establish the correctness of the applications run on it. If this
then imposes restrictions on the permissible behavior of the applications we will need to
understand how these restrictions can be enforced and the implications in weakening or
strengthening them. A useful method of building such a formal description with respect to
fault-tolerance is to categorize the system components according to the types of faults they are
assumed to exhibit.

Four possible classifications of failures are: omission, value, timing, and arbitrary. Associated
with each component in the system will be a specification of its correct behavior for a given
set of inputs. A non-faulty component will produce an output that is in accordance with this
specification. The response from a faulty component need not be as specified, i.e., it can be
anything. The response from a given component for a given input will be considered to be
correct if not only the output value is correct but also that the output is produced on time, i.e.,
produced within a specified time limit.

The classifications are:

 Omission fault/failure: a component that does not respond to an input from another
component, and thereby fails by not producing the expected output is exhibiting an
omission fault and the corresponding failure an omission failure. A communication

JBESB-PG-3/26/10 62

link which occasionally loses messages is an example of a component suffering from
an omission fault.

 Value fault/failure: a fault that causes a component to respond within the correct time
interval but with an incorrect value is termed a value fault (with the corresponding
failure called a value failure). A communication link which delivers corrupted
messages on time suffers from a value fault.

 Timing fault/failure: a timing fault causes the component to respond with the correct
value but outside the specified interval (either too soon, or too late). The
corresponding failure is a timing failure. An overloaded processor which produces
correct values but with an excessive delay suffers from a timing failure. Timing
failures can only occur in systems which impose timing constraints on computations.

 Arbitrary fault/failure: the previous failure classes have specified how a component
can be considered to fail in either the value or time domain. It is possible for a
component to fail in both the domains in a manner which is not covered by one of the
previous classes. A failed component which produces such an output will be said to
be exhibiting an arbitrary failure (Byzantine failure).

An arbitrary fault causes any violation of a component’s specified behavior. All other fault
types preclude certain types of fault behavior, the omission fault type being the most
restrictive. Thus the omission and arbitrary faults represent two ends of a fault classification
spectrum, with the other fault types placed in between. The latter failure classifications thus
subsume the characteristics of those classes before them, e.g., omission faults (failures) can be
treated as a special case of value, and timing faults (failures). Such ordering can be
represented as a hierarchy:

Fault classification hierarchy.

JBossESB and the Fault Models

Within JBossESB there is nothing that will allow it to tolerate Byzantine/arbitrary failures. As
you can probably imagine, these are extremely difficult failures to detect due to their nature.
Protocols do exist to allow systems to tolerate arbitrary failures, but they often require multi-
phase coordination or digital signatures. Future releases of JBossESB may incorporate support
for some of these approaches.

Because value, timing and omission failures often require semantic information concerning
the application (or specific operations), there is only so much that JBossESB can do directly to
assist with these types of faults. However, by correct use of JBossESB capabilities such as
RelatesTo and MessageID within the Message header, it is possible for applications to
determine whether or not a received Message is the one they are waiting for or a delayed
Message, for example. Unfortunately Messages that are provided too soon by a service, e.g.,
asynchronous one-way responses to one-way requests, may be lost due to the underlying
transport implementation. For instance, if using a protocol such as HTTP there is a finite
buffer (set at the operating system level) within which responses can be held before they are
passed to the application. If this buffer is exceeded then information within it may be lost in
favor of new Messages. Transports such as FTP or SQL do not necessarily suffer from this
specific limitation, but may exhibit other resource restrictions that can result in the same
behavior.

JBESB-PG-3/26/10 63

Tolerating Messages that are delayed is sometimes easier than tolerating those that arrive too
early. However, from an application perspective, if an early Message is lost (e.g., by buffer
overflow) it is not possible to distinguish it from one that is infinitely delayed. Therefore, if
you construct your applications (consumers and services) to use a retry mechanism in the case
of lost Messages, timing and omission failures should be tolerated, with the following
exception: your consumer picks up an early response out of order and incorrectly processes it
(which then becomes a value failure). Fortunately if you use RelatesTo and MessageID
within the Message header, you can spot incorrect Message sequences without having to
process the entire payload (which is obviously another option available to you).

Within a synchronous request-response interaction pattern, many systems built upon RPC will
automatically resend the request if a response has not been received within a finite period of
time. Unfortunately at present JBossESB does not do this and you will have to used the
timeout mechanism within Couriers or ServiceInvoker to determine when (and whether) to
send the Message again. As we saw in the Advanced Chapter, it will retransmit the Message
if it suspects a failure of the service has occurred that would affect Message delivery.

Note: You should use caution when retransmitting Messages to services. JBossESB currently
has no notion of retained results or detecting retransmissions within the service, so any
duplicate Messages will be delivered to the service automatically. This may mean that
your service receives the same Message multiple times (e.g., it was the initial service
response that got lost rather than the initial request). As such, your service may attempt to
perform the same work. If using retransmission (either explicitly or through the
ServiceInvoker fail-over mechanisms), you will have to deal with multiple requests within
your service to ensure it is idempotent.

The use of transactions (such as those provided by JBossTS) and replication protocols (as
provided by systems like JGroups) can help to tolerate many of these failure models.
Furthermore, in the case where forward progress is not possible because of a failure, using
transactions the application can then roll back and the underlying transaction system will
guarantee data consistency such that it will appear as though the work was never attempted.
At present JBossESB offers transactional support through JBossTS when deployed within the
JBoss Application Server.

Failure Detectors and Failure Suspectors

An ideal failure detector is one which can allow for the unambiguous determination of the
liveliness of an entity, (where an entity may be a process, machine etc.,), within a distributed
system. However, guaranteed detection of failures in a finite period of time is not possible
because it is not possible to differentiate between a failed system and one which is simply
slow in responding.

Current failure detectors use timeout values to determine the liveness of entities: for example,
if a machine does not respond to an “are-you-alive?” message within a specified time period,
it is assumed to have failed. If the values assigned to such timeouts are wrong (e.g., because of
network congestion), incorrect failures may be assumed, potentially leading to inconsistencies
when some machines “detect” the failure of another machine while others do not. Therefore,
such timeouts are typically assigned given what can be assumed to be the worst case scenario
within the distributed environment in which they are to be used, e.g., worst case network
congestion and machine load. However, distributed systems and applications rarely perform
exactly as expected from one execution to another. Therefore, fluctuations from the worst case
assumptions are possible, and there is always a finite probability of making an incorrect
failure detection decision.

JBESB-PG-3/26/10 64

Given that guaranteed failure detection based upon timeouts is not possible, there has been
much work on failure suspectors: a failure suspector works by realising that although
guaranteed failure detection is impossible, enforcing a decision that a given entity may have
failed on to other, active entities is possible. Therefore, if one entity assumes another has
failed, a protocol is executed between the remaining entities to either agree that it will be
assumed to have failed (in which case it is excluded from the system and no further work by it
will be accepted) or that it has not failed: the fact that one entity thinks it has failed does not
mean that all entities will reach the same decision. If the entity has not failed and is excluded
then it must eventually execute another protocol to be recognised as being alive.

The advantage of the failure suspector is that all correctly functioning entities within the
distributed environment will agree upon the liveness of another suspected failed entity. The
disadvantage is that such failure suspection protocols are heavy-weight, typically requiring
several rounds of agreement. In addition, since suspected failure is still based upon timeout
values, it is possible for non-failed entities to be excluded, thus reducing (possibly critical)
resource utilisation and availability.

Some applications can tolerate the fact that failure detection mechanisms may occasionally
return an incorrect answer. However, for other applications the incorrect determination of the
liveliness of an entity may lead to problems such as data corruption, or in the case of mission
critical applications (e.g., aircraft control systems or nuclear reactor monitoring) could result
in loss of life.

At present JBossESB does not support failure detectors or failure suspectors. We hope to
address this shortcoming in future releases. For now you should develop your consumers and
services using the techniques previously mentioned (e.g., MessageID and time-out/retry) to
attempt to determine whether or not a given service has failed. In some situations it is better
and more efficient for the application to detect and deal with suspected failures.

Reliability guarantees

As we have seen, there are a range of ways in which failures can happen within a distributed
system. In this section we will translate those into concrete examples of how failures could
affect JBossESB and applications deployed on it. In the section on Recommendations we shall
cover ways in which you can configure JBossESB to better tolerate these faults, or how you
should approach your application development.

There are many components and services within JBossESB. The failure of some of them may
go unnoticed to some or all of your applications depending upon when the failure occurs. For
example, if the Registry Service crashes after your consumer has successfully obtained all
necessary EPR information for the services it needs in order to function, then it will have no
adverse affect on your application. However, if it fails before this point, your application will
not be able to make forward progress. Therefore, in any determination of reliability guarantees
it is necessary to consider when failures occur as well as the types of those failures.

It is never possible to guarantee 100% reliability and fault tolerance. The laws of physics
(namely thermodynamics and the always increasing nature of entropy) mean that hardware
degrades and human error is inevitable. All we can ever do is offer a probabilistic approach:
with a high degree of probability, a system will tolerate failures and ensure data consistency/
make forward progress. Furthermore, proving fault-tolerance techniques such as transactions
or replication comes at a price: performance. This trade-off between performance and fault-
tolerance is best achieved with application knowledge: any attempts at opaquely imposing a
specific approach will inevitably lead to poorer performance in situations where it is imply not
necessary. As such, you will find that many of the fault-tolerance techniques supported by
JBossESB are disabled by default. You should enable them when it makes sense to do so.

JBESB-PG-3/26/10 65

Message loss

We have previously discussed how message loss or delay may adversely affect applications.
We have also shown some examples of how messages could be lost within JBossESB. In this
section we shall discuss message loss in more detail.

Many distributed systems support reliable message delivery, either point-to-point (one
consumer and one provider) or group based (many consumers and one provider). Typically the
semantics imposed on reliability are that the message will be delivered or the sender will be
able to know with certainty that it did not get to the receiver, even in the presence of failures.
It is frequently the case that systems employing reliable messaging implementations
distinguish between a message being delivered to the recipient and it being processed by the
recipient: for instance, simply getting the message to a service does not mean much if a
subsequent crash of the service occurs before it has time to work on the contents of the
message.

Within JBossESB, the only transport you can use which gives the above mentioned failure
semantics on Message delivery and processing is JMS: with transacted sessions (an optional
part of the JMSEpr), it is possible to guarantee that Messages are received and processed in
the presence of failures. If a failure occurs during processing by the service, the Message will
be placed back on to the JMS queue for later re-processing. However, this does have some
important performance implications: transacted sessions can be significantly slower than non-
transacted sessions so should be used with caution.

Because none of the other transports supported by JBossESB come with transactional or
reliable delivery guarantees, it is possible for Messages to be lost. However, in most
situations the likelihood of this occurring is small. Unless there is a simultaneous failure of
both sender and receiver (possible but not probable), the sender will be informed by
JBossESB about any failure to deliver the Message. If a failure of the receiver occurs whilst
processing and a response was expected, then the receiver will eventually time-out and can
retry.

Note: Using asynchronous message delivery can make failure detection/suspicion difficult
(theoretically impossible to achieve). You should consider this aspect when developing
your applications.

For these reasons, the Message fail-over and redelivery protocol that was described in the
Advanced Chapter is a good best-effort approach. If a failure of the service is suspected then it
will select an alternative EPR (assuming one is available) and use it. However, if this failure
suspicion is wrong, then it is possible that multiple services will get to operate on the same
Message concurrently. Therefore, although it offers a more robust approach to fail-over, it
should be used with care. It works best where your services are stateless and idempotent, i.e.,
the execution of the same message multiple times is the same as executing it once.

For many services and applications this type of redelivery mechanism is fine. The robustness
it provides over a single EPR can be a significant advantage. The failure modes where it does
not work, i.e., where the client and service fails or the service is incorrectly assumed to have
failed, are relatively uncommon. If your services cannot be idempotent, then until JBossESB
supports transactional delivery of messages or some form of retained results, you should
either use JMS or code your services to be able to detect retransmissions and cope with
multiple services performing the same work concurrently.

JBESB-PG-3/26/10 66

Suspecting Endpoint Failures

We saw earlier how failure detection/suspicion is difficult to achieve. In fact until/unless a
failed machine recovers, it is not possible to determine the difference between a crashed
machine or one that is simply running extremely slowly. Furthermore, because networks can
become partitioned, it is entirely possible that different consumers have different views of
which services are available (often referred to as split-brain syndrome).

Supported Crash Failure Modes

Unless using transactions or a reliable message delivery protocol such as JMS, JBossESB will
only tolerate crash failures that are not catastrophic (i.e., the entire system does not fail) and
result in the ability of JBossESB and/or the application to unambiguously reason about the
liveness of the endpoints involved. If services crash or shutdown cleanly before receiving
messages, then it is safe to use transports other than JMS.

Component Specifics

In this section we shall look at specific components and services within JBossESB.

Gateways

Once a message is accepted by a Gateway it will not be lost unless sent within the ESB using
an unreliable transport. All of the following JBossESB transports can be configured to either
reliably deliver the Message or ensure it is not removed from the system: JMS, FTP, SQL.
Unfortunately HTTP cannot be so configured.

ServiceInvoker

The ServiceInvoker will place undeliverable Messages to the Redelivery Queue if sent
asynchronously. Synchronous Message delivery that fails will be indicated immediately to
the sender. In order for the ServiceInvoker to function correctly the transport must indicate an
unambiguous failure to deliver to the sender. A simultaneous failure of the sender and
receiver may result in the Message being lost.

JMS Broker

Messages that cannot be delivered to the JMS broker will be queued within the Redelivery
Queue. For enterprise deployments a clustered JMS broker is recommended.

Action Pipelining

As with most distributed systems, we differentiate between a Message being received by the
container within which services reside and it being processed by the ultimate destination. It is
possible for Messages to be delivered successfully but for an error or crash during processing
within the Action pipeline to cause it to be lost. As mentioned previously, it is possible to
configure some of the JBossESB transports so they do not delete received Messages when
they are processed, so they will not be lost in the event of an error or crash.

Recommendations

Given the previous overview of failure models and the capabilities within JBossESB to
tolerate them, we arrive at the following recommendations:

• Try to develop stateless and idempotent services. If this is not possible, use
MessageID to identify Messages so your application can detect retransmission
attempts. If retrying Message transmission, use the same MessageID. Services that

JBESB-PG-3/26/10 67

are not idempotent and would suffer from redoing the same work if they receive a
retransmitted Message, should record state transitions against the MessageID,
preferably using transactions. Applications based around stateless services tend to
scale better as well.

• If developing stateful services, use transactions and a JMS implementation (clustered
preferably).

• Cluster your Registry and use a clustered/faulttolerant backend database, to remove
any single points of failure.

• Ensure that the Message Store is backed by a highly available database.

• Clearly identify which services and which operations on services need higher
reliability and fault tolerance capabilities than others. This will allow you to target
transports other than JMS at those services, potentially improving the overall
performance of applications. Because JBossESB allows services to be used through
different EPRs concurrently, it is also possible to offer these different qualities of
service (QoS) to different consumers based on application specific requirements.

• Because network partitions can make services appear as though they have failed,
avoid transports that are more prone to this type of failure for services that cannot
cope with being misidentified as having crashed.

• In some situations (e.g., HTTP) the crash of a server after it has dealt with a message
but before it has responded could result in another server doing the same work
because it is not possible to differentiate between a machine that fails after the
service receives the message and process it, and one where it receives the message
and doesn't process it.

• Using asynchronous (oneway) delivery patterns will make it difficult to detect
failures of services: there is typically no notion of a lost or delayed Message if
responses to requests can come at arbitrary times. If there are no responses at all,
then it obviously makes failure detection more problematical and you may have to
rely upon application semantics to determine that Messages did not arrive, e.g., the
amount of money in the bank account does not match expectations. When using
either the ServiceInvoker or Couriers to delivery asynchronous Messages, a return
from the respective operation (e.g., deliverAsync) does not mean the Message
has been acted upon by the service.

• The Message Store is used by the redelivery protocol. However, as mentioned
previously this is a besteffort protocol for improved robustness and does not use
transactions or reliable message delivery. This means that certain failures may result
in Messages being lost entirely (they do not get written to the store before a crash),
or delivered multiple times (the redelivery mechanism pulls a Message from the
store, delivers it successfully but there is a crash that prevents the Message from
being removed from the store; upon recovery the Message will be delivered again).

JBESB-PG-3/26/10 68

• Some transports, such as FTP, can be configured to retain Messages that have been
processed, although they will be uniquely marked to differentiate them from un
processed Messages. The default approach is often to delete Messages once they
have been processed, but you may want to change this default to allow your
applications to determine which Messages have been dealt with upon recovery from
failures.

 Despite what you may have read in this Chapter, failures are uncommon. Over the years
hardware reliability has improved significantly and good software development practices
including the use of formal verification tools have reduced the chances of software problems.
We have given the information within this Chapter to assist you in determining the right
development and deployment strategies for your services and applications. Not all of them
will require high levels of reliability and fault tolerance, with associated reducing in
performance. However, some of them undoubtedly will.

JBESB-PG-3/26/10 69

Chapter 9

Defining Service
Configurations

Overview

JBossESB 4.8 configuration is based on the jbossesb-1.2.0 XSD. This XSD is always the
definitive reference for the ESB configuration.

The model has 2 main sections:

1. <providers>: This part of the model centrally defines all the message <bus>
providers used by the message <listener>s, defined within the <services> section
of the model.

2. <services>: This part of the model centrally defines all of the services under the
control of a single instance of JBoss ESB. Each <service> instance contains
either a “Gateway” or “Message Aware” listener definition.

By far the easiest way to create configurations based on this model is using JBoss Developer
Studio, but you can also to use an XSD aware XML Editor such as the XML Editor in the
Eclipse IDE. This provides the author with auto-completion features when editing the
configuration. Right mouse-click on the file -> Open With -> XML Editor.

JBESB-PG-3/26/10 70

http://www.jboss.com/products/devstudio/
http://www.jboss.com/products/devstudio/
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.2.0.xsd

Providers

The <providers> part of the configuration defines all of the message <provider> instances for
a single instance of the ESB. Two types of providers are currently supported:

● Bus Providers: These specify provider details for “Event Driven” providers i.e. for
listeners that are “pushed” messages. Examples of this provider type would be the
<jms-provider>.

● Schedule Provider: Provider configurations for schedule driven listeners i.e.
listeners that “pull” messages.

A Bus Provider (e.g. <jms-provider>) can contain multiple <bus> definitions. The
<provider> can also be decorated with <property> instances relating to provider specific
properties that are common across all <bus> instances defined on that <provider> (e.g. for
JMS - “connection-factory”, “jndi-context-factory” etc). Likewise, each <bus> instance can
be decorated with <property> instances specific to that <bus> instance (e.g. for JMS -
“destination-type”, “destination-name” etc).

As an example, a provider configuration for JMS would be as follows:

<providers>
 <provider name="JBossMQ">

<property name="connection-factory" value="ConnectionFactory" />
<property name="jndi-URL" value="jnp://localhost:1099" />
<property name="protocol" value="jms" />
<property name="jndi-pkg-prefix" value="com.xyz"/>

<bus busid="local-jms">
 <property name="destination-type" value="topic" />
 <property name="destination-name" value="queue/B" />
 <property name="message-selector" value="service='Reconciliation'"
 <property name=”persistent” value=”true”/>
</bus>

 </provider>
</providers>

The above example uses the “base” <provider> and <bus> types. This is perfectly legal, but
we recommend use of the specialized extensions of these types for creating real
configurations, namely <jms-provider> and <jms-bus> for JMS. The most important part of
the above configuration is the busid attribute defined on the <bus> instance. This is a
required attribute on the <bus> element/type (including all of its specializations - <jms-bus>
etc). This attribute is used within the <listener> configurations to refer to the <bus> instance
on which the listener receives its messages. More on this later.

JBESB-PG-3/26/10 71

Services

The <services> part of the configuration defines each of the Services under the management
of this instance of the ESB. It defines them as a series of <service> configurations. A
<service> can also be decorated with the following attributes.

Name Description Type Required

name The Service Name under which the Service is
Registered in the Service Registry.

xsd:string true

category The Service Category under which the
Service is Registered in the Service Registry.

xsd:string true

description Human readable description of the Service.
Stored in the Registry.

xsd:string true

Service Attributes (<service>)

A <service> may define a set of <listeners> and a set of <actions>. The configuration model
defines a “base” <listener> type, as well as specializations for each of the main supported
transports i.e. <jms-listener>, <sql-listener> etc.

The “base” <listener> defines the following attribute. These attribute definitions are inherited
by all <listener> extensions. As such they can be set for all of the listeners and gateways
supported by JBossESB, such as InVM.

Name Description Type Required

name The name of the listener. This attribute is
required primarily for logging purposes.

xsd:string true

busrefid Reference to the busid of the <bus> through
which the listener instance receives
messages.

xsd:string true

maxThreads The max number of concurrent message
processing threads that the listener can have
active.

xsd:int True

is-gateway Whether or not the listener instance is a
“Gateway” or “Message Aware” Listener.
See footnote #5.

xsd:boolean true

JBESB-PG-3/26/10 72

Listener Attributes (<listener>)

Listeners can define a set of zero or more <property> elements (just like the <provider> and
<bus> elements/types). These are used to define listener specific properties.

Note: For each gateway listener defined in a service, an ESB aware listener (or “native”)
listener must also be defined as gateway listeners do not define bidirectional endpoints,
but rather “startpoints” into the ESB. From within the ESB you cannot send a message to
a Gateway. Also, note that since a gateway is not an endpoint, it does not have an
Endpoint Reference (EPR) persisted in the registry.

An example of a <listener> reference to a <bus> can be seen in the following illustration
(using “base” types only).

JBESB-PG-3/26/10 73

A Service will do little without a list of one or more <actions>. The actions are effectively the
“meat” of the Service. <action>s typically contain the logic for processing the payload of the
messages received by the service (through it's listeners). Alternatively, it may contain the
transformation or routing logic for messages to be consumed by an external Service/entity.

The <action> element/type defines the following attributes.

