
JBossIDE Tutorial

An introduction and walkthrough of JBossIDE

1.4

Table of Contents
Preface ... iii

1. Foreword .. iii
2. About the Authors ... iii
3. About JBoss ... iii
4. Acknowledgements ... iii

1. Introduction to JBossIDE ..1
2. Tutorial Preparation ..2

2.1. Introduction ...2
2.2. Requirements ...2
2.3. Notes ...3

3. The Project ...4
4. The EJB ...6
5. Generation of the EJB related files ...12
6. The Servlet and the Web-App ..16
7. Generation of the Servlet related files ...22
8. The J2EE Application ...27
9. The Packaging ..29

9.1. FiboEJB.jar creation ...29
9.2. FiboEJB-client.jar creation ...33
9.3. FiboWeb.war creation ..34
9.4. FiboApp.ear creation ..37

10. JBoss Configuration and Launch ..41
11. Deployment ..43
12. Debugging ..45
13. Conclusion ...50

JBoss 1.4 ii

Preface

1. Foreword

JBoss-IDE started with an XDoclet plug-in for eclipse in the middle of 2002. Then Hans Dockter met Marc as he
participated at a JBoss training in Mallorca and they talked about the possibility of developing a JBoss-IDE.

2. About the Authors

• Marshall Culpepper is the project lead of JBoss-IDE. Marshall is a full time employee of JBoss, Inc. And lives
in Dallas, Texas.

• Laurent Etiemble, is an active contributor to the JBoss-IDE project. Laurent works as a consultant and lives in
Paris, France.

• Hans Dockter, was the founder and lead architect of the Jboss-IDE project. Hans works as an independent con-
sultant and lives in Berlin, Germany.

3. About JBoss

JBoss Project, headed by Marc Fleury, is composed of over 100 developers worldwide who are working to deliver
a full range of J2EE tools, making JBoss the premier Enterprise Java application server for the Java 2 Enterprise
Edition platform.

JBoss is an Open Source, standards-compliant, J2EE application server implemented in 100% Pure Java. The
JBoss/Server and complement of products are delivered under a public license. With a huge amount of downloads
per month, JBoss is the most downloaded J2EE based server in the industry.

4. Acknowledgements

We would like to thank Thomas Deichsel and Frank Henze from media-style.com for their wonderful interface
design. We would also like to thank all the JBoss-IDE community for their support and their feedback.

JBoss 1.4 iii

1
Introduction to JBossIDE

JBossIDE offers you:

• Extensive and intuitive support for XDoclet.

• The debugging and monitoring of JBoss servers and the controlling of their life cycles.

• An easy way to configure the packaging layout of archives (packed or exploded)

• A simple way to deploy the packaged and/or exploded archive to a JBoss server

• Several J2EE wizards to ease and simplify J2EE development.

• Source code editors for JSP, HTML, and XML

JBoss 1.4 1

2
Tutorial Preparation

2.1. Introduction

The goal of this tutorial is to demonstrate how simple it is to develop J2EE applications with JBossIDE. The
sample application that will be built is a J2EE application with one session EJB and one Servlet, which computes
the Fibonacci suite.

The tutorial is split into several parts:

• The Project: this part shows how the project is prepared (source and build path)

• The EJB: this part shows how to write an EJB class with its XDoclet javadoc tags.

• Generation of EJB files: this part shows how to configure the XDoclet generation configuration to generate all
the EJB related files

• The Servlet and the Web-App: this part shows how to write a Servlet class with its XDoclet javadoc tags.

• Generation of Servlet files: this part shows how to configure the XDoclet generation configuration to generate
all the Web related files

• The J2EE application: this part shows how to create the missing files.

• Packaging: this part shows how to package the J2EE application

• JBoss configuration : this part shows how to define debug configuration to launch JBoss inside Eclipse.

• Deployment : this part shows how to deploy by copy the J2EE application

• Debugging: this part shows how to set up breakpoints to debug the deployed application.

2.2. Requirements

For this tutorial you need:

• Java Development Kit 1.3.0 or higher (a JDK is needed to launch JBoss 3.x)

• Eclipse 3.0 (from eclipse.org [http://www.eclipse.org]) or higher.

• JBoss Application Server 3.x-4.x

JBoss 1.4 2

http://www.eclipse.org

You also will need to know about developing and debugging applications in Eclipse. Refer to the Eclipse website
[http://www.eclipse.org] for further informations.

