
2 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

coordinate its constituent applications and guar-
antee consistent processing in each of them.

Organizations tend to acquire COTS prod-
ucts on the basis of their functional domains,
with each individual application covering a
particular domain. Most integration architec-
tures use message-oriented middleware
(MOM) to automate the information flow be-
tween organizational units via message ex-
changes between COTS applications. As such,
the message exchanges become the integration
architecture’s units of coordination. This arti-
cle explains how the abstraction level of these
one-to-one message exchanges is too low to
efficiently design an integration architecture.
As an example, the creation of a purchase or-
der affects order management, accounting,
marketing, and many other functional do-
mains. If all corresponding COTS applica-
tions are to process the order in a coordinated

way, designing the interaction requires several
one-to-one message exchanges and becomes
quite intricate.

Therefore, we propose BECO (business
event-based coordination), an approach to in-
tegration architecture design that is based on
the concept of business events. These act as
higher-level units of coordination that enforce
consistent processing in all participating appli-
cations. Underneath, it reuses existing one-to-
one communication technologies for event
notification. We’ll also show how to design
and represent business processes concisely—as
sequence constraints on business events. The
result is a consistent, flexible integration ap-
proach that you can layer entirely on top of
existing technologies.

A real-life case
A particular telecommunications company

focus
Coordinating
COTS Applications
via a Business Event Layer

T
he shift from custom application development to using COTS
products is increasingly commonplace. Unfortunately, whereas
we rarely undertake in-house software development without a
meticulous analysis and design phase, we often overlook that step

when we’re planning to integrate COTS applications in an information sys-
tem. Still, the design aspect remains just as valid: if we integrate COTS soft-
ware ad hoc, the global information system might be unable to efficiently

cots integration

Wilfried Lemahieu, Monique Snoeck, Frank Goethals, Manu De Backer,
Raf Haesen, and Jacques Vandenbulcke, Katholieke Universiteit Leuven

Guido Dedene, Katholieke Universiteit Leuven and University of Amsterdam

By introducing
an additional
abstraction layer in
the interaction stack
and designing
business processes
as sequences of
events, the BECO
approach to COTS
integration offers
consistency and
flexibility.

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 2 9

positions itself as a broadband application
provider for the small- and medium-enterprise
(SME) market.1 It’s organized around four key
business units: Sales and Marketing, Service
Provisioning, Finance, and Customer Services.
Figure 1 depicts the main business process and
the resulting information flow. The Sales and
Marketing business unit sets prices, completes
sales transactions, and notifies the Service Pro-
visioning and Finance business units of or-
dered products. The Service Provisioning busi-
ness unit coordinates the installation of all
telecommunication services ordered. It notifies
the Finance business unit of completed instal-
lations and the Customer Services business
unit of the installed configurations. Finance
handles invoicing, and Customer Services is
responsible for after-sales service. Apart from
Sales and Marketing, which only uses elemen-
tary office software, each business unit relies
on COTS software from different providers.

Although each software package can sup-
port its particular business unit well, the lack of
integration and coordination between the dif-
ferent standalone applications is problematic.
For example, consider the storage of people
data. Sales and Marketing needs to store data
about whom to contact for commercial sales at
a customer company. The Service Provisioning
and Customer Services applications maintain
data on technical contacts in that company. The
Finance application keeps track of financial
contacts. Because the company mainly deals
with SMEs, one individual might fill several of
these roles, so the data about that person will
be scattered across several business units. The
company could use an approach ensuring con-
sistent, company-wide data manipulation. This
affects not only the data but also the behavioral
and coordination aspects of the company’s
global information system. For example, the
company might want to ensure that people who
misbehave in one of their roles won’t be al-
lowed to take on a, say, financial contact role in
the future. Such a policy requires integrated, co-
ordinated processing of “blacklisting” actions
among all COTS applications.

