& ‘Boss The Professional
Open Source Company

o0
JBoss Remoting Users Guide

JBoss Remoting version 2.5.4.SP2

May 5, 2011

Copyright © 2011 JBoss by Red Hat .

Table of Contents

1. PUrpose of thiS dOCUMENTui s ana s asannsnsnnnsnsnnnsnnnnnnnnnnnnns 1
2. CONTIEl CONCEPLSietiiee ittt ettt ettt e e e bt e e e sttt e e ekt et e e e e abb et e e e nbe e e e e anbs e e e e annbeeeeeanbeeeeean 2
2.1, SEIVEN SIUE CONCEPLSuteeieeeiteee e e ettt e e e sttt e e et e e e ek e e e e e e e e e e s et e e e s b e e e e anne e e e e annr e e e e aanbrneeeans 2
A O LT 0| s Lo (X o] o= o (=SSR 2
2.3, CAllDACKS ...t e et e e e et — e e e e rareeaanraaeeannrreeeaans 3
3. DeClarative CONFIGUIBLIONcciiiiiiiiiiiiiiie e ettt e e e e e e e e e e e e s et e e e e e e e e s s stabrreeeeaeesssanntrreeeeeeas 4
3.1 MBEAN UESCIILOIS ...eieeiiteie ettt ettt ettt e et e et e e ekt e e e ettt e e e nb e e e e annb e e e e e anbnneeen 4
G I o O N @ N o ='ox] o] (o = 5
4. The SOCKEL TFANSPOITeeeiiiee e e e e e e et e e e e e e e et e e e e e e s e st eeeaee e s s s anttaeeeeaaeeesssasntsaneeeaeesssnnssrnnneaens 8
4.1, SEIVESr SIUE PAIBIMELENSeeeiieiite ettt e e e e e e e e e et e e e s e e e e s b e et e e e b e e e e anr e e e e nannreeeean 8
4.2, CHENt SIOE PAFBMELESvveiiiieei i ittt e e e e e e e et r e e e e e s e e et e e e e e e e e s s sttt e e e e eaeeesssasatarereeaeessananreees 10
5. TRE DISOCKEL TraNSPONT ...ttt e et e e et e e e e e e e e e b e e e annneees 12
5.1, SEIVEr SIAE PAIAMELELS ..oeiiie i ittt e e e e e e s e e e e e e e e s sttt b b e e e eaeeesasaatabareeeeaeessannnreees 12
5.2. ClIENt SIAE PArBMELENSeiiiiiiiiiee it ettt e ettt e e st e e e e e abb et e e s nb b e e e e anbe e e e s anrnneeeans 13
6. The sslsocket and sslbisocket transportsccoooveiiiii i, 14
B. 1. SEIVEN SIOEeeeiee ittt e et e e e e b bt e e e e b e e e e e e nba e e e e nbaeeeeans 14
L O 1= o1 Lo (RS 15
6.3. AddItiONal PArAMELENSeiiiiiiii e e e e e e s e e e e e e e e e s et r e e e e e e e s aanraees 15
7. The http tranSPOrt FAMITYooiiiii e e e s e e e e e e snnree s 16
7.1, http and httpStranSPOrtScooeeeeeeeeeee 16
7.2. servlet and SSISEVIEL trANSPOITSouveiieiiiiiie ettt s st e e s sbneeeeans 16
7.3. Server side parameters: http and httpS tranSPOItSoooioiiieiiiee e 17
7.4. Server side parameters: servlet and sIIServIet tranSPortseeeveeevicciiieieeee e 17
7.5. Client side parameters: http, https, servlet, sslserviet transportsoccoeeeiiiiieeeniiiee e 18
7.6. Client side parameters: https and SsIServIet tranSportseeeeeeeeeiiiiiiiieieee e 18
7.7. IBoss Messaging, http transports, and Callbacksooooiiiiiiiiiii e 18
8. Network Connection MONITONINGcooeeeiiiiee e, 19
8.1. Server SIde MONITOIINGeeeeiiieiee ettt e ettt e ettt e e e s e e et e e et e e e sabb e e e e aasbb e e e e anbeeeesnnbneeeeans 19
8.2. ClieNnt SIAE MONITOMNG ...eeeiieeeiiiiieiiiee e e e e ettt e e e e e e e e ettt eeeeee e s s aannteaeeeeaeeeeeaansnnneeeeaaeeeeaannnenes 19
8.3. Interactions between client side and server side connection MoNItoriNgcccccvvveveeeeeeieennnnne, 20
8.4. Client and SErVEr IHENTITIES .. .ot r e e e e s et r e e e e e e s e st eeeeaeeeeannnneees 20
9. Configuration files: Where are they NOW?ovviiiiiii e e et r e e e e 22
0.1 EJB 2 oottt e e et e e e e ——— e e e e e ———— e e e ———e e e e nraeeeaanraeeeannraeeenarraeaeans 22
S N | PRSPPI 22
0.3, IBOSSIMESSAGINGvveeeeiuitiieeaiutteee e ettt e e e ettt e e e st et e e e sttt e e e aabb e e e e e st et e e e anbb et e e e nbb e e e e e nbe e e e e anbnneeeans 22

JBoss May 5, 2011

Purpose of this document

JBoss Remoting is a project that provides a general purpose distributed invocation framework for other JBoss
projects and products, including the community Application Server (AS) and the Enterprise Application Platforms
(EAP). Remoting is roughly similar to Java RMI, but instead of using stubs, it identifies servers by URL. Other dis-
tributed frameworks that appear in the same context are JGroups (http://www.jgroups.org/) and Netty (ht-
tp:/lwww.jboss.org/netty). The technologies served by Remoting, in particular, are EJB2, EJB3, and JBoss Mes-
saging (http://labs.jboss.com/jbossmessaging). JBoss Web Services also uses Remoting on its client side, but the
use is hidden, so to speak: there are no configuration files.

Remoting is quite flexible, with multiple, pluggable transports, marshallers, seriaizers, etc., and more than anyone
would ever want to know is described in the Remoting Guide [http://docs.jboss.org/jbossremoting/2.5.3.SP1/htmi/],
but the current document, instead, focuses on those aspects of Remoting that are useful in the context of EJB2,
EJB3, and JBoss Messaging. The Users Guide is not meant to introduce the reader to writing applications based on
Remoting, but rather is meant to provide

1. abasic understanding of how Remoting works,
2. acompendium of the important configuration parameters, and
3. adescription of how Remoting is configured in the Application Server.

The information in this guide appliesto AS 5, EAP 5, and AS 6.