2.3. Notes

This tutorial has been written using the Eclipse 3.0 series. If you are using the Eclipse 3.1 series, the screens may
be slightly different.

Tutorial Preparation

JBoss 1.4 3

http://www.eclipse.org

3
The Project

We will create a source folder, import libraries and make the build path.

Create a new J2EE 1.3 Project. Select File > New >
Project... and choose JBoss-IDE > J2EE 1.3

Project.

Enter Tutorial for the project name and select the
Next button.

JBoss 1.4 4

Create a source folder named src. Make sure the de-
fault output folder will be bin.

In the package explorer, the new project should look
like this. Note that the J2EE 1.3 core classes are dir-
ectly added. They are available like a standard library
with all the source code.

The Project

JBoss 1.4 5

4
The EJB

The next step is to create an EJB. For simplicity, it will be a stateless session bean, but others types are also easy to
write.

Create a new Session EJB. Select File > New > Oth-

er... and choose JBoss-IDE > EJB Components >
Session Bean.

JBoss 1.4 6

The package will be tutorial.ejb and the class
name “FiboBean”.

Leave the default options selected and be sure that
ejbCreate() method is checked.

Click on “Finish”. The class is then created and you
should have a project like this. Note that all the meth-
od stubs are created with the default ejbCreate meth-
od.

To make this interesting, we will create a business method for our EJB that computes a Fibonacci suite.

The EJB

JBoss 1.4 7

Right-click the FiboBean class, under the FiboBean
Java file. You should see a J2EE menu. Select J2EE >
Add Business Method.

In the method wizard, enter compute as the method
name, double[] for the return type and add a para-
meter called number of type int. Click on Finish.

The EJB

JBoss 1.4 8

A new method has been added to the FiboBean class.

In the text editor, complete the body of the compute method as below :

public double[] compute(int number) {
if (number < 0) {

throw new EJBException("Argument should be positive");
}

double[] suite = new double[number + 1];
suite[0] = 0;

if (number == 0) {
return suite;

}

suite[1] = 1;

for (int i = 2; i <= number; i++) {
suite[i] = suite[i - 1] + suite[i - 2];

}

return suite;
}

As you may have noticied, each wizard adds all of the required XDoclet tags. Go to the top of the class and com-
plete the attributes of the tag with the following values (by pressing CTRL+Space for each attribute, you will get an
auto-compled list) :

/**
* @ejb.bean name="Fibo"
* display-name="Name for Fibo"
* description="Description for Fibo"
* jndi-name="ejb/Fibo"
* type="Stateless"
* view-type="remote"
*/

public class FiboBean implements SessionBean {

The EJB

JBoss 1.4 9

After that, the file should look like this. Now, we are ready to run XDoclet on the file to generate the EJB inter-
faces.

package tutorial.ejb;

import java.rmi.RemoteException;

import javax.ejb.EJBException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.ejb.CreateException;

/**
* @ejb.bean name="Fibo"
* display-name="Name for Fibo"
* description="Description for Fibo"
* jndi-name="ejb/Fibo"
* type="Stateless"
* view-type="remote"
*/

public class FiboBean implements SessionBean {

/**
*
*/
public FiboBean() {

super();
// TODO Auto-generated constructor stub

}

/*
* (non-Javadoc)
*
* @see javax.ejb.SessionBean#ejbActivate()
*/
public void ejbActivate() throws EJBException, RemoteException {

// TODO Auto-generated method stub
}

/*
* (non-Javadoc)
*
* @see javax.ejb.SessionBean#ejbPassivate()
*/
public void ejbPassivate() throws EJBException, RemoteException {

// TODO Auto-generated method stub
}

/*
* (non-Javadoc)
*
* @see javax.ejb.SessionBean#ejbRemove()
*/
public void ejbRemove() throws EJBException, RemoteException {

// TODO Auto-generated method stub
}

/*
* (non-Javadoc)
*
* @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
*/
public void setSessionContext(SessionContext ctx) throws EJBException,

The EJB

JBoss 1.4 10

RemoteException {
// TODO Auto-generated method stub

}

/**
* Default create method
*
* @throws CreateException
* @ejb.create-method
*/
public void ejbCreate() throws CreateException {

// TODO Auto-generated method stub
}

/**
* Business method
*
* @ejb.interface-method view-type = "remote"
*/
public double[] compute(int number) {

if (number < 0) {
throw new EJBException("Argument should be positive");

}

double[] suite = new double[number + 1];
suite[0] = 0;

if (number == 0) {
return suite;

}

suite[1] = 1;

for (int i = 2; i <= number; i++) {
suite[i] = suite[i - 1] + suite[i - 2];

}

return suite;
}

}

The EJB

JBoss 1.4 11

5
Generation of the EJB related files

To generate the EJB related classes and descriptors, we need to create some XDoclet configurations. With JBoss
IDE, you can define several XDoclet generation configurations that will be run against the project.