Name Description Type Required

name The name of the action. This attribute is
required primarily for logging purposes.

xsd:string true

class The
org.jboss.soa.esb.actions.ActionProcessor
implementation class name.

xsd:string true

process The name of the “process” method that will be
reflectively called for message processing.
(Default is the “process” method as defined on
the ActionProcessor class).

xsd:int false

In a list of <action> instances within an <actions> set, the actions are called (their “process”
method is called) in the order in which the <action> instances appear in the <actions> set.
The message returned from each <action> is used as the input message to the next <action> in
the list.

Like a number of other elements/types in this model, the <action> type can also contain zero
or more <property> element instances. The <property> element/type can define a standard
name-value-pair, or contain free form content (xsd:any). According to the XSD, this free form
content is valid child content for the <property> element/type no matter where it is in the
configuration (on any of <provider>, <bus>, <listener> and any of their derivatives).
However, it is only on <action> defined <property> instances that this free form child content
is used.

As stated in the <action> definition above, actions are implemented through implementing the
org.jboss.soa.esb.actions.ActionProcessor class. All implementations of this interface must
contain a public constructor of the following form:

public ActionZ(org.jboss.soa.esb.helpers.ConfigTree configuration);

It is through this constructor supplied ConfigTree instance that all of the action attributes are
supplied, including the free form content from the action <property> instances. The free form
content is supplied as child content on the ConfigTree instance.

So an example of an <actions> configuration might be as follows:
<actions>
 <action name="MyAction-1" class="com.acme.MyAction1"/>
 <action name="MyAction-2" class="com.acme.MyAction2">
 <property name=”propA” value=”propAVal” />
 </action>
 <action name="MyAction-3" class="com.acme.MyAction3">
 <property name=”propB” value=”propBVal” />
 <property name=”propC”>
 <!-- Free form child content... -->
 <some-free-form-element>zzz<some-free-form-element>
 </property>
 </action>
</actions>

JBESB-PG-3/26/10 74

Transport Specific Type Implementations

The JBoss ESB configuration model defines transport specific specializations of the “base”
types <provider>, <bus> and <listener> (JMS, SQL etc). This allows us to have stronger
validation on the configuration, as well as making configuration easier for those that use an
XSD aware XML Editor (e.g. the Eclipse XML Editor). These specializations explicitly
define the configuration requirements for each of the transports supported by JBoss ESB out
of the box. It is recommended to use these specialized types over the “base” types when
creating JBoss ESB configurations, the only alternative being where a new transport is being
supported outside an official JBoss ESB release.

The same basic principals that apply when creating configurations from the “base” types also
apply when creating configurations from the transport specific alternatives:

1. Define the provider configuration e.g. <jmsprovder>.

2. Add the bus configurations to the new provider (e.g. <jmsbus>), assigning a
unique busid attribute value.

3. Define your <services> as normal, adding transport specific listener
configurations (e.g. <jmslistener> that reference (using busrefid) the new bus
configurations you just made e.g. <jmslistener> referencing a <jmsbus>.

The only rule that applies when using these transport specific types is that you cannot cross
reference from a listener of one type, to a bus of another type i.e. you can only reference a
<jms-bus> from a <jms-listener>. A runtime error will result where cross references are
made.

So the transport specific implementations that are in place in this release are:

1. JMS: <jmsprovider>, <jmsbus>, <jmslistener> and <jmsmessagefilter>:
The <jmsmessagefilter> can be added to either the <jmsbus> or <jms
listener> elements. Where the <jmsprovider> and <jmsbus> specify the JMS
connection properties, the <jmsmessagefilter> specifies the actual message
QUEUE/TOPIC and selector details.

2. SQL: <sqlprovider>, <sqlbus>, <sqllistener> and <sqlmessagefilter>: The
<sqlmessagefilter> can be added to either the <sqlbus> or <sqllistener>
elements. Where the <sqlprovider> and <ftpbus> specify the JDBC
connection properties, the <sqlmessagefilter> specifies the message/row
selection and processing properties.

3. FTP: <ftpprovider>, <ftpbus>, <ftplistener> and <ftpmessagefilter>: The
<ftpmessagefilter> can be added to either the <ftpbus> or <ftplistener>
elements. Where the <ftpprovider> and <ftpbus> specify the FTP access
properties, the <ftpmessagefilter> specifies the message/file selection and
processing properties

4. Hibernate: <hibernateprovider>, <hibernatebus>, <hibernatelistener> : The
<hibernatemessagefilter> can be added to either the <hibernatebus> or

JBESB-PG-3/26/10 75

<hibernatelistener> selements. Where the <hibernateprovider> specifies
File System access properties like the location of the hibernate configuration
property, the <hibernatemessagefilter> specifies what classnames and events
should be intercepted.

5. File System: <fsprovider>, <fsbus>, <fslistener> and <fsmessagefilter> The
<fsmessagefilter> can be added to either the <fsbus> or <fslistener>
elements. Where the <fsprovider> and <sqlbus> specify the File System
access properties, the <fsmessagefilter> specifies the message/file selection
and processing properties.

6. Schedule: <scheduleprovider>. This is a special type of provider and differs
from the bus based providers listed above. See Scheduling for more.

7. JMS/JCA integration: <jmsjcaprovider>: This provider can be used in place of
the <jmsprovider> to enable delivery of incoming messages using JCA inflow.
This introduces a transacted flow to the action pipeline, encompassing actions
within a JTA transaction.

As you'll notice, all of the currently implemented transport specific types include an additional
type not present in the “base” types, that being <*-message-filter>. This element/type can be
added inside either the <*-bus> or <*-listener>. Allowing this type to be specified in both
places means you can specify message filtering globally for the bus (for all listeners using that
bus), or locally on a listener by listener basis.

Note: In order to list and describe the attributes for each transport specific type, you can use
the jbossesb-1.2.0 XSD, which is fully annotated with descriptions of each of the
attributes. Using an XSD aware XML Editor such as the Eclipse XML Editor makes
working with these types far easier.

JMS Message filter configuration

Property Name Description Comments

dest-type The type of destination, either QUEUE
or TOPIC

Mandatory.

dest-name The name of the Queue or Topic Mandatory.

selector Allows multiple listeners to register with
the same queue/topic, but they will filter
on this message selector.

Optional.

persistent Indicates if the delivery mode for JMS
should be persistent or not. True or
false

Optional. Default is true

acknowledge-mode The JMS Session acknowledge mode.
Can be one of
AUTO_ACKNOWLEDGE,
CLIENT_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

Optional. Default is
AUTO_ACKNOWLEDGE

jms-security-principal JMS destination user name. Will be Optional.

JBESB-PG-3/26/10 76

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

used when creating a connection to the
destination.

jms-security-credential JMS destination password. Will be used
when creating a connection to the
destination.

Optional.

transacted If true, JMS sessions will be transaction
aware.

Optional. Defaults to false.

Example configuration:
 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_jms_secured_Request_gw"
 jms-security-principal="esbuser"
 jms-security-credential="esbpassword"
 />
</jms-bus>

FTP configuration

Property Name Description Comments

hostname Can be a combination of <host:port> of just
<host> which will use port 21.

Mandatory.

username Username that will be used for the ftp
connection.

Mandatory.

password Password for the above user

directory The ftp directory that is monitored for
incoming new files

Mandatory.

input-suffix The file suffix used to filter files targeted for
comsumption by the ESB (note: add the dot,
so something like '.esbIn'). This can also be
specified as an empty string to specify that
all files should be retrieved.

Mandatory.

work-suffix The file suffix used while the file is being
process, so that another thread or process
won't pick it up too.

Optional. Defaults to
.esbInProcess.

post-delete If true, the file will be deleted after it is
processed. Note that
in that case post-directory and post-suffix
have no effect.

Optional. Defaults to true.

post-rename If true, the file will be renamed after it is
processed. Note that in that case post-
directory and post-suffix have no effect.

Optional. Defaults to true.

post-directory The ftp directory to which the file will be
moved after it is processed by the ESB

Optional. Defaults to the value of
directory above.

post-suffix The file suffix which will be added to the file
name after it is processed.

Optional. Defaults to .esbDone.

error-delete If true, the file will be deleted if an error Optional. Defaults to true.

JBESB-PG-3/26/10 77

occurs during processing. Note that in that
case error-directory and error-suffix have no
effect.

error-directory The ftp directory to which the file will be
moved after when an
error occurs during processing.

Optional. Defaults to the value of
directory above.

error-suffix The file suffix which will be added to the file
name after an error occurs during
processing.

Optional. Defaults to .esbError.

protocol The protocol, can be on of:
● sftp (SSH File Transfer Protocol)
● ftps (FTP over SLL)
● ftp (default).

Optional. Defaults to ftp.

passive Indicates that the ftp connection is in
passive. Setting this to true means the ftp
client will establish two connection to the
ftpserver client.

Optional. Defaults to false,
meaning that the client will tell
the ftpserver which port the
ftpserver should connect to . The
ftpserver then estabilshes the
connection to the client.

read-only If true, the ftp server does not permit write
operations on files.
Note that in this case the following
properties have no effect: work-suffix, post-
delete,post-directory, post-suffix, error-
delete, error-directory, and error-suffix.

Optional. Defaults to false. See
section “Read-only FTP Listener
for more information

certificate-url The url to a public server certificate for ftps
server verification or to a private certificate
for sftp client verification. An sftp certificate
can be located as a resource embedded
within a deployment artifact

Optional.

certificate-name The common name for a certificate for ftps
server verification

Optional.

certificate-passphrase The passphrase of the private key for sftp
client verification.

Optional.

FTP Listener configuration

Schedule Listener that polls for remote files based on the configured schedule (scheduleidref).
See Service Scheduling.

Read-only FTP Listener

Setting the ftp-provider property “read-only” to true will tell the system that the remote file
system does not allow write operations. This is often the case when the ftp server is running
on a mainframe computer where permissions are given to a specific file.

The read-only implementation uses JBoss TreeCache to hold a list of the filenames that have
been retrieved and only fetch those that have not previously been retrieved. The cache should
be configured to use a cacheloader to persist the cache to stable storage.

Please note that there must exist a strategy for removing the filenames from the cache. There
might be an archiving process on the mainframe that moves the files to a different location on
a regular basis. The removal of filenames from the cache could be done by having a database
procedure that removes all filenames from the cache every couple of days. Another strategy

JBESB-PG-3/26/10 78

would be to specify a TreeCacheListener that upon evicting filenames from the cache also
removes them from the cacheloader. The eviction period would then be configurable. This can
be configured by setting a property (removeFilesystemStrategy-cacheListener) in the ftp-
listener configuration.

Read-only FTP Listener Configuration

Property Name Description Comments

scheduleidref Schedule used by the FTP listener See Service Scheduling.

remoteFilesystemStrategy-
class

Override the remote file system strategy
with a class that implements:
org.jboss.soa.esb.listeners.gate
way.remotestrategies.RemoteFileS
ystemStrategy.

Optional. Defaults to
org.jboss.soa.esb.lis
teners.gateway.remote
strategies.ReadOnlyRe
moteFileSystemStrateg
y

remoteFilesystemStrategy-
configFile

Specifiy a JBoss TreeCache configuration
file on the local file system or one that exists
on the classpath.

Optional. Defaults to looking
for a file named /ftpfile-
cache-config.xml which it
expects to find in the root of
the classpath

removeFilesystemStrategy-
cacheListener

Specifies an JBoss TreeCacheListener
implementation to be used with the
TreeCache.

Optional. Default is no
TreeCacheListener.

Example configuration:

 <ftp-listener name="FtpGateway"
 busidref="helloFTPChannel"
 maxThreads="1"
 is-gateway="true"
 schedule-frequency="5">
 <property name="remoteFileSystemStrategy-configFile" value="./ftpfile-cache-
config.xml"/>
 <property name="remoteFileSystemStrategy-cacheListener"
value="org.jboss.soa.esb.listeners.gateway.remotestrategies.cache.DeleteOnEvictTreeCach
eListener"/>

</ftp-listener>

Example snippet from JBoss cache configuration:

<region name="/ftp/cache">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>
<attribute name="maxAgeSeconds">86400</attribute>

</region>

Property Name Description Comments

maxNodes The maximum number of files that will be
stored in the cache.

0 denotes no limit

timeToLiveSeconds Time to idle (in seconds) before the node is 0 denotes no limit

JBESB-PG-3/26/10 79

swept away.

maxAgeSeconds Time an object should exist in TreeCache
(in seconds) regardless of idle time before
the node is swept away

0 denotes no limit

The helloworld_ftp_action quickstart demonstrates the readonly configuration. Run 'ant help'
in the helloworld_ftp_action quickstart directory for instructions on running the quickstart.

Please refer to the JBoss Cache documentation for more information about the configuration
options available (http://labs.jboss.com/jbosscache/docs/index.html).

UDP Gateway

Is a gateway implementation for receiving ESB unaware messages sent using the UDP
protocol. The payload will be passed along to the action chain in the default ESB Message
object location. Actions can call esbMessage.getBody().get() to retrieve the byte array payload
from within their actions.

UDP Gateway configuration

Property Name Description Comments

host The hostname/ip to listen to. Mandatory.

port The port to listen to. Mandatory.

handlerClass A concrete implemenation of
org.jboss.soa.esb.listeners.gateway.min
a.MessageHandler.

Optional. Default is
org.jboss.soa.esb.listeners.ga
teway.mina.DefaultMessage
Handler.

is-gateway UDPGatewayListener can only act as a
gateway.

Mandatory

Example configuration:
<udp-listener
 name="udp-listener"
 host="localhost"
 port="9999"
 handlerClass="org.jboss.soa.esb.listeners.gateway.mina.DefaultMessageHandler"
 is-gateway="true"
<udp-listener/>

JBoss Remoting (JBR) Configuration

The JBoss Remoting Gateway hooks JBoss Remoting (JBR) into JBoss ESB as a transport
option. It leverages support for HTTP(S) and Socket (+SSL) via JBR.

The basic configuration of the JBR Provider is as flows:

<jbr-provider name="socket_provider" protocol="socket" host="localhost">
 <jbr-bus busid="socket_bus" port="64111"/>

JBESB-PG-3/26/10 80

http://www.jboss.org/jbossremoting/

</jbr-provider>

So the basic <jbr-provider> and <jbr-bus> configuration is very simple. The <jbr-bus> can
then be referenced from a <service> configuration through the <jbr-listener>:

<listeners>
 <jbr-listener name="soc" busidref="socket_bus" is-gateway="true"/>
</listeners>

The <jbr-listener> is only supported as a gateway i.e. setting is-gateway to false will result in
a Service deployment error.

JBESB-PG-3/26/10 81

The JBR Gateway supports a number of configuration properties that can be made on either
the <jbr-provider>, <jbr-bus> or <jbr-listener> elements (as <property> elements):

Name Description Default

synchronous Is the target Service to be invoked
Synchronously.

TRUE

serviceInvokerTimeout Asynchronous invocation timeout. 20000

asyncResponse Asynchronous response. "<ack/>

securityNS The namespace for the version Web
Service Security that should be used. This
namespace is used to match security
headers in SOAP messages. This is to
allow the ESB to extract security
information from these headers.

http://doc
s.oasis-
open.org/w
ss/2004/01
/oasis-200
401http-
wss-
wssecurity
-
secext-1.0
.xsd

Also note that the JBR Gateway supports setting of JBR specific configuration properties.
This can be done by prefixing the property name with "jbr-". Consult the JBoss Remoting
docs for the JBR specific settings relevant to the configured protocol. The following is an
example of a configuration that specifies JBR specific settings for configuring a Keystore and
Client authentication mode for HTTPS:

<jbr-provider name="https_provider" protocol="https" host="localhost">
 <!-- Https/SSL settings -->
 <property name="jbr-KeyStoreURL" value="/keys/myKeystore" />
 <property name="jbr-KeyStorePassword" value="keys_ssl_pass" />
 <property name="jbr-TrustStoreURL" value="/keys/myKeystore" />
 <property name="jbr-TrustStorePassword" value="keys_ssl_pass" />
 <property name="jbr-ClientAuthMode" value="need" />
 <property name="serviceInvokerTimeout" value="20000" />

 <jbr-bus busid="https_bus" port="9433"/>
</jbr-provider>

The JBR Gateway expects all response headers to be located in the Message.Properties as
instances of org.jboss.soa.esb.message.ResponseHeader class. So if you require the JBR
Gateway to set specific response headers, the ESB Message provided to the Gateway response
decompose (e.g. after a synchronous invocation of the target service) must contains instances
of the ResponseHeader class, set on the Message.Properties.

JBESB-PG-3/26/10 82

http://www.jboss.org/jbossremoting/

HTTP Gateway

As it's name suggests, this gateway allows you to expose Message-Unaware HTTP endpoints
on JBoss ESB.

This gateway uses the JBoss ESB/App Server HTTP Container for exposing HTTP endpoints,
so many of the configurations are managed at the container level e.g. bind/port address, SSL
etc.

Basic Configuration

The easiest way to configure the <http-gateway> on a Service is as follows (no provider
configuration required):

<service category="Vehicles" name="Cars" description="" invmScope="GLOBAL">
 <listeners>
 <http-gateway name="Http" />
 </listeners>
 <actions mep="RequestResponse">
 <!-- Service Aactions.... -->
 </actions>
</service>

The above configuration uses the “default” HTTP Bus provider since it doesn't define a
busrefid attribute. It uses the Service name to construct the HTTP endpoint address as
follows:

http://<host>:<port>/<.esbname>/http/Vehicles/Cars

The <.esbname> token being the name of the .esb deployment, without the “.esb” extension.
Note also the “http” token in the address. This is a hardcoded namespace prefix used for all
<http-gateway> endpoints.

URL Patterns

The <http-gateway> also supports a urlPattern as follows:

<service category="Vehicles" name="Cars" description="" invmScope="GLOBAL">
 <listeners>
 <http-gateway name="Http" urlPattern="esb-cars/*" />
 </listeners>
 <actions mep="RequestResponse">
 <!-- Service Aactions.... -->
 </actions>
</service>

This would expose a HTTP endpoint for the service, capturing all HTTP requests under the
following address:

http://<host>:<port>/<.esbname>/http/esb-cars/*

JBESB-PG-3/26/10 83

Request Handling

The <http-gateway> is typically able to decode a HTTP Request payload based on the request
MIME type. It uses the “core:org.jboss.soa.esb.mime.text.types” configuration property from
the jbossesb-properties.xml file to decide whether or not the payload is to be decoded (for the
Service) as a String, or simply remain as a Byte array, with the Service handling the decoding
itself through an Action.

The “core:org.jboss.soa.esb.mime.text.types” configuration property is a semi-colon separated
list of “text” (character) MIME types, with the default set being (note wildcard support):

•text/*

•application/xml

•application/*-xml

The <http-gateway> uses the character encoding from the request when decoding text
payloads.

The <http-gateway> also supports the payloadAs attribute, which can be used as an override
for the default MIME type based behavior described above. With this attribute, you can
explicitly tell the gateway to treat the payload as “BYTES” or “STRING”.

Request Information

The HTTP Request obviously contains a lot of information (aside from a data payload) that
may be required by the Service i.e. not just a request payload (e.g. in the case of POST). This
information is stored, by the gateway, in a HttpRequest object instance on the Message.
Actions can access it as follows:

HttpRequest requestInfo = HttpRequest.getRequest(message);

HttpRequest exposes the following set of properties (via getter methods):

Property Description

queryParams A java.util.Map<String, String[]> containing the query parameters. Note
the values are String[] so as to support multi valued parameters.

headers A java.util.List<HttpHeader> containing the request headers.

authType

The name of the authentication scheme used to protect the endpoint, or null if
not authenticated.

Same as the value of the CGI variable AUTH_TYPE.

characterEncoding
The name of the character encoding used in the body of this request, or null if
the request does not specify a character encoding.

contentType
Content Type (MIME Type) of the body of the request, or null if the type is not
known. Same as the value of the CGI variable CONTENT_TYPE.

contextPath The portion of the request URI that indicates the context of the request. The
context path always comes first in a request URI. The path starts with a "/"
character but does not end with a "/" character. For endpoints in the default

JBESB-PG-3/26/10 84

(root) context, this returns "". The container does not decode this string.
(See Servlet Spec)

pathInfo

Any extra path information associated with the URL the client sent when it
made this request. The extra path information follows the endpoint path but
precedes the query string and will start with a "/" character.

This method returns null if there was no extra path information.

Same as the value of the CGI variable PATH_INFO. (See Servlet Spec)

pathInfoTokens A List<String> containing the tokens of the pathInfo.

queryString Query String (See Servlet Spec)

requestURI
The part of this request URL from the protocol name up to the query string.
The web container does not decode this String. (See Servlet Spec)

requestPath

The part of this request URL that calls the endpoint. Does not include any
additional path information or a query string. Same as the value of the CGI
variable SCRIPT_NAME.

This method will return just "http") if the urlPattern was "/*". (See Servlet
Spec)

localAddr The IP address of the interface on which the request was received.

localName The host name of the IP interface on which the request was received.

method HTTP Method

protocol Name and version of the HTTP protocol

remoteAddr The IP address of the client or last proxy that sent the request. Same as the
value of the CGI variable REMOTE_ADDR.

remoteHost

The fully qualified name of the client or the last proxy that sent the request. If
the engine cannot or chooses not to resolve the hostname (to improve
performance), this will be the dotted-string form of the IP address. Same as
the value of the CGI variable REMOTE_HOST.

remoteUser

The login of the user making his request, if the user has been authenticated,
or null if the user has not been authenticated. Whether the user name is sent
with each subsequent request depends on the client and type of
authentication. Same as the value of the CGI variable REMOTE_USER.

contentLength
The length, in bytes, of the request body and made available by the input
stream, or -1 if the length is not known. For HTTP servlets, same as the value
of the CGI variable CONTENT_LENGTH.

requestSessionId The session ID specified by the client, or null if non specified.

scheme Scheme i.e. “http” or “https”.

serverName The host name of the server to which the request was sent. It is the value of
the part before ":" in the “Host” header value, if any, or the resolved server

JBESB-PG-3/26/10 85

name, or the server IP address.