JBoss May 5, 2011 1

http://www.jgroups.org/
http://www.jboss.org/netty
http://www.jboss.org/netty
http://labs.jboss.com/jbossmessaging
http://docs.jboss.org/jbossremoting/2.5.3.SP1/html/

Central concepts

Remoting is based on the client server model, and communication between a client and a server is handled by one
of Remoting's several transports. A transport is characterized by a pair of classes, one for the client side and one
for the server side, which communicate by a shared protocol. Most of the core concepts discussed below are related
to one side or the other. However, the URL, or the internal object used to represent the URL, of a server is relevant
to both sides.

e org.jbossremoting.InvokerLocator: represents a URL which denotes a Remoting server. For example,

socket:/ /1 ocal host: 1234/ ?ti meout =10000&maxPool Si ze=200&c! i ent MaxPool Si ze=50

The protocol element, "socket", indicates that the socket transport is to be used. It will be described below (The
socket transport chapter). The values of the parameters "timeout”, "maxPool Size", and "clientMaxPool Size" are
available on both the client and server sides, but they may be ignored on one side or the other. They are further
described below (The socket transport chapter).

2.1. Server side concepts

e org.,jbossremoting.ServerInvocationHandler:

is a server side object that incorporates application logic. A Server I nvocat i onHandl er may be associated with
aparticular subsystem, specified by an arbitrary string. For example, JBoss Messaging uses "JMS".

e orgjbossremoting.Serverinvoker:

is the server side object that fields invocations and passes them to the appropriate Ser ver I nvocat i onHandl er .
Each of EJB2, EJB3, and JBoss Messaging have their own Ser ver | nvocat i onHandl er S. Ser ver | nvoker iSSub-
classed for each ftransport; eg., org.jboss.renoting.transport.socket.Socket Serverlnvoker,
org.jboss.renoting.transport. bi socket. Bi socket Server | nvoker, €tC.

» org.)bossremoting.transport.Connector:

isthe external face of the Ser ver I nvoker, by which the Ser ver | nvoker is configured declaratively. The config-
uration includes a designated transport, Ser ver | nvoker parameters, and one or more Ser ver | nvocat i onHand-
| er classes.

2.2. Client side concepts

e org.jbossremoting.RemoteClientlnvoker:

JBoss May 5, 2011 2

Central concepts

isaclient side object corresponding to a particular Ser ver I nvoker . It is responsible for marshalling an invoca-
tion to the wire and unmarshalling the response. Each Renot eCl i ent | nvoker is subclassed for each transport;
eg., org.jboss.renoting.transport.socket. Socketd i entl nvoker,
org.j boss. renmoting.transport. bi socket. Bi socket C i ent | nvoker, €tC.

e orgjbossremoting.Client:

is the conduit between application code and the Renot ed i ent | nvoker . Multiple d i ent s can share asingle Re-

not eCl i ent | nvoker if they have the same | nvoker Locat or and the same set of configuration parameters. In a
pure Remoting application, the application code would be responsible for creating the d i ent (). However, in
the context of the Application Server, d i ent S and Rerot ed i ent | nvoker S are hidden below the surface. For
example, a JBoss Messaging producer or consumer creates one or more dientS. In EJB2 and EJB3, dients
are create by an interceptor embedded in an object which is retrieved from the server side. In these cases, JBoss
Messaging, EJB2, and EJB3 are the applications from the Remoting perspective. A d i ent may be created with
a subsystem string which associates it with a particular Ser ver I nvocat i onHandl er on the server side. Note that
if aserverlnvoker is configured with only a single Server | nvocat i onHandl er, the use of a subsystem string
is optional.

2.3. Callbacks

One more concept is necessary to make sense of the bisocket transport, discussed below in the The bisocket trans-
port chapter. An ordinary invocation leads to a synchronous response from the server, but asynchronous commu-
nication is also possible from the server to the client. When a call is make to one of the overloaded variants of the
d i ent method

addLi st ener (I nvoker Cal | backHandl er cal | backHandl er) throws Throwabl e;

the passed instance of | nvoker Cal | backHandl er is registered as a listener for asynchronous communication, and,
on the server side, the Ser ver I nvocat i onHandl er associated with the di ent is given a"proxy"” for the I nvoker -
Cal | backHandl er which it can use to send asynchronous org. j boss. renoti ng. cal | back. Cal | back objects, or,
more simply, callbacks.

There are two kinds of callbacks. For push callbacks, a dedicated Ser ver I nvoker is created on the client side and
the server side Server I nvocat i onHandl er makes invocations, by way of the "proxy", on that Server | nvoker to
send callback objects to the client side. Under the surface, the "proxy" createsad i ent to handle those invocations.
On the other hand, pull callbacks generated by the Ser ver I nvocat i onHandl er are stored on the server side, and a
poller is created on the client side which makes invocations on the server side Ser ver I nvoker to retrieve any stored
callbacks.

JBoss May 5, 2011 3

Declarative configuration

When used in a standalone manner, Remoting clients and servers can be configured either by adding parameters to
the InvokerL ocator or by directly passing configuration maps to their constructors. In the context of the Application
Server, however, Remoting objects are configured in xml files. There are two variations. In versions 4 and earlier
of the Application Server, the various components are held together by an MBeanServer, and, in the course of ini-
tializing the Application Server, deployers create MBeans from xml description files. In version 5, the primacy of
the MBeanServer has been replaced by the JBoss Microcontainer, which creates POJOs from xml description files.
Both MBean and POJO descriptors are available in version 5.

3.1. MBean descriptors

An MBean descriptor of a Remoting Connect or 100ks like the following abbreviated version derived from a JBoss
Messaging example:

<nbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. nessagi ng: servi ce=Connect or, transport =bi socket"
di spl ay- nane="Bi socket Transport Connector">
<attribute name="Configuration">
<confi g>
<i nvoker transport="bi socket">

<attribute nanme="server Bi ndAddr ess" >l ocal host </ attri but e>

<attribute nane="serverBi ndPort">4457</attri bute>

<attribute name="marshal l er" isParanm="true">org.jboss.jmnms.w reformat. IMSWreFormat</attrit
<attribute nanme="unmarshal l er" isParam="true">org.jboss.jns.wreformt.JVSWreFormat</attr
<attribute name="tineout" isParane"true">300000</attribute>

<attribute nane="cal | backTi meout ">10000</attri bute>

</i nvoker >
<handl er s>
<handl er subsystem="JMS">org. | boss.jns. server.renoting. JMSServer | nvocati onHandl er </ handl er
</ handl er s>
</ confi g>

</attribute>
</ nbean>

In this case, the Connect or readsthe <config> attribute and creates the InvokerL ocator

bi socket:/ /1 ocal host: 4457?mar shal | er =or g. j boss. j ns. wi r ef or mat . JMSW r eFor mat &unmar shal | er =or g. j boss. j ns. wi

which is passed into the Bi socket Ser ver | nvoker that it creates (see The bisocket transport chapter).

Notes.

