JBoss Transaction Service 4.2.1

Web Service Transactions Programmers Guide

JBXTS-PG-5/27/06

‘Boss "The Professional
Open Source Company

XTS-PG-5/27/06 i

Legal Notices
The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Arjuna is a trademark of Hewlett-Packard Company and is used here under licence.
Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss Transaction Service 4.2.1

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

ii XTS-PG-05/27/06

About This Guide

What This Guide Contains..........cccceeuveeeennneene.
AUAICNCE .
PrerequiSites.....ccvveeneereenierieieeeeeeeeeee
Organization.........cceeceereenieeneeneeneeneeneeneennees
Documentation Conventionscc..eceunen...
Additional Documentation.............ccccveeeeenneen..
Contacting Uscocveeveieniieniienierieeieesieeieeseeeees

Introduction

JBossTS Web Services transactions

OVEIVIEW .evvviieeireeeeeireeeeeteeeeesteeeeeeseeeeeeneeeens
Managing Service-Based Processes................
SEIVICLS ..ot 10
Y @ N 10
Web Services Description Language

(WSDL) o 10

Transactions overview 11
The Coordinator.........cceeeeevveeeencueeeeenreeeeennnen. 12
The Transaction ConteXt.........ccccvveeeevereenneen. 13
ACID Transactions..........cocveeeeevvveeeenveeeeennen. 13
Two-Phase Commit..........ccceeeeevveeeennereeennen. 14
The synchronization protocol 14
Optimizations to the protocol 15
Non-atomic transactions and heuristic

OULCOINIES .evvveeenreeeeeireeeeetreeeeeareeeensreeeeeseens 16
A New Transaction Protocolcc...c....... 16

WS-C, WS-Atomic Transaction and WS-

Business Activity OVervieW.......ocoeecescssrsansens 18
Introduction.........ccceeceeeeieeceeceeeeeee e 18
AXTS-PG-5/27/06

Contents

WS-Coordination.........cccueeeeevveeeeenveeeeeireeeeennns
ACtIVAIONcovviiieeiiee et
Registrationcccecveeveeviiecieecieeiieieeieeeeiene
ComPletion.......cceevueeeieeriieieeieeieeie e
WS-Transactioncocveeeeevveeeeenveeeeeireeeeennns
WS-Coordination Foundations.......................
WS-Transaction Architecturecccuuee.....
WS-Transaction Models............cceevvveeeveeeenne.
Application Messagesccccceevuvrveercierniernienns
WS-C, WS-Atomic Transaction and WS-
Business Activity Messages.........ccecueeuenne.
SUMMATY ..o

Getting started

Creating and deploying participants..............
Creating Client Applicationscecceeeveeeenne
Hints and tipscceeeeeeerviieieeieeieeieeieeeeiens
SUMMATY ..o

Transactional Web services

INtroducCtion........coevuvvvieeeiiiiiiieeeee e,
A Transactional Web Serviceccoeuuneeeen.

Participants

The Participant: an Overviewcccocceeene
Atomic Transactionc..cecceeeveeveenuenereennne
Business ACtIVILYcecverveeevieerieerieeieeieeieeiens
Participant Creation and Deployment
Implementing Participantsccccecveeueeeenne
Deploying Participantsccccceevveviernvennienns

Stand-alone coordinator

33

33
33
35
35

36

36
36

39

39
39
41
43
43
43

44

Introduction.........ccceeceeevieecienceececeee e 44 TransactionManagerccceceevveeveercierneeeneenns 47

TransactionFactorycccceevevvevennennenninnns 48

The XTS API 45 API for the Business Activity protocol......... 48

UserBusinesSACHVItY ...c.eecveeieeciernieesieeiierienns 48

INtrodUCHON. ... 45 UserBusinessActivityFactoryccc..cce.... 49

API for the Atomic Transaction protocol 45 BusinessActivityManagerc..cccceeeeeeeennene 49

VOUE e 45 BusinessActivityManagerFactory 50
The transaction CONteXtccoevvvreeevvereeennen. 46

USerTranSaction.......o.eeveveveveueeeeeeereeeeeeeeeeeenens 46 Index 51
UserTransactionFactoryc.ccceceeeeeeceennennne. 47

iv XTS-PG-05/27/06

Web Services Transactions Programmers Guide

About This Guide

What This Guide Contains

The Web Service Transactions Programmers Guide contains information on how to use JBoss
Transaction Service 4.2.1. This guide provides information on how to develop service-based
applications that use transaction technology to manage business processes. JBossTS provides
a means of interacting with Web services within transactions, and constructing transaction-
aware Web services, according to the WS-C, WS-Atomic Transaction and WS-Business
Activity specifications, using common Web services platforms. While this guide discusses
many of Web services standards like SOAP, WSDL and UDDI, it does not attempt to address
all of their fundamental constructs. However, basic concepts are provided where necessary.

Audience

This guide is most relevant for application developers and Web service developers who are
interested in building applications and Web services that are transaction-aware. This guide is
also useful for system analysts and project managers that are unfamiliar with transactions as
they pertain to Web services.

Prerequisites

JBossTS uses the Java programming language and this manual assumes that you are familiar
with programming in Java. In addition, a fundamental level of understanding in the following
areas will also be useful:

* A Working knowledge of Web services, including XML, SOAP, WSDL, and UDDI;
* A general understanding of transactions;
¢ A general understanding of WS-C, WS-Atomic Transaction and WS-Business Activity;

Note: This guide presents overview information for all of the above. However, to
aid in understanding the Web Services component of JBossTS, the WS-C,
WS-Atomic Transaction and WS-Business Activity specifications are
discussed in great detail.

Organization

This guide contains the following chapters:

XTS-PG-5/27/06 5

JBoss Transaction Service 4.2.1Web Service Transactions Programmers Guide

Chapter 1, Introduction: an overview of what the Web Service component of JBossTS
provides.

Chapter 2, Transactions overview: a brief description of some basic transaction
concepts and techniques relevant to understanding JBossTS.

Chapter 3, WS-C, WS-Atomic Transaction and WS-Business Activity overview: an
overview of the Web services protocols that JBossTS supports.

Chapter 4, Getting started: how to get going with JBossTS and Web Services.

Chapter 5, Transactional web services: a description of what a transactional Web
service comprises.

Chapter 6, Participants: a description of what a transactional participant is and how to
write one.

Chapter 7, The XTS API: a detailed description of the API provided by JBossTS for use
when building applications which use Web Services transactions. This supplements the

accompanying javadocs.

Documentation Conventions

Table 1

The following conventions are used in this guide:

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.

Code Text that represents programming code.

Function | Function

A path to a function or dialog box within an interface. For example,
“Select File | Open.” indicates that you should select the Open function
from the File menu.

()and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:
persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note: and A note highlights important supplemental information.

Caution:

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Formatting Conventions

XTS-PG-5/27/06

About This Guide

Additional Documentation

In addition to this guide, the following guides are available in the JBoss Transaction Service
4.2.1 documentation set:

JBoss Transaction Service 4.2.1 Release Notes: Provides late-breaking information
about JBoss Transaction Service 4.2.1.

JBoss Transaction Service 4.2.1 Installation Guide: This guide provides instructions
for installing JBoss Transaction Service 4.2.1.

JBoss Transaction Service 4.2.1 Failure Recovery Guide: Provides guidance for
administering the system.

JBoss Transaction Service 4.2.1 Transactions API Guide: Provides guidance for
administering the system.

JBoss Transaction Service 4.2.1 Transaction Core Programmers Guide: Provides
guidance for administering the system.

JBoss Transaction Service 4.2.1 JTS Programmers Guide: Provides guidance for
administering the system.

JBoss Transaction Service 4.2.1 Administration Guide: Provides guidance for
administering the system.

Contacting Us

Questions or comments about JBoss Transaction Service 4.2.1 should be directed to our
support team.

XTS-PG-5/27/06

Web Services Transactions Programmers Guide

Chapter 1

Introduction

JBossTS Web Services transactions overview

The XML transaction service component of JBossTS (shorthand referred to as XTS) supports
the coordination of private and public Web services in a business transaction. Therefore, to
understand XTS, you must be familiar with Web services, and also understand a little about
transactions. This chapter introduces XTS and provides a brief overview of the technologies
that form the Web services standard. Additionally, this chapter explores some of the
fundamentals of transactioning technology and how it can be applied to Web services. Much
of the content presented in this chapter is detailed throughout this guide; however, only
overview information about Web services is provided. If you are new to creating Web
services, please see consult your Web services platform documentation.

JBossTS provides as the XTS component a transaction solution for Web services. Using XTS,
business partners can coordinate complex business transactions in a controlled and reliable
manner. The JBossTS Web Services API supports a transactional coordination model based
on the WS-C, WS-Atomic Transaction and WS-Business Activity specifications. WS-C is a
generic coordination framework developed by IBM, Microsoft and BEA, WS-Atomic
Transaction and WS-Business Activity are transaction protocols that utilize this framework.
Both specifications are available from http://www.ibm.com/developerworks/library/.

Web services are modular, reusable software components that are created by exposing
business functionality through a Web service interface. Web services communicate directly
with other Web services using standards-based technologies such as SOAP and HTTP. These
standards-based communication technologies allow Web services to be accessed by
customers, suppliers, and trading partners, independent of hardware operation system or
programming environment. The result is a vastly improved collaboration environment as
compared to today's EDI and business-to-business (B2B) solutions—an environment where
businesses can expose their current and future business applications as Web services that can
be easily discovered and accessed by external partners.

Web services, by themselves, are not fault tolerant. In fact, some of the reasons that make it
an attractive development solution are also the same reasons that service-based applications
may have drawbacks:

* Application components that are exposed as Web services may be owned by third parties,
which provides benefits in terms of cost of maintenance, but drawbacks in terms of
having exclusive control over their behavior;

* Web services are usually remotely located which increases risk of failure due to increased

8

Web Services Transactions Programmers Guide

network travel for invocations.