Response Handling

This section contains detail on how the gateway handles HTTP responses.

Asynchronous Response Handling

This gateway always returns a synchronous response to a synchronous HTTP client, so it is
never asynchronous in the absolute sense of the word. By default, this gateway will
synchronously invoke the service pipeline, returning the synchronous service response as the
HTTP response from the gateway.

Asynchronous response behavior, from the point of view of this Gateway, simply means that
the gateway returns a synchronous HTTP response after an asynchronous invocation of the
action pipeline (i.e. not a synchronous service invocation). Because it invokes the service
asynchronously, it cannot return a service response as part of it's synchronous HTTP
response. Therefore, you need to configure the gateway, telling it how to make the
asynchronous response.

Asynchronous behavior is configured by adding an <asyncHttpResponse> element to the
<http-gateway>, as follows:

<listeners>
 <http-gateway name="Http" urlPattern="esb-cars/*">
 <asyncHttpResponse />
 </http-gateway>
</listeners>

If configured as above, the gateway will return a zero length HTTP response payload, with a
HTTP status of 200 (OK).

The asynchronous response HTTP status code can be configured (away from the default of
200) by simply setting the "statusCode" attribute on the <asyncHttpResponse> element:

<listeners>
 <http-gateway name="Http" urlPattern="esb-cars/*">
 <asyncHttpResponse statusCode="202" />
 </http-gateway>
</listeners>

JBESB-PG-3/26/10 86

As stated above, a zero length payload is returned (by default) for asynchronous responses.
This can be overridden by specifying a <payload> element on the <asyncHttpResponse>
element:

<listeners>
 <http-gateway name="Http" urlPattern="esb-cars/*">
 <asyncHttpResponse statusCode="202">
 <payload classpathResource="/202-static-response.xml"
 content-type="text/xml"
 characterEncoding="UTF-8" />
 <asyncHttpResponse>
 </http-gateway>
</listeners>

• classpathResource: Specifies the path to a file on the classpath that contains the
response payload. Required.

• contentType: Specifies the content/mime type of the payload data specified by the
classpathResource attribute. Required.

• characterEncoding: The character encoding of the data specified by the
classpathResource attribute. Optional.

Synchronous Response Handling

By default, this gateway synchronously invokes the associated service and returns the service
response payload as the HTTP response.

Response Information :

Consistent with how the gateway creates a HttpRequest object instance for the associated
Service, the associated Service can create a HttpResponse object for the gateway on a
synchronous HTTP gateway invocation.

Services (Actions) can create and set a HttpResponse instance on their response message as
follows:

HttpResponse responseInfo = new HttpResponse(HttpServletResponse.SC_OK);

responseInfo.setContentType("text/xml");
// Set other response info ...

// Set the HttpResponse instance on the ESB response Message instance
responseInfo.setResponse(responseMessage);

JBESB-PG-3/26/10 87

The HttpResponse object can contain the following properties, which get mapped onto the
outgoing HTTP gateway response:

Property Description

responseCode The HTTP Response/Status Code to be set on the gateway response.

contentType The response payload MIME Type.

encoding The response payload content encoding.

length The response payload content length.

headers A java.util.List<HttpHeader> containing the request headers.

Using the HttpResponse class works nicely since this class is also used by internal actions
such as the HttpRouter, making it easy to perform proxying operations using this gateway.

Payload Encoding:

The response payload content encoding can be set through the HttpResponse instance (see
above).

Response Status:

The HTTP response status code is set through the HttpResponse instance (see above).

Response Timeout:

By default, this gateway will wait for 30,000 ms (30 s) for the synchronous service invocation
to complete, before raising a ResponseTimeoutException. To override the default timeout,
you need to configure the "synchronousTimeout" property:

<listeners>
 <http-gateway name="Http" urlPattern="esb-cars/*">
 <property name="synchronousTimeout" value="120000"/>
 </http-gateway>
</listeners>

JBESB-PG-3/26/10 88

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Exception Handling:

Service exceptions (Action pipeline exceptions) can be mapped to specific HTTP response
codes through the ESB configuration.

The mappings can be specified in the top level <http-provider> and can also be specified
directly on the <http-gateway>, allowing per-listener override of the exception mappings
defined "globally" on the <http-provider>. The following is an example of an exception
mapping made directly on a <http-gateway> configuration:

<http-gateway name="http-gateway">
 <exception>
 <mapping class="com.acme.AcmeException" status="503" />
 </exception>
</http-gateway>

Configuring exception mappings at the <http-provider> level is exactly the same.

You can also configure a mapping file, which is a simple .properties format file containing
"{exception-class}={http-status-code}" mappings. The file is looked up on the classpath, so
should be bundled inside your .esb deployment. It is configured as follows (this time on the
<http-provider>):

<http-provider name="http">

 <!-- Global exception mappings file... -->
 <exception mappingsFile="/http-exception-mappings.properties" />
</http-provider>

Security Handling

To configure security constraints, one must add configurations to the <http-provider> section
of the ESB configuration i.e. this can not be done directly on the <http-gateway>
configuration.

So the process of securing a <http-gateway> is as follows:

1. Specify a <http-bus> in the <http-provider> section of the ESB configuration.

2. Specify the constraints on the <http-bus>.

3. Refence the <http-bus> from the <http-listener> using the "busrefid" attribute.

(See the "http-gateway" Quickstart for a full config example)

JBESB-PG-3/26/10 89

Protected Methods & Allowed User Roles

Logins can be enforced for an endpoint using the <protected-methods> and <allowed-roles>
sections of a <http-bus> configuration as follows:

<http-bus busid="secureSalesDeletes">
 <allowed-roles>
 <role name="friend" />
 </allowed-roles>
 <protected-methods>
 <method name="DELETE" />
 </protected-methods>
</http-bus>

The above configuration stipulates that a valid "friend" login is required for DELETE requests
made on the "secureSalesDeletes" bus. The following login matrix tries to illustrate which
configurations will enforce a login, and when.

Methods

Specified

Roles

Specified

Login

Required

No No No

No Yes For All Methods

Yes Yes For Specified Methods Only

Yes No No - Specified Methods blocked to all

Authentication Method and Security Domain

The authentication method and security domain can be configured in the <war-security>
configuration inside the <globals> element:

<globals>
 <!--
 Security setting for all http-providers and
 all EBWSs in this jboss-esb.xml file.
 -->
 <war-security method="BASIC" domain="MyAppSecDomain" />
</globals>

The method attribute can be one of "BASIC" (default), "CLIENT-CERT" and "DIGEST".

See the JBoss Application Server documentation for details on configuring application
Security Domains.

JBESB-PG-3/26/10 90

Transport Guarantee

HTTP Transport Guarantee can be configured on a per <http-bus> basis by simply specifying
it on the bus using the "transportGuarantee" attribute.

<http-bus busid="secureFriends" transportGuarantee="CONFIDENTIAL">
 <!-- etc etc -->
</http-bus>

Allowed values for transportGuarantee are "CONFIDENTIAL", "INTEGRAL" and
"NONE".

JBESB-PG-3/26/10 91

Transitioning From The Old Configuration Model

This section is aimed at developers that are familiar with the old JBoss ESB non-XSD based
configuration model.

The old configuration model used a free form (non-validatable) XML configuration with ESB
components receiving thier configurations via an instance of
org.jboss.soa.esb.helpers.ConfigTree. The new configuration model is XSD based, however
the underlying component configuration pattern is still via an instance of
org.jboss.soa.esb.helpers.ConfigTree. This means that at the moment, the XSD based
configurations are mapped/transformed into ConfigTree style configurations.

Developers that were used to using the old model now need to keep the following in mind:

1. Read all of the docs on the new configuration model. Don't assume you can infer the
new configurations based on your knowledge of the old.

2. The only location where free-form markup is supported in the new configuration is on
the <property> element/type. This type is allowed on <provider>, <bus> and
<listener> types (and sub-types). However, the only location in which <property>
based free form markup is mapped into the ConfigTree configurations is where the
<property> exists on an <action>. In this case, the <property> content is mapped into
the target ConfigTree <action>. Note however, if you have 1+ <property> elements
with free form child content on an <action>, all this content will be concatenated
together on the target ConfigTree <action>.

3. When developing new Listener/Action components, you must ensure that the
ConfigTree based configuration these components depend on can be mapped from the
new XSD based configurations. An example of this is how in the ConfigTree
configuration model, you could decide to supply the configuration to a listener
component via attributes on the listener node, or you could decide to do it based on
child nodes within the listener configuration – all depending on how you were feeling
on the day. This type of free form configuration on <listener> components is not
supports on the XSD to ConfigTree mapping i.e. the child content in the above
example would not be mapped from the XSD configuration to the ConfigTree style
configuration. In fact, the XSD configuration simply would not accept the arbitrary
content, unless it was in a <property> and even in that case (on a <listener>), it would
simply be ignored by the mapping code.

Configuration

All components within the core receive their configuration parameters as XML. How these
parameters are provided to the system is hidden by the
org.jboss.soa.esb.parameters.ParamRepositoryFactory:

public abstract class ParamRepositoryFactory
{
 public static ParamRepository getInstance();
}

This returns implementations of the org.jboss.soa.esb.parameters.ParamRepository interface
which allows for different implementations:

public interface ParamRepository
{

JBESB-PG-3/26/10 92

 public void add(String name, String value) throws
 ParamRepositoryException;
 public String get(String name) throws ParamRepositoryException;
 public void remove(String name) throws ParamRepositoryException;
}

Within this version of the JBossESB, there is only a single implementation, the
org.jboss.soa.esb.parameters.ParamFileRepository, which expects to be able to
load the parameters from a file. The implementation to use may be overridden using the
org.jboss.soa.esb.paramsRepository.class property.

Note: we recommend that you construct your ESB configuration file using Eclipse or some
other XML editor. The JBossESB configuration information is supported by an annotated
XSD which should help if using a basic editor.

JBESB-PG-3/26/10 93

Chapter 10

Web Services Support
JBossWS

JBossESB has a number of Webservice based components for exposing and invoking
Webservice endpoints (i.e. SOAP onto the bus and SOAP off the bus) :

1. SOAPProcessor: The SOAPProcessor action allows you to expose JBossWS 2.x and
higher Webservice Endpoints through endpoints (listeners) running on the ESB
(“SOAP onto the bus”). This allows you to use JBossESB to expose Webservice
Endpoints (wrapper Webservices) for services that don't expose a Webservice
Interface. JBossWS Webservice Endpoints exposed via this JBossESB action are
“ESB Message Aware” and can be used to invoke Webservice Endpoints over any
transport channel supported by the ESB.

2. SOAPClient: The SOAPClient action allows you to make invocations on Webservice
endpoints (“SOAP off the bus”).

For more details on these components and how to configure and use them, see the
ServicesGuide.

You can also find more information within the wiki pages shipped with the JBossESB
documentation.

JBESB-PG-3/26/10 94

Chapter 11

Out-of-the-box Actions
This section provides a catalog of all Actions that are supplied out-of-the-box with JBoss ESB
(“pre-packed”).

Transformers & Converters

Converters/Transformers are a classification of Action Processor responsible for transforming
a message payload from to another.

Note that, unless stated otherwise, all of these Actions use the MessagePayloadProxy for
getting and setting the message payload (see the Programmers Guide).

ByteArrayToString

Takes a byte[] based message payload and converts it into a java.lang.String object instance.

Input Type Byte[]

Output Type String

Class org.jboss.soa.esb.actions.converters.ByteArrayToString

Properties ● “encoding”: The binary data encoding on the message byte array.
Defaults to “UTF-8” when not specified .

Sample
Configuration

<action name="transform"
 class="org.jboss.soa.esb.actions.converters.ByteArrayToString">
 <property name="encoding" value="UTF-8" />
</action>

LongToDateConverter

Takes a long based message payload and converts it into a java.util.Date object instance.

Input Type java.lang.Long/long

Output Type java.util.Date

Class org.jboss.soa.esb.actions.converters.LongToDateConverter

Properties None

Sample
Configuration

<action name="transform"
 class="org.jboss.soa.esb.actions.converters.LongToDateConverter"/>

ObjectInvoke

Takes the Object bound as the message payload and supplies it to a configured “processor” for
processing. The processing result is bound back into the message as the new payload.

JBESB-PG-3/26/10 95

Input Type User Object

Output Type User Object

Class org.jboss.soa.esb.actions.converters.ObjectInvoke

Properties ● "class-processor": The runtime class name of the processor class
used to process the message payload.

● "class-method": The name of the method on the processor class
used to process the method.

Sample
Configuration

<action name="invoke"
 class="org.jboss.soa.esb.actions.converters.ObjectInvoke">
 <property name="class-processor"
 value="org.jboss.MyXXXProcessor"/>
 <property name="class-method" value="processXXX" />
</action>

ObjectToCSVString

Takes the Object bound as the message payload and converts it into a Comma Separated
Value (CSV) String based on the supplied message object and a comma-separated "bean-
properties” list property. (Also see the SmooksAction).

Input Type User Object

Output Type java.lang.String

Class org.jboss.soa.esb.actions.converters.ObjectToCSVString

Properties ● "bean-properties": List of Object bean property names used to get
CSV values for the output CSV String. The Object should support a
getter method for each of listed properties.

● "fail-on-missing-property": Flag indicating whether or not the
action should fail if a property is missing from the Object i.e., if the
Object does not support a getter method for the property. Default
value is “false”.

Sample
Configuration

<action name="transform"
 class="org.jboss.soa.esb.actions.converters.ObjectToCSVString">
 <property name="bean-properties"
 value="name,address,phoneNumber"/>
 <property name="fail-on-missing-property"
 value="true" />
</action>

JBESB-PG-3/26/10 96

ObjectToXStream

Takes the Object bound as the Message payload and converts it into XML using the XStream
processor. (Also see the SmooksAction).

Input Type User Object

Output Type java.lang.String

Class org.jboss.soa.esb.actions.converters.ObjectToXStream

Properties ● "class-alias": Class alias used in call to XStream.alias(String,
Class) prior to serialisation. Defaults to the input Object's class
name.

● "exclude-package": Exclude the package name from the generated
XML. Default is "true". Not applicable if a "class-alias" is specified.

● "aliases": Optional. Specify additional aliases to help XStream to
convert the xml elements to Objects

● "namespaces": Optional. Specify namespaces that should be
added to the xml generated by XStream. Each namespace-uri is
associated with a local-part which is the element that this
namespace should appear on.

● “xstream-mode”: Optional. Specify the XStream mode to use.
Possible values are XPATH_RELATIVE_REFERENCS (the
default), XPATH_ABSOLUTE_REFERENCS, ID_REFERENCES or
NO_REFERENCES.

● “fieldAliases”: Optional Field aliases to be added to Xstream.
● “implicit-collections”: Optional which will be registered with

Xstream.
● “converters”: Optional list of converter that will be registered with

Xstream.

Sample Config <action name="transform"
 class="org.jboss.soa.esb.actions.converters.ObjectToXStream">

 <property name="class-alias" value="MyAlias" />
 <property name="exclude-package" value="true" />
 <property name="aliases">
 <alias name=”alias1” class=”com.acme.MyXXXClass1/>
 <alias name=”alias2” class=”com.acme.MyXXXClass2/>
 <alias name=”xyz” class=”com.acme.XyzValueObject”/>
 <alias name=”x” class=”com.acme.XValueObject”/>
 ...
 </property>
 <property name="namespaces">
 <namespace namespace-uri=”http://www.xyz.com” local-part=”xyz”/>
 <namespace namespace-uri=”http://www.xyz.com/x” local-part=”x”/>
 ...
 </property>
 <property name="fieldAliases">
 <field-alias alias=”aliasName” definedIn=”className”
fieldName=”fieldName”/>
 <field-alias alias=”aliasName” definedIn=”className”
fieldName=”fieldName”/>
 ...
 </property>
 <property name="implicit-collections">
 <implicit-colletion class=”className” fieldName=”fieldName”
fieldType=”fieldType” itemType=”itemType”/>
 ...
 </property>
 <property name="converters">

JBESB-PG-3/26/10 97

http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/
http://xstream.codehaus.org/javadoc/com/thoughtworks/xstream/XStream.html
http://xstream.codehaus.org/javadoc/com/thoughtworks/xstream/XStream.html
http://xstream.codehaus.org/

 <converter class=”className” fieldName=”fieldName”
fieldType=”fieldType”/>
 ...
 </property>
</action>

XStreamToObject

Takes the XML bound as the Message payload and converts it into an Object using the
XStream processor. (Also see the SmooksAction).

Input Type java.lang.String

Output Type User Object (specified by “incoming-type” property)

Class org.jboss.soa.esb.actions.converters.XStreamToObject

Properties ● "class-alias": Class alias used during serialisation. Defaults to the
input Object's class name.

● "exclude-package": Flag indicating whether or not the XML
includes a package name.

● "incoming-type": Class type.
● "root-node": Optional. Specify a different root node then the actual

root node in the XML. Takes an XPath expression.
● "aliases": Optional. Specify additional aliases to help Xstream to

convert the xml elements to Objects
● "attribute-aliases”: Optional. Specify additional attribute aliases to

help Xstream to convert the xml attributes to Objects
● “fieldAliases”: Optional Field aliases to be added to Xstream.
● “implicit-collections”: Optional which will be registered with

Xstream.
● "converters": Optional. Specify converters to help Xstream to

convert the xml elements and attributes to Objects. For more
information about converters see
http://xstream.codehaus.org/converters.html

Sample Config <action name="transform"
 class="org.jboss.soa.esb.actions.converters.XStreamToObject">

 <property name="class-alias" value="MyAlias" />
 <property name="exclude-package" value="true" />
 <property name="incoming-type" value="com.acme.MyXXXClass" />
 <property name="root-node" value="/rootNode/MyAlias" />
 <property name="aliases">
 <alias name=”alias1” class=”com.acme.MyXXXClass1/>
 <alias name=”alias2” class=”com.acme.MyXXXClass2/>
 ...
 </property>
 <property name="attribute-aliases">
 <attribute-alias name=”alias1” class=”com.acme.MyXXXClass1”/>
 <attribute-alias name=”alias2” class=”com.acme.MyXXXClass2”/>
 ...
 </property>
 <property name="fieldAliases">
 <field-alias alias=”aliasName” definedIn=”className”
fieldName=”fieldName”/>
 <field-alias alias=”aliasName” definedIn=”className”
fieldName=”fieldName”/>
 ...
 </property>
 <property name="implicit-collections">
 <implicit-colletion class=”className” fieldName=”fieldName”

JBESB-PG-3/26/10 98

http://www.xyz.com/
http://www.xyz.com/
http://www.xyz.com/
http://xstream.codehaus.org/
http://www.xyz.com/

fieldType=”fieldType” itemType=”itemType”/>
 ...
 </property>
 <property name="converters">
 <converter class=”className” fieldName=”fieldName”
fieldType=”fieldType”/>
 ...
 </property>
</action>

XsltAction

Preforms transformation on entire documents. If you need per fragment transformations please
refer to the SmooksAction.

The following illustrates the basic XsltAction configuration:
<action name="transform"
class="org.jboss.soa.esb.actions.transformation.xslt.XslAction">
 <property name="templateFile" value="/template.xsl" />
 <property name="failOnWarning" value="true" />
 <property name="resultType" value="STRING" />
</action>

The optional configuration properties are:

Name Description Default

get-payload-location Message Body location containing the
message payload.

Default Payload
Location

set-payload-location Message Body location where result
payload is to be placed.

Default Payload
Location

templateFile Path to the XSL Template file. None - Required

resultType The type of Result to be set as the result
Message payload.

This property controls the output
result of the transformation.
The following values are currently
available:
• STRING - will produce a string.
• BYTES - will produce a byte[].
• DOM - will produce a DOMResult.
• SAX - will produce a SAXResult.

If the above does not suite your
needs then you have the option of
specifying both the Source and
Result by creating SourceResult
object instance. This is a simple
object that holds both a Source and
a Result.
You need to create this object prior
to calling this action and the type
of Result returned will be the type
that was used to create the
SourceResult.

STRING

failOnWarning If true will cause a transformation
warning to cause an exception to be
thrown.
If false the failure will be logged.

TRUE

uriResolver Fully qualified class name of a
class that implements URIResolver.

N/A

JBESB-PG-3/26/10 99

http://www.xyz.com/

This will be set on the
tranformation factory.

factory.feature.* Factory features that will be set
for the tranformation factory.
The feature name, which are fully
qualified URIs will should be
specified after the
'factory.feature.' prefix. For
example:
factory.feature.http://javax.xml.XML
Constants/feature/secure-processing

N/A

Factory.attribute.* Factory attributes that will be set
for the tranformation factory.
The attribute name should be
specified after the
'factory.attribute.' prefix.
For example:
factory.attribute.someVendorAttribut
ename

N/A

validation If true will cause an invalid source
document to cause an exception to be
thrown.
 If false validation will not
occur, although well-formed
documents are enforced.

 Please refer to Validation
Configuration chart below.

FALSE

schemaFile The input schema file (xsd) to use,
located on the classpath.

 Please refer to Validation
Configuration chart below.

N/A

schemaLanguage The input schema language to use.