JBoss May 5, 2011 4

Declarative configuration

1. The <transport> element specifies that this Connect or will create aBi socket Server | nvoker .

2. The"marshaler”, "unmarshaler”, and "timeout” parameters, which are all specified with the "isParam” attrib-
ute set to "true”, appear in the InvokerLocator. They will be available on both the server side and the client
side.

3. The "callbackTimeout" parameter, which is specified without the "isParam™ attribute, does not appear in the
InvokerLocator. It will be available on the server side but will not be available on the client side.

4. The <handler> element tells the Connect or to create an instance of
org.jboss.jns.server.renmoting. JMSServer | nvocat i onHandl er to handle all invocations associated with
the"IMS" subsystem.

3.2. POJO descriptors

When an MBean descriptor like the one in the previous section is given, the Connector explicitly parses the
<config> element. In Application Server 5 and EAP 5, the microcontainer automatically parses POJO descriptors
written in its descriptor language, creates the described POJOs, and can inject them into other POJOs. Remoting
uses a POJO descriptor of aorg. j boss. renoti ng. Server Confi gurati on object to inject configuration informa-
tion into a Connect or . For example, the following POJO descriptors are abbreviated and modified versions of those
used by the EJB2 subsystem:

<bean nane="Uni fi edl nvoker Connector" class="org.jboss.renoting.transport. Connector">
<property nane="server Configuration"><inject bean="Unifi edl nvoker Confi guration"/></property>
</ bean>

<bean name="Uni fi edl nvoker Confi gurati on" class="org.]jboss. renoting. Server Confi guration">
<const ruct or >
<par anet er >socket </ par anet er >
</ constructor>

<I-- Paraneters visible to both client and server -->
<property nanme="i nvoker Locat or Par anet er s" >
<map keyd ass="java.l ang. String" val ueC ass="j ava. | ang. Stri ng">
<entry>
<key>server Bi ndAddr ess</ key>
<val ue>| ocal host </ val ue>
</entry>
<entry>
<key>server Bi ndPort </ key>
<val ue>4446</ val ue>
</entry>
<entry><key>enabl eTcpNoDel ay</ key> <val ue>t rue</val ue></entry>
</ map>
</ property>

<l-- Paraneters visible only to server -->
<property nanme="server Paraneters">
<map keyd ass="j ava.l ang. String" val ueC ass="j ava. |l ang. Stri ng">
<ent r y><key>maxPool Si ze</ key><val ue>500</ val ue></entry>
</ map>
</ property>

<property name="invocati onHandl ers" >
<map keyd ass="j ava.l ang. String" val ueC ass="java. |l ang. String">
<entry><key>JSR88</ key> <val ue>org. j boss. depl oynent. renoti ng. Depl oyHandl er </ val ue></ entry>

JBoss May 5, 2011 5

Declarative configuration

</ map>
</ property>
</ bean>

Here, the Ser ver Confi gur ati on is created and injected into the Connect or object, which creates the InvokerL ocat-
or

socket:/ /| ocal host: 4446?enabl eTcpNoDel ay=t r ue

Notes.

1. The<constructor> element specifies that this Connect or will create a Socket Server | nvoker.

2. The entries in the "invokerLocatorParameters’ property appear in the InvokerLocator and are available on
both the client and server sides.

3. Theentriesin the "serverParameters’ property do not appear in the InvokerLocator and are available only on
the server side.

4. The ‘"invocationHandlers® property tells the Connector to create an instance of
org. j boss. depl oynent . renot i ng. Depl oyHandl er to handle all invocations associated with the "JSR88" sub-
system.

The actual Server I nvocat i onHandl er used by EJB2, by the way, is an instance of a different class and is injected
into the Socket Ser ver I nvoker programmatically. It is described by the following POJO descriptor:

<bean nanme="Uni fi edl nvoker" class="org.jboss.invocation.unified.server.Unifiedl nvoker">
<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j nk. JMX(nane="] boss: servi ce=i nvoker, t ype=uni fi ed"
<property nanme="connect or"><i nj ect bean="Uni fi edl nvoker Connect or"/></ property>
<depends>Tr ansact i onManager </ depends>

</ bean>

An org.jboss.invocation.unified. server. Unifiedl nvoker IS a ServerlnvocationHandl er, and it uses the
"UnifiedlnvokerConnector” to inject itself into the Socket Server | nvoker created by the "UnifiedlnvokerConnect-
or". The <annotation> property, by the way, is used to assign an MBean name to a POJO.

There is an aternative way to configure a Connect or with a Server Confi gur ati on. In the following modified ver-
sion of two POJOs used by the EJB3 subsystem, the | nvoker Locat or is given explicitly to the Connect or and the
injected Ser ver Conf i gur ati on isused only to specify a Ser ver | nvocat i onHandl er :

<bean nane="org. | boss. ej b3. Renoti ngConnect or "
cl ass="org. j boss.rennting.transport. Connect or">

<property nanme="i nvoker Locat or">
<val ue>socket://| ocal host: 38737t i meout =300000</ val ue>
</ property>
<property nane="server Configuration">
<i nj ect bean="ServerConfiguration" />
</ property>
</ bean>

JBoss May 5, 2011 6

Declarative configuration

<I-- Renpoting Server Configuration -->
<bean nane="Server Confi guration"
cl ass="org. j boss.rennting. Server Confi gurati on">
<property nane="invocati onHandl ers" >
<map keyd ass="java.l ang. String" val ued ass="j ava.l ang. Stri ng">
<entry>
<key>AOP</ key>
<val ue>
org. j boss. aspects. remnti ng. AOPRenot i ngl nvocat i onHandl er
</ val ue>
</entry>
</ map>
</ property>
</ bean>

JBoss May 5, 2011

The socket transport

A Remoting transport is represented by a matching pair of classes derived from Renot edl i ent | nvoker and Sock-
et I nvoker (seethe Central concepts chapter). They are matched in the sense that they share awire protocol. In the
socket transport, the classes are org.jboss.renoting.transport.socket.Socketdientlnvoker and
org.jboss.renoting. transport.socket. Socket Serverl|nvoker. Socket d i ent | nvoker is, in fact, further sub-
classed by the actual client invoker class, org. j boss. renpting. transport. socket . M croSocket d i ent | nvoker .

The socket transport is a relatively low level transport in the sense that it interacts directly with Java sockets and
server sockets. Socket Ser ver | nvoker isaclassic old i/o style server, in which it listens to a server socket and, for
each new socket created, it either <creates a new worker thread, represented by
org.jboss.renpting.transport.socket. Server Thread Or reuses an idle Ser ver Thr ead obtained from a pool. A
Ser ver Thr ead manages a single socket, waiting for an invocation to come in on the wire, passing the invocation to
the Ser ver | nvoker which passes it to the appropriate Ser ver I nvoker Handl er , and then writing the response to the
wire.