Applications that have high dependability requirements, must find a method of minimizing
the effects of errors that may occur when an application consumes Web services. One method
of safeguarding against such failures is to interact with an application’s Web services within
the context of a transaction. A transaction is simply a unit of work which is completed
entirely, or in the case of failures is reversed to some agreed consistent state — normally to
appear as if the work had never occurred in the first place. With XTS, transactions can span
multiple Web services which mean that work performed across multiple enterprises can be
managed with transactional support.

Managing Service-Based Processes

XTS allows you to create transactions that drive complex business processes spanning
multiple Web services. Current Web services standards do not address the requirements for a
high-level coordination of services since in today’s Web services applications, which use
single request/receive interactions, coordination is typically not a problem. However, for
applications that engage multiple services among multiple business partners, coordinating and
controlling the resulting interactions is essential. This becomes even more apparent when you
realize that you generally have little in the way of formal guarantees when interacting with
third-party Web services.

XTS provides the infrastructure for coordinating services during a business process. By
organizing processes as transactions, business partners can collaborate on complex business
interactions in a reliable manner, insuring the integrity of their data - usually represented by
multiple changes to a database — but without the usual overheads and drawbacks of directly
exposing traditional transaction-processing engines directly onto the web. The following
example demonstrates how an application may manage service-based processes as
transactions:

The application in question allows a user to plan a social evening. This application is
responsible for reserving a table at a restaurant, and reserving tickets to a show. Both
activities are paid for using a credit card. In this example, each service represents exposed
Web services provided by different service providers. XTS is used to envelop the interactions
between the theater and restaurant services into a single (potentially) long-running business
transaction. The business transaction must insure that seats are reserved both at the restaurant
and the theater. If one event fails the user has the ability to decline both events, thus returning
both services back to their original state. If both events are successful, the user’s credit card is
charged and both seats are booked. As you may expect, the interaction between the services
must be controlled in a reliable manner over a period of time. In addition, management must
span several third-party services that are remotely deployed.

Caution: Without the backing of a transaction, an undesirable outcome may
occur. For example, the user credit card may be charged, even
though one or both of the bookings may have failed.

This simple example describes the situations where XTS excels at supporting business
processes across multiple enterprises. This example is further refined throughout this guide,
and appears as a standard demonstrator (including source code) with the XTS distribution.

JBoss Transaction Service 4.2.1 9

Web Services Transactions Programmers Guide

Servlets

The WS-C, WS-Atomic Transaction and WS-Business Activity protocols are based on one-
way interactions of entities rather than traditional synchronous request/response RPC style
interactions. Entities (e.g., transaction participants) invoke operations on other entities (e.g.,
the transaction coordinator) in order to return responses to requests. What this means is that
the programming model is based on peer-to-peer relationships, with the result that all
services, whether they are participants, coordinators or clients, must have an active
component that allows them to receive unsolicited messages.

In the current implementation of XTS, the active component is achieved through the use of
Java servlet technology. Each endpoint that can be communicated with via SOAP/XML is
represented as a servlet (and published within JNDI). Fortunately for the developer, this use
of servlets occurs transparently. The only drawback is that (currently) clients must reside
within a domain capable of hosting servlets, i.e., an application server. It is our intention that
future versions of XTS will provide configurable deployment options, allowing servlets
where required, but not mandating them.

SOAP

SOAP has emerged as the de-facto message format for XML-based communication in the
Web services arena. It is a lightweight protocol that allows the user to define the content of a
message and to provide hints as to how recipients should process that message.

SOAP messages can be divided into two main categories: Remote Procedure Call (RPC) and
Document Exchange (DE). The primary difference between the two categories is that the
SOAP specification defines encoding rules and conventions for RPC. The document
exchange model allows the exchange of arbitrary XML documents - a key ingredient of B2B
document exchange. XTS is based on the loosely coupled document-exchange style, yet it can
support transactions spanning Web service that use either document-exchange or RPC.

Web Services Description Language (WSDL)

WSDL is an XML-based language used to define Web service interfaces. An application that
consumes a Web service parses the service’s WSDL document to discover the location of the
service, the operations that the service supports, the protocol bindings the service supports
(SOAP, HTTP, etc), and how to access them (for each operation, WSDL describes the format
that the client must follow).

10 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Chapter 2

Transactions overview

Transactions have emerged as the dominant paradigm for coordinating interactions between
parties in a distributed system, and in particular to manage applications that require
concurrent access to shared data. Much of the JBossTS Web Service API is based on
contemporary transaction APIs whose familiarity will enhance developer productivity and
lessen the learning curve. While the following section provides the essential information that
you should know before starting to use XTS for building transactional Web Services, it
should not be treated as a definitive reference to all transactional technology.

A classic transaction is a unit of work that either completely succeeds, or fails with all
partially completed work being undone. When a transaction is committed, all changes made
by the associated requests are made durable, normally by committing the results of the work
to a database. If a transaction should fail and is rolled back, all changes made by the
associated work are undone. Transactions in distributed systems typically require the use of a
transaction manager that is responsible for coordinating all of the participants that are part of
the transaction.

The main components involved in using and defining transactional Web Services using XTS
are illustrated in Figure 1.

* A Transaction Service: The Transaction Service captures the model of the underlying
transaction protocol and coordinates parties affiliated with the transaction according to
that model.

* A Transaction API: Provides an interface for transaction demarcation and the registration
of participants.

* A Participant: The entity that cooperates with the transaction service on behalf of its
associated business logic.

¢ The Context: Captures the necessary details of the transaction such that participants can
enlist within its scope.

JBoss Transaction Service 4.2.1 11

Web Services Transactions Programmers Guide

/ WebServices \
UD-DL .
. Service
Service \}:rovider
Requestor

00 Request >
< Respomse ([

[application context]

Coordinator Participant

Transaction Service

<Transaction Messages

[context]

Figure 1 Web Services and XTS

The Coordinator

Associated with every transaction is a coordinator, which is responsible for governing the
outcome of the transaction. The coordinator may be implemented as a separate service or may
be co-located with the user for improved performance. Each coordinator is created by the
transaction manager service, which is in effect a factory for those coordinators.

A coordinator communicates with enrolled participants to inform them of the desired
termination requirements, i.e., whether they should accept (e.g., confirm) or reject (e.g.,
cancel) the work done within the scope of the given transaction. For example, whether to
purchase the (provisionally reserved) flight tickets for the user or to release them. An
application/client may wish to terminate a transaction in a number of different ways (e.g.,
confirm or cancel). However, although the coordinator will attempt to terminate in a manner
consistent with that desired by the client, it is ultimately the interactions between the
coordinator and the participants that will determine the actual final outcome.

A transaction manager is typically responsible for managing coordinators for many
transactions. The initiator of the transaction (e.g., the client) communicates with a transaction
manager and asks it to start a new transaction and associate a coordinator with the transaction.
Once created, the context can be propagated to Web services in order for them to associate
their work with the transaction.

12 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

The Transaction Context

In order for a transaction to span a number of services, certain information has to be shared
between those services in order to propagate information about the transaction. This
information is known as the Context. Using XTS, the context is automatically propagated and
processed by transaction-aware components of an application. Though XTS removes most of
the work associated with propagating contexts, it is still instructive to understand what
information is captured in a context:

¢ A transaction identifier which guarantees global uniqueness for an individual transaction;

* The transaction coordinator location or endpoint address so participants can be enrolled.

Compose Decompose
Message [| Message] | Message
S || MESSdPE |

Server
Context

ConteXt Context
Service Service

Inteceptor Inteceptor

Figure 2 Web Services and Context Flow

As shown in Figure 2, whenever an application message is sent, the XTS Client API
automatically creates a context and embeds it into the message. Similarly, any transaction-
aware services are able to extract that context using the XTS service-side infrastructure and
use it to perform work within the context of a particular transaction — even though that
transaction was initiated elsewhere on the Web! The value of this approach is that the
business logic contained within the client application and services are not peppered with
transaction-processing code.

ACID Transactions

Traditionally, transaction processing systems support ACID properties. ACID is an acronym
for Atomic, Consistent, Isolated, and Durable. A unit of work has traditionally been
considered transactional only if the ACID properties are maintained:

* Atomicity: The transaction executes completely or not at all.

* Consistency: The effects of the transaction preserve the internal consistency of an
underlying data structure.

* Isolated: The transaction runs as if it were running alone with no other transactions
running and is not visible to other transactions.

* Durable: the transaction’s results will not be lost in the event of a failure.

JBoss Transaction Service 4.2.1 13

Web Services Transactions Programmers Guide

Two-Phase Commit

The classical two-phase commit approach is the bedrock of JBossTS (and more generally of
Web Services transactions). Two-phase commit provides coordination of parties that are
involved in a transaction. In general, the flow of a two-phase commit transaction is as
follows:

* A transaction is started, and some work is performed.

* Once the work is finished, the two-phase commit begins.

* The coordinator (transaction manager) of the transaction asks each resource taking part in
the transaction whether it is prepared to commit.

¢ If all resources respond positively, the coordinator instructs all work performed to be
made durable (usually committed to a database).

¢ If not, all work performed is rolled back (undone) such that the underlying data structures
are in their original states.

Commit? A Commit OA
C
Commit? Commit
B B
Phase 1 Phase 2
Figure 3 The Two-Phase Commit Protocol
Note: During two-phase commit transactions, coordinators and resources keep

track of activity in non-volatile data stores so that they can recover in the
case of a failure.

