JBPM Documentation

The JBoss jBPM team [http://www.jbpm.org/community/team.html]

http://www.jbpm.org/community/team.html
http://www.jbpm.org/community/team.html

jBPM Documentation
by
Version 6.2.0.Final

[=Y 1 1] o S = 5 (=T N 1
I 1Y 7= Y= P 2
1.1, WhaAL iS JBPIM? oot e 2

2 @ Y= 1 PP 4

I T @] (T = o o 11 = 5

1.4, ProCESS DESIGNELuiiiiiiee it 6

1.5, Data MOGEIET ...cooviieiii e e 6

G o T 1Yo To 1= L SN 7

1.7. Process Instance and Task Managementcoocveeiiiiieiin e 8

1.8. Business ACtiVity MONITOINGoiieieiiiiiiiie e 8

I TR o (oY= o] o P 10
1.10. Eclipse DeVElOPEr TOOIScccuuuiiiiiiiiieiieie e 10

2. GEtEING STAEA ..ouiiiii i 12
280 I B T 111/] [7= To £ P 12

2.2, GEttiNg StArEAouiiii i 12

2.3, COMMUIILY ettt ettt ettt et e et e e et e e e et e e e et s 12

A S Yo U] of 1 PP UPTPT 13
T I o T o 1 P 13

2.4.2. SOUICE COUReiiiiiieeiii ettt ettt e e et e e e e et e e e eatn e eeenes 13

2.4.3. BUIldING frOM SOUICEciiiiiiiiiiii e 14

2.5, Getting INVOIVEAiiiiii e 14
2.5.1. SigN UP t0 JDOSS.0MG ..uueiiiiiiiiiiii e 14

2.5.2. Sign the Contributor Agreementccoovviiieiiiiiiiiiecie e, 15

2.5.3. Submitting iSSUES Via JIRAouiiiiiiii e 15

2.5.4. FOrK GItHUD ..ovtiiii e 16

2.5.5. WIIING TESES iiiiiiiiiiiiii e 16

2.5.6. Commit with Correct CONVENLIONSccevvvieriiiiiieeiiiiiee et 18

2.5.7. SUbMIt PUlIl REQUESESuiiiiiiiiiiccee e 19

2.6. What to do if | encounter problems or have questions?cccooeevviveinnnns 21

3L JBPM INSTAIIEE e 22
3.1, PrErEOUISITES ..vuniiiiieiiii et e e e e e e e e e e e e e e e e e eaes 22

3.2. Downloading the InStaller ... 22

3.3, DEIMO SEIUP .ttt 22

3.4. 10-Minute Tutorial using the Workbench ..., 25

3.5. 10-Minute Tutorial using EClIPSEccvvuiiiiieiii e 27

3.6, CONFIQUIALIONiiiitiiiiii et eanens 28
3.6.1. Playgroundsc..oiiuniiiiiie i 28

3.6.2. Workbench Authenticationccooouiiiiiiiiiiiieii e 29

3.6.3. Using your own databasecccccuiiiiiiiiiiiiciiiiecin e 30

3.6.4. BPM database schema scripts (DDL SCIHPLS)vevevveieiiiiinieiiiiineeees 36

3.6.5. [BPM installer SCrPLuuiiiiiiiiiicie e e s 36

3.7. Frequently Asked QUESHIONScuuuuiiiiiiiieieiii et 38

O G 11 1] o] 1= 39

jBPM Documentation

R [0 £ Yo [8 T 1o o R SPPRPTRRt 39
4.2. Human Resources EXampleccooooiiiiiiiiiiiicie e 39
4.2.1. The KIE Project: hUman-reSOUICESccuuuiieiiiiiieiiiiineeeeie e 41
4.2.2. Building the Human Resources EXamplec.ccoeveviiiiiiiniiiiineinnns 42
4.2.3. Create a new Process INStanCeccovvviiiiiiiiiiiniinceeneeee e 44

O T - 11 01 0] (=T A o P 45
1T 1Y B o = PP 46
B, COre ENQING AP oo a7
D1, OVEIVIEW .eiiiiii ettt e e e e e e e et e et et e e e aans 47
5.2, KIBBASE ..uiiiiii e 48
5.3, KIEBSESSION ..uiiiiiiiii et 49
5.3.1. ProCEeSSRUNIIMEuiiiiiiiiiiiiii e e eeeeens 49
5.3.2. EVENL LISIENEIS ...ceeiiiii e 51
5.3.3. COrTelation KEYSccuuiiiiiiiiiii e 53
B.3.4. TRIBAUS ..coviiiii e 54

L = 10 [111 g 111V F= T = o = 55
D41, OVEIVIEW «.ovniiiiii ittt e e e e e e e e e e e e e e e 55
S = L (=T [[57
54,3, USAQE ..ottt 59
L @do] 1 T0 [V - i o o [P 60

B D S BIVICES ittt 68
5.5.1. DepPlOYMENL SEIVICE ...covniiiiieii e e 69
5.5.2. DEfiNItioN SEIVICEiviiii e 70
5.5.3. PrOCESS SEIVICE ..ovtuiiiiiiiiiee it e et e et e et e e et eeeeatneeeees 71
5.5.4. RUNtIME Data SEIVICEuiieiiiii e 72
5.5.5. USEI TASK SEIVICE ...cevuvniiiiiiiieiiiie ettt aeaaens 75
5.5.6. Working with deploymentscoouiiiiiiiiiie e 76

LN T O] 1T 81 r=\1 1o] o [79
LT o 0 Yo =11 =N 82
6.1. What iS BPMN 2.0 ...uuiiiiiiiieiiiii et e e et e e eeaaneeeees 82
LB (0 T =1 87
6.2.1. Creating @ PrOCESS ...c.uuiieieeeiiieeii e et et e e e e e e e et e et e et e e steeatnaes 87

B.3. ACHIVITIES ..iiniiiii i 92
6.3.1. SCHPL tASK ..evvuiiiii i 92
6.3.2. SEIVICE TASK ..ouiiiiiiiiiii e 94
6.3.3. USEI tASK ..evniiiiiiiiiiii e 95
6.3.4. Reusable SUD-ProCESScccuuiiiiiiiiiii e 97
6.3.5. BUSINESS TUIE tASK ...vvuiiiiiiiieiiiii e 98
6.3.6. Embedded SUD-PIrOCESScccouuiiiiiiiiieiiiii e 99
6.3.7. Multi-inStance SUD-ProCESSccccviiiiiiiiiii e 100

LB Y = | 101
B.4.1. STAIt EVENT ... e 101
6.4.2. ENA BVENLS ..oiiiiiiiii e 102
6.4.3. Intermediate EVENLSccovvviiiiiiiiii e 104

jBPM Documentation

6.5, GAIBWAY'S ...cevuiieeieiei ettt ettt 107
6.5.1. DIVErging QAtBWAYccuueiiieeiiieeiiiieeiieeeee e et e e e e e et e st e eeneeaenees 107
6.5.2. CONVEIGING QAEWAYcevvvnieieiiieeeeii et e e e 109

B.6. OFNEIS .ot 110
6.6.1. Variablescccuiiiiiiie e 110
B.6.2. SCIIPLS Luiiiiii it ei et 112
6.6.3. CONSIAINTS ..oiveiiiiii i e e e e e e 113
LGRS 1011 PP 114

6.7. Process FIUEBNT AP ..o 116
B.7.1. EXAMPIE oot 116

B.8. TOSHING ieertieieiii ettt ettt 117
Lo T 1 A (=1 1] o RN 117

A 10T =T T I T 124

4% T 1 (o To 11 T3 o] o ERE PP 124

7.2. Using User Tasks iN OUr PrOCESSEScccuuiiiiiiiiiiiiiiieeeiii et 124

ST DT L= 1Y F=T o] 11 o 1 126

7.4, TASK LIfECYCIE ..o e 128

7.5. TASK PeIMISSIONSciiiiiiiiiiiii et r e et eeanens 130
7.5.1. Task PermisSions MatriXcoeeeuiiriiieriieiiieiii e eee e e e 130

7.6. Task Service and The Process ENgineccccoeveviiiiiiiiiiii e, 132

T.7. TASK SEIVICE APl oo e e 132

7.8. Interacting with the Task SEerviCeccociiiiiiiii e 134

8. Persistence and TranSaCtiONScc.viiiiiiiiiie e 136

8.1. Process INStanCe STAteooeuiiiiiiiiiiiii e e 136
8.1.1. RUNIME SEALE ...uiiiiiiiii e e eees 136

S 2 ¥ o [A o o USRS 141
8.2.1. The jBPM Audit data modelccoooiiiiiiiiiii e, 141
8.2.2. Storing Process Events in a Databaseccoooeviiiviiiiiinciinns 144
8.2.3. Storing Process Events in a JMS queue for further processing 146

SR I I = g ET= T o] P 146
8.3.1. Container managed tranSactioncccoveeviiiiiieiiiiineee e 147

I @] 1T 81 r=\ 4o] o [149
8.4.1. AddiNg depPendENCIESuiiiiiuiiieiiiii e 149
8.4.2. Manually configuring the engine to use persistence 150
8.4.3. Configuring the engine to use persistence using JBPM-el per - for
TESES ONIY et 152

LAY o 4 o T= o o o I 155
9. WOTKBENCN Lo e 156

9.1, INSLAIIALION ..eeniie e 156
9.1.1. War installationc.uiiiiiiiiiiieii e 156
9.1.2. Workbench dataooeuiiiiiiiiii e 156
9.1.3. SYStEM PrOPEITIES .vuiiiiieeii e e eaes 156

9.2, QUICK SEAIT .oeeiieie e e 158
LS I T Ao (o I =T o [0 71 (o] Y/ P 158

jBPM Documentation

9.2.2. Add PrOJECE ...eevtiieeiit e 161
9.2.3. Define Data MOdelocoeiiiiiiiiiiiii e 165
9.2.4. DefiNe RUIE ..o 168
9.2.5. BUild @and DEPIOYcevvniiiiiiiiiieeii e 171

9.3, AMINISIFALIONiiti e e e e 172
9.3.1. ADMINISIration OVEIVIEWccccvvnieeiiiiiieeeiiiin e e e e 172
9.3.2. Organizational UNItcooiuiiiiiiii e 172
9.3.3. REPOSITOMNES ..ovuiiiiiieiii it e e e e aan s 173

9.4, CONFIQUIALION ...ttt et e e e e aees 175
9.4.1. USEr MaNagemMENTuiuiiiiiie e et e e aeans 175
9.4.2. ROIBS ..ot 175
9.4.3. Restricting access t0 repoSItOreSccvuveivieiiiieeiieeeiieerie e eaenns 177
9.4.4. Command line config toolcoviiiiiiiiiiiiii e 177

9.5, INLrOAUCLION .ottt e e 178
9.5.1. LOG iN @Nd 100 OUL ...uuiiiiiiieiiii e 178
9.5.2. HOME SCIEEIN ...t 179
9.5.3. WOrkbench CONCEPLSuuiiiiiiieiiii e 179
9.5.4. INitial [AYOULcoeiniiii e 179

9.6. Changing the 1ayOULcooiiiiii e 180
LS B T = L= 4 Vo 181
9.6.2. REPOSIIONING oevtueiiiiiiei ettt e 181

9.7, AULNOTING «.einiii e e e 183
9.7.1. Artifact REPOSITOIY ...coovuiiiiiii e e 183
9.7.2. ASSEE EQItOr ..vuiiiiiiiieeei e 185
9.7.3. ProjJECt EXPIOTEI oot 189
9.7.4. Project EdItOroovviiiiii i 199
9.7.5. Validation ... 203
9.7.6. Data MOUEIIETouiiiiiiieece e 205
9.7.7. Categories EditOrccouuuuiiiiiii e 232

9.8. Embedding Workbench In Your Applicationccooeviiiiiiiiiiiiciieeeeeen 234
9.9. ASSEt MaNAGEMENTceiiiiiiiieii ettt 235
9.9.1. Asset Management OVEIVIEWcccuiveiuiieeiiieeiiieeriieeeiee e eeaaeeaens 235
9.9.2. Managed vs Unmanaged RepoSitoriescccuuiveieeiiieiiiiineeeennnn. 235
9.9.3. Asset Management PrOCESSEScuuviuiiiiiiiiiiie e 236
9.9.4. USAGE FIOW ..covuiiiiiiiieeee e 238
9.9.5. REPOSITOrY SIUCLUIEivviciiiei e e e e e e e 239
9.9.6. Managed Repositories Operationscooeevevvireeiiiiineeeeiiineeeeiiiee 241
9.9.7. REMOLE APIS ..o 246

10. Workbench INtegration ... e 247
10,0, REST ittt 247
10.1.2. JOD CallS oeviiiii e 247
10.1.2. REPOSItOry CallSccuuiiiiiiiiicii e 248
10.1.3. Organizational unit CallSccoviiiiiiiiiiii e 250
10.2.4. MAVEN CalIS ...iiiiiiiieei e 250

Vi

jBPM Documentation

10.1.5. REST SUMMAIY ..uiiriiiiiieieieie et e e e e e e 251

11. Workbench High Availabilitycoooiiiiiiiii e 253
5 O PP 253
5 O Y S o 11 (=1 1 T S 253

11.2.2. JBPM CIUSEEING ..eeeitiieiiiie et e 256

R I T o [oY= PP 257
12.1. Designer Ul EXPlainedccoouiiiiiiiiiiie e 258
12.2. Getting started with Modellingcoooiiiiiiii e 259
12.3. Designer TOOIDAIiiiiiiiiiii e 263

G T o T 1 = PP 285
13.1. Configure process and human taskscooceeuiiiiiiiiiinieiiiie e, 287
13.2. Generate forms from task definitionsccooviiiiiiiiiii e, 289
13,3, Edit fOrMS e e 292
13.3.1. Form generated desCriptionccoeviuiieiiiieiiii e e 292

13.3.2. CUStOMIZING FOMM L.uitiiiii e 292

13.3.3. FIeld tYPES .orniiiii i 320

13.4. Document attaChmENtScooviiiii e 329
13.4.1. Process and forms configurationcccoeiiiiiiiiiiin i 329

13.4.2. Marshalling strategy and deployment configuration 331

13.5. Using forms on client applicationscccoooviiiiiiniiin e, 334
13.5.1. What does the APl Provides?coveeiiiiiiiiiiiiieeiiii e 334

13.5.2. SAMPIE USAQE ..uniieiniiii ettt e e e e e e s e e e 336

14. RUNTIME MANAGEMENT ...uiiiiii e e e e aees 341
I B =T o] [0 41T | €= P 341
14.1.1. Deployment deSCrPLOIScceuuuiiiiiiiieeeeie e 341

14.2. Deployment UNItS LIStccouuiiiiiiiiiiiic e e e 350
14.3. Process DeplOYMENTSuiiiiiiieiiii et 351
I SN o o PP 352

15. Process and Task Managementcoouuuiiiiiiiiiiiiii e 353
15.1. Process ManagemeENntc.uiuuiiiiiiieie e 353
15.1.1. Process DefinitioNsooveuiiiiiiiiiieie e 353

15,2, TASKS ittt ettt 356
15.2.1, TASK LIST wuuuiiiiiiiieiiiii e e 356

15.2.2. New Task (Ad-HOC Task)cccoveiiiiiiiiiiiiiieeie e e e 366

16. BUSiness ACLIVItY MONITOTING ..ooovuniiiiiiiie et 368
L16.0. OVEIVIEW .uiiiiiiiietiiie ettt e et e et e et e e e et e e e et e e e et e e e e et e e e e et eeas 368
16.2. BUSINESS DAShDOAIAScoeuniiiiiiiii e 369
16.3. Process Dashboardcoviiiiiiiiiiiiiii e 371

17, REMOTE AP e 381
17.1. Remote Java AP ... 381
17.1.1. The REST Remote Java RuntimeEngine Factoryccccc..... 382

17.1.2. The JMS Remote Java RuntimeEngine Factorycc.cc.uueeen. 385

17.1.3. Supported Methodscoouuiiiiiiiii e 389

17,2, RE ST i 393

Vi

jBPM Documentation

17.2.1. RUNEIME CallS ..viiiii e 394

17.2.2. HiStOry CallSoiiiiiiiii e 397

17.2.3. TASK CallS ..oeeieiiiee e 403

17.2.4. Deployment CallScoovuiiiiiiiiiie e 408

17.2.5. Deployment call detailSccoouiiiiiiiiiiiiii e 410

17.2.6. EXECULE CalS ..ooovviieiiiii e 411

17.2.7. Additional Informationcooveiiiiiii 413

17.2.8. REST SUMMAIY ..iuiiiiiiiiiiiiieinee ettt e e e e e e e eanees 418

0 TN 1Y PP 422
17.3.1. IMS QUEUE SEIUP .ovuitieiiiiiiiiieie ettt e et e e e e 422

17.3.2. Using the remote Java APlcoooiiiiiiiiiiii e 422

17.3.3. Serialization ISSUESccccuuiiiiiiiiieeiiiiiee et e e eeaans 423

17.3.4. EXample IJMS USBJEceeviiieiiiiiieeeii e 423

Y ol 11 o = N 429
18. JBPM EClIPSE PIUGIN oouiiiiiiiiieeee e 430
18.1. JBPM EClPSE PIUGIN ..o e 430
18.1.1. INStAllAtiONeeiiei e 430

18.1.2. |BPM Project Wizardcc.cooeiiiiiiiiiicii e 432

18.1.3. New BPMN2 Process Wizardccoovveuieiiiiiiiiineeiiiecin e 435

18.1.4. JBPM RUNIME ..iiitiiiiiiiiieeei et e e 435

18.1.5. jBPM Maven Project Wizardccoouiiiiiiiiiiiiiiiieccei e 439

18.1.6. Drools Eclipse pluginooiiiiiiiiiii e 442

18.2. DEDUGING ..neeettieeeiiii ettt ettt et e 442
18.2.1. The Process INStanCes VIEWovviiiiiiiieiiiiinieiiiinee et e e 443

18.2.2. The AUt VIBW ..oovuiiiieei et 444

18.3. Synchronizing with Workbench RepoSitoriesccccccoeveviiiiiiiiiiieccies 445
18.3.1. Importing a workbench repositorycoooeveiiiiiiiiiineeiiiieeei, 445

18.3.2. Committing changes to the workbenchccoooi, 448

18.3.3. Updating from to the workbenchc.coooiiiii, 450

18.3.4. Working on individual projectsccooveviiiiiiiiieiiie e, 452

19. Eclipse BPMN 2.0 MOGEIET .. .coiuiiiiiiiie e 456
LO.0. OVEIVIBW euieiiiii ettt ettt ettt e e et e e e et n e e et e e e e et e e e e et eeas 456
19.2. INSTANALION ..ot e e 456
S JRC T B To Tol ¥] 0 1=] o1 7= L1 o] o IR TPPPIN 457

RV 111 (=T o [=1 (o] o E PSP P TR UPPPTTRUPPPPN 460
b2 I Y (=T | - L o] o TP 461
20,0, MAVEN ot 461
20.1.1. Maven artifacts as deployment Unitscccovvevieiiiiieiin e, 461

20.1.2. Use Maven for dependency managementc.oceeevenvereiinnnerennnn. 463

20.2. CDl i 465
O I R @Y= V1 465

20.2.2. Configuring CDI integrationc.cciiiiiiieiiiiieiie e 469

20.2.3. RuntimeManager as CDI beancccoiveiiiiiiiniiiiiiecc e 472

b2 IR TS Y o] 12T PN 474

viii

jBPM Documentation

20.3.1. Direct use of Runtime Manager APlccoooveiiiiiiiiinieicieeeeeen, 475

20.3.2. BPM services With SPringcocoiviiiiiiiiicin e 479

204, B D i 482
20.4.1. Ejb services implementationccccooeiiiiiiiiiii e 483

20.4.2. LoCal INEITACE ..cevnieiiieee e 485

20.4.3. Remote INerfaceoocevvuiiiiiiiiiie e 486

O T © 1]] PP 489

VI AQVANCEA TOPICS ouuiiiiiiiii et e e e e e e e e e e e e et e e et e e et e e et e e et e e ean e eanaees 490
21. DOMaiN-SPECIfiC PrOCESSESiiiiiiiiiiii et 491
b2 I R 1o o o U1 1 o] o PP 491
A © 1YY V1 P 492
21.2.1. Work Item Definitionsccoeuuiiiiiiiiiiiiii e 492

21.2.2. Work Item HandIerscooveuiiiiiiiiiiiei e 492

21.3. Example: NOtfICAtioNScccvuiiiiiiiii e 494
21.3.1. The Notification Work Item Definitioncc.ccoeveiiiiiiiniiinneennnn. 495

21.3.2. The Noti ficationvorkltemHandl ercccoovvviiiiiiiieiiiineiiieeeis 500

21.4. SErvice REPOSIIONYoeiiiiiieiiii ettt 502
21.4.1. Public BPM SEIVICe rePOSItONY ...cccvuieiiiieiiieiiiieeiie e eeeie e eaenns 504

21.4.2. Setting Up your OWN SErViCe rePOSItONYcoeeeeevneeeeriiieeeeiiineeennns 504

22. EXCePtion ManagemENTiiiiiiiiii e et e e e e e e e e e e 507
N T © 1YY V1 P 507
b2 |41 oo U Tox i o] o RSP 507
2 TSP 507
22.3.1. Technical EXCEPLIONSccvvuiiiiiiiiii e e 507

22.3.2. Technical Exception EXamPplescooveiiiiiiieiiiiinieiiiiieeeiieeees 510

S PSP 518
22.4.1. BUSINESS EXCEPLIONSiiiiiiieiiiiii e 519

23, FIEXIDIE PrOCESSES .ovviiiiiiii ittt e e 522
24. Concurrency and asynchronous eXeCULIONovviieuiiieiiiiinnieeiineeceii e 525
24,1, CONCUITEICY tuituiiniteietei e e e e e e e e e et e e et e r et e n et et et et e eaaeens 525
24.1.1. ENQINE EXECULION ..uueiiiiiiieeiiii ettt 525

24.1.2. Multiple knowledge sessions and persistencecccoevvvvieeinnnnns 526

24.2. ASYNCRIONOUS EXECULION ...uuuiiiiiiiieeiiii ettt e e 527
24.2.1. Asynchronous handlerscccoeeiiiiiiiiiiin e 527

24.2.2. [DPM EXECULON ...evuiiiiiii ettt et e e et e e e e e e e eaa e aees 527

25, REIEASE NOLES ..ttt e e ettt aaaan 534
25.1. JBPIM B.2 ..ot 534
25.1.1. New and Noteworthy in BPM 6.2.0ccoovviiiiiiiiiiii e, 534
25.1.2. New and Noteworthy in KIE Workbench 6.2.0cc.oooviiiiiiiiinncnennnn, 536
25.2. JBPM B.1 it 558
25.2.1. New and Noteworthy in [BPM 6.1.0cooviiiiiiiiiiiiiiieeciiecci e 558
25.2.2. New and Noteworthy in KIE Workbench 6.1.0cccoeeiiiiiinniinnnenn, 560
25.3. JBPM B.0 ..ot 562
25.3.1. New and Noteworthy in KIE API 6.0.0cccooiiiiiiiiiiiicin e 562

jBPM Documentation

25.3.2. New and Noteworthy in jBPM 6.0.0

25.3.3. New and Noteworthy in KIE Workbench 6.0.0

25.3.4. New and Noteworthy in Integration 6.0.0

Part |I. Getting Started

Introduction and getting started with jBPM

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor
business processes throughout their life cycle.

B

P
I_.~ “““'HF. Evaluation h
(- . I' g _
O—D| “—Ealf Evaluation |—> —|— + —.@
= A
DI “—PM Evaluabion

A business process allows you to model your business goals by describing the steps that need to
be executed to achieve those goals, and the order of those goals are depicted using a flow chart.
This process greatly improves the visibility and agility of your business logic. jBPM focuses on
executable business processes, which are business processes that contain enough detail so they
can actually be executed on a BPM engine. Executable business processes bridge the gap be-
tween business users and developers as they are higher-level and use domain-specific concepts
that are understood by business users but can also be executed directly.

Business processes need to be supported throughout their entire life cycle: authoring, deployment,
process management and task lists, and dashboards and reporting.

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

* Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors.

» Pluggable persistence and transactions (based on JPA / JTA).

« Web-based process designer to support the graphical creation and simulation of your business
processes (drag and drop).

» Web-based data modeler and form modeler to support the creation of data models and process
and task forms

Overview

* Web-based, customizable dashboards and reporting

« All combined in one web-based workbench, supporting the complete BPM life cycle:
* Modeling and deployment - author your processes, rules, data models, forms and other assets
» Execution - execute processes, tasks, rules and events on the core runtime engine
» Runtime Management - work on assigned task, manage process instances, etc

* Reporting - keep track of the execution using Business Activity Monitoring capabilities

The Knowledge Life Cycle

Opathezrireg Deploy Proces s Manggemdant Tanas Dashi:nardy

o Aaftarryg Dy rasln Lk igre T Lot [T e & |

=

The Busness Knowledge to drve your company

» Eclipse-based developer tools to support the modeling, testing and debugging of processes
* Remote API to process engine as a service (REST, JMS, Remote Java API)
« Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process
management features and tools in a way that both business users and developers like. Do-
main-specific nodes can be plugged into the palette, making the processes more easily under-
stood by business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life
situations that cannot easily be described using a rigid process. We bring control back to the
end users by allowing them to control which parts of the process should be executed; this allows
dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a com-
bination of business processes with business rules and complex event processing. jBPM can be
combined with the Drools project to support one unified environment that integrates these para-
digms where you model your business logic as a combination of processes, rules and events.

Runtime
Management

Execution

Modeling
& Deployment

Overview

1.2. Overview

| Core

Engine

Figure 1.1.

Human Task

Service

Guvnor
Re pasrtary

&
Business
Analyst
™
-
End User -
b
Developer
[P
y
| |
| Eclipse |
Developer |
| Tools
|
9 J

This figure gives an overview of the different components of the jBPM project.

« The core engine is the heart of the project and allows you to execute business processes in
a flexible manner. It is a pure Java component that you can choose to embed as part of your
application or deploy it as a service and connect to it through the web-based Ul or remote APIs.

« An optional core service is the human task service that will take care of the human task life

cycle if human actors participate in the process.

« Another optional core service is runtime persistence; this will persist the state of all your
process instances and log audit information about everything that is happening at runtime.

« Applications can connect to the core engine by through its Java API or as a set of CDI ser-

vices, but also remotely through a REST and JMS API.

« Web-based tools allows you to model, simulate and deploy your processes and other related
artifacts (like data models, forms, rules, etc.):

¢ The process designer allows business users to design and simulate business processes in

a web-based environment.

Overview

» The data modeler allows non-technical users to view, modify and create data models for use
in your processes.

» A web-based form modeler also allows you to create, generate or edit forms related to your
processes (to start the process or to complete one of the user tasks).

» Rule authoring allows you to specify different types of business rules (decision tables, guided
rules, etc.) for combination with your processes.

» All assets are stored and managed on the Guvnor repository (exposed through Git) and can
be managed (versioning), built and deployed.

» The web-based management console allows business users to manage their runtime (manage
business processes like start new processes, inspect running instances, etc.), to manage their
task list and to perform Business Activity Monitoring (BAM) and see reports.

» The Eclipse-based developer tools are an extension to the Eclipse IDE, targeted towards de-
velopers, and allows you to create business processes using drag and drop, test and debug
your processes, etc.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). Its most important features are the following:

 Solid, stable core engine for executing your process instances.

« Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

» Strong focus on performance and scalability.

 Light-weight (can be deployed on almost any device that supports a simple Java Runtime En-
vironment; does not require any web container at all).

« (Optional) pluggable persistence with a default JPA implementation.
» Pluggable transaction support with a default JTA implementation.

« Implemented as a generic process engine, so it can be extended to support new node types
or other process languages.

» Listeners to be notified of various events.

« Ability to migrate running process instances to a new version of their process definition

Overview

The core engine can also be integrated with a few other (independent) core services:

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, rule-based assignments, etc.

» The history log can store all information about the execution of all the processes in the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic states of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Process Designer

The web-based designer allows you to model your business processes in a web-based environ-
ment. It is targeted towards business users and offers a graphical editor for viewing and editing
your business processes (using drag and drop), similar to the Eclipse plugin. It supports round-
tripping between the Eclipse editor and the web-based designer. It also supports simulation of
processes.

[—re—— P man Mol ey Fragus as [BFHE fuageam

Figure 1.2. Web-based designer for creating BPMN2 processes

1.5. Data Modeler

Processes almost always have some kind of data to work with. The data modeler allows non-
technical users to view, edit or create these data models.

Overview

Typically, a business process analyst or data analyst will capture the requirements for a process or
application and turn these into a formal set of interrelated data structures. The new Data Modeler
tool provides an easy, straightforward and visual aid for building both logical and physical data
models, without the need for advanced development skills or explicit coding. The data modelers
is transparently integrate into the workbench. Its main goals are to make data models into first
class citizens in the process improvement cycle and allow for full process automation through the
integrated use of data structures (and the forms that will be used to interact with them).

1.6. Form Modeler

The jBPM Form Modeler is a form engine and editor that enables users to create forms to capture
and display information during process or task execution, without needing any coding or template
markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Form Modeler [PerformanceEvaluation-taskfiorm] Save | Deleee | w | <
B Form data ongin | &8 Add felds by orign | of] Add lelds by ppe . S Foirn propeies Show moce ¥ Bindings &1 Grd & Ruler =~
_ . __{.l = L m 2 i m |.l.-u L |-'.. |.w 4] |-..'. _I.'.-J o
E‘ || IIL'{__-‘ D T I e B R I L LT I I S B R B e LT I I O e L L LI e e e B R e LT L I U I PR}
..... - i
i paaral it
& Simple subfam '__ﬂg K
E Hushple subform 'i,
" [N Fman
O Ehor ket E
Lomg 1ext 4
. |

[Biginte ger
1:-| ‘- o =
3 Inleger I j

Riich fext

5l Timasiam I " -
] Tim = e

Figure 1.3. Form Modeler

Key features:

« Form Modeling WYSIWYG Ul for forms
« Form autogeneration from data model / Java objects

« Data binding for Java objects

Overview

* Formula and expressions
e Customized forms layouts
* Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building
and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior
and look&feel.

1.7. Process Instance and Task Management

Business processes can be managed through a web-based management console. It is targeted
towards business users and its main features are the following:

» Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances.

* Human task management: being able to get a list of all your current tasks (either assigned to you
or that you might be able to claim), and completing tasks on your task list (using customizable
task forms).

Instsnca 1D 1
Dafsitin 1d Parvg

e Mg
Deploymant

N —— it | o] e propnst] g Contrnct [Tt "D Dufiition Version, |

Insimesre Soabe ATiv

Curront Acthvitien 185210 174

Ermtance Log Difery1d 11w

Figure 1.4. Managing your process instances

1.8. Business Activity Monitoring

As of version 6.0, jBPM comes with a full-featured BAM tooling which allows non-technical users to
visually compose business dashboards. With this brand new module, to develop business activity
monitoring and reporting solutions on top of jJBPM has never been so easy!

Overview

Ty

Jur—_ry
Tl R
Tial il i

INSRERCES by prOTELE InLLERTEt SLErmed by wber

+ fnmghetd
- Aevr
]
]
< asered

S W R ome B |

Fooian
Sriw] Prpaeis

Pl v

i) Praaeis B« 5

Fenqunn Lnar o o
] PR L

Pemcann wpran

- S0t Pooes veras S

Taw [TR ——— e [T vod Wy de | WHLn dompiehed iy G || aikn dtumen) LRiAN By Maben
- Sy Taulk 0D -
e ot [T

r 50 Humbser of Lash iAulanied

= Salnct Prooes 1D - HEt lerview 1

Tasa
- Sulnct Task -

Tarh S fatr
~ Sulnct Task Siam daiw B

Tarh Lol date
= Sulnct Task End date - 0

TO

Figure 1.5. Business Activity Monitoring

Key features:

 Visual configuration of dashboards (Drag'n'drop).

» Graphical representation of KPIs (Key Performance Indicators).

» Configuration of interactive report tables.

» Data export to Excel and CSV format.

« Filtering and search, both in-memory or SQL based.

» Data extraction from external systems, through different protocols.
» Granular access control for different user profiles.

* Look'n'feel customization tools.

 Pluggable chart library architecture.

e Chart libraries provided: NVD3 & OFC2.

Target users:

« Managers / Business owners. Consumer of dashboards and reports.
» IT / System architects. Connectivity and data extraction.
* Analysts. Dashboard composition & configuration.

To get further information about the new and noteworthy BAM capabilities of jBPM please read

the chapter Business Activity Monitoring.

Overview

1.9. Workbench

The workbench is the web-based application that combines all of the above web-based tools into
one configurable solution.

It supports the following:

« A repository service to store your business processes and related artefacts, using a Git reposi-
tory, which supports versioning, remote accessing (as a file system), and using REST services.

* A web-based user interface to manage your business processes, targeted towards business
users; it also supports the visualization (and editing) of your artifacts (the web-based editors
like designer, data and form modeler are integrated here), but also categorisation, build and
deployment, etc..

« Collaboration features to have multiple actors (for example business users and developers)
work together on the same project.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

The Knowledge Life Cycle

fgthagnng Deploy Frocess Managemard Tasin Dashbpardy

@1 Al tareg Dl yr=usin Mo wnn Do re T Lol Propconn & Tim LI NI

The Busness Knowledge to drve your company

Figure 1.6. KIE workbench application

1.10. Eclipse Developer Tools

The Eclipse-based tools are a set of plugins to the Eclipse IDE and allow you to integrate your
business processes in your development environment. It is targeted towards developers and has
some wizards to get started, a graphical editor for creating your business processes (using drag
and drop) and a lot of advanced testing and debugging capabilities.

10

Overview

(3 T ST Cre e Ge e g shodiiodi [- 1 | 2 [inn| ey e]

L Y
- -p dh ..© P
- "

Figure 1.7. Eclipse editor for creating BPMN2 processes

It includes the following features:

« Wizard for creating a new jBPM project

» A graphical editor for BPMN 2.0 processes

* The ability to plug in your own domain-specific nodes

* Validation

* Runtime support (so you can select which version of jBPM you would like to use)

» Graphical debugging to see all running process instances of a selected session, to visualize the
current state of one specific process instance, etc.

11

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artifact you want:

« bin: all the jBPM binaries (JARs) and their dependencies

« src: the sources of the core components

+ docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jbpme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting Started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes
and integrate the engine with your application. These processes can be started from the installer
or be started from scratch.

2.3. Community

Here are a lot of useful links part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

12

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Getting Started

« The #jbossjbpm Twitter account [http://twitter.com/jbossjbpm].

e A user forum [http://www.jboss.com/index.htmlI?module=bb&op=viewforum&f=217]
for asking questions and giving answers

« A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests
and roadmap

e A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the latest
shapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jopm-distrib-
ution/target/]

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most
of the real-time discussion about the project takes place and where you can find most of the
developers most of their time as well. Don't have an IRC client installed? Simply go to http://
webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join
the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMNZ2 plugin is Eclipse Public License (EPL) v1.0.
» The web-based designer is based on Oryx/Wapama and is MIT License

« The Drools project is Apache License v2.0.

2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the BPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jJBPM and Drools project can be found here [https://github.com/
droolsjbpm].

e The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-model-
er/org.eclipse.bpmn2-modeler.git].

13

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

Getting Started

» The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

« The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]
note this is an aggregate of other projects (drools-wb, jppm-console-ng)

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

2.5. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it :)
2.5.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http://
www.jboss.org/ and click "Register".

Log in | Register | Cool Stuff

Members Projects Products
0L UUE Community. User Groups
Choosing the right technology... stay connected: [(EBE
JBoss Community JBoss Ent i
Community driven projects _ Products x1??squ|-:|f|Tprll|f?1n. T SRoss Check out the |atest
featuring the latest innovations b certifled on multiple platforms "'e.t?' ‘AS,Y - audio podcasts
fior cutting edge apps. for milsgon critical apps. *
JBoss Deg['cper .

Learn more about the Webinar Series»

Building Apps!

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokyo, Roppongi Hills

I‘to‘:'?- JavaOne Tokyo 2012

- ‘ Join Red Hat at the JavaOne conference in
s e _!nq -l Tokyo where you can hear talks on some of
has hEE'th'EIECIS-E(ﬂ = the latest JBoss projects.

June 25-26 : Baston
HIFTAaTINT D Darean

NOW OPENE
i+ . JUDCon 2012:Boston!

CALL anspﬁp

14

https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
http://www.jboss.org/
http://www.jboss.org/

Getting Started

2.5.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using your jboss_org user account and sign an Individual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for vour contributions and ensures that the source code can be licensed appropriatelv.

Username: I—Bl
Password: %]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidy and prevents project leads from reviewing unnecessary agreements.

2.5.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [???](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

15

https://cla.jboss.org/
???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Getting Started

Projects ! lssues = EENIEES

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

2.5.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm

@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

2.5.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

16

https://github.com/droolsjbpm

Getting Started

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

17

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Getting Started

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

2.5.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

18

Getting Started

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &

.19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

2.5.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

19

Getting Started

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

20

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Getting Started

2.6. What to do if | encounter problems or have ques-
tions?
You can always contact the jJBPM community for assistance.

IRC: #jbpm at chat.freenode.net

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

21

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 3. |BPM Installer

3.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

Tip

To check whether Java and Ant are installed correctly, type the following com-
mands inside a command prompt:

java -version
ant -version

This should return information about which version of Java and Ant you are cur-
rently using.

3.2. Downloading the Installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%206/] the in-
staller and unzip it to your local file system. There are two versions

« full installer - which already contains a lot of the dependencies that are necessary during the
installation

» minimal installer - which only contains the installer and will download all dependencies
In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo Setup

The easiest way to get started is to simply run the installation script to install the demo setup.
The demo install will setup all the web tooling (on top of WildFly) and Eclipse tooling in a pre-
configured setup. Go into the jbpm-installer folder where you unzipped the installer and (from a
command prompt) run:

22

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

jBPM Installer

ant install.denp

This will:

» Download WildFly application server

» Configure and deploy the web tooling

Download Eclipse

Install the Drools and jBPM Eclipse plugin

Install the Eclipse BPMN 2.0 Modeler

Running this command could take a while (REALLY, not kidding, we are for example downloading
an Eclipse installation, even if you downloaded the full installer, specifically for your operating
system).

Tip

The script always shows which file it is downloading (you could for example check
whether it is still downloading by checking the whether the size of the file in question
in the jbpm-installer/lib folder is still increasing). If you want to avoid downloading
specific components (because you will not be using them or you already have them
installed somewhere else), check below for running only specific parts of the demo
or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.denp

This will:

 Start H2 database server

« Start WildFly application server

 Start Eclipse

Now wait until the process management console comes up:

http://localhost:8080/jbpm-console

23

http://localhost:8080/jbpm-console

jBPM Installer

@ Note

It could take a minute to start up the application server and web application. If
the web page doesn't show up after a while, make sure you don't have a firewall
blocking that port, or another application already using the port 8080. You can al-
ways take a look at the server log jppm-installer/wildfly-8.1.0.Final/standalone/log/
server.log

Finally, if you also want to use the DashBuilder for reporting (which is implemented as a separate
war), you can now also install this:

ant install.dashboard.into.jboss

Once everything is started, you can start playing with the Eclipse and web tooling, as explained
in the following sections.
If you only want to try out the web tooling and do not wish to download and install the Eclipse

tooling, you can use these alternative commands:

ant install.denp. noeclipse
ant start.deno. noeclipse

Similarly, if you only want to try out the Eclipse tooling and do not wish to download and install
the web tooling, you can use these alternative commands:

ant install.deno.eclipse
ant start.deno. eclipse

Now continue with the 10-minute tutorials. Once you're done playing and you want to shut down
the demo setup, you can use:

ant stop.deno

If at any point in time would like to start over with a clean demo setup - meaning all changes you did
inside the web tooling and/or saved in the database will be lost, you can run the following command
(after which you can run the installer again from scratch, note that this cannot be undone):

ant cl ean. deno

24

jBPM Installer

3.4. 10-Minute Tutorial using the Workbench

Open up the process management console:

http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password.

Using a prebuilt Evaluation example, the following screencast [http://people.redhat.com/kver-
laen/jbpm6F-installer-console.swf] gives an overview of how to manage your process instances.
It shows you:

» How to build and deploy a process

« How to start a new process instance

« How to look up the current status of a running process instance
» How to look up your tasks

* How to complete a task

« How to generate reports to monitor your process execution

25

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

d two sample playground repositories, co

To do so, open up the Project Editor (from the Tools menu) and click Build & Deploy.

« To manage your process definitions and instances, click on the "Process Management" menu
option at the top menu bar an select one of available options depending on you interest:

» Process Definitions - lists all available process definitions

26

http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

» Process Instances - lists all active process instances (allows to show completed, aborted as
well by changing filter criteria)

» Process definitions panel allow you to start a new process instance by clicking on the "Play”
button. The process form (as defined in the project) will be shown, where you need to fill in the
necessary information to start the process. In this case, you need to fill the user you want to
start an evaluation for (in this case use "krisv") and a reason for the request, after which you
can complete the form. Some details about the process instance that was just started will be
shown in the process instance details panel. From there you can access additional details:

» Process model - to visualize current state of the process

» Process variables - to see current values of process variables
The process instance that you just started is first requiring a self-evaluation of the user and is
waiting until the user has completed this task.

» To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top
bar and select "Task List" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation” task reserved for you. After starting the
task, you can complete the task, which will open up the task form related to this task. You can fill
in the necessary data and then complete the form and close the window. After completing the
task, you could check the "Process Instances" once more to check the progress of your process
instance. You should be able to see that the process is now waiting for your HR manager and
project manager to also perform an evaluation. You could log in as "john" / "john" and "mary" /
"mary" to complete these tasks.

* After starting and/or completing a few process instances and human tasks, you can generate a
report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".
This is a set of see predefined charts that allow users to spot what is going on in the system.
Charts can be fully customized as well, as explained in the Business Activity Monitoring chapter.

3.5. 10-Minute Tutorial using Eclipse

The following screencast [http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf] gives
an overview of how to use the Eclipse tooling. It shows you:
« How to import and execute the evaluation sample project

« Import the evaluation project (included in the jbpme-installer)

* Open the Evaluation.bpmn process

» Open the com.sample.ProcessTest Java class

» Execute the ProcessTest class to run the process

* How to create a new jBPM project (including sample process and JUnit test)

27

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

stance.

ject wizard.
cess. Select "

elect "iBPM project" and click "Ne
i Hello

3.6. Configuration

3.6.1. Playgrounds

The workbench by default brings two sample playground repositories (by cloning the jopm-play-
ground repository hosted on GitHub). In cases where this is not wanted (access to Internet might
not be available or there might be a need to start with a completely clean installation of the work-

28

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

bench) this default behavior can be turned off. To do so, change the following system property in
the start.jboss target to false in the build.xml:

- Dor g. ki e. deno=f al se

Note that this will create a completely empty version of the workbench. To be able to start modeling
processes, the following elements need to be created first:

« Organizational unit
» Repository (new or clone existing one)

» Project

3.6.2. Workbench Authentication

The workbench web application is using the "default” security domain for authenticating and au-
thorizing users (as specified in the WEB-INF/jboss-web.xml inside the WARS).

The application server is configured by default to use properties files for specifying users. Note
that this is for demo purposes only (as passwords and roles are stored in simple property files).
The security domain is configured in the standalone.xml configuration file as follows:

<security-domain nane="other" cache-type="defaul t"> <aut henti cati on> <l ogi n-
nmodul e code="UsersRol es" flag="required"> <nmodul e-opti on nane="usersProperties"
val ue="${j boss. server.config.dir}/users. properties"/> <nodul e-opti on

name="rol esProperties" val ue="${j boss.server.config.dir}/rol es.properties"/> </|ogin-nodul e>
</ aut henti cati on></security-donai n>
nane="ot her" cache-

type="defaul t"> <authentication> <l ogi n- nodul e
code="User sRol es" fl ag="required"> <nmodul e- opti on nane="user sProperties"
val ue="${j boss. server. config.dir}/users. properties"/> <nmodul e- opti on nanme="r ol esProperties"

val ue="${j boss. server.config.dir}/rol es. properties"/>
</l ogi n- nodul e>
</

By default, these configuration files contain the following users:

Table 3.1. Default users

Name Password Workbench roles Task roles
admin admin admin,analyst

krisv krisv admin,analyst

john john analyst Accounting,PM
mary mary analyst HR

sales-rep sales-rep analyst sales

29

jBPM Installer

Name Password Workbench roles Task roles

jack jack analyst IT

katy katy analyst HR

salaboy salaboy admin,analyst IT,HR,Accounting

Authentication can be customized by editing the authentication and configuration files in the jbpm-
installer/auth folder and/or by changing the standalone-*.xml files in the jopm-installer folder. Note
that you need to rerun the installer to make sure the modified files are copied and picked correctly.

3.6.3. Using your own database

3.6.3.1. Introduction

By default, the jbpm-installer uses an H2 database for persisting runtime data. In this section we
will:

1. modify the persistence settings for runtime persistence of process instance state

2. test the startup with our new settings!

You will need a local instance of a database, in this case we will use MySQL.

First though, let's look at the persistence setup that jBPM uses. In the demo, and in general, there
are following types of persistent entities used by jBPM:

« entities used for saving the actual session and process instance information - aka runtime data.
* entities used for logging and generating reports - aka audit log.
« entities used by the task service.

“persistent entities” in this context, are Java classes that represent information in the database.

3.6.3.2. Database setup

In the MySQL database used in this quickstart, create a single user:

 user/schema "jbpm" with password "jbpm" (which will be used to persist all entities)

If you end up using different names for your user/schemas, please make a note of where we insert
"jopm" in the configuration files.

If you want to try this quickstart with another database, a section at the end of this quickstart
describes what you may need to modify.

3.6.3.3. Configuration

The following files define the persistence settings for the jbpm-installer demo:

30

jBPM Installer

 jbpm-installer/db/jbpm-persistence-JPA2.xml
 Application server configuration

* standalone-*.xml

Tip

There are multiple standalone.xml files available (depending on whether you are
using JBoss AS 7.1.1 or JBoss EAP 6.1.1 and whether you are running the normal
or full profile). The full profile is required to use the JMS component for remote in-
tegration. Best practice is to update all standalone.xml files to have consistent set-
up but most important is to have standalone-full-as-7.1.1.Final.xml properly con-
figured as this is used by default by the installer.

Do the following:

» Disable H2 default database and enable MySQL database in build.properties

def aul t is H2# H2. versi on=1. 3. 168# db. nane=h2# db. driver.jar.nane=
${db. nane}.jar# db. dri ver. downl oad. url =htt p: //repol. maven. or g/ maven2/ conf h2dat abase/ h2/
${H2. versi on}/ h2- ${ H2. ver si on}. j ar #nysql db. nane=nysql db. dri ver. nodul e. prefi x=conm

nysql db. dri ver.j ar. name=${db. nane}- connect or-j ava. j ardb. dri ver. downl oad. url =https://
repository.jboss. org/ nexus/service/local /repositories/central/content/nmysql/nysql-connector-
javal5.1.18/nysql -connector-java-5.1.18.jar

H2#

H2. versi on=1. 3. 168#

db. nane=h2# db. driver.jar.nane=

${db. nane}.jar# db. dri ver. downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/ ${ H2. ver si on}/
h2-

${H2. version}.jar

#mysql

db. nane=nysql db. dri ver. nodul e. prefi x=conm

nysql db. dri ver.j ar. nane=${db. nane} - connect or -

java.jardb. driver.downl oad. url =https://repository.jboss. org/ nexus/servicel/local/
repositories/central /content/ nysql/nysql -connector-java/5. 1. 18/ nysql - connect or -
java-5.1.18.jar

e db/j bpm persi stence- JPA2. xmi :

This is the JPA persistence file that defines the persistence settings used by jBPM for both the
process engine information, the logging/BAM information and task service.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

<property name="hi bernate. dial ect" val ue="org. hi bernate. di al ect. H2Di al ect"/>

31

jBPM Installer

In the case of a MySQL database, you need to change it to:

<property name="hi bernate. dial ect" val ue="org. hi bernate. di al ect. \ySQ.Di al ect"/>

For those of you who decided to use another database, a list of the available hibernate dialect
classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/ses-
sion-configuration.html#configuration-optional-dialects].

st andal one. xni :

This file is the configuration for the standalone JBoss application server. When the installer
installs the demo, it copies these files to the st andal one/ conf i gur at i on directory in the JBoss
server directory.

We need to change the datasource configuration in st andal one. xm so that the jBPM process
engine can use our MySQL database

The original file contains the following lines:

<dat asour ce jndi-name="java:j boss/ dat asources/j bpnDS" enabl ed="true" use-java-context="true"
pool - nanme="H2DS" >
<connection-url >jdbc: h2:tcp:/ /| ocal host/runti ne/jbpm denp</ connecti on-url >
<driver>h2</driver>
<pool ></ pool >
<security>
<user - nanme>sa</ user - nane>
<passwor d></ passwor d>
</ security>
</ dat asour ce>
<drivers>
<driver name="h2" nodul e="com h2dat abase. h2">
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>

Change the lines to the following:

<dat asour ce j ndi - nane="j ava: j boss/ dat asour ces/j bpnDS" pool - nanme="M/SQLDS" enabl ed="true" use-
java-context ="true">
<connection-url >jdbc: nmysqgl ://I ocal host: 3306/ bpn</ connecti on-url >
<driver>nysql </driver>
<pool ></ pool >
<security>
<user - nane>j bpnk/ user - nane>
<passwor d>j bpnk/ passwor d>
</security>

32

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

jBPM Installer

</ dat asour ce>
<drivers>
<driver nanme="nysql" nodul e="com nysql ">
<xa- dat asour ce-cl ass>com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce</ xa- dat asour ce-
cl ass>
</driver>
</drivers>

Starting the deno

We've modified all the necessary files at this point. Now would be a good time to make sure
your database is started up as well!

The installer script copies this file into the jopm-console WAR before the WAR s installed on
the server. If you have already run the installer, it is recommended to stop the installer and
clean it first using

ant stop. deno

and

ant cl ean. deno

before continuing.

Run

ant install.denp

to (re)install the wars and copy the necessary configuration files. Once you've done that, (re)start
the demo using

ant start.deno

Probl ens?
If this isn't working for you, please try the following:

» Please double check the files you've modified: | wrote this, but still made mistakes when
changing files!

33

jBPM Installer

» Please make sure that you don't secretly have another (unmodified) instance of JBoss AS
running.

« If neither of those work (and you're using MySQL), please do then let us know.

3.6.3.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when
going through the steps above:

« Change the JDBC URLs, usernames and passwords, and Hibernate dialect lines to match your
database information in the configuration files mentioned above.

« In order to make sure your driver will be correctly installed in the JBoss AS 7 server, you can do
one of two things. Both ways are explained here [https://community.jboss.org/wiki/DataSource-
ConfigurationinAS7].

* Install [https://lcommunity.jboss.org/wi-
ki/DataSourceConfigurationinAS7#lnstalling_a JDBC_driver_as_a_module] the driver JAR
as a module, which is what the install script does.

» Otherwise, you can modify and install [https://community.jboss.org/wi-
ki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the down-
loaded JAR as a deployment. In this case you will have to copy the JAR yourself to the
st andal one/ depl oynent s directory.

If you choose to install driver as JBoss module, please do the following:

 Disable default H2 driver properties

default is H2

H2.version=1.3.168

db. nane=h2

db. driver.jar.name=${db. nanme}.j ar

db. driver.downl oad. url =http://repol. maven. or g/ maven2/ conl h2dat abase/ h2/ ${ H2. ver si on}/ h2-
${H2. version}.jar

» Copy one of the example configs (mysql or postgresql)

#post gr esql

db. nanme=post gr esql

db. dri ver. nodul e. prefi x=or g/ post gr esql

db. driver.jar.name=${db. nane}-j dbc.jar

db. driver.downl oad. url =https://repository.jboss. org/ nexus/content/repositories/thirdparty-
upl oads/ post gresql / post gresql /9. 1-902. j dbc4/ post gresql - 9. 1-902. j dbc4. j ar

34

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment

jBPM Installer

» Change the db. nane property in bui | d. properties to the name of the downloaded jdbc
driver JAR you placed in db/ dri vers.

» Change the <dri ver > information in the <dat asour ce> section of st andal one. xm so that
it refers to the name of your driver module (see next step). For example:

<dri ver>post gresql </driver>

* Further on in st andal one. xm is the <dri ver s> section of the <dat asour ces> (note the
plural: drivers, datasources). We need to do the following with this file:

» Change the name of the driver to match the name in the last step,
« Give an appropriate name to the module,

« And fill in the correct name of the XA datasource class to use.
For example:

<drivers>
<driver nanme="postgresql" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gresql . xa. PGXADat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>

» Change the db.driver.nodul e. prefix property in build.properties to the same
“value” you used for the module name in standal one.xm . In the example above, |
used “org. post gresql” which means that | should then use org/ postgresqgl for the
db. dri ver. nodul e. prefix property.

 Lastly, you'll have to create the db/ ${ db. name} _nodul e. xn file. As an example you can
use db/mysqgl_module.xml, so just make a copy of it and:

¢ Change the name of the module to match the db. dri ver. nodul e. prefi x property above

¢ Change the name of the module resource to the name of the JDBC driver JAR that was
downloaded.
The top of the original file looks like this:

<nmodul e xm ns="urn:j boss: nodul e: 1. 0" nanme="com nysql "> <resour ces> <resour ce-r oot
pat h="nysql - connector-java.jar"/> </ resources>

nanme="com nysql ">

<resour ces> <resource-root path="nysql-connector-java.jar"/

> </

35

jBPM Installer

Change those lines to look like this, for example:

<nodul e xm ns="urn: j boss: nodul e: 1. 0" name="org. post gresql ">
<resour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>
</ resources>

3.6.4. |BPM database schema scripts (DDL scripts)

By default the demo setup makes use of Hibernate auto DDL generation capabilities to build up
the complete database schema, including all tables, sequences, etc. This might not always be
welcomed (by your database administrator), and thus the installer provides DDL scripts for most
popular databases.

Table 3.2. DDL scripts

Database name Location

db2 jbpm-installer/db/ddI-scripts/db2

derby jbpm-installer/db/ddI-scripts/derby

h2 jbpm-installer/db/ddl-scripts/h2

hsgldb jbpm-installer/db/ddl-scripts/hsqldb
mysql5 jbpm-installer/db/ddI-scripts/mysql5
mysgqlinnodb jbpm-installer/db/ddI-scripts/mysqlinnodb
oracle jbpm-installer/db/ddI-scripts/oracle
postgresq| jbpm-installer/db/ddI-scripts/postgresq|l
sqlserver jbpm-installer/db/ddl-scripts/sqlserver
sqlserver2008 jbpm-installer/db/ddI-scripts/sqlserver2008

DDL scripts are provided for both jBPM and Quartz schemas although Quartz schema DDL script
is only required when the timer service should be configured with Quartz database job store. See
the section on timers for additional details.

This can be used to initially create the database schema, but it can also serve as the basis for
any\ optimization that needs to be applied - such as indexes, etc.

3.6.5. jBPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require
additional attention but in case it does, here is a list of available targets that might be needed to
perform some of the steps manually.

36

jBPM Installer

Table 3.3. JBPM installer available targets

Target

clean.db

clean.demo

clean.demo.noeclipse

clean.eclipse
clean.generated.dd|

clean.jboss

clean.jboss.repository

download.dashboard

download.db.driver

download.ddl.dependencies

download.droolsjbpm.eclipse
download.eclipse
download.jboss

download.jBPM.bin

download.jBPM.console
install.dashboard.into.jboss
install.db.files

install.demo

install.demo.eclipse

install.demo.noeclipse

install.dependencies

install.droolsjbpm-eclipse.into.eclipse

install.eclipse

install.jboss

Description

cleans up database used by jBPM demo (ap-
plies only to H2 database)

cleans up entire installation so new installation
can be performed

same as clean.demo but does not remove
Eclipse

removes Eclipse and its workspace
removes DDL scripts generated if any

removes application server with all its deploy-
ments

removes repository content for demo setup
(guvnor Maven repo, niogit, etc)

downloads jBPM dashboard component (BAM)

downloads DB driver configured in
build.properties

downloads all dependencies required to run
DDL script generation tool

downloads Drools and jBPM Eclipse plugin
downloads Eclipse distribution
downloads JBoss Application Server

downloads jBPM binary distribution (jBPM libs
and its dependencies)

downloads jBPM console for JBoss AS
installs jBPM dashboard into JBoss AS
installs DB driver as JBoss module
installs complete demo environment

installs Eclipse with all jBPM plugins, no server
installation

similar to install.demo but skips Eclipse instal-
lation

installs custom libraries (such as work item
handlers, etc) into the jBPM console

installs droolsjbpm Eclipse plugin into Eclipse
install Eclipse IDE
installs JBoss AS

37

jBPM Installer

‘ Target Description ‘
install.jBPM-console.into.jboss installs jBPM console application into JBoss
AS

3.7. Frequently Asked Questions

Some common issues are explained below.
Q: What if the installer complains it cannot download component X?

A: Are you connected to the Internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarily
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpm-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain JAR/WAR/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jopm-
console. What can | do?

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/stand-
alone/log/server.log (for JBoss AS7).

For all other questions, try contacting the jBPM community as described in the Getting Started
chapter.

38

Chapter 4. Examples

4.1. Introduction

The web-based workbench by default will install two sample repositories that contain various sam-
ple projects that help you getting started. This section shows different examples that can be found
in the jbpm-playground repository (also available here: https://github.com/droolsjbpm/jbpm-play-
ground). All these examples are high level and business oriented.

If you want to contribute with these examples please get in touch with any member of the jBPM/
Drools Team.

4.2. Human Resources Example

Let's imagine for a second that you work for a Software company that works with several projects
and from time to time the company wants to hire new developers. So, which employees, Depart-
ments and Systems are required to Hire a new Developer in your company? Trying to answering
these questions will help you to define your business process. The following figure, represents
how does this process works for Acme Inc. We can clearly see that three Departments are in-
volved: Human Resources, IT and Accounting teams are involved. Inside our company we have
Katy from the Human Resources Team, Jack on the IT team and John from the Accounting team
involved. Notice that there are other people inside each team, but we will be using Katy, Jack and
John to demonstrate how to execute the business process.

39

https://github.com/droolsjbpm/jbpm-playground
https://github.com/droolsjbpm/jbpm-playground

Examples

Resources

~ Y o

" Mail Job
Proposal

Initial HR Technical
Interview b Interview H Job Proposal ’——>

Lt f -

Notice that there are 6 activities defined inside this business process, 4 of them are User Tasks,
which means that will be handled by people. The other two are Service Tasks, which means an
interaction with another system will be required.

=) N _::“ N
Sign Contract }——» Twit new Hire ’——.
\ . '\. -)1

Ty #

The process diagram is self explanatory, but just in case and to avoid confusions this is what is
supposed to happen for each instance of the process that is started a particular candidate:

« The Human Resources Team perform the initial interview to the candidate to see if he/she fits
the profile that the company is looking for.

« TheIT Department perform a technical interview to evaluate the candidate skills and experience.

40

Examples

» Based on output of the Human Resources and IT teams, the accounting team create a Job
Proposal which includes the yearly salary for the candidate. The proposal is created based on
the output of both of the interviews (Human Resources and Technical).

» As soon as the proposal has being created it is automatically sent to the candidate via email.

« If the candidate accept the proposal, a new meeting is created with someone from the Human

Resource team to sign the contract.

« If everything goes well, as soon as the process is notified that the candidate was hired, the
system will automatically post a tweet about the new Hire using the Twitter service connector.

As you can see Jack, John and Katy will be performing the tasks for this example instance of the
business process, but any person inside the company that have those Roles will be able to claim

and interact with those tasks.

4.2.1. The KIE Project: human-resources

Let's take a look at the Project content in the Authoring Perspective:

Dashbo

7 New [tem = Tools ~

lorer o
jbpm ~ human-resources ~

XOCESSES

TIONS

posal-taskform
cform
ew-taskform
act-taskform

view-taskform

JEFINITIONS

ritions

As you can see it contains the hiring.bpmn2 process and a set of forms for each human task.
You can explore these knowledge assets by clicking on them. You will notice that different editors
will open for different types of assets. If you click on the Business Process file you will be able to

Project: [human-resources:org.jbpm:1.0]

Project General Settings
Project Name Human Resources Example

Project
Description

Group artifact version

Group ID org.jbpm
Artifact ID human-resources
Version ID 1.0

edit the process definition using the Process Designer:

Example: MyProject @

41

Save

Example: com.myorganization.myprojects @

Build & D

Examples

s Process [hiring]

DBX D€ O a- &~ sk @@ 66 H5 O (47 F b~ Br 0 < &

ess Modelling Simulation Results

=4

Send Proposal

&

HE Interview

&

Tech Interview

& &

Sign Contract

Create
Proposal

Feel free to inspect the forms as well. Notice that the Form Modeller will be opened and there you

can edit the forms to fit your requirements.

lorer & Form Modeler [HRInterview-taskform] Save || L
. = Form data origin = =5 Add fields by origin =% Add fields by type | %5 Form properties [_] Show mode @ Bindings |
jbpm ~ human-resources ~ i 50 100 150 E] =] 200 E=] 400 450 500 0

I® HTML Iabel s
e ~ : ® Candidate Name
E Simple subform S ?
XOCESSES = 1 eage
5 Multiple subform -~ 3
[Short text r 49
73 eEmaill
TIONS D Long text [3
17
¥ 13
posal-taskform [Float ™ 31 escore
cform i E -
. O Decimal [; |
ew-taskform . [BigDecimal - 0]
act-taskform [Biginteger r~ =4
o o
o
view-taskform = I 3

4.2.2. Building the Human Resources Example

In order to build the Project so it gets available in the Process Definitions List you need to go to
the Authoring Perspective and open the Project Editor panel:

42

Examples

Explore + New Item ~ m
Project Explorer

Data Modeler
example ~ jbpm ~ human-resources -

Once you open the Project Editor, you will see on the top right corner of the panel the button called
Build & Deploy. This button will allow you to create a new JAR artifact that will be deployed to the
Runtime environment as a new Deployment Unit.

' [human-resources:org.jbpm:1.0] Save | Build & Deploy

ct General Settings

Name Human Resources Example

Description

Once you get the visual notification that the project was built and deployed successfully you can
go to the Deployments screen to verify that your artifact is there. In order to do that go to the top
level menu called Deploy -> Deployments

Deploy ~

Deployments
Jobs

In the Deployments screen you will find all the deployed units. By default when you Build & Deploy
a project from the Project Editor, it will be automatically deployed using the default configurations.
That is Singleton Strategy, the default KIE Base and the default KIE Session will be used.

If you want a more advanced deployment, that is selecting a different strategy or using non defaults
KIE Base or KIE Session you will be able to undeploy and re-deploy your artifacts using their GAV
and selecting non default options.

43

Examples

t Units New Deployment Unit Re
Group ID Artifact Version Kie Base Name Kie Session Name Runtime strategy

ation: 1.0 org.joppm evaluation 1.0 DEFAULT DEFAULT SINGLETON

n-resources:1.0 org.joppm human-resources 1.0 DEFAULT DEFAULT SINGLETON

Once your artifact that contains the process definition is deployed, the Process Definition will be
available under Process Management -> Process Definitions.

4.2.3. Create a new Process Instance

In order to create new Process Instances you need to go to Process Management -> Process
Definitions.

Here you will find all the available process definitions in the runtime environment. If you want to
add new process definitions look at the previous sections where it is explained how to build and
deploy KIE Projects.

Authoring -

finitions Refresh %= ~ Details Options' Re

Version Actions
Definition Id hiring
1 ®Q
Definition Name Hiring a Developer
per 1 @ Q

Deployment org.jbpm:human-resources:1.0

Human Tasks Sign Contract
Create Proposal
Tech Interview
HR Interview

Human Task Count 4

User and Groups HR - Sign Contract
Accounting - Create Proposal
IT - Tech Interview
HR - HR Interview

44

Examples

You can start process instances using any of the two options highlighted in the previous screen.

In order to create a new process instance most of the processes will require you to fill in some
information and for that a form will be displayed. For this specific use case the name of the can-
didate that we are interviewing is required:

Hiring a Developer

*Candidate Mame

salaboy|

If we hit the big Start button, the new process instance will be created and the first task of the
process will be create for the Human Resources Team. Depending on the assigned roles of the
user that you are using to create the process instance you will be able to see the created task or
not. In order to see the first task of the process we will need to logout tot he application and log
in as someone from the Human Resources team.

After starting the process you can go to the Task -> Tasks section to interact with the created
human tasks. Notice that in order to see the tasks in the task lists you will need to belong to some
specific user Groups. For example the HR Interview task will be visitable for any member of the
HR group, the Tech Interview will be visible by any member of the IT Group.

4.3. Examples zip

A zip file of examples can also be downloaded from the downloads page, containing various
examples that can be opened in the Eclipse-based Developers Tools. Simply download and unzip
the examples artefact and import into your Eclipse workspace.

45

Part Il. IBPM Core

Using the jBPM Core Engine

Chapter 5. Core Engine API

5.1. Overview

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definitions
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

AT Ty
~

Stateful
Knowledge Knowledge
Base Session

Process
Instance

Process
Definition

For example, imagine you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order

47

Core Engine API

comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and create one session that you then use to execute all your processes.

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

5.2. KieBase

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a KieHelper to load processes from various resources (for example from the classpath
or from the file system), and then create a new knowledge base from that helper. The following
code snippet shows how to create a knowledge base consisting of only one process definition
(using in this case a resource from the classpath).

Ki eHel per ki eHel per = new Ki eHel per();

Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newCl assPat hResour ce(" MyProcess. bpmm"))
.bui ld();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

48

Core Engine API

This is considered manual creation of knowledge base and while it is simple it is not recommend-
ed for real application development but more for try outs. Following you'll find recommended and
much more powerful way of building knowledge base, knowledge session and more - Runtime-
Manager.

5.3. KieSession

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
shippet shows how easy it is to create a session based on the previously created knowledge base,
and to start a process (by id).

Ki eSessi on ksessi on = kbase. newKi eSessi on();
Processl nstance processlnstance = ksession.startProcess("com sanpl e. M/Process");

5.3.1. ProcessRuntime

The ProcessRunt i me interface defines all the session methods for interacting with processes, as
shown below.

| **

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id.

*

* (@aram processld The id of the process that should be started

* @eturn the that represents the instance of the process that was started
*/

Processl nstance startProcess(String processld);

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as nane-value pairs), and these will be set

as variabl es of the process instance.

* @aram processld the id of the process that should be started
* @aram paranmeters the process variables that should be set when starting the process instance
* @eturn the that represents the instance of the process that was started
*/
Processl nstance startProcess(String processld,
Map<String, Object> paraneters);

* Signal s the engine that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All process instances that are listening to this type

* of (external) event will be notified. For perfornmance reasons, this type of event
* signaling should only be used if one process instance should be able to notify

* other process instances. For internal event within one process instance, use the

49

Core Engine API

* signal Event nmethod that al so include the processlnstanceld of the process instance
* in question.

*

* @aramtype the type of event

* @aram event the data associated with this event

*/
voi d signal Event(String type,

bj ect event);

/*-k

* Signals the process instance that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All node instances inside the given process instance that

* are listening to this type of (internal) event will be notified. Note that the event
* will only be processed inside the given process instance. All other process instances
* waiting for this type of event will not be notified.

* @aramtype the type of event
* @aram event the data associated with this event
* @ar am processlnstanceld the id of the process instance that should be signal ed
*/
voi d signal Event(String type,
bj ect event,
I ong processlnstancel d);

/*-k

* Returns a collection of currently active process instances. Note that only process
* instances that are currently | oaded and active inside the engine will be returned.
* \When using persistence, it is likely not all running process instances w |l be |oaded
* as their state will be stored persistently. It is reconmended not to use this

* nethod to collect information about the state of your process instances but to use
* a history log for that purpose.

*

* @eturn a collection of process instances currently active in the session

*/

Col | ecti on<Processl nst ance> get Processl nstances();

/**

* Returns the process instance with the given id. Note that only active process instances
*will bereturned. If a process instance has been conpleted already, this method will return
* null.