Integrating enterprise applications
Typically, you would integrate COTS appli-

cations via enterprise application integration
technologies such as remote procedure calls or
MOMs. RPCs represent interactions as proce-
dure calls from one component to another (re-

mote) component. Its most recent incarnations
are distributed-object technologies such as re-
mote method invocation (RMI).2 With MOM,
applications interact by exchanging messages.
Recently, many MOM products have evolved
into integration brokers. A business process
specification document captures the specifica-
tion of which applications are to exchange
which messages and in what sequence. The inte-
gration broker enacts the specified business
process by managing the desired sequence of
message exchanges. Web Services apply a simi-
lar approach. These interact through SOAP,3

which is based on exchanging XML messages
over the Internet. As application designer, you
can specify the business process in an orchestra-
tion language such as BPEL4WS (Business Process
Execution Language for Web Services).4

All the technologies we’ve mentioned essen-
tially represent one-to-one communication par-
adigms. In each basic interaction, there’s one
sender (or procedure caller) and one receiver
(or procedure callee). The individual message
exchanges (or procedure calls) are the units of
coordination: an integration broker executes,
manages, and monitors the interaction between
the COTS applications at the level of these mes-
sage exchanges. They are also the basic building
blocks of the process definition: a business
process is defined as feasible sequences of mes-
sage exchanges.

However, defining the business process at
the individual message exchange level entan-

(a) (b)

Service
Provisioning
application

Customer
Services

 application

Finance
application

Business process model Application integration architecture

Sales and
Marketing

Dept.

Sales and
Marketing
application

Service
Provisioning

Dept.

Customer
Services

Dept.

Finance
Dept.

Installed
configuration

Product ready
for service

Products,
customers,

orders

Installed Product
ready for
service

configuration

Products,
customers,

orders

Figure 1. Information
flow in a tele-
communications
company: (a) the main
business process and
(b) the application
integration architecture.

gles the process’s respective business activities
with the components’ invocation mechanisms.
Moreover, the abstraction level of the message
exchanges doesn’t allow easily for the design of
activities that involve coordinated processing
in multiple applications. For example, black-
listing a person might affect people data in all
business units, so all corresponding COTS ap-
plications should be notified. Also, any busi-
ness unit could initiate a request to blacklist
someone. So, blacklisting can be considered a
many-to-many interaction, which might in-
volve different sequences of message exchanges
depending on which business unit takes the ini-
tiative for the blacklisting and how the mes-
sage is propagated from application to applica-
tion. However, with these technologies, which
only coordinate interaction at the level of indi-
vidual message exchanges, it’s impossible to
abstract the blacklisting “event” itself from the
various possible notification patterns.

Another example is the creation of a pur-
chase order. This would require some process-
ing in each COTS application. Moreover, each
business unit may impose its own business
rules and constraints on creating an order. For
example, the Finance application may refuse
orders from customers whose unpaid out-
standing orders exceed a certain limit, the Ser-
vice Provisioning application may refuse tech-
nically unfeasible orders, and the Sales and
Marketing application may reject orders with
inappropriate price setting.

So, creating an order requires application
coordination that surpasses what one-to-one
messaging can achieve. Moreover, you wouldn’t
want the Service Provisioning application to
accept and further process an order after the
Finance application refused it. Either all appli-
cations should agree with creating the order or
none should. While in theory you could
achieve this “all or nothing” coordination by
means of a multitude of one-to-one messages,
it would be intricate to design and debug, let
alone verify conceptually. This situation re-
quires a higher-level unit of coordination rep-
resenting many-to-many interactions.

Note that a many-to-many pattern exists in
so-called publish-subscribe MOM products.
However, their inherent fire-and-forget ap-
proach makes them less suitable for situations
that require a coordination aspect. For exam-
ple, the middleware could dispatch a black-
list_customer or create_order mes-

sage to all applications involved (the many-to-
many aspect), but the coordination doesn’t
stretch beyond guaranteed message delivery.
These products don’t coordinate message pro-
cessing in the respective applications. Our in-
tegration approach combines many-to-many
interaction with the ability to coordinate pro-
cessing and enforce consistency over the par-
ticipating applications.

Business events
BECO defines a business event as a real-

world phenomenon that requires coordinated
processing in one or more applications or
components. Business events are atomic in the
sense that they should never be processed just
partially. All parties involved in a business
event may enforce business rules and con-
straints as preconditions on the event. If the
event satisfies all preconditions, all partici-
pants process it. If it violates one or more pre-
conditions (for example, if the Service Provi-
sioning application views the ordered product
combination as technically unfeasible), the en-
tire system rejects the event, and no processing
takes place in any of the applications. (If pro-
cessing has already occurred, it’s rolled back).
In this sense, events incorporate a transac-
tional aspect.