The synchronization protocol

As well as the two-phase commit protocol, traditional transaction processing systems employ
an additional protocol, often referred to as the synchronization protocol. If you recall the
original ACID properties, then you’ll remember that Durability is important in the case where
state changes have to be available despite failures. What this means is that applications
interact with a persistence store of some kind (e.g., a database) and this can impose a
significant overhead — disk access is orders of magnitude slower than access to main
computer memory.

One apparently obvious solution to this problem would be to cache the state in main memory
and only operate on that for the duration of a transaction. Unfortunately you’d then need some
way of being able to flush the state back to the persistent store before the transaction

14 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

terminates, or risk losing the full ACID properties. This is what the synchronization protocol
does, with Synchronization participants.

Synchronizations are informed that a transaction is about to commit, so they can, for example,
flush cached state, which may be being used to improve performance of an application, to a
durable representation prior to the transaction committing. They are then informed when the
transaction has completed and in what state it completed.

* Synchronizations essentially turn the two-phase commit protocol into a four-phase
protocol:

* Before the transaction starts the two-phase commit, all registered Synchronizations are
informed. Any failure at this point will cause the transaction to roll back.

* The coordinator then conducts the normal two-phase commit protocol.

* Once the transaction has terminated, all registered Synchronizations are informed.
However, this is a courtesy invocation because any failures at this stage are ignored: the
transaction has terminated so there’s nothing to affect.

Unlike the two-phase commit protocol, the synchronization protocol does not have the same
failure requirements. For example, Synchronization participants don’t need to make sure they
can recover in the event of failures; this is because any failure before the two-phase commit
protocol completes means the transaction will roll back, and failures after it has completed
can’t affect the data the Synchronization participants were managing.

Optimizations to the protocol

There are several variants to the standard two-phase commit protocol that are worth knowing
about because they can have an impact on performance and failure recovery. We shall briefly
describe those that are the most common variants on the protocol:

* Presumed abort: if a transaction is going to roll back then it may simply record this
information locally and tell all enlisted participants. Failure to contact a participant has no
affect on the transaction outcome; the transaction is effectively informing participants as a
courtesy. Once all participants have been contacted the information about the transaction
can be removed. If a subsequent request for the status of the transaction occurs there will
be no information available and the requestor can assume that the transaction has aborted
(rolled back). This optimization has the benefit that no information about participants
need be made persistent until the transaction has decided to commit (i.e., progressed to
the end of the prepare phase), since any failure prior to this point will be assumed to be an
abort of the transaction.

* One-phase: if there is only a single participant involved in the transaction, the coordinator
need not drive it through the prepare phase. Thus, the participant will simply be told to
commit and the coordinator need not record information about the decision since the
outcome of the transaction is solely down to the participant.

* Read-only: when a participant is asked to prepare, it can indicate to the coordinator that
no information or data that it controls has been modified during the transaction. Such a
participant does not need to be informed about the outcome of the transaction since the
fate of the participant has no affect on the transaction. As such, a read-only participant
can be omitted from the second phase of the commit protocol.

JBoss Transaction Service 4.2.1 15

Web Services Transactions Programmers Guide

Non-atomic transactions and heuristic outcomes

In order to guarantee atomicity, the two-phase commit protocol is necessarily blocking. What
this means is that as a result of failures, participants may remain blocked for an indefinite
period of time even if failure recovery mechanisms exist. Some applications and participants
simply cannot tolerate this blocking.

To break this blocking nature, participants that have got past the prepare phase are allowed to
make autonomous decisions as to whether they commit or rollback: such a participant must
record this decision in case it is eventually contacted to complete the original transaction. If
the coordinator eventually informs the participant of the transaction outcome and it is the
same as the choice the participant made, then there’s no problem. However, if it is contrary,
then a non-atomic outcome has obviously happened: a heuristic outcome.

How this heuristic outcome is reported to the application and resolved is usually the domain
of complex, manually driven system administration tools, since in order to attempt an
automatic resolution requires semantic information about the nature of participants involved
in the transactions.

Precisely when a participant makes a heuristic decision is obviously implementation
dependant. Likewise, the choice the participant makes (to commit or to roll back) will depend
upon the implementation and possibly the application/environment in which it finds itself.
The possible heuristic outcomes are:

* Heuristic rollback: the commit operation failed because some or all of the participants
unilaterally rolled back the transaction.

* Heuristic commit: an attempted rollback operation failed because all of the participants
unilaterally committed. This may happen if, for example, the coordinator was able to
successfully prepare the transaction but then decided to roll it back (e.g., it could not
update its log) but in the meanwhile the participants decided to commit.

* Heuristic mixed: some updates (participants) were committed while others were rolled
back.

* Heuristic hazard: the disposition of some of the updates is unknown. For those which are
known, they have either all been committed or all rolled back.

Heuristic decisions should be used with care and only in exceptional circumstances since
there is the possibility that the decision will differ from that determined by the transaction
service and will thus lead to a loss of integrity in the system. Having to perform resolution of
heuristics is something you should try to avoid, either by working with services/participants
that don’t cause heuristics, or by using a transaction service that provides assistance in the
resolution process.

A New Transaction Protocol
Many component technologies offer mechanisms for coordinating ACID transactions based
on two-phase commit semantics (i.e., CORBA/OTS, JTS/JTA, MTS/MSDTC). ACID

transactions are not suitable for all Web services transactions since:

* Classic ACID transactions are predicated on the idea that an organization that develops

16 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

and deploys applications does so using their own infrastructure, typically an Intranet.
Ownership meant transactions operated in a trusted and predictable manner. To assure
ACIDity, potentially long-lived locks could be kept on underlying data structures during
two-phase commit. Resources could be used for any period of time and released when the
transaction was complete. In the Web services arena, these assumptions are no longer
valid. One obvious reason is that the owners of data exposed through a Web service will
refuse to allow their data to be locked for extended periods since to allow such locks
invites denial-of-service.

¢ All application infrastructures are generally owned by a single party, systems using
classical ACID transactions normally assume that participants in a transaction will obey
the will of the transaction manager and only infrequently decide to make unilateral
decisions which will hamper other participants in a transaction. On the contrary, Web
services participating in a transaction can effectively decide to resign from the transaction
at any time, and the consumer of the service generally has little in the way of quality of
service guarantees to prevent this.

Addressing the Problems of Transactioning in Loosely Coupled
Systems

Though extended transaction models which relax the ACID properties have been proposed
over the years, to implement these concepts for the Web services architecture WS-T provides
a new transaction protocol. XTS is designed to accommodate four underlying requirements
inherent in any loosely coupled architecture like Web services:

¢ Ability to handle multiple successful outcomes to a transaction, with the ability to involve
operations whose effects may not be isolated or durable;

¢ Coordination of autonomous parties whose relationships are governed by contracts rather
than the dictates of a central design authority;

¢ Discontinuous service, where parties are anticipated to suffer outages during their
lifetime, and coordinated work must be able to survive such outages;

¢ Interoperation using XML over multiple communication protocols — XTS chooses to use
SOAP encoding carried over HTTP for the first release and other SOAP-friendly
transports for future releases.

JBoss Transaction Service 4.2.1 17

Web Services Transactions Programmers Guide

Chapter 3

WS-C, WS-Atomic
Transaction and WS-
Business Activity
overview

Introduction

This section provides fundamental concepts associated with WS-C, WS-Atomic Transaction
and WS-Business Activity. All of these concepts are defined in the WS-C, WS-Atomic
Transaction and WS-Business Activity specifications. WS-C, WS-Atomic Transaction and
WS-Business Activity principles are discussed throughout this guide.

Note: If you are well versed in the WS-C, WS-Atomic Transaction and WS-

Business Activity specifications then you may want to just skim through
this part of the manual.

WS-Coordination

In general terms, coordination is the act of one entity (known as the coordinator)
disseminating information to a number of participants for some domain-specific reason. This
reason could be in order to reach consensus on a decision like in a distributed transaction
protocol, or simply to guarantee that all participants obtain a specific message, as occurs in a
reliable multicast environment. When parties are being coordinated, information known as the
coordination context is propagated to tie together operations which are logically part of the
same coordinated work or activity. This context information may flow with normal
application messages, or may be an explicit part of a message exchange and is specific to the
type of coordination being performed.

The fundamental idea underpinning WS-Coordination is that there is a generic need for a
coordination infrastructure in a Web services environment. The WS-Coordination
specification defines a framework that allows different coordination protocols to be plugged-
in to coordinate work between clients, services and participants, as shown in Figure 4.

The WS-Coordination specification talks in terms of activities, which are distributed units of
work, involving one or more parties (which may be services, components, or even objects).
At this level, an activity is minimally specified and is simply created, made to run, and then
completed.

18 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Y 7
Request
 context
Client Service
L | SOAP Header
Response
_context |
\ _
SOAP Body
% .)
Coordinator | Participant)

Security Coordination Security

Messages
T
! Replication
L

Figure 4 WS-C architecture.

Whatever coordination protocol is used, and in whatever domain it is deployed, the same
generic requirements are present:

* Instantiation (or activation) of a new coordinator for the specific coordination protocol,
for a particular application instance;

¢ Registration of participants with the coordinator, such that they will receive that
coordinator’s protocol messages during (some part of) the application’s lifetime;

* Propagation of contextual information between Web services that comprise the
application;

* An entity to drive the coordination protocol through to completion.
The first three of these points are directly the concern of WS-Coordination while the fourth is
the responsibility of a third-party entity, usually the client application that controls the

application as a whole. These four WS-Coordination roles and their interrelationships are
shown in Figure 5.