Procedure 5.1. XDoclet EJB Configuration
Creation

1. Edit the project properties by right clicking on
the project and select Properties.

2. In the property page, select XDoclet configur-

ations.

3. Right-click in the upper area to pop-up the menu
and choose Add. Type EJB in the dialog and click
OK.

You have created a new generation configuration
named EJB.

Procedure 5.2. Ejbdoclet Configuration

1. Select the EJB configuration.

2. In the lower-left area, right-click to popup the
menu and choose Add Doclet.

3. A list of available doclets will appear. Choose
ejbdoclet and click OK.

4. On the lower-right area, you see the properties
of the ejbdoclet.

a. Set the destDir property to src.

b. Set the ejbSpec property to 2.0.

Our configuration now contains an ejbdoclet that

JBoss 1.4 12

will produce files in src folder and for the EJB 2.0
specifications.

Procedure 5.3. Fileset Configuration

1. In the lower-left area, right-click on ejbdoclet

to popup the menu and choose Add.

2. A list of available subtasks will appear. Choose
fileset and click Ok.

3. On the lower-right area, you see the properties
of the fileset.

a. Set the dir property to src.

b. Uncheck excludes

c. Set the includes property to
**/*Bean.java.

Our configuration now contains an ejbdoclet with a
fileset that contains the src directory, and all files
under it that end in Bean.java.

Procedure 5.4. Deployment Descriptor
Configuration

• Add a new deploymentdescriptor subtask to
the ejbdoclet (see above).

• Set the destDir property to src/META-INF.

All of the standard EJB deployment descriptors will
now be placed in the src/META-INF directory.

Generation of the EJB related files

JBoss 1.4 13

Procedure 5.5. JBoss Configuration

• Add a new jboss subtask to the ejbdoclet (see
above).

a. Set the destDir property to src/META-INF.

b. Set the Version property to 3.0.

All of the JBoss-specific deployment descriptors will
now be placed in the src/META-INF directory.

Procedure 5.6. Package Substitution
Configuration

• Add a new packageSubstitution subtask to the
ejbdoclet (see above).

a. Set the packages property to ejb.

b. Set the substituteWith property to inter-

faces.

This will place our generated EJB interfaces in the
tutorial.interfaces java package.

Procedure 5.7. Interface Configuration

1. Add a new remoteInterface subtask to the
ejbdoclet (see above).

2. Add a new homeInterface subtask to the ejb-

doclet (see above).

These subtasks will generate the EJB home and re-
mote interfaces.

Generation of the EJB related files

JBoss 1.4 14

Click OK and the XDoclet configuration for the Tu-

torial will be saved. Once the configuration is
saved, right-click on the Tutorial project and select
Run XDoclet. The XDoclet generation will display its
output in the console. The output should look like
this:

After the code generation, select the project and re-
fresh it (you can press F5). You should have a project
that looks like this. Note that a tutorial.interfaces

package has been created with new classes inside.
There is also a META-INF folder with the deployment
descriptors (both standard and jboss).

Generation of the EJB related files

JBoss 1.4 15

6
The Servlet and the Web-App

Having an EJB is not enough. We will write a servlet that access this EJB to perform the actual computation of the
Fibonacci suite.

Create a new HTTP Servlet. Select File > New > Oth-
er... and choose JBoss-IDE > Web Components > HTTP

Servlet.

JBoss 1.4 16

Procedure 6.1. HTTP Servlet Configuration

1. Set the Package to tutorial.web.

2. Set the Class Name to ComputeServlet.

3. Under Which method stubs would you like

to create?, check the init() method.

4. Under Which service method stubs would

like to create?, check the doPost() method.