For example, consider the atomic business
event create_order. Although the system no-
tifies several applications of the event (Finance
verifies the limit on outstanding orders, Ser-
vice Provisioning checks technical feasibility,
Sales and Marketing monitors price setting,
and so on), the event is either accepted or re-
jected in its entirety. The overall system would
revert into an inconsistent state if, for exam-
ple, the Service Provisioning application suc-
cessfully processed an order that the Finance
application rejected.

Each business event represents a many-to-
many interaction that can be decomposed into
a sequence of one-to-one interactions to notify
participants and verify preconditions. However,
you can abstract this notification aspect for
someone interested only in the global activity. A
customer, for example, might want to know
only whether his or her order has been accepted
or rejected, not which message exchanges took
place underneath.

We can easily design the event-based inte-
gration of components using a component-
event table. The CET’s columns identify the

3 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

BECO defines a
business event
as a real-world

phenomenon
that requires
coordinated

processing in
one or more

applications or
components.

components or applications that we must inte-
grate, and the rows identify the business
events. The cells denote which application is
involved in realizing which event. Table 1 pres-
ents a (simplified) CET for the sample case.

In this way, we introduce an additional ab-
straction layer in the interaction stack. The busi-
ness event layer deals with business events—that
is, coordinated many-to-many interactions. The
notification layer deals with one-to-one message
exchanges (or RPCs), which the system uses to
notify the appropriate applications of a business
event. Possible event parameters (for example,
create_order might have product-id,
customer-id, and price parameters) be-
come attributes to the messages or procedure
calls that embody the notifications. The CET
defines the mapping between abstraction lay-
ers: each business event gives rise to several
message exchanges, one for each marked cell in
the corresponding row in the CET.

An event dispatcher notifies participating
applications by initiating the appropriate mes-

sage exchanges and coordinates their business
event processing. Figure 2 represents the gen-
eral execution scheme:

1. A component triggers a business event by
sending a message to (or invoking a proce-
dure on) the event dispatcher.

2. The event dispatcher verifies whether the
event satisfies the preconditions imposed by
all participating components (as the CET
denotes).

3. If so, it notifies all participating compo-
nents of the event by sending a message to
(or invoking a procedure on) each of them.

4. Upon notification by the event dispatcher,
each component processes the business
event internally.

If one or more preconditions aren’t met or if one
or more components fails to process the event,
the event dispatcher organizes a global rollback
or some compensating action, so that no trace
of the failed event remains in any component. In

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 3 1

Event dispatcher

Invoke business
event

Notify
participants

2

1

3

Component

Invoke business
event

Notification
interface

3

Component

Invoke business
event

Notification
interface

3

Component

Invoke business
event

Notification
interface

4 4 4

Figure 2. General
event-dispatching
execution scheme.

Table 1
A component-event table for the sample case.

Component Sales and Service Customer Finance
or application Marketing Provisioning Support

create_order ✔ ✔ ✔

cancel_order ✔ ✔ ✔

install_completed ✔ ✔ ✔

invoice ✔

pay ✔

create_customer ✔ ✔ ✔ ✔

this way, events shape a transactional coordina-
tion mechanism, derived from the business
model, over the individual notifications.

Business processes
Identifying business events as coordination

units yields a concise paradigm for represent-
ing (and enacting) business processes. Indeed,
sequence constraints, a particular kind of pre-
condition, determine the order in which busi-
ness events may occur. Thus, we can represent
a business process as feasible sequences of
business events. For example, the system will
refuse an installation_completed event

if a create_order event with the same or-
der-id doesn’t precede it. Likewise, an in-
voice event should precede a pay event. We
can use various formalisms—for example, fi-
nite-state machines, regular expressions, or
Petri nets—to express sequence constraints on
business events.5

Regardless of the representation format we
choose, what’s important is that the sequence
constraints apply to business events. In this way,
we can separate the underlying notification as-
pect from the business process sequencing. Tra-
ditional orchestration languages such as
BPEL4WS define business processes by enforcing