On the client side, M croSocket O i ent I nvoker takes an invocation passed in by a dient, either creates a new
connection that wraps a Java socket or reuses an idle connection from a pool, writes the invocation to the socket,
and reads and returns the result. An important consideration is the determination of the viability of a pooled con-
nection. A slow but reliable method is to write a byte to the socket and wait for the byte to come back. This method
is turned off by default. Another method is for the server side to write a couple of bytes when the connection is
closed, and for the client side to check for available bytes. This method is aways turned on, but it is less reliable
since the server side may be unable to write the bytes, or they may not have arrived yet when the test is made. A
palliative for these possibilitiesis to configure M cr oSocket d i ent | nvoker to retry afailed invocation in the event
of aj ava. net. Socket Excepti on Or certain variants of aj ava. i 0. | OExcepti on.

A number of parameters may be configured on each side, including, for example, timeout times, pool sizes, and
number of retry attempts. Note that most of these are given their default values by JBoss Messaging, EJB2, and
EJB3, and, in general, the configured values of the others should not be changed without a good reason.

4.1. Server side parameters

acceptThreadPriorityl ncrement - can be used to increment the priority of the accept thread, which manages the
Server Socket . The value is added to j ava. | ang. Thr ead. NORM PRI ORI TY, and the resulting value must be no more
than j ava. | ang. Thread. MAX_PRI ORI TY. This parameter might be useful on a heavily loaded machine if the accept
thread is getting starved. Introduced in release 2.5.4.5P2.

backlog - the preferred number of unaccepted incoming connections allowed at a given time. The actual number
may be greater than the specified backlog. When the queue is full, further connection requests are rejected. The de-
fault value is 200.

continueAfterTimeout - indicates what a ServerThread should do after experiencing a

JBoss May 5, 2011 8

The socket transport

j ava. net . Socket Ti meout Except i on. If set to true, or if JBoss Serialization is being used (which is never the case,
by default, which is why JBoss Serialization is not discussed in this guide), the server thread will continue to wait
for the next invocation; otherwise, it will return itself to the thread pool. For Java serialization, the default value is
false.

evictabilityTimeout - indicates the number of milliseconds during which a Ser ver Thr ead waiting for the next in-
vocation will not be interruptible. The default value is 10000 milliseconds.

idleTimeout - indicates the number of seconds a pooled Server Thread can be idle, that is, waiting on the next in-
vocation, before it should be removed from the thread pool. The value for this property must be greater than zero in
order to enable idle timeouts. The default valueis -1.

immediateShutdown - indicates, when set to "true", that, when Connector. st op() is called and it calls Socket -
Server | nvoker . stop(), al Server Thr eads are shut down immediately, even if they are processing an invocation.
The default value isfalse.

maxPool Size - the maximum number of Ser ver Thr eads that can exist at any given time. The default value is 300.
numAccept T hreads - the number of threads listening on the Ser ver Socket . The default valueis 1.

server SocketClass - specifies the fully qualified class name for a custom Socket W apper implementation to use on
the server. By default, org. j boss. renoti ng. transport. socket . Server Socket W apper is used. JBoss Messaging
USES a custom wrapper.

socket.check_connection - indicates if a client side pooled connection should be checked by sending a single byte
from the client to the server and then back to the client. This parameter needs to be set on both client and server to
work. It isfalse by default.

timeout - the socket timeout value passed to the Socket . set SoTi neout () method. The default on the server side is
60000 milliseconds.

writeTimeout - a timeout value imposed on socket write operations. This feature is enabled by setting write-
Timeout to avalue, in milliseconds, greater than zero. By default, the feature is not enabled.

The following socket parameters, in addition to SO TIMEOUT, can be configured on the server side:
SO_KEEPALIVE, OOBINLINE, SO_RCVBUF, SO_REUSEADDR, SO_SNDBUF, SO LINGER, and "traffic
class'. They are configured by passing the following parameter keysto Socket Ser ver I nvoker :

keepAlive - sets socket parameter SO_KEEPALIVE

00BI nline - sets socket parameter OOBINLINE

receiveBuffer Size - sets socket parameter SO RCVBUF

reuseAddress - sets socket parameter SO REUSEADDR

sendBuffer Size - sets socket parameter SO_SNDBUF

soLinger - sets socket parameter SO_LINGER

soL inger Duration - when socket parameter SO_LINGER is set to "true”, setslinger duration

trafficClass - sets socket traffic class

JBoss May 5, 2011 9

The socket transport

4.2. Client side parameters

clientM axPoolSize - the maximum number of socket connections that can exist at any given time. The default
valueis 50.

clientSocketClass - specifies the fully qualified class name for a custom Socket W apper implementation to use on
the client. By default, org. j boss. renot i ng. t ransport . socket. C i ent Socket W apper is used. JBoss Messaging
uses a custom wrapper.

generalizeSocketException - If set to false, afailed invocation will be retried in the case of Socket Excepti ons. If
set to true, a failed invocation will be retried in the case of Socket ExceptionS and also any | OExcept i on whose
message matches the regular expression
A.*(?:connection. *reset| connection. *cl osed| connecti on. *abort | br oken. *pi pe| connecti on. *shut down) .
*$. See also the "numberOfCallRetries' parameter, below. The default value isfalse.

number Of CallRetries - the number of times a failed invocation will be retried. For example, it is possible that the
server side of a socket connection could time out, leaving the connection invalid. In that case, the socket will be
discarded and another, possibly new, socket will be used. After numberOfCallRetries attempts, an | nvocat i on-
Fai | ur eExcept i on, whose cause isthe original exception, will be thrown. The default value is 3. See also the "gen-
eralizeSocketException” parameter, above.

socket.check _connection - indicates if a client side pooled connection should be checked by sending a single byte
from the client to the server and then back to the client. This parameter needs to be set on both client and server to
work. It isfalse by default.

timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the client side is
1800000 milliseconds (30 minutes).

useOnewayConnectionTimeout - indicates if, during a client side oneway invocation, M croSocket d i ent I n-
voker should wait for aversion byte from the server, which prevents the anomal ous behavior described in BREM-
706 "In socket transport, prevent client side oneway invocations from artificialy reducing concurrency”. The de-
fault valueistrue.

writeTimeout - a timeout value imposed on socket write operations. This feature is enabled by setting write-
Timeout to avalue, in milliseconds, greater than zero. By default, the feature is not enabled.

The following socket parameters, in addition to SO_TIMEOUT, can be configured on the client side:
TCP_NODELAY, SO KEEPALIVE, OOBINLINE, SO RCVBUF, SO REUSEADDR, SO _SNDBUF,
SO_LINGER, and "traffic class'. They are configured by passing the following parameter keys to M cr oSock-
etdientlnvoker:

enableT cpNoDelay - sets socket parameter TCP_NODELAY . The default value isfalse.
keepAlive - sets socket parameter SO KEEPALIVE

00BI nline - sets socket parameter OOBINLINE

receiveBuffer Size - sets socket parameter SO_RCVBUF

reuseAddress - sets socket parameter SO REUSEADDR. The default value is true.