*

* @aramid the id of the process instance

* @eturn the process instance with the given id or null if it cannot be found

*/

Processl nstance get Processl nstance(l ong processl nstancel d);

/**

* Aborts the process instance with the given id. |f the process instance has been conpl eted
* (or aborted), or the process instance cannot be found, this nmethod will throw an

* |11 egal Argunment Excepti on.

*

* @aramid the id of the process instance

*/

voi d abort Processl nstance(l ong processlnstancel d);

/**
* Returns the WorkltenmManager related to this session. This can be used to
* register new WirkltenHandl ers or to conplete (or abort) Workltens.

50

Core Engine API

*

* the Workltemvanager related to this session
*/
Wor ki t emVanager get Wor kil t emvanager () ;

5.3.2. Event Listeners

The session provides methods for registering and removing listeners. A ProcessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event);

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl et ed(ProcessConpl et edEvent event);

voi d beforeNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d bef oreNodeLeft(ProcessNodeLeftEvent event);

voi d afterNodeLeft(ProcessNodelLeftEvent event);

voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVariabl eChanged(ProcessVari abl eChangedEvent event);

A note about before and after events: these events typically act like a stack, which means that any
events that occur as a direct result of the previous event, will occur between the before and the
after of that event. For example, if a subsequent node is triggered as result of leaving a node, the
node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodelLeftEvent
of the node that is left (as the triggering of the second node is a direct result of leaving the first
node). Doing that allows us to derive cause relationships between events more easily. Similarly,
all node triggered and node left events that are the direct result of starting a process will occur
between the beforeProcessStarted and afterProcessStarted events. In general, if you just want
to be notified when a particular event occurs, you should be looking at the before events only (as
they occur immediately before the event actually occurs). When only looking at the after events,
one might get the impression that the events are fired in the wrong order, but because the after
events are triggered as a stack (after events will only fire when all events that were triggered as
a result of this event have already fired). After events should only be used if you want to make
sure that all processing related to this has ended (for example, when you want to be notified when
starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending
on the type of node, some nodes might only generate node left events, others might only generate
node triggered events. Catching intermediate events for example are not generating triggered

51

Core Engine API

events (they are only generating left events, as they are not really triggered by another node, rather
activated from outside). Similarly, throwing intermediate events are not generating left events
(they are only generating triggered events, as they are not really left, as they have no outgoing
connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Ki eServi ces lets you add a Ki eRunt i meLogger to your session, as shown below. When
creating a console logger, the knowledge session for which the logger needs to be created must
be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

i mport org. ki e. api.KieServices;
i nport org.kie.api.logger.Ki eRunti nmeLogger ;

Ki eRunti neLogger |ogger = KieServices. Factory. get().getLoggers().newri|eLogger(ksession, "test");
/1 add invocations to the process engi ne here,
/'l e.g. ksession.startProcess(processld);

| ogger.close();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

52

Core Engine API

= =, RuleFlow started: ruleflow[com.sample . ruleflow]
= #] RuleFlow node triggered: Start in process ruleflow[com sample ruleflow]
=) RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
= 4 RuleFlow node triggered: End in process ruleflow[com.sample.ruleflow]

= RuleFlow completed: ruleflow[com sample ruleflow]

5.3.3. Correlation Keys

A common requirement when working with processes is ability to assign a given process instance
some sort of business identifier that can be later on referenced without knowing the actual (gen-
erated) id of the process instance. To provide such capabilities, jBPM allows to use Correlation-
Key that is composed of CorrelationProperties. CorrelationKey can have either single property
describing it (which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface

Correl ati onAwar eProcessRunt i ne

that exposes following methods:

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as nane-val ue pairs), and these will be set

* as variables of the process instance.

* processld the id of the process that should be started

* correl ati onKey customcorrel ati on key that can be used to identify process instance

* paranmeters the process variables that should be set when starting the process instance
* the that represents the instance of the process that was started

*/

Processl nstance startProcess(String processld, Correl ationKey correl ati onKey, Map<String, Cbject> paraneter:

/**

* Creates a new process instance (but does not yet start it). The process

* (definition) that should be used is referenced by the given process id.

* Paraneters can be passed to the process instance (as nane-val ue pairs),

* and these will be set as variables of the process instance. You should only

* use this nethod if you need a reference to the process instance before actually
* starting it. Oherw se, use startProcess.

* processld the id of the process that should be started

* correl ati onKey customcorrel ati on key that can be used to identify process instance

* paranmeters the process variables that should be set when creating the process instance
* the that represents the instance of the process that was created (but not yet started)
*/

Processl nstance createProcesslnstance(String processlid, Correlati onKey correl ati onKey, Map<String, Object> |

53

Core Engine API

| **

* Returns the process instance with the given correlationkKey. Note that only active process instances
*will bereturned. If a process instance has been conpl eted al ready, this nethod will return

*

*

* @aramcorrel ati onKey the customcorrel ati on key assi gned when process i nstance was creat ed
* @eturn the process instance with the given id or if it cannot be found
*/
Processl nst ance get Processlnstance(Correl ati onKey correl ati onKey);

Correlation is usually used with long running processes and thus require persistence to be enabled
to be able to permanently store correlation information.

5.3.4. Threads

In the following text, we will refer to two types of "multi-threading™: logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement brings
with it a number of complications. While it might seem that multi-threading would bring perfor-
mance benefits with it, the extra logic needed to make sure the different threads work together
well means that this is not guaranteed. There is also the extra overhead incurred because we
need to avoid race conditions and deadlocks.

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread. sl eep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
conpl et eworkl ten(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

54

Core Engine API

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

5.4. RuntimeManager

5.4.1. Overview

RuntimeManager has been introduced to simplify and empower usage of knowledge API espe-
cially in context of processes. It provides configurable strategies that control actual runtime exe-
cution (how KieSessions are provided) and by default provides following:

» Singleton - runtime manager maintains single KieSession regardless of number of processes
available

« Per Request - runtime manager delivers new KieSession for every request

« Per Process Instance - runtime manager maintains mapping between process instance and
KieSession and always provides same KieSession whenever working with given process in-
stance

Runtime Manager is primary responsible for managing and delivering instances of RuntimeEngine
to the caller. In turn, RuntimeEngine encapsulates two the most important elements of jBPM en-
gine:

» KieSession

* TaskService

Both of these components are already configured to work with each other smoothly without addi-
tional configuration from end user. No more need to register human task handler or keeping track
if it's connected to the service or not.

public interface Runti meManager {

/**

* Returns <code>Runti neEngi ne</code> instance that is fully initialized

*

* <|i>KiseSession is created or |oaded dependi ng on the strategy</Ili>

* TaskService is initialized and attached to ksession (via listener)

55

Core Engine API

* WorkltenHandl ers are initialized and regi stered on ksession</I|i>
* EventListeners (process, agenda, worki ng menory) are initialized and added t o ksessi on</
li>
* <ful >
*@ar ancont ext t heconcr et ei npl enent ati onof t hecont extt hati ssupport edbygi ven<code>Runt i neManager </
code>
* @eturn instance of the <code>Runti neEngi ne</code>
*/
Runt i meEngi ne get Runti meEngi ne(Cont ext <?> cont ext);

/-k*

* Unique identifier of the <code>Runti nmeManager </ code>
* @eturn

*/

String getldentifier();

/*-k
* Di sposes <code>Runti nmeEngi ne</code> and notifies all |isteners about that fact.
* This nmet hod shoul d al ways be used to di spose <code>Runti meEngi ne</ code> that is not needed
* anynore.

* ksession. di spose() shall never be used with Runti neManager as it will break the internal
* nechani sms of the manager responsible for clear and efficient disposal.

* Di spose is not needed if <code>Runt i meEngi ne</
code> was obtained within active JTA transacti on,
* this means that when get Runti neEngi ne net hod was invoked during active JTA transacti on then di spose of
* the runtine engine will happen automatically on transacti on conpletion.
* @aram runtime
*/
voi d di sposeRunti neEngi ne(Runti meEngi ne runtine);

| **

* Cl oses <code>Runti neManager </ code> and rel eases its resources. Shall al ways be cal | ed when
* runtinme manager is not needed any nore. Gtherwise it will still be active and operational .
*/

voi d close();

RuntimeEngine interface provides the most important methods to get access to engine compo-
nents:

public interface Runti meEngi ne {

/**
* Returns <code>Ki eSessi on</code> configured for this <code>Runti neEngi ne</ code>
* @eturn
*/

Ki eSessi on get Ki eSessi on();

/**
* Returns <code>TaskServi ce</code> configured for this <code>Runti neEngi ne</ code>
* @eturn
=

TaskServi ce get TaskService();

56

Core Engine API

RuntimeManager will ensure that regardless of the strategy it will provide same capabilities when
it comes to initialization and configuration of the RuntimeEngine. That means
» KieSession will be loaded with same factories (either in memory or JPA based)

« WorkltemHandlers will be registered on every KieSession (either loaded from db or newly cre-
ated)

» Event listeners (Process, Agenda, WorkingMemory) will be registered on every KieSession (ei-
ther loaded from db or newly created)

» TaskService will be configured with:
» JTA transaction manager
» same entity manager factory as for the KieSession
» UserGroupCallback from environment

On the other hand, RuntimeManager maintains the engine disposal as well by providing dedicated
methods to dispose RuntimeEngine when it's no more needed to release any resources it might
have acquired.

5.4.2. Strategies

Singleton strategy - instructs RuntimeManager to maintain single instance of RuntimeEngine
(and in turn single instance of KieSession and TaskService). Access to the RuntimeEngine is
synchronized and by that thread safe although it comes with a performance penalty due to syn-
chronization. This strategy is similar to what was available by default in jBPM version 5.x and it's
considered easiest strategy and recommended to start with.

It has following characteristics that are important to evaluate while considering it for given scenario:

» small memory footprint - single instance of runtime engine and task service
« simple and compact in design and usage
 good fit for low to medium load on process engine due to synchronized access

« due to single KieSession instance all state objects (such as facts) are directly visible to all
process instances and vice versa

* not contextual - meaning when retrieving instances of RuntimeEngine from singleton Runtime-
Manager Context instance is not important and usually EmptyContext.get() is used although
null argument is acceptable as well

» keeps track of id of KieSession used between RuntimeManager restarts to ensure it will use
same session - this id is stored as serialized file on disc in temp location that depends on the
environment can be one of following:

57

Core Engine API

 value given by jopm.data.dir system property
 value given by jboss.server.data.dir system property
 value given by java.io.tmpdir system property

Per request strategy - instructs RuntimeManager to provide new instance of RuntimeEngine for
every request. As request RuntimeManager will consider one or more invocations within single
transaction. It must return same instance of RuntimeEngine within single transaction to ensure
correctness of state as otherwise operation done in one call would not be visible in the other. This
is sort of "stateless" strategy that provides only request scope state and once request is completed
RuntimeEngine will be permanently destroyed - KieSession information will be removed from the
database in case persistence was used.

It has following characteristics:

« completely isolated process engine and task service operations for every request
« completely stateless, storing facts makes sense only for the duration of the request

 good fit for high load, stateless processes (ho facts or timers involved that shall be preserved
between requests)

» KieSession is only available during life time of request and at the end is destroyed

* not contextual - meaning when retrieving instances of RuntimeEngine from per request Run-
timeManager Context instance is notimportant and usually EmptyContext.get() is used although
null argument is acceptable as well

Per process instance strategy - instructs RuntimeManager to maintain a strict relationship be-
tween KieSession and Processinstance. That means that KieSession will be available as long as
the Processlnstance that it belongs to is active. This strategy provides the most flexible approach
to use advanced capabilities of the engine like rule evaluation in isolation (for given process in-
stance only), maximum performance and reduction of potential bottlenecks intriduced by synchro-
nization; and at the same time reduces number of KieSessions to the actual number of process
instances rather than number of requests (in contrast to per request strategy).

It has following characteristics:

* most advanced strategy to provide isolation to given process instance only

e maintains strict relationship between KieSession and Processinstance to ensure it will always
deliver same KieSession for given ProcessInstance

« merges life cycle of KieSession with Processinstance making both to be disposed on process
instance completion (complete or abort)

« allows to maintain data (such as facts, timers) in scope of process instance - only process
instance will have access to that data

58

Core Engine API

* introduces bit of overhead due to need to look up and load KieSession for process instance

« validates usage of KieSession so it cannot be (ab)used for other process instances, in such a
case exception is thrown

« is contextual - accepts following context instances:

» EmptyContext or null - when starting process instance as there is no process instance id
available yet

» ProcessinstanceldContext - used after process instance was created

» CorrelationKeyContext - used as an alternative to ProcessinstanceldContext to use custom
(business) key instead of process instance id

5.4.3. Usage

Regular usage scenario for RuntimeManager is:

At application startup

 build RuntimeManager and keep it for entire life time of the application, it's thread safe and
can be (or even should be) accessed concurrently

e Atrequest

» get RuntimeEngine from RuntimeManager using proper context instance dedicated to strat-
egy of RuntimeManager

» get KieSession and/or TaskService from RuntimeEngine

» perform operations on KieSession and/or TaskService such as startProcess, completeTask,
etc

* once done with processing dispose RuntimeEngine using
RuntimeManager.disposeRuntimeEngine method

» At application shutdown

 close RuntimeManager

@ Note
When RuntimeEngine is obtained from RuntimeManager within an active JTA
transaction, then there is no need to dispose RuntimeEngine at the end, as Run-
timeManager will automatically dispose the RuntimeEngine on transaction com-
pletion (regardless of the completion status commit or rollback).

59

Core Engine API

5.4.3.1. Example

Here is how you can build RuntimeManager and get RuntimeEngine (that encapsulates KieSes-
sion and TaskService) from it:

/1 first configure environnent that will be used by Runti nmeManager
Runt i meEnvi ronment environment = Runti meEnvironnent Buil der. Factory. get ()
. newDef aul t | nMenor yBui | der ()
. addAsset (Resour ceFact ory. newC assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)

.get();

/'l next create RuntineManager - in this case singleton strategy is chosen
Runti meManager nmanager = Runti meManager Factory. Factory. get (). newSi ngl et onRunti neManager (environment);

/1 then get RuntineEngi ne out of manager - using enpty context as singleton does not keep track
/1 of runtime engine as there is only one
Runt i mreEngi ne runti me = nmanager. get Runt i meEngi ne(Enpt yCont ext . get ());

/] get KieSession from runtine runtineEngine - already initialized with all handlers,
listeners, etc that were configured
/1 on the environnent

Ki eSessi on ksession = runti neEngi ne. get Ki eSessi on();

/1 add invocations to the process engine here,
/1 e.g. ksession.startProcess(processlid);

/1 and | ast dispose the runtinme engine
manager . di sposeRunt i neEngi ne(runti neEngi ne);

This example provides simplest (minimal) way of using RuntimeManager and RuntimeEngine
although it provides few quite valuable information:

« KieSession will be in memory only - by using newDefaultinMemoryBuilder
« there will be single process available for execution - by adding it as an asset

« TaskService will be configured and attached to KieSession via LocalHTWorkltemHandler to
support user task capabilities within processes

5.4.4. Configuration

The complexity of knowing when to create, dispose, register handlers, etc is taken away from the
end user and moved to the runtime manager that knows when/how to perform such operations
but still allows to have a fine grained control over this process by providing comprehensive con-
figuration of the RuntimeEnvironment.

public interface RuntineEnvironnment {

60

Core Engine API

/**
* Returns <code>Ki eBase</code> that shall be used by the nmanager
* @eturn
*/

Ki eBase get Ki eBase();

/**

* Ki eSession environnment that shall be used to create instances of <code>Ki eSessi on</code>
* @eturn

*/

Envi ronment get Envi ronnent () ;

/**

* Ki eSession configuration that shall be used to create instances of <code>Ki eSessi on</ code>
* @eturn
*/

Ki eSessi onConfi guration get Configuration();

/-k*

* Indicates if persistence shall be used for the KieSession instances
* @eturn

*/

bool ean usePersi stence();

/**
* Delivers concrete i npl enent ati on of <code>Regi st er abl el t ensFact or y</
code> to obtain handlers and |isteners
* that shall be registered on instances of <code>Ki eSessi on</code>
* @eturn
*/
Regi st erabl el t ensFact ory get Regi sterabl eltensFactory();

| **

* Delivers concrete i npl enent ati on of <code>User GroupCal | back</
code> that shall be registered on instances
* of <code>TaskServi ce</code> for managi ng users and groups.
* @eturn
*/
User GroupCal | back get User G- oupCal | back() ;

/**

* Delivers customclass | oader that shall be used by the process engi ne and task service instances
* @eturn

*/

Cl assLoader get C assLoader ();

/**

* Closes the environnent allowing to close all depending conponents such as ksession factories, etc
*/
voi d close();

5.4.4.1. Building RuntimeEnvironment

While RuntimeEnvironment interface provides mostly access to data kept as part of the environ-
ment and will be used by the RuntimeManager, users should take advantage of builder style class
that provides fluent API to configure RuntimeEnvironment with predefined settings.

61

Core Engine API

public interface Runti meEnvironnentBuil der {

public Runti meEnvironnent Bui | der persistence(bool ean persi stenceEnabl ed);

publ i c Runti meEnvironment Buil der entityManager Fact ory(Object enf);

public Runti nmeEnvironnentBui | der addAsset (Resource asset, ResourceType type);
public Runti meEnvironnentBuil der addEnvi ronnment Entry(String name, Cbject val ue);
public Runti meEnvironnentBui | der addConfiguration(String nane, String val ue);
public Runti meEnvironment Bui |l der know edgeBase(Ki eBase kbase);

public Runti nmeEnvironnent Bui | der user GroupCal | back(User G oupCal | back cal | back);
publ i c RuntineEnvironnment Bui | der regi sterabl eltensFact ory(Regi sterableltensFactory factory);
public Runti meEnvironnent get();

publ i c Runti meEnvironment Buil der cl assLoader (C assLoader cl);

publ i c Runti meEnvironnent Bui | der schedul er Servi ce(Qbj ect gl obal Schedul er);

Instances of the RuntimeEnvironmentBuilder can be obtained via RuntimeEnvironmentBuilder-
Factory that provides preconfigured sets of builder to simplify and help users to build the environ-
ment for the RuntimeManager.

public interface RuntimeEnvironnentBuil derFactory {

/**
* Provi des conpletely enpty <code>Runt i meEnvi r onnent Bui | der </
code> instance that allows to nanual ly
* set all required conponents instead of relying on any defaults.
* new i nstance of <code>Runti nmeEnvironnent Bui | der </ code>
=
publ i c Runti meEnvironment Bui | der newEnpt yBuil der () ;

| **

* Provi des default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:

*
* <l i>Defaul t Runti neEnvironnent</1i>
* <ful >

* new i nstance of <code>Runt i meEnvi r onnment Bui | der </
code> that is already preconfigured with defaults
*
* Def aul t Runt i neEnvi r onnment
*/
public Runti meEnvironnent Bui | der newDef aul t Bui | der () ;

| **

* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that is based on:

*

62

Core Engine API

* <l i>Defaul t Runti neEnvironnent
* <ful >
* but it does not have persistence for process engine configured so it will only store process instances in i
@ @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
publ i c Runti meEnvironment Bui | der newDef aul t | nMenor yBui | der () ;

/**
* Provi des default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:
*
* <l i>Defaul t Runti neEnvironnment</Ii>
* <ful >
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* (@aram groupld group id of kjar
* @aramartifactld artifact id of kjar
* @aram versi on version nunber of kjar
@ @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
publ i c Runti meEnvironnment Bui |l der newDef aul t Buil der (String groupld, String artifactld, String version);

/**
* Provi des default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:
*
* <l i>Defaul t Runti neEnvironnment</Ii>
* <ful >
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* @aram groupld group id of kjar
* @aramartifactld artifact id of kjar
* @aram versi on version nunber of kjar
* @ar am kbaseNane nane of the kbase defined in knodul e.xm stored in kjar
* @par am ksessi onNane nanme of the ksession define in knodule.xm stored in kjar
i @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
* @ee Defaul t Runti nmeEnvironnent
*/
publi c Runti meEnvironnment Bui | der newDef aul t Buil der (String groupld, String artifactld, String version, String |

[**

* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:

*
* <|i>Defaul t Runti meEnvironnent</1i>
* <ful >

* This one is tailored to works snoothly with kjars as the notion of kbase and ksessi ons
* @aram rel easel d <code>Rel easel d</ code> t hat descri bed the kjar
@ @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
publi c Runti meEnvironment Bui | der newDef aul t Bui | der (Rel easel d rel easel d);

[**

63

Core Engine API

* Provi des default configuration of <code>Runti neEnvironnment Bui | der </ code> that is based on:
*
* <] i>Defaul t Runti neEnvironnent
* <ful >
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* (@aramrel easel d <code>Rel easel d</ code> that described the kjar
* @ar am kbaseNane nane of the kbase defined in knodul e.xm stored in kjar
* @ar am ksessi onNane nanme of the ksession define in knodule.xm stored in kjar
& @eturn new i nstance of <code>Runt i nreEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti nmeEnvironnentBui | der newDef aul t Bui | der (Rel easel d rel easeld, String kbaseNanme, String ksessi onNane)

/**
* Provi des default configuration of <code>Runti neEnvironnment Bui | der </ code> that is based on:
*
* <l i>Defaul t Runti neEnvironnent
* <ful >
* It relies on KieC asspathContainer that requires to have knodul e.xml present in META-
INF fol der which
* defines the kjar itself.
* Expects to use default kbase and ksession from knodul e.
& @eturn new i nst ance of <code>Runt i nreEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
publ i c Runti meEnvironnent Bui | der newCl asspat hKnodul eDef aul t Bui | der () ;

/**
* Provi des default configuration of <code>Runti neEnvironnent Bui | der </ code> that is based on:
*
* <l i>Defaul t Runti neEnvironnent
* <ful >
* It relies on KieC asspathContainer that requires to have knodul e.xm present in META-
INF fol der which
* defines the kjar itself.
* @ar am kbaseNane nane of the kbase defined in knodul e. xm
* @ar am ksessi onNane nane of the ksession define in knodul e. xm
& @eturn new i nst ance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti meEnvironnent Bui | der newCl asspat hKnodul eDef aul t Bui | der (String kbaseNane, String ksessionNane);

Besides KieSession Runtime Manager provides access to TaskService too as integrated compo-
nent of a RuntimeEngine that will always be configured and ready for communication between
process engine and task service.

Since the default builder was used, it will already come with predefined set of elements that con-
sists of:

64

Core Engine API

» Persistence unit name will be set to org.jopm.persistence.jpa (for both process engine and task
service)

* Human Task handler will be automatically registered on KieSession
« JPA based history log event listener will be automatically registered on KieSession

« Event listener to trigger rule task evaluation (fireAllRules) will be automatically registered on
KieSession

5.4.4.2. Registering handlers and listeners

To extend it with your own handlers or listeners a dedicated mechanism is provided that comes
as implementation of RegisterableltemsFactory

/**
* Ret ur ns new i nstances of <code>Wor kil t enHandl er </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtinme provi des <code>Runt i neEngi ne</

code> in case handler need to nake use of it internally
* @eturn map of handl ers to be registered - in case of no handl ers enpty map shal |l be returned.
*/
Map<String, WorkltenHandl er> get Wor kil t enHandl er s(Runti meEngi ne runtine);

/**
* Ret ur ns new i nstances of <code>Pr ocessEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtinme provi des <code>Runt i neEngi ne</
code> in case listeners need to nake use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be returned.
*/

Li st <ProcessEvent Li st ener > get ProcessEvent Li st ener s(Runti meEngi ne runti nme);

/-k-k
* Ret ur ns new i nst ances of <code>AgendaEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</code>
* @ar am runtinme provi des <code>Runt i meEngi ne</
code> in case |listeners need to nake use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty |list shall be returned.
&l

Li st <AgendaEvent Li st ener > get AgendaEvent Li st ener s(Runti neEngi ne runti ne);

/**
* Ret ur ns new i nstances of <code>Wor ki ngMenor yEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</code>
* @ar am runtime provi des <code>Runt i meEngi ne</
code> in case |listeners need to nake use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be returned.
*/

Li st <Wor ki ngMenor yEvent Li st ener > get Wr ki ngMenor yEvent Li st ener s(Runti meEngi ne runtinme);

A best practice is to just extend those that come out of the box and just add your own. Extensions
are not always needed as the default implementations of RegisterableltemsFactory provides pos-

65

Core Engine API

sibility to define custom handlers and listeners. Following is a list of available implementations
that might be useful (they are ordered in the hierarchy of inheritance):

 org.jopm.runtime.manager.impl.SimpleRegisterableltemsFactory - simplest possible imple-
mentations that comes empty and is based on reflection to produce instances of handlers and
listeners based on given class names

 org.jopm.runtime.manager.impl.DefaultRegisterableltemsFactory - extension of the Simple im-
plementation that introduces defaults described above and still provides same capabilities as
Simple implementation

 org.jopm.runtime.manager.impl.KModuleRegisterableltemsFactory - extension of default im-
plementation that provides specific capabilities for kmodule and still provides same capabilities
as Simple implementation

* org.jopm.runtime.manager.impl.cdi.lnjectableRegisterableltemsFactory - extension of default
implementation that is tailored for CDI environments and provides CDI style approach to finding
handlers and listeners via producers

Alternatively, simple (stateless or requiring only KieSession) work item handlers might be regis-
tered in the well known way - defined as part of CustomWorkltem.conf file that shall be placed on
class path. To use this approach do following:

« create file "drools.session.conf" inside META-INF of the root of the class path, for web applica-
tions it will be WEB-INF/classes/META-INF

« add following line to drools.session.conf file "drools.workltemHandlers
CustomWorkltemHandlers.conf"

- create file "CustomWorkltemHandlers.conf" inside META-INF of the root of the class path, for
web applications it will be WEB-INF/classes/META-INF

« define custom work item handlers in MVEL style inside CustomWorkltemHandlers.conf

"Log": new org.j bpm process. instance.inpl.denp. Syst enut Wr kil t emHandl er (),

"WebService": new org.jbpm process. wor kit em webservi ce. WebSer vi ceWor kil t enHandl| er (ksessi on),
"Rest": new org.j bpm process. workitem rest. RESTWr kil t enHandl er (),

"Service Task" : new org.jbpm process. workitem bpm2. Servi ceTaskHandl er (ksessi on)

And that's it, now all these work item handlers will be registered for any KieSession created by
that application, regardless if it uses RuntimeManager or not.

5.4.4.2.1. Registering handlers and listeners in CDI environment

When using RuntimeManager in CDI environment there are dedicated interfaces that can be used
to provide custom WorkltemHandlers and EventListeners to the RuntimeEngine.

66

Core Engine API

public interface WrkltenHandl er Producer {

/**

* Returns map of (key = work item name, value work item handler instance) of work itens
* to be registered on Ki eSession

*

* Paraneters that mght be given are as foll ows:

*

* ksession

* taskService

* runtimeManager</|i>

*

* @aramidentifier - identifier of the owner - usually Runti meManager that allows the producer to filter out
* and provide valid instances for given owner

* @aram parans - owner m ght provi de sone paraneters, usually KieSession, TaskService, RuntineManager instat
* @eturn map of work item handl er instances (recomendation is to always return new i nstances when this nettl
*/

Map<String, WorkltenmHandl er> get WrkltenHandl ers(String identifier, Map<String, Cbject> parans);

Event listener producer shall be annotated with proper qualifier to indicate what type of listeners
they provide, so pick one of following to indicate they type:

* @Process - for ProcessEventListener
* @Agenda - for AgendaEventListener

* @WorkingMemory - for WorkingMemoryEventListener

public interface EventListenerProducer<T> {

* Returns list of instances for given (T) type of listeners

*

* Paraneters that m ght be given are as follows:

*

* ksession

* taskService

* runtinmeManager

* <ful >

* @aramidentifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out
* and provide valid instances for given owner

* @aram paranms - owner m ght provide sone paraneters, usually KieSession, TaskService, RuntineManager instal
* @eturn list of listener instances (recommendation is to always return new instances when this nethod is il
&l

Li st <T> get Event Li steners(String identifier, Map<String, Object> parans);

Implementations of these interfaces shall be packaged as bean archive (includes beans.xml inside
META-INF) and placed on application classpath (e.g. WEB-INF/lib for web application). THat is

67

Core Engine API

enough for CDI based RuntimeManager to discover them and register on every KieSession that
is created or loaded from data store.

Some parameters are provided to the producers to allow handlers/listeners to be more stateful
and be able to do more advanced things with the engine - like signal of the engine or process
instance in case of an error. Thus all components are provided:

+ KieSession
* TaskService

* RuntimeManager

@ Note
Whenever there is a need to interact with the process engine/task service from
within handler or listener, recommended approach is to use RuntimeManager and
retrieve RuntimeEngine (and then KieSession and/or TaskService) from it as that
will ensure proper state managed according to strategy

In addition, some filtering can be applied based on identifier (that is given as argument to the
methods) to decide if given RuntimeManager shall receive handlers/listeners or not.

5.5. Services

On top of RuntimeManager API a set of high level services has been provided from jBPM version
6.2. These services are meant to be the easiest way to embed (j)BPM capabilities into custom
application. A complete set of modules are delivered as part of these services. They are partitioned
into several modules to ease thier adoptions in various environments.

 jbpm-services-api
contains only api classes and interfaces
 jbpm-kie-services
rewritten code implementation of services api - pure java, no framework dependencies
 jbpm-services-cdi
CDI wrapper on top of core services implementation
* jbpm-services-ejb-api
extension to services api for ejb needs
* jbpm-services-ejb-impl

EJB wrappers on top of core services implementation

68

Core Engine API

» jbpm-services-ejb-timer

scheduler service based on EJB TimerService to support time based operations e.g. timer
events, deadlines, etc

 jbpm-services-ejb-client

EJB remote client implementation - currently only for JBoss

Service modules are grouped with its framework dependencies, so developers are free to choose
which one is suitable for them and use only that.

5.5.1. Deployment Service

As the name suggest, its primary responsibility is to deploy (and undeploy) units. Deployment
unit is kjar that brings in business assets (like processes, rules, forms, data model) for execution.
Deployment services allow to query it to get hold of available deployment units and even their
RuntimeManager instances.

Note

there are some restrictions on EJB remote client to do not expose RuntimeManager
as it won't make any sense on client side (after it was serialized).

So typical use case for this service is to provide dynamic behavior into your system so multiple
kjars can be active at the same time and be executed simultaneously.

/| create deployment unit by giving GAV

Depl oynment Unit depl oynent Unit = new KMbdul eDepl oynent Uni t (GROUP_I D, ARTI FACT_I D, VERSI ON);
/1 depl oy

depl oynent Ser vi ce. depl oy(depl oynent Uni t);

Il retrieve deployed unit

Depl oyedUnit depl oyed = depl oynment Servi ce. get Depl oyedUni t (depl oynment Unit.getldentifier());
/1 get runtime manager

Runt i reManager manager = depl oyed. get Runti meManager () ;

Complete DeploymentService interface is as follows:

public interface Depl oynment Service {
voi d depl oy(Depl oynent Unit unit);
voi d undepl oy(Depl oynentUnit unit);
Runt i reManager get Runti neManager (String depl oynentUnitld);

Depl oyedUnit get Depl oyedUnit (String depl oyment Unitld);

69

Core Engine API

Col | ecti on<Depl oyedUni t > get Depl oyedUni ts();
void activate(String depl oynentld);
voi d deactivate(String depl oynentld);

bool ean i sDepl oyed(String depl oynentUnitld);

5.5.2. Definition Service

Upon deployment, every process definition is scanned using definition service that parses the
process and extracts valuable information out of it. These information can provide valuable input to
the system to inform users about what is expected. Definition service provides information about:

» process definition - id, name, description
 process variables - name and type

* reusable subprocesses used in the process (if any)
* service tasks (domain specific activities)

 user tasks including assignment information

« task data input and output information

So definition service can be seen as sort of supporting service that provides quite a few information
about process definition that are extracted directly from BPMN2.

String processld = "org.jbpmwitedocunment"”;

Col | ecti on<User TaskDefini ti on> processTasks =
bpm2Ser vi ce. get TasksDef i ni ti ons(depl oyment Uni t.getldentifier(), processlid);

Map<String, String> processData =
bpm2Ser vi ce. get ProcessVari abl es(depl oyment Unit. getldentifier(), processld);

Map<String, String> tasklnputMappings =
bpm2Ser vi ce. get Taskl nput Mappi ngs(depl oyment Uni t. getl dentifier(), processld, "Wite a
Docunent");

While it usually is used with combination of other services (like deployment service) it can be used
standalone as well to get details about process definition that do not come from kjar. This can be
achieved by using buildProcessDefinition method of definition service.

public interface DefinitionService {

70

Core Engine API

ProcessDefinition buil dProcessDefinition(String deploymentld, String bpm2Content,
Cl assLoader classLoader, bool ean cache) throws ||| egal Argunent Excepti on;

ProcessDefinition getProcessDefinition(String deploynentld, String processld);
Col | ection<String> get Reusabl eSubProcesses(String deploynentld, String processlid);
Map<String, String> getProcessVariables(String deploynmentld, String processld);
Map<String, String> getServiceTasks(String deploynentld, String processld);

Map<String, Collection<String>> getAssoci atedEntities(String deploynentld, String processld);
Col | ecti on<User TaskDefi ni ti on> get TasksDefinitions(String depl oynmentld, String processld);

Map<String, String> getTasklnput Mappi ngs(String deploynentld, String processld, String
t askNane) ;

Map<String, String> get TaskQut put Mappi ngs(String deploynentld, String processld, String
t askNane) ;

5.5.3. Process Service

Process service is the one that usually is of the most interest. Once the deployment and definition
service was already used to feed the system with something that can be executed. Process service
provides access to execution environment that allows:

* start new process instance
» work with existing one - signal, get details of it, get variables, etc
» work with work items

At the same time process service is a command executor so it allows to execute commands
(essentially on ksession) to extend its capabilities.

Important to note is that process service is focused on runtime operations so use it whenever there
is a need to alter (signal, change variables, etc) process instance and not for read operations like
show available process instances by looping though given list and invoking getProcessinstance
method. For that there is dedicated runtime data service that is described below.

An example on how to deploy and run process can be done as follows:

KModul eDepl oynent Unit deploymentUnit = new KMdul eDepl oynent Unit (GROUP_I D, ARTIFACT_I D,
VERSI ON) ;

depl oynent Ser vi ce. depl oy(depl oynment Uni t);

| ong processl nst ancel d = processService. start Process(depl oynentUnit.getldentifier(),
"custont ask");

71

Core Engine API

Processl nstance pi = processService. get Processl| nst ance(processl nstancel d);

As you can see start process expects deploymentld as first argument. This is extremely powerful
to enable service to easily work with various deployments, even with same processes but coming
from different versions - kjar versions.

public interface ProcessService {
Long startProcess(String deploymentld, String processlid);
Long startProcess(String deploynmentld, String processld, Map<String, Object> parans);
voi d abortProcessl nstance(Long processlnstanceld);
voi d abort Processl nstances(Li st<Long> processl nstancel ds);
voi d signal Processl nstance(Long processlnstanceld, String signal Name, Object event);
voi d si gnal Processl nst ances(Li st <Long> processl nstancelds, String signal Nanme, Cbject event);
Processl nst ance get Processl nstance(Long processlnstancel d);
voi d setProcessVari abl e(Long processlnstanceld, String variableld, Object value);
voi d set ProcessVari abl es(Long processlnstanceld, Map<String, Object> variables);
Obj ect get Processl nstanceVari abl e(Long processlnstanceld, String variabl eNane);
Map<String, Object> getProcesslnstanceVari abl es(Long processlnstancel d);
Col | ection<String> get Avai | abl eSi gnal s(Long processl nstancel d);
voi d conpl eteWorklten(Long id, Map<String, Object> results);
voi d abortWrklten{Long id);
Workltem get Wrkltenm(Long id);
Li st <Workl t en> get Wor ki t enByPr ocessl nstance(Long processl nstancel d);
public <T> T execute(String depl oyment!ld, Command<T> command);

public <T> T execute(String deploynentld, Context<?> context, Comand<T> command);

5.5.4. Runtime Data Service

Runtime data service as name suggests, deals with all that refers to runtime information:

 started process instances

72

Core Engine API

* executed node instances
» executed node instances
* and more

Use this service as main source of information whenever building list based Ul - to show process
definitions, process instances, tasks for given user, etc. This service was designed to be as effi-
cient as possible and still provide all required information.

Some examples:

 get all process definitions

Col I ection definitions = runtinmeDataService. get Processes(new QueryContext());

» get active process instances

Col | ecti on<processi nst ancedesc> i nstances = runt i meDat aSer vi ce. get Processl nst ances(new
QueryContext());

» get active nodes for given process instance

Col | ecti on<nodei nst ancedesc> i nstances =
runt i meDat aSer vi ce. get Processl nst anceHi st oryActi ve(processl nstancel d, new QueryContext());

» get tasks assigned to john

Li st <t asksunmary> t askSummari es = runti nmeDat aSer vi ce. get TasksAssi gnedAsPot ent i al Omer (" ohn",
new QueryFilter(0, 10));

There are two important arguments that the runtime data service operations supports:

¢ QueryContext
» QueryFilter - extension of QueryContext

These provide capabilities for efficient management result set like pagination, sorting and order-
ing (QueryContext). Moreover additional filtering can be applied to task queries to provide more
advanced capabilities when searching for user tasks.

73

Core Engine API

public interface RuntinmeDataService {
/'l Process instance infornation
Col | ecti on<Processl nst anceDesc> get Processl nst ances(Quer yCont ext quer yCont ext);

Col | ecti on<Processl nst anceDesc> get Processl nstances(Li st<Integer> states, String initiator,
Quer yCont ext queryContext);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessl d(Li st<Integer> states, String
processlid, String initiator, QueryContext queryContext);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessNane(Li st<Integer> states,
String processName, String initiator, QueryContext queryContext);

Col | ecti on<Processl nstanceDesc> get Processl nstancesByDepl oynent1d(String deploynentld,
Li st<I nteger> states, QueryContext queryContext);

Processl nst anceDesc get Processl nst anceByl d(1 ong processl nstancel d);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessDefinition(String processDefld,
Quer yCont ext queryContext);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessDefinition(String processbDefld,
Li st<I nteger> states, QueryContext queryContext);

/1 Node and Variabl e instance infornmation
Nodel nst anceDesc get Nodel nst anceFor Wor kil t em(Long workltemnl d);

Col | ecti on<Nodel nst anceDesc> get Processl nstanceHi storyActive(long processlnstanceld,
Quer yCont ext queryCont ext);

Col | ecti on<Nodel nst anceDesc> get Processl nst anceHi st or yConpl et ed(l ong processl nstancel d,
Quer yCont ext queryCont ext);

Col | ecti on<Nodel nst anceDesc> get Processl| nstanceFul | H story(long processlnstanceld,
Quer yCont ext queryContext);

Col | ecti on<Nodel nst anceDesc> get Processl nstanceFul | Hi st oryByType(l ong processlnstanceld,
EntryType type, QueryContext queryContext);

Col | ecti on<Vari abl eDesc> get Vari abl esCurrent St at e(l ong processl nstancel d);

Col | ecti on<Vari abl eDesc> get Vari abl eHi story(long processlnstanceld, String variableld,
Quer yCont ext queryContext);

/1 Process information

Col | ecti on<ProcessDefiniti on> get ProcessesByDepl oynent1d(String depl oynentld, QueryContext
quer yCont ext) ;

Col | ecti on<ProcessDefiniti on> getProcessesByFilter(String filter, QueryContext queryContext);
Col | ecti on<ProcessDefiniti on> get Processes(QueryCont ext queryContext);

Col | ection<String> get Processlds(String deploynentld, QueryContext queryContext);

74

Core Engine API

ProcessDefinition getProcessByld(String processld);
ProcessDefinition get ProcessesByDepl oynent | dProcessl d(String depl oynentld, String processld);
/1 user task query operations
User Taskl nst anceDesc get TaskByWorkltem d(Long workltemnld);
User Taskl nst anceDesc get TaskByl d(Long taskld);
Li st <TaskSunmary> get TasksAssi gnedAsBusi nessAdmi ni strator(String userld, QueryFilter filter);

Li st <TaskSummary> get TasksAssi gnedAsBusi nessAdmi ni stratorByStatus(String userld,
Li st<Status> statuses, QueryFilter filter);

Li st <TaskSummar y> get TasksAssi gnedAsPot enti al Omer (String userld, QueryFilter filter);

Li st <TaskSunmary> get TasksAssi gnedAsPot enti al Omer (String userld, List<String> grouplds,
QueryFilter filter);

Li st <TaskSummary> get TasksAssi gnedAsPot enti al OmerByStatus(String userld, List<Status>
status, QueryFilter filter);

Li st <TaskSunmary> get TasksAssi gnedAsPot enti al Omer (String userld, List<String> grouplds,
Li st<Status> status, QueryFilter filter);

Li st <TaskSunmary> get TasksAssi gnedAsPot enti al Omer ByExpi rati onDat eOpti onal (String userld,
Li st<Status> status, Date from QueryFilter filter);

Li st <TaskSummary> get TasksOawnedByExpi rati onDateOptional (String wuserld, List<Status>
strStatuses, Date from QueryFilter filter);

Li st <TaskSummar y> get TasksOanned(String userld, QueryFilter filter);

Li st <TaskSumary> get TasksOmedByStatus(String userld, List<Status> status, QueryFilter
filter);

Li st <Long> get TasksByProcessl nst ancel d(Long processl nst ancel d);

Li st <TaskSunmmary> get TasksBySt at usByProcessl nst ancel d(Long processlnstancel d, List<Status>
status, QueryFilter filter);

Li st <Audi t Task> get Al | Audi t Task(String userld, QueryFilter filter);

5.5.5. User Task Service

User task service covers complete life cycle of individual task so it can be managed from start
to end. It explicitly eliminates queries from it to provide scoped execution and moves all query
operations into runtime data service. Besides lifecycle operations user task service allows:

» modification of selected properties

75

Core Engine API

* access to task variables
* access to task attachments
* access to task comments

On top of that user task service is a command executor as well that allows to execute custom
task commands.

Complete example with start process and complete user task done by services:

I ong processlnstanceld =
processServi ce.start Process(deployUnit.getldentifier(), "org.jbpmwitedocunment");

Li st <Long> tasklds =
runt i neDat aSer vi ce. get TasksByProcessl| nst ancel d(processl nst ancel d) ;

Long taskld = tasklds.get(0);

user TaskServi ce. start(taskld, "john");
User Taskl nst anceDesc task = runti neDat aServi ce. get TaskByl d(t askl d);

Map<String, Object> results = new HashMap<String, Object>();

results.put("Result", "sonme docunent data");
user TaskServi ce. conpl ete(taskld, "john", results);
Note

The most important thing when working with services is that there is no more need
to create your own implementations of Process service that simply wraps runtime
manager, runtime engine, ksession usage. Services make use of RuntimeManager
API best practices and thus eliminate various risks when working with that API.

5.5.6. Working with deployments

Deployment Service provides convinient way to put business assets to an execution environment
but there are cases that requires some additional management to make them available in right
context.

Activation and Deactivation of deployments

Imagine situation where there are number of processes already running of given deployment and
then new version of these processes comes into the runtime environment. With that administrator
can decide that new instances of given process definition should be using new version only while
already active instances should continue with the previous version.

To help with that deployment service has been equipped with following methods:

76

Core Engine API

e activate

allows to activate given deployment so it can be available for interaction meaning will show its
process definition and allow to start new process instances of that project's processes

+ deactivate

allows to deactivate deployment which will disable option to see or start new process instances
of that project's processes but will allow to continue working with already active process in-
stances, e.g. signal, work with user task etc

This feature allows smooth transition between project versions whitout need of process instance
migration.

Deployment synchronization

Prior to jBPM 6.2, jbpm services did not have deployment store by default. When embedded in
jbpm-console/kie-wb they utilized sistem.git VFS repository to preserve deployed units across
server restarts. While that works fine, it comes with some drawbacks:

 not available for custom systems that use services
* requires complex setup in cluster - zookeeper and helix

With version 6.2 jbpm services come with deployment synchronizer that stores available deploy-
ments into data base, including its deployment descriptor. At the same time it constantly monitors
that table to keep it in sync with other installations that might be using same data source. This is
especially important when running in cluster or when jbpm console runs next to custom application
and both should be able to operate on the same artifacts.

By default synchronization must be configured (when runing as core services while it is automat-
ically enabled for ejb and cdi extensions). To configure synchronization following needs to be
configured:

Transact i onal CoomandSer vi ce conmandServi ce = new Transacti onal ConmandSer vi ce(enf);

Depl oynment Store store = new Depl oynent Store();
st or e. set CommandSer vi ce(commandSer vi ce) ;

Depl oynment Synchroni zer sync = new Depl oynment Synchroni zer();
sync. set Depl oynent Ser vi ce(depl oynent Ser vi ce) ;

sync. set Depl oynent St ore(store);

Depl oynment Syncl nvoker invoker = new Depl oynment Syncl nvoker (sync, 2L, 3L, Ti meUnit. SECONDS);
invoker.start();

i nvoker.stop();

With this, deployments will be synchronized every 3 seconds with initial delay of two seconds.

77

Core Engine API

Invoking latest version of project's processes

In case there is a need to always work with latest version of project's process, services allow to
interact with various operations using deployment id with latest keyword. Let's go over an example
to better understand the feature.

Initially deployed unit is org.jopm:HR:1.0 which has the first version of an hiring process. After
several weeks, new version is developed and deployed to the execution server - org.jopm:HR.2.0
with version 2 of the hiring process.

To allow callers of the services to interact without being worried if they work with latest version,
they can use following deployment id:

org.j bpm HR | at est

this will alwyas find out latest available version of project that is identified by:

 groupld: org.jbpm
« artifactld: HR

version comparizon is based on Maven version numbers and relies on Maen based algorithm to
find the latest one.

Note

This is only supported when process identifier remains the same in all project ver-
sions

Here is a complete example with deployment of multiple versions and interacting always with the
latest:

KModul eDepl oynent Uni t depl oynment Unit V1 = new KMbdul eDepl oynent Unit ("org. jbpn, "HR', "1.0");
depl oynent Ser vi ce. depl oy(depl oynent Uni t V1) ;

| ong processlnstanceld = processService.startProcess("org.jbpm HR LATEST", "custontask");
Processl nst anceDesc pi Desc = runti meDat aServi ce. get Processl nst anceByl d(processl nst ancel d);

/1 we have started process with project's version 1
assert Equal s(depl oyment Uni t V1. get I dentifier(), piDesc.getDeploynmentld());

/'l next we deploy version 1
KMbdul eDepl oynent Uni t depl oynent Uni t V2 = new KMbdul eDepl oynent Unit ("org. jbpn, "HR', "2.0");
depl oynent Ser vi ce. depl oy(depl oynent Uni t V2) ;

processlnstancel d = processService. startProcess("org.jbpm HR LATEST", "custontask");
pi Desc = runti neDat aServi ce. get Processl| nst anceByl d(processl nstancel d);

78

Core Engine API

/1l this time we have started process with project's version 2
assert Equal s(depl oyment Uni t V2. get I dentifier(), piDesc.getDeploynmentld());

As illustrated this provides very powerful feature when interacting with frequently chaning envi-
ronment that allows to always be up to date when it comes to use of process definitions.

@ Note
This feature is also available in REST interface so whenever sending request with
deployment id, it's enough to replace concrete version with LATEST keyword to
make use of this feature.

5.6. Configuration

There are several control parameters available to alter engine default behavior. This allows to fine
tune the execution for the environment needs and actual requirements. All of these parameters
are set as JVM system properties, usually with -D when starting program e.g. application server.

Table 5.1. Control parameters

Name Possible values | Default value Description

jbpm.ut.jndi.lookup String Alternative JNDI
name to be
used when there
iSs no access
to the default
one (java:comp/
UserTransaction)

jopm.enable.multi.cione|false false Enables multi-
ple incoming/out-
going sequence
flows support for
activities
jobpm.business.caleBtiamgproperties | / Allows to provide
jbpm.business.caleatlaratpetiess-
path location of
business calen-
dar configuration
file
jbpm.overdue.timerlaeigy 2000 Specifies de-
lay for overdue
timers to allow
proper initializa-

79

Core Engine API

Name

Possible values

jbpm.process.namestongparator

jbpm.loop.level.disdhledfalse

org.kie.mail.sessiorstring

jobpm.usergroup.cal®igsicigproperties

jbpm.user.group.m&ipmy

jbpm.user.info.pro

pBttieg

Default value

true

mail/
jobpmMailSession

/

Description
tion, in millisec-
onds

Allows to pro-
vide alternative
comparator class
to empower start
process by name
feature, if not
set NumberVer-
sionComparator
is used

Allows to enable
or disable loop it-
eration tracking,
to ad-
vanced loop sup-
port when using
XOR gateways

allow

Allows to provide
alternative JNDI
name for mail
session used by
Task Deadlines

Allows to provide

jbpm.usergroup.calldterkatiopectss-

${jboss.server.configlidin}s

roles.properties

/

path location for
user group call-
back implemen-
tation (LDAP,
DB)

to pro-
alterna-
location of

vide
tive
roles.properties
for JBossUser-
GroupCallback-
Impl

Allows to provide

jbpm.user.info.propeltiéesative class-

path location of

user info con-

80

Core Engine API

Name

org.jopm.ht.user.s

org.quartz.propert

jbpm.data.dir

org.kie.executor.p

Possible values

epaiatpr

€string

String

obiteger

org.kie.executor.retigtegant

org.kie.executor.intémeger

org.kie.executor.d

daibidthlse

Default value

Description

figuration (used
by LDAPUserIn-
folmpl)

Allows to provide
alternative sepa-
rator of actors
and groups for
user tasks, de-
fault is comma (,)

Allows to provide
location of the
quartz config file
to activate quartz
based timer ser-
vice

${jboss.server.dataAlidws to provide

is available other-
wise
${java.io.tmpdir}

true

location where
data files pro-
duced by jbpm

should be stored

Allows to provide
thread pool size
for jopm executor

Allows to pro-
vide number of
retries attempted
in case of error by
jbpm executor

Allows to pro-
vide frequency
used to check for
pending jobs by
jbpm executor, in
seconds

Enables or dis-
able jbpm execu-
tor

81

Chapter 6. Processes

6.1. What is BPMN 2.0

@ Note
"The primary goal of BPMN is to provide a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts of the
processes, to the technical developers responsible for implementing the technolo-
gy that will perform those processes, and finally, to the business people who will
manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means that
you can use all the different jBPM®6 tooling to model, execute, manage and monitor your business
processes using the BPMN 2.0 format for specifying your executable business processes. Actu-
ally, the full BPMN 2.0 specification also includes details on how to represent things like choreo-
graphies and collaboration. The jBPM project however focuses on that part of the specification
that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be
used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

82

Processes

elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:

» Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
< End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
< Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

« Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message, Com-
pensation)

* Activities
e Script Task
e Task
» Service Task
» User Task
* Business Rule Task
e Manual Task
e Send Task
* Receive Task
¢ Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
» Event Sub-Process
* Ad-Hoc Sub-Process
« Data-Object
» Gateways
« Diverging

* Exclusive

83

Processes

* Inclusive
» Parallel
» Event-Based
» Converging

» Exclusive
* Inclusive
» Parallel

* Lanes

* Data
» Java type language

 Process properties

Embedded Sub-Process properties

Activity properties
« Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions id="Definition"
t ar get Nanespace="htt p: // ww. exanpl e. or g/ M ni mal Exanpl e"
t ypeLanguage="http://ww. j ava. conl j avaTypes"
expr essi onLanguage="http://ww. nmvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\N 20100524/ MODEL"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xs: schemaLocati on="htt p: //ww. ong. or g/ spec/ BPMV 20100524/ MODEL BPMN\20. xsd"
xm ns: bpmmdi =" ht t p: / / www. ong. or g/ spec/ BPMN 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC'
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]jboss. org/drool s">

<process processType="Private" isExecutable="true" id="com sanple.HelloWrld" nane="Hello
Worl d" >

84

Processes

<!-- nodes -->
<start Event id="_1" name="StartProcess" />
<script Task id="_2" name="Hel | 0" >
<script>Systemout.println("Hello Wrld"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t er mi nat eEvent Defini tion/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" target Ref="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmdi : BPM\Di agr an®
<bpmdi : BPM\PI ane bpmeEl enent ="M ni mal " >
<bpmmdi : BPMNShape bpmeEl emrent ="_1" >
<dc: Bounds x="15" y="91" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmmEl erent ="_2" >
<dc: Bounds x="95" y="88" w dt h="83" hei ght="48" />
</ bpmmdi : BPM\Shape>
<bpmmdi : BPM\Shape bpmEl erent ="_3" >
<dc: Bounds x="258" y="86" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNEdge bpmmEl emrent =" _1- 2" >
<di : waypoi nt x="39" y="115" />
<di : waypoi nt x="75" y="46" />
<di : waypoi nt x="136" y="112" />
</ bpmmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl ement ="_2-_3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bprmmdi : BPMNEdge>
</ bpmmdi : BPM\PI ane>
</ bprmdi : BPM\Di agr an®>

</definitions>

To create your own process using BPMN 2.0 format, you can

« The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.
We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You
could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes
and then export them to BPMN 2.0 format or save them into repository and import them so they
can be executed.

« A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

* You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

85

Processes

@ Note

Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler
for process modeling. It can still be used for limited humber of supported ele-
ments but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the
wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using
the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Ki eHel per ki eHel per = new Ki eHel per();
Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce("sanpl e. bprm2"))
.build();

return ki eBase;

... and how to execute this process ...

Ki eBase kbase = creat eKnow edgeBase();
Ki eSessi on ksession = kbase. newKi eSessi on();
ksessi on. start Process("com sanpl e. Hel | oWor| d");

For more detail, check out the chapter on the API and the basics.

86

Processes

6.2. Process

HR Ewvaluation

P H}‘_ Salf Evaluation }_’é_»

Gatdyway =il o =
Start Gatdya PM Evaluation Catiivay End

Figure 6.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

6.2.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.
6.2.1.1. Using the graphical BPMN2 Editor

The graphical BPMNZ2 editor is an editor that allows you to create a process by dragging and drop-
ping different nodes on a canvas and editing the properties of these nodes. The graphical BPMN2
modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/bpmn2-modeler/] that
provides number of contributors where one of them is jBPM project. Once you have set up a jBPM
project (see the installer for creating a working Eclipse environment where you can start), you can
start adding processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the
directory you would like to put your process in and select "New", then "File". Give the file a name
and the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can
safely ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

87

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/

Processes

Tand List e -

Figure 6.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
palette of the GUI. Clicking on an element in your process allows you to set the properties of that
element. You can connect the nodes (as long as it is permitted by the different types of nodes)
by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

6.2.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions id="Definition"
tar get Nanespace="http://ww. j boss. or g/ dr ool s"
t ypeLanguage="http://ww. j ava. conl j avaTypes"
expr essi onLanguage="http://ww. mvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL" Rul e Task
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schen®- i nst ance"
xsi : schemaLocati on="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL BPMN\20. xsd"
xm ns: g="http://ww.jboss. org/drool s/fl ow gpd"
xm ns: bpmdi ="htt p: / / www. ong. or g/ spec/ BPMV 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]jboss. org/drool s">

<process processType="Private" i sExecutabl e="true" i d="com sanpl e. hel | 0" nane="Hel | o Process" >

88

Processes

<l-- nodes -->
<startEvent id="_1" name="Start" />
<script Task id="_2" name="Hel | 0" >
<script>Systemout.println("Hello Wrld"); </script>
</ scri pt Task>
<endEvent id="_3" name="End" >
<t er mi nat eEvent Defini tion/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1-_2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmmdi : BPM\Di agr an®
<bpmmdi : BPM\PI ane bpmeEl enent =" com sanpl e. hel | 0" >
<bpmdi : BPMNShape bpmmeEl emrent =" _1" >
<dc: Bounds x="16" y="16" w dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmmEl emrent ="_2" >
<dc: Bounds x="96" y="16" w dt h="80" hei ght="48" />
</ bpmmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmEl ement ="_3" >
<dc: Bounds x="208" y="16" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNEdge bpmmEl emrent =" _1- 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bpmmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl ement ="_2-_3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bprmmdi : BPM\Edge>
</ bprmdi : BPMNPI ane>
</ bprmdi : BPM\Di agr an®>

</ definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

89

= End Events =~ Activities

@ Cancel " | Ad-Hoc Sub-Process
&) Compensation " 1 Sub-Process
() End Event L call Activity
(8 Error | Task
@A) Escalation W Manual Task
&) Message _'.'—"_ User Task
@ signal & Script Task
{2\ Torminate - 54 Business Rule Task
= Gateways . Service Task
= Intermediate Catch Events Send Task
Conditional EA Receive Task
@ Error = Artifacts
i Escalation = Connections
@ Message Association {undirected}
@ Signal Association {one-way)
@ Timer —+ Sequence Flow

= Data Objects
[Y Data Object

[Intermediate Throw Events

@ Escalation

{1 Throw Event (= End Events
&l Message (= Gateways
{ Signal {39- Exclusive Gateway

s . 2 Event-Based Gateway
tart Events

) o Inclusive Gateway
@ Compensation
Conditional

@ Error

@ Escalation

@ Parallel Gateway

Start Event
@ Message

@ Signal

€Ty Timer -

Figure 6.3. The different types of Figure 6.4. The different types of
BPMN2 events BPMNZ2 activities and gateways

90

Processes

6.2.1.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

Id: The unique id of the process.

* Name: The display name of the process.

Version: The version number of the process.

Package: The package (namespace) the process is defined in.

{7 humanTaskSample

Description + QAttributes
Process
Id | org.jbpm.writedocument
Interfaces
Mame |humanTaskSample
Definitions P
Data ltems Wersion | 1

Package Name | defaultPackage
Ad Hoc
Is Executable @I

Figure 6.5. BPMN2 process properties

In addition to that following can be defined as well:

» Variables: Variables can be defined to store data during the execution of your process. See
section “??7?” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“2??" for detalils.

91

Processes

{7 humanTaskSample

Description b Global List for Process "humanTaskSample™
Process
Interfaces

— = Variable List for Process "humanTaskSample"
Definitions
Data ltems

[Name
approval_document
approval_translatedDocument
approval_reviewComment

Figure 6.6. BPMN2 process variables

6.3. Activities

6.3.1. Script task

=1

script Task 1

Dara Type
String
String
String

Figure 6.7. Script task

Represents a script that should be executed in this process. A Script Task should have one in-
coming connection and one outgoing connection. The associated action specifies what should be
executed, the dialect used for coding the action (i.e., Java or MVEL), and the actual action code.
This code can access any variables and globals. There is also a predefined variable kcont ext
that references the Pr ocessCont ext [http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/run-

92

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

time/process/ProcessContext.html] object (which can, for example, be used to access the current
Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the ksession
using kcont ext . get Ki eRunti me()). When a Script Task is reached in the process, it will execute
the action and then continue with the next node. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by busi-
ness users, it is probably wise to avoid low-level implementation details inside the process, in-
cluding inside these script tasks. A Script Task could still be used to quickly manipulate variables
etc. but other concepts like a Service Task could be used to model more complex behaviour
in a higher-level manner.

« Scripts should be immediate. They are using the engine thread to execute the script. Scripts
that could take some time to execute should probably be modeled as an asynchronous Service
Task.

« You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the knowl-
edge of the engine, which can be problematic, especially when using persistence and transac-
tions. In general, it is probably wiser to model communication with an external service using
a service task.

« Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

93

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

6.3.2. Service task

Sarvice Task 1

Figure 6.8. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

* |d: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

« Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

« On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-
tively.

94

Processes

» Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oSt ri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

6.3.3. User task

I bser Task 1

Figure 6.9. User task

Processes can also involve tasks that need to be executed by human actors. A User Task repre-
sents an atomic task to be executed by a human actor. It should have one incoming connection
and one outgoing connection. User Tasks can be used in combination with Swimlanes to assign
multiple human tasks to similar actors. Refer to the chapter on human tasks for more details. A
User Task is actually nothing more than a specific type of service node (of type "Human Task").
A User Task contains the following properties:

 Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.
» TaskName: The name of the human task.

 Priority: An integer indicating the priority of the human task.

95

Processes

« Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

« Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

+ Content: The data associated with this task.

* Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

« On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note
that if there is data related to this specific process instance that the end user needs when per-
forming the task, this data should be passed as the content of the task. The task for example does
not have access to process variables. Check out the chapter on human tasks to get more detail
on how to pass data between human tasks and the process instance.

96

Processes

6.3.4. Reusable sub-process

Call Activity 1

Figure 6.10. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion (by default true): If this property is true, this sub-process node will only
continue if the child process that was started has terminated its execution (completed or abort-
ed); otherwise it will continue immediately after starting the subprocess (so it will not wait for
its completion).

Independent (by default true): If this property is true, the child process is started as an indepen-
dent process, which means that the child process will not be terminated if this parent process is
completed (or this sub-process node is canceled for some other reason); otherwise the active
sub-process will be canceled on termination of the parent process (or cancellation of the sub-
process node). Note that you can only set independent to "false" only when "Wait for comple-
tion" is set to true.

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-
tively.

97

Processes

« Parameter infout mapping: A sub-process node can also define in- and out-mappings for vari-
ables. The variables given in the "in" mapping will be used as parameters (with the associated
parameter name) when starting the process. The variables of the child process that are defined
for the "out" mappings will be copied to the variables of this process when the child process
has been completed. Note that you can use "out" mappings only when "Wait for completion"
is set to true.

6.3.5. Business rule task

=

Business Fule Task 1

Figure 6.11. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated
when the node is reached. A Rule Task should have one incoming connection and one outgoing
connection. Rules are defined in separate files using the Drools rule format. Rules can become
part of a specific ruleflow group using the r ul ef | ow gr oup attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of
the corresponding ruleflow-group (if any). Execution will automatically continue to the next node
if there are no more active rules in this ruleflow group. As a result, during the execution of a
ruleflow group, new activations belonging to the currently active ruleflow group can be added
to the Agenda due to changes made to the facts by the other rules. Note that the process will
immediately continue with the next node if it encounters a ruleflow group where there are no active
rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

 Id: The id of the node (which is unique within one node container).

98

Processes

* Name: The display name of the node.

* RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this Rule-
FlowGroup node.

6.3.6. Embedded sub-process

Sub Process 1

Usar Task 2

Figure 6.12. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but also
the definition of additional variables that are accessible for all nodes inside this container. A sub-
process should have one incoming connection and one outgoing connection. It should also contain
one start node that defines where to start (inside the Sub-Process) when you reach the sub-
process. It should also contain one or more end events. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process. A sub-process ends when
there are no more active nodes inside the sub-process. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Variables: Additional variables can be defined to store data during the execution of this node.
See section “??7?” for details.

99

Processes

6.3.7. Multi-instance sub-process

Sub Process 1

g, ..
i
Usar Task 2

Figure 6.13. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple in-
stance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

 Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.

« CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Coll ection. If the collection expression evaluates to null or an empty collection,
the multiple instances sub-process will be completed immediately and follow its outgoing con-
nection.

» VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

« CollectionOutput: The name of a variable that represents collection of elements that will gather
all output of the multi instance sub process

« OutputVariableName: The name of the variable to contain the currentl output from the multi
instance activitiy

» CompletionCondition: MVEL expression that will be evaluated on each instance completion to
check if given multi instance activity can already be completed. In case it evaluates to true all
other remaining instances within multi instance activity will be canceled.

100

Processes

6.4. Events

6.4.1. Start event

otart

Figure 6.14. Start event

The start of the process. A process should have exactly one start node (nhone start node which
does not have event definitions), which cannot have incoming connections and should have one
outgoing connection. Whenever a process is started, execution will start at this node and auto-
matically continue to the first node linked to this start event, and so on. It contains the following
properties:

* Id: The id of the node (which is unigque within one node container).

* Name: The display name of the node.

101

Processes

6.4.2. End events

6.4.2.1. End event

End

Figure 6.15. End event

The end of the process. A process should have one or more end events. The End Event should
have one incoming connection and cannot have any outgoing connections. It contains the follow-
ing properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are canceled. Non-terminating end events
are simply end for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance

102

Processes

will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process and top level continues.

6.4.2.2. Throwing error event

Figure 6.16. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

Id: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

FaultName: The name of the fault. This name is used to search for appropriate exception han-
dlers that are capable of handling this kind of fault.

FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

103

Processes

Error handlers can be specified using boundary events.
6.4.3. Intermediate events

6.4.3.1. Catching timer event

Figure 6.17. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is canceled if the timer node is canceled
(e.g., by completing or aborting the enclosing process instance). Consult the section “???" for
more information. The Timer Event contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d] [#h] [#m [#s][#[nms]]. This allows you to specify the number of
days, hours, minutes, seconds and milliseconds (which is the default if you don't specify any-
thing). For example, the expression "1h" will wait one hour before triggering the timer. The ex-
pression could also use #{expr} to dynamically derive the delay based on some process vari-

104

Processes

able. Expr in this case could be a process variable, or a more complex expression based on a
process variable (e.g. myVariable.getValue()). It does support CRON like expression as well.

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]]. You
can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if
you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer again. The expression could also use #{expr} to dynamically derive the period based
on some process variable. Expr in this case could be a process variable, or a more complex
expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are
not automatic tasks like script task that have no wait state as timer will not have a change to fire
before task completion.

6.4.3.2. Catching signal event

Figure 6.18. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have one incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

105

Processes

Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.
» EventType: The type of event that is expected.

VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Ki eRunti me() . si gnal Event (event Type, data, kcontext.getProcesslnstance().getld());

A throwing signal event could also be used to model the signaling of an event.

106

Figure 6.19. Diverging gateway

Processes

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes cur-
rently supported:

« AND or parallel means that the control flow will continue in all outgoing connections simultane-
ously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The de-
cision is made by evaluating the constraints that are linked to each of the outgoing connections.
The constraint with the lowest priority number that evaluates to true is selected. Constraints can
be specified using different dialects. Note that you should always make sure that at least one
of the outgoing connections will evaluate to true at runtime (the engine will throw an exception
at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the engine will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

108

Figure 6.20. Converging gateway

Processes

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are three types of splits currently sup-
ported:

« AND or parallel means that is will wait until all incoming branches are completed before con-
tinuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifitis triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

« OR orinclusive means that it continues as soon as all direct active paths of its incoming branch-
es has been completed. This is complex merge behaviour that is described in BPMN2 specifi-
cation but in most cases it means that OR join will wait for all active flows that started in OR
split. Some advanced cases (including other gateways in between or repeatable timers) will be
causing different "direct active path" calculation.

It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Type: The type of the Join node, i.e. AND, OR or XOR.

6.6. Others

6.6.1. Variables

While the flow chart focuses on specifying the control flow of the process, it is usually also neces-
sary to look at the process from a data perspective. Throughout the execution of a process, data
can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables
can be defined inside a variable scope. The top-level scope is the variable scope of the process
itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:

110

Processes

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

e Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

[/ call nmethod on the process variable "person"
person. set Age(10) ;

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

» Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. getName()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

« Various other nodes can also access data. Event nodes for example can store the data asso-
ciated to the event in a variable, etc. Check the properties of the different node types for more
information.

» Process variables can be accessed also from the Java code of your application. It is done by
casting of Processl nst ance to Wor kf | owPr ocessl nst ance. See the following example:

variabl e = ((Workfl owProcessl nstance) processlnstance). getVari abl e("vari abl eNanme") ;

To list all the process variables see the following code snippet:

org.j bpm process. i nstance. Processl nstance processlnstance = ...;
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nstance(Vari abl eScope."

111

Processes

Map<String, Object> variables = variabl eScope. get Vari abl es();

Note that when you use persistence then you have to use a command based approach to get
all process variables:

Map<String, Object> variables = ksessi on. execut e(new Generi cCommand<Map<String, Object>>() {
public Map<String, Object> execute(Context context) {
Ki eSessi on ksessi on = ((Know edgeConmandCont ext) cont ext). get St at ef ul Know edgesessi on();
org. j bpm process. i nstance. Processl nstance processlnstance = (org.jbpm process.instance. Processl nstance)
Var i abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nstance(Vari ab
Map<String, Object> variables = variabl eScope. get Vari abl es();
return vari abl es;

1)

Finally, processes (and rules) all have access to globals, i.e. globally defined variables and data in
the Knowledge Session. Globals are directly accessible in actions just like variables. Globals need
to be defined as part of the process before they can be used. You can for example define globals
by clicking the globals button when specifying an action script in the Eclipse action property editor.
You can also set the value of a global from the outside using ksessi on. set d obal (name, val ue)
or from inside process scripts using kcont ext . get Ki eRunti me() . set @ obal (nane, val ue) ; .