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Sales and Marketing

Service Provisioning

Finance

Customer Support

Traditional event-application integration BECO

Create
order

Installation
completed

Invoice Pay

Bu
si

ne
ss

 p
ro

ce
ss

 la
ye

r
Bu

si
ne

ss
 e

ve
nt

 la
ye

r
No

tif
ic

at
io

n
la

ye
r

Precondition: paym
ent valid

No preconditons
No preconditons

No preconditons
No preconditons

Precondition: No unpaid outstanding orders
Precondition: Technologically feasible
Precondition: Price setting okay

Receive paym
ent

Invoice
Invoice
Installation com

pleted
Installation com

pleted
Go ahead w

ith installation
No unpaid outstanding orders!
No unpaid outstanding orders?
Technologically feasible!
Technologically feasible?
Price setting okay?
Create order

No preconditons

Figure 3. Layers in
traditional enterprise
application integration
versus layers in BECO.

sequence constraints on individual message ex-
changes. However, any many-to-many interac-
tion between n applications will yield more than
n! possible one-to-one message exchange pat-
terns to establish communication. So, the
process descriptions are needlessly complicated
because they are intertwined with the individual
business events’ notification schemes. BECO de-
couples event sequencing (the business process)
from notification sequencing (the messaging
pattern that notifies the respective applications
that participate in one particular event). Figure
3 illustrates this difference.

The result is a three-layered approach to
application integration. The notification layer
exploits existing one-to-one MOM or RPC
technologies for event notification. The layer
above is the business event layer, which con-
siders a business event a coordinated many-to-
many interaction. The event dispatcher estab-
lishes the coordination and mapping between
business events and notifications by consulting
the CET. Finally, the business process layer de-
fines the business process, specified as se-
quence constraints on business events. The
event dispatcher coordinates compliance with
the sequence constraints.

This layered architecture and separation of
concerns yield a highly flexible environment in
which business process, event participation,
and notification patterns can all change inde-
pendently. That is, you can redesign a business
process by manipulating sequence constraints,
changes in a single activity’s execution will af-
fect the way a business event is implemented
by means of event notifications, and changes
in the participating applications will result in
modified CET cells.

Implementation aspects
Our sample case, discussed previously, has a

fully operational, J2EE-based implementation.
We conceived the event dispatcher as a set of
session Beans that interact with the COTS ap-
plications through an RMI-based notification
layer. For each COTS application, we wrote a
coordination agent that interfaces the notifica-
tion layer with a particular COTS component.
The coordination agent acts as an intelligent
adapter, supporting three types of interaction.

First, the agent translates event notifica-
tions into calls to the COTS application’s na-
tive API. This was quite straightforward to
implement. Having a reactive COTS applica-

tion suffices—that is, one that offers an API
for responding to external requests.6

Next, the coordination agent “listens” for
internal actions in the COTS application (in-
duced, for example, by the application’s own
user interface) that are relevant for the rest of
the system—actions from which the system
should infer a global business event. This more
complex action requires a proactive COTS ap-
plication6: it should be able to initiate requests
to other components to provoke a business
event. Fortunately, the COTS applications we
used in our sample case either had this ability
or we could create triggers in their underlying
database to provide this functionality. However,
in general, many COTS applications are reac-
tive and wait for service requests. This doesn’t
necessarily invalidate BECO’s applicability:
advanced wrapping techniques can turn reac-
tive COTS applications into proactive ones.6

Finally, the coordination agents can sup-
port query functionality for the COTS compo-
nents’ internal data. Part of these data is also
replicated in a “central” relational database,
accessible through GUI components devel-
oped in-house. End users can induce several
business events directly from these GUI com-
ponents, which in turn interact with the ses-
sion Beans. (For a detailed discussion of im-
plementation, see elsewhere.1)

B2B event-based coordination
So far, we’ve discussed BECO as an (intra-)

enterprise application integration technology.
However, we can extend the approach to han-
dle (interenterprise) business-to-business inte-
gration (B2Bi). We briefly summarize the most
important issues.