 Please refer to Validation
Configuration chart below

N/A

XsltAction Validation Configuration chart:

Validation Configuration XML Input Processing Outcome

Default

nothing

or

<property name="validation" value="false"/>

•malformed •Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

•well-formed
•valid

•pipeline continues

•well-formed
•invalid

•transformation may fail
•pipeline continues

DTD

<property name="validation" value="true"/>
<property name="schemaLanguage"
value="http://www.w3.org/TR/REC-xml"/>

•malformed •Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

JBESB-PG-3/26/10 100

or

<property name="validation" value="true"/>
<property name="schemaLanguage" value=""/>

•well-formed
•valid

•pipeline continues

•well-formed
•invalid

•Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

W3C XML Schema or RELAX NG

<property name="validation" value="true"/>

or

<property name="validation" value="true"/>
<property name="schemaLanguage"
value="http://www.w3.org/2001/XMLSchema"/>

or

<property name="validation" value="true"/>
<property name="schemaLanguage"
value="http://relaxng.org/ns/structure/1.0"/>

•malformed •Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

•well-formed
•valid

•pipeline continues

•well-formed
•invalid

•Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

W3C XML Schema or RELAX NG
with included schemaFile

<property name="validation" value="true"/>
<property name="schemaFile"
value="/example.xsd"/>

or

<property name="validation" value="true"/>
<property name="schemaLanguage"
value="http://www.w3.org/2001/XMLSchema"/>
<property name="schemaFile"
value="/example.xsd"/>

or

<property name="validation" value="true"/>
<property name="schemaLanguage"
value="http://relaxng.org/ns/structure/1.0"/>
<property name="schemaFile"
value="/example.rng"/>

•malformed •Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

•well-formed
•valid

•pipeline continues

•well-formed
•invalid

•Error logged
•SAXParseException ->
ActionProcessingExceptio
n
•pipeline stops

JBESB-PG-3/26/10 101

SmooksTransformer

NOTE: Check out the SmooksAction for a more general purpose (and more flexible)
Smooks action class. The SmooksTransformer action will be deprecated in a future
release.

Message Transformation on JBossESB is supported by the SmooksTransformer component.
This is an ESB Action component that allows the Smooks Data Transformation/Processing
Framework to be plugged into an ESB Action Processing Pipeline.

A wide range of source (XML, CSV, EDI etc.) and target (XML, Java, CSV, EDI etc.) data
formats are supported by the SmooksTransformer component. A wide range of
Transformation Technologies are also supported, all within a single framework. See Smooks
for more details.

Class org.jboss.soa.esb.actions.converters.SmooksTransformer

Properties Smooks Resource Configuration:
● "resource-config": The Smooks resource configuration file.

Message Profile Properties (Optional):
● "from": Message Exchange Participant name. Message Producer.
● "from-type": Message type/format produced by the “from” message

exchange participant.
● "to": Message Exchange Participant name. Message Consumer.
● "to-type": Message type/format consumed by the “to” message

exchange participant.

Note: All the above properties can be overridden by supplying them as
properties to the message (Message.Properties).

Sample
Configuration

Default Input/Output:
<action name="transform" class="org.jboss.soa.esb.actions.converters.SmooksTransformer">
 <property name="resource-config" value="/smooks/config-01.xml" />
</action>

Named Input/Output:
<action name="transform" class="org.jboss.soa.esb.actions.converters.SmooksTransformer">
 <property name="resource-config" value="/smooks/config-01.xml" />

 <property name="get-payload-location" value="get-order-params" />
 <property name="set-payload-location" value="get-order-response" />
</action>

Using Message Profiles:
<action name="transform" class="org.jboss.soa.esb.actions.converters.SmooksTransformer">
 <property name="resource-config" value="/smooks/config-01.xml" />

 <property name="from" value="DVDStore:OrderDispatchService" />
 <property name="from-type" value="text/xml:fullFillOrder" />
 <property name="to" value="DVDWarehouse_1:OrderHandlingService" />
 <property name="to-type" value="text/xml:shipOrder" />
</action>

Java Objects are bound to the Message.Body under their “beanId”. For more on this, please
refer to the MessageTransformation document, or the WIKI.

JBESB-PG-3/26/10 102

http://wiki.jboss.org/wiki/Wiki.jsp?page=MessageTransformation
http://milyn.codehaus.org/javadoc/smooks-cartridges/javabean/org/milyn/javabean/BeanPopulator.html
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESB
http://milyn.codehaus.org/Smooks

SmooksAction

The SmooksAction class (org.jboss.soa.esb.smooks.SmooksAction) is the second generation
ESB action class for executing Smooks “processes” (it can do more than just transform
messages – splitting etc). The SmooksTransformer action will be deprecated (and eventually
removed) in a future release of the ESB.

The SmooksAction class can process (using Smooks PayloadProcessor) a wider range of ESB
Message payloads e.g. Strings, byte arrays, InputStreams, Readers, POJOs and more (see the
PayloadProcessor docs). As such, it can perform a wide range of transformations including
Java to Java transforms. It can also perform other types of operations on a Source messages
stream, including content based payload Splitting and Routing (not ESB Message routing).
The SmooksAction enables the full range of Smooks capabilities from within JBoss ESB.

The Smooks User Guide (and other documentation) is available on the Smooks website. Also,
check out the Smooks Tutorials.

NOTE:

Users should be aware that Smooks does not detect (and report errors on) certain types of
configuration errors for resource configurations made through the base <resource-
config>. If, for example, the resource (<resource>) is a Smooks Visitor implementation,
and you misspell the name of the Visitor class, Smooks will not raise this as an error
simply because it doesn't know that the misspelling was supposed to be a class.
Remember, Smooks supports lots of different types of resource and not just Java Visitor
implementations.

The easiest way to avoid this issue (in JBoss ESB 4.5.GA+) is to use the extended Smooks
configuration namespaces for all out of the box functionality. For example, instead of
defining Java binding configurations by defining org.milyn.javabean.BeanPopulator
<resource-config> configurations, you should use the
http://www.milyn.org/xsd/smooks/javabean-1.2.xsd configuration namespace (i.e. the
<jb:bean> config etc).

If you've implemented new Smooks Visitor functionality, the easiest way to avoid this issue
is to define an extended configuration namespace for this new resource type. This also
has the advantage of making this new resource easier to configure, because you're able to
leverage the schema support built into your IDE.

See the Smooks v1.1+ documentation for examples of these extended namespace
configurations.

SmooksAction Configuration

The following illustrates the basic SmooksAction configuration:
<action name="transform" class="org.jboss.soa.esb.smooks.SmooksAction">
 <property name="smooksConfig" value="/smooks/order-to-java.xml" />
</action>

The optional configuration properties are:

Name Description Default

get-payload-location Message Body location containing the
message payload.

Default Payload
Location

set-payload-location Message Body location where result
payload is to be placed.

Default Payload
Location

mappedContextObjects Comma separated list of Smooks

JBESB-PG-3/26/10 103

http://www.milyn.org/xsd/smooks/javabean-1.1.xsd
http://www.smooks.org/mediawiki/index.php?title=Examples
http://www.smooks.org/
http://milyn.codehaus.org/javadoc/v1.0/smooks/org/milyn/container/plugin/PayloadProcessor.html
http://milyn.codehaus.org/javadoc/v1.0/smooks/org/milyn/container/plugin/PayloadProcessor.html

ExecutionContext objects to be mapped
into the
EXECUTION_CONTEXT_ATTR_MAP_KE
Y Map on the ESB Message Body. Default
is an empty list. Objects must be
Serializable.

resultType The type of Result to be set as the result
Message payload.

See Specifying the Result Type for more
details.

STRING

javaResultBeanId Note: Only relevant
when resultType=JAVA

The Smooks bean context beanId to be
mapped as the result when the resultType
is "JAVA". If not specified, the whole bean
context bean Map is mapped as the JAVA
result.

reportPath The path and file name for generating a
Smooks Execution Report. This is a
development aid i.e. not to be used in
production.

Message Input Payload

The SmooksAction uses the ESB MessagePayloadProxy class for getting and setting the
message payload on the ESB Message. Therefore, unless otherwise configured via the
“get-payload-location” and “set-payload-location” action properties, the SmooksAction
gets and sets the Message payload on the default message location (i.e. using
Message.getBody().get() and Message.getBody().set(Object)).

As stated above, the SmooksAction automatically supports a wide range of Message
payload types (see the PayloadProcessor). This means that the SmooksAction itself can
handle most payload types without requiring “fixup” actions before it in the action chain.

XML, EDI, CSV etc Input Payloads

To process these message types using the SmooksAction, simply supply the Source
message as a:

1. String,

2. InputStream ,

3. Reader , or

4. byte array

Apart from that, you just need to perform the standard Smooks configurations (in the
Smooks config, not the ESB config) for processing the message type in question e.g.
configure a parser if it's not an XML Source (e.g. EDI, CSV etc). See the Smooks User
Guide.

Java Input Payload

If the supplied Message payload is not one of type String, InputStream, Reader or byte[],
the SmooksAction processes the payload as a JavaSource, allowing you to perform Java to
XML, Java to Java etc transforms.

JBESB-PG-3/26/10 104

http://www.milyn.org/javadoc/v1.2/smooks/org/milyn/payload/JavaSource.html
http://www.smooks.org/mediawiki/index.php?title=V1.2:Smooks_v1.2_User_Guide
http://www.smooks.org/mediawiki/index.php?title=V1.2:Smooks_v1.2_User_Guide
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Reader.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/InputStream.html
http://www.milyn.org/javadoc/v1.2/smooks/org/milyn/container/plugin/PayloadProcessor.html
http://www.smooks.org/mediawiki/index.php?title=V1.2:Smooks_v1.2_User_Guide#Checking_the_Smooks_Execution_Process

Specifying the Result Type

Because the Smooks Action can produce a number of different Result types, you need to
be able to specify which type of Result you want. This effects the result that's bound back
into the ESB Message payload location.

By default the ResultType is “STRING”, but can also be “BYTES”, “JAVA” or
“NORESULT” by setting the “resultType” configuration property.

Specifying a resultType of “JAVA” allows you to select one or more Java Objects from
the Smooks ExecutionContext (specifically, the bean context). The javaResultBeanId
configuration property complements the resultType property by allowing you to specify a
specific bean to be bound from the bean context to the ESB Message payload location.
The following is an example that binds the “order” bean from the Smooks bean context
onto the ESB Message as the Message payload.

<action name="transform" class="org.jboss.soa.esb.smooks.SmooksAction">
 <property name="smooksConfig" value="/smooks/order-to-java.xml" />
 <property name="resultType" value="JAVA" />
 <property name="javaResultBeanId" value="order" />
</action>

MessagePersister

This is used to interact with the MessageStore, where necessary.

Input Type Message

Output Type The input Message

Class org.jboss.soa.esb.actions.MessagePersister

Properties ● classification: used to classify where the Message will be stored. If
the Message Property
org.jboss.soa.esb.messagestore.classification is defined
on the Message then that will be used instead. Otherwise a default
may be provided at instantiation time.

● message-store-class: the implementation of the MessageStore.
● terminal: if the Action is to be used to terminate a pipeline then this

should be true (the default). If not, then set this to false and the input
message will be returned from processing.

Sample
Configuration

<action name="PersistAction"
class="org.jboss.soa.esb.actions.MessagePersister" >
<property name="classification" value="test"/>
<property name="message-store-class"
value="org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl"/>
</action>

JBESB-PG-3/26/10 105

Business Process Management

jBPM - BpmProcessor

JBossESB can make calls into jBPM using the BpmProcessor action. Please also read the
“jBPM Integration” chapter in the ServicesGuide to learn how to call JBossESB from jBPM.
The BpmProcessor action uses the jBPM command API to make calls into jBPM.

The following jBPM commands have been implemented:

•NewProcessInstanceCommand

•StartProcessCommand

•CancelProcessInstanceCommand

•GetProcessInstanceVariablesCommand

Input Type org.jboss.soa.esb.message.Message generated by
AbstractCommandVehicle.toCommandMessage()

Output Type Message – same as the input message

Class org.jboss.soa.esb.services.jbpm.actions.BpmProcessor

Properties ● command - required property. Needs to be one of:
NewProcessInstance-Command, StartProcessInstanceCommand,
or Cancel-ProcessInstanceCommand

● processdefinition – required property for the New- and Start-
ProcessInstanceCommands if the process-definition-id property is
not used. The value of this property should reference a process
definition that is already deployed to jBPM and of which you want to
create a new instance. This property does not apply to the Signal-
and CancelProcessInstance-Commands.

● process-definition-id – required property for the New- and Start-
ProcessInstanceCommands if the processdefinition property is not
used. The value of this property should reference a processdefintion
id in jBPM of which you want to create a new instance. This
property does not apply to the Signal- and
CancelProcessInstanceCommands.

● actor – optional property to specify the jBPM actor id, which applies
to the New- and StartProcessInstanceCommands only.

Properties ● key - optional property to specify the value of the jBPM key. For example
one can pass a unique invoice id as the value for this key. On the jBPM
side this key is as the “business” key id field. The key is a string based
business key property on the process instance. The combination of
business key + process definition must be unique if a business key is
supplied. The key value can hold an MVEL expression to extract the
desired value from the EsbMessage. For example if you have a named
parameter called “businessKey” in the body of your message you would
use “body.businessKey”. Note that this property is used for the New- and
StartProcessInstanceCommands only.

● transition-name – optional property. This property only applies to

JBESB-PG-3/26/10 106

the StartProcessInstance- and Signal Commands, and is of use only
if there are more then one transition out of the current node. If this
property is not specified the default transition out of the node is
taken. The default transition is the first transition in the list of
transition defined for that node in the jBPM processdefinition.xml.

● esbToBpmVars - optional property for the New- and
StartProcessInstanceCommands and the SignalCommand. This
property defines a list of variables that need to be extracted from the
EsbMessage and set into jBPM context for the particular process
instance. The list consists of mapping elements. Each mapping
element can have the following attributes:

● esb – required attribute which can contain an MVEL
expression to extract a value anywhere from the
EsbMessage.

● bpm – optional attribute containing the name which be used
on the jBPM side. If omitted the esb name is used.

● default – optional attribute which can hold a default value if
the esb MVEL expression does not find a value set in the
EsbMessage.

Message
variables

Finally some variables can be set on the body of the EsbMessage:

• jbpmProcessInstId – required parameter which applies to the
Cancel-ProcessInstanceCommand only. It is up to the user make
sure this value is set as a named parameter on the EsbMessage
body.

• jbpmTokenId or jbpmProcessInstId – either one is a required
parameter and applies to the SignalCommand only. The
SignalCommand first looks for the value of the token id to which it
will send a signal. If this is not set it will try to obtain the process
instance id and get the root token It is up to the user make sure
either the jbpmTokenId or the jbpmProcessInstId is set on the
EsbMessage body.

Sample
Configuration

<action name="create_new_process_instance"
 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcess
or">
 <property name="command"
value="StartProcessInstanceCommand" />
 <property name="process-definition-name"
 value="processDefinition2"/>
 <property name="actor" value="FrankSinatra"/>
 <property name="esbToBpmVars">
 <!-- esb-name maps to getBody().get("eVar1") -->
 <mapping esb="eVar1" bpm="counter" default="45" />
 <mapping esb="BODY_CONTENT" bpm="theBody" />
 </property>
</action>

JBESB-PG-3/26/10 107

Scripting

Scripting Action Processors support definition of action processing logic via Scripting
languages.

GroovyActionProcessor

Executes a Groovy action processing script, receiving the message, payloadProxy, action
configuration and logger as variable input.

Script Variable
Bindings

● “message”: The message.
● “payloadProxy”: Utility for message payload

(MessagePayloadProxy).
● “config”: The action configuration (ConfigTree).
● “logger”: The GroovyActionProcessor's static Log4J Logger

(Logger).

Class org.jboss.soa.esb.actions.scripting.GroovyActionProcessor

Properties ● “script”: Path (on classpath) to Groovy script.
● “supportMessageBasedScripting”: Allow scripts within the

message.
● “cacheScript”: Should the script be cached. Default “true”.

Sample
Configuration

<action name="process"
 class="org.jboss.soa.esb.scripting.GroovyActionProcessor">
 <property name="script" value="/scripts/myscript.groovy"/>
</action>

ScriptingAction

Executes a script using the Bean Scripting Framework (BSF), receiving the message,
payloadProxy, action configuration and logger as variable input. Some notes:

1. JBoss ESB 4.8 contains BSF 2.3.0, which has less language support than BSF 2.4.0
(for example: no Groovy, and non-functioning Rhino). A future version will contain
BSF 2.4.0, which will support Groovy and Rhino.

2. BSF does not provide an API to precompile, cache and reuse scripts. Because of this,
each execution of the ScriptingAction will go through the compile step again. Please
keep this in mind while evaluating your performance requirements.

3. When including BeanShell scripts in your application, it is advised to use a .beanshell
extension instead of .bsh, otherwise the JBoss BSHDeployer might pick it up.

Script Variable
Bindings

● “message”: The message.
● “payloadProxy”: Utility for message payload

(MessagePayloadProxy).
● “config”: The action configuration (ConfigTree).
● “logger”: The ScriptingAction's static Log4J Logger (Logger).

Class org.jboss.soa.esb.actions.scripting.ScriptingAction

Properties ● “script”: Path (on classpath) to script.
● “supportMessageBasedScripting”: Allow scripts within the

message.
● “language”: Optional script language (overrides extension

deduction).

JBESB-PG-3/26/10 108

http://logging.apache.org/log4j/
http://wiki.jboss.org/wiki/BSHDeployer
http://www.beanshell.org/
http://jakarta.apache.org/bsf/
http://www.mozilla.org/rhino/
http://groovy.codehaus.org/
http://jakarta.apache.org/bsf/
http://www.mozilla.org/rhino/
http://groovy.codehaus.org/
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://groovy.codehaus.org/
http://logging.apache.org/log4j/
http://groovy.codehaus.org/

Sample
Configuration

<action name="process"
 class="org.jboss.soa.esb.scripting.ScriptingAction">
 <property name="script" value="/scripts/myscript.beanshell"/>
</action>

JBESB-PG-3/26/10 109

Services

Actions defined within the ESB Services.

EJBProcessor

Takes an input Message and uses the contents to invoke a Stateless Session Bean. This action
support EJB2.x and EJB3.x.

Input Type EJB method name and parameters.

Output Type EJB specific Object.

Class org.jboss.soa.esb.actions.EJBProcessor

Properties ● "ejb3": if this is a call to an EJB3.x Session Bean
● "ejb-name": The identity of the EJB. Optional when ejb3 is true
● "jndi-name": Relevant JNDI lookup.
● “initial-context-factory”: JNDI lookup mechanism.
● “provider-url”: Relevant provider.
● “method”: EJB method name to call.
● “ejb-params”: list of parameters to use when calling the method

and where in the input Message they reside.
● “esb-out-var”: the location of the output (default value is

DEFAULT_EJB_OUT).

Sample
Configuration
EJB2.x

<action name="EJBTest" class="org.jboss.soa.esb.actions.EJBProcessor">
<property name="ejb-name" value="MyBean" />
<property name="jndi-name" value="ejb/MyBean" />
<property name="initial-context-factory"

value="org.jnp.interfaces.NamingContextFactory" />
<property name="provider-url" value="localhost:1099" />
<property name="method" value="login" />
<!-- Optional output location, defaults to "DEFAULT_EJB_OUT"
<property name="esb-out-var" value="MY_OUT_LOCATION"/> -->
<property name="ejb-params">

<!-- arguments of the operation and where to find them in the
message -->

<arg0 type="java.lang.String">username</arg0>
<arg1 type="java.lang.String">password</arg1>

</property>
</action>

Sample
Configuration
EJB3.x

action name="EJBTest" class="org.jboss.soa.esb.actions.EJBProcessor">
<property name="ejb3" value="true" />
<property name="jndi-name" value="ejb/MyBean" />
<property name="initial-context-factory"

value="org.jnp.interfaces.NamingContextFactory" />
<property name="provider-url" value="localhost:1099" />
<property name="method" value="login" />
<!-- Optional output location, defaults to "DEFAULT_EJB_OUT"
<property name="esb-out-var" value="MY_OUT_LOCATION"/> -->
<property name="ejb-params">

<!-- arguments of the operation and where to find them in the
message -->

<arg0 type="java.lang.String">username</arg0>
<arg1 type="java.lang.String">password</arg1>

</property>
</action>

JBESB-PG-3/26/10 110

Routing

Routing Actions support conditional routing of messages between two or more message
exchange participants.

Aggregator

Message aggregation action. An implementation of the Aggregator Enterprise Integration
Pattern.

Class org.jboss.soa.esb.actions.Aggregator

Properties ● “timeoutInMillies”: OPTIONAL, timeout time in milliseconds before
the aggregation process times out.

Sample
Configuration

<action class="org.jboss.soa.esb.actions.Aggregator"
 name="Aggregator">
 <property name="timeoutInMillies" value="60000"/>
</action>

This action relies on all messages having the correct correlation data. This data is set on the
message as a property called “aggregatorTag” (Message.Properties). See the
ContentBasedRouter and StaticRouter actions.

The data has the following format:
[UUID] “:” [message-number] “:” [message-count]

If all the messages have been received by the aggregator, it returns a new Message containing
all the messages as part of the Message.Attachment list (unnamed), otherwise the action
returns null.

EchoRouter

Simply echos the incoming message payload to the info log stream and returns the input
Message from the process method

HttpRouter

Currently there are two HttpRouter actions in the code base. One that uses JBoss Remoting to
perform the HTTP invocation and one that uses Apache Commons HttpClient. This section
will discribe both. Please note that the JBoss Remoting HttpRouter is now deprecated to avoid
confusion that having two may cause.

JBoss Remoting HttpRouter (Deprecated)

This instance will forward the incoming message to a URL for further processing.

Class org.jboss.soa.esb.actions.routing.HttpRouter

Properties ● “routeUrl” the endpoint to forward the message. If not set then
localhost:5400 will be used.

Apache Commons HttpRouter

This action allows invocation of external (ESB unaware) Http endpoints from an ESB action
pipeline. This action uses Apache Commons HttpClient under the covers.

JBESB-PG-3/26/10 111

http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://www.enterpriseintegrationpatterns.com/Aggregator.html

Class org.jboss.soa.esb.actions.routing.http.HttpRouter

Properties ● “endpointUrl” the endpoint to forward the message. Required.
○ “http-client-property” Optional. The HttpRouter uses the

HttpClientFactory to create and configure the HttpClient
instance. You can specify the configuration of the factory by
using the file property which will point to a properties file on the
local file system, classpath or URI based. See example below to
see how this is done. For more information about the factory
properties please refer to: http://www.jboss.org/community/docs/
DOC-9969

● “method” Currently only supports GET and POST. Required.
● “responseType” Specifies in what form the response should be sent

back. Either STRING(default) of BYTES.
● “headers” To be added to the request. Supports multiple <header

name=”blah” value=”blahvalue”/> elements. Optional.
● “http-client-property” The HttpRouter uses the HttpClientFactory to

create and configure the HttpClient instance. You can specify the
configuration of the factory by

Sample
Configuration

<action name="httprouter"
class="org.jboss.soa.esb.actions.routing.http.HttpRouter">
 <property name="endpointUrl"value="http://host:80/blah">
 <http-client-property name="file" value="/ht.props"/>
 </property>
 <property name="method" value="GET"/>
 <property name="responseType" value="STRING"/>
 <property name="headers">
 <header name="blah" value="blahval" ></header>
 </property>
</action>

JMSRouter

Routes the incoming message on to JMS.