6.6.2. Scripts

Action scripts can be used in different ways:

« Within a Script Task,
« As entry or exit actions, with a number of nodes.

Actions have access to globals and the variables that are defined for the process and the pre-
defined variable kcont ext . This variable is of type ProcessCont ext [http://docs.jboss.org/jbpm/
v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html] and can be used for several
tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodel nst ance node = kcont ext. get Nodel nstance();
String nane = node. get NodeNare() ;

« Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

112

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

Processl nstance proc = kcontext.get Processl nstance();
proc. signal Event (type, eventCbject);

» Getting or setting the value of variables.

» Accessing the Knowledge Runtime allows you do things like starting a process, signaling (ex-
ternal) events, inserting data, etc.

jBPM currently supports two dialects, Java and MVEL. Java actions should be valid Java code.
MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts
any valid Java code but additionally provides support for nested accesses of parameters (e.g.,
per son. name instead of per son. get Name()), and many other scripting improvements. Thus, MV-
EL expressions are more convenient for the business user. For example, an action that prints out
the name of the person in the "requester” variable of the process would look like this:

11 Java di al ect System out . printl n(per son. get Nanme())il MVEL
di al ect System out . println(person.nane);
di al ect System out. println(person. get Name()

); !/ MEL
di al ect System out . println(person. nane

)
6.6.3. Constraints

Constraints can be used in various locations in your processes, for example in a diverging gate-
way. jBPM supports two types of constraints:

« Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both
Java and MVEL code constraints have direct access to the globals and variables defined in
the process. Here is an example of a valid Java code constraint, per son being a variable in
the process:

return person. get Age() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule Lan-
guage syntax to express possibly complex constraints. These rules can, like any other rule,

113

Processes

refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is however
possible to refer to the current process instance inside a rule constraint, by adding the process
instance to the Working Memory and matching for the process instance in your rule constraint.
We have added special logic to make sure that a variable pr ocessl nst ance of type Wor kf | ow
Processl nst ance will only match to the current process instance and not to other process in-
stances in the Working Memory. Note that you are however responsible yourself to insert the
process instance into the session and, possibly, to update it, for example, using Java code or an
on-entry or on-exit or explicit action in your process. The following example of a rule constraint will
search for a person with the same name as the value stored in the variable "name" of the process:

processl nst ance : Wor kf | owPr ocessl nst ance() Per son(nane ==
(processlnstance. getVariabl e("nane")))# add nore constraints here ...

Wor kf | owPr ocessl nst ance() Person(name == (processlnstance. get Vari abl e(" nane")
))# add nore constraints

6.6.4. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

6.6.4.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of 0 results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify
the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't
specify anything). For example, the expression "1h" will wait one hour before triggering the timer
(again).

6.6.4.2. Configure timer with CRON like expression

Timer events can be configured with CRON like expression when timeCycle is used as timer event
definition. Important is that the language attribute of timeCycle definition must be set to cron. With
that such cycle of a timer is controlled in the same way as CRON jobs. CRON like expression
is supported for:

114

Processes

» start event timers
* intermediate event timers
* boundary event timers

Following is an example of a definition of a boundary timer with CRON like expression

<bpm2: boundar yEvent id="1" nanme="Send Update Tinmer" attachedToRef="_77A94B54- 8B7C- 4F8A- 84EE-
C1D310A343A6" cancel Activity="fal se">

<bpm?2: out goi ng>2</ bpmm2: out goi ng>

<bpmm2: ti mer Event Definition id="_erlyi JZ7EeSDh8PHobj SSA" >

<bpm2: ti meCycle xsi:type="bpm2:tFormal Expressi on" id="_erlyi ZZ7EeSDh8PHobj SSA"
| anguage="cron">0/1 * * * * ?</bpm2:tineCycl e>

</ bpm2:ti mer Event Definiti on>

</ bpm2: boundar yEvent >

This timer will fire every second and will continue until activity this boundary event is attached
to is active.

6.6.4.3. Configure timer 1ISO-8601 date format

since version 6 timers can be configured with valid 1SO8601 [http://en.wikipedia.org/wi-
ki/ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can
be defined as date and time representation, time duration or repeating intervals

» Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM
* Duration - PT1S - fires once after 1 second

* Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5
times every second

6.6.4.4. Configure timer with process variables

In addition to two configuration options above timers can be specified using process variable that
can consists of string representation of ether delay and period or ISO8601 date format. By spec-
ifying #{variable} engine will dynamically extract process variable and use it as timer expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be canceled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

< A Timer Event may be added to the process flow. Its activation starts the timer, and when it
triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing
connection of a timer with a positive period is triggered multiple times. Canceling a Timer node
also cancels the associated timer, after which no more triggers will occur.

115

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Processes

« Timers can be associated with a Sub-Process or tasks as a boundary event.

6.7. Process Fluent API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIS), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kf | ow. core and or g. | bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

6.7.1. Example

This is a simple example of a basic process with a script task only:

Rul eFl owPr ocessFactory factory =

Rul eFl owPr ocessFact ory. creat eProcess("org.j bpm Hel | oWorl d");
factory

/1 Header

.name(" Hel | oWor | dProcess")

.version("1.0")

. packageNane("org.j bpni)

/] Nodes

.startNode(1).nanme("Start"). done()

.actionNode(2).nane("Action")

.action("java", "Systemout.printin(\"Hello Wrld\");").done()

. endNode(3) . nane(" End") . done()

/1 Connecti ons

.connection(1, 2)

.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnowl edgeBui | der () ;
kbui | der . add(Resour ceFact ory. newByt eAr r ayResour ce(

Xm BPMNPr ocessDunper . | NSTANCE. dunp(pr ocess) . get Bytes()), ResourceType. BPM\2) ;
Know edgeBase kbase = kbui | der. newkKnow edgeBase() ;
St at ef ul Knowl edgeSessi on ksession = kbase. newst at ef ul Knowl edgeSessi on() ;
ksessi on. startProcess("org.jbpm Hel | oWorl d");

You can see that we start by calling the static cr eat eProcess() method from the Rul eFl ow
ProcessFactory class. This method creates a new process with the given id and returns the
Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists of
three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion
you can see that you have different methods to create each of the supported node types at your
disposal.

116

Processes

When you start adding nodes to the process, in this example by calling the st art Node(), ac-
ti onNode() and endNode() methods, you can see that these methods return a specific Node-
Fact ory, that allows you to set the properties of that node. Once you have finished configuring
that specific node, the done() method returns you to the current Rul eFl owPr ocessFact ory so
you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connecti on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

6.8. Testing

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

6.8.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific
use cases, for example test the output based on the existing input. To simplify unit testing, jBPM
includes a helper class called JbpmJUnitBaseTestCase (in the jopm-test module) that you can
use to greatly simplify your JUnit testing, by offering:

« helper methods to create a new RuntimeManager and RuntimeEngine for a given (set of)
process(es)

* you can select whether you want to use persistence or not

» assert statements to check

the state of a process instance (active, completed, aborted)

which node instances are currently active

which nodes have been triggered (to check the path that has been followed)

get the value of variables

For example, consider the following "hello world" process containing a start event, a script task
and an end event. The following JUnit test will create a new session, start the process and then
verify whether the process instance completed successfully and whether these three nodes have
been executed.

117

Processes

B =S

Hallo

StartProcess EndProcess

Figure 6.21.

public class ProcessPersistenceTest extends JbpmJUnit BaseTest Case {

public ProcessPersistenceTest() {
/| setup data source, enable persistence
super (true, true);

@est

public void testProcess() {
/'l create runtime nmanager with single process - hello.bpm
creat eRunti meManager (" hel | o. bpmm") ;

/] take RuntineManager to work with process engine
Runt i mreEngi ne runti meEngi ne = get Runti neEngi ne();

/] get access to KieSession instance
Ki eSessi on ksession = runti neEngi ne. get Ki eSessi on();

/] start process
Processl nstance processlnstance = ksession. startProcess("com sanpl e. bpm. hel | 0");

/1 check whether the process instance has conpl eted successfully
assert Processl nst anceConpl et ed(processl nst ance. get1d(), ksession);

/| check what nodes have been triggered
assert NodeTri ggered(processlnstance. getld(), "StartProcess", "Hello", "EndProcess");

JbpmJUnitBaseTestCase acts as base test case class that shall be used for jBPM related tests.
It provides four usage areas:

« JUnit life cycle methods

» setUp: executed @Before and configures data source and EntityManagerFactory, cleans up
Singleton's session id

118

Processes

» tearDown: executed @After and clears out history, closes EntityManagerFactory and data
source, disposes RuntimeEngines and RuntimeManager

« Knowledge Base and KnowledgeSession management methods

» createRuntimeManager creates RuntimeManager for given set of assets and selected strat-
egy

+ disposeRuntimeManager disposes RuntimeManager currently active in the scope of test

» getRuntimeEngine creates new RuntimeEngine for given context
» Assertions

» assertProcessinstanceCompleted

» assertProcessinstanceAborted

» assertProcesslinstanceActive

» assertNodeActive

» assertNodeTriggered

» assertProcessVarExists

» assertNodeExists

* assertVersionEquals

» assertProcessNameEquals
» Helper methods

» getDs - returns currently configured data source

» getemf - returns currently configured EntityManagerFactory

» getTestWorkltemHandler - returns test work item handler that might be registered in addition
to what is registered by default

« clearHistory - clears history log
» setupPoolingDataSource - sets up data source

JbpmJUnitBaseTestCase supports all three predefined RuntimeManager strategies as part of the
unit testing. It's enough to specify which strategy shall be used whenever creating runtime man-
ager as part of single test:

public class ProcessHumanTaskTest extends JbpmJUnit BaseTest Case {

119

Processes

private static final Logger |ogger = LoggerFactory. getLogger(ProcessHunanTaskTest . cl ass);

public ProcessHumanTaskTest () {
super (true, false);

}
@est
public void testProcessProcesslnstanceStrategy() {
Runti meManager manager = createRunti neManager (Strat egy. PROCESS | NSTANCE, "nanager", "hunmantask.bpm");
Runti meEngi ne runti meEngi ne = get Runti neEngi ne(Processl nstancel dCont ext.get());
Ki eSessi on ksessi on = runti meEngi ne. get Ki eSessi on();
TaskServi ce taskService = runti meEngi ne. get TaskService();
int ksessionlD = ksession.getld();
Processl nstance processlnstance = ksession. startProcess("com sanpl e. bpm. hel | 0");
assert Processl nstanceActi ve(processl nstance. getld(), ksession);
assert NodeTri ggered(processlnstance.getld(), "Start", "Task 1");
manager . di sposeRunt i neEngi ne(runti neEngi ne) ;
runti meEngi ne = get Runti neEngi ne(Processl nst ancel dCont ext . get (processl nstance. getld()));
ksession = runti neEngi ne. get Ki eSessi on();
taskServi ce = runti meEngi ne. get TaskService();
assert Equal s(ksessi onl D, ksession.getld());
/1 let john execute Task 1
Li st <TaskSunmary> |ist = taskService. get TasksAssi gnedAsPot enti al Ower ("j ohn", "en-UK");
TaskSunmary task = list.get(0);
| ogger.info("John is executing task {}", task.getNanme());
taskService.start(task.getld(), "john");
taskService. conpl ete(task. getld(), "john", null);
assert NodeTri gger ed(processl nstance. getld(), "Task 2");
/] let mary execute Task 2
list = taskService. get TasksAssi gnedAsPot enti al Owmer ("mary", "en-UK");
task = list.get(0);
| ogger.info("Mary is executing task {}", task.getName());
taskService.start(task.getld(), "nmary");
taskService. conpl ete(task.getld(), "mary", null);
assert NodeTri gger ed(processl nstance. getld(), "End");
assert Processl nst anceConpl et ed(processl nst ance. get 1 d(), ksession);
}

Above is more complete example that uses PerProcessinstance runtime manager strategy and
uses task service to deal with user tasks.

6.8.1.1. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the advan-
tages of our domain-specific process approach is that you can specify yourself how to actually

120

Processes

execute your own domain-specific nodes, by registering a handler. And this handler can be differ-
ent depending on your context, allowing you to use testing handlers for unit testing your process.
When you are unit testing your business process, you can register test handlers that then verify
whether specific services are requested correctly, and provide test responses for those services.
For example, imagine you have an email node or a human task as part of your process. When
unit testing, you don't want to send out an actual email but rather test whether the email that is re-
guested contains the correct information (for example the right to email, a personalized body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

Og{ e J_>®5ent

failed

i=| Failed

Figure 6.22.

public void testProcess2() {

/] create runtine manager with single process - hello.bpm
creat eRunt i mreManager (" sanpl e- process. bpm") ;

/] take RuntineManager to work with process engine
Runt i meEngi ne runti meEngi ne = get Runti neEngi ne()

/] get access to KieSession instance
Ki eSessi on ksessi on = runti meEngi ne. get Ki eSessi on();

/] register a test handler for "Email"

121

Processes

Test Wr ki t emHandl er testHandl er = get Test Wor ki t enHandl er () ;
ksessi on. get Wor kI t emVlnager () . regi st er Wrkl t enHandl er ("Enai | ", testHandl er);

/] start the process
Processl nstance processlnstance = ksession.startProcess("com sanpl e. bpm. hel | 02");

assert Processl nstanceActi ve(processlnstance. getld(), ksession);
assert NodeTri ggered(processlnstance. getld(), "StartProcess", "Email");

/| check whether the email has been requested

Workltem workltem = testHandl er. get Wrklten();

assert Not Nul | (worklten);

assert Equal s("Emai | ", workltem get Nanme());

assert Equal s("ne@mi | . cont’, workltem get Paraneter("Froni));
assert Equal s("you@mi |l . cont, workltem getParaneter("To"));

/1 notify the engine the email has been sent

ksessi on. get Wor kI t emVlnager () . abort Wor kI t en{ wor kl tem get 1d());

assert Processl nst anceAbort ed(processl nst ance. getld(), ksession);

assert NodeTri gger ed(processl nstance. getld(), "Gateway", "Failed", "Error");

6.8.1.2. Configuring persistence

You can configure whether you want to execute the JUnit tests using persistence or not. By default,
the JUnit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the JUnit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

Persistence (and setup of data source) is controlled by the super constructor and allows following
« default, no arg constructor - the most simple test case configuration (does NOT initialize da-

ta source and does NOT configure session persistence) - this is usually used for in memory
process management, without human task interaction

» super(boolean, boolean) - allows to explicitly configure persistence and data source. This is the
most common way of bootstrapping test cases for jBPM

 super(true, false) - to execute with in memory process management with human tasks per-
sistence

» super(true, true) - to execute with persistent process management with human tasks persis-
tence

» super(boolean, boolean, string) - same as super(boolean, boolean) but allows to use another
persistence unit name than default (org.jopm.persistence.jpa)

public class ProcessHumanTaskTest extends JbpmlUnit BaseTest Case {

122

Processes

private static final Logger |ogger =

public ProcessHumanTaskTest () {
/1 configure this tests to not
for human tasks
super(true, false);

Logger Fact ory. get Logger (ProcessHumanTaskTest . cl ass) ;

use persistence for

process engi ne but

still

use it

123

Chapter 7. Human Tasks

7.1. Introduction

An important aspect of business processes is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed by human
actors.

jBPM supports a special human task node inside processes for modeling this interaction with
human users. This human task node allows process designers to define the properties related to
the task that the human actor needs to execute, like for example the type of task, the actor(s),
or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle
of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.
Note however that this implementation is fully pluggable, meaning that users can integrate their
own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human
task nodes inside your process to model the interaction with human actors, (2) integrate a task
management component (like for example the WS-HumanTask based implementation provided
by jBPM) and (3) have end users interact with a human task client to request their task list and
claim and complete the tasks assigned to them. Each of these three elements will be discussed
in more detail in the next sections.

7.2. Using User Tasks in our Processes

jBPM supports the use of human tasks inside processes using a special User Task node defined
by the BPMN2 Specification(as shown in the figure above). A User Task node represents an
atomic task that needs to be executed by a human actor.

S

HE Interview

[Although jBPM has a special user task node for including human tasks inside a process, human
tasks are considered the same as any other kind of external service that needs to be invoked and
are therefore simply implemented as a domain-specific service. See the chapter on domain-spe-
cific processes to learn more about this.]

A User Task node contains the following core properties:

124

Human Tasks

» Actors: The actors that are responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

» Group: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

* Name: The display name of the node.

« TaskName: The name of the human task. This name is used to link the task to a Form. It also
represent the internal name of the Task that can be used for other purposes.

« DatalnputSet: all the input variables that the task will receive to work on. Usually you will be
interested in copying variables from the scope of the process to the scope of the task. (Look at
the data mappings section for an example)

» DataOutputSet: all the output variables that will be generated by the execution of the task. Here
you specify all the name of the variables in the context of the task that you are interested to
copy to the context of the process. (Look at the data mappings section for an example)

« Assignments: here you specify which process variable will be linked to each Data Input and
Data Output mapping. (Look at the data mappings section for an example)

You can edit these variables in the properties view (see below) when selecting the User Task node.
Properties (User) w

Mame Value

=l Core Properties

Actors

Assignments name=&giin_name,out_age->age,outl_mail->mail. ..
DatalnputSet Groupld:Object, Comment: Object,in_name:Siring

DataOutputSet out_name:3tringout_age:integer,out_mail:String,out_s. ..

Groups HRE

Name HR Interview
Task Name HRInterview
TaskType & User

H Extra Properties
H Graphical Settings

4 Simulation Properties

A User Task node also contains the following extra properties:

125

Human Tasks

* Comment: A comment associated with the human task. Here you can use expressions.
« Content: The data associated with this task.
« Priority: An integer indicating the priority of the human task.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

< On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

= Extra Properties

Comment Candidate: #name}
Content

Created by

Documentation

Locale

Multiple Inst... falze

Motifications

On Entry Act...

On Exit Acti...

Priority

Reassignment An integer indicating the priority of the human

Script Langu... java task
Skippable

7.3. Data Mappings

Human tasks typically present some data related to the task that needs to be performed to the
actor that is executing the task and usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor
and request results.

The data that will be used by the Task needs to be specified when we define the User Task in
our Process. In order to do that we need to define which data will be copied from the process
context to the task context. Notice that the data is copied, so it can be modified inside the Task
context but it will not affect the process variables unless we decide to copy back the value from
the task to the process context.

Most of the times Forms are used to display data to the end user. Allowing them to generate/create
new data that will be propagated to the process context to be used by future activities. In order

126

Human Tasks

to decide how the information flow from the process to a particular task and from the task to the
process we need to define which pieces of information will be automatically copied by the process
engine. The following sections shows how to do these mappings by configuring the DatalnputSet,
DataOutputSet and the Assignments properties of a User Task.

Let's start defining the Task DatalnputSet:

Editor for Data Input

Add Data Input

.1
2
3

Mame Standard Type Custom Type

Groupld Object @
Comment Object @
in_name String @

Both Groupld and Comment are automatically generated, so you don't need to worry about that.
In this case the only user defined Data Input is called: in_name. This means that the task will be
receiving information from the process context and internally this variable will be called in_name.
The type is also specified here.

In the Data Outputs represent the data that will be generated by the tasks. In this case we have
two variables of type String called: out_name and out_mail and two Integer variables called:
out_age and out_score are defined. This means that inside the task context we will need to set
the value to these variables.

Editor for Data Qutput

Add Data Output

Mame Standard Type Custom Type

out_name String @
out_age Integer @
out_mail String @
out_score Integer @

Finally all the connections with the process context needs to be done in the Data Assignments.
The main idea here is to define how Data Inputs and Data Outputs will be associated with process
variables.

127

Human Tasks

Editor for Data Assignments

Add Assignment
From Object Assignment Type To Object To Value
1 nmame is mapped 1o in_name
2 out_age is mapped o age
3 out_mail is mapped 1o mail
4 out_score is mapped o hr_score

As shown in the previous screenshot, the assignments between the process variables (in this
case (name, age, mail and hr_score)) and the Data Inputs and Outputs are done in the Data
Assignments screen. Notice that the example uses a convention that makes it easy to know which
is an internal Task variables (Data Input/Output) using the "in_" and "out_" prefix to the variable
names. Using this convention you can quickly understand the Assignments screen. The first row
maps the process variable called name to the data input called in_name. The second row maps
the data output called out_mail to the process variable called mail, and so on.

These mappings at runtime will automatically copy the variables content from one context (process
and task) to the other automatically for us.

7.4. Task Lifecycle

From the perspective of a process, when a user task node is encountered during the execution, a
human task is created. The process will then only leave the user task node when the associated
human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is
described below, please check out the WS-HumanTask specification. The following diagram is
from the WS-HumanTask specification and describes the human task life cycle.

128

O8O

Human Tasks

Created

Suspended
Ready
Resarvad | Reserved
InProgress InProgress

&mon) [WS-HT exi] | [Skip &8 ESKippabie]
Exil lask |Send WS-HT skippe

r

™ - AT '
Completed Failed Error Exited L Obsolete
/ L v . AN

A newly created task starts in the "Created" stage. Usually, it will then automatically become
"Ready", after which the task will show up on the task list of all the actors that are allowed to
execute the task. The task will stay "Ready" until one of these actors claims the task, indicating
that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a
task that only has one potential (specific) actor will automatically be assigned to that actor upon
creation of the task. When the user who has claimed the task starts executing it, the task status
will change from "Reserved" to "InProgress".

Lastly, once the user has performed and completed the task, the task status will change to "Com-
pleted". In this step, the user can optionally specify the result data related to the task. If the task
could not be completed, the user could also indicate this by using a fault response, possibly in-
cluding fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a
number of other life cycle methods, including:

» Delegating or forwarding a task, so that the task is assigned to another actor

» Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all
actors allowed to take it

129

Human Tasks

» Temporarly suspending and resuming a task
» Stopping a task in progress

» Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

7.5. Task Permissions

Only users associated with a specific task are allowed to modify or retrieve information about the
task. This allows users to create a jBPM workflow with multiple tasks and yet still be assured of
both the confidentiality and integrity of the task status and information associated with a task.

Some task operations will end up throwing a
org. j bpm servi ces. t ask. excepti on. Perni ssi onDeni edExcept i on when used with informa-
tion about an unauthorized user. For example, when a user is trying to directly modify the task
(for example, by trying to claim or complete the task), the Per i ssi onDeni edExcept i on will be
thrown if that user does not have the correct role for that operation. Furthermore, a user will not
be able to view or retrieve tasks that the user is not involved with, especially if this is via the jBPM
Console or KIE Workbench applications.

7.5.1. Task Permissions Matrix

The permisions matrix below summarizes the actions that specific user roles are allowed to do. On
the left side, possible operations are listed while user roles are listed across the top of the matrix.

The cells of the permissions matrix contain one of three possible characters, each of which indicate
the user role permissions for that operation:

« a "+ indicates that the user role CAN do the specified operation
e a"-"indicates that the user role MAY NOT do the specified operation

e a" "indicates that the user role MAY NOT do the specified operation, and that it is also not an
operation that matches the user's role ("not applicable")
Furthermore, the following words or abbreviations in the table header refer to the following roles:

Table 7.1. Task roles in the permissions table

Word Role Description

Initiator Task Initiator The user who creates the task
instance

Stakeholder Task Stakeholder The user involved in the task:

this user can influence the
progress of a task, by perform-
ing administrative actions on
the task instance

130

Human Tasks

Word

Potential

Actual

Administrator

Role

Potential Owner

Actual Owner

Business Adminstrator

Description

The user who can claim

the task before it has been
claimed, or after it has been
released or forward: only tasks
that have the status "Ready"
may be claimed; a potential
owner becomes the actual
owner of a task by claiming
the task

The user who has claimed the
task and will progress the task
to completion or failure

A "super user" who may mod-
ify the status or progress of

a task at any point in a task's
lifecycle

User roles are assigned to users by the definition of the task in

finition.

Permissions Matrices.
which modify a task:

The following matrix describes the

Table 7.2. Main operations permissions matrix

the jBPM (BPMN2) process de-

authorizations for all operations

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
activate + + _ _ +
claim - + + _ +
conpl ete - + _ + +
del egat e + + + + +
fail - + B + +

f orward + + + + +
nom nat e + + + + +
rel ease + + + + +
remove - _ _ - +
resune + + + + +
skip + + + + +
start - + + + +
stop - + _ + +

131

Human Tasks

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
suspend + + + + +

The matrix below describes the authorizations used when retrieving task information. In short, it
says that all users which have any role with regards to the specific task, are allowed to see the
task. This applies to all operations that are used to retrieve any type of information about the task.

Table 7.3. Retrieval operations permissions matrix

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
get + + + + +

7.6. Task Service and The Process Engine

As far as the jJBPM engine is concerned, human tasks are similar to any other external service
that needs to be invoked and are implemented as a domain-specific service. (For more on do-
main-specific services, see the chapter on them here.) Because a human task is an example of
such a domain-specific service, the process itself only contains a high-level, abstract description
of the human task to be executed and a work item handler that is responsible for binding this
(abstract) task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by
jBPM, or they may register their own implementation. In the next paragraphs, we will describe the
human task service implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the WS-
HumanTask specification. If you do not need to integrate jBPM with another existing implementa-
tion of a human task service, you can use this service. The jBPM implementation manages the life
cycle of the tasks (creation, claiming, completion, etc.) and stores the state of all the tasks, task
lists, and other associated information. It also supports features like internationalization, calendar
integration, different types of assignments, delegation, escalation and deadlines. The code for the
implementation itself can be found in the jopm-human-task module.

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.
This specification defines (in detail) the model of the tasks, the life cycle, and many other features.
It is very comprehensive and the first version can be found here.

7.7. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients
to integrate (at a low level) with the human task service. Note that end users should probably
not interact with this low-level API directly, but use one of the more user-friendly task clients
(see below) instead. These clients offer a graphical user interface to request task lists, claim and
complete tasks, and manage tasks in general. The task clients listed below use the Java API to

132

Human Tasks

internally interact with the human task service. Of course, the low-level API is also available so
that developers can use it in their code to interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods (among oth-
ers) for managing the life cycle of human tasks:

void start(long taskld, String userld);

void stop(long taskld, String userld);

void release(long taskld, String userld);

voi d suspend(long taskld, String userid);

void resune(long taskld, String userld);

voi d skip(long taskld, String userld);

voi d del egate(long taskld, String userld, String targetUserld);

void conplete(long taskld, String userld, Map<String, Object> results);

If you take a look at the method signatures you will notice that almost all of these methods take
the following arguments:

« taskld: The id of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

 userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

There is also an internal interface that you should check for more methods to interact with the
Task Service, this interface is internal until it gets tested. Future version of the External (public)
interface can include some of the methods proposed in the InternalTaskService interface. If you
want to make use of the methods provided by this interface you need to manually cast to Internal-
TaskService. One method that can be useful from this interface is getTaskContent():

Map<String, Object> get TaskContent(long taskld);

133

Human Tasks

This method saves you from doing all the boiler plate of getting the ContentMarshallerContext
to unmarshall the serialized version of the task content. If you only want to use the stable/public
API's you can just copy what this method does:

Task taskByld = taskQueryService. get Taskl nst anceByl d(t askl d);
Cont ent contentByld =

t askCont ent Ser vi ce. get Cont ent Byl d(t askByl d. get TaskDat a() . get Docunent Content 1 d()) ;
Cont ent Mar shal | er Cont ext context = get Marshal | er Cont ext (t askByl d) ;
oj ect unmar shal | edObj ect

= Cont ent Mar shal | er Hel per. unmar shal | (cont ent Byl d. get Content (), cont ext . get Envi ronnent (),
cont ext . get G assl oader ());
if (!(unmarshal | edObj ect instanceof Map)) {
throw new ||| egal St at eException(" The Task Content Needs to be a Map in order

to use this nethod and it was: "+unmarshall edCbject.getd ass());

}
Map<String, Object> content = (Map<String, Object>) unmarshal |l edject;

return content;

Because the content of the Task can be any Object, the previous method assume that you are
storing a Map of objects to work. If you are storing other than a Map you should do the correspon-
dent checks.

7.8. Interacting with the Task Service

In order to get access to the Task Service API it is recommended to let the Runtime Manager
to make sure that everything is setup correctly. Look at the Runtime Manager section for more
information. From the API perspective you should be doing something like this:

Runt i meEngi ne engi ne = runti neManager . get Runti meEngi ne(Enpt yCont ext . get());

Ki eSessi on ki eSessi on = engi ne. get Ki eSessi on();

/] Start a process

ki eSessi on. start Process(" Cust omer sRel ati onshi p. cust oners", parans);

/1 Do Task Operations

TaskServi ce taskServi ce = engi ne. get TaskServi ce();

Li st <TaskSummary> tasksAssi gnedAsPot enti al Owmner =

taskServi ce. get TasksAssi gnedAsPot enti al Oamner ("mary", "en-UK");

/1 O ai mTask
taskService. cl ai n{taskSumary.getld(), "mary");
/] Start Task
taskService.start (taskSummary.getld(), "mary");

134

Human Tasks

If you use this approach, there is no need to register the Task Service with the Process Engine.
The Runtime Manager will do that for you automatically. If you don't use the Runtime Manager,
you will be responsible for setting the LocalHTWorkltemHandler in the session in order to get
the Task Service notifying the Process Engine when a task is completed, or the Process Engine
notifying that a task has been created.

In jBPM 6.x the Task Service runs locally to the Process and Rule Engine and for that reason
multiple light clients can be created for different Process and Rule Engine's instances. All the
clients will be sharing the same database (backend storage for the tasks).

135

Chapter 8. Persistence and
Transactions

8.1. Process Instance State

jBPM allows the persistent storage of certain information. This chapter describes these different
types of persistence, and how to configure them. An example of the information stored is the
process runtime state. Storing the process runtime state is hecessary in order to be able to con-
tinue execution of a process instance at any point, if something goes wrong. Also, the process
definitions themselves, and the history information (logs of current and previous process states
already) can also be persisted.

8.1.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution of
the process in that specific context. For example, when executing a process that specifies how
to process a sales order, one process instance is created for each sales request. The process
instance represents the current execution state in that specific context, and contains all the in-
formation related to that process instance. Note that it only contains the (minimal) runtime state
that is needed to continue the execution of that process instance at some later time, but it does
not include information about the history of that process instance if that information is no longer
needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the
database. You do not have to trigger persistence yourself, the engine will take care of this when
persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are
stored at the end of that invocation, at so-called safe points. Whenever something goes wrong
and you restore the engine from the database, you also should not reload the process instances
and trigger them manually to resume execution, as process instances will automatically resume
execution if they are triggered, like for example by a timer expiring, the completion of a task that
was requested by that process instance, or a signal being sent to the process instance. The engine
will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably
should not try to access these database tables directly and especially not try to modify these
directly (as changing the runtime state of process instances without the engine knowing might
have unexpected side-effects). In most cases where information about the current execution state

136

Persistence and Transactions

of process instances is required, the use of a history log is mostly recommended (see below). In
some cases, it might still be useful to for example query the internal database tables directly, but
you should only do this if you know what you are doing.

8.1.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the
state of the process instance into a binary dataset. When you use persistence with jBPM, this
mechanism is used to save or retrieve the process instance state from the database. The same
mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

« First, the process instance information is transformed into a binary blob. For performance rea-
sons, a custom serialization mechanism is used and not normal Java serialization.

« This blob is then stored, alongside other metadata about this process instance. This metadata
includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the
state of timer jobs, or the session data that any business rules would be evaluated over. This
session state is stored separately as a binary blob, along with the id of the session and some
metadata. You can always restore session state by reloading the session with the given id. The
session id can be retrieved using ksessi on. get 1 d() .

Note that the process instance binary datasets are usually relatively small, as they only contain
the minimal execution state of the process instance. For a simple process instance, this usually
contains one or a few node instances, i.e., any node that is currently executing, and any existing
variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

137

Persistence and Transactions

] Workiteminfo v] Sessioninfo v] Processinstancelnfo v "] EventTypes v
workltem|d BIGINT{20) id INT{11) InstanceId BIGINT{20) & Instanceld BIGINT|20)
creationDate DATETIME lastMedfficationDate DATETIME lastMeodificationDate DATETIME aventTypes VARCHAR(255)
name VARCHAR(255) rulesByteArray LONGBLOB lastReadDate DATETIME

» processinstanceld BIGINT{20) staDate DATETIME processld VARCHAR(265)

»state BIGINT(20) OPTLOCK INT{11) processinstanceByteArray LONGBLOB ==
OPTLOCK INT{11) startDate DATETIME
workltemn ByteArray LONGBLOB » state INT(11)

OPTLOCK INT(11)
> > > >

] correlationPropertyinfo ¥] CorrelationKeyinfo v "] ContextMappinginfo v

propertyld BIGINT(20) kayld BIGINT(20) mappingld BIGINT{20)

name VARCHAR(255) name VARCHAR|255) » CONTEXT_ID VARCHAR(255)

value VARCHAR(255) L L1 1 » processinstanceld BIGINT(20) > KSESSION_ID INT{11)

OPTLOCK INT(11) OPTLOCK INT{11) OPTLOCK INT{11)
< comelationkey_keyld BIGINT{20)

> > >

Figure 8.1. jJBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessi oni nf o entity contains the state of the (knowledge) session in which the jBPM process
instance is running.

Table 8.1. SessionInfo

Field Description Nullable
id The primary key. NOT NULL
| ast nodi fi cati ondate The last time that the entity

was saved to the database

rul eshyt earray The binary dataset containing | NOT NULL
the state of the session

startdate The start time of the session

opt | ock The version field that serves

as its optimistic lock value

The processi nst ancei nf o entity contains the state of the jBPM process instance.

Table 8.2. Processinstancelnfo

Field Description Nullable
i nstancei d The primary key NOT NULL
| ast nodi fi cati ondate The last time that the entity

was saved to the database

138

images/Chapter-Persistence/jbpm_schema.png

Persistence and Transactions

Field Description Nullable

| astreaddat e The last time that the entity
was retrieved (read) from the
database

processid The name (id) of the process

processi nst ancebyt earray | This is the binary dataset NOT NULL
containing the state of the
process instance

startdate The start time of the process

state An integer representing the NOT NULL
state of the process instance

opt | ock The version field that serves

as its optimistic lock value

The event t ypes entity contains information about events that a process instance will undergo

or has undergone.

Table 8.3. EventTypes

Field Description Nullable
i nst ancei d This references the pr o- NOT NULL
cessi nst ancei nf o primary
key and there is a foreign key
constraint on this column.
event Types A text field related to an
event that the process has
undergone.
The wor ki t eni nf o entity contains the state of a work item.
Table 8.4. WorkltemInfo
Field Description Nullable
wor ki t eni d The primary key NOT NULL
creationDate The name of the work item
nanme The name of the work item
processi nstancei d The (primary key) id of the NOT NULL
process: there is no foreign
key constraint on this field.
state An integer representing the NOT NULL

state of the work item

139

Persistence and Transactions

Field Description Nullable

opt | ock The version field that serves
as its optimistic lock value

wor Ki t enbyt ear ay This is the binary dataset NOT NULL
containing the state of the
work item

The Correl ati onKeyl nf o entity contains information about correlation keys assigned to given
process instance - loose relationship as this table is considered optional used only when correla-
tion capabilities are required.

Table 8.5. CorrelationKeylInfo

Field Description Nullable
keyi d The primary key NOT NULL
name assigned name of the corre-

lation key
processi nstancei d The id of the process in- NOT NULL

stance which is assigned to
this correlation key

opt | ock The version field that serves
as its optimistic lock value

The Corr el ati onPropertyl nf o entity contains information about correlation properties for given
correlation key that is assigned to given process instance.

Table 8.6. CorrelationPropertyinfo

Field Description Nullable
propertyid The primary key NOT NULL
nane The name of the property

val ue The value of the property NOT NULL
opt | ock The version field that serves

as its optimistic lock value

correl ati onKey- keyi d Foregin key to map to corre- | NOT NULL
lation key

The Cont ext Mappi ngl nf o entity contains information about contextual information mapped to
ksession. This is an internal part of RuntimeManager and can be considered optional when Run-
timeManager is not used.

140

Persistence and Transactions

Table 8.7. ContextMappingInfo

Field Description Nullable

mappi ngi d The primary key NOT NULL
context id Identifier of the context NOT NULL
ksessi on?i d Identifier of the ksession NOT NULL

mapped to this context

opt | ock The version field that serves
as its optimistic lock value

8.1.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the
process engine. Whenever a process instance is executing (for example when it started or con-
tinuing from a previous wait state, the engine executes the process instance until no more actions
can be performed (meaning that the process instance either has completed (or was aborted), or
that it has reached a wait state in all of its parallel paths). At that point, the engine has reached
the next safe state, and the state of the process instance (and all other process instances that
might have been affected) is stored persistently.

8.2. Audit Log

In many cases it will be useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards. For example, sometimes we want to
verify which actions have been executed for a particular process instance, or in general, we want
to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size, not to mention the fact that monitoring and analysis queries might influence
the performance of your runtime engine. This is why process execution history information can
be stored separately.

This history log of execution information is created based on events that the process engine gen-
erates during execution. This is possible because the jBPM runtime engine provides a generic
mechanism to listen to events. The necessary information can easily be extracted from these
events and then persisted to a database. Filters can also be used to limit the scope of the logged
information.

8.2.1. The |BPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information in a
database using JPA. The data model itself contains three entities, one for process instance infor-
mation, one for node instance information, and one for (process) variable instance information.

141

Persistence and Transactions

| Processinstancelog v
id BIGINT{20)
duration BIGINT{20)
end_date DATETIME
extemalld VARCHAR(255)
user_identity VARCHAR(255)
outcome VARCHAR(255)
parentP rocessinstance |d BIGINT{20)
processld VARCHAR(255)

» processinstanceld BIGINT(20)
processMame VARCHARIZ255)
processVersion VARCHAR(255)
start_date DATETIME
status INT(11)

—| NodelnstanceLog v
id BIGINT{20)
connection VARCHAR(255)
log_date DATETIME
extemalld VARCHAR(255)
nodeld VARCHAR(255)
nodelnstanceld VARCHAR(255)
nodeName VARCHAR(255)
nodeType VARCHAR(255)
process|d VARCHAR(255)

» proce ssinstanceld BIGINT(20)

»type INT(11)
waorkltemid BIGINT (20}

Figure 8.2. JBPM Audit data model

| Variablelnstancel.og v
id BIGINT{20)
log date DATETIME
extemalld VARCHAR(255)
cldValue VARCHAR(255)
processld VARCHAR(25E)

» processinstanceld BIGINT(20)
value VARCHAR(255)
vanableld VARCHAR(255)
vanablelnstanceld WV ARCHAR(255)

The Processl nst ancelLog table contains the basic log information about a process instance.

Table 8.8. ProcessinstancelLog

Field
id

duration

end_date

external I d

user _identity

Description

The primary key and id of the
log entity

Actual duration of this
process instance since its
start date

When applicable, the end
date of the process instance

Optional external identifier
used to correlate to some el-
ements - e.g. deployment id

Optional identifier of the user
who started the process in-
stance

Nullable
NOT NULL

out conme

The outcome of the process
instance, for instance error
code in case of process in-
stance was finished with error
event

par ent Processl nstancel d

The process instance id of
the parent process instance if
any

142

Persistence and Transactions

Field Description Nullable
processid The id of the process
processi nst ancei d The process instance id NOT NULL
pr ocessnamne The name of the process
processversi on The version of the process
start_date The start date of the process
instance
st at us The status of process in-
stance that maps to process
instance state

The Nodel nst anceLog table contains more information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incoming
connections or is exited through one of its outgoing connections, that information is stored in this
table.

Table 8.9. NodelnstancelLog

Field Description Nullable

id The primary key and id of the | NOT NULL
log entity

connection Actual identifier of the se-

guence flow that led to this
node instance

| og_date The date of the event

external I d Optional external identifier
used to correlate to some el-
ements - e.g. deployment id

nodei d The node id of the corre-
sponding node in the process
definition

nodei nst ancei d The node instance id

nodenane The name of the node

nodet ype The type of the node

processid The id of the process that the

process instance is executing

processi nst ancei d The process instance id NOT NULL
type The type of the event (0 = en- | NOT NULL
ter, 1 = exit)

143

Persistence and Transactions

Field Description Nullable
wor kl tem d Optional - only for certain

node types - The identifier of

work item

The Vari abl el nst anceLog table contains information about changes in variable instances. The
default is to only generate log entries when (after) a variable changes. It's also possible to log
entries before the variable (value) changes.

Table 8.10. VariableInstancelLog

Field Description Nullable

id The primary key and id of the | NOT NULL
log entity

external I d Optional external identifier

used to correlate to some el-
ements - e.g. deployment id

| og_date The date of the event

processid The id of the process that the
process instance is executing

processi nstancei d The process instance id NOT NULL
ol dval ue The previous value of the

variable at the time that the

log is made
val ue The value of the variable at

the time that the log is made

vari abl ei d The variable id in the process
definition

vari abl ei nst ancei d The id of the variable in-
stance

8.2.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your
session like this:

EntityManager Factory enf = ...;

St at ef ul Know edgeSessi on ksession = ...

Abstract Audi t Logger audit Logger = AuditLogger Factory. newJPAI nst ance(enf)
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/1 invoke methods one your session here

144

Persistence and Transactions

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstancelLog, NodelnstanceLog and Vari-
ablelnstanceLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<per si st ence
versi on="2. 0"
xsi : schemaLocati on="http://java. sun. com xnl / ns/ per si st ence http://java. sun. com xnil / ns/
persi st ence/ persi stence_2_0. xsd
http://java. sun. com xnl / ns/ per si st ence/ orm http://java. sun. com xnl / ns/ persi st ence/
orm2_0. xsd"
xm ns="http://java. sun. con xm / ns/ per si st ence"
xm ns:ornE"http://java. sun. coml xn / ns/ per si st ence/ or ni'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance>

<persi stence-unit nane="org.jbpm persistence.jpa" transaction-type="JTA">
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ j bpm ds</ | t a- dat a- sour ce>
<mappi ng-fil e>META- 1 NF/ JBPMor m xml </ mappi ng-fil e>
<cl ass>org. drool s. persi stence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm per si st ence. processi nst ance. Processl| nst ancel nf o</ cl ass>
<cl ass>or g. drool s. persi st ence. i nfo. Wrkltem nfo</cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onKeyl nf o</ cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti ne. manager. i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<cl ass>org. j bpm process. audi t. Processl nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t . Nodel nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nanme="hi bernate. dial ect" val ue="org. hi bernate.dial ect. H2Di al ect"/ >
<property name="hi bernate. max_fetch_depth" val ue="3"/>
<property nanme="hi bernate. hbnRddl . aut 0" val ue="update"/>
<property name="hi bernate.show sql" value="true"/>
<property name="hi bernate.transaction.jta.platfornt
val ue="org. hi bernate. service.jta.platforminternal.BitronixJtaPl atform'/>

</ properties>

</ persi st ence- uni t>
</ per si st ence>

All this information can easily be queried and used in a lot of different use cases, ranging from cre-
ating a history log for one specific process instance to analyzing the performance of all instances
of a specific process.

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only

145

Persistence and Transactions

store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

8.2.3. Storing Process Events in a JMS queue for further pro-
cessing

Process events are stored in the database synchronously and within the same transaction as
actual process instance execution. That obviously takes some time especially in highly loaded
systems and might have some impact on the database when both history log and runtime data
are kept in the same database. To provide an alternative option for storing process events, a JMS
based logger has been provided. It can be configured to submit messages to JMS queue instead
of directly persisting them in the database. It can be configured to be transactional as well to avoid
issues with inconsistent data in case of process engine transaction is rolled back.

Connecti onFactory factory = ...

Queue queue = ...

St at ef ul Know edgeSessi on ksession = ... ;

Map<String, Object> jnmsProps = new HashMap<String, Object>()

jmsProps. put ("jbpmaudit.jns.transacted", true);

jmsProps. put ("j bpm audit.jnms.connection.factory", factory)

jmsProps. put ("j bpm audi t.jnms. queue", queue);

Abstract Audi t Logger audi t Logger = AuditLogger Factory. newl nstance(Type. JMS, session, jnmsProps)
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/'l invoke methods one your session here

This is just one of possible ways to configure JMS audit logger, see javadocs for AuditLoggerFac-
tory for more details.

8.3. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using
Spring. It does not support pure local transactions at the moment. For more information about
using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will auto-
matically execute each method invocation on the engine in a separate transaction. If this behavior
is acceptable, you don't need to do anything else. You can, however, also specify the transac-
tion boundaries yourself. This allows you, for example, to combine multiple commands into one
transaction.

You need to register a transaction manager at the environment before using user-defined trans-
actions. The following sample code uses the Bitronix transaction manager. Next, we use the Java
Transaction APl (JTA) to specify transaction boundaries, as shown below:

146

Persistence and Transactions

/] create the entity nmanager factory and register it in the environnent

Enti t yManager Fact ory enf = Persi stence. creat eEntityManager Factory("org.] bpm persi stence.jpa");

Envi ronment env = Know edgeBaseFact ory. newEnvi ronnent () ;

env. set (Envi ronnent Name. ENTI TY_MANAGER _FACTCRY, enf);

env. set (Envi ronnent Name. TRANSACTI ON_MANAGER, Transacti onManager Servi ces. get Transacti onManager ());

/] create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);

/] start the transaction

User Transact i on ut = (User Transact i on) new Initial Context().| ookup("java: conp/
User Transaction");

ut . begin();

/] performmultiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksessi on. start Process("M/Process");

/1 conmt the transaction
ut.commt();

Note that, if you use Bitronix as the transaction manager, you should also add a simple
j ndi . properti es file in you root classpath to register the Bitronix transaction manager in JNDI. If
you are using the jppm-test module, this is already included by default. If not, create a file named
j ndi . properti es with the following content:

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

If you would like to use a different JTA transaction manager, you can change the
persi stence. xm file to use your own transaction manager. For example, when running inside
JBoss Application Server v5.x or v7.x, you can use the JBoss transaction manager. You need to
change the transaction manager property in per si st ence. xni to:

<property name="hi bernate. transaction.jta.platfornt
val ue="org. hi bernate. transacti on. JBossTr ansacti onManager Lookup" />

8.3.1. Container managed transaction

Special consideration need to be taken when embedding jBPM inside an application that executes
in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies
to application servers that does not allow accessing UserTransaction instance from JNDI when

147

Persistence and Transactions

being part of container managed transaction, e.g. WebSphere Application Server. Since default
implementation of transaction manager in jBPM is based on UserTransaction to get transaction
status which is used to decide if transaction should be started or not, in environments that prevent
accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a

dedicated transaction manager implementation is provided:

org.j bpm persi stence. jta. Contai ner ManagedTr ansact i onManager

This transaction manager expects that transaction is active and thus will always return ACTIVE
when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as

transaction manager runs under managed transaction and can't affect it.

Note

To make sure that container is aware of any exceptions that happened during
process instance execution, user needs to ensure that exceptions thrown by the
engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

 Insert transaction manager and persistence context manager into environment prior to creat-

ing/loading session

Envi ronnent env = Environnent Fact ory. newkEnvi ronnent () ;
env. set (Envi ronment Nanme. ENTI TY_MANAGER_FACTORY, enf);

env. set (Envi ronment Name. TRANSACTI ON_MANAGER, new Cont ai ner ManagedTr ansact i onManager ()) ;

env. set (Envi r onnment Nanme. PERSI STENCE_CONTEXT_MANAGER, new
JpaPr ocessPer si st enceCont ext Manager (env)) ;

env. set (Envi r onnent Nanme. TASK_PERSI STENCE_CONTEXT_MANAGER, new
JPATaskPer si st enceCont ext Manager (env)) ;

« configure JPA provider (example hibernate and WebSphere)

<property name="hi bernat e. transaction. factory_cl ass"
val ue="org. hi bernat e. transacti on. CMI'Tr ansact i onFact ory"/ >

<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate. service.jta.platforminternal. WbSphereJtaPl atforni/>

With following configuration jBPM should run properly in CMT environment.

148

Persistence and Transactions

8.3.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession di-
rectly will cause exceptions on transaction completion as there are some trans-
action synchronization registered by jBPM to clean up the state after invoca-
tion is finished. To overcome this problem specialized command has been provided
org. j bpm persi stence. j ta. Cont ai ner ManagedTr ansact i onDi sposeCommand which allows to
simply execute this command instead of regular ksessi on. di spose which will ensure that kses-
sion will be disposed at the transaction completion.

8.4. Configuration

By default, the engine does not save runtime data persistently. This means you can use the engine
completely without persistence (so not even requiring an in memory database) if necessary, for
example for performance reasons, or when you would like to manage persistence yourself. It is,
however, possible to configure the engine to do use persistence by configuring it to do so. This
usually requires adding the necessary dependencies, configuring a datasource and creating the
engine with persistence configured.

8.4.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your appli-
cation if you want to user persistence. By default, persistence is based on the Java Persistence
API (JPA) and can thus work with several persistence mechanisms. We are using Hibernate by
default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary
JARs are added to your jBPM runtime directory. You don't really need to do anything (as the nec-
essary dependencies should already be there) if you are using the jBPM runtime that is configured
by default when using the jBPM installer, or if you downloaded and unzipped the jBPM runtime
artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you
need the JAR file j bpm per si st ence-j pa. j ar, as that contains code for saving the runtime state
whenever necessary. Next, you also need various other dependencies, depending on the persis-
tence solution and database you are using. For the default combination with Hibernate as the JPA
persistence provider and using an H2 in-memory database and Bitronix for JTA-based transaction
management, the following list of additional dependencies is needed:

 jbpm-persistence-jpa (org.jopm)
- drools-persistence-jpa (org.drools)

 persistence-api (javax.persistence)

« hibernate-entitymanager (org.hibernate)

149

Persistence and Transactions

« hibernate-annotations (org.hibernate)

« hibernate-commons-annotations (org.hibernate)
« hibernate-core (org.hibernate)

« commons-collections (commons-collections)

e dom4j (dom4))

* jta (javax.transaction)

e btm (org.codehaus.btm)

* javassist (javassist)

« slf4j-api (org.slf4))

* slf4j-jdk14 (org.slf4j)

h2 (com.h2database)

jbpm-test (org.jopm) for testing only, do not include it in the actual application

8.4.2. Manually configuring the engine to use persistence

You can use the JPAKnow edgeSer vi ce to create your knowledge session. This is slightly more
complex, but gives you full access to the underlying configurations. You can create a new knowl-
edge session using JPAKnow edgeSer vi ce based on a knowledge base, a knowledge session
configuration (if necessary) and an environment. The environment needs to contain a reference
to your Entity Manager Factory. For example:

/] create the entity nmanager factory and register it in the environnent
Enti tyManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence. jpa");
Envi ronment env = Know edgeBaseFact ory. newEnvi ronnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER FACTCRY, enf);

/] create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);
int sessionld = ksession.getld();

/'l invoke nmethods on your nethod here

ksessi on. start Process("M/Process");
ksessi on. di spose();

You can also use the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

150

Persistence and Transactions

/'l recreate the session from database using the sessionld
ksessi on = JPAKnow edgeSer vi ce. | oadSt at ef ul Know edgeSessi on(sessi onld, kbase, null, env)

Note that we only save the minimal state that is needed to continue execution of the process
instance at some later point. This means, for example, that it does not contain information about
already executed nodes if that information is no longer relevant, or that process instances that
have been completed or aborted are removed from the database. If you want to search for histo-
ry-related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate
and the H2 database (or your own preference), called per si st ence. xn in the META-INF direc-
tory, as shown below. For more details on how to change this for your own configuration, we refer
to the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<persi st ence
version="2.0"
xsi : schemaLocati on="http://java. sun. com xm / ns/ persi stence http://java.sun.conm xm /ns/
persi stence/ persi stence_2_0. xsd
http://java. sun. com xm / ns/ persi stence/orm http://java.sun.com xm /ns/ persi stence/
orm2_0.xsd"
xm ns="http://java. sun. com xnl / ns/ per si st ence"
xm ns:orme"http://java. sun. com xm / ns/ persi st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance>

<persi stence-unit nanme="org.jbpm persistence.jpa" transaction-type="JTA">
<provi der>org. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</ | t a- dat a- sour ce>
<mappi ng-fil e>META- 1 NF/ JBPMor m xml </ mappi ng-fil e>
<cl ass>or g. drool s. persi stence. i nfo. Sessi onl nfo</cl ass>
<cl ass>org. j bpm persi stence. processi nst ance. Processl| nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<cl ass>org.j bpm persi st ence. correl ati on. Correl ati onKeyl nf o</ cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti me. manager . i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. dial ect. H2Di al ect"/ >
<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property name="hi bernate. hbnRddl . aut 0" val ue="update"/>
<property nane="hi bernate. show_sql" val ue="true"/>
<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate.service.jta.platforminternal.Bitroni xJtaPl atforni/>
</ properties>
</ persi st ence-uni t >
</ persi st ence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in
an application server (like for example JBoss AS), these containers typically allow you to easily set
up data sources using some configuration (like for example dropping a datasource configuration

151

Persistence and Transactions

file in the deploy directory). Please refer to your application server documentation to know how
to do this.

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource
by dropping a configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF-8"?>
<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - name>j dbc/ j bpm ds</j ndi - name>
<connection-url>jdbc: h2:tcp://local host/~/test</connection-url>
<driver-cl ass>org. h2. j dbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nane>sa</ user - name>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

If you are however executing in a simple Java environment, you can use the JBPMHel per class
to do this for you (see below for tests only) or the following code fragment could be used to set
up a data source (where we are using the H2 in-memory database in combination with Bitronix
in this case).

Pool i ngDat aSource ds = new Pool i ngDat aSour ce()

ds. set Uni queNane("j dbc/j bpm ds")

ds. set C assNane("bi troni x.tmresource.jdbc.|rc.LrcXADat aSource")
ds. set MaxPool Si ze(3);

ds. set Al l owLocal Transacti ons(true)

ds. getDriverProperties().put("user", "sa")

ds. getDriverProperties().put("passwrd", "sasa")

ds. getDriverProperties().put("URL", "jdbc:h2: memjbpm db")

ds. getDriverProperties().put("driverC assNane", "org.h2.Driver")
ds.init();

8.4.3. Configuring the engine to use persistence using Jspvel per
- for tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate
constructor when creating your session. There are various ways to create a session (as we have
tried to make this as easy as possible for you and have several utility classes for you, depending
for example if you are trying to write a process JUnit test).

The easiest way to do this is to use the j bpm t est module that allows you to easily create and test
your processes. The JBPMHel per class has a method to create a session, and uses a configuration
file to configure this session, like whether you want to use persistence, the datasource to use, etc.
The helper class will then do all the setup and configuration for you.

152

Persistence and Transactions

To configure persistence, create a j BPM properti es file and configure the following properties
(note that the example below are the default properties, using an H2 in-memory database with
persistence enabled, if you are fine with all of these properties, you don't need to add new prop-
erties file, as it will then use these properties by default):

for creating a datasource

persi st ence. dat asour ce. nane=j dbc/j bpm ds

per si st ence. dat asour ce. user =sa

per si st ence. dat asour ce. passwor d=

persi stence. dat asour ce. url =j dbc: h2: tcp: //1 ocal host/ ~/j bpm db
persi st ence. dat asour ce. dri ver C assNane=or g. h2. Dri ver

for configuring persistence of the session

persi st ence. enabl ed=true

persi st ence. persi st enceuni t. nane=or g. j bpm per si st ence. j pa

persi stence. persi stenceuni t. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

for configuring the hunan task service

taskservi ce. enabl ed=true

taskservi ce. dat asour ce. nane=or g. j bpm t ask

taskservi ce. usergroupcal | back=org. j bpm servi ces. task.identity.JBossUser G oupCal | backl np
taskservi ce. user gr oupnmappi ng=cl asspat h: / user gr oups. properties

If you want to use persistence, you must make sure that the datasource (that you specified in
the j BPM properti es file) is initialized correctly. This means that the database itself must be up
and running, and the datasource should be registered using the correct name. If you would like
to use an H2 in-memory database (which is usually very easy to do some testing), you can use
the JBPMHel per class to start up this database, using:

JBPMHel per. start H2Server ()

To register the datasource (this is something you always need to do, even if you're not using H2
as your database, check below for more options on how to configure your datasource), use:

JBPMHel per . set upDat aSour ce() ;

Next, you can use the JBPM-el per class to create your session (after creating your knowledge
base, which is identical to the case when you are not using persistence):

153

Persistence and Transactions

St at ef ul Know edgeSessi on ksessi on = JBPMHel per. newst at ef ul Know edgeSessi on(kbase) ;

Once you have done that, you can just call methods on this ksession (like st ar t Pr ocess) and the
engine will persist all runtime state in the created datasource.

You can also use the JBPMHel per class to recreate your session (by restoring its state from the
database, by passing in the session id (that you can retrieve using ksessi on. get 1 d())):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. | oadSt at ef ul Know edgeSessi on(kbase, sessionld);

154

Part Ill. Workbench

How to use the web-based Workbench

Chapter 9. Workbench

9.1. Installation

9.1.1. War installation

From the workbench distribution zip, take the ki e- wh- *. war that corresponds to your application
server:

e j boss-as7: tailored for JBoss AS 7 (which is being renamed to WildFly in version 8)

 toncat 7: the generic war, works on Tomcat and Jetty

To use the workbench on a different application server (WebSphere, WebLogic, ...), use the t om
cat 7 war and tailor it to your application server's version.

9.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKI NG_DI RECTCRY/ . ni ogi t, for
example wi | df | y-8. 0. 0. Fi nal / bi n/ . gi t ni o, but it can be overridden with the system property
-Dorg.uberfire.nio.git.dir.

9.1.3. System properties

Here's a list of all system properties:

e org.uberfire.nio.git.dir:Location of the directory . ni ogi t . Default: working directory
e org.uberfire.nio.git.daenon. enabl ed: Enables/disables git daemon. Default: t r ue

e org. uberfire.nio.git.daenon. host: If git daemon enabled, uses this property as local host
identifier. Default: | ocal host

156

Workbench

org. uberfire.nio.git.daenon. port: If git daemon enabled, uses this property as port num-
ber. Default: 9418

org. uberfire.nio.git.ssh. enabl ed: Enables/disables ssh daemon. Default: t r ue

org. uberfire.nio.git.ssh. host: If ssh daemon enabled, uses this property as local host
identifier. Default: | ocal host

org. uberfire.nio.git.ssh.port:If sshdaemon enabled, uses this property as port number.
Default: 8001

org.uberfire.nio.git.ssh.cert.dir:Location of the directory . securi t y where local cert-
tificates will be stored. Default: working directory

org. uberfire. metadat a. i ndex. di r: Place where Lucene . i ndex folder will be stored. De-
fault: working directory

org. uberfire.cluster.id: Name of the helix cluster, for example: ki e- cl ust er

org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form
host 1: port 1, host 2: port 2, host 3: port 3, for example: | ocal host : 2188

org.uberfire.cluster.|ocal.id:Unique id of the helix cluster node, note that": ' is replaced
with '_', for example: nodel_12345

org. uberfire.cluster.vfs.| ock: Name of the resource defined on helix cluster, for example:
ki e-vfs

org. uberfire.cluster.autostart: Delays VFS clustering until the application is fully initial-
ized to avoid conflicts when all cluster members create local clones. Default: f al se

org. uberfire.sys.repo. nonitor.disabl ed: Disable configuration monitor (do not disable
unless you know what you're doing). Default: f al se

org.uberfire.secure. key: Secret password used by password encryption. Default:
org. uberfire.admn

org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEW t hMD5ANdDES

or g. uberfire. donai n: security-domain name used by uberfire. Default: Appl i cati onReal m

or g. guvnor. n2repo. di r: Place where Maven repository folder will be stored. Default: work-
ing-directory/repositories/kie

org. ki e. exanpl e. reposi tori es: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. Demo repositories can
be obtained from the kie-wb-6.2.0-SNAPSHOT-example-repositories.zip artifact. This System
Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

157

Workbench

« org. ki e. denn: Enables external clone of a demo application from GitHub. This System Prop-
erty takes precedence over org.kie.example. Default: t r ue

e org. ki e. exanpl e: Enables example structure composed by Repository, Organization Unit and
Project. Default: f al se

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $IBOSS_HOVE/ donwi n/ confi gurati on/ host. xni .

2. Locate the XML elements server that belong to the nai n- server - group and add a system
property, for example:

<system properties>
<property name="org.uberfire.nio.git.dir" value="..." boot-tinme="fal se"/>

</ system properties>

9.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

9.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Project Authoring

The Knowledge

Figure 9.1. Selecting Administration perspective

Select the "New repository" option from the menu.

158

Workbench

Organizational Units - -

File Explorer List isitoriesEditor
Clone repository

Figure 9.2. Creating new repository

& Repositories

Enter the required information.

159

Workbench

New Repository

+ Baslic Settings

Managed Repository Settings Repository Name

myExampleRepository

* In Organizational Unit

demo v

¥ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next > Cancel & Finish

Figure 9.3. Entering repository information step 1/2

160

Workbench

New Repository

+ Basic Settings

+/ Managed Repository
Settings

Repository Type:

Single-project Repository
Create a single managed project in this repository. Use this option for simple or self-contained projects.
® Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/dev/release)

Project Settings:

* Name

myExampleRepository

Description

* Group

demo
* Artifact
myExampleRepository
* Version

1.0.0-SNAPSHOT

< Previous Next > Cancel [Finish

Figure 9.4. Entering repository information step 2/2 (only for managed

repositories)

9.2.2. Add project

Select the Authoring Perspective to create a new project.

161

Workbench

Authoring -

Organiz Project Authoring Wiories ~
Administration

File Explorer

& Repositories
&= myExampleRepository
& readme.md

Figure 9.5. Selecting Authoring perspective

Select "Project” from the "New ltem" menu.

162

Workbench

Explore Fepository -

Business Process
demo = myl
Diata Object
Decizion Table (Spreadsheet)
: . DEL file
OUpen Project E
1 DSL definition

Enumeration

Form
| Global Variable(s)

Guided Decision Table

Guided Decision Tree

Guided Rule

Guided Fule Template

Guided Score Card

Fackage

Score Card (Spreadsheet)

Test Scenario

Uploaded file

Waork ltem definition

Figure 9.6. Creating new project

Enter a project name first.

163

Workbench

Create new Project

*Project | myProject

Figure 9.7. Entering project name

Enter the project details next.

» Group ID follows Maven conventions.
« Artifact ID is pre-populated from the project name.

» Version is set as 1.0 by default.

164

Workbench

New Project

N Project Wizard . :
e Troject Al Project General Settings
Project Name | myProject
Project Description Insert a project description for documentation purposes ...

Group artifact version

Group ID [Enter Group ID...] Example: com.myorganization.myprojects @

Invalid Group 1D format
Artifact ID | myProject | Example: MyProject @

\ersion | 10 | 1.00 @

< Previous [Mext > | Cancel | ™ Finish

Figure 9.8. Entering project details

9.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Object" from the "New Item" menu.

165

Workbench

Explore « m Fepository «

Project Explol project (&

Business Process

Decision Table (Spreadsheet)
Open Project E. DRLfile
- DSL definition
Enumeration
Form
Global Variable(s)
Guided Decision Table

Guided Decision Tree
Guided Rule

Guided Fule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Worlk ltem definition

Figure 9.9. Creating "Data Object"

Set the name and select a package for the new type.

166

Workbench

Create new Data Object
* Data Object MyExampleType|

Fackage org.anstis.myproject v

Q Ok Cancel

Figure 9.10. Creating a new type

Set field name and type and click on "Create" to create a field for the type.

167

Workbench

MyExample Type.java - Data Objects Say

Create new field

*ld myField Label | st o label
*Tf&"'F'E |ﬂteger v L LlSt
org.anstis.myproject. MyExampleType
Position Identifier i Label Type

Figure 9.11. Click "Create" and add the field

Click "Save" to update the model.

MyExampIeType.java - Data Objects S;e Delete Remame = Copy Validate Latest Version ™ x (| (|
Create new field Data Object Field
“ld Insert a valid Java identifier Label |cart 5 jabel
ldentifier myField
*Type v [List © Create
Label
org.anstis.myproject.MyExampleType Description
Position Identifier & Label Type
: Type Integer \
myField Integer
Equals J
Fosition 0 -

Figure 9.12. Clicking "Save"

9.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

168

Workbench

- m Froject = Fepository

o __I Froject EI—
‘ Data Object |
[amp

Decision Table (Spreadsheet)
DSL definition
Enumeration
Global Variable(s)
Guided Decision Table
Guided Decision Tree

Suided Fule

Guided Rule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Woarl ltem definition

Figure 9.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

169

Workbench

Create new DRL file

*DEL file myDRELFile

Fackage org.anstis.myproject v

Use Domain Specific Language (DSL)

O Ok Cancel

[
Figure 9.14. Entering file name for rule
Enter a definition for the rule.
The definition process differs from asset type to asset type.
The full documentation has details about the different editors.
myDRLFile.drl - DRL Save Delete | Rename | Copy | Validale || LaestVersion™ | x| ¥ A

Facttypes:(hide)

ackage org.anstis.myproject;
® (B lorg.anstis myproject MyExampleType P 9 9 YRrol

import org.antis. myproject MyExampleType;
rule "one"

when

MyExampleType{ myField == "hello")

then
end|

Figure 9.15. Defining a rule

Once the rule has been defined it will need to be saved.

170

Workbench

MyExampIeType.java - Data Objects Sie Delete Pename Copy Validate | Latest Version ™ ®

Figure 9.16. Saving the rule

9.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the
Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Project” menu.

Explore = MNew - m FRepository -

B 2] [Project Editqr

. Repository Structure ackage org.anst
“roject - P Y ImpleType P d d

Import org.antis.n

Figure 9.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact
Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the De-
pendency Management section of the pom in your workbench project. You can edit the pom.xml
file associated with your workbench project under the Repository View of the project explorer. De-
tails on dependency management in maven can be found here : http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Project: [myProject:org.anstis: 1.0] Save | Delste Rename | Copy | |Buld™ | | ®

Project Settings: Project General Settings ~

Figure 9.18. Building and deploying a project

171

Workbench

Now the project has been built and deployed; it can be referenced from your own projects as any
other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.
9.3. Administration

9.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

Workbench structure overview

Car insurance

Home insurance

Car loans

9.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

172

Workbench

Organizational Unit Manager

Organizational Units Associated repositories Available repositories

Accounting department =l [nsurances . -- No Repositories available --
Business department Loans
Human Resources department

L4

>

o [Nl

9.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects
and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.
Such setup allows workbench to work with multiple backends and, in the same time, take full
advantage of backend specifics features like in GIT case versioning, branching and even external
access.

173

Workbench

RepositoryEditor x

& jbpm-playground
General Information

[empty]

git:Mlocalhost:9418/jbpm-playground b Available protocol(s):git ssh

‘master Bl [0 Update @ Cielete

& uf-playground

General Information

[empty]

git:flocalhost:94 18/uf-playground Iy Awailable protocol(s):git ssh

master j [0 Update @ [elete

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantage of using GIT as backend is the ability to clone a repository from
external and use your preferred tools to edit and build your assets.

A Warning

Never clone your repositories directly from .niogit directory. Use always the avail-

able protocol(s) displayed in repositories editor.

9.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a
previous state. You can do it directly from the repository editor by browsing its commit history and
clicking the Revert button.

174

Workbench

RepositoryEditor [Insurances] x

& financial / Insurances

General Information

[empty]

git://localhost:9418/Insurances I Available protocol(s): git ssh

Commit History

removing unnecessary files - those were added due a vfs bug, already fixed
Alexandre Porcelli - 2013-10-24 1:03 AM

kie-commons merge into uberfire forces package renaming
David Gutierrez - 2013-10-16 1:35 PM

moved test related projects to a new repo: https://github.com/guvnorngtestuseri/guvnorng-testground
jervisliu - 2013-09-29 8:24 AM

package org.mortgages was removed from <type></type> tags of test scenarios
Walter Medvedeo - 2013-09-25 12:23 PM

package org.mortgages was removed from <type></type= tags
Walter Medvedeo - 2013-09-25 11:56 AM

DEO0E

9.4. Configuration

9.4.1. User management

The workbench authenticates its users against the application server's authentication and autho-
rization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOVE/ bi n/ add- user . sh (or. bat):

$./add-user.sh

/1 Type: Application User

/Il Realm enpty (defaults to ApplicationReal m
/1 Role: admn

There is no need to restart the application server.