BECO is fully compatible with Web Services
technology, which is becoming the de facto
standard for B2Bi. In this context, we can im-
plement the event notification layer through
SOAP messaging. In a static form of B2Bi, all
interacting partners “know” one another in
advance. The CET is drawn up at deployment
time and remains fairly stable. In a dynamic
B2Bi situation, partners dynamically find each
another, after which they participate in short-
lived, ad hoc transactions. In that case, the
event dispatcher should contain a subscription
mechanism based on dynamic updating of the
CET. When a partner’s Web service subscribes
to an event, the event dispatcher marks the cor-
responding CET cell; when a service unsub-

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 3 3

BECO is fully
compatible with
Web Services
technology,

which is
becoming

the de facto
standard
for B2Bi.

scribes, it removes the cell mark. We propose a
prototype architecture for an event-based Web
Services environment elsewhere.7

Dynamic B2Bi requires automated facilities
for discovering Web services that are qualified
to interact with one’s own applications. The
services should be compatible, not only in terms
of interfacing but also in terms of process.
BECO facilitates automated, formal verifica-
tion of process compatibility by analyzing the
sequence constraints imposed by the interacting
components. As a trivial example, a Supplier
service may not accept a shipping event unless
a payment event has taken place. On the other
hand, if Customer Service requires shipping to
precede payment, these services can’t collabo-
rate meaningfully. Elsewhere, we outline a for-
mal verification mechanism based on process
algebra.5

A lthough event-based architectures
have existed for quite some time,8–10

none of them use events for business
process definition and application coordina-
tion in the way BECO does. We’ve validated
the BECO approach in several other projects.
Initially, it was conceived in the related disci-
pline of integrating legacy applications with
new components. At present, we are applying
the same principles in a requirements-engineer-
ing and architectural-design project (including
support for integrating several COTS applica-
tions) for one of the largest Belgian banks. The
implementation modalities vary slightly, de-
pending on the targeted environment.

For example, we’ve experimented with hard-
coding the CET into the event dispatcher, but
implementing it as a lookup table makes it more
flexible. Another degree of freedom is the way in
which to verify preconditions and coordinate
event execution. Precondition verification can
be done centrally by the event dispatcher or del-
egated to the respective components. The first
option is possible only if the event dispatcher
can access the respective components’ business
rules that determine the preconditions. The sec-
ond option requires a more complex notifica-
tion pattern, because the respective components
must communicate success or failure for their
part of the precondition validation. However,
the second approach allows for dealing with
embedded business rules that are internal to
and inextricable from the respective compo-

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Wilfried Lemahieu is an associate professor in the Management Information Systems
Group of the Department of Applied Economic Sciences at Katholieke Universiteit Leuven. His
research interests include business process management and Web Services, postrelational data-
base systems, and hypertext systems. He received his PhD in applied economic sciences from
K.U. Leuven. Contact him at K.U. Leuven, Dept. of Applied Economic Sciences, Naamsestraat
69, 3000 Leuven, Belgium; wilfried.lemahieu@econ.kuleuven.be.

Monique Snoeck is full professor in the Management Information Systems Group of
the Department of Applied Economic Sciences at K.U. Leuven. Her research focuses on object-
oriented conceptual modeling, software architecture, and software quality. She received her
PhD in computer science from K.U. Leuven. Contact her at monique.snoeck@econ.kuleuven.be.

Frank Goethals is a PhD student in the Management Information Systems Group of the
Department of Applied Economic Sciences at K.U. Leuven. He’s working on extended enterprise
infrastructures and coordination issues. His research is financed by SAP Belgium. He received
his master’s degree in economics from K.U. Leuven. Contact him at frank.goethals@econ.
kuleuven.be.

Manu De Backer is a PhD student in the Management Information Systems Group of
the Department of Applied Economic Sciences at K.U. Leuven. His research interests are in the
formalization and verification of business process modeling and Web Service compositions. Con-
tact him at manu.debacker@econ.kuleuven.be.

Raf Haesen is a PhD student at the KBC-Vlekho-K.U. Leuven Research Center. His research
interests are object-oriented conceptual modeling, service and component-based architecture,
and model-driven development. He received his civil engineering degree from the Computer
Science Dept. at K.U. Leuven. Contact him at raf.haesen@econ.kuleuven.be.

Guido Dedene is a full professor in the Management Information Systems Group of the
Department of Applied Economic Sciences at K.U. Leuven and holds the Development of Infor-
mation and Communication Systems Chair at the University of Amsterdam. His teaching and
research focus on consistent formal development of business-oriented information systems as
well as the management aspects of such systems. He received his PhD in general relativity the-
ory from K.U. Leuven. Contact him at guido.dedene@econ.kuleuven.be.