Class org.jboss.soa.esb.actions.routing.JMSRouter

Properties ● “unwrap”: true will extract the message payload from the Message
object before sending. false (the default) will send the serialized
Message object.

● “jndi-context-factory”: the JNDI context factory to use. The default
is “org.jnp.interfaces.NamingContextFactory”.

● “jndi-URL”: the JNDI URL to use. The default is 127.0.0.1:1099.
● “jndi-pkg-prefix”: the JNDI naming package prefixes to use. The

default is org.jboss.naming:org.jnp.interfaces
● “connection-factory”: the name of the ConnectionFactory to use.

Default is “ConnectionFactory”.
● “persistent”: the JMS DeliveryMody, true (default) or false.
● “priority”: the JMS priority to be used. Default is

javax.jms.Message.DEFAULT_PRIORITY.
● “time-to-live”: the JMS Time-To-Live to be used. The default is

JBESB-PG-3/26/10 112

http://host:80/blah
http://www.jboss.org/community/docs/DOC-9969
http://www.jboss.org/community/docs/DOC-9969

javax.jms.Message.DEFAULT_TIME_TO_LIVE.
● “security-principal': the security principal to use when creating the

JMS connection.
● “security-credentials”: the security credentials to use when

creating the JMS connection.
● “property-strategy”: the implementation of the JMSPropertiesSetter

interface, if overriding the default.
● “message-prop”: properties to be set on the message are prefixed

with “message-prop'”.
● “jndi-prefixes”: a comma separated String of of prefixes. Properties

that have these prefixes will be added to the JNDI environment.

EmailRouter

Routes the incoming message to a configured email account..

Class org.jboss.soa.esb.actions.routing.email.EmailRouter

Properties ● “unwrap”: true will extract the message payload from the Message
object before sending. false (the default) will send the serialized
Message object.

● “host”: The host name of the SMTP server. If not specified will
default to the property 'org.jboss.soa.esb.mail.smtp.host' in
jbossesb-properties.xml.

● “port”: The port for the SMTP server. If not specified will default to
the property 'org.jboss.soa.esb.mail.smtp.port' in jbossesb-
properties.xml.

● “username”: The username for the SMTP server. If not specified will
default to the property 'org.jboss.soa.esb.mail.smtp.user' in
jbossesb-properties.xml.

● “password”: The password for the above username on the SMTP server.
If not specified will default to the property
'org.jboss.soa.esb.mail.smtp.password' in jbossesb-properties.xml.

● “auth”: If true will attempt to authenticate the user using the AUTH
command. If not specified will default to the property
'org.jboss.soa.esb.mail.smtp.auth' in jbossesb-properties.xml

● “from”: The from email address.
● “sendTo”: The destination email account.
● “subject': The subject of the email.
● “messageAttachmentName”: filename of an attachment containing

the message payload (optional). If not specified the message payload
will be included in the message body.

● “message”: a string to be prepended to the ESB message contents
which make up the e-mail message (optional)

● “ccTo”: comma-separated list of email addresses (optional)
● “attachment”: Child elements that contain file that will be added as

attachments to the email sent.

Example
Configuration

<action name="send-email"
class="org.jboss.soa.esb.actions.routing.email.EmailRouter">
 <property name="unwrap" value="true" />
 <property name="host" value="smtpHost" />
 <property name="port" value="25" />
 <property name="username" value="smtpUser" />

JBESB-PG-3/26/10 113

 <property name="password" value="smtpPassword" />
 <property name="from" value="jbossesb@xyz.com" />
 <property name="sendTo" value="system2@xyz.com" />
 <property name="subject" value="Message Subject" />
</action>

JBESB-PG-3/26/10 114

ContentBasedRouter

Content based message routing action.

This action supports the following routing rule provider types:

•XPath: Simple XPath rules, defined inline on the action, or externally in a .properties format
file.

•Drools: Drools rules files (DSL). Out of the box support for an XPath based DSL.

Class org.jboss.soa.esb.actions.ContentBasedRouter

Properties ● “cbrAlias”: Content Based Routing Provider alias. Supported
values are “Drools” (default), “Xpath” “Regex”.

● “ruleSet”: Externally defined rule file. Will be a Drools DSL file if
the Drools rule provider is in use. Will be a .properties rule file if the
XPath or Regex provider is in use.

● “ruleLanguage”: CBR evaluation Domain Specific Language (DSL)
file. Only relevant for the Drools rule provider.

● “ruleReload”: Flag indicating whether or not the rules file should be
reloaded each time. Default is “false”.

● “destinations”: Container property for the <route-to>
configurations. If the rules are defined externally, this configuration
will have the following format:

➢ <route-to destination-name="express" service-
category="ExpressShipping" service-
name="ExpressShippingService"/>

If the rules are defined inline in the configuration, this configuration
will have the following format (not supported for the Drools provider):

➢ <route-to service-category="ExpressShipping"
service-name="ExpressShippingService"
expression=”/order[@statusCode='2']” />

● “namespaces”: Container property for the <namespace>
configurations, where required e.g. for the XPath ruleprovider. The
<namespace> configurations have the following format:

➢ <namespace prefix=”ord”
uri=”http://acme.com/order” />

“process” methods ● “process”: Do not append aggregation data to the message.
● “split”: Append aggregation data to the message.

See the Aggregator action.

Sample
Configuration

Xpath (inline):
<action process=”split” name="ContentBasedRouter”
 class="org.jboss.soa.esb.actions.ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="destinations">
 <route-to service-category="ExpressShipping"
 service-name="ExpressShippingService"
expression=”/order['status='1']” />
 <route-to service-category="NormalShipping"
 service-name="NormalShippingService"
expression=”/order['status='2']” />
 </property>
</action>

Xpath (external):

JBESB-PG-3/26/10 115

<action process=”split” name="ContentBasedRouter”
 class="org.jboss.soa.esb.actions.ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="ruleSet" value="xpath-rules.properties"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="express"
 service-category="ExpressShipping"
 service-name="ExpressShippingService"/>
 <route-to destination-name="normal"
 service-category="NormalShipping"
 service-name="NormalShippingService"/>
 </property>
</action>

Regex is configured in exactly the same way as XPath. The only difference
being that the expressions are regex expressions (instead of XPath
expressions).

Drools:
<action process=”split” name="ContentBasedRouter”
 class="org.jboss.soa.esb.actions.ContentBasedRouter">
 <property name="cbrAlias" value="Drools"/>
 <property name="ruleSet" value="MyESBRules-XPath.drl"/>
 <property name="ruleLanguage" value="XPathLanguage.dsl"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="express"
 service-category="ExpressShipping"
 service-name="ExpressShippingService"/>
 <route-to destination-name="normal"
 service-category="NormalShipping"
 service-name="NormalShippingService"/>
 </property>
</action>

See the “What is Content-Based Routing” chapter in the ServicesGuide for more details on
Content Based Routing.

JBESB-PG-3/26/10 116

StaticRouter

Static message routing action. This is basically a simplified version of the Content Based
Router, except it does not support content based routing rules.

Class org.jboss.soa.esb.actions.StaticRouter

Properties ● “destinations”: Container property for the <route-to>
configurations.

➢ <route-to destination-name="express" service-
category="ExpressShipping" service-
name="ExpressShippingService"/>

“process” methods ● “process”: Don't append aggregation data to message.
● “split”: Append aggregation data to message.

See the Aggregator action.

Sample
Configuration

<action name="routeAction”
 class="org.jboss.soa.esb.actions.StaticRouter">
 <property name="destinations">
 <route-to service-category="ExpressShipping"
 service-name="ExpressShippingService"/>
 <route-to service-category="NormalShipping"
 service-name="NormalShippingService"/>
 </property>
</action>

SyncServiceInvoker

Synchronous message routing action. This action makes a Synchronous invocation on the
configured service and passes the invocation response back into the action pipeline for
processing by subsequent actions (if there are any), or as the response to if the service is a
RequestResponse service.

Class org.jboss.soa.esb.actions.SyncServiceInvoker

Properties ● “service-category”: Service Category.
● “service-name”: Service Name.
● “failOnException”: (Optional) Should the action fail on an

exception from the target service invocation. If set to “false”, the
action will simply return the input message to the pipeline, allowing
the service to continue processing. If you need to know the failure
state, then you should leave this parameter set to true and use the
normal “faultTo” mechanism by allowing the pipeline to fail. (default
= “true”)

● “suspendTransaction”: (Optional) This action will fail if executed in
the presence of an active transaction. The transaction can be
suspended if this property is set to “true”. (default = “false”)

● “serviceInvokerTimeout”: (Optional) Invoker timeout in
milliseconds. In the event of a timeout, an exception will occur,
causing the action to behave according to the “failOnException”
confguration. (default = 30000)

Sample
Configuration

<action name="route” class="org.jboss.soa.esb.actions.SyncServiceInvoker">
 <property name="service-category" value=”Services” />
 <property name="service-name" value=”OM” />
</action>

JBESB-PG-3/26/10 117

StaticWiretap

The StaticWiretap action differs from the StaticRouter in that the StaticWiretap “listens in” on
the action chain and allows actions below it to be executed, while the StaticRouter action
terminates the action chain at the point it is used. A StaticRouter should therefore be the last
action in a chain.

Class org.jboss.soa.esb.actions.StaticWiretap

Properties ● “destinations”: Container property for the <route-to>
configurations.

➢ <route-to destination-name="express" service-
category="ExpressShipping" service-
name="ExpressShippingService"/>

“process” methods ● “process”: Don't append aggregation data to message.

See the Aggregator action.

Sample
Configuration

<action name="routeAction”
 class="org.jboss.soa.esb.actions.StaticWiretap">
 <property name="destinations">
 <route-to service-category="ExpressShipping"
 service-name="ExpressShippingService"/>
 <route-to service-category="NormalShipping"
 service-name="NormalShippingService"/>
 </property>
</action>

EmailWiretap

Will publish the ESB Message payload to a configured email account.

Class org.jboss.soa.esb.actions.routing.email.EmailWiretap

Properties
● “host”: The host name of the SMTP server. If not specified will

default to the property 'org.jboss.soa.esb.mail.smtp.host' in
jbossesb-properties.xml.

● “port”: The port for the SMTP server. If not specified will default to
the property 'org.jboss.soa.esb.mail.smtp.port' in jbossesb-
properties.xml.

● “username”: The username for the SMTP server. If not specified will
default to the property 'org.jboss.soa.esb.mail.smtp.user' in
jbossesb-properties.xml.

● “password”: The password for the above username on the SMTP server.
If not specified will default to the property
'org.jboss.soa.esb.mail.smtp.password' in jbossesb-properties.xml.

● “auth”: If true will attempt to authenticate the user using the AUTH
command. If not specified will default to the property
'org.jboss.soa.esb.mail.smtp.auth' in jbossesb-properties.xml

● “from”: The from email address.
● “sendTo”: The destination email account.
● “subject': The subject of the email.
● “messageAttachmentName”: filename of an attachment containing

the message payload (optional). If not specified the message payload
will be included in the message body.

JBESB-PG-3/26/10 118

● “message”: a string to be prepended to the ESB message contents
which make up the e-mail message (optional)

● “ccTo”: comma-separated list of email addresses (optional)
● “attachment”: Child elements that contain file that will be added as

attachments to the email sent.

Example
configuration

<action name="send-email"
class="org.jboss.soa.esb.actions.routing.email.EmailWiretap">
 <property name="host" value="smtpHost" />
 <property name="port" value="25" />
 <property name="username" value="smtpUser" />
 <property name="password" value="smtpPassword" />
 <property name="from" value="jbossesb@xyz.com" />
 <property name="sendTo" value="systemX@xyz.com" />
 <property name="subject" value="Important message" />
</action>

Notifier

Sends a notification to a list of notification targets specified in configuration, based on the
result of action pipeline processing.

The action pipeline works in two stages, normal processing followed by outcome processing.
In the first stage, the pipeline calls the process method(s) on each action (by default it is called
process) in sequence until the end of the pipeline has been reached or an error occurs. At this
point the pipeline reverses (the second stage) and calls the outcome method on each preceding
action (by default it is processException or processSuccess). It starts with the current action
(the final one on success or the one which raised the exception) and travels backwards until it
has reached the start of the pipeline. The Notifier is an action which does no processing of the
message during the first stage (it is a no-op) but sends the specified notifications during the
second stage.

The Notifier class configuration is used to define NotificationList elements, which can be used
to specify a list of NotificationTargets. A NotificationList of type “ok” specifies targets which
should receive notification upon successful action pipeline processsing; a NotificationList of
type “err” specifies targets to receive notifications upon exceptional action pipeline
processing, according to the action pipeline processing semantics mentioned earlier. Both
“err” and “ok” are case insensitive.

The notification sent to the NotificationTarget is target-specific, but essentially consists of a
copy of the ESB message undergoing action pipeline processing. A list of notification target
types and their parameters appears at the end of this section.

If you wish the ability to notify of success or failure at each step of the action processing
pipeline, use the “okMethod” and “exceptionMethod” attributes in each <action> element
instead of having an <action> that uses the Notifier class.

Class org.jboss.soa.esb.actions.Notifier

Properties NotificationList subtree indicating targets

Sample
Configuration

<action name=”notify” class="org.jboss.soa.esb.actions.Notifier"
okMethod="notifyOK">
 <property name="destinations">
 <NotificationList type="OK">

JBESB-PG-3/26/10 119

 <target class="NotifyConsole" />
 <target class="NotifyFiles" >
 <file name=”@results.dir@/goodresult.log” />
 </target>
 </NotificationList>
 <NotificationList type="err">
 <target class="NotifyConsole" />
 <target class="NotifyFiles" >
 <file name=”@results.dir@/badresult.log” />
 </target>
 </NotificationList>
 </property>
</action>

Notifications can be sent to targets of various types. The table below provides a list of the
NotificationTarget types and their parameters.

Class NotifyConsole

Purpose Performs a notification by printing out the contents of the ESB message on
the console.

Attributes none

Child none

Child Attributes none

Sample
Configuration

<target class="NotifyConsole" />

Class NotifyFiles

Purpose Performs a notification by writing the contents of the ESB message to a
specified set of files.

Attributes none

Child file

Child Attributes ● append – if value is true, append the notification to an existing file
● URI – any valid URI specifying a file

Sample
Configuration

<target class="NotifyFiles" >
 <file append=”true” URI=”anyValidURI”/>
 <file URI=”anotherValidURI”/>
</target>

Class NotifySQLTable

Purpose Performs a notification by inserting a record into an existing
database table. The database record contains the ESB message contents
and, optionally, other values specified using nested <column> elements.

Attributes ● driver-class
● connection-url
● user-name
● password
● table – table in which notification record is stored
● dataColumn – name of table column in which ESB message

contents are stored

JBESB-PG-3/26/10 120

Child column

Child Attributes ● name – name of table column in which to store additional value
● value – value to be stored

Sample
Configuration

<target class="NotifySQLTable"
 driver-class=”com.mysql.jdbc.Driver”
 connection-url=”jdbc:mysql://localhost/db”
 user-name=”user”
 password=”password”
 table=”table”
 dataColumn=”messageData”>
 <column name=”aColumnlName” value=”aColumnValue”/>
</target>

Class NotifyFTP

Purpose Performs a notification by creating a file containing the ESB message
content and transferring it via FTP to a remote file system.

Attributes none

Child ftp

Child Attributes ● URL – a valid FTP URL
● filename – the name of the file to contain the ESB message content

on the remote system

Sample
Configuration

<target class="NotifyFTP" >
 <ftp URL=”ftp://username:pwd@server.com/remote/dir”
 filename=”someFile.txt” />
</target>

Class NotifyQueues

Purpose Performs a notification by translating the ESB message (including its
attached properties) into a JMS message and sending the JMS message to
a list of Queues. Additional properties may be attached using the
<messageProp> element.

Attributes none

Child queue

Child Attributes ● jndiName – the JNDI name of the Queue
● jndi-URL – the JNDI provider URL (optional)
● jndi-context-factory – the JNDI initial context factory (optional)
● jndi-pkg-prefix – the JNDI package prefixes (optional)
● connection-factory – the JNDI name of the JMS connection factory

(by default, “ConnectionFactory”)

Child messageProp

Child Attributes ● name – name of the new property to be added
● value – value of the new property

Sample
Configuration

<target class="NotifyQueues" >
 <messageProp name=”aNewProperty” value=”theValue”/>
 <queue jndiName=”queue/quickstarts_notifications_queue” />
</target>

JBESB-PG-3/26/10 121

ftp://username:pwd@server.com/remote/dir

Class NotifyTopics

Purpose Performs a notification by translating the ESB message (including its
attached properties) into a JMS message and publishing the JMS message
to a list of Topics. Additional properties may be attached using the
<messageProp> element.

Attributes none

Child topic

Child Attributes ● jndiName – the JNDI name of the Queue
● jndi-URL – the JNDI provider URL (optional)
● jndi-context-factory – the JNDI initial context factory (optional)
● jndi-pkg-prefix – the JNDI package prefixes (optional)
● connection-factory – the JNDI name of the JMS connection factory

(by default, “ConnectionFactory”)

Child messageProp

Child Attributes ● name – name of the new property to be added
● value – value of the new property

Sample
Configuration

<target class="NotifyTopics" >
 <messageProp name=”aNewProperty” value=”theValue”/>
 <queue jndiName=”topic/quickstarts_notifications_topic” />
</target>

Class NotifyEmail

Purpose Performs a notification by sending an email containing the ESB message
content and, optionally, any file attachments.

Attributes ● from – email address (javax.email.InternetAddress)
● sendTo – comma-separated list of email addresses
● ccTo – comma-separated list of email addresses (optional)
● subject – email subject
● message – a string to be prepended to the ESB message contents

which make up the e-mail message (optional)
● msgAttachmentName - filename of an attachment containing the

message payload (optional). If not specified the message payload
will be included in the message body.

Child Attachment (optional)

Child Text the name of the file to be attached

Sample
Configuration

<target class="NotifyEmail"
 from=”person@somewhere.com”
 sendTo=”person@elsewhere.com”
 subject=”theSubject”>
 <attachment>attachThisFile.txt</attachment>
</target>

Class NotifyFTP

Purpose Performs a notification by creating a file containing the ESB message

JBESB-PG-3/26/10 122

content and transferring it via FTP to a remote file system.

Attributes none

Child ftp

Child Attributes ● URL – a valid FTP URL
● filename – the name of the file to contain the ESB message content

on the remote system

Sample
Configuration

<target class="NotifyFTP" >
 <ftp URL=”ftp://username:pwd@server.com/remote/dir”
 filename=”someFile.txt” />
</target>

Class NotifyFTPList

Purpose NotifyFTPList extends NotifyFTP and adds the ability to take
a single file name or list of file names located in the ESB Message object.

The file(s) in the Message payload should contain a list of files (full paths).
This list will be iterated over and every file in the list will be sent to the
configured destination FTP server directory if the “listFiles” property is false.
If “listFiles” is true, the file(s) are read line by line, with each line containing
the name of a file to be transferred.

So, you can supply:
1.A single file to be transferred (single String payload with listFiles = false)
2.A list of files to be transferred (List<String> payload with listFiles = false)
3.A single list file of files to be transferred (single String payload with
listFiles = true)
4.A list of list files of files to be transferred (List<String> payload with
listFiles = true)

Attributes none

Child ftp

Child Attributes ● URL – a valid FTP URL
● filename – the name of the file to contain the ESB message content

on the remote system
● listFiles – true if the file(s) named in the message payload is/are list

file(s), otherwise false. Default is false.
● deletelistFile – true if the list file is to be deleted, otherwise false.

Default is false.

Sample
Configuration

<target class="NotifyFTPList">
 <ftp URL="ftp://username:password@localhost/outputdir"
 filename="{org.jboss.soa.esb.gateway.file}">
 listFiles="true"
 deletelistFile="true"
</target>

Class NotifyTCP

Purpose Send message via TCP. Each connection is maintained only

JBESB-PG-3/26/10 123

ftp://username:pwd@server.com/remote/dir

for the duration of the notification.

Only supports sending of String data payloads i.e.
explicitly (as a String), or encoded as a byte array
(byte[]).

Attributes none

Child destination (supports multiple destinations)

Child Attributes ● URI: The tcp address to which the data is to be written. Default port
is 9090.

Sample
Configuration

<target class="NotifyTcp" >
 <destination URI=”tcp://myhost1.net:8899” />
 <destination URI=”tcp://myhost2.net:9988” />
</target>

Webservices/SOAP

SOAPProcessor

JBoss Webservices SOAP Processor.

This action supports invocation of a JBossWS hosted webservice endpoint through any
JBossESB hosted listener. This means the ESB can be used to expose Webservice endpoints
for Services that don't already expose a Webservice endpoint. You can do this by writing a
thin Service Wrapper Webservice (e.g. a JSR 181 implementation) that wraps calls to the
target Service (that doesn't have a Webservice endpoint), exposing that Service via endpoints
(listeners) running on the ESB. This also means that these Services are invocable over any
transport channel supported by the ESB (http, ftp, jms etc.).

SOAPProcessor Action Configuration

The configuration for the SOAPProcessor action is very straightforward. The action requires
only one mandatory property value, which is the "jbossws-endpoint" property. This property
names the JBossWS endpoint that the SOAPProcessor is exposing (invoking).