JBoss Transaction Service 4.2.1 19

Web Services Transactions Programmers Guide

- a

Application
Level

Activatton Message
ess.
' E]

Web Service
Infrastructure

Coordinator

i

Spedfic Entities

Coordination Protocal Messages

Protocol Definition
Protocol Definition

Figure 5 WS-C infrastructure

Activation

The WS-Coordination framework exposes an Activation Service which supports the creation
of coordinators for specific protocols and their associated contexts. The process of invoking
an activation service is done asynchronously, and so the specification defines both the
interface of the activation service itself, and that of the invoking service, so that the activation
service can call back to deliver the results of the activation — namely a context that identifies
the protocol type and coordinator location. These interfaces are presented in Figure 6, where
the activation service has a one-way operation that expects to receive a
CreateCoordinationContext message and correspondingly the service that sent the
CreateCoordinationContext message expects to be called back with a
CreateCoordinationContextResponse message, or informed of a problem via an
Error message.

<!-- Activation Service portType Declaration -->
<wsdl:portType name="ActivationCoordinatorPortType">
<wsdl:operation name="CreateCoordinationContext">
<wsdl:input

message="wscoor:CreateCoordinationContext"/>

20 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

</wsdl:operation>

</wsdl:portType>

<!-- Activation Requester portType Declaration -->
<wsdl:portType name="ActivationRequesterPortType">
<wsdl:operation
name="CreateCoordinationContextResponse">
<wsdl:input
message="wscoor:CreateCoordinationContextResponse" />
</wsdl:operation>
<wsdl:operation name="Error">
<wsdl:input message="wscoor:Error"/>
</wsdl:operation>
</wsdl:portType>

Figure 6 Activation Service WSDL Interfaces

Registration

Once a coordinator has been instantiated and a corresponding context created by the
activation service, a Registration Service is created and exposed. This service allows
participants to register to receive protocol messages associated with a particular coordinator.
Like the activation service, the registration service assumes asynchronous communication and

so specifies WSDL for both registration service and registration requester, as shown in Figure
7.

<!-- Registration Service portType Declaration -->
<wsdl:portType name="RegistrationCoordinatorPortType">
<wsdl:operation name="Register">
<wsdl:input message="wscoor:Register"/>
</wsdl:operation>

</wsdl:portType>

JBoss Transaction Service 4.2.1 21

Web Services Transactions Programmers Guide

<!-- Registration Requester portType Declaration -->
<wsdl:portType name="RegistrationRequesterPortType">
<wsdl:operation name="RegisterResponse">
<wsdl:input message="wscoor:RegisterResponse"/>
</wsdl:operation>
<wsdl:operation name="Error">
<wsdl:input message="wscoor:Error"/>
</wsdl:operation>
</wsdl:portType>

Figure 7 Registration Service WSDL Interface

When a participant is registered with a coordinator through the registration service, it receives
messages that the coordinator sends (for example, “prepare to complete” and “complete”
messages if a two-phase protocol is used); where the coordinator’s protocol supports it,
participants can also send messages back to the coordinator.

Completion

The role of terminator is generally played by the client application, which at an appropriate
point will ask the coordinator to perform its particular coordination function with any
registered participants — to drive the protocol through to its completion. On completion, the
client application may be informed of an outcome for the activity which may vary from
simple succeeded/failed notification through to complex structured data detailing the
activity’s status.

WS-Transaction

In the past, making traditional transaction systems talk to one another was a holy grail that
was rarely achieved. With the advent of Web services, there is an opportunity to leverage an
unparalleled interoperability technology to splice together existing transaction processing
systems that already form the backbone of enterprise level applications.

WS-Coordination Foundations

An important aspect of WS-Transaction that differentiates it from traditional transaction
protocols is that a synchronous request/response model is not assumed. This model derives
from the fact that WS-Transaction is, as shown in Figure 8, layered upon the WS-
Coordination protocol whose own communication patterns are asynchronous by default.

22 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

WS-Coordination

WS-Transaction

ParticipantCompletion CoordinatorCompletion
on
WS-Coordination WS-AtomicTransaction WS-BusinessActivity
Protocol Endpoint Protocol Endpoint Protocol Endpoint

Figure 8 WS-Coordination WS-Atomic Transaction and WS-Business Activity

Web Services Coordination provides a generic framework for specific coordination protocols,
like WS-Transaction, to be plugged in. Recall that WS-Coordination provides only context
management — it allows contexts to be created and activities to be registered with those
contexts. WS-Transaction leverages the context management framework provided by WS-
Coordination in two ways. Firstly it extends the WS-Coordination context to create a
transaction context. Secondly, it augments the activation and registration services with a
number of additional services (Completion, CompletionWithAck, PhaseZero, 2PC,
OutcomeNotification, BusinessAgreement, and
BusinessAgreementWithComplete) and two protocol message sets (one for each of
the transaction models supported in WS-Transaction) to build a fully-fledged transaction
coordinator on top the WS-Coordination protocol infrastructure.

WS-Transaction Architecture

WS-Transaction supports the notion of the service and participant as distinct roles, making
the distinction between a transaction-aware service and the participants that act on behalf of
the service during a transaction: transactional services deal with business-level protocols,
while the participants handle the underlying WS-Transaction protocols, as shown in Figure 8.

JBoss Transaction Service 4.2.1 23

Web Services Transactions Programmers Guide

Transaction
Coordinator

Transaction-
Aware Web
Service

Participant

Transaction-
Aware Web
Service

Participant

Transaction Protocol
Messages

Application Messages plus
Transaction Context

Figure 9 WS-Transaction Global View

A transaction-aware service encapsulates the business logic or work that is required to be
conducted within the scope of a transaction. This work cannot be confirmed by the
application unless the transaction also commits and so control is ultimately removed from the
application and placed into the transaction’s domain.

The participant is the entity that, under the dictates of the transaction coordinator, controls the
outcome of the work performed by the transaction-aware Web service. In Figure 9 each
service is shown with one associated participant that manages the transaction protocol
messages on behalf of its service, while in Figure 10, there is a close-up view of a single
service, and a client application with their associated participants.

24 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Control Relation Control Relation

Transaction Context Transaction-
Aware Web

Application Message Service

Client Application

GEEED sack-nd
atabaisg

Participant Participant
»]
%y S

%s,. \‘\ef’
00,, & Transaction Protocol
Y) <&@ Messages
0N Transaction < (@\
s Coordinator <@
<:> Application Messages

Figure 10 Transactional Service and Participant

The transaction-aware Web service and its participant both serve a shared transactional
resource, and there is a control relationship between them through some API - which on the
Java platform is JAXTX. In the example shown in Figure 10, it is assumed that the database
is accessed through a transactional JDBC database driver, where SQL statements are sent to
the database for processing via that driver, but where those statements will be tentative and
only commit if the transaction does. In order to do this, the driver/database will associate a
participant with the transaction which will inform the database of the transaction outcome.
Since all transactional invocations on the Web service carry a transaction context, the
participant working with the database is able to identify the work that the transactional service
did within the scope of a specific transaction and either commit or rollback the work.

At the client end, things are less complex. Through its API, the client application registers a
participant with the transaction through which it controls transaction termination.

WS-Transaction Models

Given that traditional transaction models are not appropriate for Web services, the following
question must be posed, “what type of model or protocol is appropriate?” The answer to that
question is that that no one specific protocol is likely to be sufficient, given the wide range of
situations that Web service transactions are likely to be deployed within. Hence the WS-
Transaction specification proposes two distinct models, where each supports the semantics of
a particular kind of B2B interaction. The following sections shall discuss these two WS-
Transaction models.

Note: As with WS-Coordination, the two WS-Transaction models are extensible

allowing implementations to tailor the protocols as they see fit (e.g., to suit
their deployment environments).

JBoss Transaction Service 4.2.1 25

Web Services Transactions Programmers Guide

Atomic Transactions (AT)

An atomic transaction or AT is similar to traditional ACID transactions and intended to
support short-duration interactions where ACID semantics are appropriate. Within the scope
of an AT, services typically enroll transaction-aware resources, such as databases and
message queues, indirectly as participants under the control of the transaction. When the
transaction terminates, the outcome decision of the AT is then propagated to each enlisted
resource via the participant, and the appropriate commit or rollback actions are taken by each.

This protocol is very similar to those employed by traditional transaction systems that already
form the backbone of an enterprise. It is assumed that all services (and associated
participants) provide ACID semantics and that any use of atomic transactions occurs in
environments and situations where this is appropriate: in a trusted domain, over short
durations.

To begin an atomic transaction, the client application firstly locates a WS-Coordination
coordinator Web service that supports WS-Transaction. Once located, the client sends a WS-
Coordination CreateCoordinationContext message to the activation service
specifying http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination
type and will get back an appropriate WS-Transaction context from the activation service.
The response to the CreateCoordinationContext message, the transaction context,
has its CoordinationType element set to the WS-Atomic Transaction namespace,
http://schemas.xmlsoap.org/ws/2004/10/wsat, and also contains a reference
to the atomic transaction coordinator endpoint (the WS-Coordination registration service)
where participants can be enlisted.

After obtaining a transaction context from the coordinator, the client application then
proceeds to interact with Web services to accomplish its business-level work. With each
invocation on a business Web service, the client inserts the transaction context into a SOAP
header block, such that each invocation is implicitly scoped by the transaction — the toolkits
that support WS-Atomic Transaction-aware Web services provide facilities to correlate
contexts found in SOAP header blocks with back-end operations.

Once all the necessary application level work has been completed, the client can terminate the
transaction, with the intent of making any changes to the service state permanent. To do this,
the client application first registers its own participant for the Completion protocol. Once
registered, the participant can instruct the coordinator either to try to commit or rollback the
transaction. When the commit or rollback operation has completed, a status is returned to the
participant to indicate the outcome of the transaction.

While the completion protocol is straightforward, they hide the fact that in order to resolve to
an outcome that several other protocols need to be executed.

The first of these protocols is the optional Volatile2PC. The Volatile2PC protocol is
the WS-Atomic Transaction equivalent of the synchronization protocol we discussed earlier.
It is typically executed where a Web service needs to flush volatile (cached) state, which may
be being used to improve performance of an application, to a database prior to the transaction
committing. Once flushed, the data will then be controlled by a two-phase aware participant.