Jacques Vandenbulcke is a full professor in the Management Information Systems
Group of the Department of Applied Economic Sciences at K.U. Leuven. He also coordinates the
Leuven Institute for Research on Information Systems. His research interests include database
management, data modeling, and business information systems. He received his PhD in applied
economic sciences from K.U. Leuven. He’s president of Studiecentrum voor Automatische Infor-
matieverwerking (SAI), the largest society for computer professionals in Belgium. Contact him at
jacques.vandenbulcke@econ.kuleuven.be.

nents, as is often the case with COTS applica-
tions. Regardless of whether preconditions are
verified centrally, locally, or in a mixture of
both, the event dispatcher coordinates the
event’s global success or failure and guarantees
a consistent commit or rollback in the respec-
tive applications. Again, the actual implemen-
tation might vary. With centralized precondi-
tion checking, the event dispatcher need only
dispatch notifications for events that effectively
satisfy all preconditions. For decentralized pre-
condition checking, a transactional approach
is more appropriate.5 Again, each of these ap-
proaches can be layered over existing middle-
ware technologies.

References
1. W. Lemahieu, M. Snoeck, and C. Michiels, “Integration

of Third-Party Applications and Web-Clients by Means
of an Enterprise Layer,” Annals of Cases on Informa-
tion Technology, vol. 5, 2003, pp. 213–233.

2. E. Pitt and K. McNiff, Java.rmi: The Remote Method
Invocation Guide, Addison-Wesley, 2001.

3. S. Seely and K. Sharkey, SOAP: Cross Platform Web
Services Development Using XML, Prentice Hall, 2001.

4. S. Weerawana and F. Curbera, Business Process with
BPEL4WS, white paper, IBM, 2002.

5. M. Snoeck et al., “Events as Atomic Contracts for Ap-
plication Integration,” Data and Knowledge Eng., vol.
51, no. 1, 2004, pp. 81–107.

6. A. Egyed and B. Balzer, “Integrating COTS Software
into Systems through Instrumentation and Reasoning,”
to be published in J. Automated Software Eng.

7. W. Lemahieu et al., “Event Based Web Service Descrip-
tion and Coordination,” 2nd Int’l Workshop Web Ser-
vices, E-Business, and the Semantic Web (WES 2003),
LNCS 3095, C. Bussler et al., eds., Springer-Verlag,
2004, pp. 120–133.

8. A. Carzaniga et al., “Issues in Supporting Event-Based
Architectural Styles,” Proc. 3rd Int’l Software Architec-
ture Workshop, ACM Press, 1998, pp. 17–20.

9. G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI
Event-Based Infrastructure and Its Application to the
Development of the OPSS WFMS,” IEEE Trans. Soft-
ware Eng., vol. 27, no. 9, 2001, pp. 827–850.

10. R. Meier and V. Cahill, “Taxonomy of Distributed
Event-Based Programming Systems,” Proc. Int’l Work-
shop Distributed Event-Based Systems (ICDCS/DEBS
02), IEEE CS Press, 2002, pp. 585–588; www.dsg.cs.
tcd.ie/~meierr/publ/docs/meierr_taxonomy.pdf.

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 3 5

IEEE Pervasive Computing
delivers the latest peer-reviewed
developments in pervasive, mobile,
and ubiquitous computing to
developers, researchers, and
educators who want to keep

abreast of rapid technology change.
With content that’s accessible and useful today,

this publication acts as a catalyst for progress in this
emerging field, bringing together the leading experts
in such areas as

• Hardware technologies

• Software infrastructure

• Sensing and interaction with the physical
world

• Graceful integration of human users

• Systems considerations, including scalability,
security, and privacy

Subscribe
Now!

• Energy Harvesting
& Conservation

• The Smart Phone

• Pervasive Computing
in Sports

• Rapid Prototyping

• Energy Harvesting
& Conservation

• The Smart Phone

• Pervasive Computing
in Sports

• Rapid Prototyping

F E A T U R I N G
I N 2 0 0 5

V I S I T www.computer.org/pervasive/subscribe.htm