Our servlet needs some initialization and processing code. Add the following private member.

private FiboHome home;

Complete the init method as shown. This code is responsible for the initialization of the EJB Home interface and
grabbing the local environment entry.

public void init(ServletConfig config) throws ServletException {
try {

Context context = new InitialContext();
Object ref = context.lookup("java:/comp/env/ejb/Fibo");
home = (FiboHome) PortableRemoteObject.narrow(ref, FiboHome.class);

} catch (Exception e) {
throw new ServletException("Lookup of java:/comp/env/ failed");

}
}

Complete the doPost method as shown. The code will parse the request to get the limit parameter, create an in-
stance of the EJB, perform computation, release the instance and output the result as HTML.

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

response.setContentType("text/html");

The Servlet and the Web-App

JBoss 1.4 17

PrintWriter out = response.getWriter();

out.println("<html><head><title>");
out.println("Fibonaci Computation");
out.println("</title></head>");
out.println("<body>");

out.println("<h1>");
out.println("Fibonaci Computation");
out.println("</h1>");

try {
Fibo bean = home.create();
int limit = 0;
String value = request.getParameter("limit");
if (value != null) {

try {
limit = Integer.parseInt(value);

} catch (Exception e) {
}

}
double[] result = bean.compute(limit);
bean.remove();

out.println("<p>");
out.print("The ");
out.print(limit);
out.print(" first Fibonacci numbers ");

for (int i = 0; i < result.length; i++) {
out.println("
");
out.println(i);
out.println(" : ");
out.println(result[i]);

}

out.println("</p>");
} catch (Exception e) {

out.println(e.getMessage());
e.printStackTrace(out);

} finally {
out.println("</body></html>");
out.close();

}
}

The Servlet and the Web-App

JBoss 1.4 18

Next, we will insert the missing XDoclet tags for the
Servlet. In the Java editor go in the Javadoc class
paragraph. Type “@web.” And press CTRL+Space.
You should see JBossIDE's auto-completion in ac-
tion.

Correct and complete the attributes of the tag with the following values (press CTRL+Space for each attribute if
you want the completion) :

/**
* @web.servlet
* name="Compute"
* display-name="Computation Servlet"
* description="Servlet that compute Fibonacci suite"
*
* @web.servlet-mapping
* url-pattern="/Compute"
*
* @web.ejb-ref
* name="ejb/Fibo"
* type="Session"
* home="tutorial.interfaces.FiboHome"
* remote="tutorial.interfaces.Fibo"
* description="Reference to the Fibo EJB"
*
* @jboss.ejb-ref-jndi
* ref-name="ejb/Fibo"
* jndi-name="ejb/Fibo"
*/

public class ComputeServlet extends HttpServlet {

After that, the file should look like this. Now we are ready to run XDoclet on the file, which will generate the Web
descriptors.

package tutorial.web;

import java.io.IOException;

The Servlet and the Web-App

JBoss 1.4 19

import java.io.PrintWriter;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import tutorial.interfaces.Fibo;
import tutorial.interfaces.FiboHome;

/**
* @web.servlet
* name="Compute"
* display-name="Computation Servlet"
* description="Servlet that compute Fibonacci suite"
*
* @web.servlet-mapping
* url-pattern="/Compute"
*
* @web.ejb-ref
* name="ejb/Fibo"
* type="Session"
* home="tutorial.interfaces.FiboHome"
* remote="tutorial.interfaces.Fibo"
* description="Reference to the Fibo EJB"
*
* @jboss.ejb-ref-jndi
* ref-name="ejb/Fibo"
* jndi-name="ejb/Fibo"
*/

public class ComputeServlet extends HttpServlet {
private FiboHome home;

public ComputeServlet() {
super();

}

public void init(ServletConfig config) throws ServletException {
try {

Context context = new InitialContext();
Object ref = context.lookup("java:/comp/env/ejb/Fibo");
home = (FiboHome) PortableRemoteObject.narrow(ref, FiboHome.class);

} catch (Exception e) {
throw new ServletException("Lookup of java:/comp/env/ failed");

}
}

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<html><head><title>");
out.println("Fibonaci Computation");
out.println("</title></head>");
out.println("<body>");

out.println("<h1>");
out.println("Fibonaci Computation");
out.println("</h1>");

try {

The Servlet and the Web-App

JBoss 1.4 20

Fibo bean = home.create();
int limit = 0;
String value = request.getParameter("limit");
if (value != null) {

try {
limit = Integer.parseInt(value);

} catch (Exception e) {
}

}
double[] result = bean.compute(limit);
bean.remove();

out.println("<p>");
out.print("The ");
out.print(limit);
out.print(" first Fibonacci numbers ");

for (int i = 0; i < result.length; i++) {
out.println("
");
out.println(i);
out.println(" : ");
out.println(result[i]);

}

out.println("</p>");
} catch (Exception e) {

out.println(e.getMessage());
e.printStackTrace(out);

} finally {
out.println("</body></html>");
out.close();

}
}

}

The Servlet and the Web-App

JBoss 1.4 21

7
Generation of the Servlet related files

To generate the Web descriptors, we need to create another XDoclet configuration, like we did for our EJB.