9.4.2. Roles

The Workbench uses the following roles:

e admin

175

Workbench

e analyst
 developer
e manager

e user

9.4.2.1. Admin

Administrates the BPMS system.

* Manages users
* Manages VFS Repositories

» Has full access to make any changes necessary
9.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

« Manages rules, models, process flows, forms and dashboards

Manages the asset repository

« Can create, build and deploy projects

Can use the JBDS connection to view processes

9.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the
ability to deploy projects.

9.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to
continue forward. Works primarily with the task lists.

« Does process management
» Handles tasks and dashboards
9.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their per-
formance, business indicators, and other reporting of the system and people who interact with
the system.

176

Workbench

* Only has access to dashboards

9.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an
user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs
into an orgazinational group that has access to the repository. These restrictions can be managed
with the command line config tool.

9.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository
contains the data about general workbench settings: how editors behave, organizational groups,
security and other settings that are not editable by the user. System repository exists in the .niogit
folder, next to all the repositories that have been created or cloned into the workbench.

9.4.4.1. Config Tool Modes

« Online (default and recommended) - Connects to the Git repository on startup, using Git server
provided by the KIE Workbench. All changes are made locally and published to upstream when:

» "push-changes" command is explicitly executed
» "exit" is used to close the tool

« Offline - Creates and manipulates system repository directly on the server (no discard option)

9.4.4.2. Available Commands

Table 9.1. Available Commands

exit Publishes local changes, cleans up temporary
directories and quits the command line tool

discard Discards local changes without publishing
them, cleans up temporary directories and
quits the command line tool

help Prints a list of available commands
list-repo List available repositories
list-org-units List available organizational units
list-deployment List available deployments
create-org-unit Creates new organizational unit
remove-org-unit Removes existing organizational unit

177

Workbench

add-deployment

Adds new deployment unit

remove-deployment

Removes existing deployment

create-repo

remove-repo

Creates new git repository

Removes existing repository (only from con-
fig)

add-repo-org-unit

Adds repository to the organizational unit

remove-repo-org-unit

Removes repository from the organizational
unit

add-role-repo

Adds role(s) to repository

remove-role-repo
add-role-org-unit

remove-role-org-unit

Removes role(s) from repository
Adds role(s) to organizational unit

Removes role(s) from organizational unit

add-role-project

Adds role(s) to project

remove-role-project

Removes role(s) from project

push-changes

Pushes changes to upstream repository (only

in online mode)

9.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script
and by default it will start in online mode asking for a Git url to connect to (the default value is
ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate
values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This
will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit
does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

9.5. Introduction

9.5.1. Log in and log out

Create a user with the role adni n and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to
review the roles of the current account.

178

Workbench

9.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the
workbench variant (Drools, jBPM, ...).

The Knowledge Life Cycle

Authoring Deploy Process Management Tasks Dashboards

Project Authoring Process Deployments Process Definitions Tasks List Process & Task Dashboard
Contributars Rule Deployments Process Instances Business Dashboards
Asset Management Jobs

Artifact repository
Administration

e

The Business Knowledge to drive your company

9.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

* Part
A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer"”, "Project Editor", "Guided Rule Editor" etc. Parts can be
repositioned.

» Panel
A Panel is a container for one or more Parts.
Panels can be resized.
« Perspective
A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such
as "Home", "Authoring", "Deploy" etc.

9.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be
changed.

179

Workbench

KIE Workbench

Home = Authoring ¥ Deploy ~
Explore v Mewltem v Repository = Q
Project Explorer 8|2 -~
demo ¥ uf-playground * - mortgages * =]
B <default
B org
B mortgages

Open Project Editor

EDRLV

L DATA OBJECTS ~
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
E ENUMERATION DEFINITIONS =

@ GUIDED DECISION TABLES ~ -
Messages Refresh Clear | % ¥ A

@ GUIDED RULES ~
Bankruptcy history
checks Level Text File Column Line

@ GUIDED RULES [WITHDSL) +

@ TEST SCENARIOS ~

Figure 9.19. The Workbench

The initial Workbench shows the following components:-

» Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in
the above "example" is the Organizational Unit), Repositories (in the above "uf-playground"” is
the Repository) and Project (in the above "mortgages” is the Project).

* Problems
This provides the user will real-time feedback about errors in the active Project.
* Empty space
This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

9.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or repo-
sitioned.

This, for example, could be useful when running tests; as the test defintion and rule can be repo-
sitioned side-by-side.

180

Workbench

9.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the
left mouse button and drag the splitter to the required position; then release the left mouse button.

KIE Werkbench

Home = Authoring ~ eploy 5 Tasks » Dashboards ~ Extensions ~
Explore v Newltem » Repository «
Project Explorer 8|z |~ Bankruptcy history.rdrl - Guided Rules
EXTENDS Mone selected o
demo ~ . uf-playground ~ -+ mortgages ~
WHEN
B <default 1. Thereis aLoanApplication [a]
E o The following exists

e There is a Bankruptcy with
& mortgages any of the following;

2. yearofoccurmence greater than nggo
amountOwed greater than j 10000
Open Project Editor
THEN
Setvalue of LoanApplication [a] approved
1
Setvalue of LoanApplication [a] explanation
DRL ~
2 delete LoanApplication [a]
E DATA OBJECTS = - (show
options..)
F= DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
i
EHUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~
Editor Overview Source Config
@ GUIDED RULES ~
Bankn) Messages
Level Text File

Find

Save | Delete | Rename Copy Validate | Latest Version ™

talse

has been bankrupt

Column

Refresh Clear

Line

»®

=g

L ey

B vty

@ GUIDED RULES [WITHDSL) ~ —

@ TEST SCENARIOS ~

Figure 9.20. Resizing

9.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this ex-

ample).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the
left mouse button. Drag the mouse to the required location. The target position is indicated with
a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

181

Workbench

KIE Workbench - Mozilla Firefox

E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * [© KIE Workbench % | New Tab x|+

€ redhat.com

vc||Bv ms-disease bjj QB & #

KIE Workbench

Home « Authoring ¥

Extensions Find User: admin «

Exple Mew Item + Q
Project Explorer & = ~ Bankruptcy history.rdrl - Guided Rules Save Deletz Rename Copy | Validars | LaestVersin™ % T A
demo ~ . uf-playground ~ - mortgages ~ 2
B <default>
& org

B mortgages

Open Project Editor

DRL ~

B DATA OBJECTS ~ S

g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~

) cupeoruLes ~

Messages Refresh | Clear | | % T A
Level Text File Column Line
@ GUIDED RULES (WITHDSL) - @ Build of project 'mortgages' (re.. . (1] (1]

@ TEST SCENARIOS ~

Figure 9.21. Repositioning - dragging

182

Workbench

KIE Workbench - Mozilla Firefox
E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * | @ KIE Workbench x | New Tab x|+
€ redhat.com v | B> ms-disease bjj QwBe ¥ #

KIE Workbench

Home « Authoring ¥ Jep rocess Management ¥ as ards v Extensions Find

Explore = Mew ltem Repository = a
Project Explorer ellz| |a Save | Delete | Rename | Copy | Validare LaestVersion™ | % Bankruptcy history.rdrl ... save Deiets | Rename | Copy | Vaidae LasstversionY | x Y A
EXTENDS Mone selected o EXTENDS None selected o
demo ~ . uf-playground ~ - mortgages ~ 2
WHEN WHEN
B <defaults 1 There is a LoanApplication [app] 1 There is a LoanApplication [a]
. Any of the following are true: The following exists:
&= org There is an Applicant with There is a Bankruptey with
& mortgages) creditRating equal to i any of the following -
g There Is an Applicantwith 2 yearOfOccurrence greater than j
creditRating equal to B amountOwed greater than jWOOOO
Open Project Editor THEN
THEN
Setvalue of LoanApplication [app] approved a
1 ot [2ppl £t '3 Setvalue of LoanApplication [a] approved false j:
. i
Setvalue of LoanApplication [app] explanation On 1
oL o) " Setvalie of LoanApy n[al has been bankrupt o
= 2 delete LoanApplicaton [app] N
2 delete LoanApplication [a]
(show
g DATA OBJECTS ~ options..) (show
options..)
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~ &
i
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~
Editor Overview Source Config Editor Overview Source Config
) cupeoruLes ~
i Bankruptecy history Messages Refresh Clear x T A
No checks
no NIMNJAs =
Uikt Level Text File Column Line
(5] GuiDED RULES (WITHDSL) ~ ® Build of project mortgages' fre... - o o

@ TEST SCENARIOS ~

Figure 9.22. Repositioning - complete

9.7. Authoring

9.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain
model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote
repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKI NG_DI RECTORY/ r eposi t ori es/ ki e, but it
can be overridden with the system property - Dor g. guvnor . n2repo. di r. There is only 1 Maven
repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

183

Workbench

Jplo Refresh Q

Name Path LastModified Open Downlead

mortgages-0.0.1 jar 2013 Nov 16 15:46:40 Open Diownioad

example-1,0 jar 2013 Nov 16 15:08:26 pen iy

jboss-modules-1.1.1.GA jar orglibossimodulesfboss-modules 2013 Nov 16 15:07:18 en Diowmion

M.1.1.GAfjboss-modules-1.1.1.GA jar
async-examples-1.0 jar c-examples 2013 Nov 16 16:14:33 en Dawrion
HR-1.0.jar org/ibpmiHRM.WHR-1.0 jar 2013 Nov 16 16:14:13 Gpen i
M W M W 1505

To add a new artifact to that Maven repository, either:

» Use the upload button and select a JAR. If the JAR contains a POM file under META- | NF/ maven
(which every JAR build by Maven has), no further information is needed. Otherwise, a groupld,

artifactld and version need be given too.

ane KIE Workbench
{ KIE Workbeneh Lt

o | & 127.0.0.1:8888 org kie.workbench. KIEWebapp KIEWebapp. htmifgwt

Artifact Upload

DataTypes jar Choose File..

Upload

« Using Maven, nvn depl oy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

184

Workbench

9.7.2. Asset Editor

The Asset Editor is the principle component of the workbench User-Interface. It consists of two
main views Editor and Overview.

» The views
» A The editing area - exactly what form the editor takes depends on the Asset type.

« B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy
etc.

» C: Different views for asset content or asset information.
« Editor shows the main editor for the asset

« Overview contains the metadata and conversation views for this editor. Explained in more
detail below.

» Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can
be generated into DRL.

« Config contains the model imports used by the asset.

185

Workbench

Bankruptcy history.rdrl - Guided Rules Sa Oeiete | Rename Cop valdate Laest Version™ % ¥

EXTENDS Mone selected o
WHEN =
1. There is a LoanApplication [a] nﬂ-

The following exists:
There is a Bankruptcy with:

=]
any of the following:
2. yearOfOccurrence greater than jmgo =1 age
o
amountOwed greater than j 10000 -5

THEN ‘ &=

Setvalue of LoanApplication [a] approved false j: =]
1 L

Setvalue of LoanApplication [a] explanation has been barkrupt 5] a
2. delete LoanApplication [a] age

(show
Editor Owvarview Source Config

(~)

186

Workbench

* Overview
« A: General information about the asset and the asset's description.
"Type:" The format name of the type of Asset.
"Description:" Description for the asset.
"Used in projects:" Names the projects where this rule is used.
"Last Modified:" Who made the last change and when.
"Created on:" Who created the asset and when.
» B : Version history for the asset. Selecting a version loads the selected version into this editor.
* C: Meta data (from the "Dublin Core" standard)

« D : Comments regarding the development of the Asset can be recorded here.

187

Workbench

Bankﬂlptﬂy histﬁly.l'dn - Guided Rules Save Delete Rename Copy | Validate | Latest Version™
Type Guided Rules Comments
Description
Used in projects mortgages ':‘:"."”.‘ N
his is an example "
Last mpditied By/admin on 2015-01-15 17:12
2018-01-18 1741
Createfl on By/Walter Medvedeo on 2013-09-18 16:54
| Version history |RECETEES
Date Commit Message Author
urrent Thursday, 2015 Jan One more commit {/... admin
Eelect Wednesday, 2013 project refactoring t. Walter Medvedeo
{4 4 120f2 » b

Editar Owerview Caonfig

A B C D

Figure 9.24. The Asset Editor - Overview tab
* Metadata
* A Meta data:-
"Categories:" A deprecated feature for grouping the assets.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"URI:" URI to the asset inside the Git repository.

"Subject/Type/External link/Source" : Other miscellaneous meta data for the Asset.

188

Workbench

Categories: g
Mote: project refactoring to use mortgages package

URI:
git/imaster@uf-playground/martgages/sre/mainfresources/org/mortgages/Bankruptoy e 20histony.rdrl
Subject:

Type:

External link:

Source:

Figure 9.25. The Metadata tab

9.7.3. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,
Projects and their files.

9.7.3.1. Initial view

The initial view could be empty when first opened.

189

Workbench

Project Explorer e

demo = kie-repository = --- =

CUpen Project Editor

Figure 9.26. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.
Project Explorer 8 o
demo « kie-repository = --- =

Search... Q

jbpm-playground

Open Projet

Kie-repfsitary

uf-playground
—tioiems [A

Figure 9.27. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

190

Workbench

Project Explorer g2 (A

demo « uf-playground ~ = mortgages « .:—.*

B= <=default=
B org
I mortgages

Figure 9.28. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been
selected the Project Explorer will show the contents. The exact combination of selections depends
wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.

191

Workbench

Project Explorer L B

demo = uf-playground = mortgages =
B <default=

& org
B mortgages

Cpen Project Editor

DRL -

]
-

g DATA OBJECTS -

DOMAIN SPECIFIC LANGUAGE DEFINITIONS

L

ENUMERATION DEFINITIONS ~

\ i |

GUIDED DECISION TABLES -

)

[E]T GUIDED RULES ~

L&

Bankruptcy history
Mo bad credit checks
no MINJAS

Underage
Figure 9.29. Expanded asset group

@ GUIDED RULES [WITHDSL) «

@ TEST SCENARIOS ~

Workbench

9.7.3.2. Different views

Project Explorer supports multiple views.

* Project View
A simplified view of the underlying project structure. Certain system files are hidden from view.
* Repository View

A complete view of the underlying project structure including all files; either user-defined or
system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"
or "Show as Links".

[
>

Project Explorer o

demo « uf-pla % Project View
Fepository View
B <default>

& org Show as Links [

= MOME s Show as Folders

& Download Project

Open Project Edit == Download Repository

Figure 9.30. Switching view

193

Workbench

9.7.3.2.1. Project View examples

Project Explorer & o
demo « uf-playground = = mortgages -
B= <=default=

s org
B mortgages

Figure 9.31. Project View - Folders

Project Explorer & o
demo = uf-playground = morgages -

<default> ' org ' mortgages

Figure 9.32. Project View - Links

194

Workbench

9.7.3.2.2. Repository View examples

Project Explorer
Cpen Froject Editor

demo = uf-playground -

B mortgages
B src
B= main
m ava
B resources
B fest
4 pom.xml
[4 projectimports

Figure 9.33. Repository View - Folders

Project Explorer
OUpen Project Editor

demo = uf-playground -

Figure 9.34. Repository View - Links

mortgages ~

mortgages ~

mortgages ' src main resources

[META-INF A @ &

] arg h A @ B

[

0

195

Workbench

9.7.3.3. Download Project or Repository

Download Download and Download Repository make it possible to download the project or repos-
itory as a zip file.

Project Explorer &

0
>

demo ~ uf-pla * Froject View g
Fepository View
<default> ' org

Sh Link
= mortgages * Show as Links

Show as Folders

& Download Project I

Cpen Project Edit
P] . & Download Repository

Figure 9.35. Repository and Project Downloads

9.7.3.4. Branch selector

A branch selector will be visible if the repository has more than a single branch.

196

Workbench

Project Explorer 8| A
demo -~ uf-playground ~ mortgages ~ &
Open Froject Editor testBranch -

master | _|'|.,_I

Figure 9.36. Branch selector

9.7.3.5. Copy, Rename, Delete and Download Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)
and for files and directories as well (in Repository View). Download action is available for directo-
ries. Download downloads the selected the selected directory as a zip file.

« A:Copy
¢ B: Rename
e C: Delete

e D : Download

197

Workbench

Project Explorer ¢
demo -« uf-playground ~ mortgages -
cdefault> ' org

] mortgages <

-

o
ol |

Figure 9.37. Project View - Package actions

198

Workbench

Project Explorer 8 = A
Cpen Project Editor
demo « uf-playground = mortgages - =

mortgages ' src main @ java @ org

= mortgages A= &

Figure 9.38. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but cur-
renctly doesn't have it. Until both tools are provided make sure that your changes
(copy/rename/delete) on packages, files or directories doesn't have a major impact
on your project.

In cases that your change had an unexcepcted impact, Workbench allows you to
restore your repository using the Repository editor.

9.7.4. Project Editor

The Project Editor screen can be accessed from Project Explorer. Project Editor shows the settings
for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything
that is needed for configuring the KIE project in one place.

199

Workbench

Project: [mortgages:mortgages:0.0.1]

Froject Settings: Project General Settings ¥

Project General Settings

Pr
Dependencies
Metadata
Fra ftgages project
Pra t a sample project for KIE workbench

Knowledge bases and sessions

Metadata

Import Suggestions
Metadata

Group artifact version

Group ID mortgages
Artifact 1D mortgages
Version ID 00.1

Example:

Save | Buid & Deploy

myorganization myprojects @

Example: MyProject @
100 @

Figure 9.39. Project Screen and the different views

9.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

9.7.4.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

9.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV
values are used as identifiers to differentiate projects and versions of the same project.

Project Settings: Project General Settings

Project General Setiings

Project Name

Project Description

Group artifact version

Group ID
Artifact ID

Version 1D

Figure 9.40.

Mortgages p

Just a sampls oject for KIE workbench

morgages
mortgages

001

Project Settings

Example: com.myorganization. myprojects @
Example: MyProject @
100 @

200

x

Workbench

9.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a
project that has been built and deployed to a Maven repository. Internal dependencies are projects
build and deployed in the same workbench as the project. External dependencies are retrieved
from repositories outside of the current workbench. Each dependency uses the GAV-values to
specify the project name and version that is used by the project.

Dependencies: Dependancies list =

Add Add from

Dependencies
repository

Group ID Artifact ID Version ID

org project anotherProject 1.0 i

Figure 9.41. Dependencies

9.7.4.2.3. Metadata

Metadata for the pom.xml file.

9.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Add Rename Delete Make Default

This one is default

Include me

Included Knowledge Bases

Add Delete
Include me

Packages

Add = Delete

org.mortgages

Equals Behavior
@ Identity
Equality
Event Processing Mode

® Stream

Knowledge Sessions

Add
Name Default State Clock

Session 1 v

Session 2

Session 3 Stateful v Realtime

Figure 9.42. Knowledge Base Settings

201

Workbench

@ Note
For more information about the Knowledge Base properties, check the Drools Ex-
pert documentation for kmodule.xml.

9.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified
for the project.

9.7.4.3.1.1. Knowledge base list
Lists all the knowledge bases by name. Only one knowledge base can be set as default.
9.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in
the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are
included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.
Event processing mode is explained in the Drools Fusion part of the documentation.
9.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one
default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup
that shows more properties for the knowledge session.

9.7.4.3.2. Metadata

Metadata for the kmodule.xml

9.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Imports: Import Suggestions +

Type Remove
org test.Person
java.util ArrayList

org.test.Address © Remove

Figure 9.43. Imports

202

Workbench

9.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the
workbench has. Making it easier to work with the workbench, as there is no need to type each
import in each file that uses the import.

9.7.4.4.2. Metadata

Metadata for the project.imports file.

9.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files
authored within the environment are valid.

9.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation
results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either
new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

203

Workbench

DRL Editor [Dummy rule] Save Delete Rename | Copy @ \Validate | %
Show fact
owfactypes package org.mortgages
Some invalid DRL
DRL Metadata
Problems x
Level Text File Column Line
[ERR 107] Line 3:0
mismatched input 'Some’
expecting one of the
%] P) g Dummy rule.drl 0 3
following tokens: [package,
import, global, declare,
function, rule, query]-
Parser returned a null
%] Dummy rule.drl 0 0

Package

Figure 9.44. The Problems Panel

9.7.5.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

204

Workbench

Validation errors

€@ [ERR 107] Line 3:0 mismatched input 'Some’ expecting one of the following
tokens: Tpackage, import, global, declare, function, rule, query]".

@ Parser retumed a null Package

9.7.6. Data Modeller

9.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of
this tutorial, we will assume that a correctly configured project already exists and the authoring
perspective is open.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective and use the project explorer to browse
to the given project.

205

Workbench

KIE Workbench

Explore ~ New Item ~ Repository ~ 2a Q
Project Explorer B NES

demo ~ | Purchases ~ | purchases ~ =]
& <default>

& org

& jbpm
& examples
& purchases

Open Project Editor

6 DATA OBJECTS ~
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.45. Go to authoring perspective and select a project

2. Open the Data Modeller tool by clicking on a Data Obiject file, or using the "New Item -> Data
Object" menu option.

H DATA OBJECTS ~

PurchaseQrder

PurchaseOrderHeader

PurchaseOrderLine

Figure 9.46. Click on a Data Object

This will start up the Data Modeller tool, which has the following general aspect:

206

Workbench

PurchaseOrder.java - Data Objects save || Delete || Rename
Create new field Data Object
AL nsert a valid Java id Label | |nge
Identifier
Label
Purchase Order (org.jbpm.examples.purchases.PurchaseOrder) Description
Identifier Label Type
Package
description Description String
Superclass
header Header Purchase Order Header

Copy

Field

Validate Latest Version ™

PurchaseOrder

Purchase Order

org.jopm.examples.purc

java.lang.Object

I et o I proels &ISPH parameters

requiresCFOApproval Boolean TypeSafe

total Total Double ClassReactive

PropertyReactive

Role
Timestamp
Duration

Expires

Remotable

QOverview Source

Figure 9.47. Data modeller overview

The "Editor" tab is divided into the following sections:

* The new field section is dedicated to the creation of new fields.

Create new field

*® i o :
Id nsert a valid Java identifier Label | |nsert a label

Figure 9.48. New field creation

» The Data Object's "field browser" section displays a list with the data object fields.

207

v

@ © © © @ ©

(-]

Workbench

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)

Identifier Label Type

description Description String

header Header Purchase Order Header
S R e

requiresCFOApproval Boolean

total Total Double

Figure 9.49. The Data Object's field browser

» The "Data Object / field property editor" section. This is the rightmost section of the Data Mod-
eller editor and visualizes a tabbed pane. The "Data object” tab allows the user to edit the class
level properties of the data object, and the "Field" tab allows the edition of the properties for
the currently selected field.

208

Workbench

Data object Field

Identifier PurchaseQOrder

Label Purchase Order

Description

Superclass java.lang.Object x

Drools & JEPM parameters:

TypeSafe v 9
ClassReactive 7]
Property Reactive 7]
Role *r @
Timestamp r 9
Duration *r @
Expires o
Remotable 7]

Figure 9.50. The data object/field property editor

The "Source" tab shows an editor that allows the visualization and modification of the generated
java code.

« Round trip between the "Editor" and "Source" tabs is possible, and also source code preserva-
tion is provided. It means that not matter where the Java code was generated (e.g. Eclipse,
Data modeller), the data modeller will only update the necessary code blocks to maintain the
model updated.

209

Workbench

PurchaseOrder.java - Java Source Files Save

jpackage org.jbpm.

S

examples.purchases;

* This class was automatically generated by the data modeler tool.

#.Jl,‘

@org.kie.api.definition.type.Label(value = "Purchase Order")
public class PurchaseOrder implements java.io.Serializable {

static final long serialVersionUID = 1L;

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private org.]j

@org.kie.api.
private java.

definition.type.Label(value = "Total")
definition.type.Position(value = 3)
lang.Double total;

definition.type.Label(value = "Description®)
definition.type.Position(value = @)
lang.String description;

definition.type.Label(value = "Lines")
definition.type.Position(value = 2)
util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

definition.type.Label(value = "Header")
definition.type.Position(value = 1)
bpm.examples.purchases.PurchaseOrderHeader header;

definition.type.Position(value = 4)
lang.Boolean requiresCFOApproval;

public PurchaseOrder() {

}

Editor Overview

The "Overview" tab shows the standard metadata and version information as the other workbench

Figure 9.51.
editors.
9.7.6.2. Data

A data model consists of data objects which are a logical representation of some real-world data.
Such data objects have a fixed set of modeller (or application-owned) properties, such as its in-
ternal identifier, a label, description, package etc. Besides those, a data object also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that

Source editor

Objects

this logical data object represents.

Creating a data object can be achieved using the workbench "New Item - Data Object" menu

option.

Delete

Rename

Copy

Validate

210

Latest Version ™

4]

Workbench

Create new Data Object

* Data Object

Package | org.mortgages x

Figure 9.52. New Data Object menu option

Both resource name and location are mandatory parameters. When the "Ok" button is pressed a
new Java file will be created and a new editor instance will be opened for the file edition.

9.7.6.3. Properties & relationships

Once the data object has been created, it now has to be completed by adding user-defined prop-
erties to its definition. This can be achieved by providing the required information in the "Create
new field" section (see fig. "New field creation™), and clicking on the "Create" button when finished.
The following fields can (or must) be filled out:

» The field's internal identifier (mandatory). The value of this field must be unique per data object,
i.e. if the proposed identifier already exists within current data object, an error message will be
displayed.

» Alabel (optional): as with the data object definition, the user can define a user-friendly label for
the data object field which is about to be created. This has no further implications on how fields
from objects of this data object will be treated. If a label is defined, then this is how the field will
be displayed throughout the data modeller tool.

» A field type (mandatory): each data object field needs to be assigned with a type.
This type can be either of the following:
1. A 'primitive java object' type: these include most of the object equivalents of the standard

Java primitive types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal
and Biglnteger.

211

Workbench

*Type v [List

BigDecimal
Biginteger
Boolean
Byte
dentifie Character
Date
escripti el
Float
Integer
Long
Short
ines String

1eader

Figure 9.53. Primitive object field types

2. A 'data object' type: any user defined data object automatically becomes a candidate to be
defined as a field type of another data object, thus enabling the creation of relationships
between them. A data object field can be created either in 'single' or in 'multiple’ form, the
latter implying that the field will be defined as a collection of this type, which will be indicated
by selecting "List" checkbox.

Purchase Order (org.jppm.examples.purchases.PurchaseCOrder)
Purchase Order Header (org.jppm.examples.purchases.PurchaseOrderHeader)
Purchase Order Line {org.jbpm.examples.purchases.PurchaseOrderLine)

Figure 9.54. Data object field types

3. A 'primitive java' type: these include java primitive types byte, short, int, long, float, double,
char and boolean.

boolean
byte
char
double
float

int

long
short

1]

Figure 9.55. Primitive field types

212

Workbench

When finished introducing the initial information for a new field, clicking the 'Create’ button will add
the newly created field to the end of the data object's fields table below:

Exampie.java - Data Db]ects Save Delete Rename @ Copy | Validate Latest Version ™ x
Create new field Data Object Field
“1d nsert a valid Java identifier Label| |nsert a label
. Identifier title

Label de

Tutorial Example Entity (org.joppm.examples.purchases.Example) Description

Identifier Label Type
Title

Equals [+]
Position @

Figure 9.56. New field has been created

The new field will also automatically be selected in the data object's field list, and its properties will
be shown in the Field tab of the Property editor. The latter facilitates completion of some additional
properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from a data object definition by clicking
on the corresponding X' icon in the data object's fields table.

9.7.6.4. Additional options

As stated before, both data objects as well as fields require some of their initial properties to be
set upon creation. These are by no means the only properties data objects and fields have. Below
we will give a detailed description of the additional data object and field properties.

213

Workbench

9.7.6.4.1. Additional data object properties ("Data object tab")

Data object Field

Identifier PurchaseQOrder

Label Purchase Order

Description

Superclass java.lang.Object ¥

Drools & |]BPM parameters:

TypeSafe r 9
ClassReactive (7]
PropertyReactive 7]
Role r 9
Timestamp r 9
Duration r 9
Expires o
Remotable (7]

Figure 9.57. The data object's properties

 Description: this field allows the user to introduce some kind of description for the current data
object, for documentation purposes only. As with the label property, this is conceptual informa-
tion that will not influence the use or treatment of this data object or its instances in any way.

» TypeSafe: this property allows to enable/disable the type safe behaviour for current type. By
default all type declarations are compiled with type safety enabled. (See Drools for more infor-
mation on this matter).

214

Workbench

ClassReactive: this property allows to mark this type to be treated as "Class Reactive" by the
Drools engine. (See Drools for more information on this matter).

PropertyReactive: this property allows to mark this type to be treated as "Property Reactive" by
the Drools engine. (See Drools for more information on this matter).

Role: this property allows to configure how the Drools engine should handle instances of this
type: either as regular facts or as events. By default all types are handled as a regular fact, so
for the time being the only value that can be set is "Event” to declare that this type should be
handled as an event. (See Drools Fusion for more information on this matter).

Timestamp: this property allows to configure the "timestamp" for an event, by selecting one of
his attributes. If set the engine will use the timestamp from the given attribute instead of reading
it from the Session Clock. If not, the engine will automatically assign a timestamp to the event.
(See Drools Fusion for more information on this matter).

Duration: this property allows to configure the "duration" for an event, by selecting one of his
attributes. If set the engine will use the duration from the given attribute instead of using the
default event duration = 0. (See Drools Fusion for more information on this matter).

Expires: this property allows to configure the "time offset" for an event expiration. If set, this value
must be a temporal interval in the form: [#d][#h][#m][#s][#[ms]] Where [] means an optional
parameter and # means a numeric value. e.g.: 1d2h, means one day and two hours. (See Drools
Fusion for more information on this matter).

Remotable: If checked this property makes the data object available to be used with jBPM
remote services as REST, JMS and WS. (See jBPM for more information on this matter).

215

Workbench

9.7.6.4.2. Additional field properties ("Field tab")

Data Object Field

Identifier header

Label Header

Description

Type Purchase Order Header v List
Equals a
Position 1

Figure 9.58. The data object's field properties

 Description: this field allows the user to introduce some kind of description for the current field,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this data object or its instances in any way.

» Equals: checking this property for a data object field implies that it will be taken into account, at
the code generation level, for the creation of both the equals() and hashCode() methods in the
generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

9.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data struc-
tures, for them to interact with the Drools Engine on the one hand, and the jBPM platform on
the other. In order for this to become possible, these high-level visual structures have to be trans-

216

Workbench

formed into low-level artifacts that can effectively be consumed by these platforms. These artifacts
are Java POJOs (Plain Old Java Obijects), and they are generated every time the data model is
saved, by pressing the "Save" button in the top Data Modeller Menu. Additionally when the user
round trip between the "Editor" and "Source" tab, the code is auto generated to maintain the con-
sistency with the Editor view and vice versa.

Save Delete Rename | Copy @ Validate Latest Version ™

Figure 9.59. Save the data model from the top menu

The resulting code is generated according to the following transformation rules:

The data object's identifier property will become the Java class's name. It therefore needs to
be a valid Java identifier.

« The data object's package property becomes the Java class's package declaration.

» The data object's superclass property (if present) becomes the Java class's extension decla-
ration.

e The data object's label and description properties will translate into the Java annotations
"@org.kie.api.definition.type.Label" and "@org.kie.api.definition.type.Description”, respective-
ly. These annotations are merely a way of preserving the associated information, and as yet
are not processed any further.

e The data object's role property (if present) wil be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application plat-
form, in the sense that it marks this Java class as a Drools Event Fact-Type.

« The data object's type safe property (if present) wil be translated into the
"@org.kie.api.definition.type. TypeSafe Java annotation. (see Drools)

« The data object's class reactive property (if present) will be translated into the
"@org.kie.api.definition.type.ClassReactive Java annotation. (see Drools)

« The data object's property reactive property (if present) will be translated into the
"@org.kie.api.definition.type.PropertyReactive Java annotation. (see Drools)

e The data object's timestamp property (if present) will be translated into the
"@org.kie.api.definition.type.Timestamp Java annotation. (see Drools)

e The data object's duration property (if present) will be translated into the
"@org.kie.api.definition.type.Duration Java annotation. (see Drools)

217

Workbench

« The data object's expires property (if present) will be translated into the
"@org.kie.api.definition.type.Expires Java annotation. (see Drools)

e The data object's remotable property (if present) will be translated into the
"@org.kie.api.remote.Remotable Java annotation. (see jBPM)

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the data object's
user-defined fields.

The data object's user-defined fields are translated into Java class fields, each one of them with
its own getter and setter method, according to the following transformation rules:

» The data object field's identifier will become the Java field identifier. It therefore needs to be
a valid Java identifier.

« The data object field's type is directly translated into the Java class's field type. In case the field
was declared to be multiple (i.e. 'List’), then the generated field is of the "java.util.List" type.

« The equals property: when it is set for a specific field, then this class property will be anno-
tated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the Drools
Engine, and it will 'participate' in the generated equals() method, which overwrites the equals()
method of the Object class. The latter implies that if the field is a 'primitive’ type, the equals
method will simply compares its value with the value of the corresponding field in another in-
stance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding data object's Java class, or of
the java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the data object's user defined fields, then this also
implies that in addition to the default generated constructors another constructor is generated,
accepting as parameters all of the fields that were marked with Equals. Furthermore, generation
of the equals() method also implies that also the Object class's hashCode() method is overwrit-
ten, in such a manner that it will call the hashCode() methods of the corresponding Java class
types (be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in
the Data Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
changes the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

As an example, the generated Java class code for the Purchase Order data object, corresponding
to its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the data object's fields, namely 'header' and 'lines'
were marked with Equals, and have been assigned with the positions 2 and 1, respectively).

218

Workbench

Create new field

*Id

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)

Identifier Label Type
T | N

header Header Purchase Order Header

lines Lines Purchase Order Line [List]

requiresCFOApproval Boolean

total Total Double

Figure 9.60. Purchase Order configuration

package org.j bpm exanpl es. pur chases;

| **

Data Object Field

Identifier

Label

Description

Package

Superclass

PurchaseOrder

Purchase Order

org.jbpm.examples.purc

java.lang.Object

Drools & |JBPM parameters:

TypeSafe

ClassReactive
PropertyReactive

Role
Timestamp
Duration

Expires

Remotable

* This class was automatically generated by the data nodel er tool.

true

EVENT

2d

*/

@rg. ki e.api .definition.type.Label ("Purchase Order")

@rg. ki e.api.definition.type. TypeSafe(true)

@rg. kie.api.definition.type.Rol e(org.kie.api.definition.type.Role. Type. EVENT)
@rg. ki e.api.definition.type. Expires("2d")

@rg. ki e. api . renot e. Renpt abl e

public class PurchaseOrder inplenents java.io.Serializable

{

static final long serial VersionUD = 1L;

@rg. ki e. api . definition.type.Label ("Total")
@rg. ki e.api.definition.type.Position(3)
private java.lang. Doubl e total;

@rg. ki e.api.definition.type.Label ("Description")
@rg. ki e.api .definition.type.Position(0)
private java.lang. String description;

219

O © © © © ©

Workbench

@rg. ki e. api . definition.type.Label ("Lines")

@rg. ki e.api.definition.type.Position(2)

@rg. ki e.api.definition.type.Key

private java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> |i nes;

@rg. ki e. api . definition.type.Label ("Header")

@rg. ki e.api . definition.type.Position(1)

@rg. ki e. api . definition.type.Key

private org.jbpm exanpl es. purchases. PurchaseOr der Header header;

@rg. ki e.api .definition.type. Position(4)
private java.l ang. Bool ean requiresCFOApproval ;

publ i c PurchaseOrder()

{

}

public java.lang. Doubl e get Total ()

{

return this.total;

}

public void setTotal (java.l ang. Doubl e total)

{

this.total = total;

}

public java.lang. String getDescription()

{

return this.description;

}

public void setDescription(java.lang.String description)

{

this.description = description;

}

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> get Li nes()
{

return this.lines;

}

public void setLines(java.util.List<org.jbpm exanpl es. purchases. PurchaseOr derLi ne> |ines)
{

this.lines = lines;

}

public org.jbpm exanpl es. purchases. Pur chaseOr der Header get Header ()
{

return this. header;

}

public void setHeader (org.jbpm exanpl es. purchases. Pur chaseOr der Header header)
{

thi s. header = header;

}

public java.lang. Bool ean get Requi r esCFOApproval ()

220

Workbench

{

return this.requiresCFOApproval ;
}

public void setRequiresCFQApproval (j ava. |l ang. Bool ean requi resCFOAppr oval)
{

this. requiresCFOApproval = requiresCFQApproval ;

}

public PurchaseOrder(java.lang. Double total, java.lang.String description,
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,

org.j bpm exanpl es. pur chases. Pur chaseOr der Header header,

java. | ang. Bool ean requi r esCFQAppr oval)

{

this.total = total;
this.description = description;
this.lines = lines;

t hi s. header = header;
t hi s. requi resCFQApproval = requi resCFQApproval ;
}

public PurchaseOrder(java.lang. String description,

org. j bpm exanpl es. pur chases. Pur chaseOr der Header header,

java. util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,
java.lang. Doubl e total, java.lang.Bool ean requiresCFQApproval)

{

this.description = description;

t hi s. header = header;

this.lines = lines;

this.total = total;

this. requiresCFOApproval = requiresCFQApproval ;
}

public PurchaseOrder(
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,
or g.j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{

this.lines = lines;

t hi s. header = header;

}

@verride

publ i c bool ean equal s(Obj ect o)
{

if (this == o)

return true;

if (o ==null || getdass() != o.getC ass())

return false;

org. j bpm exanpl es. pur chases. PurchaseOrder that = (org.jbpm exanpl es. purchases. PurchaseOr der) o;

if (lines '=null ? !lines.equals(that.lines) : that.lines !'= null)
return false;
if (header !'= null ? !header.equal s(that.header) : that.header != null)

return fal se;
return true;

}

@verride

public int hashCode()
{

221

Workbench

int result = 17;

result = 31 * result + (lines != null ? lines.hashCode() : 0);
result = 31 * result + (header != null ? header.hashCode() : 0);
return result;

}

}

9.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

« Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

» Dependency to a JAR file installed in current KIE Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

9.7.6.6.1. Dependency to a JAR file in local M2 repository
To add a dependency to a JAR file in local M2 repository follow this steps.

9.7.6.6.1.1. Open the Project Editor for current project and select the Dependen-
cies view.

KIE Workbench

Explore + NewItem ~ Tools » Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete Rename Copy | Build®&Deploy™ @ x | 7
demo ~ ' Purchases = / purchases ~ =]
Dependendies: Dependencies list ~
& <default>
& org
&= jopm Add Add from
B examples Dependends repository
& purchases
@) cumepruLes ~ Group ID Artifact ID Version Delete

g JAVA SOURCE FILES +
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.61. Project editor.

222

Workbench

9.7.6.6.1.2. Click on the "Add" button to add a new dependency line.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~

Project: [purchase-approval:org.jbpm:1.0]

Save | Delete | Rename | Copy | Build&Deploy™ | | % || <

Project Explorer L]
demo ~ ' Purchases = / purchases 2 B -
Dependendies: Dependencies list ~
B <default>
B org
& jbpm Dependendies Add Add from
& examples repository
Bs purchases
Group ID Artifact ID Version Delete

@ GUIDED RULES ~

g JAVA SOURCE FILES +
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.62. New dependency line.

9.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 reposi-

tory.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~

Project Explorer o

demo v / Purchases ~ / purchases ~ 2

B <default>
B org
B jbpm
Bs examples
Bs purchases

@ GUIDED RULES ~

g JAVA SOURCE FILES ~
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Project: [purchase-approval:org.jbpm:1.0]

Dependendies: Dependencies list ~

Dependencies

Group ID Artifact ID

Add

Verslon

Save Delete Rename Copy Build & Deploy ™ x

Add from
repository

Delete

external-model external-model

Figure 9.63. Dependency line edition.

9.7.6.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

223

Workbench

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete | Rename | Copy | Build&Deploy™ | x ||~
demo ~ | Purchases ~ / purchases ~ =] . -
Dependendies: Dependencies list ~
B <default>
B org
&= jbpm Add Add fr
dencies om
Bs examples Depm repository
Bs purchases
@) cumepruLes ~ Group ID Attifact ID Version Delete
n
g JAVA SOURCE FILES + external-model external-model 1.0 i
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.64. Save project.
9.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

9.7.6.6.2.1. Open the Maven Artifact Repository editor.

KIE Workbench

Home Authoring ~
Upload Project Authoring Q
Artifact repository
Administration =
Name Path LastModified Open Download
guvnor-asset-mgmt-project-6.2.0-20141... org/guvnor/guvnor-asset-mgmt-project/... 2014 Oct 14 10:14:25 Open Download

Figure 9.65. Guvnor M2 Repository editor.

224

Workbench

9.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Open File
il < wmedvede | development | projects | external-model | target
Location: | external-model-1.0.jar
Places Name ¥ Size Modified
Q Search classes 02/19/2014
‘& Recently Used [generated-sources 02/19/2014
wmedvede maven-archiver 10/01/2013
Desktop surefire 10/24/2013
LI File System & external-model-1.0.jar 2.6 kB 10/24/2013
b =
Cancel Open

Figure 9.66. File browser.

9.7.6.6.2.3. Upload the file using the Upload button.

Artlfact uplo B The page at localhost:8080 says:

Uploaded successfully

C:\fakepath\extern

Figure 9.67. File upload success.
9.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

225

Workbench

KIE Workbench

Upload Refresh Q
Name Path LastModlfled Open Download
guvnor-asset-mgmt-project-6.2.0-2014... org/guvnor/guvnor-asset-mgmi-project/... 2014 Oct 14 10:14:25 Open Download
external-model-1.0.jar external-model/external-model/1.0/ext. .. 2014 Oct 14 18:43:19 Open Downioad

Figure 9.68. Files list.
9.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

Artifact) B The page at localhost:8080 says:
The Jar does not contain a valid POM file.

é L g Please specify GAV info manually.
C:\fakep

0K

Figure 9.69. Not valid POM.

Artifact upload

C:\fakepathlexternal-model-1.0.jz Choose File... = Upload

GroupID: external-model

Artifactip: €xternal-model

VersionID:| 1.0

Figure 9.70. Enter GAV manually.

226

Workbench

9.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

Name Path LastModlfied

guvnor-asset-mgmt... org/guvnor/guvnor-a... 2014 Oct 14 10:14:25

external-model-1.0.jar external-model/exter... 2014 Oct 14 19:22:53

Figure 9.71. Select JAR from "Maven Artifact Repository".

9.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

« External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

KIE Workbench

Explore + New Item ~ Repository ~ Q
Project Explorer % 2~ PurchaseOrder.java - Data Objects Save || Delete | | Rename || Copy || Validate || LatestVersion ™ | | x | ~
demo ~ / Purchases ~ / purchases ~ =]
Create new field Data Object Field
& <default>
& org id useExternalType Label
& jbpm Identifier lines
B examples “Type v List © Create
SeRiichieses [Tutorial Example Entity (org jbpm.examples.purchases.Example) ~bel Lines

- ext - externalmodel. Product
- ext - externalmodel. UseExternalBean
Ml - cx1 - extemaimodel UselnnerClasses L
- - exi - externalmodel.UselnnerClasses$1
Open Project Editor Identifie - ext - org kie.external.ClaseExternaAbstracta
- ext - org kie.external.ClaseExternaFinal

descripti - ext - org kie.external. ClaseExternalFinal2 pe Purchase Order Line (o1 v ¥ List
- ext - org kie.external.ClaseExternalinterface
- ext - org kie.external. ExternalClientBean uals td [
g PATA OBJECTS header | _ ext - org.kie.external HelloWorld -
Example . ex‘l - org kie.external MaxFieldsForConstructor1 e 2 °

Figure 9.72. Identifying external objects.

227

Workbench

9.7.6.7. Roundtrip and concurrency

Current version implements roundtrip and code preservation between Data modeller and Java
source code. No matter where the Java code was generated (e.g. Eclipse, Data modeller), the
data modeller will only create/delete/update the necessary code elements to maintain the mod-
el updated, i.e, fields, getter/setters, constructors, equals method and hashCode method. Also
whatever Type or Field annotation not managed by the Data Modeler will be preserved when the
Java sources are updated by the Data modeller.

Aside from code preservation, like in the other workbench editors, concurrent modification sce-
narios are still possible. Common scenarios are when two different users are updating the model
for the same project, e.g. using the data modeller or executing a 'git push command' that modifies
project sources.

From an application context's perspective, we can basically identify two different main scenarios:
9.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,
without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user
tries to make any kind of change, such as add or remove data objects or properties, or change
any of the existing ones, the following pop-up will be shown:

228

Workbench

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 9.73. External changes warning

The user can choose to either:

« Re-open the data model, thus loading any external changes, and then perform the modification
he was about to undertake, or

 Ignore any external changes, and go ahead with the modification to the model. In this case,
when trying to persist these changes, another pop-up warning will be shown:

229

Workbench

_—— - - - - __________—_—_—_—_——3

Error

User =system > updated current project default: //master@uf-playground
/mortgages data model,

Force Save Re-open Cancel

Figure 9.74. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open™ will
discard any local changes and reload the model.

A Warning

"Force Save" overwrites any external changes!

9.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user simultane-
ously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset
repository (or e.g. saves the model with the data modeller in a different session), a warning is
issued to the application user:

230

Workbench

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 9.75. External changes warning

As with the previous scenario, the user can choose to either:

» Re-open the data model, thus losing any modifications that where made through the application,
or

« Ignore any external changes, and continue working on the model.
One of the following possibilities can now occur:

» The user tries to persist the changes he made to the model by clicking the "Save" button in
the data modeller top level menu. This leads to the following warning message:

231

Workbench

—— - ______—_——3

Error

User <system= updated current project default: //master@uf-playground
/mortgages data model.

Force Save Re-open Cancel

Figure 9.76. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open” will
discard any local changes and reload the model.

9.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.
Assets can belong to any number of categories. In the below diagram, you can see this can in
effect create a folder/explorer like view of categories. The names can be anything you want, and
are defined by the Workbench administrator (you can also remove/add new categories).

@ Note

Categories do not have the same role in the current release of the Workbench
as they had in prior versions (up to and including 5.5). Projects can no longer be
built using a selector to include assets that are labelled with certain Categories.
Categories are therefore considered a deprecated feature.

232

Workbench

9.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Project - category
OEIChlo[: Categories Editor N Save | x

C Edit categories

Current categories: g+
@ = categoryl
= subcategoryl.1
—category2

Mew category | Rename selected | Delete selected

Figure 9.77. Launching Categories Editor

9.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

Categories Editor Save

Current categories: @i+
@ = categoryl

Edit categories

= subcategoryl.1
= category2

Mew category | Rename selected | Delete selected

Figure 9.78. Managing categories

233

Workbench

Generally categories are created with meaningful name that match the area of the business the
rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

9.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

Guided Editor [Bankruptcy history] save Delete Rename Copy \Vaidate @ % <

=] Metadata

Title:Bankruptcy history.rdrl
Categoriesicategoryl/subcategoryl. 1] <=
Last modified2013-11-07 11:46
by:admin
Mote:
Created on:2013-09-18 14:54
Created by:Walter Medvedeo
Formatguided rule
URLgit#/master@uf-playground/mortgages/src/main/resources/org/morgages/Bankruptcyde20history.rdrl

+ Other meta data
+ Version history
+ Description

+ Discussion

Edit Source Config Metadata

Figure 9.79. Adding Categories to an asset

9.8. Embedding Workbench In Your Application

As we already know, Workbench provides a set of editors to author assets in different formats.
According to asset’s format a specialized editor is used.

One additional feature provided by Workbench is the ability to embed it in your own (Web) Appli-
cations thru it's standalone mode. So, if you want to edit rules, processes, decision tables, etc...
in your own applications without switch to Workbench, you can.

In order to embed Workbench in your application all you'll need is the Workbench application
deployed and running in a web/application server and, from within your own web applications, an
iframe with proper HTTP query parameters as described in the following table.

234

Workbench

Table 9.2. HTTP query parameters for standalone mode

Parameter Name Explanation Allow mul- Example
tiple values
standalone With just the pres- no (none)
ence of this parameter
workbench will switch
to standalone mode.
path Path to the asset to be no git://master@uf-
edited. Note that asset playground/todo.md
should already exists.
perspective Reference to an exist- no org.guvnor.m2repo.clie
ing perspective name.
header Defines the name of yes ComplementNavArea

the header that should
be displayed (use-
ful for context menu
headers).

Note

g

9.9. Asset Management

9.9.1. Asset Management Overview

This section of the documentation describes the main features included that contribute to the Asset

Path and Perspective parameters are mutual exclusive, so can't be used together.

Management functionality provided in the KIE Workbench and KIE Drools Workbench. All the
features described here are entirely optional, but the usage is recommended if you are planning
to have multiple projects. All the Asset Management features try to impose good practices on

the repository structure that will make the maintainace, versioning and distribution of the projects

simple and based on standards. All the Asset Management features are implemented using jBPM
Business Processes, which means that the logic can be reused for external applications as well
as adapted for domain specific requirements when needed.

9.9.2. Managed vs Unmanaged Repositories

Since the creation of the assets management features repositories can be classified into Managed

or Unmanaged.

nt.perspectives.Gu

235

Workbench

9.9.2.1. Managed Repositories

All new assets management features are available for this type of repositories. Additionally a
managed repository can be "Single Project" or "Multi Project".

A "Single Project” managed repository will contain just one Project. And a "Multi Project" managed
repository can contain multiple Projects. All of them related through the same parent, and they
will share the same group and version information.

9.9.2.2. Unmanaged Repositories

Assets management features are not available for this type or repositories and they basically
behaves the same as the repositories created with previous workbench versions.

9.9.3. Asset Management Processes

There are 4 main processes which represent the stages of the Asset Management feature: Con-
figure Repository, Promote Changes, Build and Release.

9.9.3.1. Configure Repository

The Configure Repository process is in charge of the post initialization of the repository. This
process will be automatically triggered if the user selects to create a Managed Repository on the
New repository wizzard. If they decide to use the governance feature the process will kick in and
as soon as the repository is created. A new development and release branches will be created.
Notice that the first time that this process is called, the master branch is picked and both branches
(dev and release) will be based on it.

~

- Fa - - Relaas
4 Aporove if . Beset Mamt (Create Dev Create Release
(Approve o AssetMgmt | gl { dotlsy - B L
\) - needed A P Brocess Start Bronch Branch

3 L J - A

= -
. Asset Mgmt
Not approved ——DO s y Process End

By default the asset management feature is not enabled so make sure to select Managed Repos-
itory on the New Repository Wizzard. When we work inside a managed repository, the develop-
ment branch is selected for the users to work on. If multiple dev branches are created, the user
will need to pick one.

9.9.3.2. Promote Changes Process

When some work is done in the developments branch and the users reach a point where the
changes needs to be tested before going into production, they will start a new Promote Changes

236

Workbench

process so a more technical user can decide and review what needs to be promoted. The users
belonging to the "kiemgmt" group will see a new Task in their Group Task List which will contain
all the files that had being changed. The user needs to select the assets that will be promoting
via the Ul. The underlying process will be cherry-picking the commits selected by the user to the
release branch. The user can specify that a review is needed by a more technical user.

This process can be repeated multiple times if needed before creating the artifacts for the release.

Requires rework

~
> o . Asset Mgmt | S te - Select Assets - 4
A Process Start - L —® get commits Te Premote A

I—

Nat approved Asset Momt
Promote Assets ————— = LESRL AT

9.9.3.3. Build Process

The Build process can be triggered to build our projects from different branches. This allows us
to have a more flexible way to build and deploy our projects to different runtimes.

9.9.3.4. Release Process

The release process is triggered at any time when the user decided that it is time to generate a
release of the project that he/she is working on. This process will build the project (calling the Build
Process) and it will update all the maven artifacts to the next version.

237

Workbench

= —

9.9.4. Usage Flow

This section describes the common usage flow for the asset management features showing all
the screens involved.

The first contact with the Asset Management features starts on the Repository creation.

New Repository

" Basic Seftings
* Repository Mame

Managed Repository Settings

myrepo

* In Organizational Unit
demo j

Managed Repository

A managed repository provides projact-level version control and project branches for managing the release cycle.

< Previous Next » Cancel & Finish

If the user chooses to create a Managed Respository a new page in the wizzard is enabled:

238

Workbench

New Repository

Basic Settings Repository Type:

¢ Managed Repository Setlings Single-project Repository

Create a single managed project in this repository. Use this option for simple or self-contained projects.
© Multi-project Repository

ication. The projects in this repository will be managed together

and will al

Project Branches:
B Automatically Configure Branches (master/devireleasa)
Project Settings:
* Name
myrepo

Description

* Group
demo

* Artifact
myrepo

* Version

1.0.0-SMNAPSHOT

< Previous Next » Cancel

When a managed repository is created the assets management configuration process is automat-
ically launched in order to create the repository branches, and the corresponding project structure
is also created.

9.9.5. Repository Structure

Once a repository has been created it can be managed through the Repository Structure Screen.

To open the Repository Structure Screen for a given repository open the Project Authoring Per-
spective, browse to the given repository and select the "Repository -> Repository Structure” menu
option.

KIE Workbench

Explore ¥ New Item v - Q
Project Explorer Repository Structure
demo v | jbpm-playground v ' Evaluation - a
B <default>

Open Project Editor

Figure 9.80. Repository Structure Menu

239

Workbench

9.9.5.1. Single Project Managed Repository

The following picture shows an example of a single project managed repository structure.

KIE Workbench

Explore ~ NewItem ~ Repository ~ Q

Project Explorer & = A Repository Structure ManagedSingle (master) - > ManagedSingle Configure || Promote | | Release | | X ~ || A

demo ~ / ManagedSingle ~ ' ManagedSingle ~ g

g <default>
& demo
&= managedsingle

Repository Groupld [EELE
Repository ArtifactId [[ELS

Repository Version L5

Open Project Editor master ~

Figure 9.81. Single Project Managed Repository

9.9.5.2. Multi Project Managed Repository

The following picture shows an example of a multi project managed repository structure.

KIE Werkbench

Explore ~ NewItem ~ Repository = Q
Project Explorer @ 2 |~ Repository Structure ManagedMulti (master) - > ManagedMulti:dem... configwe = Promote Release % ~ A

demo ~ ' ManagedMulti ~ / Project3 ~ =]
B <default>

&= demo ; Repasitory Groupld R0

B=EpmEc Repository ArtifactId [LELS
Repository Version [E50

Open Project Editor master *

Modulac

e prg— © Add Module

Module

. Project1 & Edit ©Delete
Project2 & Edit O Delete
Project3 & Edit O Delete

Figure 9.82. Multi Project Managed Repository

9.9.5.3. Unmanaged Repository

The following picture shows an example of an unmanaged repository structure.

240

Workbench

KIE Workbench

Explore New Item ~ Repository «
Project Explorer & =
demo ~ / Unmanaged ~ / Project2 ~ =]

= <default>
m demo

Open Project Editor

© New Project

TP T———— Module

2>
=
=
3
j+1)
=1
[+1}
&
o
(1]
o
o
@,
o,
Qo
2
=
=
3
j+1)
=1
[+1}
&
=
]
[+1}
o
[0}
ks

Configure Promote

Release x| Y A

Project1

Project2

Figure 9.83. Unmanaged Repository

9.9.6. Managed Repositories Operations

& Edit
& Edit

The following picture shows the screen areas related to managed repositories operations.

KIE Werkbench

Q@ Delete
@ Delete

Explore ~ NewItem ~ Repository =

Configure | Promote

Release x Y A

Project Explorer % = ~ Repository Structure ManagedMulti (master) - > ManagedMult{..
demo ~ /' ManagedMulti ~ ' Project3 = 2
& <default>
£ demo : Repository Groupld [EELE
Begpoiec Repository ArtifactId
Repository Version [EH
Open Project Editor master ¥
dev-1.0.0 —
. _ release-1.0
--- No items found --- © Add Module
Module
4 Project1
Project2
Project3

Figure 9.84. Managed Repositories Operations

9.9.6.1. Branch Selector

[Edit
[Edit
[Edit

© Delete
© Delete
© Delete

The branch selector lets to switch between the different branches created by the Configure Repos-

itory Process.

241

Workbench

master =

dev-1.0.0

release-1.C

Figure 9.85. Branch Selector

9.9.6.2. Project Operations

From the repository structure screen it's also possible to create, edit or delete projects from current
repository.

© Add Module

Figure 9.86. Add Project to current structure

[Edit @ Delete
Edit @ Delete

[Edit & Delate

Figure 9.87. Edit/Delete projects from current structure

9.9.6.3. Launch Assets Management Processes

The assets management processes can also be launched from the Project Structure Screen.

Configure | Promote | Release

Figure 9.88. Launch Assets Management Processes

9.9.6.3.1. Launch the Configure Repository Process

Filling the parameters bellow a new instance of the Configure Repository can be started. (see
Configure Repository Process)

242

Workbench

Configure Repository

Repository
ManagedMulti

Source Branch

dev-1.0.0

* Dev Branch

dev

The branch will be called (dev)-1.0.0-SNAPSHOT
* Release Branch

release

The branch will be called (release)-1.0.0-SNAPSHOT

* Version

1.0.0-SNAPSHOT

The current repository version is: 1.0.0-SNAPSHOT

O Ok Cancel

Figure 9.89. Configure Repository Process Parameters

9.9.6.3.2. Launch the Promote Changes Process

Filling the parameters bellow a new instance of the Promote Changes Process can be started.
(see Promote Changes Process)

243

Workbench

Promote Assets

Repository
ManagedMulti

Source Branch

dev-1.0.0

* Target Branch
Select a Branch -

e

Figure 9.90. Promote Changes Process Parameters
9.9.6.3.3. Launch the Release Process

Filling the parameters bellow a new instance of the Release Process can be started. (see Release
Process)

244

Workbench

Release Configuration

Repository
ManagedMulti

Source Branch

dev-1.0.0

* Release Version

1.0.0

The current repository version is: 1.0.0-SNAPSHOT

* Deploy To Runtime

* |User Name

kie-admin

* Password

* Server URL
http://hp-di380pg8-01.lab.eng.br

Figure 9.91. Release Process Parameters

245

Workbench

9.9.7. Remote APIs

TBD

246

Chapter 10. Workbench Integration

10.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and ma-
nipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,
that is, they continue their execution after the call was performed as a job. The job ID is returned
by every calls to allow after the REST API call was performed to request the job status and verify
whether the job finished successfully. Parameters of these calls are provided in the form of JSON
entities.

When using Java code to interface with the REST API, the classes used in
POST operations or otherwise returned by various operations can be found in the
(org. ki e. wor kbench. servi ces:) ki e- wb- conmon- ser vi ces JAR. All of the classes mentioned
below can be found in the or g. ki e. wor kbench. comrmon. ser vi ces. shar ed. r est package in that
JAR.

10.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the
calls are asynchronous and you need to be able to reference the job to check its status as it goes
through its lifecycle. During its lifecycle, a job can have the following statuses:
* ACCEPTED: the job was accepted and is being processed
* BAD_REQUEST: the request was not accepted as it contained incorrect content
e RESOURCE_NOT_EXI ST: the requested resource (path) does not exist
* DUPLI CATE_RESOURCE: the resource already exists
e SERVER ERROR: an error on the server occurred
* SUCCESS: the job finished successfully
e FAI L: the job failed
« DENI ED: the job was denied
e GONE: the job ID could not be found
A job can be GONE in the following cases:
» The job was explicitly removed

» The job finished and has been deleted from the status cache (the job is removed from status
cache after the cache has reached its maximum capacity)

247

Workbench Integration

* The job never existed

The following j ob calls are provided:

[GET] /jobs/{jobID}
Returns the job status

Returns a JobResul t instance

Example 10.1. An example (formatted) response body to the get job call
on arepository clone request

{
"status":" SUCCESS",
"jodld":"1377770574783- 27",
"result":"Alias: t est I nst al | AndDepl oyPr oj ect, Schene: git, Uri: git://
test I nstal | AndDepl oyProj ect"”,
"] ast Modi fied": 1377770578194, "det ai | edResul t": nul |

pr

[DELETE] /jobs/{jobID}
Removes the job: If the job is not yet being processed, this will remove the job from the job
queue. However, this will not cancel or stop an ongoing job

Returns a JobResul t instance

10.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories
and their projects.

The following r eposi t ori es calls are provided:

[GET] /repositories
Gets information about the repositories in the Knowledge Store

Returns a Col | ecti on<Map<String, String>> or Collection<RepositoryRequest> in-
stance, depending on the JSON serialization library being used. The keys used in the
Map<St ring, String> instance match the fields in the Reposi t or yRequest class

Example 10.2. An example (formatted) response body to the get
repositories call

"nanme": " wb- asset s",

248

Workbench Integration

"description":"generic assets",
"user Nanme": nul |,

"password": nul |,

"request Type": nul |,
"gitURL":"git://bpns-assets”

},
{
"name": "l oanProject",
"description":"Loan processes and rul es",
"user Nanme": nul |,
"password": nul |,
"request Type": nul |,
"gitURL":"git://Il oansProject”
}

[POST] /repositories
Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a Reposi t or yRequest instance

Returns a Cr eat eOr O oneReposi t or yRequest instance

Example 10.3. An example (formatted) response body to the create
repositories call

{
"nanme": " new proj ect-repo”,
"description":"repo for my new project"”,
"user Nane": nul |, "password": nul |,
"request Type": "new",
"gi t URL": nul |

}

[DELETE] /repositories/{repositoryName}
Removes the repository from the Knowledge Store

Returns a RenoveReposi t or yRequest instance

[POST] /repositories/{repositoryName}/projects/
Creates a project in the repository

Consumes an Enti ty instance

Returns a Cr eat ePr oj ect Request instance

Example 10.4. An example (formatted) request body that defines the
project to be created

249

Workbench Integration

"nanme": " nyProject",
"description": "ny project"

}

10.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its organiza-
tional units, so as to organize the connected Git repositories.

The following or gani zat i onal Uni t s calls are provided:
[POST] /organizationalunits
Creates an organizational unit in the Knowledge Store
Consumes an Or gani zat i onal Uni t instance

Returns a Cr eat eOr gani zat i onal Uni t Request instance

Example 10.5. An example (formatted) request body defining a new
organizational unit to be created

"name":"testgroup”,

"description":"",

"owner":"tester",
"repositories":["test GoupRepository"]

[POST] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}
Adds the repository to the organizational unit

Returns a AddReposi t or yToOr gani zat i onal Uni t Request instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}
Removes the repository from the organizational unit

Returns a RenoveReposi t or yFr onOr gani zat i onal Uni t Request instance

10.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the
Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile
Compiles the project (equivalent to mvn conpi | e)

250

Workbench Integration

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a Conpi | ePr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install
Installs the project (equivalentto nvn install)

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a | nst al | Proj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test
Compiles the project runs a test as part of compilation

Consumes a Bui | dConfi g instance
Returns a Test Pr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy
Deploys the project (equivalent to mnvn depl oy)

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a Depl oyPr oj ect Request instance

10.1.5. REST summary

The URL templates in the table below are relative the following URL:

e http://server:port/business-central/rest

Table 10.1. Knowledge Store REST calls

URL Template Type | Description
/jobs/{jobID} GET | return the job status
/jobs/{jobID} DELETEemove the job
/organizationalunits GET | return a list of organiza-
tional units
/organizationalunits POST | create an organization-

al unit in the Knowledge
Store described by the
JSON Or gani zat i onal U

ni t entity
/organizationalunits/{organizationalUnitName}/reposito- POST | add a repository to an or-
ries/{repositoryName} ganizational unit

251

Workbench Integration

URL Template Type | Description
/organizationalunits/{organizationalUnitName}/reposito- DELETEemove a repository from
ries/{repositoryName} an organizational unit
[repositories/ POST | add the repository to the
organizational unit de-
scribed by the JSON
Reposi t or yRegest entity
/repositories GET | return the repositories in
the Knowledge Store
/repositories/{repositoryName} DELETEemove the repository
from the Knowledge Store
Irepositories/ POST | create or clone the repos-
itory defined by the JSON
Reposi t or yRequest entity
/repositories/{repositoryName}/projects/ POST | create the project defined
by the JSON entity in the
repository
[repositories/{repositoryName}/projects/{project- POST | compile the project
Name}/maven/compile/
/repositories/{repositoryName}/projects/{project- POST | install the project
Name}/maven/install
/repositories/{repositoryName}/projects/{project- POST compile the project and
Name}/maven/test/ run tests as part of compi-
lation
[repositories/{repositoryName}/projects/{project- POST | deploy the project

Name}/maven/deploy/

252

Chapter 11. Workbench High
Availability

11.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,
process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in
sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http:/
helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is
the cluster management component that registers all cluster details (nodes, resources and the
cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide
VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/].

2. Install both:
a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).
b. In $ZOOKEEPER_HOME, copy zoo_sanpl e. conf to zoo. conf

c. Edit zoo. conf . Adjust the settings if needed. Usually only these 2 properties are relevant:

the directory where the snapshot is stored.databDir=/tnp/zookeeper# the port at which the
clients will connectclientPort=2181
is

stored. dat aDi r =/ t np/ zookeeper# the port at which the clients

d. Unzip Helix into a directory ($HELI X_HOVE).
3. Configure the cluster in Zookeeper:

a. Go to its bi n directory:
$ cd $ZOOKEEPER_HOVE/ bi n

b. Start the Zookeeper server:

253

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Workbench High Availability

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dat aDi r (as specified in zoo. conf) is accessible.

c. To review Zookeeper's activities, open zookeeper . out :

$ cat $ZOOKEEPER_HOME/ bi n/ zookeeper . out

4. Configure the cluster in Helix:

a. Go to its bi n directory:

$ cd $HELI X_HOVE/ bi n

b. Create the cluster:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --addd uster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (ki e- cl ust er)
can be changed as needed.

c. Add nodes to the cluster:

Node 1
$./helix-admi n.sh --zkSvr | ocal host: 2181 --addNode ki e-cluster nodeOne: 12345
Node 2
$./helix-adm n.sh --zkSvr |ocal host: 2181 --addNode ki e-cl uster nodeTwo: 12346

Usually the number of nodes a in cluster equal the number of application servers in the
cluster. The node names (nodeOne: 12345 , ...) can be changed as needed.

d. Add resources to the cluster:

254

Workbench High Availability

$./helix-adm n.sh --zkSvr |ocal host:2181 --addResource kie-cluster vfs-repo 1 LeaderS
t andby AUTO_REBALANCE

The resource name (vf s- r epo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --rebal ance ki e-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr |ocal host:2181 --cluster kie-cluster 2>& > /tnp/
controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and
JBoss EAP:
a. Edit the file $JBCSS_HOVE/ domai n/ confi gurati on/ domai n. xni .

For simplicity sake, presume we use the default domain configuration which uses the profile
ful | that defines two server nodes as part of mai n- ser ver - gr oup.

b. Locate the profile f ul | and add a new security domain by copying the other security domain
already defined there by default:

<security-domai n name="ki e-i de" cache-type="defaul t"> <aut henti cati on> <l ogi n-
nmodul e code="Renoting" flag="optional "> <nmodul e- opti on nanme="passwor d- st acki ng"
val ue="useFirst Pass"/> </l ogi n- modul e> <l ogi n-nodul e code="Real nDirect"
flag="required"> <nodul e- opti on nane="passwor d- st acki ng" val ue="useFi rst Pass"/
> </ | ogi n- nodul e> </ aut henti cati on></ security-domai n>
ide" cache-type="default">

<aut henti cati on> <l ogi n- nodul e
code="Renoti ng" flag="optional "> <nmodul e- opti on nane="passwor d-
stacki ng" val ue="useFirstPass"/>
</ 1 ogi n- rodul e> <l ogi n- nodul e
code="Real nDirect" flag="required"> <nodul e- opti on nanme="passwor d-

stacki ng" val ue="useFirstPass"/>
</ | ogi n- nodul e>
</

Important

The security-domain name is a magic value.

255

Workbench High Availability

6. Configure the system properties for the cluster on the application server. For example on Wild-
Fly and JBoss EAP:

a. Edit the file $JBOSS_HOME/ domai n/ confi gurati on/ host . xn .

b. Locate the XML elements ser ver that belong to the mai n- ser ver - gr oup and add the nec-
essary system property.