JBoss May 5, 2011 10

The socket transport

sendBuffer Size - sets socket parameter SO_SNDBUF
soLinger - sets socket parameter SO_LINGER
soLinger Duration - when socket parameter SO_LINGER is set to "true”, sets linger duration

trafficClass - sets socket traffic class

JBoss May 5, 2011

11

The bisocket transport

The bisocket transport is derived from the socket transport and differs in one design feature. It was created for
JBoss Messaging, where the design criteriawere

1. message payloads are be sent to client side consumers in callbacks,
2. push calbacks, being faster, are preferred, and
3. opening ports on the client side is undesirable.

In the socket transport, push callbacks are handled on the client side by a dedicated Socket Ser ver I nvoker , which
uses a Java server socket; that is, it opens a port. When a connection is needed on the server side to send push call-
backs, a socket is created by contacting the server socket on the client side.

The bisocket transport, instead, uses server sockets only on the server side, including (1) the one created by Sock-
et Server | nvoker to create connections to handle ordinary invocations, and (2) a secondary server socket. The
first use of the secondary server socket is to create a control connection in response to a request from the client
side. Subsequently, all connections for sending push callbacks are created by sending a message over the control
connection to the client side, asking it to make a connection to the secondary server socket.

If the control connection fails, then no new calback connections can be created, so it is possible to configure the
server side Bi socket Server | nvoker to ping the client side Bi socket Cientlnvoker a fixed intervals. If the
Bi socket O i ent | nvoker detectsamissing ping, it can connect to the secondary server socket and recreate the con-
trol connection.

Originally, JBoss Messaging turned off pinging because the default ping period was small enough to cause spurious
failures. Currently, the default values are accepted.

Note. If opening ports on the client side is not a problem, then JBoss Messaging will run just fine with the some-
what simpler socket transport.

The following bisocket configuration parameters are added to those used in the socket transport:

5.1. Server side parameters

acceptThreadPriorityl ncrement - can be used to increment the priority of the thread which manages the second-
ary Server Socket (aswell asthe thread that manages the primary Ser ver Socket in the socket transport). The value
is added to java.lang.Thread. NORM PRIOCRITY, and the resulting vaue must be no more than
java. | ang. Thread. MAX_PRI ORI TY. This parameter might be useful on a heavily loaded machine if the accept
thread is getting starved. Introduced in release 2.5.4.SP2.

JBoss May 5, 2011 12

The bisocket transport

pingFrequency - the frequency, in milliseconds, with which the server side sends a ping over the control connec-
tion. The default value is 5000 milliseconds.

secondaryM axT hreads: Determines the maximum number of sockets accepted by the secondary Ser ver Socket
that can be processed simultaneously. Introduced in release 2.5.4.SP2. Default value is 50.

secondaryTimeout: Determines the timeout used when reading initial data from a socket accepted by the second-
ary Ser ver Socket . Introduced in release 2.5.4.SP2. Default value is 60000 ms.

5.2. Client side parameters

maxControlConnectionRestarts - the maximum number of times the client side will attempt to recreate the con-
trol connection following a ping failure. The default valueis 10.

maxRetries - the maximum number of times two processes are attempted: (1) the attempt to create a socket, either
for the control connection or for a callback connection, and (2) the attempt to get the port of the secondary server
socket. The default valueis 10.

pingFrequency - the frequency, in milliseconds, with which the server side is expected to send a ping over the
control connection. The default value is 5000 milliseconds.

pingWindowFactor - the value which, when multiplied times the pingFrequency, gives the window within which
aping is expected by the client side. The default value is 2. It follows that the default window is 10 seconds.

secondaryBindPort - the port to which the secondary server socket is to be bound. By default, an arbitrary port is
selected.

secondaryConnectPort - the port clients are to use to connect to the secondary server socket. By default, the value
of secondaryBindPort is used. secondaryConnectPort is useful if the server is behind atranglating firewall.

JBoss May 5, 2011 13

The sslsocket and sslbisocket transports

The sslsocket transport is derived from the socket transport (The socket transport) and differs only in the use of
j avax. net . ssl . SSLSocket S and j avax. net . ssl . SSLSer ver Socket S instead of the usual Java sockets and server
sockets. Similarly, the sslbisocket transport is derived from the bisocket transport (The bisocket transport) and dif-
fersonly in the use of SSLSocket Sand SSLSer ver Socket S.

6.1. Server side

Remoting provides a configurable extension of javax.net.ssl.SSLServerSocket Factory called
org.j boss. renoting. security. SSLSocket Fact or yServi ce. It depends on an instance of
org.jboss.renoting. security. SSLSocket Bui | der, which creates and configures an instance of
j avax. net.ssl.SSLContext and uses it to create an instance of j avax. net. SSLSer ver Socket Factory. It is the
SSLSocket Bui | der which can be configured with keystores, etc. SSLSocket Bui | der is described in more detail in
the Remoting Guide [http://docs.jboss.org/jbossremoting/2.5.3.SP1/htmi/].

For example, JBoss Messaging uses instances of SSLSocket Fact or ySer vi ce and SSLSocket Bui | der as follows in
its configuration of the sslbisocket transport:

<nbean code="org.jboss.renoting. security. SSLServer Socket Fact oryServi ce"
nanme="j boss. nessagi ng: servi ce=Ser ver Socket Fact ory, t ype=SSL"
di spl ay- name="SSL Server Socket Factory">
<depends optional -attribute-name="SSLSocket Bui | der"
proxy-type="attri bute">j boss. messagi ng: servi ce=Socket Bui | der, t ype=SSL</ depends>
</ nbean>

<nmbean code="org.j boss.renoting. security. SSLSocket Bui | der"
nanme="j boss. messagi ng: servi ce=Socket Bui | der, t ype=SSL"
di spl ay- nane="SSL Server Socket Factory Buil der">

<l--

| MPORTANT - |f making ANY customi zations, this MJUST be set to fal se.

O herwi se, will use default settings and the following attributes will be ignored.
-->
<attribute name="UseSSLServer Socket Factory">fal se</attri bute>

<attribute name="KeySt oreURL">${j boss. server. hone. url}/depl oy/ messagi ng/ messagi ng. keystore</attri bt
<attribute name="KeySt or ePasswor d">secur eexanpl e</attri but e>
<attri bute name="KeyPasswor d">secur eexanpl e</ attri but e>
<attribute name="SecureSocket Protocol ">TLS</attri bute>
<attri bute name="KeySt or eAl gorithnf >SunX509</attri but e>
<attribute name="KeySt oreType">JKS</attri bute>
</ nbean>

Through these two MBeans, JBoss Messaging provides itself with a suitably configured instance of an SsSLSer ver -
Socket Fact or y on the server side.