26 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

All Volatile?2PC participants are told that the transaction is about to complete (via the
prepare message) and they can respond with either the prepared, aborted or
readonly message; any failures at this stage will cause the transaction to rollback.

After Volatile2PC prepare, the next protocol to execute in WS-Atomic Transaction is
Durable2PC. The Durable2PC (an abbreviation of the term two-phase commit) protocol
is at the very heart of WS-Atomic Transaction and is used to bring about the necessary
consensus between participants in a transaction such that the transaction can safely be
terminated.

The two-phase commit protocol is used to ensure atomicity between participants, and is based
on the classic two-phase commit with presumed abort technique. During the first phase, when
the coordinator sends the prepare message, a participant must make durable any state
changes that occurred during the scope of the transaction, such that these changes can either
be rolled back or committed later. That is, any original state must not be lost at this point as
the atomic transaction could still roll back. If the participant cannot prepare then it must
inform the coordinator (via the aborted message) and the transaction will ultimately roll
back. If the participant is responsible for a service that did not do any work during the course
of the transaction, or at least did not do any work that modified any state, it can return the
readonly message and it will be omitted from the second phase of the commit protocol.
Otherwise, the prepared message is sent by the participant.

Assuming no failures occurred during the first phase, in the second phase the coordinator
sends the commi t message to participants, who will make permanent the tentative work done
by their associated services.

If a transaction involves only a single participant, WS-Atomic Transaction supports a one-
phase commit optimization. Since there is only one participant, its decisions implicitly reach
consensus, and so the coordinator need not drive the transaction through both phases. In the
optimized case, the participant will simply be told to commit and the transaction coordinator
need not record information about the decision since the outcome of the transaction is solely
down to that single participant.

Figure 11' shows the state transitions of a WS-Atomic Transaction and the message
exchanges between coordinator and participant; the coordinator generated messages are
shown in the solid line, whereas the participant messages are shown by dashed lines.

! Redrawn from the WS-Atomic Transaction specification.

JBoss Transaction Service 4.2.1 27

Web Services Transactions Programmers Guide

|
|
i o ————— Aborting ==
Register Rollback? Rollback — ~ Aborted

Rollback ,\3,,

@ve Prepare *erari ng>= <Prepared b@epared>/commit QmmitﬁrD: < Comitted Ended >
\ ReacOnly or Aborted

Coordinator Generated Participant Generated

Figure 11 Two-Phase Commit State Transitions

Once the 2PC protocol has finished, the Completion protocol that originally began the
termination of the transaction can complete, and inform the client application whether the
transaction was committed or rolled back. Additionally, the Volatile2PC protocol may
complete.

Like the prepare phase of Volatile2PC, the final phase is optional and can be used to
inform participants when the transaction has completed, typically so that they can release
resources (e.g., put a database connection back into the pool of connections).

Any registered Volatile2PC participants are invoked after the transaction has terminated
and are told the state in which the transaction completed (the coordinator sends either the
Committed or Aborted message). Since the transaction has terminated, any failures of
participants at this stage are ignored —it is essentially a courtesy, and has no bearing on the
outcome of the transaction.

Finally, after having gone through each of the stages in an AT, it is possible to see the
intricate interweaving of individual protocols that goes to make up the AT as a whole in
Figure 12.

28 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Context Creation (Activation)

Completion 0 Business Logic s Completion Protocol N
Registration Durable2PCParticipant
Registration

egistration

ColatileZPCParticipantJ <Volatile2PC Protocol)(DurabIeZPC Protocol)
R

N N N J

Mandatory Step

Figure 12 The AT Model

Business Activities (BA)

Most business-to-business applications require transactional support in order to guarantee
consistent outcome and correct execution. These applications often involve long running
computations, loosely coupled systems and components that do not share data, location, or
administration and it is difficult to incorporate atomic transactions within such architectures.
For example, an online bookshop may reserve books for an individual for a specific period of
time, but if the individual does not purchase the books within that period they will be “put
back onto the shelf” for others to buy. Furthermore, because it is not possible for anyone to
have an infinite supply of stock, some online shops may appear to users to reserve items for
them, but in fact may allow others to pre-empt that reservation (i.e., the same book may be
“reserved” for multiple users concurrently); a user may subsequently find that the item is no
longer available, or may have to be reordered specially for them.

A business activity or BA is designed specifically for these kinds of long-duration
interactions, where exclusively locking resources is impossible or impractical. In this model
services are requested to do work, and where those services have the ability to undo any
work, they inform the BA such that if the BA later decides the cancel the work (i.e. if the
business activity suffers a failure), it can instruct the service to execute its undo behavior. The
key point for Business Activities is that how services do their work and provide compensation
mechanisms is not the domain of the WS-Business Activity specification, but an
implementation decision for the service provider.

The WS- Business Activity simply defines a protocol for Web services-based applications to

enable existing business processing and workflow systems to wrap their proprietary
mechanisms and interoperate across implementations and business boundaries.

JBoss Transaction Service 4.2.1 29

Web Services Transactions Programmers Guide

A business activity may be partitioned into scopes, where a scope is a business task or unit of
work using a collection of Web services. Such scopes can be nested to arbitrary degrees,
forming parent and child relationships, where a parent scope has the ability to select which
child tasks are to be included in the overall outcome protocol for a specific business activity,
and so clearly non-atomic outcomes are possible. In a similar manner to traditional nested
transactions, if a child task experiences an error, it can be caught by the parent who may be
able to compensate and continue processing.

When a child task completes it can either leave the business activity or signal to the parent
that the work it has done can be compensated later. In the latter case, the compensation task
may be called by the parent should it ultimately need to undo the work performed by the
child.

Unlike the WS-Atomic Transaction protocol model, where participants inform the
coordinator of their state only when asked, a task within a business activity can specify its
outcome to the parent directly without waiting for a request. This feature is useful when tasks
fail such that the notification can be used by business activity exception handler to modify the
goals and drive processing forward without having to meekly wait until the end of the
transaction to admit to having failed — a well designed Business Activities should be
proactive, if it is to perform well.

Underpinning all of this are three fundamental assumptions:

e All state transitions are reliably recorded, including application state and coordination
metadata (the record of sent and received messages);

¢ All request messages are acknowledged, so that problems are detected as early as
possible. This avoids executing unnecessary tasks and can also detect a problem earlier
when rectifying it is simpler and less expensive;

* As with atomic transactions, a response is defined as a separate operation and not as the
output of the request. Message input-output implementations will typically have timeouts
that are too short for some business activity responses. If the response is not received after
a timeout, it is resent. This is repeated until a response is received. The request receiver
discards all but one identical request received.

As with atomic transactions, the business activity model has multiple protocols:
BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion. However, unlike the AT
protocol which is driven from the coordinator down to participants, this protocol is driven
much more from the participants upwards.

Under the BusinessAgreementWithParticipantCompletion protocol, a child
activity is initially created in the Active state; if it finishes the work it was created to do and
no more participation is required within the scope of the BA (such as when the activity
operates on immutable data), then the child can unilaterally send an exited message to the
parent. However, if the child task finishes and wishes to continue in the BA then it must be
able to compensate for the work it has performed. In this case it sends a completed
message to the parent and waits to receive the final outcome of the BA from the parent. This
outcome will either be a c1ose message, meaning the BA has completed successfully or a

30 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

compensate message indicating that the parent activity requires that the child task reverse
its work.

The BusinessAgreementWithCoordinatorCompletion protocol is identical to the
BusinessAgreementWithParticipantCompletion protocol with the exception
that the child cannot autonomously decide to end its participation in the business activity,
even if it can be compensated. Rather the child task relies upon the parent to inform it when
the child has received all requests for it to perform work which the parent does by sending the
complete message to the child. The child then acts as it does in the
BusinessAgreementWithParticipantCompletion protocol.

The crux of the BA model compared to the AT model is that is allows the participation of
services that cannot or will not lock resources for extended periods.

While the full ACID semantics are not maintained by a BA, consistency can still be
maintained through compensation, though the task of writing correct compensating actions
(and thus overall system consistency) is delegated to the developers of the services under
control of the BA. Such compensations may use backward error recovery, but will typically
employ forward recovery.

Application Messages

Application messages are the requests and responses that are sent between parties that
constitute the work of a business process. Any such messages are considered opaque by XTS,
and there is no mandatory message format, protocol binding, or encoding style so the
developer is free to use any appropriate Web services protocol. In XTS, the transaction
context is propagated within the headers of SOAP messages.

Note: XTS provides out-of-box support for service developers building WS-T-
aware services on the JBoss, Weblogic and Glue platforms® The
provision of interceptors for automatic context handling at both client and
service significantly simplifies the developer’'s workload, allowing the
developer to concentrate on writing the business logic without having to
worry about the transactional infrastructure getting in the way. The
interceptors simply add and remove context elements to application
messages without altering the semantics of those messages. Any service
which understands what to do with a WS-C context can use it, services
which do not understand the context (those services that are not WS-C,
WS-Atomic Transaction and WS-Business Activity-aware) may ignore the
context; the important point here is that XTS manages contexts without
user intervention.

? Future versions of JBossTS will support other SOAP platforms.

JBoss Transaction Service 4.2.1 31

Web Services Transactions Programmers Guide

WS-C, WS-Atomic Transaction and WS-Business Activity
Messages

Although the application or service developer rarely sees or is interested in the messages
exchanged by the transactional infrastructure (the transaction manager and any participants),
it is useful to understand what kinds of exchanges occur so that the underlying model can be
fitted in to an overall architecture.

In XTS, WS-C, WS-Atomic Transaction and WS-Business Activity-specific messages are
transported using SOAP messaging over HTTP. The types of messages that are propagated
include instructions to perform standard transaction operations like begin, prepare.