For example for nodeOne:

<system properties>
<property name="j boss. node. nane" val ue="nodeOne" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/kie/nodeone" boot-tine="false"/>
<property nanme="org.uberfire.nmetadata.index.dir" value="/tnp/kie/ nodeone" boot-
tine="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-tine="false"/>
<property name="org.uberfire.cluster.zk" val ue="Iocal host: 2181" boot-ti ne="fal se"/>
<property nanme="org. uberfire.cluster.local.id" val ue="nodeOne_12345" boot-ti ne="fal se"/>
<property name="org.uberfire.cluster.vfs.lock" val ue="vfs-repo" boot-tinme="fal se"/>
<l-- If you're running both nodes on the sane nachine: -->
<property name="org.uberfire.nio.git.daenon.port" val ue="9418" boot-tine="fal se"/>
</ system properties>

And for nodeTwo:

<system properties>
<property name="j boss. node. nane" val ue="nodeTwo" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/kie/nodetw" boot-tine="false"/>
<property nanme="org.uberfire.netadata.index.dir" value="/tnp/kie/nodetwo" boot-
time="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-tine="false"/>
<property name="org. uberfire.cluster.zk" val ue="Il ocal host:2181" boot-tine="fal se"/>
<property nanme="org.uberfire.cluster.local.id" val ue="nodeTwo_12346" boot-ti ne="fal se"/>
<property name="org.uberfire.cluster.vfs.lock" val ue="vfs-repo" boot-tinme="fal se"/>
<l-- If you're running both nodes on the sane machi ne: -->
<property name="org.uberfire.nio.git.daenon.port" val ue="9419" boot-tine="fal se"/>
</ system properties>

Make sure the cluster, node and resource names match those configured in Helix.

11.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this
blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the
database etc correctly.

256

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

Chapter 12. Designer

Designer is a graphical web-based BPMN2 editor. It allows users to model and simulate exe-
cutable BPMNZ2 processes. The main goal of Designe is to provide intuitive means to both tech-
nical and non-technical users to quickly create their executable business processes. This chapter
intends to describe all feature Designer offers currently.

U berFire New - Repositories =

Project Explorer # x ~ Business Process [evaluation] x -
=H- 2 | O~ | - | & | foofs - B | (- | £- A BE- 05 B xs

| Process Modelling Simulation Results
P
E=)HR Evaluation
P, Y N
BUSINESS PROCESSES . lself Evaluation \+ \+

evaluation

&
“=pm Evaluation
FORM DEFINITIONS

'WORK ITEM DEFINITIONS

demo ~ ' jbpm-playground ~
Evaluation ~

Business Process Metadata

Figure 12.1. Designer

Designer targets the following business process modelling scenarios:

« View and/or edit existing BPMN2 processes: Designer allows you to open existing BPMN2
processes (for example created using the BPMN2 Eclipse editor or any other tooling that exports
BPMN2 XML).

» Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the
Designer and use the editing capabilities (drag and drop and filling in properties in the properties
panel) to fill in the details. This for example allows business users to create complete business
processes all inside a a browser. The integration with Drools Guvnor allows for your business
processes as wells as other business assets such as business rules, process forms/images,
etc. to be stored and versioned inside a content repository.

» View and/or edit Human Task forms during process modelling (using the in-line form editor or
the Form Modeller).

« Simulate your business process models. Busines Process Simulation is based on the BPSIM
1.0 specification.

257

Designer

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-
specific BPMN2 extension elements and attributes.

12.1. Designer Ul Explained

Designer Ul is composed of a number of sections as shown below:

Choose library set: Name Walue

Business Process [evaluation] x|~
B- 2 | O~ | - T PRI Aan=RaN R AR @ 0 R % x
Object Library «|| Process Mo @ ulation Results Properties (BPMN-Diagram) »

~
Fuli HR Evaluation

= Full

= Core Properties
AdHoc false

\-l-\ —.@ Exocutable true

Globals

4 Tasks 5935
. elf Evaluation -|-\
Subprocesses .

4 start Events
 End Events PM Evaluation D evaluation

4 Catching Intermediate Events Imports

2 Throwing Intermediate Events Package Evaluation.src.main. resources

2 Gateways Process Name Evaluation

+ Service Tasks Varlable Defi... employeesjava lang String,reason;java lang String perf.
=

= Connecting Objects Version 1

= Data Objects

4 Swimlanes 5 Extra Properties
4 Artifacts Documentati..

&) workflow Patterns Target Name... hitp:/'www.omg org/bpmn20

TypeLanguage hitp:ifwww java.com/javaTypes
o = Simulation Properties
Base Currency

Base time unit seconds

Business Froc@adata

Figure 12.2. Designer sections

* (1) Modelling Canvas - this is your process drawing board. After dropping different shapes onto
the canvas, you can move them around, connect them, etc. Clicking on a shape on the canvas
allows you to set its properties in the expandable Properties Window (3) (as well as create
connecting shapes and morph the shape into other shapes).

e (2) Toolbar - the toolbar contains a vast number of functions offered by Designer (described
later). These includes operations that can be performed on shapes present on the Canvas.
Individual operations are disabled or enabled depending on what is selected. For example, if
no shapes are selected, the Cut/Paste/Delete operations are disabled, and become enabled
once you select a shape. Hovering over the icons in the Toolbar displays the description text
of the operation.

« (3) Properties Panel - this expandable section on the right side of Designer allows you to set
both process and shape properties. It is divided in four sections, namely "Core properties”, and
"Extra Properties, "Graphical Settings", and "Simulation Properties" are is expandable. When
clicking on a shape in the Canvas, this panel is reloaded to show properties specific to the
shape type. If you click on the canvas itself (not on a shape) the section shows your general
process properties.

258

Designer

* (4) Object Repository Panel - the expandable section on the left side of Designer shows the
jBPM BPMN2 (default) shape repository tree. It includes all shapes of the jBPM BPMN2 stencil
set which can be used to assemble your processes. If you expand each section sub-group you
can see the BPMN2 elements that can be placed onto the Designer Canvas (1) by dragging
and dropping the shape onto it.

« (5) View Tabs - currently Designer offers functionality tabs for Process Modelling and Simula-
tion. Process Modelling is the default tab. When users run process simulation, its results are
presented in the Simulation tab.

« (6) Info Tabls - On the bottom Designer shows two different Info tabs. The Business Process
tab includes the process modeling while the Metadata tab displays the process metadata such
as created by and last modified information.

12.2. Getting started with Modelling

The Object Repository panel provide means for users to select and drag/drop BPMN2 shapes
onto the modelling canvas. Shapes are divided into sections as shown below:

259

Designer

Object Library 4
Choose library set:
Full &

= Full

Tasks

.*.nn User

& send
Receive
Manual

SErVICE

|

O

B Business Rule
= script

]

Mone

t Subprocesses

+l Start Events

tl End Events

+l Catching Intermediate Events
t Throwing Intermediate Events
H Gateways

H Service Tasks

+ Connecting Objects

t Data Objects

H Swimlanes

H Artifacts

1l aaa " Ew — - -

Figure 12.3. Object Repository

Once a shape is dropped onto the canvas users have a much faster way of continuing modelling
without having to go back to the Object Repository panel. This is realized through the shape
morphing menu which is presented when a shape on the drawing canvas is clicked on. This menu

260

Designer

allows users to either select a connecting shape (next shape) or morph the selected node into
another node type. In addition this menu includes means to store the shape name as a dictionary
item (explained later), view the specific BPMN2 code of the selected shape, as well as create/edit
the task form (in the case of user tasks only).

& Send Task

1 Receive Task

% Manual Task

'%'; Service Task

B Business Rule Task

& Script Task

Figure 12.4. Morphing Menu for shapes

When connecting shapes Designer applies connection rules that follow the BPMN2 specification.
The connection shapes presented in the morphing menu only show shapes that are allowed to be
connections. Similarly same rules are applied when dropping a shape from the Object Library from
the canvas and trying to connect an existing shape to it. Additional connection rules for boundary
events are also available (explained later) and applied when for example moving an intermediate
event node onto the edge of a task node.

Users can give names to every shape on the drawing canvas. This is done by double-clicking
onto the shape as shown below.

261

Designer

"
MyTask A

MyTask|

Figure 12.5. Naming a shape

The name of a shape can be pulled from the Process Dictionary. If terms are set up in the dictio-
nary, auto-complete can be used for the node names:

W
MyOtherTask |: -~

MyTask
MyTask
MyOtherTask
My ThirdTask

Figure 12.6. Name auto-completion from dictionary

Designer also shows three buttons on top of a clicked shape as shown below.

262

Designer

Figure 12.7. Extra in-line options

These include:

* (1) Add To Dictionary - this option allows users to add the name of the task to the Process
Dictionary (explained in more details later)

e (2) Edit Task Form - allows users to create/edit the Task Form. This option is only available
for User Tasks

* (3) View shape sources - shows the BPMNZ2 for this particular shape only.

The section should get you started with creating simple business process models by drag-
ging/dropping BPMN2 shapes onto the drawing canvas. Next sections will dive deeper into many
other aspects of Designer.

12.3. Designer Toolbar

The Designer toolbar contains many different functions which can be used during process mod-
elling.

B dMDX 9C O | 4~ &~ W5k 8 ff m B (¢ F- 4B~ 0 < IR 23
Y A T N T T N WV A W A W N A S W S N A
1 2 34@5 6 7 8 9 1o a1 42431 1546 1y 18 19 (20) (21 (22] (23] (24)(25) 26)(27/28[29

Figure 12.8. Toolbar Buttons

We will now go through each of the buttons in the Designer Toolbar and give a brief overview
of what it does.

(1) Save - allows users to save, copy, rename and delete the business process model. In addition
users can turn on auto-save which will automatically save the business process within a defined
time interval.

263

Designer

ET & 4 A 2

Enable autosave

+ | Copy
=l; Rename

'I_-D% Delete

+H Emd Ervvamto

Figure 12.9. Save Button

(2) Cut - enabled when a portion of the model is selected.

(3) Copy - enabled when a portion of the model is selected.

(4) Paste - paste the copied portion of the model onto the drawing board.

(5) Delete - enabled when there is a portion of the model is selected and removes it.
(6, 7) Undo/Redo - undo the last performed operation on the drawing canvas.

(8) Local History - local history allows continuous storage of your business process onto your
browsers internal storage. Stored version of the business process can persist internet outages
or browser crashes so your work will not be lost. This feature is disabled by default and must
be enabled by users. Once local history has been enabled users are able to view all previously
stored snapshots of their business model, clear local history, configure the snapshot interval, or
disable local history. Note that local history will only take a snapshot of your business process on
the set storing interval if there were some changes done in the model. If at the end of the snapshot
interval Designer detects that there were no changes since the last local history save, no new
snapshot will be created.

264

Designer

EEJ Enable Local History

Figure 12.10. Local History

The Local History results screen allows users to select a stored snapshot of the model and view
its process image, and restore it back onto their drawing board.

Local History View
Select Process Id and click "Restore” to restore.

Id Mame Package Vergion Time Stamp Process Image

1 evaluation Evaluation Evaluation.src.main.resou... 1 15.11.2013 06:37:40 0

Figure 12.11. Local History Sample Results

(9) Object positioning - allows users to position one or more nodes in the business. Note that at
last one shape must be selected first, otherwise these options are disable. Contains options "Bring
to Front", "Bring to back", "Bring forward", and "Bring Backward"

(10) Alignment: enabled when a portion of the model is selected. Includes options "Align Bottom",
"Align Middle", "Align Top", "Align Left", "Align Center", "Align Right", and "Align Same Size".

(11, 12) Group and Ungroup - allows grouping and ungrouping of selected shapes on the drawing
board.

(13, 14) Locking and Unlocking - allows parts of the business model to be locked and unlocked.
Locked parts of the model cannot be edited (visual display and properties are both locked). Locked
nodes are displayed in a light blue color. This feature fosters collaboration of process modelling
by allowing users to set parts of their model as "completed" and preventing any further changes
to that portion. Other parts of the model can continue to be edited.

265

Designer

4.[& HR Evaluation
£DSelt" Evaluation -I-\
"

5,
-
-
B PM Evaluation —

-@

Figure 12.12. Locked Nodes

(15, 16) Add/Remove Docker - this allows users to add or remove Dockers, or edge points, to
sequence flows in the model. Enables when a sequence flow (connector) is selected. It allows
users to create very customized connection points from one shape to another. Users can add and
remove as many dockers as they would like on a single sequence flow.

| \ |

b R
i& PM Evaluation 5

Figure 12.13. Adding dockers to a sequence flow

(17) Color Themes - Colors are a big part or process modelling as they help with expressing intent
as well as help allowing visually impaired users to better view the model. Designer provides two
default color themes out of the box named "jBPM" and "High Contrast". The jBPM theme is the
default theme used for all new business processes created. Users can switch color themes and
the changes will be applied to all nodes that are currently on the model, as well as any new shapes
added. Users have the ability to add new custom color themes by adding their own definitions in
the Designer themes.json file. Color theme selection is persisted over browser close or possible
crash/internet loss.

266

Designer

1 r o B =
&9 jBrM

- €9 HighContrast

= |

Figure 12.14. Color Themes selection

4’[& HR Evaluation
D

&

O—.[&Self Evaluation 0

PM Evaluation

Figure 12.15. Switching to High Contrast Color Theme

(18) Process and Task forms - here users have the ability to generate/edit process and task forms.
When no user task is selected the default enabled options are "Edit Process Form" and "Generate
all Forms". Generate all forms will apply the current model information such as process variables,
data objects, and the user tasks data input/output parameters and associations to generate default
executable input forms. Upon editing a process and task form, users have the choice between
two form editors, the jBPM Form Modeler, and the Designer in-line meta editor. The Designer
meta editor is targeted more to technical users as it is text based with the ability for live preview.
When the user selects an user task in the model, the "Edit Task Form" and "Generate Task Form"
options are enabled which allow users to edit the particular task form, or choose to apply the same
generation logic to create a task form for the selected task only. Users have the ability to extend
the default form generation templates in designer to create fully customized templates. Node that
in the case of the Designer meta editor for forms, generating forms will overwrite existing forms
for the process and user tasks. In the case of Form Modeler form generation, a merging algorithm
is applied when generating.

267

Designer

| [| Pl | A
=] Edit Process Form

=] Edit Task Form

-] Generate Task Form

o o

._| Generate all Forms
EP o B W T 7) |

Figure 12.16. Form generation selection

When selecting a task, users have the ability to edit the selected tasks form via the form button
shown above the user task node.

oy

FM Evaluation

&

Figure 12.17. In-line task editing

When editing forms, users are asked to choose between the Form Modeler and the Designer in-
line meta editor. If the user selects Form Modeler the form is shown in a new asset tab separately
from Designer. Designer meta editor is in-line and part of the Designer application.

Form Editor. x
Select which Form Editor to use:

2

|Graphica| Mn:u:leler| |Markup Edih:r| | Cancel

Figure 12.18. Form Editor Selection

The Designer in-line meta form editor is a powerful text-based editor with a live preview feature
as well as auto-completion on process variables and user task data inputs/outputs.

268

Designer

Editing Form: PerformanceEvaluation - Press [Ctrl-Z] to activate auto-completion
Insert form widget.. b

<div id="header">
User Task Form: Evaluation.PerformanceEvaluation
</div> = |
<div_id="content'> User Task Form: Evaluation.PerformanceEvalua
<input type="hidden" name="taskId"
value="§{task.id}" />
<fieldset>
<legend>Task Info</legend>
<label for="name">0wners</label>
<div class="div_checkbox">

</div>

<label for="name">Actor ID</label>

<div class= checkbox"></div> mrs S{cmploycc}
<label for= e">Group</label>

<div clas heckbox"></div>

<label fo >Skippable</label>

<div class= checkbox">false</div>

<label for= e">Priority</label> Actor ID

iv_checkbox"></div>
e">Comment</labal>
<div class= checkbox"><| [CDATA[Please
perform a self-evalutation.]]></div> Gmup
<div class="clear"></div>
</fieldset>

; false
<fieldsets Skippable
<legend>Task Inputs</legend>
<label
for="name">reason</label> _
<diwv an
class="div_checkbox"> nty
${reason}
</div>
<label
for="name“>performance</labal> CDITIITIBnt
<diwv

class="div_checkbox">
${performance}
</div>

Figure 12.19. Designer in-line form meta editor with live-preview

(19) Process Information Sharing - this section includes many functions that help with sharing
information of your model. These include:

» Share process image - generates a stand-alone HTML image tag which contains a Base64
encoded image source of the current model on the canvas. This link can be shared to team
members or other parties and embedded in any HTML content or email that allows HTML con-
tent embedding.

» Share process PDF - generates a stand-alone HTML object tag which contains a Base64 en-
coded PDF source of the current model on the canvas. This can similarly be shared and em-
bedded in any HTML content.

» Download process PNG - generates a PNG image of the current process on the drawing board
which users can download and share.

» Download process PDF - generates a PDF of the current process on the drawing board which
can be downloaded and shared.

* View Process Sources - displays the current process sources in various formats, namely
BPMN2, JSON, SVG, and ERDF. Also has the option to download the BPMN2 sources.

269

Designer

L

at

Process Sources *
N Download BPMN2

BPMMN2 | 150N SVG ERDF

<?xml version="1.0" encoding="UTF-8"7>

<bpmnZ:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlne="http://www.omng.org/bpmn20" xxmlns:bprmn2="http://www.omg.org/epec/BPMN

f20100524/MOBEL" xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DT"

xmlne:bpesim="http://www.bpeim.org/schemas/1.0" xmlns:de="http:/ www.omg.org

fepec/DD/S20100524/DC" xmlns:di="http:/ www.omg.org/epec,/DD/20100524/DT"

xmlne:drools="http: //www.jboss.org/drools” id="_mkwvkU3I0Ee0Aa5-T5_CVl1w"

xsi:echemalocation="http:/ / www.omg.org/spec/BPMN,/20100524 /MODEL BPMN20.xsd

http: /S fwww.jboss.org/drools drools.xsd http://www.bpsim.org/schemas/1.0

bpsim.xsd” expressionlanguage="http://www.mvel.org/2.0"

targetNamespace="http:/ www.omg.org/bpmn20" typeLanguage="http://www. java.com

fjavaTypes">
<bpmn2:itemDefinition id="_employeeltem" structureRef="java.lang.String"/>
<bpmn2:itemDefinition id="_reasonItem” structureRef="java.lang.String"/=
<bpmn2:itemDefinition id="_performanceltem” structureRef="java.lang.String"/>
<bpmn2:itemDefinition id="_ &063D302-9DBLl-4CBE-920B-

E80BA4537702_reasonInputItem” structureRef="Object"/>
<bpmn2:itembDefinition id="_Gﬂ'E3D3ﬂ2—9|:|31—4|:35—92ﬂ5—

E808A45377C2_CommentInputItem” structureRef="0Object"/>
<bpmn2:itembDefinition id="__ 6063D302-9081-4CEE-920B-

E808A45377C2_SkippableInputIitem" structureRef="Object'/ /=
<bpmn2:itemDefinition id="__ 6063D302-9D081-4C86-920B-

EB0BA45377C2_performancefutputItem” structureRef="0bject"/=
<bpmn2:itembDefinition id="_AE SBFODC-BT20-4FDE-

%499-5EDBID41FBLA reasonInputItem" structureRef="Object'/=
<bpmn2:itembDefinition id="_Aﬂ SBEFODC-BT20-4FDE-

9499-5EDBID41FELA performancelnputltem” structureRef="Object"/>
<bpmn2:itembDefinition id="__ AESBFODC-BT20-4FDE-

$499-SEDEID41FBlA CommentInputItem” structureRef="0Object"/=
<bpmn2:itemDefinition id="__ ARSBFODC-BT720-4FDE-

$499-5EDBID41FBlA SkippableInputItem" structureRef="Object" />
<bpmnl:itembDefinition id="_A.E SBFODC-BT20-4FDE-

$499-5EDEID41FBLA GroupldInputItem” structureRef="0Object"/=
<bpmn2:itembDefinition id="_8 8233779-B395-4B8C—

BOB6-9EF4369B426C_reasonInputItem” structureRef="Object"/=
<hpmn?:itemDefinition id="_8 8233779-B395-4B8C-

ROBE-9EF4369B426C performanceInputItem” structureRef="Object"/>
<bpmn2:itemDefinition id="__ 8§233779-B395-4B8C-

ROB6-FEF4369B426C_CommentInputItem” structureRef="0bject"/=
<bpmnl:itembDefinition id="_8 8233779-B395-4B8C—

ROB6-9EF4369B426C_SkippableInputItem" structureRef="Object"/>
<bpmn?;itembDefinition id=" 88233779-B395-4BBC-

Figure 12.20. Process Sources View

(20) Extra tooling - this section allows users to import their existing BPMN2 processes into designer
as well as be able to migrate their old jPDL based processes to BPMN2. For BPMN2 or JSON
imports users can choose to add the import ontop of the existing model on the drawing board or
choose to replace the current one with the import.

e v B 02
47 Import from BPMN2
47 Import from JSON

"E Migrate jPDL 3.2 to BPMN2

Figure 12.21. Extra tooling section

270

Designer

Import BPMN2
Select an BPMMZ file or type in the BPMN2 to import it!

File: Browse... | Mo file selected.

Import | | Close

Figure 12.22. Import existing BPMN2 panel

271

Designer

Migrate to BPMN2
1. Select a jPDL processdefinition.xml file {or type it in)

Definition | Browse... | No file selected.
file:

2. Select a jPDL gpd.xmil file {or type it in)

GPD file: Browse... | No file selected.

Migrate | |

Close

Figure 12.23. Process Migration panel

(21) Visual Validation - Designer includes over 100 validation checks and this list is growing. It
allows users to view validation issues in real-time as they are modelling their business process.
Users can enable visual validation, disable it, as well as view all validation issues at once. If Visual
Validation is turned on, Designer with set the shape border of shapes that do not pass validation
to red color. Users can then click on that particular shape to view the validation issues for that
particular shape only. Alternatively "View All Issues" present a combined list of all validation errors
currently found. Note that you do not have to periodically save your business process in order for
validation to update. It will do so on its own short intervals during modelling. Users can extend
the list of validation issues to include their own types of validation on certain elements of their
business model.

272

Designer

| ¢.'Ig' |_-] d:l-

Stop validating

View all issues

Figure 12.24. Visual Validation Toolbar

&

HRE Evaluation

’E%elf Ewvaluation + _I:*"‘
&

FM Evaluation

Figure 12.25. Shapes with validation errors displayed with red border

I—P‘—"HR Evaluation —+
- ~ - -

PN
—P» “—Sealf Evaluation

- - " o
A |
P “— PM Evaluation

Validation Suggestions *
Issue Type Description Shape ID
1 BPMNZ2 Mode has no outgeoing connections _C1A3EZ28

Figure 12.26. Single shape validation issues display

273

Designer

Validation Suggestions X
Issue Type Description Shape ID

1 BPMMNZ Process has no end node. evaluation

2 BPMMZ Node has no outgoing connections _C1A3E26

Figure 12.27. View all issues validation display

(22) Process Simulation - Business Process Simulation deals with statistical analysis of process
models over time. It's main goals include

» Pre-execution and post-execution optimization
» Reducing the risk of change in business processes
 Predict business process performance

« Foster continuous improvements of performance, quality and resource utilization of business
processes

Designer includes a powerful simulation engine which is based on jBPM and Drools and a graph-
ical user interface to view and interpret simulation results. In addition users are able to view all
process paths included in their current model on the drawing board. Designer Process Simulation
is based on the BPSim 1.0 specification. Details of Process Simulation capabilities in Designer
are can be found in its Simulation documentation chapter. Here we just give a brief overview of
all features it contains.

Bl O < | IR
Process Paths

k) Run Simulation

Figure 12.28. Simulation tooling section

When selecting Process Paths, the simulation engine find all possible paths in the business model.
Users can choose certain found paths and choose to display them. The chosen path is marked
with given colors as shown below.

274

Designer

)
“— HR Evaluation
L% A ;

-

Self Evaluation

PM Evaluation

Process Paths *

Select Process Paths and click "Show Path" to
display it

Display Color MNumber of Elements

1 L 11
2 1
| showPath || Close

Figure 12.29. View all issues validation display

When selecting "Run Simulation”, users have to enter in simulation runtime properties. These
include the number of instances of this business process to simulate and the interval time and
units. This interval is the time in-between consecutive simulation.

275

Designer

Run Process Simulation =
Mumber of instances: 100
Interval: &0
Interval units: minutes R
Run Simulation | | Close

Figure 12.30. Simulation runtime properties

Each shape on the drawing board includes Simulation properties (properties panel) where users
can set numerous simulation properties for that particular shape. More info on each of these
properties can be found in the Simulation chapter of the documentation. Designer pre-sets some
defaults for new processes, which allows business processes to be simulated by default without
any modifications of these properties. Note however that the results of the default settings may
not be optimal or targeted for the users particular needs.

=l Simulation Properties
Cost pertim... 10
Distribution ... normal
Processing t... 100
Staff availabi... 4
Standard De... 1
Working Hours 8.0

Figure 12.31. Simulation properties for shapes

Once the simulation runtime has completed, users are shown the simulation results in the "Simu-
lation Results" tab of Designer. The results default to the process results. Users can switch to re-

276

Designer

sults for each particular shape in their business process to see more specific detauls. In addition,
the results contain process paths simulation results for each path in the business process.

Process Modelling || Simulation Results

Simulation Info
Process Simulation Results (Evaluation) Process id: evaluation
Process name: Evaluation
Process version: 1
Execution Times Simulation start: Fri, 15 Nov 2013 09:42:18
Simulation end: Fri, 15 Now 2013 13:44:17
Num. of Executions: 50
1217 121.65 Interval 10 minutess
) 114.05 Simulation Graphs
110.0 106.28 = &9 Process
D Evaluation (evaluation)
100.0 L
=55 Process slements
90.0 T B HR Evaluation {_88233779-B395-4B8C-A086-9EF:
80.0 (_ﬂa Self Evaluation (_8063D302-9D81-4C85-9208-E6C
(p;\ PM Evaluation (_AESBFODC-B720-4FDE-8499-5E
® 100 T =& Paths
E 60.0 D ,:, Path 1 (Path-285480076)
= 1, Path 2 (Path2080477741)
50.0 L
40.0 e
30.0 T
200 T
10.0 L
op Max Execution Time Avg. Execution Time

Min Execution Time

iiness Process Metadata

Figure 12.32. Sample simulation results

Designer simulation presents the users with many different chart types. These include:

» Process results: Execution times, Activity instances, Total cost

 Human Task results: Execution times, Resource Utilization, Resource Cost

All other nodes: Execution times

* Process Paths: Path Execution
The below image shows a number of possible chart types users can view after process simulation
has completed.

277

Designer

Execution Times (min] Wait Tims (mie)
Max Min Average Max Wi Bueige

e 10.08 1766 1142 0 147

Aerage
0.00 10.00 20.00 384
Tirra {Frin)
Frocess eneculion limes during Simulation
1]
ma O Ml 1 .m
TS
W
I [T T0.00
! wn = E 6000
an | = 5000/ _L.,_,-—’_!—
wa ! 40 00 |
1] -i 30.00
80 s Ensniian Toma vy Antaainn Teve i 2000
e, B mbaee Timn
[STy P W [T ‘ﬂw'
[N e)
"! 50 100 mn

Figure 12.33. Types of simulation results charts

In addition to the chart results, Designer simulation also offers a full timeline display that includes
all details of what happened during simulation. This timeline allows users to navigate through each
event that happened during process simulation and select a particular node to display results at
that particular point in time.

278

Designer

A F @02
Procesas Simulation Results (Book Order Procesas)
Chart | Modsal

PROCESS EXECUTION TIMES
(E .78)
Mirn Execution Timé
'h‘I A;:nul Oircdass
Q Gl:n-:l.lnmlldﬂ éwm | Ol:h-cl.h-ll.-h
a
Y] ’ P MR il bkl - Mancal ety Mhas b Aeoailab

Figure 12.34. Simulation timeline

The simulation timeline can be switched to the Model view. This view displays the process model
with the currently selected node in the timeline highlighted. The highlighted node displays the
simulation results at that particular point in time of the simulation.

279

Designer

Process Simulation Results (Book Order Process)

§
s
g
g
g

o
B
3
B -
g
—ii= Cancel Order —.6
; 4T.08
o 3478
Man 8437
- A hreie
]) Check Awailab AMIM I_ Crechk Awslab

Figure 12.35. Simulation timeline model view

Path execution results shows a chart displaying the chosen path as well as path instance execution
details.

280

Designer

Path Instance Execution

@ Path- 1585664004 @ Other Paths

Figure 12.36. Path execution details

(23) Service Repository - this feature allows users to connect to an existing service tasks repos-
itory to install service tasks into their list of available shapes. Mode default of this can be found
in the Service Repository chapter of the documentation. Users have to enter the URL to the ex-
isting service repository and then can install the available service nodes by double-clicking on a
particular results row.

281

Designer

Service Repository Connection ®
hitp:/pecple.redhat.comfisurdile/repository Connect
Service Modes

Service Nodes. Double-click on a row to install.

ICOMN NAME EXPLANATION DOCUMENTAT... INPUT PARAMETERS RESULTS
u |PhoneSimulator link url

“ PircBot link message,sendio,channel
\f_\,-&’

SwitchYard Ser...

: Microsoft Acade. .. link title results

=

ServiceMame, ServiceOperationMame

=

=

VideoUploader videctitle videocategory, video

=

ﬁ Rewardsystem link amount,rewardtype, userid

Close

Figure 12.37. Service Repository installation view

(24) Full screen Modev - allows users to place the drawing board of Designer into full-screen
mode. This can help with better visualizing larger business processes without having to scroll.
Note that this feature is possible only if your browser has full screen mode capabilities. If it does
not designer will show a message stating this to the user.

282

Designer

Figure 12.38. Full Screen Mode

(25) Process Dictionary - Designer Dictionary Editor allows users to create their own dictionary
entries or harvest from process documentation or business requirement documents. Process Dic-
tionary entries can be used as auto-completion for shape names. This will be expanded in the
future versions to allow mapping of node patters to specific dictionary entries as well. Users can
add entries to the dictionary in the Dictioanry Editor or from the selected shapes directly.

283

Designer

Process Dictionary Editor
Add New Entry
Name Aliases Description
1 [customer
2 "user
3 "order
4 TEntry
5 Error

6 | PM

OO0

Extract Dictionary entries

From Documentation From File

Highlight text and click on "Add"
Add

This is the process documentation

Figure 12.39. Process Dictionary entry screen

Receive Claim

Figure 12.40. Addint to process dictionary from selected shape

(26, 27, 28, 29) Zooming - zooming allows users to zoom infout of the model, zoom in/out back
to the original setting as well as zoom the process model on the drawing board to fit the currently

dimensions of the drawing board.

284

Chapter 13. Forms

This chapter intends to describe in a simple ways all the steps required to create a process with
human tasks, generate and modify the forms for these tasks and execute them. It will provide initial
guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from
process variables and task definitions. These forms can be later be modified by using the form
editor. In runtime, forms will receive data from process variables, display it to the user and capture
his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task
in the process below.

o Create order ﬂ{‘

@

>

o

=4

E

w
a3
H
[+ F]
=
o
[+H]
.
x

= L

o

et

S R dministrat F/jz

eview by administr

E bv LTTY

£

E ki

= =

< £
(=N
<

7

Figure 13.1. Process example

This form must look like the following in execution:

285

Forms

New Task Refresh x i Deta||5 ‘Work Details | Assignments | | Comments

37 - Create order

Actlons

ﬂ \/ O\ Flease, enter all the required information. The instructions to perform this

task can be found here
o v Q

Purchase Crder Header

*Creation date *Customer

00-23-08 D@ | Red Hat

*Project

JBPM

Lines

Actions Description Amount Unit Price Amount
|

M & irhone 10 500 5000

M ¢ Andoidphone 10 400 4000

M & Laptop 3 800 2400

Add purchase line

TOTAL:
11400.0
*Description

1-20f2 MW W M MW

Core rrmalata

Figure 13.2. Process example

286

Forms

13.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a
simple type like 'String' or a complex type. These complex types can be defined by using the Data
Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po’ of type 'org.jopm.examples.purchases.PurchaseOrder’,
defined with the Data Modeler tool.

AdHoo

Executable
358 ordepl—
Glabs
J + ID
Editar for Varlable Definitions » Imper:
5 Pac - T
fadd Variable
Process Mar
MAme Stanaard Type Cussam Type . .
W L . O0Q. D
Oibjact arg bpm.asampks purchasss PurchaseOrdar (z
e 1
=1 2 | review_admin Eiring ,E
3 | review_coniroller Siring)
b eniat
4 | review_clo Sliing G - §
B | roviow_mansger Eiring G pelanguage .
B il
Base time unit
O | Canes

an

2

Figure 13.3. Process variable definition
This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which ones
will receive the response back from the form and establish the mappings. This is done by set-
ting the 'DatalnputSet’, 'DataOutputSet' and 'Assignments' properties for any human task. See
screenshots below for detalils.

287

Forms

Figure 13.4. Data input variable definition

Figure 13.5. Data output variable definition

288

Forms

Properties (User)

Name

3]

P
Fix purchase ordep—— d—‘
Editor for Data Assignments
|| Add Assignment
From Object Assignment Type To Object To Value
1| po is mapped to po_in

2 | po_out is mapped to po

5 Core Properties
Actors

Assignments

po-8gt;po_in,po_out->po

DatalnputSet
* DataQutputSet po

Groups
Name

Task Name

TaskType

= Extra Properties
I | Comment
Content
Created by
Documentati
Locale
Multiple Inst... false
Notifications
On Entry Act
On Exit Acti...

.
Priority

/

Reassignment

Figure 13.6. Variable mapping definition

13.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically
from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

=

E=R ESN IR
|:| Edit Process Form

Al 66 .=

-] Edit Task Ferm

|£| Generate all Forms

&

Fix purchase
order

Figure 13.7. Form automatic generation

s~ @~ 0

X

You can also click on the icon on top of task to open the form directly.

289

Forms

Figure 13.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-task-
form is defined in the same package as the process, then this form is used by the human task
engine to display and capture information from user.

Also, if a form named Processld-task form is created, it will be used as the initial form when starting
this process.

For example, for our process the following forms would be generated.

290

Forms

Explore * NewlItem - Tools =

Project Explorer

Business = Technical ==

Organizational Unit: 4 demo ~
Repository: []Purchases ~
Project: LJPurchases ~

Package: & <default> ~

BUSINESS PROCESSES

FORM DEFINITIONS

CreateOrder-taskform
FixOrder-taskform
Purchases.Purchases-taskform

ReviewAdministration-taskform

D enrisn e BNt acl-fim e

OTHERS
(® WoRK ITEM DEFINITIONS

Figure 13.9. Access to form edition

Forms

13.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that
are generated in the previous process, but also can be created manually.

13.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data
origins. This allow bind form fields with them, this relation it's linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is
validated and submitted, how the values will update the task outputs.

Form Modeler [CreateOrder-taskform.form]

E Form data origin_| =5 Add fields by origin =~ =51 Add fields by type | % Form properties

. Manage form data origins

Input Id:
List of data sources that will be bound to form fields.

Output Id:
Id Input Id Qutput Id Type Info

Render color: m po po_in po_out dataModelerEntry org.jopm.examples.purchases.PurchaseOrder
Dark Blue |

Type:
From data Model
From java Class
From Basic type
Info:

1
Add data holder

Figure 13.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are
automatically generated. You can have as many data origins as required, and can use a different
colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated
form have a field for each data origin bindable item (view FieldTypes) and this automatic fields
have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to
make easy view if the field is correctly bound and the data origin implied.

13.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different
levels of customization that will allow change it

13.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the
contextual menu of the field and select 'Move field'.

292

Save Delete x

Render color

Forms

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =57 Add fields by origin |~ =% Add fields by type = %5 Form properties

o e 100 1E0 200] O =20 400 450
gHTMLIabEl |' El""‘_lllllllll|I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I||I|I|I|I|
— Separator r 3 edescription(po)
= - =
£ Simple subform RE o
—_— , 3 ‘eheader (po)

Multiple subform E
o P } _q ‘There is no default farm
[Short text r é:ﬁ .@@%‘,{,.
D Long text r E '_'_I'_I]_e_[Mowve field form. :
R
[Float -~
[Decimal r r_

Figure 13.11. Move field option

This will display the different regions of the form where you can place it.

Form Modeler [CreateOrder-taskform.form]

= Form data origin |~ =5 Add fields by origin = =5 Add fields by type | 2= Form properties

Lo 50 100 150 200 250 300 350 400 450 500 [
I® HTML label 5
== Separator » = A
3 @ description(pa)
= o £
= Simple subform [EE
& Multiple subform ~ 7
[Short text r 13 @ header (po)
[Long text r : There Is no default form. -
17
[Float ~ g
[Decimal [2_' :o ines (po)
i 'There is no defaultfarm
l—l BI{!DECIITIE| r |:|—_

Figure 13.12. Destination areas to move the field
A field can be moved to the first or the last region with the contextual icons for that purpose.

13.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.

293

Forms

Form Modeler [CreateOrder-taskform.form]

= Form data origin | =% Add fields by origin =% Add fields by type | = Form properties

I 1T abel et B 0 B B B B B P PR O PR R0 R P
= Separaor I : e description (po)
& simple subform r 3_:
5 Muliplo sublorm ! E ;:;erzcii::c:p;?afault form.
O Shertlext r E elines (po)
D Long text r : There is no default form.
O Float I é:
O Decimal [2_:
[BigDecimal) 3;
[Biginteger I E_:
O Short r UE

; O Integer I ?
O Long integer I UE
B E-mail [E
B CheckBox I _:
I® Rich text r §E
Timestamp r 4_'
Short date S
& Link I 3_:

"3

Figure 13.13. Form properties have been added by default, but are not still
configured

» Add fields by origin: this tab allows you to add fields to the form based on the data origins
defined. These fields will have the correct configuration on the "Input binding expression" and
"Output binding expression" properties, so when the form is submitted, the fields values will be
stored in the corresponding Data Origin.

294

Forms

Form Modeler [HeaderForm.form]

=8 Add fields

100
Ll

= Form data origin | =] Add fields by origin

io 50
A B

=y
‘950
|

2 Form properties

250 200
L B

by type

1E0
P

200
Ll

250
P

400
Ll

4B
P

=
Ll

E0
P

E00
Ll

[EED
P

Fon
Ll

FE0
P

200
Ll

ER

B header

>
creationDate r
r
r

[customer
O project

o)

| =y ==u) =y =on) =ne| =on
TN TN TN AT IO T

EISFN

Figure 13.14. Add field by origin

» Add fields by type: this tab allows you to freely add fields to the form from the Field Types palette

on the Form Modeler. These fields won'

t be storing their values on any Data Origin until they

have a correct configuration on the "Input binding expression” and "Output binding expression"

properties.

Form Modeler [HeaderForm.form]

= Form data origin |~ =81 Add fields by origin

=51 Add fields by type

= Form properties

100

150

200

250 =00

250

400

SO0

S50

450 E00 =
TR A

I® HTML label [6--{°-|.|.....|5.°........
== Separator [:
& simple subform r 3_:
& Multiple subform r E
O Short text I E
[Long text r :
[Float r %:
O Decimal r 2_:
[BigDecimal I 3;
[Biginteger [g—:
O short I ”E
3 Integer) ?
" [Long integer [DE
&= E-mail o E
B CheckBox) _:
I® Rich text I §E
zz2| Timestamp) _‘

Figure 13.15. Add field by type

295

Forms

To see a complete list of the available field types go to Field types section.

Notice the data model 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder' is composed of

three properties.

» Simple: property of type text (description). We will adjust the view settings.

« Complex: property of type object (header).

« Complex: property of type array of objects (lines)

Now all these properties had to be configured.

13.3.2.3. Field configuration

Each field can be configured to enhance performance in the form. There are a group of common
properties, that we call ‘Generic field properties’ and a group of specific properties that depends

on the field type.

13.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 13.1.
Field type Can change the field type to other compatible
field types
Field Name Will be used as identifier in formulas calcula-
tion
Label The text that will be shown as field label

Error message

Label ccs class

Label css style

When something goes wrong with the field,
like validations,.. this message will be dis-
played

Allows enter a class css to apply in label visu-
alization

to enter directly the style to apply to the label.

Help text The text introduced is displayed as alt at-
tribute to help to the user in data introduction

Style class Allows enter a class css to apply in field visu-
alization

Css style to enter directly the style to apply to the label.

Read Only When this check is on, the field will be used

only for read

296

Forms

Input binding expression This expression defines the link between field

and process task input variable. It will be used
in runtime to set the field value with that task
input variable data.

Output binding expression This expression defines the link between field

and process task output variable. It will be
used in runtime to set that task output vari-
able.

13.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

» Short Text (java.lang.String)

» Compatible field type: Long text, E-mail, Rich text

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Show HTML: indicates whether the contents of the field is interpreted as HTML in show
mode.

Formula. to enter expressions that will be evaluated to set the field value. These expres-
sions are described in Formula & expression section .

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

Default Value formula. Expression to set the field default value.

* Long Text (java.lang.String)

» Compatible field type: Long text, E-mail, Rich text

» Specific properties

Size: input text length.

MaxLength: Maximum number of characters allowed.

297

Forms

* Required: Indicates if it's mandatory to fill this field.
« Height: The number or rows to show at text area.

« Formula. to enter expressions that will be evaluated to set the field value. These expres-
sions are described in Formula & expression section .

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

« Pattern. Allow introduce an expression to specify the validation of the field. In case that
the field value introduced hasn’t match the expression, and error is thrown and the error
message has to be shown.

« Default Value formula. Expression to set the field default value.
 Float (java.lang.Float)
» Specific properties
« Size: input text length.
¢ MaxLength: Maximum number of characters allowed.
« Required: Indicates if it's mandatory to fill this field.

« Formula. to enter expressions that will be evaluated to set the field value. These expres-
sions are described in Formula & expression section .

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section

e Pattern. Allow introduce an expression to specify how the Float value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/
api/java/text/DecimalFormat.html]

» Default Value formula. Expression to set the field default value.
» Decimal (java.lang.Double)
 Specific properties
 Size: input text length.
« MaxLength: Maximum number of characters allowed.

* Required: Indicates if it's mandatory to fill this field.

298

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Forms

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the Double value has to be
displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/
javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/
api/java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

» BigDecimal (java.math.BigDecimal)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

Pattern. Allow introduce an expression to specify how the BigDecimal value has
to be displayed. The pattern allowed is show in section pattern in http://
docs.oracle.com/javase/6/docs/api/javal/text/DecimalFormat.html [http://docs.oracle.com/
javase/6/docs/api/java/text/DecimalFormat.html]

Default Value formula. Expression to set the field default value.

 Big integer (java.math.BigInteger)

» Specific properties

Size: input text length.
MaxLength: Maximum number of characters allowed.
Required: Indicates if it's mandatory to fill this field.

Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

299

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Forms

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
 Short (java.lang.Short)
» Specific properties
« Size: input text length.
« MaxLength: Maximum number of characters allowed.
* Required: Indicates if it's mandatory to fill this field.

« Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

« Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
« Integer (java.lang.Integer)
» Specific properties
« Size: input text length.
« MaxLength: Maximum number of characters allowed.
* Required: Indicates if it's mandatory to fill this field.

« Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

* Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
« Long Integer (java.lang.Long)
» Specific properties
¢ Size: input text length.

« MaxLength: Maximum number of characters allowed.

300

Forms

* Required: Indicates if it's mandatory to fill this field.

e Formula. Used to enter expressions that will be evaluated to set the field value. These
expressions are described in Formula & expression section.

¢ Range value. A range formula allows you to let you specify the values that the user can
select from an specific field. These expressions are described in Formula & expression
section .

» Default Value formula. Expression to set the field default value.
* E-mail (java.lang.String)
» Compatible field type: Short text, Long text, Rich text
» Specific properties

 Size: input text length.

MaxLength: Maximum number of characters allowed.

Required: Indicates if it's mandatory to fill this field.

Default Value formula. Expression to set the field default value.
» Checkbox (java.lang.Boolean)
» Specific properties
* Required: Indicates if it's mandatory to fill this field.
« Default Value formula. Expression to set the field default value.
 Rich text: (java.lang.String)
» Compatible field type: Short text, Long text, E-mail
 Specific properties

« Size: input text length.

MaxLength: Maximum number of characters allowed.

L]

Required: Indicates if it's mandatory to fill this field.

Height: The number or rows to show at text area.

Default Value formula. Expression to set the field default value.
« Timestamp (java.util.Date)

» Compatible field type: Short date

301

Forms

» Specific properties
« Size: input text length.
* Required: Indicates if it's mandatory to fill this field.

« Formula. to enter expressions that will be evaluated to set the field value. These expres-
sions are described in Formula & expression section .

» Default Value formula. Expression to set the field default value.
« Short date (java.util.Date)
e Compatible field type: Timestamp
» Specific properties
« Size: input text length.
* Required: Indicates if it's mandatory to fill this field.

« Formula. to enter expressions that will be evaluated to set the field value. These expres-
sions are described in Formula & expression section .

» Default Value formula. Expression to set the field default value.
» Document (org.jopm.document.Document)
 Specific properties
* Required: Indicates if it's mandatory to fill this field.
« Simple subform (Object)
» For more details see sectionSimple Object (Subform field Type).
Specific properties

« Default form. Show the list of available forms to select what one will be displayed to show
the object.

» Multiple subform (Multiple Object)
» For more details see sectionArrays of objects.(Multiple subform field Type).
Specific properties

« Default form. Show the list of available forms to select what one will be displayed to show
the object when no other form is configured with an specific purpose.

« Preview form. If a form is specified, it will be used to show the item details
302

Forms

e Table form. If a form is specified, it will be used to show the table columns when the item
list is showed

* New item text. Text to show at New Item button

« Add item text. Text to show at Add Item button

¢ Cancel text. Text to show at Cancel button

« Allow remove Items. If this check is selected, the form allow remove items in table view.
« Allow edit items. If this check is selected, the form allow edit items in table view.
 Allow preview items. If this check is selected, the form allow preview items in table view.
 Hide creation button. Check to not show the creation button

» Expanded. If is checked, when a new item is being added, the field display the table with
the existing items and the creation form at same time

« Allow data enter in table mode. Allow modify data in table view directly.
13.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an
object array.

Once the field is added to the form, either automatically or manually, it must be configured so that
the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:
« The first thing to do is define how the contained object will be displayed. This is done creating
a form that represents the object.

* In case of the object array, you can define a form to show in preview(edition), or to show when
table is shown

Once the form to represent the object, the parent form has to be configured to use them in the
parent Subform or Multiple subform.

Below we will describe how the setup would be:
13.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and
embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create
a form to enter all the purchase order header data and link it from the parent task form.

303

Forms

We will follow the steps:

1. Create new form.

Create new

New resource

* Resource Name

[Heade rForm|

Guided Rule
Guided Rule Template
Guided Score Card

@ MNew Form

default://master@Purchases/Purchases/src/main/resources

© Ok

Figure 13.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.

304

Forms

Form Modeler [HeaderForm.form] Save | Delete |

= Form data origin_| =5 Add fields by origin =~ = Add fields by type = % Form properties

Id:

header Manage form data origins
Input id: . . .
List of dala sources that will be bound to form fields
header_in
Output Id:

header_out id Input Id Output id Type Infa Render color

Render color:
Dark Blue i

Ty
9 From data Model
From java Class
“From Basic type
Info:

org jopm p PurchaseOrder
org.joppm.examples.purchases.PurchaseOrderLine
org.jopm.examples purchases.PurchaseOrderHeader

Figure 13.17. Create new data origin

Form Modeler [HeaderFarm.form] Save || Delete | | %

= Form data origin_| =51 Add fields by origin = =¥ Add fields by type = % Form properties

Id:

Manage form data origins
Input Id:

List of dala sources that will be bound to form fields.
‘Qutput Id:

Id Input Id Output Id Type Info Render color
Render color: @ header header_in header_out dataModelerEntry org jopm.examples.purchases.PurchaseOrderHeader |]
Dark Blue |

Type:

: From data Model|
_'From java Class

From Basic type
Info:

Add data holder

Figure 13.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

305

Forms

Form Modeler [HeaderForm.form]

= Form data origin | 5] Add flelds by origin | =57 Add fields by type = %5 Form properties sk
o] [150 200 e 20 EE) 400 40 B =) 00 Bl 700 720 200 Jese
il B B B B B B B B B B G B P B B T B 1
creationDate [B
[customer - =
EE
O project I E
T4
[E
hE
IE
L
i
K
PE
IE
e
)
i
iE
[hE
EE
)
i
Fx
43

Figure 13.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move
them around.

Form Modeler [HeaderForm.form]

= Form data origin | S5 Add fields by origin_| =5 Add fields by type | 2= Form properties

0 |50 |100 |150 |200 |250 200 ZE0 400 4=0 a0 E0 E00 EED 700 750 200
v B B B B B s B e B e b e B B b B b bt B Bt e B e e 1 1 1

[

ecreationDate (header)

Dm

=)

wecustomer (header)

o

eproject (header)

s S|

=

Figure 13.20. All data origin fields added

4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default
form'.

306

Forms

Form Modeler [CreateOrder-taskform.form]

= Form data origin

% HTML label

I~

= Separator

r

S simple subform

I~

5 Muttiple subform

3 Short text

[0 Long text

3 Float

[Decimal

O3 BigDecimal

[Biginteger

[short

| O Integer

O3 Long integer

B E-mail

B CheckBox

I® Rich text

Timestamp

Short date

& Link

=571 Add fields by origin
i] |08 150 220 50 [z
= Bt B B B B G BY

=8 Add fleids by lype = Form properties

5

40
I

E:)
i

500

EE0 [
AT

sl e SRR ST 2SR S S ST

edescription (po)

@header (po)

There is no default form.
elines (po)

There is no defaultform

Figure 13.21. Configure the parent form

Save

€@ Properties (header (po))
Field type
Simple subform j
Field name:
po_header
Label:
header (po)
Errar message:

Label css class: Label css style:

Help text:
Style class:

Css siyle:

"I Required "] Disabled [Read only [Group with previous
Default form:

g

‘ FixOrder-taskiorm form

HeaderForm.form

Purchases.Purchases-taskiorm.form
ReviewAdministration-taskform.form
ReviewCFO-taskform.form
ReviewController-taskform.form
ReviewManager-taskiorm.farm

{

Cancel

This will insert the subform inside the parent form, and will be shown as below:

307

Delete

Forms

IE1LES U].f L:-rli:llrl =R MU TEUWD Dy Wy == IFLIITI pruperues
(o |5c| 100 150 200 2En 200 ZE0 400 450
ki IFH FE FE FE ' T T A T R A A T N N
0
4 edescription (po)
HE
......... l:l 7
1 weheaderpo)
--------- 1__ creationDate (header)
_________ E Dm
91 customer (header)
......... i
E]
0
1 project (header)
......... 7 3
0
0
""""" 1 welines (pao)
z .
......... EE There is no default form.
?
0
......... |:|—_

Figure 13.22. Parent form visualization after subform configuration
13.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with
all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,
unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.

308

Forms

Create new

New resource

* Resource Name

Purchaselines|

Guided Rule
Guided Rule Template
Guided Score Card

@ New Form

default://master@Purchases/Purchases/src/mainresources

© Ok

Figure 13.23. Create new form

2. Create new data origin.

309

Forms

Form Modeler [PurchaseLines.form] Save | Delete X

= Form data origin_| =5 Add fields by origin | =5 Add fields by type = % Form properties

Id:

Manage form data origins
Input kd: . . .

List of data sources that will be bound to form fields
Output Id:

Id Input Id Output kd Type Info Render color
Render color: M ines lines_in lines_out datahodelerEntry org jopm.examples.purchases.PurchaseOrderLine |]
Dark Blue i |

Type:

From data Model

From java Class

From Basic type
Info:

1l
Add data holder

Figure 13.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one
by one or all of them at once.

Form Modeler [PurchaseLines.form]

= Form data origin | 251 Add fields by origin | =% Add fields by type = 5 Form properties
: 200

[amount [
[description [
O total [
[unitPrice [

Figure 13.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization

310

Forms

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate
automatically the total field. This formulas and expressions are described in Formula & expres-

sion section.

=51 Add fields by type = Z Form properties

I|I|I||]:0IU|I|I|I||]:5IU|I|I|I||2|UIU|I|I|I||2|5IU|I|I|I||3|UIU|I|I|I||3:5IU|Inlnlnl‘?qqlnlnlnl‘?slullnlnln|5|UIU|I|I|I|5|5I0|I|I|I||6|UIU|

on (lines) eunitPrice (linesmamount (linesetotal (lines)

Figure 13.26. Configuring formulas

€ Properties (total (lines))
Field type
Decimal j
Field name:
lines_total
Label:
total (lines)

Error message:

Label css class: Label css style:
Help text:
Style class: Css style:
Size:

5 (1]
Max length:

Required [Disabled [@#Read only
Formula:

=({lines_unitPrice}*{lines_amount}

Range value:

6. Finally, we save the lines form and go back to the parent form and configure all the lines prop-

erties.

311

Delete

Forms

-taskform.form] Save | | Delete
5 by origin =51 Add fields by type | % Form properties %] Properties (lines (po))
o [|00 Jt=0 2 & 200 £ 400 450] [EE0 J0n
e B B B S S B B I P B B IS
Field type
edescription (po)
e P Multiple subform j
Field name:
eheader (po) .
po_lines
creationDate (header)
=m Label:
lines (po)

customer (header)
Error message:

project (header)

Label css class: Label css style:
elines (po)
There is no default form. Help text:

Style class: Css style:

Required [Disabled ("1 Read only [Group with previous
Default form:

Purchaselines.form j

Preview form:

Purchaselines.form j
Table form:
{ PurchaseLines form j

Figure 13.27. Configure the parent form

13.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.
That Formula engine supports Java and XPATH expressions to access the form fields values.
Let's see some examples.

» Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by
default with the current date. To do that you should edit the field properties and set a Default
value formula like:

=new java. util.Date();

312

Forms

Form Modeler [PurchaseHeader.form]

= Form data origin

I8 HTML label

= Separator

B simple subform

B Multiple subform

I
I
I
I

[Short text

D Long text

O Float

O Decimal

= Add fields by origin

PO T OO OO TSPV OOV VOO OOV PO .

Save

Form properties € Properiies (header_creationDate)

[BigDecimal

O Biginteger

O short

O Integer

[Long integer

&= E-mail

B CheckBox

2 Rich text

Timestamp

Short date

@ “Creation date

@ Project

@ “Customer

Field type
Short date

Fleld name:
header_creationDate

Label:
Greation date

Default error message:

Label css class:

Help text:

Style class

Size:

12

@Required | Read only
Formula:

H

Label css style:

Css style:

Delete

Defauit value formula:

new Java.util.Date()

Lnput i

header/creationDate

Figure 13.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first
time the field will have the specified value.

00-04-13

*Creation date

1

*Customer

"Froject

Figure 13.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported

for the field.

Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using
XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,
%...) to operate with them or calls to Java Functions for more complex operations.

To start let's see how you can create a formula to calculate the line_total of a Purchase Order
Line. Look at the image below and look at the formula on the line_total properties.

313

Forms

Form Madeler [PurchaseLine.form] save | Delete
= Form data origin =~ S5 Add fields by origin = =5 Add fields by type = 2 Form properties o Properties (line_total)
e B 8 S B PR B B P T B B B P
LE Field type
9 e Description @ Amount @*Unit Price @ Total Amount
3 Decimal j
IE Field name:
line_total
14 Label:
bE|
Total Amount
| Default error message:
8
FE| Label css class: Label css style:
° [i]
bE Help text:
(1]
E Style class: Css style:
s 0
s Size: Max length
i 7 i)
— Required #Read only
E Formula:
' —{line_unitPrice}*{line_amount} -
53
L Range value:
= i}
3
E

Figure 13.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_anount}

we're forcing the Total of the line value to be the result of the the Unit price multiplied by the
Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount
field value is going to be calculated and filled with the operation result:

*Description *Amount *Unit Price Total Amount

3 1.45 4.35

Figure 13.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/ a_subformfield}

Look at the next image to see how it works:

314

Forms

Form Modeler [CreateOrder-taskform.form] Save | Delete
= Form dataorigin =& Add fields by origin _ =T Add fields by type | E Form properties €@ Properties (po_description)
jﬂ ‘EG 100 |\5" ‘Zfﬂ ‘le ‘3“0 ‘ 50 400 40 500 S50 600 650 |F[IC'
I# HTUL label ot B P P RO B B B B B B B B IR P
E Fleld type
== Separator [3 Please, enter all the required information. The instructions to perform this ng text j
= 1 task can be found here
&3 Simple subform I 5 Field name:
B Mutiple subform r 3 po_description
ePurchase Order Header .
[Short text ¢ Lavel
03
| *Creation date *Customer Description
O Long text E A
LE| 00-04-13 . Default error message:
O Float 33 .
4 "Project You must enter a description
[pecimal —]
Label css class: Label css style:
8
BigDecimal 04
Dy 1 eunes o
O Biginteger 7 Help text:
£3 Add purchase line
[Short E
O Integer - TOTAL: Style class: Css style:
73
E Li]
[Long integer 4 .e"Description
EE Size:
& E-mail 29
3 50 [i]
B CheckBox 4
- Height: Max length:
I Rion text 83 3 o
Timestamp = @Required | Read only
Short date i Formula:
ik ~"Customer: " + {po_header/header_customer} + * Project: " +
[{po_header/header_project) 0
Ix I
EE|
£3
1 -

Figure 13.32.

This form has a subform field called po_header that is showing a form with the fields
header_creationDate, header_customer and header_project. We want the Description field on
our parent form to show some information from the header. Look at the Description field prop-
erties formula.

="Cust oner: + {po_header/ header _custoner} + Proj ect: + {po_header/ header _project}

This formula returns a text when the fields header_customer and header_projects are filled on
the child form, so from now the parent form will be filled like this:

315

Forms

Please, enter all the reguired information. The instructions to perform this

task can be found here

Purchase Crder Header

*Creation date *Customer
00-04-13 Dm John R.
*Project

Form Modeler Documentation

Add purchase line

Lines

TOTAL:
0.0

*Description

Customer: John R. Project: Form Modeler Documentation

Figure 13.33.

Ok, you've seen how to create formulas that access to a subform fields values, now we are
going to see how to work with values stored in Multiple Subforms. Imagine that we have a
Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we
want to calculate the total amount of the lines created. Look at the image below and how the
TOTAL field is configured.

316

Forms

Form Modeler [CreateOrder-taskform.form]

= Form data origin

I8 HTWL label

S5 Add fields by origin |_ =1 Add fields by type

r

= Separator

r

& simple subform

B Multiple subform

O Short text

D Long text

) Fioat

O Decimal

O BigDecimal

O Biginteger

O short

O Integer

Form properties
Please, enter all the required information. The instructions te perform this

task can be found here

Purchase Order Header

*Creation date *Customer
00-04-13 m

*Project

Lines

TOTAL:

*Deseription

O Long integer

&3 E-mail

@ CheckBox

® Rich text

Timestamp

Short date

Figure 13.34.

Save | Delete

@ Properties (121118573)

Field type
Short text |
Field name:
121118573
Label:
TOTAL:

Default error message:

Label css class: Label css style:

pacding-left:300pxfont-weigntn | €3

Help text:
Style class: Css style:
pacding-left:300px; [i]
Size: Max length
Li]
Bequired ™ Read on) how HTM|) Password
Formula
— (sum(po_lines/line_total)}
Li/
Range value:
Li]

On the formula expression: ={sum(po_lines/line_total)} we are using the XPATH function
sum() that is going to summarize the totals of all the lines. So after creating some Lines the
form will look like this:

317

Forms

Please, enter all the required information. The instructions to perform this
task can be found here

Purchase Order Header

*Creation date *Customer

00-04-07 0

*Project

Lines

Actions Lines Lines Lines Lines
@ ¢ FormModeler guide 3 3575 107.25
M & Labtop 1 7855 7B5S5

Add purchase line

TOTAL:
892.75

*Description

Figure 13.35.

Note that the line_total child field corresponds with the field line_total field on then form selected
as a Default Form selected on the Lines field configuration.

318

Forms

On this sample we are using the sum() XPATH function to calculate the total of the Purchase
Order, but XPATH provides a lot of possibilities to select values from a set of children and also
a lot functions to summarize values (sum, count, avg...). For more information about XPATH
you can take a look at http://www.w3schools.com/xpath/

Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an spe-
cific field, showing it like a select box. It can be used on all simple types except Dates and
Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Timestamp

Shortdate

*Review status

Form Modeler [ReviewAdministration-taskform.form] Save || Delete
= Form data origin =~ S8 Add fields by origin _ =5 Add flelds bytype %= Form properties © Properties (review)

® LTV label A% B 1 R R B R B B B B P PR R R
= abel 5 Field type
= Separator [~ 3 Please, review and approve or reject order. —— g
S simple subform r
T e .03 eHeader Fleld name:
& Multiple subform r 3 review

1 Creation date *Customer

E| Label:
O Shorttext ™ 83 [oooa3
3 Long text IR Review stalus
it T ——
[Decimal [B

73 ebines Label css class Label css style:
O BigDecimal I~ 93 @Description
O Biginteger = Help text:
[Short N
O Integer ~ 34 Style class: Css style:
O Long integer o
@ E-mall I g_: Review status Size: Max length:
@ Chaokaox ~ 9 F‘Ieas.e:;ptfarva!ymlheraHawmg options i
o ——rE ’ @Required [Readonly [7ShowHTML [Password
2 Rich text r 83 * Reject o v

® Request modification Formula
T
T

|

Range value:

(approve Approve orderreject Reject ordermodifications, Request
Modifications)

Paitern

=

Figure 13.36. Setting default value formula

As you can see that field is being shown as a select box and it has a range formula that specifies
the values like this:

{approve, Approve order;reject, Reject order; nodifications, Request Mdifications}

This expression is defining 3 duos of value/"text to show” separated with the character ‘,” and
each of this duos is separated from each other other with the ‘;’ character. So due this formula
the resulting select box will show:

Table 13.2.

Value stored in input Text shown on Select Box

approve Approve order

319

http://www.w3schools.com/xpath/

Forms

‘ Value stored in input Text shown on Select Box
‘ reject Reject order
‘ modifications Request Modifications

13.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the HTML that is dis-
played. The form modeler provides the ability to edit the HTML directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form
layout' option and save.

Now the form is displayed with the custom HTML. To access this HTML editing, we click on the
icon 'Edit'

The HTML editor is displayed; the HTML code will define how the form has to be shown. In this
editor the user can directly create the HTML i locate the fields and labels with the syntax described
below:

$field{fieldName} for field identified fieldName
$label{fieldName} for field identified fieldName label
These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form HTML creation.

* 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text
is added to HTML. These selects only show the form fields haven’t been added yet.

« 'Generate template based on'

This functionality generates the HTML using all fields (default, alignment fields or Not aligned)
depending on the selected value and overwrite the HTML.

13.3.3. Field types

There are three types of field types that you can use to model your form:

* Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The
supported Field types are:

320

Form

S

Table 13.3. Field types

Name Description Java Type Default on generat-
ed forms

Short Text Simple input to enter | java.lang.String yes
short texts.

Long Text Text area to enter java.lang.String no
long text.

Rich Text HTMLEditor to enter | java.lang.String no
formatted texts .

Email Simple input to enter | java.lang.String no
short text with email
pattern.

Float Input to enter short java.lang.Float yes
decimals.

Decimal Input to enter number | java.lang.Double yes
with decimals.

BigDecimal Input to enter big java.math.BigDecimal | yes
decimal numbers.

Biginteger Input to enter big in- | java.math.Biginteger | yes
tegers.

Short Input to enter short java.lang.Short yes
integers

Integer Input to enter inte- java.lang.Integer yes
gers.

Long Integer Input to enter long in- | java.lang.Long yes
tegers

Checkbox Checkbox to enter java.lang.Boolean yes
true/false values

Timestamp Input to enter date & | java.util.Date yes
time values

Short Date Input to enter date java.util.Date no
values.

Document File input to upload org.jopm.document.Dogreaent

« Complex types

documents.

321

Forms

These field types are made to deal with properties that are Java Objects instead of basic types.
These field types need extra forms to be created in order to show and write values onto the
specified Java Object/s

Table 13.4. Complex types

Name Description Java Type Default on generat-
ed forms
Simple subform Renders the a form, | java.lang.Object yes

it is used to deal with
1:1 relationships.

Multiple subform This field type is java.util.List yes
used to deal with 1:N
relationships. It al-
lows to create, edit
and delete a set child
Objects.Text area to
enter long text.

e Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They
can be used with aesthetic purpose

Table 13.5. Decorators

Name Description

HTML label Allows the user to create HTML code that
will be rendered in the form

Separator Renders an HTML separator

13.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any
type) on the form to look and behave totally different than the standard platform fields. On this
section we will take a look on how to create them and how to configure them.

13.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the
org.jopm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside
a JAR file that is placed on the Application Server classpath or inside the application WAR.

Lets take a look atorg.jopm.formModeler.core.fieldTypes.CustomFieldType:

322

Forms

package org.jbpm fornmvbdel er.core. fiel dTypes;

inport java.util.Local e;
inport java.util.Mp;

/-k-k
* Definition interface for customfields
*/
public interface CustonfFiel dType {
/**
* This method returns a text definition for the customtype. This text will be shown
* on the U to identify the CustonFiel dType
* @aram |l ocale The current user |locale
* @eturn A String that describes the field type on the specified |ocale.
*/
public String getDescription(Locale |ocale);

/**

* This nethod returns a string that contains the HTM. code that will be used to show
* the field value on screen

* @aram val ue The current field val ue

* @aram fiel dNane The field nane

* @ar am nanmespace The unique id for the rendered form it should be used to generate
* identifiers inside the HTM. code.

* @aramrequired Determines if the field is required or not

* @aramreadonly Determines if the field nmust be shown on read only node

* @aram parans A |ist of configuration parans that can be set on the field

* configuration screen

* @eturn The HTM. that will be used to show the field val ue

*/

public String get ShowHTM_(Obj ect value, String fieldNanme, String nanespace,
bool ean required, bool ean readonly, String... parans);

/**

* This nethod returns a String that contains the HTM. code that will show the input
* view of the field. That will be used to set the field val ue.

* @aram val ue The current field val ue

* @aram fiel dNane The field nane

* @ar am nanmespace The unique id for the rendered form it should be used to
* generate identifiers inside the HTM. code.

* @aramrequired Determines if the field is required or not

* @aramreadonly Determines if the field nmust be shown on read only node

* @aram parans A |ist of configuration parans that can be set on the field

* configuration screen

* @eturn The HTM. code that will be used to show the input view of the field.

*/

public String getlnput HTM.(Cbj ect value, String fieldNane, String nanespace,
bool ean required, bool ean readonly, String... parans);

/**

* This nethod is used to obtain the field value fromthe subnitted val ues.

* @aram request Paraneters A Map containing the request paranmeters for the

* subnmitted form

* @aramrequestFiles A Map containing the java.io.Files uploaded on the request

* @aram fiel dNane The field nane

* @ar am nanmespace The unique id for the rendered form it should be used to generate
* identifiers inside the HTM. code.

323

Forms

* previ ousVal ue The previous value of the current field

* required Determines if the field is required or not

* readonly Determnes if the field nust be shown on read only node

* parans A list of configuration parans that can be set on the field
* configuration screen

* The value of the field based on the subnmitted form val ues.

*/

public Object getValue(Map request Paranmeters, Map requestFiles, String fiel dNane,
String namespace, Object previousVal ue, bool ean required, bool ean readonly,
String... parans);

As you can see this Interface defines the methods that determines how the field has to be
shown on the screen for when the form is shown on insert(getinputHTML(...)) or readonly
(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed pa-
rameters from the request and to obtain the correct field value. Te returned value type must match
with the type of the field added on the form.

13.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on
the previous chapter, we have created a File Input type and we have it already installed on our
application. So now we are going to create a new form and add a Short Text property and turn it
into a File Input and edit the field properties changing the Field Type from Short text toCustom field.