Procedure 7.1. XDoclet Web Configuration
Creation

1. Edit the project properties. Right-click on the
project and select Properties.

2. In the properties page, select XDoclet Config-

urations.

3. Right-click in the top area to pop-up the menu
and choose Add. Type Web in the dialog and click
OK.

You have created a new generation configuration
named Web.

Procedure 7.2. Webdoclet Configuration

1. Select the Web configuration.

2. In the lower-left area, right-click to popup the
menu and choose Add Doclet.

3. A list of available doclets will appear. Choose
webdoclet and click OK.

4. On the lower-right area, you see the properties
of the ejbdoclet.

• Set the destDir property to src/WEB-INF.

Our configuration now contains a webdoclet that will
produce files in the src/WEB-INF folder.

JBoss 1.4 22

Procedure 7.3. Fileset Configuration

1. In the lower-left area, right-click on webdoclet

to popup the menu and choose Add.

2. A list of available subtasks will appear. Choose
fileset and click Ok.

3. On the lower-right area, you see the properties
of the fileset.

a. Set the dir property to src.

b. Uncheck excludes

c. Set the includes property to
**/*Servlet.java.

Our configuration now contains a webdoclet with a
fileset that contains the src directory, and all files
under it that end in Servlet.java.

Procedure 7.4. Deployment Descriptor
Configuration

• Add a new deploymentdescriptor subtask to
the webdoclet (see above).

• Set the Servletspec property to 2.3.

All of the standard Web deployment descriptors will
now be placed in the src/WEB-INF directory (property
is inherited from webdoclet).

Generation of the Servlet related files

JBoss 1.4 23

Procedure 7.5. JBoss Configuration

• Add a new jbosswebxml subtask to the web-

doclet (see above).

• Set the Version property to 3.0.

All of the JBoss-specific Web deployment descriptors
will now be placed in the src/WEB-INF directory
(property is inherited from webdoclet).

Click OK and the XDoclet configuration for the Tu-

torial will be saved. Once the configuration is
saved, right-click on the Tutorial project and select
Run XDoclet. The XDoclet generation will display its
output in the console. The output should look like
this:

After the generation, you should have a project that
looks like this. Note that a WEB-INF folder has been
created with the web deployment descriptors (both
standard and jboss).

Generation of the Servlet related files

JBoss 1.4 24

In order to run our servlet, we'll need to create an
HTML page that passes it parameters.

Procedure 7.6. Creating the HTML Page

1. Create a docroot folder under the root of the
project.

2. Create an empty file named index.html under
the docroot folder.

The index.html file is intended to be the default page
for the Web application and contains a form that will
be posted to the Servlet.

The following content should be copied into the index.html file:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<title>

Fibonacci Application
</title>

</head>
<body>

<h1>Fibonacci Form</h1>
<form action="Compute" method="POST" >

<table cellspacing="2" cellpadding="2" border="0">
<tr>

<td>
Limit :

</td>
<td>

<input type="text" name="limit" value="50">
</td>

</tr>
<tr>

<td>
<input type="submit" name="Compute" value="Compute">

</td>
<td>

<input type="Reset">
</td>

Generation of the Servlet related files

JBoss 1.4 25

</tr>
</table>

</form>
</body>

</html>

Generation of the Servlet related files

JBoss 1.4 26

8
The J2EE Application

This project is intended to be a complete J2EE application. We are going to create some additional files to have all
the materials needed to build it.

Procedure 8.1. Creating the application.xml

1. Right click on the src/META-INF folder, and
choose New > Other....

2. Choose JBoss-IDE > Descriptors > EAR 1.3

Deployment Descriptor, and click Next.