Note: XTS messages do not interfere in any way, shape, or form, with the
application messages, and nor is there any requirement for an application
to use the same transport as the transaction-specific messages. For
example, it is quite reasonable for a client application to deliver its
application-specific messages using SOAP RPC over SMTP even though
under the covers the XTS messages are delivered using a different
mechanism.

Summary

XTS provides a coordination infrastructure designed to allow transactions to run between
enterprises across the Internet. That infrastructure is based on the WS-C, WS-Atomic
Transaction and WS-Business Activity specifications. It supports two kinds of transactions:
atomic transactions and business activities, which can be combined in arbitrary ways to map
elegantly onto the transactional requirements of the underlying problem. The use of the whole
infrastructure is simple due to the fact that its functionality is exposed through a simple
transactioning API. Furthermore XTS provides all of the necessary plumbing to keep
application and transactional aspects of an application separate, and to ensure that the
transactionality of a system does not interfere with the functional aspects of the system itself.

32 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Chapter 4

Getting started

Creating and deploying participants

A participant is a software entity which is driven by the transaction manager on behalf of a
Web service. The creation of participants is non-trivial since they ultimately reflect the state
of a Web service’s back-end processing facilities which is a function of an enterprise’s own
IT infrastructure. The most that can be said about the implementation of a participant without
getting into detail about the back-end systems it represents, or the details of the underlying
transaction protocol is that implementations must implement one of the following interfaces,

depending upon the protocol it will participate within:
com.arjuna.wst.Durable2PCParticipant,
com.arjuna.wst.Volatile2PCParticipant, or,

com.arjuna.wst.BusinessAgreementWithParticipantCompletionParti
cipant,
com.arjuna.wst.BusinessAgreementWithCoordinatorCompletionParti
cipant.

A full description of XTS’s participant features is provided in Chapter 6.

Creating Client Applications

There are two aspects to a client application using XTS. The first is the transaction
declaration aspects and the second is the business logic that the client application performs.
The transaction declaration aspects are taken care of automatically with XTS’s client API.
This API provides simple transaction directives like begin, commit, and rollback which the
client application can use to initialize, manage, and terminate transactions. Under the covers,
this API invokes (via SOAP) operations on the transaction manager.

When the client application performs invocations on business logic Web services, then XTS
does not dictate an API for that purpose. However, there is a requirement that whatever API is
chosen, the XTS context be inserted onto outgoing messages, and extracted and associated
with the current thread for incoming messages. To make the user’s life easier, the XTS
software comes complete with three sets of “filters” which can perform the task
automatically. These filters are designed to work with Apache AXIS, JAX-RPC and
webMethods client libraries. The Apache AXIS client library is freely downloadable from
http://xml.apache.org/axis.

Note: If the user chooses to use a different SOAP client infrastructure, then the
onus to perform client-side header processing rests with them. XTS does
not provide client-side infrastructure for anything other than JAX-RPC,
AXIS or webMethods for this release.

JBoss Transaction Service 4.2.1 33

Web Services Transactions Programmers Guide

Axis Context Handlers

In order to register the AXIS client-side context handlers with the AXIS engine, the developer
must ensure that a client configuration file exists in the directory where the AXIS-based client
is executed from (the current working directory). This file should be called client-
config.wsdd and should contain XML in accordance with Figure 13 below.

<?xml version="1.0" ?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<globalConfiguration>

<parameter name="sendXsiTypes" value="true"/>

<parameter name="sendMultiRefs" value="true"/>

<parameter name="sendXMLDeclaration" value="true"/>

<requestFlow>

<handler type="java:com.arjuna.mw.wst.client.AxisHeaderContextHandler"/>
</requestFlow>

<responseFlow>

<handler type="java:com.arjuna.mw.wst.service.AxisHeaderContextHandler"/>
</responseFlow>
</globalConfiguration>

<transport name="http"
pivot="java:org.apache.axis.transport.http.HTTPSender"/>

<transport name="local"
pivot="java:org.apache.axis.transport.local.LocalSender"/>

</deployment>
Figure 13 The client-config.wsdd File
Again, the developer should not be alarmed at the contents of the client-config.wsdd

file. It merely instructs the AXIS engine to process outgoing and incoming messages with the
XTS client-side header processing classes.

34 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

JAX-RPC Context Handlers

In order to register the JAX-RPC server-side context handler with the deployed web services,
a handler chain must be included in the web services deployment descriptor. Please refer to
the demo application weblogic-web-services.xml deployment descriptor for an example of
how this can be achieved.

In order to register the JAX-RPC client-side context handler, the developer must explicitly
register the client handler with the service handler registry. Please refer to the
BasicClient class within the com.arjuna.xtsnightout.clients.weblogic
package of the demo application for an example of how this can be achieved.

webMethods Context Handlers

In order to register the webMethods server-side context handler with the deployed web
services, the inbound and outbound interceptors must be configured in the web services
deployment descriptor. An example of how this can be configured can be found in the demo
application, e.g. the RestaurantService AT.xml.

In order to register the webMethods client-side context handler, the inbound and outbound
interceptors must be configured in the glue-config.xml deployment descriptor. Please refer to
the soap interceptor section of the demo application glue-config.xml for an example of how
this can be achieved.

Hints and tips

If you want to create multiple JBoss deploys on the same machine, then you may wish to look
at http://www.yorku.ca/dkha/jboss/docs/Multiplelnstances.htm for information on what is
required.

Summary

This chapter has provided a high-level overview of how to use each of the major software
pieces of the Web Services transactions component of JBossTS. The Web Services
transaction manager provided by JBossTS is the hub of the architecture and is the only piece
of software that users’ software does not bind to directly. XTS provides header processing
infrastructure for dealing with Web Services transactions contexts for both users’ client
applications and Web services. For developing transaction participants, XTS provides a
simple interface plus the necessary document handling code.

This chapter is meant as an overview only, and is unlikely to answer questions on more

difficult and subtle aspects. For fuller explanations of the components, please refer to the
appropriate chapter elsewhere in this document.

JBoss Transaction Service 4.2.1 35

Web Services Transactions Programmers Guide

Chapter 5

Transactional Web
services

Introduction

This chapter describes how to provide transactional support for new and existing Web
services using the service-side facilities of XTS. It shows how new services can be made
transactional with no additional programming, and how existing services can be made WS-T
transaction-aware in a non-invasive fashion.

A Transactional Web Service

A Web service is a business-level entity. It encapsulates application logic needed to perform
some domain-specific task, or is designed to delegate to a back-end system which executes
that logic. Given it is part of application code, such non-functional requirements as
transactionality should not impinge on its construction.

To support this notion, XTS provides a suite of components designed to work at the SOAP
stack level, which deal with transactional matters on behalf of a Web service without
requiring any changes to that service. In XTS two context handling components are registered
with the SOAP server and deal with context management on behalf of the service without the
service having to worry about context propagation issues itself. This is shown in Figure 14.

36 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Web Service Application Logic

Incoming Outgoi

going

Fontet

Handler
— Q

R

= o1 —
> a o
0] = o
& ; other @
wn

% g handler S S

8 2 a handler
o g

other other

handler hand er

C Network

Figure 14 Context Handlers Registered with the SOAP Server

The detail of the context management that the context processor performs is unimportant to
the Web service application logic, and is orthogonal to any work performed by any other
protocol-specific context handlers too. However back-end systems which the Web service
application logic uses (such as databases) are often interested in the front-end transaction
context such that any operations invoked within its scope can be mapped onto a back-end
transaction context. This is typically achieved at the back-end by wrapping a database driver
in a veneer which implements both the interface of the original driver and hooks into the
service-side API to access the transaction context details. The general architecture for this
pattern is shown in Figure 15.

JBoss Transaction Service 4.2.1 37

Web Services Transactions Programmers Guide

Database
provider
wapper

Back-end Tx-
aware

Database

Web Service Application Logic Database Com mands Database Commands

Incoming

Context
Handler

Outgoing
Context
Handler

Figure 15 General Pattern for Back-End Integration, Service Side

The missing element from this is the commit protocol which finally allows back-end work to
be made durable or not at the end of a transaction. This is covered in the participant chapter
where the participant/back-end relation is explored further.

38 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Chapter 6

Participants

The Participant: an Overview

The participant is the entity that performs the work pertaining to transaction management on
behalf of the business services involved in an application. The Web service (e.g., a theatre
booking system) contains some business logic for reserving a seat, enquiring availability etc,
but it will need to be supported by something that maintains information in a durable manner.
Typically this will be a database, but it could be a file system, NVRAM, etc. Now, although
the service may talk to the back-end database directly, it cannot commit or undo any changes
it (the services) makes, since these are ultimately under the control of the transaction that
scoped the work. In order for the transaction to be able to exercise this control, it must have
some contact with the database. In XTS this is accomplished by the participant, and the role
played by the participant between the transaction and back-end transaction processing
infrastructure is shown in Figure 16.

Participant

BTP Messages

Database | Database
provider

wapper

Back-end Tx-

aware
Database

Web Service Application Logic

Database Com m ands
D atabase Commands

Figure 16 Transactions, Participants, and Back-End Transaction Control

Each participant in XTS is related to either the Atomic Transaction or Business Activity
protocols. In the following sections we’ll consider both protocols and their respective
participants.

Atomic Transaction

All Atomic Transaction participants are instances of one of the following interfaces.