<action name="JBossWSAdapter" class="org.jboss.soa.esb.actions.soap.SOAPProcessor">

 <property name="jbossws-endpoint" value="ABI_OrderManager" />

 <property name="rewrite-endpoint-url" value="true" />

</action>

Option Description

jbossws-endpoint This is the JBossWS endpoint that the
SOAPProcessor is exposing. Mandatory.

rewrite-endpoint-url The optional "rewrite-endpoint-url" property is
there to support load balancing on HTTP endpoints,
in which case the Webservice endpoint container
will have been configured to set the HTTP(S)
endpoint address in the WSDL to that of the Load
Balancer. The "rewrite-endpoint-url" property can
be used to turn off HTTP endpoint address

JBESB-PG-3/26/10 124

ftp://username:pwd@server.com/remote/dir
ftp://username:pwd@server.com/remote/dir

rewriting in situations such as this. It has no effect
for non-HTTP protocols. Default it true.

Dependencies
1. JBoss Application Server 4.2.3.GA.

2. The soap.esb Service. This is available in the lib folder of the
distribution.

"ESB Message Aware" Webservice Endpoints

Note that Webservice endpoints exposed via this action have direct access to the current
JBossESB Message instance used to invoke this action's process(Message) method. It can
access the current Message instance via the SOAPProcessor.getMessage() method and can
change the Message instance via the SOAPProcessor.setMessage(Message) method. This
means that Webservice endpoints exposed via this action are "ESB Message Aware".

Webservice Endpoint Deployment

Any JBossWS Webservice endpoint can be exposed via ESB listeners using this action. That
includes endpoints that are deployed from inside (i.e. the Webservice .war is bundled inside
the .esb) and outside (e.g. standalone Webservice .war deployments, Webservice .war
deployments bundled inside a .ear) a .esb deployment. This however means that this action
can only be used when your .esb deployment is installed on the JBoss Application Server i.e.
It is not supported on the JBossESB Server.

Endpoint Publishing

See the “Contract Publishing” section of the Administration Guide.

SOAPClient

The SOAPClient action uses the Wise Client Service to generate a JAXWS client class and
call the target service.

Example configuration:
<action name="soap-wise-client-action"

class="org.jboss.soa.esb.actions.soap.wise.SOAPClient">
 <property name="wsdl" value="http://host:8080/OrderManagement?wsdl"/>
 <property name="SOAPAction" value="http://host/OrderMgmt/SalesOrder"/>
</action>

Optional Properties

Property Name Description

wsdl The WSDL to be used.

operationName The name of the operation as specified in the
webservice WSDL.

SOAPAction The endpoint operation, now superceded by
operationName.

JBESB-PG-3/26/10 125

http://www.acme.com/OrderManagement/SendSalesOrderNotification
http://localhost:8080/acme/services/OrderManagement?wsdl

EndPointName The EndPoint invoked. Webservices can have
multiple endpoint. If it's not specified the first
specified in wsdl will be used.

SmooksRequestMapper Specifies a smooks config file to define the
java-to-java mapping defined for the request.

SmooksResponseMapper Specifies a smooks config file to define the
java-to-java mapping defined for the response

serviceName A symbolic service name used by wise to
cache object generation and/or use already
generated object. If it isn't provided wise uses
the servlet name of wsdl.

username Username used if the webservice is protected
by BASIC Authentication HTTP.

password Password used if the webservice is protected
by BASIC Authentication HTTP.

smooks-handler-config It's often necessary to be able to transform the
SOAP request or response, especially in
header. This may be to simply add some
standard SOAP handlers. Wise support
JAXWS Soap Handler, both custom or a
predefined one based on smooks.
Transformation of the SOAP request (before
sending) is supported by configuring the
SOAPClient action with a Smooks
transformation configuration property.

custom-handlers It's also possible to provide a set of custom
standard JAXWS Soap Handler. The
parameter accept a list of classes
implementing SoapHandler interface. Classes
have to provide full qualified name and be
separated by semi-columns.

LoggingMessages It's useful for debug purpose to view soap
Message sent and response received. Wise
achieve this goal using a JAX-WS handler
printing all messages exchanged on
System.out. Boolean value.

SOAP Operation Parameters

The SOAP operation parameters are supplied in one of 2 ways:

• As a Map instance set on the default body location (Message.getBody().add(Map))

• As a Map instance set on in a named body location (Message.getBody().add(String,
Map)), where the name of that body location is specified as the value of the
"paramsLocation" action property.

The parameter Map itself can also be populated in one of 2 ways:

JBESB-PG-3/26/10 126

1. With a set of Objects of any type. In this case a Smooks config has to be specified in
action attribute SmooksRequestMapper and Smooks is used to make the java-to-java
conversion

2. With a set of String based key-value pairs(<String, Object>), where the key is the
name of the SOAP parameter as specified in wsdls (or in generated class) to be
populated with the key's value. SOAP Response Message Consumption

The SOAP response object instance can be is attached to the ESB Message instance in one of
the following ways:

• On the default body location (Message.getBody().add(Map))

• On in a named body location (Message.getBody().add(String, Map)), where the name of
that body location is specified as the value of the "responseLocation" action property.

The response object instance can also be populated (from the SOAP response) in one of 2
ways:

1. With a set of Objects of any type. In this case a smooks config have to be specified in
action attribute SmooksResponseMapper and smooks is used to make the java-to-java
conversion

2. With a set of String based key-value pairs(<String, Object>), where the key is the
name of the SOAP answer as specified in wsdls (or in generated class) to be populated
with the key's value. JAX-WS Handler for the SOAP Request/Response

For examples of using the SOAPClient please refer to the following quickstarts:

• webservice_consumer_wise, shows basic usage.

• webservice_consumer_wise2, shows how to use'SmooksRequestMapper' and
'SmooksResponseMapper'.

• webservice_consumer_wise3, shows how to use 'smooks-handler-config'.

• webservice_consomer_wise4, shows usage of 'custom-handlers'.

More information about Wise can be found on their website.

JBESB-PG-3/26/10 127

http://www.javalinuxlabs.org/wise/index.html

JAXB Annotation Introductions

The native JBossWS SOAP stack uses JAXB to bind to and from SOAP. This means
that an unannotated typeset cannot be used to build a JBossWS endpoint. To
overcome this we provide a JBossESB and JBossWS feature called "JAXB Annotation
Introductions" which basically means you can define an XML configuration to
"Introduce" the JAXB Annotations. For details on how to enable this feature in
JBossWS 2.0.0, see the Appendix.

This XML configuration must be packaged in a file called “jaxb-
intros.xml” in the “META-INF” directory of the endpoint deployment.

For details on how to write a JAXB Annotation Introductions configuration, see the
Appendix.

Quickstarts

A number of quickstarts demonstrating how to use this action are available in the JBossESB
distribution (samples/quickstarts). See the "webservice_bpel" quickstart.

JBESB-PG-3/26/10 128

SOAPClient

SOAP Client action processor.

Uses the soapUI Client Service to construct and populate a message for the target service.
This action then routes that message to that service.

Endpoint Operation Specification

Specifying the endpoint operation is a straightforward task. Simply specify the "wsdl" and
"operation" properties on the SOAPClient action as follows:

<action name="soapui-client-action" class="org.jboss.soa.esb.actions.soap.SOAPClient">

 <property name="wsdl" value="http://localhost:18080/acme/services/RetailerCallback?
wsdl"/>

 <property name="operation" value="SendSalesOrderNotification"/>

</action>

SOAP Request Message Construction

The SOAP operation parameters are supplied in one of 2 ways:

1. As a Map instance set on the default body location (Message.getBody().add(Map))

2. As a Map instance set on in a named body location (Message.getBody().add(String,
Map)), where the name of that body location is specified as the value of the "get-
payload-location" action property.

The parameter Map itself can also be populated in one of 2 ways:

1. Option 1: With a set of Objects that are accessed (for SOAP message parameters)
using the OGNL framework. More on the use of OGNL below.

2. Option 2: With a set of String based key-value pairs(<String, Object>), where the key
is an OGNL expression identifying the SOAP parameter to be populated with the
key's value. More on the use of OGNL below.

As stated above, OGNL is the mechanism we use for selecting the SOAP parameter values to
be injected into the SOAP message from the supplied parameter Map. The OGNL expression
for a specific parameter within the SOAP message depends on the position of that parameter
within the SOAP body. In the following message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cus="http://schemas.acme.com">

 <soapenv:Header/>

 <soapenv:Body>

 <cus:customerOrder>

 <cus:header>

 <cus:customerNumber>123456</cus:customerNumber>

 </cus:header>

 </cus:customerOrder>

 </soapenv:Body>

</soapenv:Envelope>

JBESB-PG-3/26/10 129

http://www.ognl.org/
http://www.ognl.org/
http://www.soapui.org/

the OGNL expression representing the customerNumber parameter is
"customerOrder.header.customerNumber".

Once the OGNL expression has been calculated for a parameter, this class will check the
supplied parameter map for an Object keyed off the full OGNL expression (Option 1 above).
If no such parameter Object is present on the map, this class will then attempt to load the
parameter by supplying the map and OGNL expression instances to the OGNL toolkit (Option
2 above). If this doesn't yield a value, this parameter location within the SOAP message will
remain blank.

Taking the sample message above and using the "Option 1" approach to populating the
"customerNumber" requires an object instance (e.g. an "Order" object instance) to be set on
the parameters map under the key "customerOrder". The "customerOrder" object instance
needs to contain a "header" property (e.g. a "Header" object instance). The object instance
behind the "header" property (e.g. a "Header" object instance) should have a
"customerNumber" property.

OGNL expressions associated with Collections are constructed in a slightly different way.
This is easiest explained through an example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cus="http://schemas.active-
endpoints.com/sample/customerorder/2006/04/CustomerOrder.xsd"

 xmlns:stan="http://schemas.active-
endpoints.com/sample/standardtypes/2006/04/StandardTypes.xsd">

 <soapenv:Header/>

 <soapenv:Body>

 <cus:customerOrder>

 <cus:items>

 <cus:item>

 <cus:partNumber>FLT16100</cus:partNumber>

 <cus:description>Flat 16 feet 100 count</cus:description>

 <cus:quantity>50</cus:quantity>

 <cus:price>490.00</cus:price>

 <cus:extensionAmount>24500.00</cus:extensionAmount>

 </cus:item>

 <cus:item>

 <cus:partNumber>RND08065</cus:partNumber>

 <cus:description>Round 8 feet 65 count</cus:description>

 <cus:quantity>9</cus:quantity>

 <cus:price>178.00</cus:price>

 <cus:extensionAmount>7852.00</cus:extensionAmount>

 </cus:item>

 </cus:items>

 </cus:customerOrder>

 </soapenv:Body>

JBESB-PG-3/26/10 130

</soapenv:Envelope>

 The above order message contains a collection of order "items". Each entry in the collection
is represented by an "item" element. The OGNL expressions for the order item "partNumber"
is constructed as "customerOrder.items[0].partnumber" and
"customerOrder.items[1].partnumber". As you can see from this, the collection entry
element (the "item" element) makes no explicit appearance in the OGNL expression. It is
represented implicitly by the indexing notation. In terms of an Object Graph (Option 1 above),
this could be represented by an Order object instance (keyed on the map as "customerOrder")
containing an "items" list (List or array), with the list entries being "OrderItem" instances,
which in turn contains "partNumber" etc properties.

Option 2 (above) provides a quick-and-dirty way to populate a SOAP message without having
to create an Object model ala Option 1. The OGNL expressions that correspond with the
SOAP operation parameters are exactly the same as for Option 1, except that there's not
Object Graph Navigation involved. The OGNL expression is simply used as the key into the
Map, with the corresponding key-value being the parameter.

To see the SOAP message template as it's being constructed and populated, add the
“dumpSOAP” parameter to the parameter Map. This can be a very useful developer aid, but
should not be left on outside of development.

SOAP Response Message Consumption

The SOAP response object instance can be attached to the ESB Message instance in one of
the following ways:

1. On the default body location (Message.getBody().add(Map))

2. On in a named body location (Message.getBody().add(String, Map)), where the name
of that body location is specified as the value of the "set-payload-location" action
property.

The response object instance can also be populated (from the SOAP response) in one of 3
ways:

1. Option 1: As an Object Graph created and populated by the XStream toolkit2.

2. Option 2: As a set of String based key-value pairs(<String, String>), where the key is
an OGNL expression identifying the SOAP response element and the value is a String
representing the value from the SOAP message.

3. Option 3: If Options 1 or 2 are not specified in the action configuration, the raw
SOAP response message (String) is attached to the message.

Using XStream as a mechanism for populating an Object Graph (Option 1 above) is
straightforward and works well, as long as the XML and Java object models are in line with
each other.

The XStream approach (Option 1) is configured on the action as follows:

<action name="soapui-client-action" class="org.jboss.soa.esb.actions.soap.SOAPClient">

 <property name="wsdl" value="http://localhost:18080/acme/services/RetailerService?
wsdl"/>

 <property name="operation" value="GetOrder"/>

2 We also plan to add support for unmarshaling the response using JAXB and JAXB Annotation
Introductions.

JBESB-PG-3/26/10 131

http://xstream.codehaus.org/
http://xstream.codehaus.org/

 <property name="get-payload-location" value="get-order-params" />

 <property name="set-payload-location" value="get-order-response" />

 <property name="responseXStreamConfig">

 <alias name="customerOrder" class="com.acme.order.Order"

 namespace="http://schemas.acme.com/services/CustomerOrder.xsd" />

 <alias name="orderheader" class="com.acme.order.Header"

 namespace="http://schemas.acme.com/services/CustomerOrder.xsd" />

 <alias name="item" class="com.acme.order.OrderItem"

 namespace="http://schemas.acme.com/services/CustomerOrder.xsd" />

 </property>

</action>

In the above example, we also include an example of how to specify non-default named
locations for the request parameters Map and response object instance.

We also provide, in addition to the above XStream configuration options, the ability to specify
field name mappings and XStream annotated classes.

 <property name="responseXStreamConfig">

 <fieldAlias name="header" class="com.acme.order.Order"

 fieldName="headerFieldName" />

 <annotation class="com.acme.order.Order" />

 </property>

Field mappings can be used to map XML elements onto Java fields on those occasions when
the local name of the element does not correspond to the field name in the Java class.

To have the SOAP response data extracted into an OGNL keyed map (Option 2 above) and
attached to the ESB Message, simply replace the "responseXStreamConfig" property with
the "responseAsOgnlMap" property having a value of "true" as follows:

<action name="soapui-client-action" class="org.jboss.soa.esb.actions.soap.SOAPClient">

 <property name="wsdl"
value="http://localhost:18080/acme/services/RetailerService?wsdl"/>

 <property name="operation" value="GetOrder"/>

 <property name="get-payload-location" value="get-order-params" />

 <property name="set-payload-location" value="get-order-response" />

 <property name="responseAsOgnlMap" value="true" />

 </action>

To return the raw SOAP message as a String (Option 3), simply omit both the
"responseXStreamConfig" and "responseAsOgnlMap" properties.

JBESB-PG-3/26/10 132

HttpClient Configuration

The SOAPClient uses Apache Commons HttpClient to execute SOAP requests. It uses the
HttpClientFactory to create and configure the HttpClient instance. Specifying the
HttpClientFactory configuration on the SOAPClient is very easy. Just add an additional
property to the "wsdl" property as follows:

<property name="wsdl"
 value="https://localhost:18443/active-bpel/services/RetailerCallback?wsdl">
 <http-client-property name="file" value="/localhost-https-18443.properties"
></http-client-property>
</property>

The "file" property value will be evaluated as a filesystem, classpath or URI based resource
(in that order).

The following is an example of this property set:
Configurators
configurators=HttpProtocol,AuthBASIC

HttpProtocol config...
protocol-socket-
factory=org.apache.commons.httpclient.contrib.ssl.EasySSLProtocolSocketFactory
keystore=/packages/jakarta-tomcat-5.0.28/conf/chap8.keystore
keystore-passw=xxxxxx
https.proxyHost=localhost
https.proxyPort=443

AuthBASIC config...
auth-username=tomcat
auth-password=tomcat
authscope-host=localhost
authscope-port=18443
authscope-realm=ActiveBPEL security realm

Properties may also be set directly on in the action configuration like so:

<property name="http-client-properties">

 <http-client-property name="http.proxyHost" value="localhost"/>

 <http-client-property name="http.proxyPort" value="8080"/>

</property>

For more information about the configuration options available please refer to this wiki page

SOAPProxy
A SOAPProxy focuses on the consumption of an external WS endpoint (e.g. hosted
on .NET, another external Java-based AS, LAMP) and re-publication of a WS
endpoint via the ESB. The ESB sits between the ultimate consumer/client (e.g. .NET
WinForm application) and the ultimate producer (e.g. RoR-hosted WS). The purpose
of this intermediary is to provide an abstraction layer that solves the following
problems:

JBESB-PG-3/26/10 133

https://www.jboss.org/community/docs/DOC-11949

• Provides for more loose coupling between the client & service; they are both completely
unaware of each other.

• The client no longer has a direct connection to the remote service's hostname/IP address.
• The client will see modified WSDL that changes the inbound/outbound parameters. At a

minimum, the WSDL must be tweaked so that the client is pointed to the ESB's exposed
endpoint instead of the original, now proxied endpoint.

• A transformation of the SOAP envelope/body can be introduced via the ESB action chain
both for the inbound request and outbound response. (see XsltAction or SmooksAction)

• Service versioning is possible since clients can connect to 2 or more proxy endpoints on
the ESB, each with its own WSDL and/or transformations and routing requirements, and
the ESB will send the appropriate message to the appropriate endpoint and provide an
ultimate response.

• Complex context-based routing via ContentBasedRouter.

Other mechanisms of doing this are inappropriate or inadequate:

• SOAPClient is used to invoke external web services, not mirror them.
• SOAPProducer only executes internally-deployed JBoss WS services.
• HttpRouter requires too much by-hand configuration for easy WS proxying.
• EBWS strips out the SOAP Envelope and only passes along the body.

With a SOAPProxy action:

• It is both a producer and consumer of web services.
• All that is required is a property pointing to the external wsdl.
• The wsdl can be automatically transformed via the optional wsdlTransform property.
• It is understood that SOAP is not tied to http. The wsdl is read, and if an http transport is

defined, that will be used. Other transports (jms) will need future consideration.
• If using http, any of the HttpRouter properties can also optionally be applied to as

overrides.

Class org.jboss.soa.esb.actions.soap.proxy.SOAPProxy

Properties ● wsdl (required): The original wsdl url whose WS endpoint will get
re-written and exposed as new wsdl from the ESB. Depending upon
the <definitions><service><port><soap:address location attribute's
protocol (for example "http"), a protocol-specific
SOAPProxyTransport implementation is used. The value can
reference a location based on five different schemes: http, https, file,
classpath or internal (JBossWS). Here are some examples:

• http://localhost:8080/Quickstart_webservice_proxy_basic_ws
/HelloWorldWS?wsdl

• https://localhost:8443/webservice_proxy_security/HelloWorld
WS?wsdl

• file:///tmp/HelloWorldWS.wsdl
• classpath://META-INF/HelloWorldWS.wsdl
• internal://jboss.ws:context=Quickstart_webservice_proxy_ba

sic_ws,endpoint=HelloWorldWS
● wsdlTransform (optional): A <smooks-resource-list> xml config

JBESB-PG-3/26/10 134

file allowing for flexible wsdl transformation.
● * (optional): Any of the HttpRouter properties can be applied, if the

wsdl specifies an http transport.
● endpointUrl (optional): Example of an HttpRouter property, but

useful when domain name matching is important for SSL certs.
● file (optional): Apache Commons HTTPClient properties file, useful

when proxying to a web service via SSL
● clientCredentialsRequired (optional; default is "true"): Whether the

Basic Auth credentials are required to come from the end client, or if
the credentials specified inside file can be used instead.

Example of a
straightforward
scenario:

<action name="proxy" class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy">
 <property name="wsdl"
value="http://localhost:8080/Quickstart_webservice_proxy_basic_ws/HelloWorldW
S?wsdl"/>
</action>

Example of a
basic auth + ssl
scenario:

 <action name="proxy" class="org.jboss.soa.esb.actions.soap.proxy.SOAPProxy">
 <property name="wsdl"
value="https://localhost:8443/webservice_proxy_security/HelloWorldWS?wsdl"/>
 <property name="endpointUrl"
value="https://localhost:8443/webservice_proxy_security/HelloWorldWS"/>
 <property name="file" value="/META-INF/httpclient-8443.properties"/>
 <property name="clientCredentialsRequired" value="true"/>
 </action>

* For other possible configuration properties, see the specific SOAPProxyTransport
implementations themselves.

Miscellaneous

Miscellaneous Action Processors.

SystemPrintln

Simple action for printing out the contents of a message (ala System.out.println).

Will attempt to format the message contents as XML.

Input Type java.lang.String

Class org.jboss.soa.esb.actions.SystemPrintln

Properties ● “message”: A message prefix.
● “printfull”: If true then the entire message is printed, otherwise just

the byte array and attachments.
● “outputstream”: if true then System.out is used, otherwise

System.err.

Sample
Configuration

<action name="print-before" class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message" value="Message before action XXX" />
</action>

SchemaValidationAction

This is a simple action for performing Schema (e.g. XSD or RELAX NG) based validation of
XML messages.

Input Type java.lang.String

JBESB-PG-3/26/10 135

https://localhost:8443/webservice_proxy_security/HelloWorldWS
https://localhost:8443/webservice_proxy_security/HelloWorldWS?wsdl
http://localhost:8080/Quickstart_webservice_proxy_basic_ws/HelloWorldWS?wsdl
http://localhost:8080/Quickstart_webservice_proxy_basic_ws/HelloWorldWS?wsdl

Class org.jboss.soa.esb.actions.validation.SchemaValidationAction

Properties ● “schema”: The classpath path of the validation schema file (e.g. .xsd).
● “schemaLanguage”: (Optional) The schema type/language. Default:

"http://www.w3.org/2001/XMLSchema" i.e. XSD. See Javadoc.