Make sure application.xml is the name of the file,
and click Finish

JBoss 1.4 27

Your META-INF directory should now look like this:

Now double click on the application.xml to open it, and make sure the content looks like this (most of the con-
tent is already there for you):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

<application>
<display-name>Sum Application</display-name>
<module>

<ejb>FiboEJB.jar</ejb>
</module>
<module>

<web>
<web-uri>FiboWeb.war</web-uri>
<context-root>/fibo</context-root>

</web>
</module>

</application>

The J2EE Application

JBoss 1.4 28

9
The Packaging

JBoss-IDE provides an easy way to configure the packaging of various archives. There is no restriction of what can
be packaged. In this tutorial, four packaging configurations will be defined:

• The EJB JAR. It will contain the EJB classes and interfaces, as well as the ejb-jar.xml and jboss.xml deploy-
ment descriptors.

• The EJB Client JAR. It will contain the EJB interfaces.

• The Web Application WAR. It will contain the Servlet class, the EJB client Jar, as well as the web.xml deploy-
ment descriptors.

• The J2EE Application EAR. It will contain the EJB Jar and the Web Application War, as well as the applica-
tion.xml deployment descriptor.

When launched, these four packaging configurations will create the J2EE application ready to be deployed.

9.1. FiboEJB.jar creation

Procedure 9.1. Creating the EJB JAR

1. Edit the project properties by right clicking on
the project and select Properties.

2. In the property page, select Packaging Config-

urations.

3. Right-click in the area to pop-up the menu and
choose Add Archive. Type FiboEJB.jar in the
dialog and click OK.

4. You have created a new packaging configuration
that will produce the FiboEJB.jar file.

JBoss 1.4 29

We want to add the EJB classes and interfaces. Ec-
lipse has generated the compiled classes into the bin

folder (declared as the default output dir of the
project).

Select the FiboEJB.jar item and right-click in the
area to pop-up the menu and choose Add Folder. A
“Folder Selection” dialog appears.

This dialog allows to select which folder (local to
workspace or in the file system) to include into the
package, to specify include and exclude filters (A la
Ant) and to set a prefix that will be append when
building the package.

Click on Project Folder. A “Folder Chooser” dia-
log appears.

This dialog allows selecting which folder to include.
This folder can be choosen among all the opened
projects.

Select the /Tutorial/bin folder and click OK.

The Packaging

JBoss 1.4 30

The folder is now /Tutorial/bin.

As we only want the EJB classes and interfaces, spe-
cify the following as an include filter:

tutorial/

ejb/*.class,tutorial/interfaces/*.class

Click on OK

We now want to add the standard EJB deployment
descriptor.

Select the FiboEJB.jar item and right-click in the
area to pop-up the menu and choose Add File. A
“File Selection” dialog appears.

This dialog allows you to select which file (local to
workspace or in the file system) to include in the
package and to set a prefix which will be appended
when building the package.

The Packaging

JBoss 1.4 31

Click on Project File. A “File Chooser” dialog ap-
pears.

This dialog allows to select which file to include.
This file can be choosen among all the opened
projects.

Select the /Tutorial/src/META-INF/ejb-jar.xml

folder and click OK.

The file is now /Tutori-

al/src/META-INF/ejb-jar.xml.

The ejb-jar.xml must be located under the META-

INF directory of the EJB package. Set the prefix to
META-INF.

Click on OK.

To add the specific EJB deployment descriptor, select
the FiboEJB.jar item and right-click in the area to
pop-up the menu and choose Add File.

The file to choose is /Tutori-
al/src/META-INF/jboss.xml.

The jboss.xml must be located under the META-INF

directory of the EJB package. Set the prefix to META-

INF.

Click on OK.

The Packaging

JBoss 1.4 32

The packaging configuration for the FiboEJB.jar is
now complete.

9.2. FiboEJB-client.jar creation

Click the Add button on the right side of the list. Type
FiboEJB-client.jar in the dialog and click OK.

You have created a new packaging configuration that
will produce the FiboEJB-client.jar file.

Select the FiboEJB-client.jar item and right-click
in the area to pop-up the menu and choose Add

Folder. A “Folder Selection” dialog appears.

Click on Project Folder and select the /

Tutorial/bin folder from the “Folder Chooser” dia-
log.

As we only want the EJB interfaces, set the include
filter to tutorial/interfaces/*.class.

Click on OK.

The Packaging

JBoss 1.4 33

The packaging configuration for the FiboEJB-cli-

ent.jar is now complete.