Form Modeler [UsingCustomTypes-taskform]

= Formdataorigin =~ =5 Add fields by origin =% Add fields by type | 5 Form properties @ Properties (inputFile)
HTML label P OO . OO L FOVOPOL L TPV POV OO Co U - VUYL OO OO VOO - OV L - N
] - LK Field type
e 3 einpuiFils (inputFile) e E
& simple subtorm r~ =3 | short text
°3 Long text
B Multiple subform 3 E-malil
T {Rich text
O3 Short text 03 Custom field
= InputFile (InputFile)
D Long text E P iy
T4 Default eror message:
O Float x
O Decimal =
Label css class: Label css style:
8
[BigDecimal 07
O Biginteger X Help text:
O short 3
EE| Style class: Css style:
O Integer tE y! y
[Long integer 3
EE Size: Max length:
B E-mail £
3 Li]
B CheckBox E)
o Required (Read only []Show HTML [Password
I® Rich text 'E Formula:
Timestamp T’
Short date 0
LE Range value:
[E
=
E
B
E Pattem:

Figure 13.37. Changing a field type toCustom field

After changing the field type a new set of properties will appear:

324

Forms

€ Properties (inputFile)

Field type
Custom field j

Field name:
inputFile
Label:
inputFile (inputFile)

Custom field

M
First Parameter
Second Parameter
Third Parameter
Fourth Parameter

Fifth Parameter

~'Required [| Read only
Input binding expression:

Output binding expression:
inputFile

Figure 13.38. Custom field pro figuration form

325

Forms

Table 13.6. Custom field properties

First parameter

Property Description

Field type Can change the field type to other compatible
field types

Field Name Will be used as identifier in formulas calcula-
tion

Label The text that will be shown as field label

Custom field A list containing all the Custom Field Types

available on the platform

A String parameter that can be user to pass
custom configuration needed by the Custom
Field Type implementation

Second parameter

A String parameter that can be user to pass
custom configuration needed by the Custom
Field Type implementation

Third parameter

A String parameter that can be user to pass
custom configuration needed by the Custom
Field Type implementation

Fourth parameter

Fifth parameter

Required

A String parameter that can be user to pass
custom configuration needed by the Custom
Field Type implementation

A String parameter that can be user to pass
custom configuration needed by the Custom
Field Type implementation

Indicates if it's mandatory to fill this field.

Read Only

Input binding expression

Output binding expression

When this check is on, the field will be used
only for read

This expression defines the link between field
and process task input variable. It will be used
in runtime to set the field value with that task
input variable data.

This expression defines the link between field
and process task output variable. It will be
used in runtime to set that task output vari-
able.

So opening the Custom field select box we'll be able to select the File Input from the available

custom types:

326

Forms

€ Properties (inputFile)

Field type

Custom field j
Field name:

inputFile
Label:

inputFile (inputFile)

Custom field

Second Parameter
Third Parameter
Fourth Parameter
Fifth Parameter

"'Required | Read only
Input binding expression:

Output binding expression:
inputFile

. : Cancel
Figure 13.39. Available custom

327

Forms

After selecting the File Input type on the list and saving the field properties the form will look like:

AQQ TISIOS DY ONgin | ©$1 AQT NEIas DY lype FOrm properies

i E 100 150 200 250 300

r' I:|+-I|I|I|I|l el ol ol oy Do By BololulodolululodolyBaBolololalololululdsBsliluly
"""" . 1 einputFile (inputFile)
....... r —: Browse...
................... k

3

T
................... 0

™| -

Figure 13.40. Custom type display in a form

If we build a simple process and configure a Short text to be shown as the sampleFile Input, if
we build the project on runtime the field will behave uploading the chosen files to the server and
allowing the user to download it like this:

2 - EdIt File

in_inputFile (inputFile)

fhome/pefernan/Documents/| Browse...

Figure 13.41. Choosing the file to upload

328

Forms

2 - EdIt File

in_inputFile (inputFile)
[) Pianning - Jan 25.0dt (209.18 Kb) [

Browse...

Save Release

Figure 13.42. File uploaded, showing the download link

If we take a look at what's the process variable value, we'll see that is storing a String with the
file path stored in server.

Process Variables

Instance ID 2
Definition Id UsingCustomTypes
Definition Name UsingCustomTypes

Name Value Type Last Modification Actions

Refresh

x

inputFile Idocsie3cab773/b14d/4e19 String 22/10/2013 15:18 ®
18cd0/e61c539a8c06/inputFile/Planning
- Jan 25.0dt

Figure 13.43. Process variable storing custom type results

13.4. Document attachments

On this section we are going to describe step by step how to attach documents to your process
variables from your forms and how you can configure to store the uploaded documents anywhere
(File System, Data Base, Alfresco...) using the Pluggable Variable Persistence.

13.4.1. Process and forms configuration

To make your process manage documents you have to define your process variables as usual
using the Custom Type or g. j bpm docunent . Docunent . Each variable defined as Document will
be shown on the form as a FILE input.

329

Forms

Editor for Varnable Definitions

Add Variable
Mame Standard Type Custom Type
1 FdD[: ument FU bject r{:rg.jbprn.dn[: ument. Document @

ok || cance

Figure 13.44. Defining a document variable

When the process forms are genereated and a or g. j bpm docunent . Docunent variable si found
a File input will be placed on the form.

330

Forms

=5 Add fields by origin | =51 Add fields by type

@document (document)

.. | BFI:IWSE'___ | NI:I fllE E-ElE-I:tEd

-1
|| i

Figure 13.45. Form generated showing a org. j bpm docunent . Docunent input

Each time a document is uploaded using a form the Form Engine will generate an instance of
org. j bpm docurent . Docunent to be stored on the process variable.

13.4.2. Marshalling strategy and deployment configuration

In order to store the document using the Pluggable Variable Persistence you'll have to define your
Marshalling Strategy to manage the uploaded Documents. To start create a Maven project with
your favourite IDE and add the following dependencies:

<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>ki e-api</artifactld>
<ver si on>{versi on} </ ver si on>

</ dependency>

<dependency>
<groupl d>or g. j bpnx/ gr oupl d>
<artifact!d> bpm docunment</artifactld>
<ver si on>{versi on} </ ver si on>

</ dependency>

331

Forms

Once you did that is time to create your Marshalling Strategy, to do so you just have to create
a class implementing:

package org. ki e. api . marshal | i ng;
public interface CbjectMarshallingStrategy {
publ i c bool ean accept (Obj ect object);

public void wite(QbjectQutputStream os, Object object)
throws | OException;

public Cbject read(CbjectlnputStream os)
throws | OException, Cl assNot FoundExcepti on;

public byte[] marshal (Context context, CbjectQutputStream os, Object object)
throws | OException;

public Cbject unmarshal (Context context, CbjectlnputStreamis, byte[] object,
Cl assLoader cl assloader) throws | OException, C assNot FoundExcepti on;

public Context createContext();

The methods to implement are:

» public boolean accept(Object object): Determines if the given object can be marshalled by
the strategy

« byte[] marshal(Context context, ObjectOutputStream os, Object object): Marshals the
given object and returns the marshalled object as byte[]

« Object unmarshal(Context context, ObjectinputStream is, byte[] object, ClassLoader
classloader): Reads the object received as byte[] and returns the unmarshalled object

» void write(ObjectOutputStream os, Object object): Implement for backguards compatibil-
ity, it should do the same functionallity than byte[] marshal(Context context, ObjectOut-
putStream os, Object object)

« Object read(ObjectinputStream o0s): Implement for backguards compatibility, it should do the
same functionallity than Object unmarshal(Context context, ObjectinputStream is, byte[]
object, ClassLoader classloader)

You can see how the default DocumentMarshallingStrategy is implemented looking at

this link [https://github.com/droolsjbpm/jbpm/blob/master/jopm-document/src/main/java/org/jbpm/

document/marshalling/DocumentMarshallingStrategy.javal.

After creating your Marshalling Strategy and add it to your server classpath the only thing remain-
ing is to configure your project deployment descriptor add it to the marshalling strategies list. To

332

https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java
https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java
https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java

Forms

do it you just have to open the Kie-Workbench on your browser, open your project on the Author-
ing view and edit the kie-deployment-descriptor.xml file located on <your pr oj ect >/ sr ¢/ mai n/
r esour ces/ META- | NF and add your Marshalling Strategy to the <mar shal | i ng- st r at egi es> list
like this:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<depl oynent - descri pt or
xsi : schemaLocati on="http://ww. j boss. org/jbpm depl oynent - descri pt or. xsd"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schen®- i nst ance" >
<per si st ence- uni t >or g. j bpm domai n</ per si st ence- uni t >
<audi t - per si st ence- uni t >or g. j bpm domai n</ audi t - per si st ence- uni t >
<audi t - node>JPA</ audi t - rode>
<per si st ence- node>JPA</ per si st ence- node>
<runti ne-strategy>SI NGLETON</ runti ne- strat egy>
<mar shal | i ng- str at egi es>
<mar shal | i ng- strat egy>
<resol ver>refl ection</resol ver>
<identifier>
org. j bpm docunent . nar shal | i ng. Docunent Mar shal | i ngSt r at egy
</identifier>
</ mar shal | i ng- strat egy>
</ mar shal | i ng- strat egi es>
<event-|isteners/>
<t ask-event-1|isteners/>
<gl obal s/ >
<wor k-i tem handl ers/ >
<envi ronnent-entries/>
<configurations/>
<required-rol es/>
</ depl oynent - descri pt or >

Since this is done you're able to build your project and upload your documents on your process.

in_doc (document)

Browse... | Mo file selected.

Figure 13.46. File input before file is uploaded

333

Forms

in_doc (document)
“: Planning - Jan 25.0dt (209,18 Kb) [T

| Browse... IMnfiIe selected.

Figure 13.47. File input with an uploaded file

@ Note
On this example we are configuring the default Docunent Mar shal | i ngSt r at egy,
please use it for test and demo purposes.

13.5. Using forms on client applications

This chapter intends to describe how you can embed process forms and interact with them on
another webapp including the new Javascript API provided by the platform.

You can find the library inside the ki e- wh-*. war on the js file located onj s/j bpm f or ms-r est -
integration.js.

13.5.1. What does the API provides?

This JavaScript API tries to be a simple mechanism to use forms on remote applications allowing
to load the forms from different KIE Workbench instances, submit them, launch processes/tasks
and execute callback functions when the actions are done.

The basic methods are:

showStartProcessForm(hostUrl, deploymentld, processld, divlid, onsuccessCallback, on-
errorCallback): Makes a call to the REST endpoint to obtain the form URL and if it gets a valid
response will embed the process start form on the given div. The parameteres needed are:

» hostURL: the URL of the KIE Workbench instance that holds the deployments.
« deploymentld: the deployment identifier that contains the process to run.
 processld: the identifier of the process to run.

« divld: the identifier of the div that has to contain the form.

» onsuccessCallback (optional): a javascript function that will be executed if the form is going
to be rendered. This function will receive the server response as a parameter

334

Forms

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to render the form. This function will receive the server response as
a parameter

startProcess(divld, onsuccessCallback, onerrorCallback): Submits the form loaded on the
given div and starts the process. The parameteres needed are:

« divld: the identifier of the div that to contains the form.

« onsuccessCallback (optional): a javascript function that will be executed after the process
is started. This function will receive the server response as a parameter

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to start the process. This function will receive the server response as
a parameter

showTaskForm(hostUrl, taskld, divlid, onsuccessCallback, onerrorCallback): Makes a call
to the REST endpoint to obtain the form URL and if it gets a valid response will embed the task
form on the given div. The parameteres needed are:

hostURL.: the URL of the KIE Workbench instance that holds the deployments.
» taskld: the identifier of the task to show the form.
« divld: the identifier of the div that has to contain the form.

» onsuccessCallback (optional): a javascript function that will be executed if the form is going
to be rendered. This function will receive the server response as a parameter

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to render the form. This function will receive the server response as
a parameter

claimTask(divld, onsuccessCallback, onerrorCallback): Claims the task whose form is being
rendered

« divld: the identifier of the div that contains the form.

» onsuccessCallback (optional): a javascript function that will be executed after the task is
claimed. This function will receive the server response as a parameter

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to claim the task. This function will receive the server response as a
parameter

startTask(divld, onsuccessCallback, onerrorCallback): Starts the task whose form is being
rendered

« divld: the identifier of the div that contains the form.

335

Forms

» onsuccessCallback (optional): a javascript function that will be executed after the task is
started. This function will receive the server response as a parameter

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to start the task. This function will receive the server response as a
parameter

releaseTask(divld, onsuccessCallback, onerrorCallback): Releases the task whose form is
being rendered

« divld: the identifier of the div that contains the form.

» onsuccessCallback (optional): a javascript function that will be executed after the task is
released. This function will receive the server response as a parameter

 onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to release the task. This function will receive the server response as
a parameter

saveTask(divld, onsuccessCallback, onerrorCallback): Submits the form and saves the state
of the task whose form is being rendered

« divld: the identifier of the div that contains the form.

» onsuccessCallback (optional): a javascript function that will be executed after the task is
saved. This function will receive the server response as a parameter

» onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to save the task. This function will receive the server response as a
parameter

completeTask(divld, onsuccessCallback, onerrorCallback): Submits the form and completes
task whose form is being rendered

« divld: the identifier of the div that contains the form.

« onsuccessCallback (optional): a javascript function that will be executed after the task is
completed. This function will receive the server response as a parameter

« onerrorCallback (optional): a javascript function that will be executed if any error occurs
and it is impossible to complete the task. This function will receive the server response as
a parameter

clearContainer(divld): Cleans the div content and the related data stored on the component.

« divld: the identifier of the div that contains the form.

13.5.2. Sample usage

Now let's see an example how you can use the library to load the HR process form and start a new
process instance. We are going to define a HTML page that will contain very simple components:

336

Forms

« "Show Process Form" BUTTON: The button that is going to make a call to a showProcessForm()
function to embedd the process form.

* "myform" DIV: the div that will containt the form

» "Start Process" BUTTON: the button that will call the startProcess() function that submits the
form and start a new process instance. At the begining it will be hidden and only will be displayed
when the form is going to be rendered.

First we are look at the HTML code:

<head>
<script src="js/jbpmfornms-rest-integration.js"></script>
<scri pt>
var fornmsAPlI = new j BPMFor nsAPI () ;
</ script>
</ head>
<body>
<i nput type="button" id="showf ornButton"
val ue="Show Process Forn' onclick="showProcessForm)">
<p/>
<div id="nmyfornm style="border: solid black 1px; w dth: 500px; height: 200px;">
</div>
<p/>
<input type="button" id="startprocessButton"
styl e="di spl ay: none;" value="Start Process" onclick="startProcess()">
</ body>

Notice that in first place we have added the js library and created an instance of the BPMFormsAPI
object that will manage the form rendering.

Now let's see how the showProcessForm() function looks like:

function showProcessForm() {
var onsuccessCal | back = function(response) {

docunent . get El ement Byl d("showf ornButton").styl e.di splay = "none";
docunent . get El ement Byl d("start processButton").style.display = "bl ock";
}
var onerrorCallback = function(errorMessage) {
alert("Unable to load the form something wong happened: " + errorMessage);
formsAPI . cl ear Cont ai ner (" nyforni');
}
fornsAPI . showSt art ProcessForn{"http://I ocal host: 8080/ ki e-wb/", "org.jbpmHR 1.0", "hiring",
"myforni', onsuccessCall back, onerrorCall back);

}

As you can see, first we are defining the callback functions:

337

Forms

onsuccessCallback: This function is going to be called when the call to the REST endpoint and
the form is going to be rendered. On this example we simply hide the "Show Process Form" button
and show the "Start Process" button in order to allow to submit the form and start the process. This
function takes as a parameter the response of the REST call to inform the user that everything
gone well.

onerrorCallback: This function is going to be called if any error occurs (e.g. any communication
error with the REST endpoint or unexpected js errors) On this example we simply show an alert
showing the error message received and clear the "myform" DIV status.

Once we defined the callback function we proceed to call the
formsAPIl.showStartProcessForm(...) that is going make the REST call and embedd the form
inside the specified div. Notice that we are providing a bunch of information in order to load the
form, the URL where the KIE-Workbench is running (in this example "http://localhost:8080/kie-
wb/"), the deployment where the process is located ("org.jopm:HR:1.0"), the process id ("hiring"),
the DIV id that is going to contain the form ("myform") and the callback functions (onsuccessCall-
back and onerrorCallback).

Now let's take a look at the startProcess() that is the one that is going to submit the form and
start the process:

function startProcess() {
var onsuccessCal | back = function(response) {
docunent . get El ement Byl d("showf ornButton") . styl e.di splay = "bl ock";
docunent . get El ement Byl d(" st art processButton").style.display = "none";
f ornsAPI . cl ear Cont ai ner ("nyforni);
al ert (response);

}

var onerrorCall back = function(response) {
docunent . get El enent Byl d(" showf or nButton") . styl e. di splay = "bl ock";

docunent . get El ement Byl d("st art processButton").style.display = "none";
fornsAPI . cl ear Cont ai ner ("nyforni);
alert("Unable to start the process, sonething wong happened: " + response);

}

fornmsAPI . start Process("nyforni, onsuccessCall back, onerrorCall back);

}

As showProcessForm(), first we are defining the callback functions. Both are doing basically
the same:

* Show the "Show Process Form" button and hide the "Start Process" button to allow start another
process instance.

e Clear the "myform" DIV status

» Show an alert with the response notifying that the process has started well or if an error occured

338

Forms

Once that is done we just do the call to the formsAPI.startProcess(...) that will send a message
to the component that renders the form inside the "myform" DIV and will exectue the callback
functions when the action is done. Notice that we don't need the provide any other information
than the DIV that contains the form and optionally the callback functions.

With a simple code like this you'll be able to run process/task forms that are located on different
Kie-Workbench instances from any other application.

Show Process Form

Figure 13.48. Using forms on client applications I: Before showing the form

339

Forms

*Candidate Name

Pere

Start Process

Figure 13.49. Using forms on client applications Il: Showing the process
form

Process Id: 2 started!

Figure 13.50. Using forms on client applications Ill: After process started

340

Chapter 14. Runtime Management

14.1. Deployments

In version 5.x processes were stored in so called packages produced by Guvnor and next down-
loaded by jbpm console for execution using KnowledgeAgent. Alternatively one could drop their
process files (bpmn2 files) into a predefined directory that was scanned on the jbpm console start.
That was it. That enforces users to always use Guvnor when dynamic deployment was needed.
Although there is nothing wrong with it, actually that was recommended approach but not every-
time it was desired.

Version 6, on the other hand moves away from proprietary packages in favor of, well known and
mature, Apache Maven based packaging - known as knowledge archives - kjar. Processes, rules
etc (aka business assets) are now part of a simple jar file built and managed by Maven. Along the
business assets, java classes and other file types are stored in the jar file too. Moreover, as any
other maven artifact, kjar can have defined dependencies on other artifacts including other kjars.
What makes the kjar special when compared with regular jars is a single descriptor file kept inside
META-INF directory of the kjar - kmodule.xml. That descriptor allows to define:

» knowledge bases and their properties

knowledge sessions and their properties

work item handlers
* event listeners

By default, this descriptor is empty (just kmodule root element) and is considered as marker
file. Whenever a runtime component (such as jbpm console) is about to process kjar it looks up
kmodule.xml to build its runtime representation. In addition to kmodule.xml a deployment descrip-
tor (that provides fine graind control over deployment) is available (since 6.1).

14.1.1. Deployment descriptors

While kmodule is mainly targeting on knowledge base and knowledge session basic configura-
tion, deployment descriptors are considered more technical configuration. Following are the items
available for configuration via deployment descriptors:

 persistence unit name for runtime data

 persistence unit for audit data

 persistence mode (JPA or NONE)

audit mode (JPA, JMS, NONE)

341

Runtime Management

« runtime strategy (SINGLETON, PER_REQUEST, PER_PROCESS_INSTANCE)
« list of event listeners to be registered

« list of task event listeners to be registered

« list of work item handlers to be registered

« list of globals to be registered

« marshalling strategies to be registered (for pluggable variable persistence)

« required roles to be granted access to resources of the kjar

« additional configuration options of knowledge session

* additional environment entries for knowledge session

« list of fully qualified class names that shall be added to remote services support - JAXBContent
for marshal and unmarshal operations for custom types

Deployment descriptor is an xml file that is placed inside META-INF folder of the kjar, although it
is an optional file and deployments will succeed even when such descriptor is missing.

<depl oynent - descri pt or xsi:schemalLocation="http://ww. jboss. org/jbpmdepl oynent-descri ptor.xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance" >
<persi st ence- uni t >or g. j bpm donwi n</ per si st ence- uni t >
<audi t - per si st ence-uni t >or g.] bpm domai n</ audi t - per si st ence-uni t >
<audi t - nrode>JPA</ audi t - rode>
<per si st ence- nnde>JPA</ per si st ence- node>
<runti me- strat egy>PER_PROCESS_| NSTANCE</ r unt i ne- str at egy>
<mar shal | i ng- strat egi es/ >
<event-listeners/>
<t ask-event-1isteners/>
<gl obal s/ >
<wor k- it em handl ers/ >
<environment-entries/>
<configurations/>
<required-rol es/>
<r enot eabl e- cl asses/ >
</ depl oynent - descri pt or >

It provides more configuration options then the standard deployment has. Deployment descriptors
are used in hierarchical way meaning they can be placed on various levels of the system and
merged on runtime. jBPM supports following levels of deployment descriptors:

 server level - this is the main and considered default deployment descriptos that apply to all
deployments on given server

 kjar level - this is dedicated deployment descriptor to given kjar

342

Runtime Management

 deploy time level - this is deployment descriptor that is given at the time of deployment

Deployment descriptors on different levels are merged on deployment time where the master is
considered descriptor lower in the hierarchy and slave one that is higher in hierarchy. To give
an example, when a kjar is deployed and it contains deployment descriptor kjar's deployment
descriptor is considered slave and server level descriptor is considered master. With default merge
mode it will override all master entries with slave ones as long as they are not empty and combine
all collections.

Since kjar can have dependencies to other kjars, and in turn that dependencies might have de-
ployment descriptors as well, they will be placed in deployment descriptors hierarchy lower than
the actual kjar that is being deployed. With that said, this is how it will look like from hierarchy
point of view, starting with master (server level):

* server level

» dependency Kjar level

 Kjar level

That in default merging mode will result in deployment descriptor where with non empty values
from kjar's deployment descriptors and merged collection from all levels.

So far all merging was done with default mode, which is MERGE_COLLECTIONS but that's not
the only mode that is available:

KEEP_ALL - meaning that the master wins - all configuration defined in master will be retained

OVERRIDE_ALL - meaning that slave wins - all configuration defined in master will be retained

OVERRIDE_EMPTY - meaning all non empty configuration items from slave will replace those
in master, including collections

« MERGE_COLLECTIONS - meaning all non empty configuration items from slave will replace
those in master but collections will me merged (combined)

Tip

Deployment descriptos can be given as partial xml documents, meaning they do
not need to be complete set of all configuration items, e.g. if user would like to
override only the audit mode in kjar, it's enough to have following deployment de-
scriptor:

343

Runtime Management

Although it's worth noting that when using OVERRIDE_ALL merge mode all con-
figuration items should be specified since it will always use them and do not merge

with any other deployment descriptor in the hierarchy.

Default deployment descriptor

There is always default deployment descriptor available, even if it was not explicitly configured,
when running in jopm-console (kie-workbench) the default values are as follows:

* persistence-unit is set to org.jopm.domain

* audit-persistence-unit is set to org.jopm.domain
 persistence-mode is set to JPA

+ audit-mode is set to JPA

 runtime-strategy is set to SINGLETON

« all collection based configuration items are left empty

Default deployment descriptor can be altered by specifying valid URL location to an xml file that
will provide fully defined deployment descriptor. By fully defined we mean that all elements should
be specified as this deployment descriptor will become server level deployment descriptor.

- Dorg. ki e. depl oynent . desc. | ocati on=fil e:/ ny/custonf | ocati on/depl oyment -descri ptor.xmni

Collection configuration items

Deployment descriptor consists of collection based items (event listeners, work item handlers,
globals, etc) that usually require definition of an object that should be created on runtime. There
are two types of collection based configuration items:

344

Runtime Management

» object model - that is clear definition of the object to be built or looked up in available registry

« named object model - that is an extension to object model and allows to provide name of the
object which will be used to register object

Object model consits of:

« identifier - defines main information about the object, such as fully qualified class name, spring
bean id, mvel expression

« parameters - optional parameters that should be used while creating object instance from the
model

« resolver - identifier of the resolver that will be used to create object instances from the model
- (reflection, mvel, spring)

Table 14.1. Object models

Configuration item Type of collection items
event-listeners ObjectModel
task-event-listeners ObjectModel
marshalling-strategies ObjectModel
work-item-handlers NamedObjectModel
globals NamedObjectModel
environment-entries NamedObjectModel
configurations NamedObjectModel
required-roles String

Depending on resolver type, creation or look up of the object will be performed. The default (and
easiest) is reflection that will use both parameters and identifier (in this case is FQCN) to construct
the object. Parameters in this case can be String or another object model for representing other
types than String. Following is an example of an object model that will create an instance of
org.jbpm.test.CustomStrategy using reflection resolver that will use constructor of that class with
two String parameters. Note that String paramaters are created with different ways (using object
model - first param, directly by giving String - second param).

Example 14.1.

<mar shal | i ng- strat egy>
<resol ver>refl ection</resol ver>
<identifier>org.jbpmtest.Custonftrategy</identifier>
<par anet er s>

345

Runtime Management

<par aneter xsi:type="object Mdel ">
<resol ver>reflection</resol ver>
<identifier>java.lang. String</identifier>
<par anet er s>
<paraneter xsi:type="xs:string" xm ns:xs="http://ww. w3.org/ 2001/ XM_.Schena" >par aml</
par anet er >
</ par anet er s>
</ par anet er >
<paraneter xsi:type="xs:string" xmns:xs="http://wmv. w3.org/ 2001/ XM_.Schema" >par an</
par anet er >
</ par anet er s>
</ mar shal | i ng- strat egy>

Same can be done by using DeploymentDescriptor fluent API:

Il create i nstance of Depl oynent Descri pt or with def aul t persi stence uni t
naneDepl oynent Descri ptor descriptor = new DeploynentDescriptorlnpl("org.jbpmdomain");//
get builder and nodify the descriptordescriptor.getBuilder().addMarshalingStrategy(new

Obj ect Mbdel ("org. j bpm test Custonftrategy”, newObject[]{ new ObjectMdel ("java.lang.String",
new (bject[]{"paranml"}), "parank"}));

default persistence unit

nameDepl oynent Descri pt or descriptor = new Depl oynment Descriptorlnmpl ("org.jbpm domain");// get

bui | der and
nmodi fy the descriptordescriptor.getBuilder()
. addMar shal i ngSt r at egy(new Obj ect Model ("org. j bpm t est Cust onSt r at egy", new Object[]{
new

Reflection based object model resolver is the most verbose in case there are parameters involved
but there are few parameters that are available out of the box and do not need to be created, they
are simply referenced by name:

 entityManagerFactory (type of this parameter is javax.persistence.EntityManagerFactory)
« runtimeManager (type of this parameter is org.kie.api.runtime.manager.RuntimeManager)
» kieSession (type of this parameter is org.kie.api.KieServices)

« taskService (type of this parameter is org.kie.api.task.TaskService)

» executorService (type of this parameter is org.kie.internal.executor.api.ExecutorService)

So to be able to use one of these it's enough to reference them by name and make sure that
proper object type is used within your class:

<mar shal | i ng- strat egy>
<resol ver>refl ection</resol ver>

346

Runtime Management

<identifier>org.jbpmtest.Custonftrategy</identifier>
<par anet er s>
<par amet er Xsi :type="xs:string" xm ns: xs="http://ww. w3. or g/ 2001/
XMLSchema" >r unt i neManager </ par anet er >
</ par anet er s>
</ marshal | i ng- strat egy>

In case reflection based resolver is not enough, more advanced resolver can be used that utilizes
power of MVEL language. It's much easier in the configuration as it expects mvel expression as
identifier of the object model. It will provide the out of the box parameters (listed above: runtime
manager, kie session, etc) into the mvel context while evaluating expression. To define object
model with mvel resolver use following xml (that will be equivalent to replection based above):

<mar shal | i ng- strat egy>

<resol ver>nvel </ resol ver>

<identifier>new org.jbpmtest.Custonttrategy(runti meManager)</identifier>
</ marshal | i ng- strat egy>

Last but not least, there is Spring based resolver available as well that allows to simply look up
a bean by its identifier from spring application context. This resolver is not used in jopm console
(kie-workbench) as it does not use spring but whenever jBPM is used together with Spring it
might become handy when deploying kjars into the runtime. It's very simple definition in xml,
again equivalent to the other one assuming org.jbpm.test.CustomStrategy is registered in spring
application context under customStrategy id.

<mar shal | i ng- strat egy>
<resol ver >spri ng</resol ver >
<identifier>custonftrategy</identifier>
</ mar shal | i ng- strat egy>

Manage deployment descriptor

Deployment descriptor is created as soon as project is created. It does contins the most basic
deployment descriptor that is based on the default one. Meaning all settings present in default de-
ployment descriptor will be copied into the one placed in the project. Further changes can be done
directly in the xml content (in next versions more user friendly editor will most likely be provided).
It is accessible from Administration perspecitve as this is considered technical administration task
rather than business related activity.

347

Runtime Management

le Explorer Text Editor [kie-deployment-descriptorml |

TEEEER

PRGD

Restrict access to runtime engine

jbpm console (kie-workbench) provides access restriction to repositories that can be configured
with supplementary tool called kie-config-cli. This protects repositories in the authoring perspsec-
tive based on roles membership. Deployment descriptors moves this capability to the runtime
engine by ensuring that access to processes will be granted only to users that belong to groups
defined in the deployment descriptor as required roles. By default when project is created (at
the same time deployment descriptor is created as well) required roles are automatically filled in
based on repository restrictions. These roles can be still altered by editing deployment descriptor
via Administration perspective as presented in Manage deployment descriptor section.

Security is enforced on two levels:

« user interface - user will see only process definitions that are available for his/her roles

e runtime manager - each access to get RuntimeEngine out of RuntimeManager is pretected
based on the role membership, in case unauthorized access it attempted SecurityException
will be thrown

Required roles are defined as simple strings that should match actual roles defined in security
realm. Following is a xml snippet that shows definition of required roles in deployment descriptor:

<depl oynent - descri ptor>. .. <r equi r ed- r ol es> <r equi r ed- r ol e>experts</required-rol e>
</required-rol es>...</depl oynent - descri pt or>
nent -

descriptor>..
<required-rol es>
<requi red-r ol e>experts</required-rol e>

</ required-rol es>

In case fine grained control is required defined roles can be prefixed with one of the following to
control it on further level:

348

Runtime Management

e view:
to restrict access to be able to see given process definitions/instances on Ul
» executre:
to restrict access to be able to execute given process definitions
o all
applies to both view and execute restrictions and this is the default when no prefix is given.

For example to restrict access to show process from given kjar only to group 'management' but
still allow them to be executed by anyone (sort of system processes) one could define it as follows:

<depl oynent - descri pt or >

<requi red-rol es>
<r equi r ed- r ol e>vi ew. nanagenent </ r equi r ed-r ol e>
</required-rol es>

</ depl oynent - descri pt or >

Remote services support

When processes make use of custom types (or in general non promitive types) and there is a use
case to include remote api invocations (REST, SOAP, JMS) such types must be available to the
remote services marshalling mechanism that is based on JAXB for XML type. By default all types
defined in kjar will be automatically included in JAXB context and therefore will be avialble for
remote interaction. Though there might be more classes (like from dependent model) that shall
be included there too.

Upon deployment, jopm will scan classpath of given kjar to automatically register classes that
might be needed for remote interaction. This is done based on following rules:

« all classes included in kjar project itself

« all classes included as dependency of projects type kjar

« classes that are annotated with @XmlIRootElement (JAXB annotation) and included as regular
dependency of the kjar

* classes that are annotated with @Remotable (kie annotation) and included as regular depen-
dency of the kjar

If that is not enough deployment descriptor allows to manually specify classes that shall be added
to the JAXB context via remoteable-classes element:

349

Runtime Management

<r enot eabl e- cl asses>. .. <r enot abl e-cl ass>org. j bpm t est. Cust onCl ass</r enot abl e- cl ass>
<r enot abl e-cl ass>org. j bpm t est. Anot her Cust onCl ass</ r enpt abl e- cl ass>. .. </ renot eabl e- cl asses>

abl e-

classes>... <renotabl e-

cl ass>org. j bpm test. Cust onCl ass</renpot abl e-cl ass> <renot abl e-

cl ass>org.j bpm test. Anot her Cust onC ass</

renot abl e-cl ass>. . .

With this all classes can be added to the JAXB context to properly marshal and unmarshal data
types when interacting with jBPM remotely.

14.2. Deployment Units List

You can access to the Deployment Units List under the Runtime menu (TODO: fix image and
menu hame)

Deploy - Process M

Deployments
Jobs

The Deployment Unit list shows all the Deployment Units deployed into the platform that are al-
ready enabled to be used. Each deployment unit can contain multiple business processes and
business rules. By default the list is populated by Building and Deploying a KIE Module using the
Project Editor Screen. When you Build and Deploy a

Deployment Units New Deployment Unit | Refresh | % ¥
Deployment Group ID Artifact Version Kie Base Name Kie Session Name Runtime strategy Actiens
org jopm:Evaluation:1.0 org.jbpm Evaluation 10 DEFAULT DEFAULT SINGLETON @
org jopm:HR:1.0 org jopm HR 10 DEFAULT DEFAULT SINGLETON (%)

1202 M H M M

350

Runtime Management

You also have the option to deploy custom Deployment Units with other options different from the
defaults. When a KIE Project is deployed, by default the "DEFAULT" KIE Base and KIE Sessions
are used and the SINGLETON Strategy is used. You can select a different KIE Base and KIE
Session using the New Deployment Unit.

Deploy a New Unit

Group ID
Artifact

Version
KIE Configurations
Runtime strategy | Singleton j

Kie Base Name

Kie Session Name

Deploy Unit

14.3. Process Deployments

You can access to the Process Deployments List under the Deploy top level menu of the KIE
Workbench

The Deployed Unit list shows all the Process Deployed Units into the platform that are already
enabled to be used. Each deployment unit can contain multiple business processes and business
rules. In order to have your process and rules deployed and listed in this list, you need ot Build
and Deploy your KIE projects from the Authoring Perspective or via the Remote Endpoints. If your
processes and rules are in a KIE Project listed in this list and you have correspondent the rights
you should be able to see the process definitions in the Process Definitions Perspective.

From the Authoring Perspective (Build and Deploy), a default deployment will be performed, for
a more advanced deployments you can trigger a custom deployment with other options from this
screen.

351

Runtime Management

By clicking the New Deployment Unit (+) button you will be able to select a different KIE Base, KIE
Session, Strategy and Merge Mode for your deployment. By default the "DEFAULT" KIE Base
and KIE Sessions are used, the SINGLETON Strategy is selected and the Merge Mode is set to
"Merge Collection".

14.4. Jobs

TBD

352

Chapter 15. Process and Task
Management

15.1. Process Management

This chapter describes the screens related with the creation and management of process defini-
tions and process instances.

Once you have modelled and configured all the technical details to run a process definition your
process definition will appear in the Process Definitions List. Once you have the process in the
Process Definition List, you can start new instances of it. The following sections describes the
features provided by each of these screens. You can find these screens under the Process Man-
agement Menu, in the jBPM Console NG or in KIE Workbench.

You can find the source code for this module here: https://github.com/droolsjbpm/jbpm-con-
sole-ng/tree/master/jbpm-console-ng-process-runtime

Process Management ~

Process Definitions

Process Instances

15.1.1. Process Definitions

The process definition section is composed by two main screens: the Process Definition Lists and
the Process Definition Details.

15.1.1.1. The Process Definition List

The process definition list shows all the available process definitions that were deployed into
the platform. Look at the Deployments section for more information about how to check all the
deployment units available.

353

finitions

Process and Task Management

Re

Version

per

You can click in the list rows to access to the details of the process definition.

15.1.1.2. The Process Definition Details

The process definition details shows all the available information about the process definition. You
can consider this screen as a brief about the process model. You can quickly see if there is a
Sub Process associated with it, or how many users and groups are participating in the selected
definition.

354

1-20f 2

1

1

4

Process and Task Management

finitions Refresh | ® || 7
Version Actions

1 ®Q

per 1 @ Q
1-20f2 M H M WM

Details

Definition Id

Definition Name

Deployment

Human Tasks

Human Task Count

User and Groups

Sub Processes

Process Variables

Mew Instance

hiring

Hiring a Developer

org.jbpm:HR:1.0

Sign Contract
Create Proposal
Tech Interview
HR Interview

HR - Sign Contract

Accounting - Create Proposal

IT - Tech Interview
HR - HR Interview

Options ™

Re

Mo subproceses required by this

skills - String
twitter - String
mail - String

Notice that you can View the Process Model (Read Only mode) using the Options Menu in the
top bar. You can also look at all the process instances for the selected process definition by going

to Options -> View Process Instances.

15.1.1.3. Creating Process Instances

You can create new Process Instances from the Process Definition List or from the Process De-

finition Detail view.

355

Process and Task Management

Hiring a Developer

*Candidate Mame

When you want to create a Process Instance usually a Form will be presented to introduce the
information required by the process to be started. Once you complete the form and click into the
Start Process button, the instance will be created and the details of the Process Instance will be
displayed on top of the Process Definition Details.

15.2. Tasks

This chapter introduces the Task Management screens and the its integration with the Form
Modeller component to allow users to work on their assigned tasks. You can find the source
code of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-
console-ng-human-tasks [https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-con-
sole-ng-human-tasks] . At the end of this section you will find a technical description about how
to customize these views.

15.2.1. Task List

Every user with access to the platform will have access to its personal task list where tasks as-
signed to him/her will be displayed. Each user will be able to create its own personal tasks or work
on tasks that were create as a result of a business process execution.

You can access to the Task List under the Work main menu:

Work ~ Dashboards

Tasks List

356

https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks

Process and Task Management

15.2.1.1. Task List (Personal and Group Tasks)

Pending tasks can be displayed using different metaphors depending on what the user is inter-
ested on. We are currently providing two different views explained in the sections below: Grid

and Calendar View.

15.2.1.1.1. Task List (Grid View)

If you are interested in having a tabular view of all the pending tasks for a specific person or
group you can use the Grid View. The list will show all the pending tasks ordered by the columns
presented. You can change the default ordering clicking on the column header. In future version
more advanced filters will be provided and the search mechanism will be improved to look for task
internal data. This view offer a more traditional BPM Task List view.

MNew Task

Re

“alendar Active Personal
Priority Status Created On Due On Ac
to important Meeting 0 InProgress 04/10/2013 13:15 05/10/2013 13:15 ﬁ
onth Report 0 InProgress 04/10/2013 13:15 05/10/2013 13:14 E
y Check Stock 0 InProgress 04/10/2013 13:13 05/10/2013 13:12 ﬁ
re Invoice 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬁ
Customer 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬁ

1-50f5 |4

With this current version you can filter based on the tasks status:

« Active: all the Active tasks that user can work on. That means Personal and Group Tasks.
» Personal: all the personal tasks that already belong to the user.
» Group: all the group tasks that needs to be claimed by the user in order to start working on them.

 All: show all the tasks no matter the status. It will show completed tasks as well with the exception
of completed tasks that belongs to a process that is already finished. In such cases the tasks
are cleaned up after the process is completed and for that reason they will not be displayed.

357

Process and Task Management

15.2.1.1.2. Task List (Calendar View)

If you want a more time oriented view of your pending tasks you can use the Calendar View.
This view arrange the tasks based on the Task Due Date. You can switch between three different
ranges: Day, Week or Month.

The Day view shows all the tasks that Due Today. Notice that you can change the selected date
using the calendar or using the Next and Previous button. The Today button will be enabled when
you are in a different day than today, and when you click it it will return the selection to the current
date.

MNew Task | Re

alendar Wed, 09 October £3 4 Day Week Manth Active Personal

Call Customer

Approve Invoice

Weekly Check Stock

Write Month Report

Attend to Important Meeting

The Week view shows all the tasks pending for the current week. You can change the selected
week using the calendar or the Next and Previous button. If you click on the Today button, you
will be moved to the week the current week.

358

alendar

Process and Task Management

07 Oct- 13 Oct B8 1 | Today @ » Day Week Month
¥ Today Tue 8 (0) & Wed 9 (5) & Thu 10 (1) A Fri 11 (1)
‘ Call Customer ‘ Technical Interview ‘ ‘ After Office 06:00 PM

‘ Approve Invoice

‘ Weekly Check Stock

‘ Write Month Report

‘ Attend to Important...

The Month view shows all the tasks that due on the selected month. You can change the month
using the calendar or the Next and Previous button. If you click on the Today button the calendar

will show all the tasks that due in the current month.

¥ Sat 12 (0)

359

New Task | Re

Active = Personal

¥ Sun 13 (0)

Process and Task Management

Mew Task | Re
alendar October 13 @8 | ¢ | Today | Day Week Month _ Adive | Personal
% Mon 30 (0) ¥ Tue 1 (0) ¥ Wed 2 (0) % Thu 3 (0) % Fri 4 (0) % Sat 5 (D)
¥ Mon 7 (0) ¥ Today Tue 8 (0) I Call customer | % Wied 9 (5) . I Technical Interview & Thu 10 (1) . I After Office A Fri 11 (1) . ¥ Sat 12 (0)
I Approve [nvolce |
I Weekly Check Stock |
I Wirite Manth Benart |
¥ Mon 14 (0) ¥ Tue 15 (0) ¥ Wed 16 (0) ¥ Thu 17 (0) I Dog Tralning A Fri 18 (1) % Sat 19 (0)
¥ Mon 21 (0) ¥ Tue 22 (0) ¥ Wed 23 (0) ¥ Thu 24 (0) » Fri 25 (0) ¥ Sat 26 (0)
¥ Mon 28 (0) ¥ Tue 29 (0) ¥ Wed 30 (0) ¥ Thu 31 (0) ¥ Fri 1 (0) ¥ Sat 2 (D)

15.2.1.2. Task Details

You can access to the Task Details by clicking in a task row (in both Grid and Calendar Views).
The details associated with a task can be changed, like for example the Due Date, the Priority
or the task description.

360

Process and Task Management

New Task | Refresh B
alendar Active = Personal = Group = All
Priority Status Created On Due On Actions
to important 0 InProgress 04/10/2013 13:15 05/10/2013 13:15 a \/ Q
g
Wonth Report 0 InProgress 04/10/2013 13:15 05/10/2013 13:14 ﬂ q/ Q
y Check 0 InProgress 04/10/2013 13:13 05/10/2013 13:12 a v 4 Q
re Invoice 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬂ v 4 Q
Customer 0 InProgress 04/10/2013 13:12 05/10/2013 13:12 ﬂ v 4 Q
1-50f5 W H M M

Details Work Details Assignments

Details

Description Room A - Floor 17

Status InProgress

Due On 2013/10/05 13:15
Priority | 0 - High

User | katy

Process Context

Logs

Update

You can also view the Process Context for a specific task. If the task was created by a Business
Process, you will have access to see the Process Instance status that has created it.

361

Comr

Process and Task Management

Details Work | Details Assignments | Comments % | 7

9 - HR Interview

Details

Process Context

Process Instance Id 1

Process Definition Id hiring

Process Instance Details Process Instance Details

Logs

Update

Finally you can see the Task Log, which allows you to see all the operations that has been exe-
cuted on the task since its creation.

362

Process and Task Management

Details Work Details Assignments = Comments ® T

.........................

5 - Call Customer

Details

Process Context
Logs

Task Log

08/10/2013 08:57: Task - ADDED (katy)
08/10/2013 08:57: Task - STARTED (katy)
08/10/2013 09:59: Task - RELEASED ()

08/10/2013 09:59: Task - CLAIMED (katy)
08/10/2013 09:59: Task - STARTED (katy)

Lpdate

15.2.1.3. Work on a Task

Tasks can have associated a Form to store data. If tasks are part of a Business Process, usually
some data needs to be collected and propagated to the business process for further usage. For
that reason, tasks has to provide a way to gather and store data. Forms can be created for specific
tasks using the Form Modeller. If no form is provided a dynamic form will be created based on
the information that the task needs to handle. If a task is created as an ad-hoc task (not related
with any process) there will be no such information to generate a form and only basic actions will
be provided.

363

Process and Task Management

Details . Work | Details Assignments Comments

.....................

9 - HR Interview

Candidate Name
salaboy

Age
Ermail

Score

15.2.1.4. Task Assignments

You can Delegate tasks to different people when you are not able to work on them.

364

Process and Task Management

Details Work | Details Assignments | Comments »

5 - Call Customer

Details

Potential Owners [User:katy]

User or Group [53]3‘30?1

Delegate

15.2.1.5. Task Comments

You can add comments to your tasks to keep track of the progress or to keep information related
to the task. Notice that if you delegate the task other users can also add comments helping on

the collaboration to complete the task.

365

Process and Task Management

Details Work Details Assignments = Comments x | T

5 - Call Customer

Add Comment
Comment
Added By At Comment
katy 08/10/2013 09:56 Meed more @
information about
this customer
katy 08/10/2013 09:56 ask for product X @

15.2.2. New Task (Ad-Hoc Task)

As mentioned in the introduction a User can create their own tasks, which will not be associated
with any Business Process. These tasks can be used to keep track of your personal list of TO
DOs. You can also create tasks and assign them to different people in your team or group.

366

Process and Task Management

New Task

Task Name |Buy wife's Birthday Gift

Auto Assign ToMe [

Advanced
Due On | 07M10/2013 10:10
Priority O - High
Add User = Add Group

User | salaboy

367

Chapter 16. Business Activity
Monitoring

16.1. Overview

Imagine you are developing a BPM solution which mixes process with business data. Imagine
also you need some forms to be used within processes in order to let the users enter data. More-
over, you'll likely want to have some kind of dashboards to display metrics and key performance
indicators in order to quickly assess how your processes are doing. So far so good.

jBPM brings you all the ingredients you need to develop end-to-end business process solutions.
The jBPM's BAM module (also known as Dashboard Builder or just Dashbuilder) allows for com-
posing custom business dashboards mixing data coming from heterogeneous sources of infor-
mation. The module is now fully integrated into KIE workbench. A new specific section for dealing
with dashboards has been added and it can be accessed either from the home page or from the
menu bar, as shown in the next figure.

KIE Workbench

Dashboards =

Process & Task Dashboard a
Business Dashboards
The Knowledge Life Cycle
Authoring Deploy Process Tasks Dashboards
Project Authoring Deployments Management Tasks List Process & Task
Asset repository Jobs Process Definitions Dashboard
Administration Process Instances Business Dashboards

e A
o

The Business Knowledge to drive your company

Figure 16.1. BAM menu options in the KIE Workbench home page

In the figure, within the highlighted sections, there exists two options:

« Business Dashboards: This option is intended to give users access to the generic dashboard
tooling either to compose new dashboards or just to consume existing ones.

368

Business Activity Monitoring

* Process & Task Dashboard: It opens up the Process Dashboard perspective which contains
several performance indicators related to the jBPM execution engine.

16.2. Business Dashbhoards

BPM solutions are not only made up with processes, rules or forms but also with data belonging
to the customer business domain. Such data is handled in the forms, the rules and, of course, the
dashboards that are part of the solution. Usually, dashboards feed with data coming from several
sources of information, from business domain entities persisted into relational databases to data
hold in legacy systems. In order to cope with this kind of scenarios a generic highly customizable
dashboard tooling is needed.

It's obviously expected that a customer building a BPM solution want to track how its processes are
performing. To do so the customer need a monitoring and reporting tool. This is the main reason
why the Dashbuilder project has been included as a core module of the jBPM ecosystem. Notice
also that Dashbuilder, as an independent project, is not only used by jBPM but also by many other
projects like, for example, JBoss Teiid a data virtualization system that allows applications to use
data from multiple, heterogeneous data stores.

Note

Please, read the Dashbuilder book in order to get detailed information about how
to build custom dashboards.

An example of dashboard is the Sales Dashboard which comes built-in any installation of Dash-
builder. Two screenshots below:

369

Business Activity Monitoring

@ @ by Red Hat

English Espanol Deutsch Franca

gués Hasali shir

Conectado como demo

Home

Sample dashboards

Sales opportunities

- Pipeline analysis

- Sales report

Expense reports

ro_activo

I Country United Stat

Amount:

hasta
Closing date:
_ Seleccionar Closing date ¥
Pipeline:
- Seleccionar Ppeline - ¥
Status:
- Seleccionar Status - v
Customer:

- Seleccionar Customer - v

Product:
- Seleccionar Product - v

Sales person:
- Seleccionar Sales person ¥
Probability:

hasta

Source:
- Seleccionar Source - v

YO®

By Country: United States

Sample dashboards > Sales opportunities > By country

By customer

Company 5
Company 1 Company &

Company
Company 8
Company 2
mpany 3

Company

Company 7

By sales person

Jamie Gilbeau
Roxie Foraker

Jerri Preb)
Neva Hunger
athrine Janas
o Burdge
Nita Marli

Darryl Innes

("Sales evolution [Amount by status | List of opportunities |

By product

135,371.78
120,000.00
100,000.00

£ 80,000.00

3
5 60,000.00
40,000.00
20,000.00
0.00 ‘%

47,701.83
40,000.00

+30,000.00
5

g
E0,000.00

Sales evolution

September 2014 : 39,446.19

© 2013 JBoss Inc. Licensed under the Apache License, Version 2.0

@5ales evolution

Figure 16.2. Sales opportunities by country

370

Business Activity Monitoring

@ @ by Red Hat

English Espariol Deutsch Frangais Portugués

Hasal s Conectado como demo

Home

Sample dashboards

Sales opportunities

- Pipeline analysis

- Sales report

Expense reports

Filtro_activo

I Country United Stat

Amount:

hasta
Closing date:
_ Seleccionar Closing date ¥
Pipeline:
- Seleccionar Ppeline - ¥
Status:
- Seleccionar Status - v
Customer:

- Seleccionar Customer - v

Product:
- Seleccionar Product - v

Sales person:
- Seleccionar Sales person ¥

Probability:
hasta

Source:
- Seleccionar Source - v

YO®

By Country: United States

Sample dashboards > Sales opportunities > By country

By customer By sales person

pany 5 Jamie Gilbeau
Comparwl Company & Roxie Foraker

Company Jerri Preb|
Company 8 Neva Hunger

Company 2 athrine Janas

o Burdge

Nita Marli
Darryl Innes

Company 7

("Sales evolution [Amount by status | List of opportunities |

By product

135,371.78

120,000.00
100,000.00
£ 80,000.00

3
E 60,000.00
40,000.00
20,000.00

0.00 $

Sales evolution

September 2014 : 39,446.19

47,701.83
40,000.00

+30,000.00
5

g
E0,000.00

© 2013 JBoss Inc. Licensed under the Apache License, Version 2.0

@5ales evolution

Figure 16.3. Sales opportunities report table

16.3. Process Dashboard

The jBPM Process Dashboard is an specific use case of a dashboard feed from data coming
from a relational database via SQL queries. In this case, the database tables consumed are:
processinstancelog and bamtasksummary both belonging to the jBPM engine.

From the data provider perspective there exists 14 data providers in charge of retrieving the data
needed by all the key performance indicators of the jBPM Process Dashboard. These data pro-
vides are all defined in the Dashbuilder tooling data provider management screen.

371

Business Activity Monitoring

sch Frangais Portugués ! cgged-astoo Logout

@ @ by Red Hat

Home Data Providers

Sample dashboards Lol Administration = Data providers anrrys
Administration |+ Create new data provider |
External connections &8 & [Expense reports demo CSV File
Import and export 8 & M@ Sales dashboard demo CSV File
f§ & M@ jBPM Count Processes SQL Query
f§ & M@ jBPM Process By Status SQL Query
8 & M@ jBPM Process By Version SQL Query
f§ & @ jBPM Process Completed By Date SQL Query
f§ & M@ jBPM Process Duration SQL Query
§ B [jBPM Process Instances SQL Query
8 8 M@ jBPM Process Instances By User SQL Query
f§ & @@ jBPM Process Started By Date SQL Query
f§ & [jBPM Task Instances SQL Query
8 B M jBPM Tasks By Status SQL Query
f§ & [jBPM Tasks By User SQL Query
8 8 M@ jBPM Tasks Completed By Date SQL Query
f§ & [jBPM Tasks Duration SQL Query
f§ B M iBPM Tasks Started By Date SQL Query

Figure 16.4. jBPM Process Dashboard data providers

Below are the details of all the data providers used in the jBPM dashboard.

« jBPM Count Processes: Retrieves the total number of process instances per process and per
process status.

sel ect processnane,
ifnull (instances,0) total,
ifnull (instances_act,0) active,
ifnull (instances_conpl,0) conpleted,
ifnull (instances_pend, 0) pendi ng,
ifnull (instances_susp, 0) suspended,
ifnull (instances_abrt,0) aborted
from
(sel ect processinstanceid, processnane, count(*) as instances
from processi nst ancel og
where {sql _condition, optional, processname, processnanme}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstancei d, processnane) as total
left outer join

372

Business Activity Monitoring

(sel ect processinstanceid, count(*) as instances_act
from processi nstancel og
where status=1
and {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstanceid) as active
on (total.processinstancei d=acti ve. processi nst ancei d)
left outer join
(sel ect processinstanceid, count(*) as instances_conp
from processi nstancel og
where status=2
and {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstancei d) as conpl eted
on (total.processinstancei d=conpl et ed. processi nst ancei d)
left outer join
(sel ect processinstanceid, count(*) as instances_pend
from processi nstancel og
wher e status=0
and {sql _condition, optional, processnane, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstancei d) as pendi ng
on (total.processinstancei d=pendi ng. processi nst ancei d)
left outer join
(sel ect processinstanceid, count(*) as instances_susp
from processi nst ancel og
where status=4
and {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstancei d) as suspended
on (total.processinstancei d=suspended. processi nst ancei d)
left outer join
(sel ect processinstanceid, count(*) as instances_abrt
from processi nstancel og
where status=3
and {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processinstancei d) as aborted
on (total.processinstancei d=aborted. processi nstancei d)
order by processnane

« |BPM Process By Status: Retrieves the number of process instances grouped by status.

373

Business Activity Monitoring

sel ect status, count(processinstanceid)
from processi nstancel og
where status is not null and {sqgl_condition, optional, processnane, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by status

« jBPM Process By Version: Retrieves the number of process instances grouped by version.

sel ect processVersion, count(processinstanceid)
from processi nstancel og
where processVersion is not nul
and {sql _condition, optional, processnane, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processVersion

e jBPM Process Completed By Date: Retrieves the number of process instances completed
grouped by date.

sel ect end_date, count(processinstanceid)
from processi nst ancel og
where end_date is not nul
and {sql _condition, optional, processnanme, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by end_date
order by end_date asc

« jBPM Process Duration: Retrieves the number of instances and duration stats per process.

sel ect processnane, count(processinstanceid), mn(duration), avg(duration)
max(duration)

374

Business Activity Monitoring

from processi nstancel og
where {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processnane
order by processnane asc

« jBPM Process Instances: Retrieves the number of instances per process.

sel ect processnane, count(processinstanceid)
from processi nstancel og
where {sqgl _condition, optional, processnane, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by processnane
order by processnane asc

« jBPM Process Instances By User: Retrieves the number of process instances grouped by
the user who initiates.

sel ect user_identity userid, count(processinstanceid)
from processi nst ancel og
where user_identity is not nul
and {sql _condition, optional, processnane, processnane}
and {sql _condition, optional, user_identity, userid}
and {sql _condition, optional, status, status}
and {sql _condition, optional, start_date, start_date}
and {sql _condition, optional, end_date, end_date}
and {sql _condition, optional, processversion, processversion}
group by user_identity

« jBPM Process Started By Date: Retrieves the number of process instances started on given
date periods.

sel ect start_date, count(processinstanceid)

from processi nst ancel og

where start_date is not nul
and {sql _condition, optional, processname, processnane}
and {sql _condition, optional, user_identity, userid}

375

Business Activity Monitoring

and {sql _condition, optional, status, status}

and {sql _condition, optional, start_date, start_date}

and {sql _condition, optional, end_date, end_date}

and {sql _condition, optional, processversion, processversion}
group by start_date
order by start_date asc

« jBPM Task Instances: Retrieves the number of task instances per process.

sel ect ts.tasknane, count(ts.taskid) taskid
from bantasksunmary ts left join processinstancelog ps on
(ts.processinstancei d=ps. processi nst ancei d)
where {sql _condition, optional, ps.processnane, processnane}
and {sql _condition, optional, ps.status, status}
and {sql _condition, optional, ps.start_date, start_date}
and {sql _condition, optional, ps.end_date, end_date}
and {sql _condition, optional, ps.processversion, processversion}
and {sql _condition, optional, ts.userid, userid}
and {sql _condition, optional, ts.taskname, tasknane}
and {sql _condition, optional, ts.createddate, createddate}
and {sql _condition, optional, ts.enddate, enddate}
and {sql _condition, optional, ts.status, status}
group by ts.tasknane

« jBPM Tasks By Status: Retrieves the number of task instances grouped by status.

sel ect ts.status as taskstatus, count(ts.taskid)
from bantasksunmary ts left join processinstancelog ps on
(ts. processi nstancei d=ps. processi nst ancei d)
where {sql _condition, optional, ps.processnane, processnane}
and {sql _condition, optional, ps.status, status}
and {sql _condition, optional, ps.start_date, start_date}
and {sql _condition, optional, ps.end_date, end_date}
and {sql _condition, optional, ps.processversion, processversion}
and {sql _condition, optional, ts.userid, userid}
and {sql _condition, optional, ts.taskname, tasknane}
and {sql _condition, optional, ts.createddate, createddate}
and {sql _condition, optional, ts.enddate, enddate}
and {sql _condition, optional, ts.status, taskstatus}
group by ts.status

» jBPM Tasks By User: Retrieves the number of task instances grouped by the user who holds it.

select ts.userid, count(ts.taskid)
from bantasksunmary ts left join processinstancelog ps on
(ts. processi nstancei d=ps. processi nst ancei d)

376

Business Activity Monitoring

where ts.userid is not nul
and {sql _condition, optional, ps.processnane, processnane}
and {sql _condition, optional, ps.status, status}
and {sql _condition, optional, ps.start_date, start_date}
and {sql _condition, optional, ps.end_date, end_date}
and {sql _condition, optional, ps.processversion, processversion}
and {sql _condition, optional, ts.userid, userid}
and {sql _condition, optional, ts.taskname, tasknane}
and {sql _condition, optional, ts.createddate, createddate}
and {sql _condition, optional, ts.enddate, enddate}
and {sql _condition, optional, ts.status, taskstatus}

group by ts.userid

» jBPM Tasks Completed By Date: Retrieves the number of task instances completed grouped
by date.

sel ect ts.enddate, count(ts.taskid)
from bantasksunmary ts left join processinstancelog ps on
(ts. processinstancei d=ps. processi nst ancei d)
where ts.enddate is not nul
and {sql _condition, optional, ps.processnane, processnane}
and {sql _condition, optional, ps.status, status}
and {sql _condition, optional, ps.start_date, start_date}
and {sql _condition, optional, ps.end_date, end_date}
and {sql _condition, optional, ps.processversion, processversion}
and {sql _condition, optional, ts.userid, userid}
and {sql _condition, optional, ts.taskname, tasknane}
and {sql _condition, optional, ts.createddate, createddate}
and {sql _condition, optional, ts.enddate, enddate}
and {sql _condition, optional, ts.status, taskstatus}
group by ts.enddate
order by ts.enddate asc

» jBPM Tasks Duration: Retrieves the number of instances and duration stats per task.

select ts.taskname, count(ts.taskid), mnmin(ts.duration), avg(ts.duration)
max(ts. duration)
from bantasksummary ts left join processinstancelog ps on
(ts. processinstancei d=ps. processi nst ancei d)
where ts.duration is not nul

and {sql _condition, optional, ps.processnane, processnane}

and {sql _condition, optional, ps.status, status}

and {sql _condition, optional, ps.start_date, start_date}

and {sql _condition, optional, ps.end_date, end_date}

and {sql _condition, optional, ps.processversion, processversion}

and {sql _condition, optional, ts.userid, userid}

and {sql _condition, optional, ts.taskname, tasknane}

and {sql _condition, optional, ts.createddate, createddate}

and {sql _condition, optional, ts.enddate, enddate}

and {sql _condition, optional, ts.status, taskstatus}

377

Business Activity Monitoring

group by ts.tasknane
order by ts.tasknane asc

» jBPM Tasks Started By Date: Retrieves the number of task instances started on given date

periods.

sel ect ts.createddate,

wher e
and
and
and
and
and
and
and
and
and
and
and

group

order

As shown above, every SQL contains several {sgl_condition} clauses. These are needed in order
to support filtering on the data displayed by the dashboard. Every time the user issues a filter
request, the data providers feeding the KPIs react by re-executing their SQL with the proper filter

from

ts.createddate is not null

{sql _condi t
{sqgl _condit
{sqgl _condi t
{sql _condi t
{sql _condi t
{sql _condi t
{sql _condi t
{sql _condi t
{sql _condi t
{sqgl _condi t
{sqgl _condi t

on,
on,
on,
on,
on,
on,
on,
on,
on,
on,
on,

count (ts.taskid)
bant asksunmary ts
(ts. processinstancei d=ps. processi nst ancei d)

opti onal
opti onal
opti onal
opti onal
opti onal
opti onal
opti onal
opti onal
opti onal
opti onal
opti onal

by ts.createddate
by ts.createddate asc

ps.
ts

ps.
ps.
ps.
ps.
ts.
ts.
ts.
ts

ts

left join processinstancel og

processnane, processnane}

userid,
st at us,

useri d}
stat us}

start_date, start_date}
end_date, end_date}
processversi on, processversion}

userid,

useri d}

tasknane, tasknane}
creat eddat e, createddate}

enddat e
st at us,

enddat e}
t askst at us}

criteria. The {sqgl_condition} clauses not satisfied are just ignored.

ps

on

From the end user perspective, the jBPM Process Dashboard has been designed to consume the
data from the data providers defined above. It has been also designed has a panel fully integrated
into the KIE Workbench environment as shown in the next figure:

378

Business Activity Monitoring

Process Dashboard

Summary

Total tasks:

Total process instances:
- Completed:
- Active:
- Pending:
- Suspended:
- Aborted:

421
100
18

Process end date:
- Select Process end date - ¥

User or role:

- Select User or role - Leave Manag

v
Process start date:
- Select Process starl date ¥

Pracess:

- Select Process - ea e

v

YD®

Instances by process

o suppﬂﬁ‘mﬁmmgemem

Lead Managemesg®
\ Sales

Purchase

Logged as root | Logout

Instances started by user
Angel C. : 14

[‘ Number of task instances || Number of tasks per user‘m Tasks started by datem Tasks completed by data‘m Tasks duratiunm Tasks by statusw

Number of task instances

Figure 16.5. BPM Process Dashboard populated with data coming from

running process instances

The dashboard itself is composed by two views or pages:

* Global main view: containing metrics about all the processes.

Table 16.1. jBPM Process Dashboard: Global KPIs

Key Performance Indicator
Instances by process

Instances started by user

Data provider
jBPM Process Instances

jBPM Process Instances By User

Number of tasks per user

jBPM Tasks By User

Tasks started by date
Tasks completed by date
Tasks duration (average, min. and max.)

Tasks by status

jBPM Tasks Started By Date
jBPM Tasks Completed By Date
jBPM Tasks Duration

jBPM Tasks By Status

Process instances by status

jBPM Process Count

Process initiated by date
Process completed by date

Process duration (average, min. and max.)

jBPM Process Started By Date
jBPM Process Completed By DateSummary

jBPM Process Duration

379

English Espaiiol Deutsch Francais Portugués Hzssh S

Business Activity Monitoring

» Process detailed view: containing metrics about an specific process. To get into this view a
process must be selected from the global view. Once a process is selected, a drill-down request
is carried out by the system and the process specific view is set as the current screen.

Table 16.2. JBPM Process Dashboard: Process specific KPIs

Key Performance Indicator Data provider

Instances by status jBPM Process By Status

By version jBPM Process By Version

Users with tasks jBPM Tasks By User

Number of task instances jBPM Task Instances

Tasks started by date jBPM Task Started By Date
Tasks completed by date jBPM Tasks Completed By Date
Tasks duration (average, min. and max.) jBPM Tasks Duration

Process instances by status jBPM Process Count

Process initiated by date jBPM Process Started By Date
Process completed by date jBPM Process Completed By DateSummary
Process duration (average, min. and max.) | jBPM Process Duration

380

Chapter 17. Remote API

The workbench contains an execution server (for executing processes and tasks), which also
allows you to invoke various process and task related operations through a remote API. As a
result, you can setup your process engine "as a service" and integrate this into your applications
easily by doing remote requests and/or sending the necessary triggers to the execution server
whenever necessary (without the need to embed or manage this as part of your application).

Both a REST and JMS based service are available (which you can use directly), and a Java
remote client allows you to invoke these operations using the existing KieSession and TaskService
interfaces (you also use for local interaction), making remote integration as easy as if you were
interacting with a local process engine.

17.1. Remote Java API

The Remote Java API provides Ki eSessi on, TaskSer vi ce and Audi t Ser vi ce interfaces to the
JMS and REST APIs.

The interface implementations provided by the Remote Java API take care of the underlying logic
needed to communicate with the JMS or REST APIs. In other words, these implementations will
allow you to interact with a remote workbench instance (i.e. KIE workbench or the jBPM Console)
via known interfaces such as the Ki eSessi on or TaskSer vi ce interface, without having to deal
with the underlying transport and serialization details.

The Remote Java API provides clients, not "instances”

While the Ki eSessi on, TaskSer i vce and Audi t Ser vi ce instances provided by the
Remote Java APl may "look" and "feel" like local instances of the same interfaces,
please make sure to remember that these instances are only wrappers around a
REST or jMS client that interacts with a remote REST or JMS API.

This means that if a requested operation fails on the server, the Remote Java API
client instance on the client side will throw a Runt i meExcept i on indicating that the
REST call failed. This is different from the behaviour of a "real" (or local) instance of
a Ki eSessi on, TaskSeri vce and Audi t Ser vi ce instance because the exception
the local instances will throw will relate to how the operation failed. Also, while local
instances require different handling (such as having to dispose of a Ki eSessi on),
client instances provided by the Remote Java API hold no state and thus do not
require any special handling.

Lastly, operations on a Remote Java API client instance that would normally throw
other exceptions (such as the TaskServi ce. cl ai n(t askl d, user|d) operation
when called by a user who is not a potential owner), will now throw a Runt i neEx-
cept i on instead when the requested operation fails on the server.

381

Remote API

The first step in interacting with the remote runtime is to create either the Renot eRest Runt i ne-
Fact ory or Renot eJmsRunt i meEngi neFact ory, both of which are instances of the Renot eRun-
ti meEngi neFact ory interface.

The configuration for the Remote Java API is done when creating the Renot eRunt i neEngi ne-
Fact ory instance: there are a number of different constructors for both the JMS and REST im-
pelementations that allow the configuration of such things as the base URL of the REST API, IMS
gueue location or timeout while waiting for responses.

Once the factory instances have been created, there are a couple of methods that can then be
used to instantiate the client instance that you want to use:

Remote Java APl Methods

RemoteRuntimeEngine RemoteRuntimeEngineFactory.newRuntimeEngine()
This method instantiates a new RemoteRuntimeEngine (client) instance.

RemoteRuntimeEngineFactory.addExtraJaxbClasses(Collection<Class<?>> extraJaxb-
Classes)
This method adds extra classes to the classpath available to the serialization mechanisms.

When passing instances of user-defined classes in a Remote Java API call, it's important to
have added the classes via this method first so that the class instances can be serialized
correctly.

KieSession RemoteRuntimeEngine.getKieSession()
This method instantiates a new (client) KieSession instance.

TaskService RemoteRuntimeEngine.getTaskService()
This method instantiates a new (client) TaskService instance.

AuditService RemoteRuntimeEngine.getAuditService()
This method instantiates a new (client) AuditService instance.

17.1.1. The REST Remote Java RuntimeEngine Factory

@ Oops!
The Renot eRest Runt i meFact ory should indeed have been called the Renot eR-
est Runt i neEngi neFact ory! Sometimes it's the easiest mistakes which are the
hardest to catch. This will be corrected in future releases.