Sample
Configuration

<action name="val" class="org.jboss.soa.esb.actions.validation.SchemaValidationAction">
 <property name="schema" value="/com/acme/validation/order.xsd"/>
</action>

JBESB-PG-3/26/10 136

http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/validation/SchemaFactory.html#schemaLanguage
http://www.w3.org/2001/XMLSchema

Chapter 12

Developing Custom
Actions

To implement a custom Action Processor, simply implement the
org.jboss.soa.esb.actions.ActionPipelineProcessor interface.

This interface supports implementation of stateless actions that have a managed lifecycle. A
single instance of a class implementing this interface is instantiated on a per pipeline basis (i.e.
per action configuration). This means you can cache resources needed by the action in the
initialise method, and clean them up in the destroy method.

The implementing class should process the message from within the process method
implementation.

As a convenience, you should simple extend the
org.jboss.soa.esb.actions.AbstractActionPipelineProcessor.

Example:

public class ActionXXXProcessor extends AbstractActionPipelineProcessor {

 public void initialise() throws ActionLifecycleException {

 // Initialise resources...

 }

 public Message process(final Message message) throws ActionProcessingException {

 // Process messages in a stateless fashion...

 }

 public void destroy() throws ActionLifecycleException {

 // Cleanup resources...

 }

}

JBESB-PG-3/26/10 137

Configuring Actions Using Properties

Actions generally act as templates that require external configuration to perform their tasks.
For example, a PrintMessage action might take a property named 'message' to indicate what to
print and a property 'repeatCount' to indicate the number of times to print it. The action
configuration in the jboss-esb.xml file might look like this:

<action name="PrintAMessage" class="test.PrintMessage">
 <property name="information" value="Hello World!" />
 <property name="repeatCount" value="5" />
</action>

The default method for loading property values in an action implementation is the use of a
ConfigTree instance. The ConfigTree provides a DOM-like view of the action XML. By
default, actions are expected to have a public constructor that takes a ConfigTree as a
parameter. For example:

public class PrintMessage extends AbstractActionPipelineProcessor {

private String information;

private Integer repeatCount;

public PrintMessage(ConfigTree config) {
 information = config.getAttribute("information");
 repeatCount = new Integer(config.getAttribute("repeatCount"));
}

public Message process(Message message) throws
 ActionProcessingException {
 for (int i=0; i < repeatCount; i++) {
 System.out.println(information);
 }

}
}

Another approach to setting action properties is to add setters on the action that correspond to
the property names and allow the framework to populate them automatically. In order to have
the action bean auto-populated, the action class must implement the
org.jboss.soa.esb.actions.BeanConfiguredAction marker interface. For example,
the following class has the same behavior as the one above.

public class PrintMessage extends AbstractActionPipelineProcessor

 implements BeanConfiguredAction {

private String information;

private Integer repeatCount;

public setInformation(String information) {

 this.information = information;

}

public setRepeatCount(Integer repeatCount) {

JBESB-PG-3/26/10 138

 this.repeatCount = repeatCount;

}

public Message process(Message message) {

 for (int i=0; i < repeatCount; i++) {

 System.out.println(information);

 }

}

}

Note: the Integer parameter in setRepeatCount() is automatically converted from the String
representation specified in the XML.

The BeanConfiguredAction method of loading properties is a good choice for actions that take
simple arguments, while the ConfigTree method is better when you need to deal with the
XML representation directly.

JBESB-PG-3/26/10 139

Chapter 13

Connectors and Adapters
Introduction

Not all clients and services of JBossESB will be able to understand the protocols and Message
formats it uses natively. As such there is a need to be able to bridge between ESB-aware
endpoints (those that understand JBossESB) and ESB-unaware endpoints (those that do not
understand JBossESB). Such bridging technologies have existed for many years in a variety of
distributed systems and are often referred to as Connectors, Gateways or Adapters.

One of the aims of JBossESB is to allow a wide variety of clients and services to interact.
JBossESB does not require that all such clients and services be written using JBossESB or any
ESB for that matter. There is an abstract notion of an Interoperability Bus within JBossESB,
such that endpoints that may not be JBossESB-aware can still be “plugged in to” the bus.

Note: in what follows, the terms “within the ESB” or “inside the ESB” refer to ESB-aware
endpoints.

All JBossESB-aware clients and services communicate with one another using Messages, to
be described later. A Message is simply a standardized format for information exchange,
containing a header, body (payload), attachments and other data. Furthemore, all JBossESB-
aware services are identified using Endpoint References (EPRs), to be described later.

It is important for legacy interoperability scenarios that a SOA infrastructure such as
JBossESB allow ESB-unaware clients to use ESB-aware services, or ESB-aware clients to use
ESB-unaware services. The concept that JBossESB uses to facilitate this interoperability is
through Gateways. A gateway is a service that can bridge between the ESB-aware and ESB-
unaware worlds and translate to/from Message formats and to/from EPRs.

JBossESB currently supports Gateways and Connectors. In the following sections we shall
examine both concepts and illustrate how they can be used.

The Gateway

Not all users of JBossESB will be ESB-aware. In order to facilitate those users interacting
with services provided by the ESB, JBossESB has the concept of a Gateway: specialised
servers that can accept messages from non-ESB clients and services and route them to the
required destination.

A Gateway is a specialised listener process, that behaves very similarly to an ESB aware
listener. There are some important differences however:

● Gateway classes can pick up arbitrary objects contained in files, JMS messages,
SQL tables etc (each 'gateway class' is specialized for a specific transport),
whereas JBossESB listeners can only process JBossESB normalized Messages
as described in “The Message” section of this document. However, those
Messages can contain arbitrary data.

● Only one action class is invoked to perform the 'message composing' action.
ESB listeners are able to execute an action processing pipeline.

JBESB-PG-3/26/10 140

● Objects that are 'picked up' will be used to invoke a single 'composer class' (the
action) that will return an ESB Message object, which will be delivered to a
target service that must be an ESB aware service. The target service defined at
configuration time, will be translated at runtime into an EPR (or a list of EPRs)
by the Registry. The underlying concept is that the EPR returned by the Registry
is analogous to the 'toEPR' contained in the header of ESB Messages, but
because incoming objects are 'ESB unaware' and there is thus no dynamic way to
determine the toEPR, this value is provided to the gateway at configuration time
and included in all outgoing messages.

There are a few off the shelf composer classes: the default 'file' composer class will just
package the file contents into the Message body; same idea for JMS messages. Default
message composing class for a SQL table row is to package contents of all columns specified
in configuration, into a java.util.Map.

Although these default composer classes will be enough for most use cases, it is relatively
straightforward for users to provide their own message composing classes. The only
requirements are a) they must have a constructor that takes a single ConfigTree argument,
and b) they must provide a 'Message composing' method (default name is 'process' but this
can be configured differently in the 'process' attribute of the <action> element within the
ConfigTree provided at constructor time. The processing method must take a single
argument of type Object, and return a Message value.

From JBossESB 4.5 onwards, the FileGateway accepts the file-filter-class
configuration attribute which allows you to define a FileFilter implementation that may be
used to select the files used by the gateway in question. Initialisation of user defined FileFilter
instances is performed by the gateway if the instance is also of type
org.jboss.soa.esb.listeners.gateway.FileGatewayListener.FileFilterIni
t, in which case the init method will be called and passed the gateway ConfigTree instance.

By default the following FileFilter implementations are defined and used by the FileGateway:
if an input suffix is defined in the configuration then files matching that suffix will be
returned; alternatively if there is no input suffix then any file is accepted as long as it does not
match the work suffix, error suffix and post suffix.

Gateway Data Mappings

When a non-JBossESB message is received by a Gateway it must be converted to a Message.
How this is done and where in the Message the received data resides, depends upon the type
of Gateway. The default conversion approach is described below:

• JMS Gateway: if the input message is a JMS TextMessage, then the associated
String will be placed in the default named Body location; if it is an
ObjectMessage or a BytesMessage then the contents are placed within the
BytesBody.BYTES_LOCATION named Body location.

• Local File Gateway: the contents are placed within the
BytesBody.BYTES_LOCATION named Body location.

• Hibernate Gateway: the contents are placed within the
ListenerTagNames.HIBERNATE_OBJECT_DATA_TAG named Body location.

JBESB-PG-3/26/10 141

• Remote File Gateway: the contents are placed within the
BytesBody.BYTES_LOCATION named Body location.

Note: With the introduction of the InVM transport, it is now possible to deploy services
within the same address space (VM) as a gateway, improving the efficiency of gateway-
to-listener interactions.

How to change the Gateway Data Mappings

If you want to change how this mapping occurs then it will depend upon the type of Gateway:

• File Gateways: instances of the
org.jboss.soa.esb.listeners.message.MessageComposer interface are
responsible for performing the conversion. To change the default behavior, provide
an appropriate implementation that defines your own compose and decompose
methods. The new MessageComposer implementation should be provided in the
configuration file using the composer-class attribute name.

• JMS and Hibernate Gateways: these implementations use a reflective approach for
defining composition classes. Provide your own Message composer class and use
the composer-class attribute name in the configuration file to inform the
Gateway which instance to use. You can use the composerprocess attribute to
inform the Gateway which operation of the class to call when it needs a Message;
this method must take an Object and return a Message. If not specified, a default
name of process is assumed.

Note: Whichever of the methods you use to redefine the Message composition, it is worth
noting that you have complete control over what is in the Message and not just the Body.
For example, if you want to define ReplyTo or FaultTo EPRs for the newly created
Message, based on the original content, sender etc., then you should consider modifying
the header too.

Connecting via JCA

You can use JCA Message Inflow as an ESB Gateway. This integration does not use MDBs,
but rather ESB's lightweight inflow integration. To enable a gateway for a service, you must
first implement an endpoint class. This class is a Java class that must implement the
org.jboss.soa.esb.listeners.jca.InflowGateway class:

public interface InflowGateway
{

public void setServiceInvoker(ServiceInvoker invoker);
}

The endpoint class must either have a default constructor, or a constructor that takes a
ConfigTree parameter. This Java class must also implement the messaging type of the JCA
adapter you are binding to. Here's a simple endpoint class example that hooks up to a JMS
adapter:

public class JmsEndpoint implements InflowGateway, MessageListener
{
 private ServiceInvoker service;

JBESB-PG-3/26/10 142

 private PackageJmsMessageContents transformer = new
PackageJmsMessageContents();

 public void setServiceInvoker(ServiceInvoker invoker)
 {
 this.service = invoker;
 }

 public void onMessage(Message message)
 {
 try
 {
 org.jboss.soa.esb.message.Message esbMessage =
transformer.process(message);

 service.postMessage(esbMessage);
 }
 catch (Exception e)
 {
 throw new RuntimeException(e);
 }
 }
}

One instance of the JmsEndpoint class will be created per gateway defined for this class. This
is not like an MDB that is pooled. Only one instance of the class will service each and every
incoming message, so you must write threadsafe code.

At configuration time, the ESB creates a ServiceInvoker and invokes the setServiceInvoker
method on the endpoint class. The ESB then activates the JCA endpoint and the endpoint class
instance is ready to receive messages. In the JmsEndpoint example, the instance receives a
JMS message and converts it to an ESB message type. Then it uses the ServiceInvoker
instance to invoke on the target service.

Note: The JMS Endpoint class is provided for you with the ESB distribution under
org.jboss.soa.esb.listeners.jca.JmsEndpoint It is quite possible that this class would be
used over and over again with any JMS JCA inflow adapters.

Configuration

A JCA inflow gateway is configured in a jboss-esb.xml file. Here's an example:

...
 <service category="HelloWorld_ActionESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jca-gateway name="JMS-JCA-Gateway"
 adapter="jms-ra.rar"
 endpointClass="org.jboss.soa.esb.listeners.jca.JmsE
ndpoint">
 <activation-config>
 <property name="destinationType"
value="javax.jms.Queue"/>
 <property name="destination"
value="queue/esb_gateway_channel"/>
 </activation-config>
 </jca-gateway>

JBESB-PG-3/26/10 143

...
 </service>

JCA gateways are defined in <jca-gateway> elements. These are the configurable attributes of
this XML element.

Attribute Required Description

name yes The name of the gateway

adapter yes The name of the adapter you
are using. In JBoss it is the
filename of the RAR you
deployed, e.g., jms-ra.rar

endpointClass yes The name of your endpoint
class

messagingType no The message interface for the
adapter. If you do not specify
one, ESB will guess based on
the endpoint class.

transacted no Default to true. Whether or not
you want to invoke the
message within a JTA
transaction.

You must define an <activation-config> element within <jca-gateway>. This element takes
one or more <property> elements which have the same syntax as action properties. The
properties under <activation-config> are used to create an activation for the JCA adapter that
will be used to send messages to your endpoint class. This is really no different than using
JCA with MDBs.

You may also have as many <property> elements as you want within <jca-gateway>. This
option is provided so that you can pass additional configuration to your endpoint class. You
can read these through the ConfigTree passed to your constructor.

Mapping Standard activation properties

A number of ESB properties are automatically mapped onto the activation configuration using
an ActivationMapper. The properties, their location and their purpose are described in the
following table

Attribute location Description

maxThreads jms-listener The maximum number of concurrent sessions to use
.

dest-name jms-message-filter The JMS destination name.

dest-type jms-message-filter The JMS destination type, QUEUE or TOPIC

selector jms-message-filter The JMS message selector

providerAdapterJNDI jms-jca-provider The JNDI location of a Provider Adapter which can
be used by the JCA inflow to access a remote JMS

JBESB-PG-3/26/10 144

provider. This is a JBoss specific interface
supported by the default JCA inflow adapter and
may be used, if necessary, by other inflow adapters.

The mapping of these properties onto an activation specification can be overridden by
specifying a class which implements the ActivationMapper interface and can be declared
globally or within each ESB deployment configuration.

Specifying the ActivationMapper globally is done through the jbossesb-properties.xml file
and defines the default mapper used for the specified JCA adapter The name of the property
to be configured is “org.jboss.soa.esb.jca.activation.mapper.<adapter name>” and the value is
the class name of the ActivationMapper.

The following snippet the configuration of the default ActivationMapper used to map the
properties on the the activation specification for the JBoss JCA adapter, jms-ra.rar.

 <properties name="jca">
 <property name="org.jboss.soa.esb.jca.activation.mapper.jms-ra.rar"
 value="org.jboss.soa.esb.listeners.jca.JBossActivationMapper"/>
 </properties>

Specifying the ActivationMapper within the deployment will override any global setting. The
mapper can be specified within the listener, the bus or the provider with the precedence being
the same order.

The following snippet shows an example specifying the mapper configuration within the
listener configuration.

 <jms-listener name="listener" busidref="bus" maxThreads="100">
 <property name="jcaActivationMapper" value=”TestActivationMapper"/>
 </jms-listener>

The following snippet shows an example specifying the mapper configuration within the bus
configuration.

 <jms-bus busid="bus">
 <property name="jcaActivationMapper" value="TestActivationMapper"/>
 <jms-message-filter dest-type="TOPIC" dest-name="DestName"/>
 </jms-bus>

The following snippet shows an example specifying the mapper configuration within the
provider configuration.

 <jms-jca-provider name="provider" connection-factory="ConnectionFactory">

JBESB-PG-3/26/10 145

 <property name="jcaActivationMapper" value="TestActivationMapper"/>
 <jms-bus busid="bus">
 <jms-message-filter dest-type="TOPIC" dest-name="DestName"/>
 </jms-bus>
 </jms-jca-provider>

JBESB-PG-3/26/10 146

Chapter 14

Appendix A
Writing JAXB Annotation Introduction Configurations

JAXB Annotation Introduction configurations are very easy to write. If
you're already familiar with the JAXB Annotations, you'll have no problem
writing a JAXB Annotation Introduction configuration.

The XSD for the configuration is available online. In your IDE, register this
XSD against the “http://www.jboss.org/xsd/jaxb/intros” namespace.

Only 3 annotations are currently supported:

1. @XmlType : On the “Class” element.

2. @XmlElement : On the “Field” and “Method” elements.

3. @XmlAttribute : On the “Field” and “Method” elements.

The basic structure of the configuration file follows the basic structure of a
Java class i.e. a “Class” containing “Fields” and “Methods”. The <Class>,
<Field> and <Method> elements all require a “name” attribute for the
name of the Class, Field or Method. The value of this name attribute
supports regular expressions. This allows a single Annotation Introduction
configuration to be targeted at more than one Class, Field or Member e.g.
setting the namespace for a fields in a Class, or for all Classes in a
package etc.

The Annotation Introduction configurations match exactly with the
Annotation definitions themselves, with each annotation “element-value
pair” represented by an attribute on the annotations introduction
configuration. Use the XSD and your IDE to editing the configuration.

So here is an example:

<?xml version = "1.0" encoding = "UTF-8"?>

<jaxb-intros xmlns="http://www.jboss.org/xsd/jaxb/intros">

 <!--

 The type namespaces on the customerOrder are different from the rest of the
message...

 -->

 <Class name="com.activebpel.ordermanagement.CustomerOrder">

 <XmlType propOrder="orderDate,name,address,items" />

 <Field name="orderDate">

 <XmlAttribute name="date" required="true" />

 </Field>

 <Method name="getXYZ">

JBESB-PG-3/26/10 147

https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlAttribute.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlElement.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlType.html
http://www.jboss.org/xsd/jaxb/intros
http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/tags/1.0.0.GA/src/main/resources/jaxb-intros.xsd

 <XmlElement
namespace="http://org.jboss.esb/quickstarts/bpel/ABI_OrderManager"

 nillable="true" />

 </Method>

 </Class>

 <!--

 More general namespace config for the rest of the message...

 -->

 <Class name="com.activebpel.ordermanagement.*">

 <Method name="get.*">

 <XmlElement namespace="http://ordermanagement.activebpel.com/jaws" />

 </Method>

 </Class>

</jaxb-intros>

JBESB-PG-3/26/10 148

Chapter 15

Appendix B
Service Oriented Architecture Overview

JBossESB is a Service Oriented Architecture (SOA) infrastructure. SOA represents a popular
architectural paradigm3 for applications, with Web Services as probably the most visible way
of achieving an SOA4. Web Services implement capabilities that are available to other
applications (or even other Web Services) via industry standard network and application
interfaces and protocols. SOA advocates an approach in which a software component provides
its functionality as a service that can be leveraged by other software components. Components
(or services) represent reusable software building blocks.

SOA allows the integration of existing systems, applications and users into a flexible
architecture that can easily accommodate changing needs. Integrated design, reuse of existing
IT investments and above all, industry standards are the elements needed to create a robust
SOA.

As enterprises slowly emerge from the mad rush of cost reduction into a more stable period of
cost management, many of them find themselves in unfamiliar territory. Prior to the economic
slow down, most firms understood the options they had for IT investment. Many embarked on
major package implementations (e.g., Siebel, Peoplesoft and so on), while others built on the
legacy systems they have trusted for years. Either way, most firms recognized the return
promised and made the investment. Today, the appetite for such large investment is gone.

However, enterprises still need to make forward progress and keep ahead of the competition.
SOA (and typically Web Services as a concrete implementation of those principles) make this
possible. The result is dramatic improvements in collaboration between users, applications
and technology components, generating significant value for any business creating
competitive advantage.

Imagine a company that has existing software from a variety of different vendors, e.g., SAP,
PeopleSoft. Some of these software packages may be useful to conduct business with other
companies (customers, suppliers, etc.) and therefore what the company would like to do is to
take those existing systems and make them available to other companies, by exposing them as
services. A service here is some software component with a stable, published interface that
can be invoked by clients (other software components). So, requesting and executing services
involves software components owned by one company talking to components owned by
another company, i.e., business-to-business (B2B) transactions.

Conventional distributed system infrastructures (middleware) are not sufficient for these
cross-organizational exchanges. For instance

• You would need agreement between the parties involved on the middleware
platform.

3 The principles behind SOA have been around for many years, but Web Services have popularised
it.
4 It is possible to build non-SOA applications using Web Services.

JBESB-PG-3/26/10 149

• There is an implicit (and sometimes explicit) lack of trust between the parties
involved.

• Business data is confidential and should only to be seen by the intended recipient.

• Many assumptions of conventional middleware are invalid in crossorganizational
interactions. Transactions, for instance, last longer possibly for hours or days so
conventional transaction protocols such as two phase commit are not applicable.

So, in B2B exchanges the lack of standardization across middleware platforms makes point-
to-point solutions costly to realize in practice. The Internet alleviated some of these problems
by providing standard interaction protocols (HTTP) and data formats (XML) but by
themselves these standards are not enough to support application integration. They don't
define interface definition languages, name and directory services, transaction protocols, etc,.
It is the gap between what the Web provides and what application integration requires that
Web services are trying to fill.

However, whilst the challenge and ultimate goal of SOA is inter-company interactions,
services do not need to be accessed through the Internet. They can be made available to clients
residing on a local LAN. Indeed, at this current moment in time, many Web services are being
used in this context - intra-company integration rather than inter-company exchanges.

An example of how Web services can connect applications both intra-company and inter-
company can be understood by considering a stand-alone inventory system. If you don't
connect it to anything else, it's not as valuable as it could be. The system can track inventory,
but not much more. Inventory information may have to be entered separately in the accounting
and customer relationship management systems. The inventory system may be unable to
automatically place orders to suppliers. The benefits of such an inventory system are
diminished by high overhead costs.

However, if you connect your inventory system to your accounting system with XML, it gets
more interesting. Now, whenever you buy or sell something, the implications for your
inventory and your cash flow can be tracked in one step. If you go further, and connect your
warehouse management system, customer ordering system, supplier ordering systems, and
your shipping company with XML, suddenly that inventory management system is worth a
lot. You can do end-to-end management of your business while dealing with each transaction
only once, instead of once for every system it affects. A lot less work and a lot less
opportunity for errors. These connections can be made easily using Web services.

Businesses are waking up to the benefits of SOA. These include:

• opening the door to new business opportunities by making it easy to connect with
partners;

• saving time and money by cutting software development time and consuming a
service created by others;

• increasing revenue streams by easily making your own services available.