9.3. FiboWeb.war creation

Click the Add button on the right side of the list. Type
FiboWeb.war in the dialog and click OK.

You have created a new packaging configuration that
will produce the FiboWeb.war file.

Select the FiboWeb.war item and right-click in the
area to pop-up the menu and choose Add Folder. A
“Folder Selection” dialog appears.

Click on Project Folder and select the /

Tutorial/bin folder from the “Folder Chooser” dia-
log.

As we only want the Servlet class, set the include fil-
ter to tutorial/web/*.class.

The classes must be located under the WEB-

INF/classes of the War package. Set the prefix to
WEB-INF/classes.

The Packaging

JBoss 1.4 34

Click on OK.

To add the standard Web deployment descriptor, se-
lect the FiboWeb.war item and right-click in the area
to pop-up the menu and choose Add File. A “File Se-
lection” dialog appears.

The file to choose is /Tutori-
al/src/WEB-INF/web.xml.

The web.xml must be located under the WEB-INF of
the War package. Set the prefix to WEB-INF.

Click on OK.

To add the JBoss specific Web deployment
descriptor, select the FiboWeb.war item and right-
click in the area to pop-up the menu and choose Add

File. A “File Selection” dialog appears.

The file to choose is /Tutori-
al/src/WEB-INF/jboss-web.xml.

The jboss-web.xml must be located under the WEB-

INF of the War package. Set the prefix to WEB-INF.

Click on OK.

The Packaging

JBoss 1.4 35

To add the EJB Client Jar, select the FiboWeb.war

item and right-click in the area to pop-up the menu
and choose Add File. A “File Selection” dialog ap-
pears.

The file to choose is /Tutori-
al/FiboEJB-client.jar. But it doesn’t exist yet as
the packaging has not been run. Instead of selecting
it, go in the text field and type the name of the file /

Tutorial/FiboEJB-client.jar. Even if the file
doesn’t exist, it can be added to a packaging configur-
ation.

The FiboEJB-client.jar must be located under the
WEB-INF/lib directory of the War package. Set the
prefix to WEB-INF/lib.

Click on OK.

The Packaging

JBoss 1.4 36

Select the FiboWeb.war item and right-click in the
area to pop-up the menu and choose Add Folder. A
“Folder Selection” dialog appears.

Click on Project Folder and select the /

Tutorial/docroot folder from the “Folder Chooser”
dialog. This is the content of the Web Application.

Click on OK.

The packaging configuration for the FiboWeb.war is
now complete.

9.4. FiboApp.ear creation

Click the Add button on the right side of the list. Type
FiboApp.ear in the dialog and click OK.

You have created a new packaging configuration that
will produce the FiboApp.ear file.

The Packaging

JBoss 1.4 37

To add the application deployment descriptor, select
the FiboApp.ear item and right-click in the area to
pop-up the menu and choose Add File. A “File Se-
lection” dialog appears.

The file to choose is /Tutori-
al/src/META-INF/application.xml.

The application.xml must be located under the
META -INF of the EAR package. Set the prefix to
META -INF.

Click on OK.

To add the EJB module, select the FiboApp.ear item
and right-click in the area to pop-up the menu and
choose Add File. A “File Selection” dialog appears.

The file to choose is /Tutorial/FiboEJB.jar. But it
doesn’t exist yet as the packaging has not been run.
Instead of selecting it, go in the text field and type the
name of the file /Tutorial/FiboEJB.jar. Even if the
file doesn’t exist, it can be added to a packaging con-
figuration.

Click on OK.

To add the Webmodule, select the FiboApp.ear item
and right-click in the area to pop-up the menu and
choose Add File. A “File Selection” dialog appears.

The file to choose is /Tutorial/FiboWeb.war. But it
doesn’t exist yet as the packaging has not been run.
Instead of selecting it, go in the text field and type the
name of the file /Tutorial/ FiboWeb.war. Even if
the file doesn’t exist, it can be added to a packaging
configuration.

Click on OK.

The Packaging

JBoss 1.4 38

The packaging configuration for the FiboApp.ear is
now complete.

Click OK to save the packaging configurations.

Right-click on the project and select Run Packaging.
The packaging will display its output in the console.
The output should look like this:

The Packaging

JBoss 1.4 39

After the execution, you should have a project that
looks like this:

The Packaging

JBoss 1.4 40

10
JBoss Configuration and Launch

Now, it is time to configure the JBoss server if it has not been done yet.