JBoss Transaction Service 4.2.1 39

Web Services Transactions Programmers Guide

Durable2PCParticipant

This participant supports the WS-Atomic Transaction Durable2PC protocol with the
following signatures, as per the com.arjuna.wst.Durable2Participant interface:

* prepare: the participant should perform any work necessary to allow it to either commit
or rollback the work performed by the Web service under the scope of the transaction.
The implementation is free to do whatever it needs to in order to fulfill the implicit
contract between it and the coordinator. The participant is expected to indicate whether it
can prepare or not by returning an instance of the com.arjuna.wst.Vote. Values are:
ReadOnly, indicating the participant does not need to be informed of the transaction
outcome as no state updates were made; Prepared, indicating the participant is prepared
to commit or rollback depending on the final transaction outcome, and it has made
sufficient state updates persistent to accomplish this; and Aborted, indicating the
participant has aborted and the transaction should also attempt to do so.

* commit: the participant should make permanent the work that it controls. What it does will
depend upon its implementation, e.g., commit the reservation of the theatre ticket. The
participant will then return an indication of whether or not it succeeded.

* rollback: the participant should undo the work that it controls. The participant will then
return an indication of whether or not it succeeded.

* commitOnePhase: if there is only a single TwoPCParticipant registered with the
transaction, then the coordinator can optimize the protocol and simply tell the participant
to commit: there is no need for a preparatory phase since consensus is implicit.

* unknown: during recovery the participant can enquire as to the status of the transaction it
was registered with. If that transaction is no longer available (has rolled back) then this
operation will be invoked by the coordination service.

e error: during recovery the participant can enquire as to the status of the transaction it was
registered with. If an error occurs (e.g., the transaction service is unavailable) then this
operation will be invoked.

Volatile2PCParticipant

This participant supports the WS-Atomic Transaction Volatile2PC protocol with the
following signatures, as per the com.arjuna.wst.Volatile2Participant
interface:

* prepare: the participant should perform any work necessary to allow it to either commit
or rollback the work performed by the Web service under the scope of the transaction.
The implementation is free to do whatever it needs to in order to fulfill the implicit
contract between it and the coordinator. The participant is expected to indicate whether it
can prepare or not by returning an instance of the com.arjuna.wst.Vote. Values are:
ReadOnly, indicating the participant does not need to be informed of the transaction
outcome as no state updates were made; Prepared, indicating the participant is prepared
to commit or rollback depending on the final transaction outcome, and it has made
sufficient state updates persistent to accomplish this; and Aborted, indicating the
participant has aborted and the transaction should also attempt to do so.

* commit: the participant should make permanent the work that it controls. What it does will

40 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

depend upon its implementation, e.g., commit the reservation of the theatre ticket. The
participant will then return an indication of whether or not it succeeded.

* rollback: the participant should undo the work that it controls. The participant will then
return an indication of whether or not it succeeded.

* commitOnePhase: if there is only a single TwoPCParticipant registered with the
transaction, then the coordinator can optimize the protocol and simply tell the participant
to commit: there is no need for a preparatory phase since consensus is implicit.

* unknown: during recovery the participant can enquire as to the status of the transaction it
was registered with. If that transaction is no longer available (has rolled back) then this
operation will be invoked by the coordination service.

e error: during recovery the participant can enquire as to the status of the transaction it was
registered with. If an error occurs (e.g., the transaction service is unavailable) then this
operation will be invoked.

Business Activity

All Business Activity participants are instances of the following interfaces.

BusinessAgreementWithParticipantCompletion

This participant supports the WS-T BusinessAgreementWithParticipantCompletion protocol
with the following signatures, as per the
com.arjuna.wst.BusinessAgreementWithParticipantCompletionParti

cipant interface:

* close: the transaction has completed successfully. The participant previously informed the
coordinator that it was ready to complete.

* cancel: the transaction has cancelled, and the participant should undo any work. The
participant cannot have informed the coordinator that it has completed.

* compensate: the transaction has cancelled. The participant previously informed the
coordinator that it had finished work but could compensate later if required, so it is now
requested to do so.

* status: return the status of the participant.

* unknown: if the participant enquires as to the status of the transaction it was registered
with and that transaction is no longer available (has rolled back) then this operation will
be invoked by the coordination service.

e error: if the participant enquired as to the status of the transaction it was registered with
and an error occurs (e.g., the transaction service is unavailable) then this operation will be
invoked.

BusinessAgreementWithCoordinatorCompletion

This participant supports the WS-T Business AgreementWithCoordinatorCompletion protocol
with the following signatures, as per the

JBoss Transaction Service 4.2.1 41

Web Services Transactions Programmers Guide

com.arjuna.wst.BusinessAgreementWithCoordinatorCompletionParti
cipant interface:

* close: the transaction has completed successfully. The participant previously informed the
coordinator that it was ready to complete.

* cancel: the transaction has cancelled, and the participant should undo any work.

* compensate: the transaction has cancelled. The participant previously informed the
coordinator that it had finished work but could compensate later if required, so it is now
requested to do so.

* complete: the coordinator is informing the participant that all work it needs to do within
the scope of this business activity has been received.

* status: return the status of the participant.

* unknown: if the participant enquires as to the status of the transaction it was registered
with and that transaction is no longer available (has rolled back) then this operation will
be invoked by the coordination service.

e error: if the participant enquired as to the status of the transaction it was registered with
and an error occurs (e.g., the transaction service is unavailable) then this operation will be
invoked.

BAParticipantManager

In order for the Business Activity protocol to work correctly, the participants must be able to
autonomously signal the coordinator that they have left the activity (exited) or are ready to
complete and (if necessary) compensate (completed). Unlike the Atomic Transaction
protocol, where all interactions between the coordinator and participants are instigated by the
coordinator when the transaction terminates, this interaction pattern requires the participant to
be able to talk to the coordinator at any time during the lifetime of the business activity.

As such, whenever a participant is registered with a business activity, it receives a handle on
the coordinator. This handle is an instance of the BAParticipantManager interface, located in
com.arjuna.wst.BAParticipantManager, with the following methods:

* exit: the participant has exited the business activity. The participant uses this to inform the
coordinator that is has left the activity. It will not be informed when (and how) the
business activity terminates.

* completed: the participant has completed it works, but wishes to continue in the business
activity, so that it will eventually be told when (and how) the activity terminates. The
participant may later be asked to compensate for the work it has done.

* fault: the participant encountered an error during normal activation and has compensated.
This places the business activity into a mandatory cancel-only mode.

42 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Participant Creation and Deployment

As has been shown, the participant provides the plumbing that drives the transactional aspects
of the service. This section discusses the specifics of Participant programming and usage.

Implementing Participants

Implementing a participant is, in theory, a relatively straightforward task, though depending
on the complexity of the transactional infrastructure that the participant is to manage, the
actual size and complexity of a participant will vary. The participant interfaces can be found
under com.arjuna.wst. Your implementation must implement one of these interfaces.

Deploying Participants

In order to allow Participants to be located remote from the Transaction Manager, XTS
includes transparent message routing functionality. The Participant classes are not exposed
directly as web services, but rather registered with a web service which receives messages
from the Transaction Manager and maps them to appropriate method invocations on the
relevant Participant instance. Transactional web services will typically enroll a new
Participant instance of the desired type for each new transaction. A unique identifier must be
provided at enrolment time and will be used to map transaction protocol messages to the
appropriate participant instance. Note that Participant method invocations do not occur in a
specific transaction context. Therefore, if your Participant implementation requires
knowledge of the transaction context (e.g. to look up state information in a persistent store)
then you should provide this to the Participant instance, typically as an argument to the
constructor function. Sample Participant implementations and usage can be found in the
demonstration application included with XTS.

Any application code which creates and enrolls Participants must be deployed along with the
parts of XTS necessary for receiving and processing incoming messages from the Transaction
Manager. This typically means including the appropriate XTS .jar, .wsr and .war files in your
application. If you are deploying your application only a server which does not already
contain a Transaction Manger installation, you will also need to deploy the XTS configuration
files.

Note: In early access releases of the XTS product, the Transaction Manager
and participant management functions are not provided as separable
components. Configuration and deployment of the participant
infrastructure is therefore as in the Transaction Manger section above.
More flexible deployment of the XTS components will be available in the
final release.

JBoss Transaction Service 4.2.1 43

Web Services Transactions Programmers Guide

Chapter 7

Stand-alone coordinator

Introduction

For configuring a stand-alone Web Services transaction coordinator, see the relevant chapter
in the System Administrator’s Guide.

44 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

Chapter 8

The XTS API

Introduction

This chapter shows how to use the XTS API. This is of use both at the client-side where
applications consume transactional Web services, and at the service/participant side where
transactions need to be coordinated with back-end systems.

API for the Atomic Transaction protocol

The following classes and interfaces are located within the com.arjuna.wst or
com.arjuna.mw.wst packages and sub-packages.

Vote

During the two-phase commit protocol, a participant will be asked to vote on whether or not it
can prepare to confirm the work that it controls. It must return one of the following subtypes
Ofcom.arjuna.wst.Vote:

* Prepared: the participant indicates that it can prepare if asked to by the coordinator. It
will not have committed at this stage however, since it does not know what the final
outcome will be.

* aborted: the participant indicates that it cannot prepare and has in fact rolled back. The
participant should not expect to get a second phase message.

* ReadoOnly: the participant indicates that the work it controls has not made any changes to
state that require it to be informed of the final outcome of the transaction. Essentially the
participant is resigning from the transaction.

Thus a possible implementation of a 2PC participant’s prepare method may resemble the
following:

public Vote prepare () throws WrongStateException, SystemException

// Some participant logic here

if (/* some condition based on the outcome of the business logic */)

JBoss Transaction Service 4.2.1 45

Web Services Transactions Programmers Guide

// Vote to confirm

return new com.arjuna.wst.Prepared() ;

else if(/*some other condition based on the outcome of the business
logic*/)

// Resign

return new com.arjuna.wst.ReadOnly () ;

else

// Vote to cancel

return new com.arjuna.wst.Aborted();

Figure 17 APl Example Showing Participant Voting

The transaction context

A transaction is typically represented by some unique identifier and a reference to the
coordinator which manages the transaction, e.g., a URL. XTS allows transactions to be nested
such that a transaction hierarchy (tree) may be formed. Thus, a transaction context may be a
set of transactions, with the top-most transaction the root parent (superior).