Why SOA?
The problem space can be categorized by past IT investments in the area of eProcurement,
eSourcing, Supply Chain Management, Customer Relationship Management (CRM) and
Internet computing in general. All of these investments were made in a silo. Along with the

JBESB-PG-3/26/10 150

incremental growth in these systems to meet short-term (tactical) requirements, the decisions
made in this space hurt the long-term viability of the applications and infrastructure.

The three key drivers for implementing an SOA approach are:

1) Cost Reduction: Achieved by the ways services talk to each other. The direct cost
effect is delivered through enhanced operations productivity, effective sourcing
options, and a significantly enhanced ability to shift ongoing costs to a variable
model.

2) Delivering IT solutions faster and smarter: A standards based approach will allow
organizations to connect and share information and business processes much faster
and easier than before. IT delivery productivity is markedly improved through
simplification of the developer’s role by providing standard frameworks and
interfaces. Delivery timescales have been drastically reduced by easing the
integration load of individual functionality, and applying accelerated delivery
techniques within the environment.

3) Maximizing return on investment: Web Services opens the way for new business
opportunities by enabling new business models. Web Services present the ability to
measure value and discrete return much differently than traditional functional
benefit methods. Typical Total Cost of Ownership (TCO) models do not take into
account the lifetime value generated by historical investment. This cost centric view
destroys many opportunities to exploit these past investments and most enterprises
end up building redundancy into their architecture, not out of necessity, but of
perceived need. These same organizations focus the value proposition of their IT
investment on a portfolio of applications, balanced by the overhead of infrastructure.
An approach based on Web Services takes into account the lifetime contribution of
legacy IT investment and promotes an evolution of these investments rather than a
planned replacement.

SOA/Web Services fundamentally changes the way enterprise software is developed and
deployed. SOA has evolved where new applications will not be developed using monolithic
approaches, but instead become a virtualized on-demand execution model that breaks the
current economic and technological bottleneck caused by traditional approaches.

Software as a service has become pervasive as a model for forward looking enterprises to
streamline operations, lower cost of ownership and provides competitive differentiation in the
marketplace. Web Services offers a viable opportunity for enterprises to drive significant costs
out of software acquisitions, react to rapidly changing market conditions and conduct
transactions with business partners at will. Loosely coupled, standards-based architectures are
one approach to distributed computing that will allow software resources available on the
network to be leveraged. Applications that separate business processes, presentation rules,
business rules and data access into separate loosely coupled layers will not only assist in the
construction of better software but also make it more adaptable to future change.

SOA will allow for combining existing functions with new development efforts, allowing the
creation of composite applications. Leveraging what works lowers the risks in software
development projects. By reusing existing functions, it leads to faster deliverables and better
delivery quality.

JBESB-PG-3/26/10 151

Loose coupling helps preserve the future by allowing parts to change at their own pace
without the risks linked to costly migrations using monolithic approaches. SOA allows
business users to focus on business problems at hand without worrying about technical
constraints. For the individuals who develop solutions, SOA helps in the following manner:

• Business analysts focus on higher order responsibilities in the development lifecycle
while increasing their own knowledge of the business domain.

• Separating functionality into componentbased services that can be tackled by
multiple teams enables parallel development.

• Quality assurance and unit testing become more efficient; errors can be detected
earlier in the development lifecycle

• Development teams can deviate from initial requirements without incurring
additional risk

• Components within architecture can aid in becoming reusable assets in order to
avoid reinventing the wheel

• Functional decomposition of services and their underlying components with respect
to the business process helps preserve the flexibility, future maintainability and eases
integration efforts

• Security rules are implemented at the service level and can solve many security
considerations within the enterprise

Basics of SOA

Traditional distributed computing environments have been tightly coupled in that they do not
deal with a changing environment well. For instance, if an application is interacting with
another application, how do they handle data types or data encoding if data types in one
system change? How are incompatible data-types handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider, and
broker.

• Service Provider: A service provider allows access to services, creates a description
of a service and publishes it to the service broker.

• Service Requestor: A service requester is responsible for discovering a service by
searching through the service descriptions given by the service broker. A requester
is also responsible for binding to services provided by the service provider.

• Service Broker: A service broker hosts a registry of service descriptions. It is
responsible for linking a requestor to a service provider.

Advantages of SOA

SOA provide several significant benefits for distributed enterprise systems. Some of the most
notable benefits include: interoperability, efficiency, and standardization. We will briefly
explore each of these in this section.

JBESB-PG-3/26/10 152

Interoperability

Interoperability is the ability of software on different systems to communicate by sharing data
and functionality. SOA/Web Services are as much about interoperability as they are about the
Web and Internet scale computing. Most companies will have numerous business partners
throughout the life of the company. Instead of writing a new addition to your applications
every time you gain a new partner, you can write one interface using Web service
technologies like SOAP. So now your partners can dynamically find the services they need
using UDDI and bind to them using SOAP. You can also extend the interoperability of your
systems by implementing Web services within your corporate intranet. With the addition of
Web services to your intranet systems and to your extranet, you can reduce the cost
integration, increase communication and increase your customer base.

It is also important to note that the industry has even established the Web Services
Interoperability Organization.

“The Web Services Interoperability Organization is an open industry effort chartered to
promote Web Services interoperability across platforms, applications, and programming
languages. The organization brings together a diverse community of Web services leaders to
respond to customer needs by providing guidance, recommended practices, and supporting
resources for developing interoperable Web services.” (www.ws-i.org)

The WS-I will actually determine whether a Web service conforms to WS-I standards as well
as industry standards. In order to establish integrity and acceptance, companies will seek to
build their Web services in compliance with the WS-I standards.

Efficiency

SOA will enable you to reuse your existing applications. Instead of creating totally new
applications, you can create them using various combinations of services exposed by your
existing applications. Developers can be more efficient because they can focus on learning
industry standard technology. They will not have to spend a lot of time learning every new
technology that arises. For a manager this means a reduction in the cost of buying new
software and having to hire new developers with new skill sets. This approach will allow
developers to meet changing business requirements and reduce the length of development
cycles for projects. Overall, SOA provides for an increase in efficiency by allowing
applications to be reused, decreasing the learning curve for developers and speeding up the
total development process.

Standardization

For something to be a true standard, it must be accepted and used by the majority of the
industry. One vendor or small group of vendors must not control the evolution of the
technology or specification. Most if not all of the industry leaders are involved in the
development of Web service specifications. Almost all businesses use the Internet and World
Wide Web in one form or another. The underlying protocol for the WWW is of course HTTP.
The foundation of Web services is built upon HTTP and XML. Although SOA does not
mandate a particular implementation framework, interoperability is important and SOAP is
one of the few protocols that all good SOA implementations can agree on.

Stateful and Stateless services

Most proponents of Web Services agree that it is important that its architecture is as scalable
and flexible as the Web. As a result, the current interaction pattern for Web Services is based
on coarse-grained services or components. The architecture is deliberately not prescriptive

JBESB-PG-3/26/10 153

about what happens behind service endpoints: Web Services are ultimately only concerned
with the transfer of structured data between parties, plus any meta-level information to
safeguard such transfers (e.g., by encrypting or digitally signing messages). This gives
flexibility of implementation, allowing systems to adapt to changes in requirements,
technology etc. without directly affecting users. Furthermore, most businesses will not want to
expose their back-end implementation decisions and strategies to users for a variety of
reasons.

In distributed systems such as CORBA, J2EE and DCOM, interactions are typically between
statefull objects that resided within containers. In these architectures, objects are exposed as
individually referenceable entities, tied to specific containers and therefore often to specific
machines. Because most Web Services applications are written using object-oriented
languages, it is natural to think about extending that architecture to Web Services. Therefore a
service exposes Web Services resources that represent specific states. The result is that such
architectures produce tight coupling between clients and services, making it difficult for them
to scale to the level of the World Wide Web.

Right now there are two primary models for the session concept that are being defined by
companies participating in defining Web services: the WS-Addressing EndpointReference
with ReferenceProperties/ReferenceParameters and the WS-Context explicit context structure,
both of which are supported within JBossESB. The WS-Addressing session model provides
coupling between the web service endpoint information and the session data, which is
analogous to object references in distributed object systems.

WS-Context provides a session model that is an evolution of the session models found in
HTTP servers, transaction, and MOM systems. On the other hand, WS-Context allows a
service client to more naturally bind the relationship to the service dynamically and
temporarily. The client’s communication channel to the service is not impacted by a specific
session relationship.

This has important implications as we consider scaling Web services from intra-domain
deployments to general services offered on the Internet. The current interaction pattern for
Web Services is based on coarse-grained services or components. The architecture is
deliberately not prescriptive about what happens behind service endpoints: Web Services are
ultimately only concerned with the transfer of structured data between parties, plus any meta-
level information to safeguard such transfers (e.g., by encrypting or digitally signing
messages). This gives flexibility of implementation, allowing systems to adapt to changes in
requirements, technology etc. without directly affecting users. It also means that issues such
as whether or not a service maintains state on behalf of users or their (temporally bounded)
interactions, has been an implementation choice not typically exposed to users.

If a session-like model based on WS-Addressing were to be used when interacting with
statefull services, then the tight coupling between state and service would impact on clients.
As in other distribution environments where this model is used (e.g., CORBA or J2EE), the
remote reference (address) that the client has to the service endpoint must be remembered by
the client for subsequent invocations. If the client application interacts with multiple services
within the same logical session, then it is often the case that the state of a service has
relevance to the client only when used in conjunction with the associated states of the other
services. This necessarily means that the client must remember each service reference and
somehow associate them with a specific interaction; multiple interactions will obviously result
in different reference sets that may be combined to represent each sessions.

For example, if there are N services used within the same application session, each
maintaining m different states, the client application will have to maintain N*m reference
endpoints. It is worth remembering that the initial service endpoint references will often be

JBESB-PG-3/26/10 154

obtained from some bootstrap process such as UDDI. But in this model, these references are
stateless and of no use beyond starting the application interactions. Subsequent visits to these
sites that require access to specific states must use different references in the WS-Addressing
model.

This obviously does not scale to an environment the size of the Web. However, an alternative
approach is to use WS-Context and continue to embrace the inherently loosely-coupled nature
of Web Services. As we have shown, each interaction with a set of services can be modeled as
a session, and this in turn can be modeled as a WS-Context activity with an associated
context. Whenever a client application interacts with a set of services within the same session,
the context is propagated to the services and they map this context to the necessary states that
the client interaction requires.

How this mapping occurs is an implementation specific choice that need not be exposed to the
client. Furthermore, since each service within a specific session gets the same context, upon
later revisiting these services and providing the same context again, the client application can
be sure to return to a consistent set of states. So for the N services and m states in our previous
example, the client need only maintain N endpoint references and as we mentioned earlier,
typically these will be obtained from the bootstrap process anyway. Thus, this model scales
much better.

JBossESB and its relationship with SOA

SOA is more than technology: it does not come in a shrink-wrapped box and requires changes
to the way in which people work and interact as much as assistance from underlying
infrastructures, such as JBossESB. With JBossESB 4.8, Red Hat is providing a base SOA
infrastructure upon which SOA applications can be developed. With the 4.2.1 release, most of
the necessary hooks for SOA development are in place and Red Hat is working with its
partners to ensure that their higher level platforms leverage these hooks appropriately.
However, the baseline platform (JBossESB) will continue to evolve, with out-of-the-box
improvements around tooling, runtime management, service life-cycle etc. In JBossESB 4.8, it
may be necessary for developers to leverage these hooks themselves, using low-level API and
patterns.

JBESB-PG-3/26/10 155

Chapter 16

Glossary
 ACL Access Control List. A mean of determining the

appropriate access rights to a given object
depending on certain aspects of the process that is
making the request.

 Action Classes A component that is responsible for doing a certain
type of work after a receipt of a message inside the
ESB.

 Bus A subsystem that transfers data between computer
components inside a computer or between
computers. Unlike a point-to-point connection, a
bus can logically connect several components over
the same structure.

 Content Based Router (CBR) A pluggable service inside the ESB that provides
capabilities for message routing based on the
content of the message.

 CORBA Common Object Request Broker Architecture. A
standard defined by the Object Management Group
that enables software components written in
multiple computer languages and running on
multiple computers to interoperate.

 CORBA IDL CORBA Interface Definition Language. A
computer language used to describe a software
component's interface. It describes an interface in a
language-neutral way, enabling communication
between software components written in different
languages.

 EAI Enterprise Application Integration. A practice that
makes use of software and computer systems
architectural principles to integrate a set of different
enterprise computer applications.

 Endpoint Reference (EPR) A standard XML structure used to identify and
address services inside the ESB. This includes the
destination address of the message, any additional
parameters (reference properties) necessary to route
the message to the destination, and optional
metadata (reference parameters) about the service.

 ESB Enterprise Service Bus. An abstraction layer on top
of an implementation of an enterprise messaging
system that provides the features with which
Service Oriented Architectures may be
implemented.

JBESB-PG-3/26/10 156

 Fault A type of message that express an error condition
inside a Web Service. Similar to the Exception
object in some programming languages.

 Gateway A specialized ESB listener process that can accept
messages from non-ESB clients and services and
route them to the required destination inside the
ESB, taking care of the appropriate bridging of
message types and EPRs.

 J2EE/JEE Java Platform Enterprise Edition (formerly known
as Java 2 Platform Enterprise Edition). A
programming platform, based on the Java language,
for developing and running distributed multi-tier
Java applications. It is based largely on modular
software components running on an application
server.

 JBI Java Business Integration. An API that provides a
standard pluggable architecture to build integration
systems that hosts service producers and consumers
components. Components interoperate through
mediated normalized message exchanges.

 JMS Java Message Service. An API for sending
messages between two or more systems.

 JTA Java Transaction API. An API that allows
distributed transactions to be done across multiple
XA resources

 Listener Classes A component that encapsulates the endpoints for
message reception on the ESB.

 Message A data item that is sent (usually asynchronously) to
a communication endpoint. This concept is the
higher-level version of a datagram except that
messages can be larger than a packet and can
optionally be made reliable, durable, secure, and/or
transacted.

 Message Factory A service inside the ESB that can build specific
types of messages according to their serialization
capabilities.

 Message Store A pluggable service inside the ESB that persists
messages for auditing and tracking purposes.

 MOM Message Oriented Middleware. A software
component that makes possible inter-application
communication relying on asynchronous message-
passing.

 Quality of Service A term that refers to control mechanisms that can
provide different priority to different users or data
flows, or guarantee a certain level of performance
to a data flow in accordance with requests from the
application program.

 RPC Remote Procedure Call. A protocol that allows a

JBESB-PG-3/26/10 157

computer program running on one computer to call
a subroutine on another computer without the
programmer explicitly coding the details for this
interaction.

 SCA Service Component Architecture. A set of
specifications that describe a model for building
applications and systems using Service-Oriented
Architecture. It encourages an SOA organization of
applications based on components that offer their
capabilities through service-oriented interfaces and
which consume functions offered by other
components through service-oriented interfaces,
called service references.

 Service Registry A persistent repository of Service information.
Used by ESB components to publish, discover and
consume services.

 SOA Service Oriented Architecture. A perspective of
software architecture that defines the use of loosely
coupled software services to support the
requirements of the business processes and software
users. In an SOA environment, resources on a
network are made available as independent services
that can be accessed without knowledge of their
underlying platform implementation.

 SOAP A protocol for exchanging XML-based messages
over computer network, normally using HTTP.
SOAP forms the foundation layer of the Web
services stack, providing the basic messaging
framework.

 Transformation Service A pluggable service inside the ESB that provides
capabilities for transforming messages from one
data format to another.

 UDDI Universal Description, Discovery, and Integration.
A platform-independent, XML-based registry and
core Web Services standard. It is designed to be
interrogated by SOAP messages and to provide
access to Web Services Description Language
documents describing the protocol bindings and
message formats required to interact with the web
services listed in its directory.

 WS-Addressing A Web Service specification for addressing web
services and messages in a transport-neutral
manner. This specification enables messaging
systems to support message transmission through
networks that include processing nodes such as
endpoint managers, firewalls, and gateways.

 WS-BPEL Web Services Business Process Execution
Language. A choreography language for the formal

JBESB-PG-3/26/10 158

specification of business processes and business
interaction protocols using Web Services. Thus
BPEL's messaging facilities depend on the use of
Web Services Description Language (WSDL) 1.1 to
describe incoming and outgoing messages.

 WS-Context A Web Service specification that provides a
definition, a structuring mechanism, and a software
service definition for organizing and sharing
context across multiple Web Services endpoints.
The context contains information (such as a unique
identifier) that allows a series of operations to share
a common outcome.

 WSDL Web Services Description Language. An XML
format for describing the public interface to a Web
services based on how to communicate using the
web service; namely, the protocol bindings and
message formats required to interact with it.

 WS-Policy A Web Service specification that allows web
services to advertise their policies (on security,
Quality of Service, etc.) and for web service
consumers to specify their policy requirements.

 WS-Security A Web Service specification that provides a set of
mechanisms to secure SOAP message exchanges.
Specifically, it describes enhancements to provide
quality of protection through the application of
message integrity, message confidentiality, and
single message authentication to SOAP messages.

 WS-Trust A Web Service specification that uses the secure
messaging mechanisms of WS-Security to define
additional primitives and extensions for the
issuance, exchange and validation of security
tokens.

 XA An X/Open specification for distributed transaction
processing. It describes the interface between the
global transaction manager and the local resource
manager to support a two-phase commit protocol.

 XML Extensible Markup Language. A general-purpose
markup language that supports a wide variety of
applications. Its primary purpose is to facilitate the
sharing of data across different information
systems.

JBESB-PG-3/26/10 159

Index
actor 104
Architectural components 13
BpmProcessor 104
Configuring JBossESB 91
esbToBpmVars 105
Format adapters 45
jbpmProcessInstId 105
jbpmTokenId 105
mapping 105
process-definition-id 104
processdefinition 104
Rosetta

history 13
SOA Overview 146

basics 149
benefts 147
Why SOA? 147

transition-name 104

JBESB-PG-3/26/10 160

	Chapter 2
	The core of JBossESB in a nutshell

	Chapter 3
	Getting and Setting Data on the Message Body
	Extensions to Body
	The Message Header
	LogicalEPR
	Default FaultTo
	Default ReplyTo

	The Message payload
	The MessageFactory
	Message Formats
	MessageType.JAVA_SERIALIZED
	MessageType.JBOSS_XML

	Chapter 4
	Listeners
	Routers
	Notifiers
	Actions and Messages
	Handling responses
	Error handling when processing actions

	ServiceInvoker
	Transactions
	Services and ServiceInvoker
	InVM Transport
	InVM Scope
	InVM Transacted
	Transaction Semantics
	Threading
	Lock-step Delivery
	Load Balancing
	Pass-by-Value/Pass-by-Reference

	Service Contract Definition
	Message validation
	Exposing an ESB service as a webservice

	Chapter 5
	The Message Store
	Data Transformation
	Content-based Routing
	The Registry

	Chapter 6
	The Message structure
	The Service
	Unpicking the payload

	The Client
	Configuration for a remote ServiceInvoker
	Hints and Tips

	Chapter 7
	Services, EPRs, listeners and actions
	Replicated Services
	Figure 7-2: Two service instance each on a different node.
	Protocol Clustering
	Clustering
	Channel Fail-over and Load Balancing
	Simple Schedule
	Cron Schedule
	Scheduled Listener
	Example Configurations
	Quartz Scheduler Property Configuration

	Chapter 8
	JBossESB and the Fault Models
	Failure Detectors and Failure Suspectors
	Message loss
	Suspecting Endpoint Failures
	Supported Crash Failure Modes
	Component Specifics
	Gateways
	ServiceInvoker
	JMS Broker
	Action Pipelining

	Chapter 9
	Providers
	Services
	Transport Specific Type Implementations
	JMS Message filter configuration
	FTP configuration
	FTP Listener configuration
	Read-only FTP Listener
	Read-only FTP Listener Configuration
	UDP Gateway
	UDP Gateway configuration
	JBoss Remoting (JBR) Configuration
	HTTP Gateway
	Basic Configuration
	URL Patterns
	Request Handling
	Request Information

	Response Handling
	Asynchronous Response Handling
	Synchronous Response Handling

	Security Handling
	Protected Methods & Allowed User Roles
	Authentication Method and Security Domain
	Transport Guarantee

	Transitioning From The Old Configuration Model
	Configuration

	Chapter 10
	Chapter 11
	ByteArrayToString
	LongToDateConverter
	ObjectInvoke
	ObjectToCSVString
	ObjectToXStream
	XStreamToObject
	XsltAction
	SmooksTransformer
	SmooksAction
	SmooksAction Configuration
	Message Input Payload
	XML, EDI, CSV etc Input Payloads
	Java Input Payload
	Specifying the Result Type

	MessagePersister
	Business Process Management
	jBPM - BpmProcessor
	GroovyActionProcessor
	ScriptingAction
	EJBProcessor
	Aggregator
	EchoRouter
	HttpRouter
	JBoss Remoting HttpRouter (Deprecated)
	Apache Commons HttpRouter

	JMSRouter
	EmailRouter
	ContentBasedRouter
	StaticRouter
	SyncServiceInvoker
	StaticWiretap
	EmailWiretap
	SOAPProcessor
	SOAPProcessor Action Configuration
	Dependencies
	"ESB Message Aware" Webservice Endpoints
	Webservice Endpoint Deployment
	Endpoint Publishing

	SOAPClient
	Optional Properties
	SOAP Operation Parameters
	JAXB Annotation Introductions

	Quickstarts

	SOAPClient
	Endpoint Operation Specification
	SOAP Request Message Construction
	SOAP Response Message Consumption
	HttpClient Configuration

	SOAPProxy
	SystemPrintln
	SchemaValidationAction

	Chapter 12
	Chapter 13
	Gateway Data Mappings
	How to change the Gateway Data Mappings

	Configuration
	Mapping Standard activation properties

	Chapter 15
	Why SOA?
	Basics of SOA
	Advantages of SOA
	Interoperability
	Efficiency
	Standardization
	Stateful and Stateless services
	JBossESB and its relationship with SOA

	Chapter 16