JBoss May 5, 2011 14

http://docs.jboss.org/jbossremoting/2.5.3.SP1/html/

The sslsocket and sslbisocket transports

6.2. Client side

Although a ssLSocket Bui | der can be used to create aj avax. net . SSLSocket Fact ory, the one on the server side
typically will not be available on the client side, so it is the responsibility of the particular subsystem (JBoss Mes-
saging, EJB2, EJB3) to create a Renot ed i ent | nvoker With a suitable SSLSocket Fact ory. For example, JBoss
M essaging takes two steps:

1. it uses a Remoting transport, sslbisocket, whose SSLBi socketdientlnvoker is designed to create an
SSLSocket Fact ory through the use of a properly configured SSLSocket Bui | der , and

2. it captures appropriate SSL parameters and passes them to the SSLBi socket d i ent | nvoker :

Map configuration = new HashMap();

String trustStoreLoc = System getProperty("org.jboss.renpting.trustStore");

if (trustStoreLoc != null)
{
configuration. put("org.jboss.renoting.trustStore", trustStorelLoc);
String trustStorePassword = System get Property("org.jboss.renoting.trustStorePassword");
if (trustStorePassword != null)
{
configuration. put("org.jboss.renoting.trustStorePassword", trustStorePassword);
}
}

Client client = new Client(new I nvokerLocat or(serverLocatorURI), configuration);

6.3. Additional parameters

The following parameters are applicable to both the client and server sides for the sslsocket and sslbisocket trans-
ports:

enabledCipher Suites - a String array which is passed to SSLSocket . set Enabl edCi pher Sui t es()
enabledProtocols - a String array which is passed to SSLSocket . set Enabl edPr ot ocol s()

enableSessionCreation - aboolean value which is passed to SSLSocket . set Enabl eSessi onCr eat i on()

JBoss May 5, 2011 15

The http transport family

Unlike the socket transport and its derivatives, which interact directly with Socket s and Ser ver Socket S, the http
family of transports uses j ava. net . Ht t pURLConnect i ons. While they do not exhibit the same performance as the
socket transports, they have the advantage of using the universal http protocol.

Any of JBoss Messaging, EJB2, and EJB3 can use the http transports instead of the socket family of transports. Ad-
ditional configuration information may be found in the wiki articles EJB, JIMS and JNDI over HTTP with Unified
Invoker [http://community.jboss.org/wiki/EJBIJM SandJNDIloverHTTPwithUnifiedinvoker] and EJB, JMS and
JNDI over HTTP via NAT Firewall with Unified Invoker
[http://community.jboss.org/wiki/EIBIM SandINDIoverHTTPviaNATFirewal lwithUnifiedl nvoker].

7.1. http and https transports

Ontheclient side, anorg. j boss. renpting. transport. http. HTTPA i ent | nvoker, a subclass of Renot eCl i ent | n-
voker, creates aj ava. net . Ht t pURLConnect i on for each invocation. The caching of Ht t pURLConnect i ons and their
Socket is | eft to the implementation. On the server side, the
org.jboss.renoting.transport.coyote. Coyot el nvoker, wWhich is a subclass of Server! nvoker and is based on
the coyote module in Tomcat, processes http requests, calls on Ser ver I nvoker to hand invocations off to the appro-
priate Server I nvocat i onHandl er , and returns aresult along with a response code.

The https transport is derived from the http transport and uses javax. net.ssl.SSLSocketS and
j avax. net . ssl . SSLSer ver Socket Sinstead of Socket S and Ser ver Socket S.

7.2. servlet and sslservlet transports

The servlet and sslservlet transports share the client side code of the http and https transports, respectively. On the
server side, the difference is that the servlet and sslservlet transports use a serviet,
org.jboss.renoting.transport.servlet.web. ServerlnvokerServliet, to hand an invocation off to an
org.jboss.renoting.transport.servlet. Servl et Serverlnvoker. In other words, the servliet and sslservlet
transports share a port with all other servlets running in the Application Server, while the http and https transports
use a separate port managed by a Coyot el nvoker .

When the Server I nvoker Servl et is initialized, it needs to be informed of which Ser vl et Server | nvoker to use.
One way of doing that is to give it the appropriate | nvoker Locat or . For example, the following web.xml file is
used by JBoss Messaging:

<web- app>

<servl| et >
<servl et - name>JnsSer ver | nvoker Ser vl et </ servl et - nane>

JBoss May 5, 2011 16

http://community.jboss.org/wiki/EJBJMSandJNDIoverHTTPwithUnifiedInvoker
http://community.jboss.org/wiki/EJBJMSandJNDIoverHTTPwithUnifiedInvoker
http://community.jboss.org/wiki/EJBJMSandJNDIoverHTTPviaNATFirewallwithUnifiedInvoker
http://community.jboss.org/wiki/EJBJMSandJNDIoverHTTPviaNATFirewallwithUnifiedInvoker

The http transport family

<descri pti on>The JnsServer | nvoker Servl et receives JM5S requests via HITP
protocol fromw thin a web container and passes it onto the
Servl et Server | nvoker for processing.
</ descri pti on>
<servl et-class>org.jboss.remoting.transport.servl et.web. Server| nvoker Servl et </ servl et -cl ass>
<i ni t-paranp
<par am name>| ocat or Ur | </ par am nanme>
<par am val ue>
<! [CDATA[servl et://${j boss. bi nd. addr ess}: 8080/ servl et -i nvoker/JmsSer ver | nvoker Ser vl et/ ?dat a
</ par am val ue>
<descri pti on>The servl et server invoker</description>
</init-paranr
<l oad- on- st artup>1</| oad- on- st art up>
</ servl et>

<servl et - mappi ng>
<servl et - nane>JnsSer ver | nvoker Ser vl et </ servl et - name>
<url - pattern>/JnmsServer | nvoker Servl et/ *</url -pattern>
</ servl et - mappi ng>

</ web- app>

7.3. Server side parameters: http and https transports

In general, parameters passed to a Coyot el nvoker are passed to the underlying Tomcat implementation. For ex-
ample, the Tomcat attribute "maxThreads" can be used to set the maximum number of threads to be used to accept
incoming http requests. However, the Remoting attributes "serverBindAddress' and "serverBindPort" should be
used instead of the Tomcat attributes "address" and "port". For more information on the configuration attributes
available for the Tomcat connectors, please refer to http://tomcat.apache.org/tomcat-6.0-doc/config/http.html.