TxContext

com.arjuna.mw.wst.TxContext IS an opaque representation of a transaction context.

e valid: this indicates whether or not the contents are valid.

e equals: can be used to compare two instances.

UserTransaction

The com.arjuna.wst.UserTransaction is the class that most users (e.g., clients and
services) will see. This isolates them from the underlying protocol-specific aspects of the
XTS implementation. Importantly, a UserTransaction does not represent a specific

46 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

transaction, but rather is responsible for providing access to an implicit per-thread transaction
context; it is similar to the UserTransaction in the JTA specification. Therefore, all of the
UserTransaction methods implicitly act on the current thread of control.

A new transaction is begun and associated with the invoking thread by using the begin
method. If there is already a transaction associated with the thread then the
WrongStateException exception is thrown. Upon success, this operation associates the
newly created transaction with the current thread.

The transaction is committed by the commit method. This will execute the Volatile2PC and
Durable2PC protocols prior to returning. If there is no transaction associated with the
invoking thread then UnknownTransactionException is thrown. If the transaction ultimately
rolls back then the TransactionRolledBackException is thrown. When complete, this
operation disassociates the transaction from the current thread such that it becomes associated
with no transaction.

The rollback operation will terminate the transaction and return normally if it succeeded,
while throwing an appropriate exception if it didn’t. If there is no transaction associated with
the invoking thread then UnknownTransactionException is thrown.

UserTransactionFactory

UserTransactions are obtained from a UserTransactionFactory.

TransactionManager

The TransactionManager interface represents the service/container/participant’s (service-
side users) typical way in which to interact with the underlying transaction service
implementation. As with UserTransaction a TransactionManager does not represent a
specific transaction, but rather is responsible for providing access to an implicit per-thread
transaction context.

A thread of control may require periods of non-transactionality so that it may perform work
that is not associated with a specific transaction. In order to do this it is necessary to
disassociate the thread from any transactions. The suspend method accomplishes this,
returning a TxContext instance, which is a handle on the transaction. The thread is then no
longer associated with any transaction.

The resume method can be used to (re-)associate a thread with a transaction(s) via its
TxContext. Prior to association, the thread is disassociated with any transaction(s) with which
it may be currently associated. If the TxContext is null, then the thread is associated with no
transaction. The UnknownTransactionException exception is thrown if the transaction that
the TxContext refers to is invalid in the scope of the invoking thread.

The currentTransaction method returns the Txcontext for the current transaction, or null if
there is none. Unlike suspend, this method does not disassociate the current thread from the
transaction(s). This can be used to enable multiple threads to execute within the scope of the
same transaction.

JBoss Transaction Service 4.2.1 47

Web Services Transactions Programmers Guide

In order to register and resign participants with a transaction, the container or participant must
use:

¢ enlistForVolatileTwoPhase: enlist the specified participant with current transaction such
that it will participate in the Volatile2PC protocol; a unique identifier for the participant is
also required. If there is no transaction associated with the invoking thread then the
UnknownTransactionException exception is thrown. If the coordinator already has a
participant enrolled with the same identifier, then A1readyRegisteredException will be
thrown. If the transaction is not in a state where participants can be enrolled (e.g., it is
terminating) then WwrongstateException will be thrown.

¢ enlistForDurableTwoPhase: enlist the specified participant with current transaction such
that it will participate in the 2PC protocol; a unique identifier for the participant is also
required. If there is no transaction associated with the invoking thread then the
UnknownTransactionException exception is thrown. If the coordinator already has a
participant enrolled with the same identifier, then A1readyRegisteredException will be
thrown. If the transaction is not in a state where participants can be enrolled (e.g., it is
terminating) then WwrongstateException will be thrown.

TransactionFactory

TransactionManagers are obtained from a TransactionFactory.

API for the Business Activity protocol

UserBusinessActivity

The com.arjuna.wst.UserBusinessActivity is the class that most users (e.g., clients and
services) will see. This isolates them from the underlying protocol-specific aspects of the
XTS implementation. Importantly, a UserBusinessActivity does not represent a specific
business activity, but rather is responsible for providing access to an implicit per-thread
activity. Therefore, all of the UserBusinessActivity methods implicitly act on the current
thread of control.

A new business activity is begun and associated with the invoking thread by using the begin
method. If there is already an activity associated with the thread then the
WrongStateException exception is thrown. Upon success, this operation associates the
newly created activity with the current thread.

The business activity is completed successfully by the close method. This will execute the
BusinessAgreement WithParticipantCompletion protocol prior to returning. If there is no
activity associated with the invoking thread then UnknownTransactionException is thrown.
If the activity ultimately cancels then the TransactionRolledBackException is thrown.
When complete, this operation disassociates the business activity from the current thread such
that it becomes associated with no activity.

The cancel operation will terminate the business activity and return normally if it
succeeded, while throwing an appropriate exception if it didn’t. If there is no activity

48 JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

associated with the invoking thread then UnknownTransactionException is thrown. Any
participants that had previously completed will be informed to compensate for their work.

Some participants may have registered for the
BusinessAgreement WithCoordinatorCompletion protocol, which requires the coordinator or
application to inform them when all work that they need to do within the scope of a business
activity has been performed. The application should therefore use the complete method to
inform these participants.

UserBusinessActivityFactory

UserBusinessActivities are obtained from a UserBusinessActivityFactory.

BusinessActivityManager

The BusinessActivityManager interface represents the service/container/participant’s
(service-side users) typical way in which to interact with the underlying business activity
service implementation. As with UserBusinessActivity a BusinessActivityManager does
not represent a specific activity, but rather is responsible for providing access to an implicit
per-thread activity.

A thread of control may require periods of non-transactionality so that it may perform work
that is not associated with a specific activity. In order to do this it is necessary to disassociate
the thread from any business activities. The suspend method accomplishes this, returning a
TxContext instance, which is a handle on the activity. The thread is then no longer associated
with any activity.

The resume method can be used to (re-)associate a thread with an activity (or activities) via
its TxContext. Prior to association, the thread is disassociated with any activity with which it
may be currently associated. If the TxContext is null, then the thread is associated with no
activity. The UnknownTransactionException exception is thrown if the business activity that
the TxContext refers to is invalid in the scope of the invoking thread.

The currentTransaction method returns the TxContext for the current business activity, or
null if there is none. Unlike suspend, this method does not disassociate the current thread
from the activity. This can be used to enable multiple threads to execute within the scope of
the same business activity.

In order to register and resign participants with a business activity, the container or participant
must use:

¢ enlistForBusinessAgreement WithParticipantCompletion: enlist the specified participant
with current business activity such that it will participate in the
BusinessAgreement WithParticipantCompletion protocol; a unique identifier for the
participant is also required. If there is no business activity associated with the invoking
thread then the UnknownTransactionException exception is thrown. If the coordinator
already has a participant enrolled with the same identifier, then
AlreadyRegisteredException Will be thrown. If the activity is not in a state where
participants can be enrolled (e.g., it is terminating) then WrongStateException will be

JBoss Transaction Service 4.2.1 49

Web Services Transactions Programmers Guide

thrown.

enlistForBusinessAgreement WithCoordinatorCompletion: enlist the specified participant
with current activity such that it will participate in the

BusinessAgreement WithCoordinatorCompletion protocol; a unique identifier for the
participant is also required. If there is no business activity associated with the invoking
thread then the UnknownTransactionException exception is thrown. If the coordinator
already has a participant enrolled with the same identifier, then
AlreadyRegisteredException Will be thrown. If the activity is not in a state where
participants can be enrolled (e.g., it is terminating) then WwrongStateException will be
thrown.

BusinessActivityManagerFactory

BusinessActivityManagers are obtained from a BusinessActivityManagerFactory.

50

JBoss Transaction Services 4.2.1

Web Services Transactions Programmers Guide

ACID transactionscccceeeeeeeeeeeennnnnnn. 13
Heuristic outcomesccceeevvvvveeennn. 16
OptimiZationsceeeeeeeeeenriiieeeeeeeennens 15
Synchronizationscccccvvveveeeeeenennns 14
Two-phase commit...........cccvvvveeeeeeennns 14

Additional documentation.......................... 7

API
Atomic Transactioncceceuvvvvveennnn. 39
Business ACtiVity......cccceeeeeeeeiccnvniieeennnn. 41
DetailS ...ouvvieeeeeeeeciiiieee e, 45

Architecture of JBossTS WS-T component
.. 11
ACID transactionsc...ccceeeevvvvveeeennn. 13
Business ACtiVItiesccceeeervcvvrveeeennnnn. 16
The context.......ccvveeeeeeeeeiiiiiiiieeeeeeeees 13

Compliance pointscccceveeeeeeeeerennnnnen. 8

Creating transactional clients 33

Creating transactional participants 39

JBoss Transaction Service 4.2.1

Appendix A

Index

Creating transactional services.................. 36
Deploying participants.............cccvvvveeennnn.. 43
Getting startedcccceeeeeeeiiiiiiiiieee e 33
Prerequisitescoeeeeeviviiiiieee e, 5
SOAP .. 10
WS-Coordination..........ccccccveeeeiniieeennne. 18
Completion........cceeeeeeeeiiiiieeeeeeeeeeiieee, 22
The Activation Service.........cccceeeenuneeen. 20
The Registration Service........................ 21
WSDL oo 10
WS-Transaction............cceevveeeeiniiieeennnnne. 22
Atomic Transaction protocol 26
Business Activity protocol..................... 29
Impact on application messages............. 31
Protocolscoooviiiiiiiiiiie, 23
Relationship to WS-Coordination.......... 22
XIS e 8
51