The Renpt eRest Runt i meFact ory has 4 constructor methods available. Besides an "everything"
constructor method which provides all of the options provided below, there are also the following
3 constructors:

382

Remote API

RemoteRestRuntimeFactory constructor method parameters

Simple constructor

Table 17.1. Simple RemoteRestRuntimeFactory constructor parameters

Name Type Description

depl oynent I d java.lang. String This is the name (id) of
the deployment the Run-
ti meEngi ne should interact
with.

baseUr | j ava. net. URL This is the URL of the de-
ployed jbpm-console, kie-wb
or BPMS instance.

For example:
http://127.0.0. 1: 8080/
j bpm consol e/

user nane java.lang. String This is the user name need-
ed to access the IMS
gueues.

passwor d java.lang. String This is the password needed

to access the JMS queues.

Constructor with timeout parameter

Table 17.2. RemoteRestRuntimeFactory constructor parameters with
(response message) timeout parameter

Name Type Description

depl oynent I d java.lang. String This is the name (id) of
the deployment the Run-
t i meEngi ne should interact
with.

baselr | java. net. URL This is the URL of the de-
ployed jbpm-console, kie-wb
or BPMS instance.

For example:
http://127.0.0. 1: 8080/

j bpm consol e/

user nane java.lang. String This is the user name need-
ed to access the REST API.

383

Remote API

Name

password

Type

java.lang. String

Description

This is the password needed
to access the REST API.

ti meout | nSeconds

i nt

This maximum number of
seconds to wait when waiting
for a response from the serv-
er.

Constructor with form-based authorization parameter

Table 17.3. RemoteRestRuntimeFactory constructor parameters with
form-based authorization parameter

Name

Type

Description

depl oyment | d

java.lang. String

This is the name (id) of

the deployment the Run-

ti meEngi ne should interact
with.

baseUr |

java. net. URL

This is the URL of the de-
ployed jbpm-console, kie-wb
or BPMS instance.

For example:
http://127.0.0. 1: 8080/
j bpm consol e/

user nane

password

useFor nBasedAut h

java.lang. String

java.lang. String

bool ean

This is the user name need-
ed to access the REST API.

This is the password needed
to access the REST API.

Whether or not to use form-
based authentication when
making a REST call. Form-
based authentication will
be necessary on tomcat in-
stances.

17.1.1.1. Example usage

The following example illustrates how the Remote Java API can be used with the REST API.

public void startProcessAndHandl eTaskVi aRest Renot eJavaAPl (URL instanceUrl, String depl oynen
tld, String user, String password) {
/1 the serverRestU |l should contain a URL simlar to "http://I|ocal host: 8080/ bpm consol e/ "

384

Remote API

/'l Setup the factory class with the necessarry information to comuni cate with the REST services
Renot eRunt i neEngi neFact ory rest Sessi onFactory
= new Renpt eRest Runt i neFact ory(depl oynentld, instanceUrl, user, password);

/] Create KieSession and TaskService instances and use them

Renot eRunt i neEngi ne engi ne = rest Sessi onFact ory. newRunt i meEngi ne() ;
Ki eSessi on ksession = engi ne. get Ki eSessi on();

TaskServi ce taskService = engi ne. get TaskService();

/1l Each opertion on a Ki eSession, TaskService or AuditService (client) instance
/'l sends a request for the operation to the server side and waits for the response
/1 1f something goes wong on the server side, the client will throw an exception.
Processl nstance processlnstance

= ksession. start Process("com burns. reactor. nai nt enance. cycle");
long procld = processlnstance. getld();

String taskUserld = user;
taskServi ce = engi ne. get TaskService();
Li st <TaskSunmary> tasks = taskServi ce. get TasksAssi gnedAsPot enti al Omer (user, "en-UK");

long taskld = -1;
for (TaskSummary task : tasks) {
if (task.getProcesslnstanceld() == procld) {
taskld = task.getld();

}
}
if (taskld == -1) {
throw new Il egal StateException("Unable to find task for " + user + " in process instance
" + procld);
}

taskService.start(taskld, taskUserld);

17.1.2. The JIMS Remote Java RuntimeEngine Factory

The Remote JMS Java RuntimeEngine works precisely the same as the REST variant, except
that it has different constructors.

The Renot eJmsRunt i meEngi neFact or y constructors can be grouped into 3 types. The list below
specifies the main arguments to each group type.

1. The URL of the execution server instance is given
2. The JMS remote access objects (such as the Connect i onFact ory and Queue) are given.
3. Aremote I ni ti al Cont ext instance (created using JNDI) from the server is given.

Configuration using the server URL. Configuration using only the URL of the server where
the jBPM Console or KIE Workbench instance is running, is the most straightforward. However,
this is only possible when the jBPM console or KIE Workbench instance is running on Wildfly or
JBoss AS, or JBoss EAP.

385

Remote API

The following table describes the parameters used when using an | ni ti al Cont ext to configure
a Renot eJnsRunt i meEngi neFact ory instance:

Table 17.4. RemoteJmsRuntimeFactory constructor arguments

Name Type Description

depl oyment I d java.lang. String This is the name (id) of the de-
ployment the Runt i meEngi ne
should interact with.

server URL j ava. net . URL This is the URL of the (JBoss)
server instance..

user nane java.lang. String This is the user name need-
ed to access the JMS queues
and JNDI InitialContext in-
stance.

passwor d java.lang. String This is the password need-
ed to access the JMS queues
and JNDI InitialContext in-
stance.

Configuration using an I nitial Context instance. When configuring the Renot eJnsRun-
ti meEngi neFact ory with an I ni ti al Cont ext instance as a parameter, it's necessary to retrieve
the (remote) I ni ti al Cont ext instance first from the remote server. The following code illustrates
how to do this.

Important

The code below illustrates how this can be done with a JBoss AS 7 or EAP 6 server
instance. Similar code is used in the constructor above.

However, regardless of which application server you use, it is necessary to in-
clude in your classpath the class specified as the | NI TI AL_CONTEXT_FACTORY (see
below). For JBoss AS 7 and EAP 6, the artifact (jar) containing this class is the
org. j boss: j boss-renot e- nanmi ng artifact (jar), version 1. 0. 5. Fi nal or higher.
Depending on the version of AS 7 or EAP 6 that you use, this version may vary.

If you are using a different application server, please see your specific applica-
tion server documentation for the parameters and artifacts necessary to create an
I ni tial Cont ext Fact ory instance or otherwise get a remote | ni ti al Cont ext in-
stance (via JNDI) from the application server instance.

public void startProcessAndTaskVi aJnsRenoteJavaAPl (String serverHostNane, String deploynen
tld, String user, String password) {

386

Remote API

/1 Setup renpte JMS runtime engine factory
Initial Context renotelnitial Context
= get Renot el ni ti al Cont ext (server Host Name, user, password);
int maxTi meout Secs = 5;
Renot eJnsRunt i neEngi neFact ory renoteJnsFactory
= new Renpt eJnsRunti neEngi neFact ory(depl oyment1d, renotelnitial Context, user, password, naxTi neout Secs);

/1 Interface with JVMS api

Runt i meEngi ne engi ne = renot eJnsFact ory. newRunt i meEngi ne() ;

Ki eSessi on ksession = engi ne. get Ki eSessi on();

Processl nstance processlnstance = ksession. startProcess("com burns.reactor. nmai nt enance. cycle");
long procld = processlnstance. getld();

TaskServi ce taskServi ce = engi ne. get TaskServi ce();

Li st <Long> tasks = taskService. get TasksByProcessl nstancel d(procld);
taskService.start(tasks.get(0), user);

private static Initial Context getRenotelnitial Context(String jbossServerHost Nane, String user, String password) {
/] Configure the (JBoss AS 7/ EAP 6) Initial ContextFactory
Properties initial Props = new Properties();
initial Props.setProperty(lnitial Context.|N Tl AL_CONTEXT_FACTORY, "org.|boss.nam ng.remote.client.|nitial Contextl
initial Props.setProperty(lnitial Context.PROVIDER URL, "renote://"+ jbossServerHost Nane + ":4447");
initial Props.setProperty(lnitial Context.SECURI TY_PRI NCI PAL, user);
initial Props. setProperty(lnitial Context.SECURI TY_CREDENTI ALS, password);

for (Object keyQbj : initialProps. keySet()) {
String key = (String) keyQbj;
System set Property(key, (String) initialProps.get(key));

/] Create the renpte Initial Context instance
try {

return new Initial Context(initialProps);
} catch (Nami ngException e) {

throw new Runti meException("Unable to create

+ I nitial Context.class. getSinmpleNane(), e);

The following table describes the parameters used when using an | ni ti al Cont ext to configure
a Renot eJnsRunt i meEngi neFact or y instance:

Table 17.5. RemoteJmsRuntimeFactory constructor arguments

Name Type Description

depl oynent I d java.lang. String This is the name (id) of the de-
ployment the Runt i meEngi ne
should interact with.

i ni tial Context j avax. nami ng. | ni ti al Cont ex@his is a remote I ni ti al Con-

t ext instance from which the

(j avax. j ms) Connect i onFac-
t ory and Queue instances can
be retrieved.

387

Remote API

Name Type Description

user nane java.lang. String This is the user name needed
to access the JMS queues.

passwor d java.lang. String This is the password needed

ti meout Seconds

int

to access the JMS queues.

This maximum number of sec-
onds to wait when waiting for
a response from the server.

Configuration using Connect i onFact ory and Queue instance parameters. Some users may
have direct access to a Connect i onFact ory and the Queue instances needed to interact with the
JMS APIL. In this case, they can use the Renot eJnmsRunt i meEngi neFact or y constructor that uses

the following arguments:

Table 17.6. RemoteJmsRuntimeEngineFactory constructor arguments

Name

depl oyment | d

connecti onFactory

ksessi onQueue

t askQueue

Type

java.lang. String

j avax. j ns. Connecti onFacto

j avax.j ms. Queue

j avax. j nms. Queue

Description

This is the name (id) of the de-
ployment the Runt i meEngi ne
should interact with.

Yhis is a Connect i onFac-

t ory instance used to con-
nect to the ksessi onQueue or
t askQueue.

This is an instance of the
Queue for requests relating to
the process instance.

This is an instance of the
Queue for requests relating to
task service usage.

responseQueue

j avax. j ns. Queue

This is an instance of the
Queue used to receive re-
sponses.

user nane java.lang. String This is the user name needed
to access the JMS queues (in
your application server config-
uration).

passwor d java.lang. String This is the password needed

to access the JMS queues (in
your application server config-
uration).

388

Remote API

Type Description

i nt This maximum number of sec-
onds to wait when waiting for
a response from the server.

Name

t i meout Seconds

17.1.3. Supported methods

As mentioned above, the Remote Java API provides client-like instances of the Runt i neEngi ne,
Ki eSessi on, TaskSer vi ce and Audi t Ser vi ce interfaces.

This means that while many of the methods in those interfaces are available, some are not. The
following tables lists the methods which are available. Methods not listed in the below, will throw

an Unsuppor t edOper at i onExcept i on explaining that the called method is not available.

Table 17.7. Available process-related ki eSessi on methods

Returns

Method signature

Description

voi d

Processl nst ance

Processl nst ance

Li st <Pr ocessl nst ance>

abor t Processl nstance(l g

processl nst ancel d)

get Processl nstance(|l ong
processl nst ancel d)

get Processl nst ance(l ong
processl nst ancel d,
bool ean readOnl y)

get Processl nst ances()

n%bort the process instance
Return the process instance

Return the process instance

Return all (active) process in-
stances

Processl nst ance

signal Event (String
signal, Object event,
| ong

processl nst ancel d)

start Process(String
processld,
Correl at i onKey
correl ati onKey,
Map<String, Object>
par anet er s)

voi d si gnal Event (String sig- Signal all (active) process in-
nal, Cbject event) stances
voi d Signal the process instance

Start a new process and re-
turn the process instance (if
the process instance has not
immediately completed)

389

Remote API

Returns

Processl nst ance

Method signature

start Process(String
processl d,
Map<String, Object>
par anet ers);

Description

Start a new process and re-
turn the process instance (if
the process instance has not
immediately completed)

Table 17.8. Available rules-related ki esessi on methods

Returns Method signature Description
Long get Fact Count () Return the total fact count
Qbj ect get d obal (String identi- | Returna global fact
fier)
I nt eger get1d() Return the id of the Ki eSes-
si on
void set @ obal (String identi- | Seta global fact
fier, Qbject value)
voi d fireA |l Rul es() Fire all rules
Table 17.9. Available ver ki t emvanager methods
Returns Method signature Description
voi d abortWorkl ten(| ong Abort the work item
wor ki t em d)
void conpl et eWorkl t en(| ong Complete the work item
wor kl tem d, Map<String,
hj ect> results)
Wor ki tem get Wor kil ten(| ong Return the work item
wor kil t em d)

Table 17.10. Available task operation TaskServi ce methods

Returns Method signature Description

Long addTask(Task task, Add a new task
Map<String, oject>
par ans)

void activate(long taskld, Activate a task
String userld)

voi d cl ai m(l ong taskld, Claim a task
String userld)

390

Remote API

Returns Method signature Description
void cl ai n(l ong taskld, Claim a task
String userld,
Li st <String> grouplds)
voi d cl ai mNext Avai | abl e(Stri ng| Claim the next available task
userld, String |anguage) |fora user
voi d : , _| Claim the next available task
cl ai mNext Avai | abl e(Stri nfg
. . or a user
userld, List<String>
groupl ds,
String | anguage)
voi d Complete a task
conpl ete(l ong taskld,
String userld,
Map<String, Object>
dat a)
void del egat e(1 ong taskld, Delegate a task
String userld, String
target User | d)
voi d exit(long taskld, String | Exitatask
user | d)
voi d _ Fail a task
fail(long taskld,
String userld,
Map<Stri ng,
Ohj ect > faul t Dat a)
void forward(l ong taskld, Forward a task
String userld, String
targetEntityld)
voi d) Nominate a task
nom nat e(l ong taskld,
String userld,
Li st <Organi zati onal Entji ty>
pot ent i al Oaner s)
void rel ease(l ong taskld, Release a task
String userld)
voi d renmove(l ong taskld, Remove a task
String userld)
void resume(l ong taskld, Resume a task

String userld)

391

Remote API

Returns Method signature Description

void skip(long taskld, String | Skip atask
userl d)

void start (l ong taskld, Start a task

String userld)

voi d stop(long taskld, String | Stop atask
userl d)
voi d suspend(l ong taskld, Suspend a task

String userld)

Table 17.11. Available task retrieval and query TaskServi ce methods

Returns Method signature
Task get TaskByWosr kl t em d(| ong workl t end d)
Task get TaskByl d(| ong taskl d)

Li st <TaskSunmary> :
get TasksAssi gnedAsBusi nessAdmi ni strator (String userld,

String | anguage)

Li

st <TaskSunmary> get TasksAssi gnedAsPot enti al Omer (String userld, String

| anguage)

L

st <TaskSunmar y> . . .
get TasksAssi gnedAsPot ent i al Omer BySt at us(String userld,

Li st<Status>gt; status, String |anguage)

L

st <TaskSunmary> get TasksOwned(String userld, String |anguage)
L

st <TaskSunmar y>))
get TasksOmedBySt at us(String userld, List<Status>

st at us,
String | anguage)

L

st <TaskSunmar y>
get TasksBy St at usByPr ocessl nst ancel d(| ong

processl nst ancel d,
Li st<Status> status, String |anguage)

Li

st <TaskSummary> get TasksByProcessl nstancel d(| ong processl nstancel d)

Li

st <TaskSummar y> . . .
get TasksByVari ousFi el ds(Li st <Long> wor kl t enl ds,

Li st <Long> t askl ds,

Li st<Long> proclnstlds, List<String> busAdni ns,
Li st<String> pot Owmers, List<String> taskOaners,
Li st <St at us> st at us,

bool ean uni on)

392

Remote API

Returns Method signature

Li st <TaskSunmary> get TasksByVari ousFi el ds(Map <String, List<?>> paraneters,

bool ean uni on)

Cont ent get Cont ent Byl d(| ong cont ent | d)

Att achment get Attachnent Byl d(1 ong attachl d)

Table 17.12. Available audi t Servi ce methods

Returns Method signature

Li st <Pr ocessl nst dricelRrgreess| nst ances()

Li st <Pr ocessl nst dricedRrgreessl| nst ances(Stri ng processl d)
Li st <Processl nst dricedAag> vePr ocessl nst ances(Stri ng processld)

Processin- fi ndProcessl nstance(l ong processl nstancel d)
stancelLog

List<ProcessinstancelLogSubPr ocessl| nst ances(| ong processl nst ancel d)

List<NodelnstanceLbgrdNodel nst ances(| ong processl nstancel d)

List<NodelnstanceLbgrdNodel nst ances(| ong processlnstancel d, String nodel d)

List<VariablelnstanceilLogiar i abl el nst ances(| ong processl nst ancel d)

List<Variablelnstanc i)
findVari abl el nst ances(| ong processl nst ancel d,

String vari abl el d)

List<Variablelnstanc . _ _)
findVari abl el nst ancesByNane(String vari abl el d,

bool ean onl yActi veProcesses)

List<Variablelnstanc i i))
findVari abl el nst ancesByNaneAndVal ue(String vari abl el d,

String val ue, bool ean onl yActi veProcesses)

void clear()

17.2. REST

REST API calls to the execution server allow you to remotely manage processes and tasks and
retrieve various dynamic information from the execution server. The majority of the calls are syn-
chronous, which means that the call will only finish once the requested operation has completed
on the server. The exceptions to this are the deployment POST calls, which will return the status

of the request while the actual operation requested will asynchronously execute.

When using Java code to interface with the REST API, the classes used in POST operations
or otherwise returned by various operations can be found in the (org. ki e. renot e:) ki e-ser -

vi ces-client JAR.

393

Remote API

17.2.1. Runtime calls

This section lists REST calls that interface with

The deploymentld component of the REST calls below must conform to the following regular
expression:

o [\WA. -]+ [\ .19 {2, 2} (:[\W.-]*){0, 2}
For information, see the Deployment calls section.

17.2.1.1. Process calls

[POST] /runtime/{deploymentld}/process/{processDefld}/start
e Starts a process.

* Returns a JaxbPr ocessl| nst anceResponse instance, that contains basic information about
the process instance.

e The prodessDefldcomponent of the URL must conform to the following regex: [_a- zA-
Z20-9-:\.]+

» This operation takes map query parameters (see above), which will be used as parameters
for the process instance.

[POST] /runtime/{deploymentld}/process/{processDefld}/startform

» Checks that exists the process idetified by prodessDefld on the given deployment and gen-
erates an URL to show the start form on a remote application.

* Returns aJaxbPr ocessl| nst anceFor nResponse instance, that contains the URL to the start
process form.

» The prodessDefldcomponent of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

[GET] /runtime/{deploymentld}/process/instance/{procinstid}

» Does a (read only) retrieval of the process instance. This operation will fail (code 400) if the
process instance has been completed.

* Returns a JaxbPr ocessl nst anceResponse instance.

* The procinstld component of the URL must conform to the following regex: [0- 9] +
[POST] /runtime/{deploymentld}/process/instance/{procinstid+}/abort

 Aborts the process instance.

¢ Returns a JaxbGener i cResponse indicating whether or not the operation has succeeded.

» The procinstld component of the URL must conform to the following regex: [0- 9] +

394

Remote API

[POST] /runtime/{deploymentld}/process/instance/{procinstid}/signal

Signals the process instance.

* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded.

The procinstld component of the URL must conform to the following regex: [0- 9] +
« This operation takes a si gnal and a event query parameter.

e The si gnal parameter value is used as the name of the signal. This parameter is re-
quired.

e The event parameter value is used as the value of the event. This value may use the
number query parameter syntax described above.

[GET] /runtime/{deploymentid}/process/instance/{procinstid}/variables
» Gets the list of process variables in a process instance.
¢ Returns a JaxbVari abl esResponse
* The proclinstld component of the URL must conform to the following regex: [0- 9] +

[POST] /runtime/{deploymentid}/signal

Signals the Ki eSessi on

¢ Returns a JaxbGener i cResponse indicating whether or not the operation has succeeded.

The procinstld component of the URL must conform to the following regex: [0- 9] +
¢ This operation takes a si gnal and a event query parameter.

» The signal parameter value is used as the name of the signal. This parameter is re-
quired.

* The event parameter value is used as the value of the event. This value may use the
number query parameter syntax described above.

[GET] /runtime/{deploymentld}/workitem/{workltemId}

» Gets a Wr kil t eminstance

* Returns a JaxbWér kI t eminstance

* The workltemld component of the URL must conform to the following regex: [0- 9] +
[POST] /runtime/{deploymentld}/workitem/{workitemld}/complete

e Completes aWrkltem

» Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded

395

Remote API

» The workltemld component of the URL must conform to the following regex: [0- 9] +

» This operation takes map query parameters, which are used as input to signify the results
for completion of the work item.

[POST] /runtime/{deploymentid}/workitem/{workltemId: [0-9-]+}/abort
* Aborts a Wrkltem
* Returns a JaxbGeneri cResponse indicating whether or not the operation has succeeded

e The workltemld component of the URL must conform to the following regex: [0- 9] +

17.2.1.2. Process calls "with variables"

[POST] /runtime/{deploymentld}/withvars/process/{processDefld}/start
« Starts a process and retrieves the list of variables associated with the process instance
» Returns a JaxbPr ocessl nst anceW t hVar i abl esResponse that contains:

 Information about the process instance (with the same fields and behaviour as the

JaxbPr ocessl nst anceResponse
» A key-value list of the variables available in the process instance.

» The processDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

[POST] /runtime/{deploymentld}/withvars/process/instance/{procinstid}
 Starts a process and retrieves the list of variables associated with the process instance
* Returns a JaxbPr ocessl nst anceW t hVar i abl esResponse (see the above REST call)
» The processinstld component of the URL must conform to the following regex: [0- 9] +
[POST] /runtime/{deploymentld}/withvars/process/instance/{procinstld}/signal
 Signals a process instance and retrieves the list of variables associated it
* Returns a JaxbPr ocessl nst anceW t hVari abl esResponse (see above)
* The processinstld component of the URL must conform to the following regex: [0- 9] +
» This operation takes a si gnal and a event query parameter.

e The si gnal parameter value is used as the name of the signal. This parameter is re-
quired.

» The event parameter value is used as the value of the event. This value may use the
number query parameter syntax described above.

396

Remote API

17.2.2. History calls

@ Note
Between the 6.0.0.Final and 6.0.1.Final releases, the History REST calls were ud-
pated and fixed in order to make them both more robust and accessible. While the
REST calls that were provided with 6.0.0.Final are still available in 6.0.1.Final, they
will be removed in a future release.

17.2.2.1. Calls available as of 6.0.1.Final

[POST] /historyl/clear
» Cleans (deletes) all history logs
[GET] /history/instances
» Gets a list of Pr ocessl nst ancelLog instances

e Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbPr ocessl nst anceLog
instances

» This operation responds to pagination parameters
[GET] /history/instance/{proclinstid}
« Gets the Processl nst ancelLog instance associated with the specified process instance

* Returns a JaxbHi st oryLogLi st instance that contains a JaxbPr ocessl nst ancelLog in-
stance

» The processinstld component of the URL must conform to the following regex: [0- 9] +
» This operation responds to pagination parameters
[GET] /history/instance/{proclnstid}/child

« Gets a list of Processl nst ancelLog instances associated with any child/sub-processes as-
sociated with the specified process instance

» Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocessl nst ancelLog
instances

* The processinstld component of the URL must conform to the following regex: [0- 9] +
 This operation responds to pagination parameters
[GET] /history/instance/{procinstid}/node

» Gets a list of Nodel nst anceLog instances associated with the specified process instance

397

Remote API

* Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbNodel nst ancelLog in-
stances

* The processinstld component of the URL must conform to the following regex: [0- 9] +
« This operation responds to pagination parameters
[GET)/history/instance/{procinstid}/variable

» Gets a list of vari abl el nst anceLog instances associated with the specified process in-
stance

« Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst anceLog
instances

» The processinstld component of the URL must conform to the following regex: [0- 9] +
« This operation responds to pagination parameters
[GET] /history/instance/{procinstid}/node/{nodeld}

» Gets a list of Nodel nst anceLog instances associated with the specified process instance
that have the given (node) id

» Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbNodel nst ancelLog in-
stances

» The processinstld component of the URL must conform to the following regex: [0- 9] +
» The nodeld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .1 +
« This operation responds to pagination parameters

[GET] /history/instance/{procinstid}/variable/{varld}

* Gets a list of Vari abl el nst ancelLog instances associated with the specified process in-
stance that have the given (variable) id

» Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst anceLog
instances

» The processinstld component of the URL must conform to the following regex: [0- 9] +
» The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .1+
 This operation responds to pagination parameters

[GET] /history/process/{processDefld}

» Gets a list of Process| nst ancelLog instances associated with the specified process defin-
ition

398

Remote API

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocess| nst ancelog
instances

« The processDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

« This operation responds to pagination parameters

17.2.2.1.1. History calls that search by variable

[GET] /history/variable/{varld}
» Gets a list of Vari abl el nst anceLoginstances associated with the specified variable id

» Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst ancelLog
instances

» The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .1+
 This operation responds to pagination parameters
[GET] /history/variable/{varld}/value/{value}

* Getsalistof Vari abl el nst ancelLog instances associated with the specified variable id that
contain the value specified

» Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst anceLog
instances

« Both the varld and value components of the URL must conform to the following regex: [a-
ZA-Z70-9-:\.]+

 This operation responds to pagination parameters
[GET] /history/variable/{varld}/instances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id.

* Returns a JaxbProcesslnstanceli st Response instance that contains a list of
JaxbPr ocessl nst anceResponse instances

e The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\.]+
« This operation responds to pagination parameters
[GET] /history/variable/{varld}/value/{value}/instances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id which contains the (variable) value specified

399

Remote API

* Returns a JaxbProcesslnstanceli st Response instance that contains a list of
JaxbPr ocessl nst anceResponse instances

« Both the varld and value components of the URL must conform to the following regex: [a-
ZA-Z0-9-:\.]1+

 This operation responds to pagination parameters
17.2.2.2. Deprecated history calls available in 6.0.0.Final

Rest calls that contain "rest/runti me/ {depl oyment | d}/ hi st ory" have been deprecated: the
same functionality provided by these calls can be found in the history REST calls described in
the previous sections.

Important

If you're using the 6.0.0.Final release, the following applies to the History REST
calls:

The history calls in 6.0.0.Final are dependent on a deployment being available
to call them. This is because the History REST calls in 6.0.0.Final needed the
persistence framework of a deployment in order to be executed. This means that
history REST calls listed below may sometimes fail when used with a deployment
unit that uses a PER_REQUEST or PER_PROCESS | NSTANCE strategy (i.e. when the
deployment is no longer available).

[POST] /runtime/{deploymentld}/history/clear
» Cleans (deletes) all history logs

[GET] /runtime/{deploymentld}/history/instances
» Gets a list of Processl nst ancelLog instances

» Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbPr ocessl nst ancelLog
instances

 This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/instance/{procinstid}
» Gets the Processl nst ancelLog instance associated with the specified process instance

» Returns a JaxbHi st oryLogLi st instance that contains a JaxbProcessl nst ancelLog in-
stance

» The processinstld component of the URL must conform to the following regex: [0- 9] +

« This operation responds to pagination parameters

400

Remote API

[GET] /runtime/{deploymentld}/history/instance/{procinstid}/child

» Gets a list of Pr ocessl nst ancelLog instances associated with any child/sub-processes as-
sociated with the specified process instance

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocess| nst ancelog
instances

» The processinstld component of the URL must conform to the following regex: [0- 9] +
« This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/instance/{procinstid}/node
» Gets a list of Nodel nst anceLoginstances associated with the specified process instance

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbNodel nst ancelLog in-
stances

* The processinstld component of the URL must conform to the following regex: [0- 9] +
« This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/instance/{procinstid}/variable

* Gets a list of Vari abl el nst ancelLog instances associated with the specified process in-
stance

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbVari abl el nst ancelLog
instances

« The processinstld component of the URL must conform to the following regex: [0- 9] +
« This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/instance/{procinstid}/node/{nodeld}

» Gets a list of Nodel nst ancelLog instances associated with the specified process instance
that have the given (node) id

» Returns a JaxbHi st or yLogLi st instance that contains a list of JaxbNodel nst ancelLog in-
stances

» The processinstld component of the URL must conform to the following regex:[0- 9] +
« The nodeld component of the URL must conform to the following regex: [a- zA- Z0-9-:\ .] +
« This operation responds to pagination parameters

[GET] /runtime/{deploymentld}/history/instance/{procinstid}/variable/{varid}

« Gets a list of vari abl el nst ancelLog instances associated with the specified process in-
stance that have the given (variable) id

401

Remote API

* Returns aJaxbHi st oryLogLi st instance that contains a list of JaxbVari abl el nst ancelLog
instances

» The processinstld component of the URL must conform to the following regex: [0- 9] +
e The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\.]+
« This operation responds to pagination parameters

[GET] /runtime/{deploymentld}/history/process/{processDefld}

» Gets a list of Process| nst ancelLog instances associated with the specified process defin-
ition

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbPr ocess| nst ancelog
instances

e The processDefld component of the URL must conform to the following regex: [_a- zA-
Z0-9-:\.]+

« This operation responds to pagination parameters

17.2.2.2.1. History calls that search by variable

[GET] /runtime/{deploymentld}/history/variable/{varld}
« Gets a list of Vari abl el nst ancelLog instances associated with the specified variable id

* Returns a JaxbHi st oryLogLi st instance that contains a list of JaxbVari abl el nst ancelLog
instances

» The varld component of the URL must conform to the following regex: [a- zA- Z0-9-:\.]+
« This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/variable/{varld}/value/{value}

» Getsalistof vari abl el nst anceLog instances associated with the specified variable id that
contain the value specified

» Returns aJaxbHi st or yLogLi st instance that contains a list of JaxbVar i abl el nst ancelLog
instances

« Both the varld and value components of the URL must conform to the following regex: [a-
ZA-Z70-9-:\.]+

« This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/variable/{varld}/instances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id.

402

Remote API

* Returns a JaxbProcesslnstanceli st Response instance that contains a list of
JaxbProcessl nst anceResponse instances

» The varld component of the URL must conform to the following regex: [a- zA-Z0-9-:\.] +
 This operation responds to pagination parameters
[GET] /runtime/{deploymentld}/history/variable/{varld}/value/{value}/instances

» Gets a list of Processl nst ance instances that contain the variable specified by the given
variable id which contains the (variable) value specified

* Returns a JaxbProcesslnstanceli st Response instance that contains a list of
JaxbPr ocessl nst anceResponse instances

» Both the varld and value components of the URL must conform to the following regex: [a-
ZA-Z0-9-:\.]+

» This operation responds to pagination parameters

17.2.3. Task calls

The following section describes the three different types of task calls:

« Task REST operations that mirror the TaskSer vi ce interface, allowing the user to interact with
the remote TaskSer vi ce instance

e The Task query REST operation, that allows users to query for Task instances
« Other Task REST operations that retrieve information

Task operation authorizations. Task REST operations use the user information (used to au-
thorize and authenticate the HTTP call) to check whether or not the requested operations can
happen. This also applies to REST calls that retrieve information, such as the task query opera-
tion. REST calls that request information will only return information about tasks that the user is
allowed to see.

With regards to retrieving information, only users associated with a task may retrieve information
about the task. However, the authorizations of progress and other modifications of task information
are more complex. See the Task Permissions section in the Task Service documentation for more
infomration.

@ Note
Given that many users have expressed the wish for a "super-task-user" that can
execute task REST operations on all tasks, regardless of the users associated with
the task, there are now plans to implement that feature. However, for the 6.0.x
releases, this feature is not available.

403

Remote API

17.2.3.1. Task operation calls

All of the task operation calls described in this section use the user (id) used in the REST basic
authorization as input for the user parameter in the specific call.

Some of the operations take an optional | anaguage query parameter. If this parameter is not given
as a element of the URL itself, the default value of "en- UK" is used.

The taskld component of the REST calls below must conform to the following regex:
* [0-9]+

[POST] /task/{taskld}/activate

» Activates a task

» Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/{taskld}/claim

+ Claims a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/{taskld}/claimnextavailable

» Claims the next available task

* Returns a JaxbGener i cResponsewith the status of the operation

« Takes an optional | anguagequery parameter.
[POST] /task/{taskld}/complete

e Completes a task

* Returns a JaxbGeneri cResponse with the status of the operation

» Takes map query parameters, which are the "results" input for the complete operation
[POST] /task/{taskld}/delegate

« Delegates a task

* Returns a JaxbGener i cResponse with the status of the operation

* Requires at ar get | d query parameter, which identifies the user or group to which the task
is delegated

[POST] /task/{taskld}/exit

+ Exits a task

404

Remote API

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/{taskld}/fail

* Fails a task

» Returns a JaxbGener i cResponse with the status of the operation
[POST] task/{taskld}/forward

» Delegates a task

* Returns a JaxbGeneri cResponse with the status of the operation

* Requires at ar get | d query parameter, which identifies the user or group to which the task
is forwarded

[POST] /task/{taskld}/nominate
* Nominates a task
* Returns a JaxbGener i cResponse with the status of the operation

* Requires at least one of either the user or gr oup query parameter, which identify the user(s)
or group(s) that are nominated for the task

[POST] /task/{taskld}/release

* Releases a task

» Returns a JaxbGeneri cResponse with the status of the operation
[POST] /task/{taskld}/resume

* Resumes a task

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/{taskld}/skip

» Skips a task

* Returns a JaxbGeneri cResponse with the status of the operation
[POST] /task/{taskld}/start

 Starts a task

* Returns a JaxbGeneri cResponse with the status of the operation
[POST] task/{taskld}/stop

» Stops a task

405

Remote API

* Returns a JaxbGener i cResponse with the status of the operation
[POST] /task/{taskld}/suspend

* Suspends a task

* Returns a JaxbGener i cResponse with the status of the operation
[GET] /task/{taskld}/showTaskForm

» Checks that the task idetified by taskld exists and generates an URL to show the task form
on a remote application.

« Returns a JaxbTaskFor nResponse instance, that contains the URL to the task form.

17.2.3.2. Task query call
[GET] ltask/query
The / t ask/ quer y operation queries all non-archived tasks based on the parameters given.
* Queries the available non-archived tasks
* Returns a JaxbTaskSummar yLi st Response with a list of TaskSummar yI npl instances.
» Takes the following (case-insensitive) query parameters listed below:
* busi nessAdm ni strat or

« Specifies that the returned tasks should have the business administrator identified by
this parameter

« This parameter may be repeated
* potential Owner

» Specifies that the returned tasks should have the potential owner identified by this
parameter

e This parameter may be repeated
* processlnstanceld

» Specifies that the returned tasks should be associated with the process instance iden-
tified by this parameter

e This parameter may be repeated
e status
» Specifies that the returned tasks should have the status identified by this parameter

e This parameter may be repeated

406

Remote API

* taskld
» Specifies that the returned tasks should have the (task) id identified by this parameter
e This parameter may be repeated

* taskOmner

« Specifies that the returned tasks should have the task owner (initiator) identified by
this parameter

* This parameter may be repeated
e workltemd

« Specifies that the returned tasks should be associated with the work item identified by
this parameter

e This parameter may be repeated

* | anguage
« Specifies the language that the returned tasks should be associated with
« This parameter may be repeated

* union

 This specifies whether the query should query the union or intersection of the parame-
ters. See below for more info.

e This parameter must only be passed once

Example 17.1. Query usage

This call retrieves the task summaries of all tasks that have a work item id of 3, 4, or 5. If
you specify the same parameter multiple times, the query will select tasks that match any of
that parameter.

e http://server:port/rest/task/query?workltem d=3&wnor kl t em d=4&wor kit em d=5
The next call will retrieve any task summaries for which the task id is 27 and for which the
work item id is 11. Specifying different parameters will result in a set of tasks that match both
(all) parameters.

e http://server:port/rest/task/query?workltem d=11&t askl d=27

The next call will retrieve any task summaries for which the task id is 27 or the work item id is
11. While these are different parameters, the uni on parameter is being used here so that the
union of the two queries (the work item id query and the task id query) is returned.

e http://server:port/rest/task/query?workltem d=11& askl d=27&uni on=t rue

407

Remote API

The next call will retrieve any task summaries for which the status is "Cr eat ed” and the po-
tential owner of the task is ‘Bob". Note that the letter case for the status parameter value is
case-insensitve.

e http://server:port/rest/task/query?status=creAt ed&pot enti al Owmer =Bob

The next call will return any task summaries for which the status is "Cr eat ed” and the potential
owner of the task is "bob’. Note that the potential owner parameter is case-sensitive. "bob’
is not the same user id as "Bob’!

e http://server:port/rest/task/query?status=created&potential Owmer=bob
The next call will return the intersection of the set of task summaries for which the process
instance is 201, the potential owner is "bob™ and for which the status is "Cr eat ed” or "Ready .

e http://server:port/rest/task/query?
st at us=cr eat ed&st at us=r eady&pot ent i al Omer =bob&pr ocessl nst ancel d=201
That means that the task summaries that have the following characteristics would be included:

 process instance id 201, potential owner “bob’, status "Ready”

« process instance id 201, potential owner “bob’, status "Created”
And that following task summaries will not be included:

 process instance id 183, potential owner “bob’, status "Created"
« process instance id 201, potential owner “mary’, status "Ready’

« process instance id 201, potential owner “bob’, status "Complete”

17.2.3.3. Other Task calls

[GET] /task/{taskld}/content

» Gets the task content from a task identified by the given task id

* Returns a JaxbCont ent with the content of the task

e The taskld component of the URL must conform to the following regex: [0- 9] +
[GET] /task/content/{contentld}

» Gets the task content from a task identified by the given content id

* Returns a JaxbCont ent with the content of the task

» The contentld component of the URL must conform to the following regex: [0- 9] +

17.2.4. Deployment calls

The calls described in this section allow users to manage deployments. Deployments are in fact
Ki eMbdul e JARs which can be deployed or undeployed, either via the Ul or via the REST calls
described below. Configuration options, such as the runtime strategy, should be specified when

408

Remote API

deploying the deployment: the configuration of a deployment can not be changed after it has
already been deployed.

The above deploymentld regular expression describes an expression that contains the following
elements, separated from eachother by a : character:

1. The group id

2. The artifact id

3. The version

4. The (optional) kbase id

5. The (optional) ksession id
In a more formal sense, the deploymentld component of the REST calls below must conform to
the following regex:

o VWAL -]+ [\ .19 {2,2)(:[\W.-]1*){0, 2}
This regular expression is explained as follows:

« The[\w\. -] element, which occurs 3 times in the above regex, refers to a character set that
can contain the following character sets:

[A-2] [0-9]
[a-z] -

e This[\w\ . -] element occurs at least 3 times and at most 5 times, separated by a ": ' character
each time.

Example 17.2. Accepted depl oyment 1 d'S

* com wonka: choco- maker: 67. 190
These example depl oynent | d's contain the optional kbase and ksession id groups.

e com wonka: choco- nmeker: 67. 190: oonpaBase

e com wonka: choco- maker: 67. 190: oonpaLoonpaBase: gl oopSessi on

17.2.4.1. Asynchrous deployment calls

There are 2 operations that can be used to modify the status of a deployment:

e /depl oynent s/ {depl oyrment | d} / depl oy

* /depl oynent s/ {depl oynment | d} / undepl oy
These PGST deployment calls are both asynchronous, which means that the information returned
by the PGST request does not reflect the eventual final status of the operation itself.

409

Remote API

Important

As noted above, both the / depl oy and / undepl oy operations are asynchronous
REST operations. Successfull requests to these URLs will return the status 202
upon the request completion. RFC 2616 defines the 202 status as meaning that
“the request has been accepted for processing, but the processing has not been
completed.”

This means the following:

1. While the request may have been accepted "successfully”, the operation itself
(deploying or undeploying the deployment unit) may actually fail.

2. Furthermore, information about deployments, such as that retrieved by calling
the GET operations described below, are snapshots and the information (includ-
ing the status of the deployment unit) may have changed by the time the user
client receives the answer to the GET request.

17.2.5. Deployment call details

[GET] /deployment/

* Returns a list of all the available deployed instances in a JaxbDepl oynment Uni t Li st in-
stance

[GET] /deployment/ {deploymentid}

* Returns a JaxbDepl oynent Uni t instance containing th e information (including the config-
uration) of the deployment unit.

 This operation will fail when the URL uses a deployementld that refers to a deployment
unit that does not exist or for which the deployment has not yet been completed.

» This operation may succeed for deployment units for which an undeploy operation re-
guest has not yet completed.

[POST] /deployment/ {deploymentid} /deploy
» Deploys the deployment unit referenced by the deploymentid
* Returns a JaxbDepl oynent JobResul t instance with the status of the request
» Takes a strat egy query parameter:

¢ This parameter describes the runtime strategy used for the deployment.

410

Remote API

» This parameter takes the following (case- in sensitive) values:
e S| NGLETON
* PER_REQUEST
* PER_PROCESS_| NSTANCE
» The default runtime strategy used for a deployment is SI NGLETON .

» The deploy operation is an asynchronous operation. The status of the deployment can be
retrieved using the GET calls described above.

» The request can fail for the reasons described

It is possible to post a deployment descriptor (or a fragment of it) while submitting deploy
request. That allows to override other deployment descriptors in the hierarchy. To do so the
content type of the request must be set to application/xml and the request body should be
a a valid deployment descriptor content.

For example to change the audit logging mode from default JPA to JIMS submit following

partial deployment descriptor:

<depl oynent - descri pt or xsi : schemaLocati on="http://ww. | boss. org/jbpm depl oy
ment - descri ptor. xsd" xnm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" > <audi t -
nmode>JMB</ audi t - rode></ depl oyment - descri pt or >

descriptor.xsd" xmns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance" >

Since deployment descriptors can be merged differently, there is a possibility to provide the
merge mode as part of deploy request by adding query parameter:

« mergemode where values should be one of the following - KEEP_ALL, OVERRIDE_ALL,
OVERRIDE_EMPTY, MERGE_COLLECTIONS

[POST] /deployment/ {deploymentld} /Jundeploy
« Undeploys the deployment unit referenced by the deploymentid
» Returns a JaxbDepl oynent JobResul t instance with the status of the request

» The undeploy operation is an asynchronous operation. The status of the deployment can
be retrieved using the GET calls described above.

17.2.6. Execute calls

While thereisa/runti me/ {i d}/ execut e and at ask/ execut e method, both will take all types of
commands. This is possible because execute takes a JaxboCommandsRequest object, which con-

411

Remote API

tains a list of (or g. ki e. api . command.) Cormand objects. The JaxbCommandsRequest has fields
to store the proper depl oyment | d and pr ocessl nst ancel d information.

Of course, if you send a request with a command that needs this information (depl oyment I d, for
example) and don't fill the depl oynent | d in, the request will fail.

17.2.6.1. Execution call details

[POST] /task/execute

* Executes a Command , assumed to be related to tasks.

» Returns a JaxbCommandResponse implementation with the result of the operation

[POST] /runtime/ {deploymentid} /execute

» Executes a Cormand , assumed to be related to business processes or the knowledge ses-

sion.

* Returns a JaxbConmandResponse implementation with the result of the operation

17.2.6.2. Commands accepted

Runtime commands.

AbortWorkltemCommand
CompleteWorkltemCommand

GetWorkltemCommand
AbortProcessinstanceCom-
mand
GetProcessldsCommand
GetProcessinstanceByCorrela-
tionKeyCommand
GetProcessinstanceCommand

Task commands.

ActivateTaskCommand
AddTaskCommand
CancelDeadlineCommand
ClaimNextAvailableTaskCom-
mand

ClaimTaskCommand

CompleteTaskCommand

GetProcessInstancesCommand GetGlobalCommand

SetProcessinstanceVariable-
sCommand
SignalEventCommand
StartCorrelatedProcessCom-
mand
StartProcessCommand
GetVariableCommand

GetFactCountCommand

FailTaskCommand
ForwardTaskCommand
GetAttachmentCommand
GetContentCommand

GetTaskAssignedAsBusines-
sAdminCommand
GetTaskAssignedAsPoten-
tialOwnerCommand

GetldCommand

SetGlobalCommand
DeleteCommand

FireAllRulesCommand
InsertObjectCommand

UpdateCommand

GetTasksOwnedCommand
NominateTaskCommand
ProcessSubTaskCommand
ReleaseTaskCommand

ResumeTaskCommand

SkipTaskCommand

412

Remote API

CompositeCommand

DelegateTaskCommand
ExecuteTaskRulesCommand

ExitTaskCommand

Task commands.

ClearHistoryLogsCommand

FindActiveProcessIn-
stancesCommand
FindNodelnstancesCommand

GetTaskByWorkltemldCom- StartTaskCommand
mand

GetTaskCommand StopTaskCommand
GetTasksByProcessinstanceld- SuspendTaskCommand
Command

GetTasksByStatus-

ByProcesslInstanceldCommand

FindProcessIinstanceCommand FindSubProcessinstancesCom-

mand
FindProcesslnstancesCom- FindVariablelnstancesBy-
mand NameCommand
FindSubProcessinstancesCom- FindVariablelnstancesCom-
mand mand

17.2.7. Additional Information

17.2.7.1. Serialization: JAXB or JSON

Except for the Execute calls, all other REST calls described below can use either JAXB or JSON.

All REST calls, unless otherwise specified, will use JAXB serialization.

When using JSON, make sure to add the JSON media type (" appl i cati on/j son") to the ACCEPT

header of your REST call.

17.2.7.2. Sending and receiving user class instances

Sometimes, users may wish to pass instances of their own classes as parameters to commands
sentin a REST request or JMS message. In order to do this, there are a number of requirements.

1. The user-defined class satisfy the following in order to be property serialized and deserialized

by the JMS API:

» The user-defined class must be correctly annotated with JAXB annotations, including the

following:

 The user-defined

class must be annotated with a

j avax. xni . bi nd. annot at i on. Xnml Root El ement annotation with a non-empty name value

« Al fields or getter/setter methods must be annotated with a

j avax. xm . bi nd. annot ati on. Xm El enent or

j avax. xni . bi nd. annot at i on. Xm At t ri but e annotations.

Furthermore, the following usage of JAXB annotations is recommended:

413

Remote API

» Annotate the user-defined class with a j avax. xni . bi nd. annot at i on. Xnl Accessor Type
annotation specifying that fields should be used,
(j avax. xm . bi nd. annot ati on. Xm AccessType. Fl ELD). This also means that you should
annotate the fields (instead of the getter or setter methods) with @ El enent or @l At -
tri but e annotations.

 Fields annotated with @m El ement or @ At tri but e annotations should also be anno-
tated with j avax. xni . bi nd. annot at i on. Xnl SchenmaType annotations specifying the type
of the field, even if the fields contain primitive values.

» Use objects to store primitive values. For example, use the j ava. | ang. | nt eger class for
storing an integer value, and not the i nt class. This way it will always be obvious if the
field is storing a value.

« The user-defined class definition must implement a no-arg constructor.

« Any fields in the user-defined class must either be object primitives (such as a Long or
St ri ng) or otherwise be objects that satisfy the first 2 requiremends in this list (correct usage
of JAXB annotations and a no-arg constructor).

2. The class definition must be included in the deployment jar of the deployment that the JIMS
message content is meant for.

3. The sender must set a “deploymentid” string property on the JMS bytes message to the name
of the deploymentld. This property is necessary in order to be able to load the proper classes
from the deployment itself before deserializing the message on the server side.

@ Retrieving process variables

While submitting an instance of a user-defined class is possible via both the IMS
and REST API's, retrieving an instance of the process variable is only possible via
the REST API.

17.2.7.3. Including the deployment id

When interacting with the Remote API, users may want to pass instances of their own classes
as parameters to certain operations. As mThis will only be possible if the KJar for a deployment
includes these classes.

REST calls that involve the TaskSer vi ce (e.g. that start with / t ask..), often do not contain any
information about the associated deployment. In that case, an extra query parameter will have to
be added to the REST call so that the server can find the appropriate deployment with the class
(definition) and correctly deserialize the information passed with the call.

For these REST calls which do not contain the deployment id, you'll need to add the following
parameter:

414

Remote API

Table 17.13. Deployment id query parameter

Parameter name Description

depl oynent I d Value (must match the regex [a- zA- Z0- 9-:
\ .] +) specifies the deployment which con-
tains the user-defined class(es) needed to
correctly deserialze information passed in the
call

17.2.7.4. Pagination

Some of the REST calls below return lists of information. The results of these operations can be
paginated , which means that the lists can be split up and returned according to the parameters
sent by the user.

For example, if the REST call parameters indicate that page 2 with page size 10 should be returned
for the results, then results 10 to (and including) 19 will be returned.

The first page is always page 1 (as opposed to page "0").

Table 17.14. Pagination query parameter syntax

Parameter name Description

page The page number requested. The default val-
ueis 1.

p Synonym for the above page parameter.

pageSi ze The number of elements per page to return.
The default value is 10.

s Synonym for the above pageSi ze parameter.

If both a "long" pagination parameter and its synonym are used, then only the value from the
"long" variant is used. For example, if the page is given with a value of 11 and the p parameter
is given with a value of 37, then the value of the page parameter, 11 , will be used and the p
parameter will be ignored.

For the following operations, pagination is always used. See above for the default values used.

Table 17.15. REST operations using pagination

REST call URL Short Description

/runtime/{depl oyment 1 d}/history/in- Returns a list of Processl nst ancelLog in-
stance stances

runti me/ {depl oynent | d}/ hi story/in- Returns a list of Processl nst ancelLog in-
stance/ {procl nstid} stances

415

Remote API

REST call URL Short Description

/runtime/{depl oyment 1 d}/history/in- Returns a list of Processl nst ancelLog in-
stance/{proclnstid}/child stances

/runtime/{depl oyment 1 d}/history/in- Returns a list of Nodel nst ancelLog instances

stance/ {proclnstld}/node

/runtime/{depl oyment 1 d}/history/in- Returns a list of Nodel nst ancelLog instances
stance/ {procl nst1d}/node/ { nodel d}

/runtime/{depl oyment 1 d}/ history/in- Returns a list of Vari abl el nst anceLog in-
stance/ {proclnstld}/variable stances
/runtinme/{depl oynent | d}/history/in- Returns a list of Vari abl el nst anceLog in-

stance/ {proclnstld}/variabl e/{varl d} stances

/runtime/{depl oyment 1 d}/ history/vari Returns a list of vari abl el nst anceLog in-

abl e/ {vari abl el d} stances

/runtime/{depl oyment 1 d}/ hi story/vari Returns a list of Pr ocessl nst ance instances

abl e/ {vari abl el d}/i nstances

/runtime/{depl oyment 1 d}/history/vari- Returns alist of Vari abl el nst anceLog in-
abl e/ {vari abl el d}/ val ue/ { val ue} stances

/runtime/{depl oyment 1 d}/ history/vari Returns a list of Processl nst ance instances

abl e/ {vari abl el d}/ val ue/ {val ue}/i n-

st ances

/runtime/{depl oyrment I d}/ hi st o- Returns a list of Processl nst ancelLog in-
ry/ process/ { procDef| d} stances

/ task/ query Returns a list of TaskSunmmar yl npl instances

17.2.7.5. Map query parameters

If you're triggering an operation with a REST API call that would normally (e.g. when interact-
ing the same operation on a local Ki eSessi on or TaskSer vi ce instance) take an instance of a
java.util.Mp as one of its parameters, you can submit key-value pairs to the operation to sim-
ulate this behaviour by passing a query parameter whose name starts with map_ .

Example 17.3.

If you pass the query parameter map_kEy=vAl ue in a REST call, then the Map that's passed to the
actual underlying Ki eSessi on or TaskSer vi ce operation will contain this (Stri ng, String) key
value pair: "kEy" => "vAl ue" .You could pass this parameter like so:

http://1 ocal host: 8080/ ki e-wb/ rest/runti ne/ nyproject/process/
wonka. factory. | oonpa. hire/start ?map_kEy=vAl ue

Map query parameters also use the object query parameter syntax described below, so the fol-
lowing query parameter, map_t ot al =5000 will be translated into a key-value pair in a map where
the key is the String "total" and the value is a Long with the value of 5000. For example:

416

Remote API

http://1 ocal host: 8080/ ki e-wb/ rest/runti ne/ nyproject/process/
wonka. f act ory. oonpa. chocol at e/ st art ?map_t ot al =5000

The following operations take query map parameters:

/runtime/{depl oyment | d}/ process/{processDefld}/start
e /runtine/{depl oyment|d}/workitem {processltend}/conplete
e /runtine/{depl oynment|d}/withvars/process/{processDefld}/start

e /task/{taskld}/conplete

/task/{taskld}/fail

17.2.7.6. Number query parameters

While REST calls obviously only take strings as query parameters, using the following notation
for query parameters will mean that the string is translated into a different type of object when the
value of the string is used in the actual operation:

Table 17.16. Number query parameter syntax

Regex syntax Type
\d+ Long
\ d+i | nt eger
\ d+l Long

17.2.7.7. Runtime strategies

The REST calls allow access to the underlying deployments, regardless of whether these deploy-
ments use the Si ngl et on , Per - Process- | nst ance or Per - Request strategies.

While there's enough information in the URL in order to access deployments that use the Si n-
gl eton, or Per - Request strategies, that's not always the case with the Per - Pr ocess- I nst ance
runtimes because the REST operation will obviously need the process instance id in order to
identify the deployment.

Therefore, for REST calls for which the URL does not contain the process instance id, you'll need
to add the following parameter:

Table 17.17. Per-Process-Instance runtime query parameter

Parameter name Description

runti meProclnstld Value (must match the regex [0- 9] +) speci-
fies the process instance id that identifies the
underlying Per - Pr ocess- | nst ance deploy-
ment

417

Remote API

Parameter name

Description

Will have no effect if the underlying deploy-
ment uses the Si ngl et on or Per - Request

strategy

17.2.8. REST summary

The URL templates in the table below are relative the following URL:

e http://server:port/business-central/rest

Table 17.18. runtime REST calls

tionID}/start

URL Template Type | Description
/runtime/{deploymentld}/process/{procDefID}/start POST | start a process instance
based on the Process defi-
nition (accepts query map
parameters)
/runtime/{deploymentld}/process/{procDeflD}/startform POST | returns a valid URL to the
start process form to be
shown on a client aplica-
tion.
/runtime/{deploymentld}/process/instance/{procin- GET | return a process instance
stancelD} details
/runtime/{deploymentld}/process/instance/{procin- POST | abort the process instance
stancelD}/abort
/runtime/{deploymentld}/process/instance/{procin- POST | send a signal event to
stancelD}/signal process instance (accepts
query map parameters)
/runtime/{deploymentld}/process/instance/{procin- GET | return a variable from a
stancelD}/variable/{varld} process instance
/runtime/{deploymentld}/signal/{signalCode} POST | send a signal event to de-
ployment
/runtime/{deploymentld}/workitem/{workltemID}/complete A POST complete a work item (ac-
cepts query map parame-
ters)
/runtime/{deploymentld}/workitem/{workltemID}/abort POST | abort a work item
/runtime/{deploymentld}/withvars/process/{procDefini- POST | start a process instance

and return the process in-
stance with its variables

Note that even if a passed
variable is not defined in

418

Remote API

URL Template Type | Description

the underlying process de-

finition, it is created and

initialized with the passed

value.
/runtime/{deploymentld}/withvars/process/in- GET | return a process instance
stance/{procinstancelD}/ with its variables
/runtime/{deploymentld}/withvars/process/in- POST | send a signal event to the
stance/{procinstancelD}/signal process instance (accepts

query map parameters)

The following query para-

meters are accepted:

e The si gnal parameter
specifies the name of
the signal to be sent

e The event parameter
specifies the (optional)
value of the signal to be
sent

Table 17.19. task REST calls
URL Template Type | Description
ltask/query GET | return a TaskSummary list
[task/content/{contentID} GET | returns the content of a
task
ltask/{taskID} GET | return the task
ltask/{taskID}/activate POST activate the task
[task/{taskID}/claim POST | claim the task
ltask/{taskID}/claimnextavailable POST | claim the next available
task
ltask/{taskiD}/complete POST | complete the task (accepts
query map paramaters)
ltask/{taskID}/delegate POST | delegate the task
ltask/{taskID}/exit POST | exit the task
ltask/{taskID}/fail POST fail the task
/task/{taskID}/forward POST | forward the task
[task/{taskiD}/nominate POST | nominate the task

419

Remote API

URL Template Type | Description
ltask/{taskID}/release POST | release the task
ltask/{taskIiD}/resume POST | resume the task (after sus-
pending)
ltask/{taskID}/skip POST | skip the task
ltask/{taskID}/start POST | start the task
ltask/{taskID}/stop POST | stop the task
ltask/{taskID}/suspend POST | suspend the task
ltask/{taskID}/content GET | returns the content of a
task
ltask/{taskID}/showTaskForm GET | returns a valid URL to the
task form to be shown on
a client aplication.
Table 17.20. history REST calls
URL Template Type | Description
/history/clear/ POST | delete all process, node
and history records
/history/instances GET | return the list of all
process instance history
records
/history/instance/{procinstid} GET | return a list of process in-
stance history records for
a process instance
/historyl/instance/{procinstid}/child GET | return a list of process in-
stance history records for
the subprocesses of the
process instance
/history/instance/{procinstid}/node GET | return a list of node histo-
ry records for a process in-
stance
/historyl/instance/{procinstld}/node/{nodeld} GET | return a list of node histo-
ry records for a node in a
process instance
/historyl/instance/{procinstid}/variable GET | return a list of variable his-

tory records for a process
instance

420

Remote API

URL Template

/history/instance/{procinstid}/variable/{variableld}

/history/process/{procDefld}

Type
GET

GET

Description

return a list of variable his-
tory records for a variable
in a process instance

return a list of process in-
stance history records for
process instances using a
given process definition

/history/variable/{varld}

GET

return a list of variable his-
tory records for a variable

/history/variable/{varld}/instances

GET

return a list of process in-
stance history records for
process instances that
contain a variable with the
given variable id

/history/variable/{varld}/value/{value}

GET

return a list of variable his-
tory records for variable(s)
with the given variable id
and given value

/history/variable/{varld}/value/{value}/instances

GET

return a list of process in-
stance history records for
process instances with the
specified variable that con-
tains the specified variable
value

Table 17.21. deployment REST calls

URL Template

Type

Description

/deployments

GET

return a list of (deployed)
deployments

/deployment/{deploymentid}

GET

return the status and infor-
mation about the deploy-
ment

/deployment/{deploymentid}/deploy

POST

submit a request to deploy
a deployment

/deployment/{deploymentid}/undeploy

POST

submit a request to unde-
ploy a deployment

421

Remote API

17.3. IMS

The Java Message Service (JMS) is an API that allows Java Enterprise components to commu-
nicate with each other asynchronously and reliably.

Operations on the runtime engine and tasks can be done via the JMS API exposed by the jBPM
console and KIE workbench. However, it's not possible to manage deployments or the knowledge
base via this IMS API.

Unlike the REST API, it is possible to send a batch of commands to the JMS API that will all be
processed in one request after which the responses to the commands will be collected and return
in one response message.

17.3.1. IMS Queue setup

When the Workbench is deployed on the JBoss AS or EAP server, it automatically creates 3
queues:

e j s/ queue/ Kl E. SESSI ON
* j s/ queue/ KI E. TASK

e j ms/ queue/ Kl E. RESPONSE
The KI E. SESSI ON and Kl E. TASK queues should be used to send request messages to the JMS
API. Command response messages will be then placed on the KI E. RESPONSE queues. Command
request messages that involve starting and managing business processes should be sent to the
KI E. SESSI ON and command request messages that involve managing human tasks, should be
sent to the Kl E. TASK queue.

Although there are 2 different input queues, Kl E. SESSI ON and KI E. TASK, this is only in order to
provide multiple input queues so as to optimize processing: command request messages will be
processed in the same manner regardless of which queue they're sent to. However, in some cas-
es, users may send many more requests involving human tasks than requests involving business
processes, but then not want the processing of business process-related request messages to be
delayed by the human task messages. By sending the appropriate command request messages
to the appropriate queues, this problem can be avoided.

The term "command request message" used above refers to a JMS byte message that contains a
serialized JaxbCommandsRequest object. At the moment, only XML serialization (as opposed to,
JSON or protobuf, for example) is supported.

17.3.2. Using the remote Java API

While it is possible to interact with a BPMS or KIE workbench server instance by sending and
processing JMS messages that you create yourself, it will always be easier to use the remote
Java API that's supplied by the ki e- servi ces-cli ent jar.

For more information about how to use the remote Java API to interact with the JMS API of a
server instance, see the Remote Java API section.

422

Remote API

17.3.3. Serialization issues

The JMS API accepts Byt eMessage instances that contain serialized JaxbComandsRequest ob-
jects. These JaxbCommandsRequest instances can be filled with multiple command objects. In this
way, it's possible to send a batch of commands for processing to the JMS API.

When users wish to include their own classes with requests, there a number of requirements that
must be met for the user-defined classes. For more information about these requirements, see
the Sending and receiving user class instances section in the REST API documentation.

17.3.4. Example JMS usage

The following is a rather long example that shows how to use the JMS API. The numbers ("call-
outs") along the side of the example refer to notes below that explain particular parts of the ex-
ample. It's supplied for those advanced users that do not wish to use the jBPM Remote Java API.

The jBPM Remote Java API, described here, will otherwise take care of all of the logic shown
below.

/1 normal java inports skipped

inmport org.drools.core.conmand. runti me. process. Start ProcessConmand;
inport org.jbpm services.task.commands. Get TaskAssi gnedAsPot ent i al Oaner Command,
inmport org.kie. api.comrand. Conmand;

import org.Kki
import org.Kki

.services.client.serialization.jaxb.inpl.JaxbConmandsResponse;
.services.client.serialization.jaxb.rest.JaxbExcepti onResponse;

inport org.kie.api.runtime.process. Processl|nstance;
inmport org.kie. api.task.nodel . TaskSunmary;
inmport org.kie.services.client.api.command. exception. Renote Conmuni cati onExcepti on;
inmport org.kie.services.client.serialization.JaxbSerializationProvider;
inport org.kie.services.client.serialization.SerializationConstants;
inmport org.kie.services.client.serialization.SerializationException;
inmport org.kie.services.client.serialization.jaxb.inpl.JaxbConmandResponse;
inmport org.kie.services.client.serialization.jaxb.inpl.JaxbCommandsRequest;
e
e

inmport org.slf4j.Logger;
inmport org.slf4j.LoggerFactory;

public class DocunentationJnmsExanpl es {

protected static final Logger | ogger = Logger Factory. get Logger (Docunent ati onJnsExanpl es. cl ass) ;

public void sendAndRecei veJnsMessage() {

String USER = "charlie";
String PASSWORD = "chOcOl i ci ous";

String DEPLOYMENT_ID = "test-project";
String PROCESS | D 1 = "oonpa-processing";
URL serverUrl;
try {
serverU |l = new URL("http://I|ocal host: 8080/ bpm console/");
} catch (Ml fornedURLException nmurle) {
| ogger.error("Mal forned URL for the server instance!", nurle);

423

Remote API

return;

/| Create JaxbConmandsRequest instance and add conmmands

Commrand<?> cnd = new StartProcessConmmand(PROCESS | D 1);

int oonpaProcessi ngResul tl ndex = 0;

JaxbConmmandsRequest req = new JaxbCommandsRequest (DEPLO YMENT_I D, cnd);

req. get Conmands() . add(new Get TaskAssi gnedAsPot ent i al Owner Command(USER, "en- UK"));
int | oonpaMonitoringResultlndex = 1;

/] Get JNDI context from server
Initial Context context = getRenoteJbosslnitial Context(serverUrl, USER, PASSWORD);

/'l Create JMS connection
Connect i onFactory connectionFactory;
try {
connectionFactory = (ConnectionFactory) context.|ookup("jns/ RenoteConnectionFactory");
} catch (Nam ngException ne) {
t hrow new Runti neException("Unable to | ookup JMS connection factory.", ne);

/] Setup queues
Queue sendQueue, responseQeue;
try {
sendQueue = (Queue) context.|ookup("jmnms/queue/ Kl E. SESSI ON') ;
responseQueue = (Queue) context.| ookup("jns/queue/ Kl E. RESPONSE") ;
} catch (Nam ngException ne) {
throw new Runti neException("Unabl e to | ookup send or response queue", ne);

/1 Send command request
Long processlnstanceld = null; // needed if you're doi ng an operation on a PER_PROCESS_I NSTANCE
depl oynent
String humanTaskUser = USER;
JaxbConmmandsResponse cndResponse = sendJnmsConmands(
DEPLOYMENT_I D, processlnstancel d, humanTaskUser, req,
connectionFactory, sendQueue, responseQueue,
USER, PASSWORD, 5);

/'l Retrieve results
Processl nst ance oonpaProclnst = nul | ;
Li st <TaskSummary> charli esTasks = nul | ;
for (JaxbComrmandResponse<?> response : cndResponse. getR esponses()) {
if (response instanceof JaxbExceptionResponse) {
/] sonething went wrong on the server side
JaxbExcepti onResponse excepti onResponse = (JaxbExcepti onResponse) response;
throw new Runti neExcepti on(excepti onResponse. get Message());

if (response.getlndex() == oonpaProcessingResultlndex) {
oonpaProcl nst = (Processl nstance) response.getResul t();

} else if (response.getlndex() == | oonpaMbnitoringRes ultlndex) {
charliesTasks = (List<TaskSummary>) response.getRes ult();

private JaxbCommandsResponse sendJnmsCommands(String depl oymentld, Long processlnstanceld, String user, JaxbComm
ConnectionFactory factory, Queue sendQueue, Queue responseQueue, String jnmsUser, String jnsPassword, int tir

424

Remote API

req. set Processl nst ancel d(processl nst ancel d) ;
req. set User (user);

Connection connection = null;
Sessi on session = null;
String corrld = UUI D.randomJUl D().toString();

String selector = "JMsCorrelationlD ="'" + corrld + "'";
JaxbCommandsResponse cndResponses = nul | ;
try {

/] setup

MessagePr oducer producer;
MessageConsumer consumer;

try {
if (jomsPassword !'= null) {
connection = factory. createConnection(jnsUser, jnmsPassword);
} else {
connection = factory. createConnection();
}

session = connection. createSession(fal se, Session. AUTO ACKNOALEDGE) ;

producer = session.createProducer (sendQueue);
consuner = session. createConsuner (responseQueue, sel ector);

connection.start();
} catch (JMSException jnse) {
t hrow new Renot eConmuni cat i onExcepti on("Unable to setup a JMS connection.”, jnse);

JaxbSeri al i zati onProvi der serializationProvider = new JaxbSeri alizati onProvider();
/1 if necessary, add user-created cl asses here:
/1 xm Serializer.addJaxbC asses(M/Type. cl ass, Anot her JaxbAnnot at edType. cl ass);

/1l Create nsg
Byt esMessage nsg;

try {
nmsg = session. creat eByt esMessage() ;

/] set properties
nmsg. set IMSCorrel ationl D(corrld);
neg. set I nt Property(SerializationConstants. SERI ALI ZA Tl ON_TYPE_PROPERTY_NAME, JaxbSeri al i zati onProvi der. JN
Col | ecti on<Cl ass<?>> extraJaxbC asses = serializationProvi der. get ExtraJaxbC asses();
if (!extraJdaxbd asses.isEmpty()) {

String extraJaxbd assesPropertyVal ue = JaxbSeri alizationProvi der

. cl assSet ToCommaSeper at edSt ri ng(extraJaxbC asses) ;
nsg. set StringProperty(SerializationConstants. EXTRA_JAXB_CLASSES PROPERTY_NAME, extraJaxbCl assesProperty\
nmeg. set StringProperty(SerializationConstants. DEPLOYMENT_| D_PROPERTY_NAME, depl oynentld);

}

/1 serialize request
String xm Str = serializationProvider.serialize(req);
msg. witeUTF(xm Str);
} catch (JMSException jnse) {
t hr ow new Renpt eComruni cat i onException("Unable to create and fill a JMS nessage.", jnse);
} catch (SerializationException se) {
t hr ow new Renpt eConmruni cat i onExcepti on("Unabl e to deseri al ze JMS nessage. ", se. get Cause());

}

/'l send

425

Remote API

try {
producer . send(nsg) ;
} catch (JMSException jnse) {
t hrow new Renot eConmuni cat i onExcepti on("Unable to send a JVMS nessage.", jnse);

/'l receive
Message response;
try {
response = consuner.receive(tineout);
} catch (JMSException jnse) {
throw new RenoteConmuni cationException("Unable to receive or retrieve the JMS

response. ", jnmnse);

}

if (response == null) {
| ogger . war n(" Response is enpty, |eaving");
return null;

}

/| extract response

assert response != null : "Response is enpty.";

try {

String xm Str = ((BytesMessage) response).readUTF();
cndResponses = (JaxbConmmandsResponse) serialization Provider.deserialize(xm Str);
} catch (JMSException jnse) {
t hr ow new Renot eCommuni cat i onExcepti on(" Unabl e to extract
+ JaxbCommandsResponse. cl ass. get Si npl eNanme()
+ " instance from JMS response.", jmnse);
} catch (SerializationException se) {
t hrow new Renot eConmmuni cat i onExcepti on(" Unabl e to extract
+ JaxbCommandsResponse. cl ass. get Si npl eNane()

+ " instance from JMS response.", se.getCause());
}
assert cndResponses != null : "Jaxb Cnd Response was null!";
} finally {
if (connection != null) {
try {
connection. cl ose();
session. cl ose();
} catch (JMSException jnse) {
| ogger.warn("Unabl e to close connection or session!", jnse);
}
}
}
return cndResponses;

private Initial Context getRenpteJbosslnitial Context(URL url, String user, String password) {
Properties initial Props = new Properties();
initial Props.setProperty(lnitial Context.|N TI AL_CONTEXT_FACTORY, "org.jboss.naning.remote.client.InitialConte
String jbossServer Host Name = url.getHost();
initial Props.setProperty(lnitial Context.PROVIDER URL, "renote://"+ jbossServerHost Name + ":4447");
initial Props. setProperty(lnitial Context.SECURI TY_PRI NCl PAL, user);
initial Props.setProperty(lnitial Context.SECURI TY_CREDENTI ALS, password);

for (Object keyQbj : initialProps.keySet()) {
String key = (String) keyQj;
System set Property(key, (String) initialProps.get(key));

426

Remote API

try {
return new I nitial Context(initialProps);

} catch (Nam ngException e) {
t hrow new Renot eCommuni cat i onExcepti on(" Unabl e to create
" + Initial Context.class.getSinpleNane(), e);
}
}
}

These classes can all be found in the ki e- servi ces-cli ent and the ki e- servi ces-j axb
JAR.