Coyot el nvoker can also configure an instance of org. apache. cat al i na. Execut or, an interface which extends
java.util.concurrent.Executor. If the parameter "executor" is associated with a comma separated list of
key=value pairs, Coyotelnvoker will parse the list, use the resulting map to configure an instance of
or g. apache. cat al i na. cor e. St andar dThr eadExecut or , and inject it into the underlying Tomcat implementation.
For example, JBoss Messaging'sr enot i ng- ht t p- ser vi ce. xmi configuration file could contain

<attribute name="executor">m nSpar eThr eads=20, maxThr eads=100</at tri but e>

Note that if an executor isinjected, the other threadpool related attributes such as "maxThreads', which would oth-
erwise be applied to a threadpool created by Tomcat, are ignored. The configurable attributes of the st andar d-
Thr eadExecut or are described in http://tomcat.apache.org/tomcat-6.0-doc/config/executor.html.

7.4. Server side parameters: servlet and sslservlet transports

The following parameter may be used to configure an instance of ServletServerlnvoker:

unwrapSingletonArrays - key indicating if, when
javax.servlet. http. H tpServl et Request . get Par amet er Map() returns a map containing pairs of the form (key,
value) where value has the form j ava. I ang. String[] with length 1, the pair should be replaced with a pair (key,
((String[] value)[0]). The default value is "false”.

JBoss May 5, 2011 17

http://tomcat.apache.org/tomcat-6.0-doc/config/http.html
http://tomcat.apache.org/tomcat-6.0-doc/config/executor.html

The http transport family

7.5. Client side parameters: http, https, servlet, sslservlet trans-
ports

The following parameters may be used to configure an instance of
org.jboss.renpting.transport. http. HTTPC i ent | nvoker :

disconnectAfter Use - key indicating if thej ava. net . Ht t pURLConnect i on should be disconnected after the invoca-
tion. The default value is"false”.

ignor eError ResponseM essage - key indicating if HTTPC i ent | nvoker should try to get a response message and
response code in the event of an exception. The default value is "false".

number Of CallAttempts - This parameter is relevant only on the client side, where it determines the maximum
number of attempts that will be made to complete an invocation. The default valueis 1.

unmarshalNullStream - key indicating if HTTPC i ent I nvoker should make the call to Unmarshal | er. read()
when the | nput St reamis null. The default valueis "true”.

7.6. Client side parameters: https and sslservlet transports

The following parameters may be used to configure an instance of HTTPSC i ent | nvoker :

org.jboss.security.ignoreHttpsHost - key indicating if HTTPSA i ent | nvoker should ignore host name verification,
i.e., it will not check for a mismatch between the URL's hostname and the server's hostname during handshaking.
By default, standard hostname verification will be performed.

hostnameVerifier - key indicating the hostname verifier that should be used by HTTPSC i ent | nvoker . The value
should be the fully qualified classname of a class that implements j avax. net. ssl . Host naneVeri fi er and has a
void constructor.

7.7. JBoss Messaging, http transports, and callbacks

Unlike the bisocket transport, which was designed especially to allow push callbacks without opening a port on the
client side, a server in any of the http transports necessarily opens a Ser ver Socket , SO push callbacks are ruled out
when JBoss Messaging runs on any of the http transports. Pull callbacks are used instead, and there are some con-
figuration parameters that can be set:

blockingM ode - indicates whether to use blocking or nonblocking mode when doing pull callbacks. In nonblock-
ing mode a poller periodically polls for waiting callbacks, and, if there are none, returns. In blocking mode, the
poller periodically polls for waiting callbacks, and, if there are none, the call blocks on the server side until a call-
back is made available, at which point the poller immediately retrieves the calback to the client side. Blocking
mode, then, is more responsive, and it is used by JBoss Messaging. By default, nonblocking mode is used.

blockingTimeout - when pull callbacks are used in blocking mode, indicates the amount of time the callback
poller should block on the server side waiting for a callback. The default value is 5000 milliseconds, but JBoss
M essaging uses 30000 milliseconds.

JBoss May 5, 2011 18

Network Connection Monitoring

Remoting has two mechanisms for monitoring the health of established connections, which inform listeners on the
client and server sides when a possible connection failure has been detected. Currently, only JBoss Messaging uses
these facilities. Note that JBoss Messaging establishes connections programmatically, so some unused declarative
configuration options are omitted from this discussion.

8.1. Server side monitoring

A remoting server has the capability to detect when a client is no longer available. Thisis done by establishing an
org.jboss.renoting. Lease on the server side, managed by a Serverinvoker. On the client side, an
org. j boss. renoting. LeasePi nger periodically sends PING messages to the server, and on the server side an
org.j boss. renmoting. Lease informs registered listeners if the PING doesn't arrive within the specified timeout
period. A LeasePinger is created by a Renot ed i ent I nvoker and it sends PINGS to a particular Lease. That
LeasePi nger /Lease pair defines, for purposes of connection monitoring in Remoting, the abstract concept of a con-
nection.

The following parameter is relevant to leasing configuration on the server side:

client LeasePeri od - specifies the timeout period used by the server to determine if a PING is late. The default
value is "5000". Thisis aso the suggested |lease period returned by the server when the client inquires if leasing is
activated.

The following parameters are relevant to leasing configuration on the client side:

| ease_peri od - if set to avaue greater than 0 and less than the suggested lease period returned by the server, will
be used to determine the time between PING messages sent by LeasePi nger . This parameter is not used by JBoss

Messaging.

| easePi nger Ti meout - Specifies the per invocation timeout value use by LeasePi nger when it sends PING mes-
sages. This parameter is not used by JBoss Messaging.

The actual lease window established on the server side is initially set to twice the clientLeasePeriod value, but it
can expand dynamically to adjust to actual network conditions. As long as PINGs arrive within 75% of the lease
window, the window will remain unchanged. However, if a PING arrives at between 75% and 100% of the lease
window, the lease window will be expanded to twice the time since the previous PING. For example, if the current
lease window is 20 seconds, and if a PING arrives 17 seconds after the previous PING, the lease window will be
set to 34 seconds.

8.2. Client side monitoring

JBoss May 5, 2011 19

Network Connection Monitoring

Ontheclient side, an or g. j boss. renmot i ng. Connecti onVal i dat or periodically sends a PING message to the serv-
er and reports a failure if the response does not arrive within a specified timeout period. The PING is sent on one
thread, and another thread determines if the response arrives in time. Separating these two activities allows Remot-
ing to detect afailure regardless of the cause of the failure.

A Connect i onVal i dat or iscreated by acall to one of the overloaded d i ent . addConnect i onLi st ener () methods,
and since multiple d i ent S may share a Renot ed i ent | nvoker , multiple Connect i onval i dat or S may be associ-
ated with a particular Remoting connection.

The following parameters are supported by Connect i onVal i dat or :

validator PingPeriod - specifies the time, in milliseconds, that elapses between the sending of PING messages to
the server. The default value is 2000.

validator PingTimeout - specifies the time, in milliseconds, allowed for arrival of a response to a PING message.
The default value is 1000.

failureDisconnect Timeout - if the parameter "stopL easeOnFailure" (see Interactions between client side and serv-
er side connection monitoring) is set to "true”, then "failureDisconnectTimeout" determines the disconnect timeout
value to be used by org. j boss. renpting. LeasePi nger in shutting down. In particular, if "failureDisconnect-
Timeout" isset to "0", then LeasePi nger will avoid any network i/o.