Click on the debug shortcut and select Debug… to open
the debug configurations.

The debug dialog allows you to configure the avail-
able JBoss configurations that will be used for debug-
ging.

In order to view source code when debugging, you
must include the project in the source lookup path;
otherwise Eclipse will complain that it cannot locate
the source.

To specifiy a source lookup path, go into the JBoss
launch configuration and select the Source tab. Click
on the Add button and select Java Project. Select
your project and click OK.

NB : Older version of JBoss-IDE added all opened
projects to the source lookup path, but it lead to
source conflicts and was removed.

JBoss 1.4 41

Select the configuration you want to launch and click
on Debug and you will see JBoss starting. The output
is sent to the console.

JBoss Configuration and Launch

JBoss 1.4 42

11
Deployment

The deployment within JBoss-IDE can be done in two ways:

• A file-system copy: Copies a file from your project into any other location on your computer (including net-
work drives, etc)

• A local deployment through the MainDeployer MBean (Experimental). The URL of the resource is sent to the
MainDeployer Mbean, which deploys and watches it.

In addition, the deployment target is stored during the workbench session. This means that if you have deployed a
package on a target, you can redeploy or undeploy it without specifying the target. The Deployer plugin automatic-
ally creates file-system targets from the debug configurations. Other deployment target can be defined.

Select Window > Preferences. The workbench prefer-
ences appears.

Select JBoss-IDE > Deployer to display the defined
deployment targets.

The upper area contains the file system targets build
upon the debug configuration defined.

The lower area contains the user-defined deployment
targets.

We assume that we want to deploy to a pre-defined
JBoss instance and we don’t define custom deploy-
ment targets.

The deployment is fairly simple. Right click on the
FiboApp.ear file and select the Deployment > Deploy

To… item.

JBoss 1.4 43

A dialog box appears with the list of the deployment
targets. It contains both the default and the user-
defined deployment targets.

Select the one you are interested in (the one for the
running server is probably a good idea !).

In the console view, you should see some deployment
activity. The J2EE application is now deployed.

When a resource is deployed, a small decorator ap-
pears in the top-left corner of the icon.

Deployment

JBoss 1.4 44

12
Debugging

Prior to the debugging, we need to set some breakpoints inside the code.

Open the FiboBean.java file. Double click in left
column to create a breakpoint.

In the example, the breakpoint is set in front of the
test.

JBoss 1.4 45

Open the ComputeServlet.java file. Double click in
left column to create a breakpoint.

In the example, the breakpoint is set in front of the
EJB creation.

Open a web browser and type http://localhost:8080/fibo/. The host/port can change if the web server listens on an-
other host/port. You should see a simple form like the one above. Enter a positive value in the field and press Com-

pute.

Debugging

JBoss 1.4 46

http://localhost:8080/fibo/

Switch to your Eclipse workbench. You should see that execution has been suspended on the first breakpoint (in
the servlet). You can go step by step in the code or continue with execution.

Debugging

JBoss 1.4 47

Another suspension occurs when hitting the second breakpoint (in the EJB). You can go step by step in the code or
continue with execution.

After resuming execution, the response should be in the browser. It should look something like this:

Debugging

JBoss 1.4 48

Debugging

JBoss 1.4 49

13
Conclusion

This simple tutorial was intended to give an overview of what is possible with JBoss-IDE. We hope that it will be
useful for developers who want to develop for JBoss in Eclipse

JBoss 1.4 50

	JBossIDE Tutorial
	Table of Contents
	Preface
	1. Foreword
	2. About the Authors
	3. About JBoss
	4. Acknowledgements

	Chapter 1. Introduction to JBossIDE
	Chapter 2. Tutorial Preparation
	2.1. Introduction
	2.2. Requirements
	2.3. Notes

	Chapter 3. The Project
	Chapter 4. The EJB
	Chapter 5. Generation of the EJB related files
	Chapter 6. The Servlet and the Web-App
	Chapter 7. Generation of the Servlet related files
	Chapter 8. The J2EE Application
	Chapter 9. The Packaging
	9.1. FiboEJB.jar creation
	9.2. FiboEJB-client.jar creation
	9.3. FiboWeb.war creation
	9.4. FiboApp.ear creation

	Chapter 10. JBoss Configuration and Launch
	Chapter 11. Deployment
	Chapter 12. Debugging
	Chapter 13. Conclusion