NOTE. The default values of "validatorPingPeriod" and "validatorPingTimeout" have often been found in practice
to be too small, increasing the likelihood of spurious connection failures.

NOTE. It is important to set "validatorPingPeriod" to a value greater than the value of "validatorPingTimeout".
Doing so gives the Connect i onVal i dat or @ chance to notify al Connecti onLi st ener S, which might result in shut-
ting down the connection, before the next PING is sent.

8.3. Interactions between client side and server side connection
monitoring

As of Remoting version 2.4, the client side and server side connection monitoring mechanisms can be, and by de-
fault are, more closely related, in two ways.

1. If the parameter value tieTolL ease is set to true, then, when the server receives a PING message from an
org. j boss. remoting. Connecti onVal i dat or, it will return a boolean value that indicates whether a lease cur-
rently exists for the connection being monitored. If leasing is activated on the client and server side, then a
value of "false" indicates that the lease has failed, and the Connect i onval i dat or Will treat a returned value of
"false" the same as atimeout; that is, it will notifiy listeners of a connection failure. The default value of this
parameter is"true". Note. If leasing is not activated on the client side, then this parameter has no effect.

2. If the parameter stopL easeOnFailure is set to true, then, upon detecting a connection failure, Connect i on-
val i dat or Will stop the LeasePi nger, if any, pinging a lease on the same connection. The default value is
"true".

8.4. Client and server identities

JBoss May 5, 2011 20

Network Connection Monitoring

Note that by default, aLeasePi nger has no identity, so if it isreplaced by another LeasePi nger that pings the same
Lease, the connection remains unchanged. Suppose that leasing is enabled and that a Renot eCl i ent | nvoker Stops
and is replaced by a new Renot ed i ent | nvoker With a new LeasePi nger . If the replacement occurs quickly, the
server side Lease may never miss a PING, in which case there is no evidence that anything changed on the client
side. That is, the connection is still alive, as far as the server is concerned. That semantics might be perfectly ac-
ceptable for some applications, but other applications might interpret the same events as a connection failure fol-
lowed by a new connection. In particular, JBoss Messaging needs the latter semantics.

Asof release 2.5.2, an important concept related to connection monitoring, client connection identity, is available.
Remoting can be configured to treat a connection as being defined by a LeasePi nger /Lease pair in which the
LeasePi nger has an identity. More specifically, when configured to do so by setting the parameter useClientCon-
nectionl dentity to "true", Remoting identifies a connection with a LeasePi nger /Lease pair in which the Lease ex-
pects PINGs to arrive from a particular LeasePi nger .

A dient participatesin aconnection when it is connected by way of the new method

public void connect(ConnectionLi stener |istener, Map nmetadata) throws Exception;

This method serves to connect the d i ent to the server by way of a new or existing Renot eCl i ent | nvoker, and it
also registers the new Connect i onval i dat or With the Renot eCl i ent | nvoker 'S LeasePi nger . Subsequently, if any
Connect i onVal i dat or registered with that LeasePi nger detects a connection failure, it will (if "stopLeaseOnFail-
ure" is"true"') stop the LeasePi nger, and the LeasePi nger will cause each registered Connecti onval i dat or to no-
tify each of its registered Connecti onLi st ener S of the connection failure. Once the LeasePi nger has been shut
down and all of the notifications have been made, the connection anchored by the Leasepi nger is defunct, and the
associated c i ent s should be disconnected by acall to d i ent . di sconnect (). If suchad i ent isreconnected by a
cal tod ient. connect (), it will be associated with anew LeasePi nger and, therefore, anew connection.

As of release 2.5.3.S5P2, Remoting also supports the concept of server connection identity. Suppose that a
Server | nvoker managing aLease stops and isreplaced by anew Server | nvoker and Lease. If the replacement oc-
curs between PINGs from a Connect i onVal i dat or, there is no evidence that the server has been replaced. Again,
that semantics might be appropriate for some applications, but JBoss Messaging needs a semantics in which the
original connection is considered to have been destroyed and replaced. If the parameter useServer Connec-
tionldentity is set to "true", then, when a Ser ver | nvoker responds to a PING from a Connecti onval i dat or , it re-
turns a token of its unique identity. If the identity has changed, then Connecti onval i dat or considers the connec-
tion to have been broken and it notifies all registered listeners.

JBoss May 5, 2011 21

Configuration files: where are they now?

In the following, $JBOSS HOME is the root directory of the Application Server installation, and $CONFIG is a
server configuration, e.g., default, all, etc.

9.1. EJB 2

» ASS5 EAPS5, ASG:

* $IBOSS HOM E/server/$CONFIG/depl oy/remoting-jboss-beans.xml

9.2.EJB 3

» ASS5 EAPS5, ASG:

* $IBOSS HOM E/server/$CONFIG/deploy/ejb3-connectors-jboss-beans.xml

9.3. JBoss Messaging

« ASS5 EAPS:

* $IBOSS HOM E/server/$CONFIG/depl oy/messaging/remoting-bi socket-service.xml
e asosee$IBOSS HOME/docs/examples/jms

* ASG6: uses Hornetq instead of JBoss Messaging

JBoss May 5, 2011 22

	JBoss Remoting Users Guide
	Table of Contents
	Chapter 1. Purpose of this document
	Chapter 2. Central concepts
	2.1. Server side concepts
	2.2. Client side concepts
	2.3. Callbacks

	Chapter 3. Declarative configuration
	3.1. MBean descriptors
	3.2. POJO descriptors

	Chapter 4. The socket transport
	4.1. Server side parameters
	4.2. Client side parameters

	Chapter 5. The bisocket transport
	5.1. Server side parameters
	5.2. Client side parameters

	Chapter 6. The sslsocket and sslbisocket transports
	6.1. Server side
	6.2. Client side
	6.3. Additional parameters

	Chapter 7. The http transport family
	7.1. http and https transports
	7.2. servlet and sslservlet transports
	7.3. Server side parameters: http and https transports
	7.4. Server side parameters: servlet and sslservlet transports
	7.5. Client side parameters: http, https, servlet, sslservlet transports
	7.6. Client side parameters: https and sslservlet transports
	7.7. JBoss Messaging, http transports, and callbacks

	Chapter 8. Network Connection Monitoring
	8.1. Server side monitoring
	8.2. Client side monitoring
	8.3. Interactions between client side and server side connection monitoring
	8.4. Client and server identities

	Chapter 9. Configuration files: where are they now?
	9.1. EJB 2
	9.2. EJB 3
	9.3. JBoss Messaging