The JaxbCommandsRequest instance is the "holder" object in which you can place
all of the commands you want to execute in a particular request. By using the
JaxbCommandsRequest . get Conmands() method, you can retrieve the list of commands in
order to add more commands to the request.

A deployment id is required for command request messages that deal with business process-
es. Command request messages that only contain human task-related commands do not
require a deployment id.

Note that the JMS message sent to the remote JMS API must be constructed as follows:

* It must be a JMS byte message.

It must have a filled JIMS Correlation ID property.

« It must have an int property with the name of "serialization” set to an acceptable value
(only 0 at the moment).

It must contain a serialized instance of a JaxbCommandsRequest , added to the message
as a UTF string
The same serialization mechanism used to serialize the request message will be used to
serialize the response message.
In order to match the response to a command, to the initial command, use the i ndex field
of the returned JaxbCommandResponse instances. This i ndex field will match the index of
the initial command. Because not all commands will return a result, it's possible to send
3 commands with a command request message, and then receive a command response
message that only includes one JaxbConmandResponse message with an i ndex value of 1.
That 1 then identifies it as the response to the second command.
Since many of the results returned by various commands are not serializable, the jBPM JMS
Remote API converts these results into JAXB equivalents, all of which implement the Jaxb-
CommandResponse interface. The JaxbCommandResponse. get Resul t () method then returns
the JAXB equivalent to the actual result, which will conform to the interface of the result.

For example, in the code above, the St art ProcessCommand returns a Pr ocessl nst ance.
In order to return this object to the requester, the Processl nstance is converted to a
JaxbPr ocessl nst anceResponse and then added as a JaxbConmandResponse to the com-

427

Remote API

mand response message. The same applies to the Li st <TaskSunmmar y> that's returned by
the Get TaskAssi gnedAsPot ent i al Oaner Conmand.

However, not all methods that can be called on a normal Pr ocess| nst ance can be called on
the JaxbProcessl| nst anceResponse because the JaxbPr ocessl nst anceResponse is sim-
ply a representation of a Pr ocessl nst ance object. This applies to various other command re-
sponse as well. In particular, methods which require an active (backing) Ki eSessi on, such as
Processl nst ance. get Proess() or Processl nstance. si gnal Event (String type, Ob-

j ect event) will throw an Unsupport edOper ati onExcepti on.

428

Part IV. Eclipse

How to use the Eclipse-based tooling

Chapter 18. |BPM Eclipse Plugin

18.1. |BPM Eclipse Plugin

The jBPM Eclipse plugin provides developers (and very technical users) with an environment to
edit and test processes, and integrate it deeply with their applications. It provides the following
features (on top of the Eclipse IDE):

» Wizards for creation of
¢ ajBPM project
* a BPMN2 process

» jBPM Perspective (showing the most commonly used views in a predefined layout)

18.1.1. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the
Drools and jBPM Eclipse plugin (with a full jBPM runtime preconfigured) and the Eclipse BPMN2
Modeler.

Tip

Using the jBPM installer is definitely the recommended starting point for most
users.

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you
need to:

» Download Eclipse (Kepler recommended, but older versions like Indigo or Juno should also
still work)

 Start Eclipse

e Select "Install New Software .." from the Help menu. Add the Drools and
jBPM update site http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/ [http://
downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/]. You should see the plugins as
shown below. Note that you can also download and unzip the Drools and jBPM update site to
your local file system and use that as local update site instead.

430

http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/
http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/
http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/

jBPM Eclipse Plugin

Install

Available Software
D =

Check the items that you wish to install.

Work with: |jBPM 6.0.0 Final - http://downloads.jboss.org/jbpm/release/6.0.0.Final/jupdatesite/ | v | | Add... |

Find more software by working with the "Available Software Sites" preferences.

[4]
Name Version
= [=| 000 Drools and jBPM
i |Boss Drools Core 6.0.0.Final
[[] %+]Boss Drools Guvnor 6.0.0.Final
-
[] 4+)Boss Runtime Drools Detector 6.0.0.Final
| Select All | | Deselect All 2 items selected
Details
Eclipse support for JBoss jBPM Core. =
Mrra
Show only the latest versions of available software Hide items that are already installed
Group items by category What is already installed?

[] Show only software applicable to target environment

Contact all update sites during install to find required software

? Next > || Cancel

Figure 18.1.

Select the JBoss jBPM Core and JBoss Drools Core plugins and click "Next >". Click "Next
>" again after reviewing your selecting, accept the terms of the license agreement and click
"Finish" to download and install the plugins. If you get a warning about installing software that
contains unsigned content, click OK. After successful installation, Eclipse should ask you to
restart, click Yes.

e The plugin should now be installed. To check, check if you can for example see the new jBPM
Project wizard: under the "File" menu, select "New Project ..." and there you should be able to
see "New jBPM Project" under the jBPM category.

* Register a jBPM runtime to get started, see the section on jBPM runtimes in this chapter for
more information.

Note that, when doing a manual install, you still need to manually install the Eclipse BPMN 2.0
Modeler plugin as well. Check out the chapter on the Eclipse BPMN 2.0 Modeler on how to do that.

431

jBPM Eclipse Plugin

18.1.2. jBPM Project Wizard

The aim of the new project wizard is to set up an executable sample project to start using processes
immediately. This will set up a basic structure, the classpath, sample process and a test case to
getyou started. To create a new jBPM project, in the "File" menu select "New" and then "Project ..."
and under the jBPM category, select "jBPM Project". A dialog as shown below should pop up.

New jBPM Project —>

Create a new jBPM Project

Project name:

Use default location

>
(?) Cancel |

Figure 18.2.

Fill in a name for your project and if necessary change the location where this project should be
located (by default Eclipse will generate it inside your Eclipse workspace folder) and click "Next >".

Now you can optionally include a sample process in your project to get started. You can select
to either use a simple "Hello World" process, a slightly more advanced process including human
tasks and persistence or simply an empty project. You can also select to include a JUnit test
class that you can use to test your process. These can serve as a starting point, and will give you
something executable almost immediately, which you can then modify to your needs.

432

jBPM Eclipse Plugin

New jBPM Project —

Create a new JBPM Project

I want to create:
@ a simple hello world process

> a more advanced process including human tasks and persistence
() an empty project

Add a sample JUnit test for the HelloWorld process.

@) <Back | Next> || cancel || Finish |

b

Figure 18.3.

Finally, the last page in the wizard allows you select a jBPM runtime, as shown below. You can
either use the default runtime (as configured for you workspace, in your workspace preferences),
or you can select a specific runtime for this project. For more information about runtimes and how
to create them, see the section on jBPM runtimes in this chapter.

You can also select which version of BPM you want to generate sample code for. By default it
will generate an example using the latest jBPM 6.x API, but you could also generate examples
using the old jBPM 5.x API. Note that you yourself are responsible for making sure that the code
you generate can be understood by the runtime (for example, if you create an example using
jBPM6 API but select a jBPM5 runtime, your sample will not compile). Also note that, if you want
to execute a jJBPM5 example on jBPM6, you will need to have the knowledge-api JAR inside your
jBPM6 runtime, as this is responsible for the backwards compatibility of the jBPM5 API in jBPM6.

433

jBPM Eclipse Plugin

jBPM Runtime —
Select a jBPM Runtime '
Use default jJBPM Runtime (currently jBPM runtime)
jBPM Runtime:
Configure Workspace Settings...
Generate code compatible with: | jBPM 6 or above -
k
@j = Back Cancel | | Finish
Figure 18.4.

When you selected the simple 'hello world' example, the result is shown below. Feel free to ex-
periment with the plug-in at this point.

434

jBPM Eclipse Plugin

r jBPM - jbpm-project/src/main/resources/sample.bpmn - Eclipse
File Edit View Navigate Search Project Diagram Run Window Help

PR gis-0-Q - w6 -d30 - . RS S [V]
= | @i (S

[# Package Explorer R Navigator = 8
g P - B sample 52

= & s
- i* palette

3

= (= jbpm-project S Lello O [; select 4

- (# src/mainfjava i Marquee
~ f com.sample =

=

b [1) ProcessTest.java
~ (5 src/main/resources

(= Profiles
sample.bp ProcessTest.java
P =4)RE System Library [jdk1.7.0_03] package com.sample; @

b = jBPM Library #import org.jbpm.test.JbpmlunitBaseTestCase;[]
b =4)Unit4
b = sre /e

* This is a sample file to test a process.
b Etestjava w7 a e

public class ProcessTest extends JbpmlUnitBaseTestCase {

@rest

public void testProcess() {
RuntimeManager manager = createRuntimeManager("sample.bpmn"); k
RuntimeEngine engine = getRuntimeEngine(null);
KieSession ksession = engine.getKieSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");
// check whether the process instance has completed successfully
assertProcessInstanceCompleted(processInstance.getId(), ksession);
assertNodeTriggered(processInstance.getId(), "Hello");

manager.disposeRuntimeEngine (engine);
manager.close();

Figure 18.5. New jBPM project artifacts

The newly created project contains an example process file (sample.bpmn) in the src/main/re-
sources directory and an example Java file (ProcessTest.java) that can be used to test the process
in a jBPM engine. You'll find this in the folder src/main/java, in the com.sample package. All the
other JARs that are necessary during execution are also added to the classpath in a custom
classpath container called jBPM Library.

You can also convert an existing Java project to a jBPM project by selecting the "Convert to jBPM
Project" action. Right-click the project you want to convert and under the "Configure" category
(at the bottom) select "Convert to jBPM Project". This will add the jBPM Library to your project's
classpath.

18.1.3. New BPMNZ2 Process Wizard

You can create a new process simply as an empty text file with extension ".bpmn", or use the
"New BPMN2 Process" wizard to do so. To create a hew process, in the "File" menu select "New"
and then "Other ..." and under the jBPM category, select "BPMN2 Process" and click "Next >". In
the next dialog, you should select the folder where the process should be created (for example
the src/main/resources folder of your project) and a name for the process. Clicking "Finish" should
create your new process (by default it should only contain one start node) and open it so you can
start editing it.

18.1.4. jJBPM Runtime

A jBPM runtime is a collection of JAR files that represent one specific release of the jBPM project
JARs. To create a runtime, download the binary distribution of the version of jBPM you want to

435

jBPM Eclipse Plugin

use and unzip on your local file system. You must then point the IDE to the release of your choice
by selecting the folder where these JARSs are located. If you want to create a new runtime based
on the latest jBPM project JARs included in the plugin itself, you can also easily do that. You are
required to specify a default jBPM runtime for your Eclipse workspace, but each individual project
can override the default and select the appropriate runtime for that project specifically.

18.1.4.1. Defining a jBPM Runtime

To define one or more jBPM runtimes using the Eclipse preferences view you open up your Pref-
erences, by selecting the "Preferences” menu item in the menu "Window". A "Preferences"” dia-
log should show all your settings. On the left side of this dialog, under the jBPM category, select
"Installed jBPM runtimes". The panel on the right should then show the currently defined jBPM
runtimes. For example, if you used the jBPM Installer, it should look like the figure below.

Preferences

Installed jBPM Runtimes s

[IQ-

g = = = A - A

R

- =

General Add, remove or edit jBPM Runtime definitions. By default, the

Ant checked jBPM Runtime is added to the build path of newly created

BPMN?Z]BPM pI'D'jE'CtS.

Code Recommenders Installed jBPM Runtimes

Drools Name Location Add...

Guvnor jBPM runtime Jruntime
Help |
Install/Update
Java k
jBPM

Maven

Mylyn
Run/Debug
Team
Validation
WindowBuilder

XML [| 1 | E|

| | I | E|

@:‘u Cancel | | oK

To define a new jBPM runtime, click on the "Add" button. A dialog such as the one shown below
should pop up, asking for the name of your runtime and the location on your file system where
it can be found.

436

jBPM Eclipse Plugin

[= jBPM Runtime x

Either select an existing jBPM Runtime on your file system or create
a new one.

Name: |

|Create a new jBPM Runtime |

| Cancel | | OK |

In general, you have two options:

1. If you simply want to use the default JAR files as included in the jBPM Eclipse plugin, you can
create a new jBPM runtime automatically by clicking the "Create a new jBPM Runtime ..." but-
ton. A file browser will show up, asking you to select the folder on your file system where you
want this runtime to be created. The plugin will then automatically copy all required dependen-
cies to the specified folder. Make sure to select a unique name for the newly created runtime
and click "OK" to register this runtime.

Tip

Note that creating a jBPM runtime from the default JAR files as included in the
jBPM Eclipse plugin is only recommended to get you started the first time and
for very simple use cases. The runtime that is created this way only contains the
minimal set of JARs, and therefore doesn't support a significant set of features,
including for example persistence. Make sure to create a full runtime (using the
second approach) for real development.

2. If you want to use one specific release of the jBPM project, you should create a folder on
your file system that contains all the necessary jBPM libraries and dependencies (for example
by downloading the binary distribution and unzipping it on your local file system). Instead of
creating a new jBPM runtime as explained above, give your runtime a uniqgue name and click
the "Browse ..." button to select the location of this folder containing all the required JARs. Click
"OK" to register this runtime.

After clicking the OK button, the runtime should show up in your table of installed jBPM runtimes,
as shown below. Click on the checkbox in front of one of the installed runtimes to make it the

437

jBPM Eclipse Plugin

default jBPM runtime. The default jBPM runtime will be used as the runtime of all your new jBPM
projects (in case you didn't select a project-specific runtime).

You can add as many jBPM runtimes as you need. Note that you will need to restart Eclipse if
you changed the default runtime and you want to make sure that all the projects that are using
the default runtime update their classpath accordingly.

18.1.4.2. Selecting a runtime for your jBPM project

Whenever you create a jBPM project (using the New jBPM Project wizard or by converting an
existing Java project to a jBPM project), the plugin will automatically add all the required JARs
to the classpath of your project.

When creating a new jBPM project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
jBPM Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed jBPM runtimes will be
opened, so you can add new runtimes there.

You can change the runtime of a jJBPM project at any time by opening the project properties and
selecting the jBPM category, as shown below. Mark the "Enable project specific settings" check-
box and select the appropriate runtime from the drop-down box. If you click the "Configure work-
space settings ..." link, the workspace preferences showing the currently installed jBPM runtimes
will be opened, so you can add new runtimes there. If you deselect the "Enable project specific
settings" checkbox, it will use the default runtime as defined in your global workspace preferences.

438

jBPM Eclipse Plugin

Properties for jppm-project x

5?] jBPM & - -

I* Resource

[] Enable project specific settings Configure Workspace Settings...

b BPMNZ

Builders
Drools
Java Build Path

I Java Code Style
P Java Compiler
I» Java Editor

Javadoc Location

Project References
Run/Debug Settings
Task Repository
Task Tags
Validation

WikiText

| Restore Defaults | | Apply |

?) | cancel || oK |

18.1.5. jBPM Maven Project Wizard

The aim of the new Maven project wizard is to set up an executable sample project to start using
processes immediately (but not as normal Java project with all jBPM dependencies added using
a jBPM library but by using Maven (and thus a pom.xml) to define your project's properties and
dependencies. This wizard will set up a Maven project using a pom.xml, and include a sample
process and Java class to execute it. To create a new jBPM Maven project, in the "File" menu
select "New" and then "Project ..." and under the jBPM category, select "jBPM Project (Maven)".
Give your project a name and click finish. The result should be as shown below.

439

jBPM Eclipse Plugin

+ =2 jbpm-maven
= (@ src/main/java
~ B com.sample
[> [J] ProcessMain.java
v @ sro/main/resources
v = com.sample
& sample.bpmn
¥ = META-INF
K kmodule.xml
P =i JRE System Library [jdk1.7.0 03]
P =h JUnit 4
P = Maven Dependencies
P =src

= target
m| pom.xmil

Figure 18.6.

The pom.xml that is generated for your project contains the following:

<?xm version="1.0" encodi ng="UTF-8"?><project xm ns="http://nmaven. apache. or g/ POM 4. 0. 0"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" xsi : schemaLocation="http://
maven. apache. org/ POM 4. 0. 0 htt p: // maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd"> <nodel Ver si on>4. 0. 0</
nodel Ver si on> <gr oupl d>com sanpl e</ gr oupl d> <artifactld>j bpm exanpl e</artifactld>

<versi on>1. 0. 0- SNAPSHOT</ versi on> <nane>j BPM :: Sanpl e Maven Project</nane> <descripti on>A
sanpl e jBPM Maven project</description> <properties> <version. org.j bpne6. 0. 0. Fi nal </
version.org.jbpn> </properties> <repositories> <r eposi tory> <i d>j boss- publ i c-repository-
group</id> <nane>JBoss Public Repository G oup</nanme> <url >http://repository.jboss. org/
nexus/ cont ent/ groups/ public/</url> <rel eases> <enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy> </rel eases> <snapshot s> <enabl ed>t r ue</ enabl ed>
<updat ePol i cy>dai | y</ updat ePol i cy> </ snapshot s> </repository> </repositories>
<dependenci es> <dependency> <gr oupl d>or g. j bpn/ gr oupl d> <artifactld>j bpmtest</
artifactld> <ver si on>${ version. org. j bpn} </ versi on> </ dependency> </ dependenci es></
proj ect >
><proj ect xm ns="http://maven. apache. or g/
POM 4. 0. 0" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
i nstance" xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// naven. apache. or g/
xsd/

maven-4. 0. 0. xsd"> <nodel Ver si on>4. 0. 0</

440

jBPM Eclipse Plugin

nodel Ver si on> <groupl d>com sanpl e</
groupld> <artifactld> bpm exanpl e</
artifactld> <version>1.0.0- SNAPSHOT</

version> <nane>j BPM :: Sanple Maven Project </
name> <description>A sanpl e j BPM Maven proj ect </

descri ption>
<properties> <versi on. org.j bpm6. 0. 0. Fi nal </
version.org.jbpm </

properties>
<repositories>

<repository> <i d>j boss- publ i c-reposi tory-group</
id> <nanme>JBoss Public Repository G oup</

name> <url>http://repository.jboss. org/nexus/content/groups/public/</
url >

<rel eases> <enabl ed>t rue</

enabl ed> <updat ePol i cy>never </

updat ePol i cy> </

rel eases>

<snapshot s> <enabl ed>t r ue</

enabl ed> <updat ePol i cy>dai | y</

updat ePol i cy> </

snapshot s> </

repository> </

repositories>
<dependenci es>

<dependency> <gr oupl d>or g. j bpnx/

groupl d> <artifact!ld> bpmtest</
artifactld> <ver si on>${version. org. j bpn} </
versi on> </

dependency> </
dependenci es></

In the properties section, you can specify which version of jBPM you would like to use (by default
it uses 6.0.0.Final). It adds the JBoss Nexus Maven repository (where all the jBPM JARs and their
dependencies are located) to your project and configures the dependencies.

Note

By default, only the jppm-test JAR is specified as a dependency, as this has tran-
sitive dependencies to almost all of the core dependencies you will need. You are
free to update the dependencies section however to include only the dependencies
you need.

The project also contains a sample process, under src/main/resources, in the com.sample pack-
age, and a kmodule.xml configuration file under the META-INF folder. The kmodule.xml defines
which resources (processes, rules, etc.) are to be loaded as part of your project. In this case, it is
defining a kbase called "kbase" that will load all the resources in the com.sample folder:

441

jBPM Eclipse Plugin

<krmodul e xm ns="http://jboss. org/ ki e/ 6.0.0/ knodul e"> <kbase nane="kbase" packages="com sanpl e"/
></ knodul e>

knmodul e"> <kbase nane="kbase"

packages="com sanpl e"/ >

Finally, it also contains a Java class that can be used to execute the sample process. It will first cre-
ate a kbase called "kbase" (by inspecting the kmodule.xml file and thus loading the sanpl e. bprm
process) and then use a Runt i nreManager to get access to a Ki eSessi on and TaskSer vi ce. Inthis
case, it is used to start a process and then complete the tasks created by this process one by one.

18.1.6. Drools Eclipse plugin

The Drools Eclipse Plugin, which is bundled as part of the same Eclipse Update Site as the jBPM
Eclipse Plugin, provides similar features for creating and editing business rules, and execute them
using the Drools engine. This for example allows you to create and edit .drl files containing busi-
ness rules. You can combine your processes and rules inside one project and execute them to-
gether on the same KieSession.

18.2. Debugging

This section describes how to debug processes using the jBPM Eclipse plugin. This means that
the current state of your running processes can be inspected and visualized during the execution.
Note that we currently don't allow you to put breakpoints on the nodes within a process directly.
You can however put breakpoints inside any Java code you might have (i.e. your application code
that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be
evaluated in the context of a process). At these breakpoints, you can then inspect the internal
state of all your process instances.

When debugging the application, you can use the following debug views to track the execution
of the process:

1. The process instances view, showing all running process instances (and their state). When
double-clicking a process instance, the process instance view visually shows the current state
of that process instance at that point in time.

2. The audit view, showing the audit log (note that you should probably use a threaded file logger
if you want to session to save the audit event to the file system on regular intervals, so the audit
view can be update to show the latest state).

3. The global data view, showing the globals.

4. Other views related to rule execution like the working memory view (showing the contents (data)
in the working memory related to rule execution), the agenda view (showing all activated rules),
etc.

442

jBPM Eclipse Plugin

18.2.1. The Process Instances View

The process instances view shows the process instances currently running in the selected kses-
sion. To be able to use the process instances view, first open the Process Instances view (Win-
dow - Show View - Other ... and under the Drools category select Process Instances and Process
Instance). Tip: it might be useful to drag the Process Instance view to the Outline View and slightly
enlarge it, as shown in the screenshot below, so you can see both the Process Instances and
Process Instance views at the same time.

Next, use a (regular) Java breakpoint to stop your application at a specific point (for example
right after starting a new process instance). In the Debug perspective, select the ksession you
would like to inspect, and the Process Instances view should show the process instances that
are currently active inside that ksession. For example, the screenshot below shows one running
process instance (with id "1"). When double-clicking a process instance, the process instance
viewer will graphically show the progress of that process instance. An example where the process
instance is waiting for a human actor to perform "Task 1" is shown below.

Debug - jbpm-advanced/src/main/java/com/sample/ProcessTest.java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help

I Eoielsd22R|[TR R0 Q- ®P P 08 f GG (# Quick Access ;]@\mm@

35 Debug 2 ¥ =1 ®=Variables 8 “s Breakpoints =k ¥ =8
< o Thread [main] (Suspended) Name | Value

D)

FrameworkMethod$1.runReflectiveCall() line: 47
FrameworkMethods1(ReflectiveCallable) nin() line: 12

PruessTest.testh[Ess() \inE: 28 b © manager singletonRuntimeManager (id=47)

= dA d, Object, Object[]) line: not available [native method] b © engine SynchronizedRuntimelmpl (id=52)

= da invoke(Object, Object(]) line: 57 » % ksession StatefulknowledgeSessionimpl (id=57)

= DelegatingMethoda invoke(Object, Object(]) line: 43
= Method.invoke(Object, Object...) line: 601 org.drools.core.impl.StatefulknowledgeSessionInpl@416e4786

[@) ProcessTest.java % = g 2 outline ¢ Process Instance = B

@Test ~
public void testProcess() {
RuntimeManager manager = createRuntimeManager("sample.bpmn");

RuntimeEngine engine = getRuntimeEngine(null);
KieSession ksession = engine.getKieSession(); O fTask 1 & Task 2 ©
TaskService taskService = engine.getTaskService();

ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

1 = Hello World[com.sample.bpmn.hello] 2 ‘

assertProcessInstanceActive(processInstance.getId(), ksession);
assertNodeTriggered(processInstance.getld(), "Task 1");

El console & Tasks ¢ Process Instances 13 | £ junit

[1]= RuleFlowProcessinstance (id=5904)

aid=1
P a processName= "Hello World" (id=5908)
b a processid= "com.sample.bpmn.hello” (id=5907)
P & nodelnstances= Object]] (id=5917)

443

jBPM Eclipse Plugin

Tip

When you double-click a process instance in the process instances view and the
process instance view complains that it cannot find the process, this means that the
plugin wasn't able to find the process definition of the selected process instance in
the cache of parsed process definitions. To solve this, simply change the process
definition in question and save again (so it will be parsed) or rebuild the project that
contains the process definition in question.

18.2.2. The Audit View

The audit view can be used to show the all the events inside an audit log in a tree-based manner.
An audit log is an XML-based log file which contains a log of all the events that occurred while
executing a specific ksession. To create a logger, use KieServices to create a new logger and
attach it to a ksession. Be sure to close the logger after usage.

Ki eRunti meLogger | ogger = KieServices. Factory. get().getLoggers()
. newThr eadedFi | eLogger (ksessi on, "nylogfile", 1000);

/1 do sonething with the ksession here

| ogger . cl ose();

To be able to use the Audit View, first open it (Window - Show View - Other ... and under the
Drools category select Audit). To open up a log file in the audit view, open the selected log file in
the audit view (using the "Open Log" action in the top right corner), or simply drag and drop the
log file from the Package Explorer or Navigator into the audit view. A tree-based view is generated
based on the data inside the audit log. An event is shown as a subnode of another event if the
child event is caused by (a direct consequence of) the parent event. An example is shown below.

= =, RuleFlow started: ruleflow[com.sample.ruleflow]
= #) RuleFlow node triggered: Start in process ruleflow[com.sample. ruleflow]
=) RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
= $] RuleFlow node triggered: End in process ruleflow[com sample ruleflow]

=z RuleFlow completed: ruleflow[com.sample.ruleflow]

Tip

Note that the file-based logger will only save the events on close (or when a certain
threshold is reached). If you want to make sure the events are saved on a regular
interval (for example during debugging), make sure to use a threaded file logger,
so the audit view can be update to show the latest state. When creating a threaded

444

jBPM Eclipse Plugin

file logger, you can specify the interval after which events should be saved to the

file (in milliseconds).

18.3. Synchronizing with Workbench Repositories

From Eclipse, you can synchronize your local workspace with one or more repositories that are
managed inside the workbench application. This enables collaboration between developers using
Eclipse and users of the web-based workbench (business analysts or end users for example).
Synchronization between the workbench repositories and your local version of these projects is
done using Git (a popular distributed source code version control system).

When creating and executing processes inside Eclipse, you are creating them on your local file
system. You can however also import an existing repository from the Workbench, apply changes
and push these changes back into the Workbench repositories. We are using existing Git tools
for this. Note that this section will describe how to do this using the EGit tooling (Eclipse Tooling
for Git which comes by default with most versions of Eclipse), but feel free to use your preferred
Git tool instead.

@ Note
This section is not intended to explain what Git is, or how to use EGit, in detail. If
you don't have any experience with Git and/or EGit, it might be recommended to
read up on them first if necessary.

18.3.1. Importing a workbench repository

To import an existing repository from the workbench, you can use the EGit import wizard. In the
File menu, select "Import ..." and in the Git category, select "Projects from Git" and click "Next
>". This should open a new dialog where you should select the location of the repository you
would like to import. Since we are connecting to a repository that is managed by the workbench
application, select "URI" and click "Next >" once more.

Use the following URI to connect to your workbench repositories:
ssh:// <host nane>: 8001/ <r eposi t ory_name>

For example, if you are running the workbench application on your local host (for example by using
the jopm-installer), and you want to import the jopm-playground repo, use the following URI:

ssh://1ocal host: 8001/j bpm pl aygr ound

445

jBPM Eclipse Plugin

Note that you can change the port that is used by the server to provide ssh access to the git

repository if necessary, using the system property org. uberfire. nio.git.ssh. port

Fill in the URI of the repository you would like to import, as for example shown below, and click

"Next >".

-

Source Git Repository

Import Projects from Git

Enter the location of the source repository.

ul'.|

Location
URI: ?[ISSh:,I'fkﬁSﬁ.r@IDcthDSt:Bﬂﬂljjbpm-playgmund] |L0cal File...|
Host: [IucthDSt

l

Repository path: [jbpm-playgmund

l

Connection

Protocol: | ssh | < |

Authentication

User: [kn’su

Password:

Store in Secure Store [

@

=< Back || Next =

| | Cancel

Figure 18.7.

You will be asked to select which branch you would like to import. Select the master branch and

click "Next >" again.

Finally, you need to specify where on your local file system you would like this repository to be
created. Fill in the directory (you can use the Browse button to select the folder in question, and if
necessary you can create a new folder there as well) and click "Next >". This will now download
the repository to the folder you just selected.

446

jBPM Eclipse Plugin

e Import Projects from Git
Local Destination i
. . . L | |
Configure the local storage location for jopm-playground. =
Destination
Directory: [JtBackedUpfjBPM-G.D.{}.Final,fjbpm-instalIerfjbpm-playgmund” |EI‘Dﬂ5E‘|
Initial branch: | master 2

[] Clone submodules

Configuration

Remote name: [Dn'gin

@ < Back || Next > | | Cancel

Figure 18.8.

You still need to import the repository you just downloaded as a project in your Eclipse workspace.
Select "Import as general project” and after clicking "Next >", give it a name and click "Finish".
After doing so, your workspace should now contain your repository, and you should be able to
browse, open and edit the various assets inside.

447

jBPM Eclipse Plugin

File Edit Source Refactor Navigate Search Proj

PN -0 QN

.

¥ Package Explorer &2 == ¥ o=

¥ =% = jbpm-playground [jbpm-playground master]
I % async-examples
P = CustomersRelationship
[= Evaluation
b EHR
I 5 IntegrationTests

Figure 18.9.

18.3.2. Committing changes to the workbench

You can commit and push changes (you do locally) back to the workbench repositories. To commit
changes, right-click on your repository project and select "Team -> Commit ...". A new dialog pops
up, showing all the changes you have on your local file system. Select the files you want to commit
(if you double-click them, you can get an overview of the changes you did for that file), provide
an appropriate commit message and click "Commit".

448

jBPM Eclipse Plugin

e Commit Changes 4

Commit Changes to Git Repository

waull

Commit message

g 7 g~

“Updates to the Evaluation process| [~
Author: krisv <kris.verlaenen@gmail.com=

Committer: krisv <kris.verlaenen@gmail.com> k
Files (1/2) 2]]
Status | Path

V] & Evaluation/src/main/resources/evaluation.opmn2

[J[» .project

(‘E‘} Commit and Eu5h| | Cancel | | Commit

Figure 18.10.

Once you've committed your change to your local git, you still need to push it to the workbench
repository. Right-click your project again, and select "Team -> Push to Upstream”.

@ Note

You are only allowed to push changes upstream if your local version includes all
recent changes (otherwise you might be overriding someone else's changes). You

449

jBPM Eclipse Plugin

might be forced to update (and if necessary resolve conflicts) before you are al-
lowed to commit any changes.

18.3.3. Updating from to the workbench

To retrieve the latest changes from the workbench repository, right-click your repository project
and select "Team -> Fetch from Upstream"”. This will fetch all changes from the workbench repos-
itory, but not yet apply them to your local version. Now right-click your project again and select
"Team -> Merge ...". In the dialog that pops up next, you need to select "origin/master" branch
(under Remote Tracking) to indicate that you want to merge in all changes from the original repos-
itory in the workbench, and click "Merge".

450

jBPM Eclipse Plugin

¢ Merge 'master’

Merge 'master’

Select a branch or tag to merge into the 'master’ branch

type filter text d]

- = Local
8. master
+ (= Remote Tracking

& origin/master
Tags

Merge options

@ Commit (commit the result)

) Squash (do not make a commit)

Cancel | | Merge

Figure 18.11.

451

jBPM Eclipse Plugin

18.3.4. Working on individual projects

When you import a repository, it will download all the projects that are inside that repository. It is
however useful to mount one specific project as a separate Java project in Eclipse. When you do
this, Eclipse will be able to interpret the information in the project pom.xml file (that you created in
the workbench), download and include any dependencies you specified, compile any Java classes
you have in your project (that you for example created with the data modeler), etc.

To do so, right-click on one of the projects in your repository project and select "Import ..." and
under the Maven category, select "Existing Maven Projects” (as shown below) and click Next.

452

jBPM Eclipse Plugin

Select
. . al
Import Existing Maven Projects H

Select an import source:

P = General

b = CVS

P = Git

P = Guvnor

P = Install

v = Maven
4 Check out Maven Projects from SCM
[, Install or deploy an artifact to a Maven repository
L Materialize Maven Projects from SCM

P = Run/Debug

P (= Tasks

P = Team

P = XML

@

Next = l [Cancel Finish

Figure 18.12.

In the next page, you should see the pom.xml of the project you selected. Click Finish.

453

jBPM Eclipse Plugin

e Import Maven Projects x
Maven Projects
Select Maven projects
Root Directory: PM-6.0.0.Final/jbpm-installer/jbpm-playground/Evaluation | Browse... |
Projects:
fpom.xml org.jbpm:Evaluation: 1.0:jar | Select All |
| Deselect All |
Refresh
[] Add project(s) to working set
v Advanced
3
@:l < Back || Next > | | Cancel | | Finish

Figure 18.13.

If your project requires some of the jBPM libraries to correctly compile and/or execute any Java
classes in your project (for example if you have test classes in your project that start up a jBPM
engine and execute some tests for your project, or if you are using the data modeler, which will
add some annotations to the generated Java classes), you still need to add the jBPM libraries to
the classpath of your project. To do so, simply convert your project into a jBPM project, which will
add the jBPM library to your project's classpath. Right-click your project and select "Configure ->

454

jBPM Eclipse Plugin

Convert to jBPM Project”. Your project should now have a jBPM Library added to its classpath (it
might be necessary to clean your project to pick up this change and recompile all Java classes).

File Edit Source Refactor Navigate Search Project

B 3 - Q0 - @ v w0 d
[# Package Explorer 2 | %= Navigator = O
S = ¥

v = Evaluation
8 src/main/java
[» = src/main/resources
src/test/java
(# srcftest/resources
P =i JRE System Library [|25E-1.5]
D =
[» = srIcC
= target
| pom.xmil
=| project.imports
P =% = jbpm-playground [jbpm-playground master]

Figure 18.14.

455

Chapter 19. Eclipse BPMN 2.0
Modeler

19.1. Overview

The Eclipse BPMN 2.0 Modeler allows you to specify business processes, choreographies, etc.
using the BPMN 2.0 XML syntax (including BPMNDI for the graphical information). The editor
itself is based on the Eclipse Graphiti framework and the Eclipse BPMN 2.0 EMF meta-model.

Features:

* It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,
annotations and all the BPMN2 node types).

« Added additional support for the few custom attributes that jBPM introduces using a special
jBPM Target Runtime.

« Allows you to configure which elements and attributes you want use when modeling processes
(so we can limit the constructs for example to the subset currently supported by jBPM, which
is a profile supported by default, or even more if you like).

The BPMN2 Modeler project is being developed at eclipse.org, sponsored by Red Hat/JBoss.
Red Hat understands the benefits of developing software in the community, and therefore, the
Eclipse BPMN 2.0 Modeler was developed not just for the jBPM project only, but it can be used
in a much broader context and is fully spec compliant. jJBPM-specific features are developed as
part of a separate jBPM Target Runtime. We welcome other organizations in contributing to this
modeler as well and (re)using the generic functionality and/or defining their own target runtime if
necessary. Not only is this a good thing for the community, but it also leaves the path open for the
jBPM suite to evolve as new features are requested by customers.

Many thanks go out to the people at Codehoop that did a great job in creating a first version of
this editor.

19.2. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the
Eclipse BPMN2 Modeler and the Drools and jBPM Eclipse plugin (with a full jBPM runtime pre-
configured).

Tip

Using the jBPM installer is definitely the recommended starting point for most
users.

456

Eclipse BPMN 2.0 Modeler

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you
need Eclipse 3.6.2 (Helios) or newer. To install, startup Eclipse and install the Eclipse BPMN 2.0
Modeler from the following update site (from menu Help -> Install new software and then add the
update site in question by clicking the Add button, filling in a name and the correct URL as shown
below). It will automatically download all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/updates/helios
Eclipse 3.7 - 4.2.1 (Indigo - Juno): http://download.eclipse.org/bpmn2-modeler/updates/juno
Eclipse 4.3 (Kepler): http://download.eclipse.org/bpmn2-modeler/updates/kepler

The project is hosted at eclipse.org and open for anyone to contribute. The project home page
can he found here:

http://http://eclipse.org/bpmn2-modeler/

Sources are available here (using Eclipse Public License v1.0):
https://qgit.eclipse.org/c/lbpmn2-modeler/org.eclipse.bpmn2-modeler.git

A community forum for posting questions and exchanging ideas is also available here:
http://www.eclipse.org/forums/

A Bugzilla bug tracking system is available for reporting new bugs, or checking the status of
existing bugs, here:

https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler

19.3. Documentation

The Eclipse BPMN 2.0 Modeler documentation is available at:
http://eclipse.org/bpmn2-modeler/documentation.php

It contains various screencasts but also a full user guide, describing all its features in detail:
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Here are some screenshots of the editor in action.

457

http://download.eclipse.org/bpmn2-modeler/updates/helios
http://download.eclipse.org/bpmn2-modeler/updates/juno
http://download.eclipse.org/bpmn2-modeler/updates/kepler
http://http://eclipse.org/bpmn2-modeler/
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://www.eclipse.org/forums/
https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler
http://eclipse.org/bpmn2-modeler/documentation.php
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Eclipse BPMN 2.0 Modeler

e

File Edit View igale Search Project Bun Window Help
Cr-BE& BrO-Qr HEY B LRy
DR E| ke R R BN Q@ s -
% Package E| % Navigator 52 = W =0
o B|BSE T 2% Palette >
= BPMN2Test B Hello Sub Process [+ Select

= bpmn -
i~ Marquee

= .settings -
= Store Task (= Connectors 0
] project — Sequence Flow

x bookxml StartSubProcess + (= Tasks o
[S] books.xsd StartProcess EndProcess -
[&] choreography_1.bpmn =] Task

[collaberation_L.bpmn o User Task

[S] CustomersOrders.xsd EscalationEvent | s |
[S] DataDefinitions.xsd (= Gateways <@
[&) drools.bpmn2 @Incluswe

B| email.png Gateway
email.wid = | Chsbehvivess |
GenerateData.wid 5 Goodbye B (7= Events 40
AP Interfaces.wsdl W —~

[8] process_1.bpmn EndProcess () Start Event

[&] process_2.bpmn O End Event

3.y
% process o = Event Deinitions
[2] techroadmap.bpmn (Ealataftems
testwid (= Other
[8] TimerBoundaryEventCyclel bpi (= Custom Task

= OASIS-Samples =
=2 Test [Problems (@ Javadoc ﬂ% Declaration (D Properties &% [8

& Tetr A Timer Boundary Event Process
= .settings
;
[X] .project Description
[&] choreography_1.bpmn

A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out -
||| Diagram work. A Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -

[&] choreography_2.bpmn
[collaboration_L.bpmn Interfaces
@ collaboration_2.bpmn Data Itemns + Attributes
[8] collaboration_3.bpmn Dehintons -
[& collaboration_4.bprmn Id TimerBoundaryEvent

[&) collaboration_5.bpmn Mame Timer Boundary Event Process
[collaboration_6.bpmn
Bl ermail nnn

]] 3

D<>

Figure 19.1.

T provers (o i =il

-1 Hello Sub Process

Description * Attributes

Sub Process Loop Characteristics @ Maone 7 Multi-Instance

Add | Marme | Id

Figure 19.2.

458

Eclipse BPMN 2.0 Modeler

File Edit View MNavigate Search Project Run Window Help
CO-HE& F-O0-QUr HFE- EEF S e
&% Bodhef ool | F M| & & 0% -
[% Package E | % Mavigator 52 =g =g
g9 2,
r & ‘ g v ¥ Palette
=5 BPMM2Test 1= Hello Sub Process [}) .
= .bpmn =
(= settings (= Connectors @
& Storg Task -
E :’C‘J:Ct | + - (= Tasks m
ookxm StartSubProcess "
@ books.xsd E.. g =) ‘f‘
StartProcess EndProcess
[] choreography_Lbpmn (= Gateways @
[E] collaboration_1.bpmn A
- @)
[S] CustomersOrders.xsd EscalationEvent - @ @
[5| DataDefinitionsxsd (= Events @
El droo.lls.bpmnz QO DD e
email.png —
emailwid (= Event Definitions <
GenerateData.wid Goodbye Lt L o2 AN @
AP Interfaces.wsdl = (= Data kems P
[£] process_1.bpmn EndPracess
[process_ 2.bpmn
[E] process 3.bpmn)
[process 4.bpmn = = [
[2 techroadmap.bpmn
testwid
[] TimerBoundaryEventCyclel bpi
1= OASIS-Samples
=% Test
(= Tetra (= Custom Task
= .settings
@ .project E_(Problems | = Properties i = ¥ =0

[E] choreography_L.bpmn
[choreography_2.bpmn
[E] collaboration_1.bpmn
[£] collaboration_2.bpmn
[collaboration_2.bpmn
[E] collaboration_4.bpmn
[£) collaboration_5.bpmn
[E] collaboration_6.bpmn
|Bs| email.png
< n |

Timer Boundary Event Process

I
Description A Process Diagram describes a sequence or flow of Activities in an organization with the objective of carrying out =
Diagram work. & Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Interfaces Sequence Flows that define finite execution semantics. Processes can be defined at any level from enterprise-wide -
Data ltems = Attributes
Definitions Id TimerBoundaryEvent
Name Timer Boundarv Event Process

né

Figure 19.3.

459

Part V. Integration

Integrating jBPM with other technologies, frameworks, etc.

Chapter 20. Integration

20.1. Maven

Apache Maven is used by jBPM for two main purposes:

« as deployment units that gets installed into runtime environment for execution

 as dependency management tool for building systems based on jBPM - embedding jBPM into
application

20.1.1. Maven artifacts as deployment units

Since version 6, jBPM provides simplified and complete deployment mechanism that is based
entirely on Apache Maven artifacts. These artifacts also known as kjars are simple JAR files that
include a descriptor for KIE system to produce KieBase and KieSession. Descriptor of the kjar is
represented as XML file named kmodule.xml and it can be:

« empty to apply all defaults

« custom configuration of KieBase and KieSession

<knodul e xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xm ns="http://jboss. org/
ki e/ 6. 0. 0/ knmodul e" >
</ knodul e>

Empty kmodule.xml that provides all defaults for the kjar:

 single default KieBase that

» contains all assets from all packages

* event processing mode set to - cloud

 equality behaviour set to - identity

 declarative agenda is disabled

» scope set to - ApplicationScope - valid for CDI integrations only
« single default stateless KieSession that

* is bound to above (single, default) KieBase

461

Integration

 clock type is set to - real time

» scope set to - ApplicationScope - valid for CDI integrations only
 single default stateful KieSession that

« is bound to above (single, default) KieBase

» clock type is set to - real time

» scope set to - ApplicationScope - valid for CDI integrations only

All these and more can be configured manually via kmodule.xml when defaults are not enough.
The complete set of elements can be found in xsd schema [https://github.com/droolsjbpm/drool-
sjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd] of kmodule.xml.

<kmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://jboss. org/ ki e/ 6.0.0/ knodul e">
<kbase nane="def aul t Ki eBase" default="true" eventProcessi ngvbde="cl oud" equal sBehavi or="identity" decl arati veAge

<ksessi on nane="def aul t Ki eSessi on" type="stateful" default="true" clockType="realtine" scope="javax.enterprise. (
<wor kI t erHandl er s>
<wor kI t enHandl er nanme="Cust onmTask" type="FQCN_OF_HANDLER' />
</ wor kI t enHandl er s>
<l i steners>
<listener type="FQCN_OF EVENT_LI STENER" />
</listeners>
</ ksessi on>

<hames| def aul t St at el essKi eSgss+'osit'd¢fehelstd~d¢k Tepe="reabperE'avax. ent er pri se. cont ext . Appl i cati onScoped"/
>

</ kbase>
</ kmodul e>

As illustrated in the listing above the kmodule.xml provides flexible way of instructing the runtime
engine on what should be configured and how. The example above does not present all available
options, but these are the most common when working with processes.

Note

Important to note is that when using RuntimeManager, KieSession instances are
created by the RuntimeManager instead of by KieContainer but kmodule.xml (or
model in general) is aways used as a base of the construction process. KieBase
although is always taken from KieContainer.

Kjars are represented same way as any other Maven artifact - by Group Artifact Version which
is then represented as Releaseld in KIE API. This the the only thing required to deploy kjar into
runtime environment such as KIE Workbeanch.

462

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd

Integration

20.1.2. Use Maven for dependency management

When building systems that embed jBPM as workflow engine the simplest way is to configure all
dependencies required by jBPM via Apache Maven. jBPM provides set of BOMs (Bill Of Material)
to simplify what artifacts needs to be declared. Common way to start with integration of custom
application and jBPM is to define dependency management:

<properties>
<proj ect . bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
<versi on. or g. drool s>6. 0. 0. Fi nal </ versi on. org. dr ool s>
<version.org.jbpn6. 0. 0. Fi nal </ version. org.j bpnm>
<hi ber nat e. ver si on>4. 2. 0. Fi nal </ hi ber nat e. ver si on>
<hi ber nat e. cor e. versi on>4. 2. 0. Fi nal </ hi ber nat e. core. versi on>
<sl f 4j . versi on>1. 6. 4</ sl f 4j . ver si on>
<j boss. j avaee. versi on>1. 0. 0. Fi nal </ j boss. j avaee. ver si on>
<l ogback. ver si on>1. 0. 9</ | ogback. ver si on>
<h2.version>1. 3. 161</ h2. ver si on>
<bt m versi on>2. 1. 4</ bt m ver si on>
<junit.version>4.8.1</junit.version>
</ properties>
<dependencyManagenent >
<dependenci es>
<!'-- define drools BOM -->
<dependency>
<groupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bom</artifactld>
<t ype>ponx/type>
<ver si on>${versi on. org. drool s} </ ver si on>
<scope>i nport </ scope>
</ dependency>
<!'-- define drools BOM -->
<dependency>
<groupl d>or g. j bpnx/ gr oupl d>
<artifactld> bpm bonk/artifact!d>
<t ype>ponx/type>
<versi on>${version.org. j bpn}</versi on>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

Above should be declared in top level pom.xml so all modules that need to use KIE (drools and
jBPM) API can access it.

Next, module(s) that would operate on KIE API should declare following dependencies:

<dependency>
<groupl d>or g. j bpnx/ gr oupl d>
<artifactld> bpmflow</artifactl|d>
</ dependency>
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifactld> bpmflow builder</artifactld>

463

Integration

</ dependency>
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifact!ld> bpm bpm2</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifact!|d>j bpm persistence-jpa</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifact!d> bpm human-task-core</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. j bpnx/ gr oupl d>
<artifact!|d> bpmruntime-manager</artifactld>
</ dependency>
<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>${sl f 4j . versi on} </ ver si on>
</ dependency>

Above are the main runtime dependencies, regardless of where the application is deployed (ap-
plication server, servlet container, standalone app). A good practice is to test the workflow com-
ponents to ensure they work properly before actual deployment and thus following test depen-
dencies should be defined:

<!-- test dependencies -->

<dependency>
<groupl d>or g. j bprm</ gr oupl d>
<artifact!|d>j bpm shared-services</artifactld>
<cl assi fier>btme/cl assifier>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>ch. gos. | ogback</ gr oupl d>
<artifact!|d>l ogback-classic</artifactld>
<ver si on>%{| ogback. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<versi on>%{j uni t.version}</version>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-entitymanager</artifactld>
<ver si on>%${ hi ber nat e. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>

464

Integration

<artifact!ld>hi bernate-core</artifactld>
<ver si on>%{ hi bernat e. core. versi on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<ver si on>%${ h2. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. codehaus. bt m</ gr oupl d>
<artifactld>btm/artifactld>
<ver si on>%${ bt m ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

Last but not least, define the JBoss Maven repository for artifacts resolution:

<repositories>
<repository>
<i d>j boss- publ i c-reposi tory-group</id>
<nane>JBoss Public Repository G oup</nanme>
<url>http://repository.jboss. org/ nexus/content/groups/public/</url>
<rel eases>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
<snapshot s>
<updat ePol i cy>dai | y</ updat ePol i cy>
</ snapshot s>
</repository>
</repositories>

That should allow to configure jBPM in your application and provide access to KIE API to operate
on processes, rules, events.

20.2. CDI

20.2.1. Overview

jBPM 6 comes with out of the box integration with CDI (Contexts and Dependency Injection).
Although most of the API can be used in CDI world there are some dedicated modules that are
designed especially for CDI containers. The most important one is jopm-services-cdi that provides
cdi wrappers on top of jopm services, these shall be used in most of the cases were CDl is available
for jBPM integration. It provides following set of services:

» DeploymentService

* ProcessService

465

Integration

» UserTaskService
* RuntimeDataService
» DefinitionService

These services are first class citizens for CDI world so they are available for injection in any other
CDI bean.

20.2.1.1. DeploymentService

Service responsible for deploying DeploymentUnits into runtime environment. By deploying
given deployment unit becomes ready for execution and has RuntimeManager created for
it. DeploymentService can next be used to retrieve:

* RuntimeManager instance for given deployment id
» DeployedUnit that represents complete deployment process for given deployment id
« list of all deployed units known to the deployment service

Deployment service stores the deployed units by default in memory and thus in case of a need
to restore all previously deployed units, component that uses deployment service needs to store
that information itself. Common places for such a store are database, file system, repository of
some sort, etc. Deployment service will fire CDI events on deployment and undeployment to allow
application components to react real time to these events to be able to store deployments or
remove them from the store when they are undeployed.

« DeploymentEvent with qualifier @Deploy will be fired on deployment
» DeploymentEvent with qualifier @Undeploy will be fired on undeployment
use CDI observer mechanism to get notification on above events. First to save deployments in

the store of your choice:

public void saveDepl oyment (@bserves @epl oy Depl oynment Event event) {
/'l store deployed unit info for further needs
Depl oyedUnit depl oyedUnit = event. get Depl oyedUnit();

next to remove it when it was undeployed

public void renpveDepl oynent (@bserves @hndepl oy Depl oyment Event event) {
/'l renpove deploynent with id event. get Depl oynent|d()

}

466

Integration

@ Note

Deployment service comes with deployment synchronization mechanism that al-
lows to persist deployed units into data base (since version 6.2) that is by default
enabled. See jbpm services section for more details.

Due to the fact that there might be several implementation of DeploymentService use of qualifiers
is needed to instruct CDI container which one shall be injected. jBPM comes with two out of the
box:

* @Kjar - KmoduleDeploymentService that is tailored to work with KmoduleDeploymentUnits that
are small descriptor on top of a kjar - recommended to use in most of the cases

« @Vfs - VFSDeploymentDService that allows to deploy assets directly from VFS (Virtual File
System) that is provided by UberFire framework [http://droolsjbpm.github.io/uberfire/]. Due to
that fact VFSDeploymentService and VFSDeploymentUnit are not bundled with jopm core mod-
ules but with jppm-console-ng modules.

The general practice is that every implementation of DeploymentService should come with dedi-
cated implementation of DeploymentUnit as these two provided out of the box.

20.2.1.2. FormProviderService

FormProviderService provides access to form representations usually displayed on Ul for both
process forms and user task forms. It is built on concept of isolated FormProviders that can provide
different capabilities and be backed by different technologies. FormProvider interface describes
contract for the implementations

public interface FornProvider {
int getPriority();
String render(String name, ProcessDesc process, Map<String, Object> renderContext);

String render(String name, Task task, ProcessDesc process, Map<String, Object> renderContext);

Implementations of FormProvider interface should always define priority as this is the main dri-
ver for the FormProviderService to ask for the content of the form of a given provider. Form-
ProviderService will collect all available providers and iterate over them asking for the form content
(rendered) in their priority order. The lower the number the higher priority it gets during evaluation,
e.g. provider with priority 5 will be evaluated before provider with priority 10. FormProviderService
will iterate over available providers as long as one delivers the content. In the worse case sce-
nario, simple text based forms will be returned.

467

http://droolsjbpm.github.io/uberfire/
http://droolsjbpm.github.io/uberfire/

Integration

jBPM comes with following FormProviders out of the box:

» Fremarker based implementation to support jopm version 5 process and task forms - priority 3

» Default forms provider, considered last resort if none of the other providers deliver content this
one will always provide simplest possible forms - lowest priority (1000)

+ when form modeler is used there is additional FormProvider available to deliver forms modeled
in that tool - priority 2

20.2.1.3. RuntimeDataService

RuntimeDataService provides access to actual data that is availabe on runtime such as

* available processes to be executed - with various filters
* active process instances - with various filters

* process instance history

* process instance variables

 active and completed nodes of process instance

Default implementation of RuntimeDataService is observing deployment events and index all de-
ployed processes to expose them to the calling components. So whatever gets deployed Run-
timeDataService will be aware of that.

20.2.1.4. DefinitionService

Service that provides access to process details stored as part of BPMN2 XML.

@ Note
Before using any method that provides information, buildProcessDefinition must
be invoked to populate repository with process information taken from BPMN2 con-
tent.

BPMN2DataService provides access to following data:

« overall description of process for given process definition

« collection of all user tasks found in the process definition

468

Integration

« information about defined inputs for user task node

« information about defined outputs for user task node

« ids of reusable processes (call activity) defined within given process definition
« information about process variables defined within given process definition

« information about all organizational entities (users and groups) included in the process defini-
tion. Depending on the actual process definition the returned values for users and groups can
contain

* actual user or group name

 process variable that will be used to get actual user or group name on runtime e.g. #{manager}

20.2.2. Configuring CDI integration

To make use of jppm-services-cdi in your system you'll need to provide some beans for the out
of the box services to satisfy all dependencies they have. There are several beans that depends
on actual scenario

 entity manager and entity manager factory
« user group callback for human tasks
« identity provider to pass authenticated user information to the services

When running in JEE environment like an JBoss Application Server following producer bean
should satisfy all requirements of the jbpm-services-cdi

public class Environnent Producer {

@ersi stenceUni t (uni t Name = "org.j bpm donai n")
private EntityManager Factory enf;

@ nj ect
@el ect abl e
private User Groupl nf oProducer user Groupl nf oProducer;

@ nj ect
@ ar
private Depl oynent Servi ce depl oynent Servi ce;

@°r oduces
public EntityManager Factory get EntityManager Factory() {
return this.enf;

@r oduces
public org.kie. api.task. User G oupCal | back produceSel ect edUser G oupCal back() {
return user G oupl nf oProducer. produceCal | back() ;

469

Integration

@r oduces
public Userlnfo produceUserlnfo() {
return user G oupl nf oProducer. produceUser | nfo();

@r oduces

@Naned("Logs")

publ i c TaskLifeCycl eEventLi stener produceTaskAuditListener() {
return new JPATaskLi f eCycl eEvent Li st ener (true);

@r oduces
publ i c Depl oynent Servi ce get Depl oyment Service() {
return this. depl oynent Servi ce;

@r oduces
public IdentityProvider produceldentityProvider {
return new ldentityProvider() {
/1 inplement IdentityProvider
b

Then beans.xml for the application should enable proper alternative for user group callback (that
will be taken based on @Selectable qualifier)

<beans xm ns="http://java. sun. com xnm / ns/ j avaee" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM
LSchema- i nst ance"
xsi : schenalLocati on="http://java. sun. com xm / ns/j avaee http://docs.jboss.org/ cdi/

beans_1 0. xsd">
<al ternatives>
<cl ass>org.j bpm ki e. servi ces. cdi . producer . JAASUser G oupl nf oPr oducer </ cl ass>

</alternatives>

</ beans>

Optionally there can be several other producers provided to deliver:

* WorkltemHandlers

470

Integration

» Process, Agenda, WorkingMemory event listeners

These components can be provided by implementing following interfaces

[**

* Allows to provide custominplenentations to deliver Wirkltem nane and Workl t enHandl er instance pairs

*

*

*

*

*

*

*/

for

the runtine.

It will be invoked by RegisterableltenmsFactory inplenentation (especially Injectabl eRegisterableltensFactory
in CDI world) for every KieSession. Recommendation is to always produce new instances to avoi d| unexpected
results.

public interface WrkltenHandl er Producer {

*

*

*

*/

Returns map of (key = work item nane, value work item handl er instance) of work itens
to be registered on KieSession

Paranmeters that m ght be given are as foll ows:

ksessi on</1i>
taskService
<l'i >runti meManager</|i>
</ ul >

@aramidentifier - identifier of the ower - usually RuntineManager that allows the producer to filter out
and provide valid instances for given owner

@ar am parans - owner m ght provide sone paraneters, usually KieSession, TaskService, RuntinmeManager instal
@eturn map of work item handl er instances (recommendation is to always return new instances when this netl

Map<String, WorkltenHandl er> get WrkltenHandl ers(String identifier, Map<String, Qbject> parans);

and

[**

* Allows do define custom producers for know EventListeners. Intention of this is that there m ght be several

*

*

*

*

*

*

*

*/

i mpl ementations that might provide different |istener instance based on the context they are executed in.

It will be invoked by RegisterableltensFactory inplenentation (especially |njectabl eRegisterableltensFactory
in CDI world) for every KieSession. Recormendation is to always produce new instances to avoi d| unexpected
results.

@aram <T> type of the event listener - ProcessEventListener, AgendaEventListener, Worki ngMenoryEventLi stener

public interface EventListenerProducer<T> {

*

Returns list of instances for given (T) type of listeners

Paranmeters that m ght be given are as foll ows:

ksessi on</1i>

taskService

471

Integration

* runtineManager</1li>
* <ful >
* identifier - identifier of the owner - usually Runti meManager that allows the producer to filter out
* and provide valid instances for given owner
* paranms - owner might provi de sone paraneters, usually KieSession, TaskService, RuntineManager instal
* list of listener instances (recomendation is to always return new i nstances when this nethod is il
*/

Li st <T> get EventLi steners(String identifier, Map<String, Cbject> parans);

Beans implementing these two interfaces will be collected on runtime and consulted when building
KieSession by RuntimeManager. See RuntimeManager section for more details on this.

A complete runnable example of application built with CDI can be found here [https://github.com/
jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf].

20.2.3. RuntimeManager as CDI bean

@ Note
Even though RuntimeManager can be directly injected, it's recommended to utilize
jbpm services when frameworks like CDI, ejb or Spring is used. jBPM services
bring in significant amount of features that encapsulate best practices when using
RuntimeManager.

RuntimeManager itself can be injected as CDI bean into any other CDI bean within the application.
It has then requirement to get RungimeEnvironment properly produces to allow RuntimeManager
to be correctly initialized. RuntimeManager comes with three predefined strategies and each of
them gets CDI qualifier so it can be referenced:

e @Singleton
* @PerRequest
* @PerProcessinstance

Producer that was defined in Configuration section should be now enhanced with producer meth-
ods to provide RuntimeEnvironment

public class Environnent Producer {
//add sanme producers as for services

@r oduces

@i ngl et on

@Per Request

@er Processl nst ance

472

https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf

Integration

publi c Runti meEnvironment produceEnvironnent (EntityManager Factory enf) {

Runt i meEnvi ronnment environnment = Runti meEnvironnment Buil der. Factory. get ()
. newDef aul t Bui | der ()
.entityManager Fact ory(enf)
.user GroupCal | back(get User G oupCal | back())
.regi sterabl el tensFact ory(| nj ect abl eRegi st erabl eltensFactory. get Fact ory(beanManager,
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPMN2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPM\2-
User Task. bpmm2"), ResourceType. BPM\2)
.get();
return environment;

In this example single producer method is capable of providing RuntimeEnvironment for all strate-
gies of RuntimeManager by specifying all qualifiers on the method level.

Once complete producer is available, RuntimeManager can be injected into application's CDi bean

public class ProcessEngi ne {
@ nj ect
@i ngl et on
private Runti meManager singl et onManager;

public void startProcess() {

Runt i meEngi ne runtime = si ngl et onManager . get Runt i neEngi ne(Enpt yCont ext. get ());
Ki eSessi on ksession = runtine. get Ki eSession();

Processl nst ance processlnstance = ksession. startProcess("User Task");

si ngl et onManager . di sposeRunt i neEngi ne(runti ne);

That's all what needs to be configured to make use of CDI power with jBPM.

Note

An obvious limitation of injecting directly RuntimeManager via CDI is that there
might be only one RuntimeManager in the application. That in some case can be
desired and that's why there is such option. In general recommended approach
is to make use of DeploymentService whenever there is a need to have many
RuntimeManagers active within application.

As an alternative to DeploymentService, RuntimeManagerFactory can be injected and then Run-
timeManager instance can be created manually by the application. In such case EnvironmentPro-

473

null))

Integration

ducer stays same as for DeploymentService and following is an example of simple ProcessEn-
gine bean

public class ProcessEngi ne {

@ nj ect
private RuntinmeManager Factory manager Factory;

@ nj ect
private EntityManager Factory enf;

@ nj ect
private BeanManager beanManager;

public void startProcess() {
Runt i meEnvi ronment environnent = Runti neEnvironnent Bui |l der. Factory. get ()
. newDef aul t Bui | der ()
.entityManager Fact ory(enf)
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPM\2-
User Task. bpmm2"), Resour ceType. BPM\2)
.registerabl eltenmsFactory(|nject abl eRegi st erabl eltenmsFact ory. get Fact ory(beanManager, null))

-get();
Runt i reManager manager = nmanager Fact ory. newSi ngl et onRunt i neManager (envi ronnent) ;
Runt i nreEngi ne runti me = manager. get Runt i meEngi ne(Enpt yCont ext. get());
Ki eSessi on ksession = runti me. get Ki eSessi on();

Processl nstance processlnstance = ksession. startProcess("User Task");

manager . di sposeRunt i meEngi ne(runti nme);
manager . cl ose();

20.3. Spring

jBPM can be configured in many ways with Spring though the two most frequenlty used approach-
es are;

« direct use of runtime manager API
 use of jopm services

While both approaches are tested and valid, which one to chose is a matter of the system func-
tionaltiy. Before selecting one of the approache the most important question to ask is:

Will my system run multiple runtime managers at the same time?

If the asnwer to this question is no, then go ahead with direct Runtime Manager API as it will be
the simplest way to use jBPM within your application. But when answer is yes, then go ahead with

474

Integration

jbpm services as they encapsulate runtime manager API with best practices by providing dynamic
runtime environment for your BPM logic - also known as execution server.

20.3.1. Direct use of Runtime Manager API

This is the standard (and the simplest) way to get up and running with jBPM in your application.
You only configure it once and run as part of the application. With the RuntimeManager usage,
both process engine and task service will be managed in complete synchronization, meaning there
is no need from end user to deal with "plumbing" code to make these two work together.

To provide spring based way of setting up jBPM, few factory beans where added:

* org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean
« org.kie.spring.factorybeans.RuntimeManagerFactoryBean
« org.kie.spring.factorybeans.TaskServiceFactoryBean

FactoryBeans provide standard way to configure Spring application spring xml though there are
not custom spring xml tags equivalent for them.

20.3.1.1. RuntimeEnvironmentFactoryBean

Factory responsible for producing instances of RuntimeEnvironment that are consumed by Run-
timeManager upon creation. It allows to create following types of RuntimeEnvironment (that main-
ly means what is configured by default):

DEFAULT - default (most common) configuration for RuntimeManager
« EMPTY - completely empty environment to be manually populated
« DEFAULT_IN_MEMORY - same as DEFAULT but without persistence of the runtime engine

« DEFAULT_KJAR - same as DEFAULT but knowledge asset are taken from KJAR identified by
releaseid or GAV

* DEFAULT_KJAR_CL - build directly from classpath that consists kmodule.xml descriptor
Mandatory properties depends on the selected type but knowledge information must be given for
all types. That means that one of the following must be provided:

* knowledgeBase

e assets

releaseld

e groupld, artifactld, version

475

Integration

Next for DEFAULT, DEFAULT_KJAR, DEFAULT_KJAR_CL persistence needs to be configured:

 entity manager factory
« transaction manager

Transaction Manager must be Spring transaction manager as based on its presence entire per-
sistence and transaction support is configured. Optionally EntityManager can be provided to be
used instead of always creating new one from EntityManagerFactory - e.g. when using shared
entity manager from Spring. All other properties are optional and are meant to override the default
given by type of the environment selected.

20.3.1.2. RuntimeManagerFactoryBean

FactoryBean responsible for creation of RuntimeManager instances of given type based on pro-
vided runtimeEnvironment. Supported types:

+ SINGLETON

« PER_REQUEST

« PER_PROCESS_INSTANCE

where default is SINGLETON when no type is specified. Every runtime manager must be uniquely
identified thus identifier is a mandatory property. All instances created by this factory are cached
to be able to properly dispose them using destroy method (close()).

20.3.1.3. TaskServiceFactoryBean

Creates instance of TaskService based on given properties. Following are mandatory properties
that must be provided:

+ entity manager factory
« transaction manager

Transaction Manager must be Spring transaction manager as based on its presence entire per-
sistence and transaction support is configured. Optionally EntityManager can be provided to be
used instead of always creating new one from EntityManagerFactory - e.g. when using shared
entity manager from Spring. In addition to above there are optional properties that can be set on
task service instance:

 userGroupCallback - implementation of UserGroupCallback to be used, defaults to MVELUser-
GroupCallbackimpl

« userInfo - implementation of Userinfo to be used, defaults to DefaultUserIinfo

476

Integration

« listener - list of TaskLifeCycleEventListener that will be notified upon various operations on tasks

This factory creates single instance of task service only as it's intended to be shared across all
other beans in the system.

20.3.1.4. Sample configuration of RuntimeManager with Spring

Following section aims at giving complete spring configuration for single runtime manager wihtin
spring application context.

1. Setup entity manager factory and transaction manager:

<bean i d="] bpnEMF"
cl ass="org. springfranmework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean" >

<property name="persistenceUnitName" val ue="org.jbpm persi stence.spring.jta"/>
</ bean>

<bean i d="Dbt nConfi g" fact ory- met hod="get Confi guration"
class="bitroni x. t m Transact i onManager Ser vi ces" ></ bean>

<bean id="Bitroni xTransacti onManager" factory-nethod="get Transacti onManager"
cl ass="bitroni x. tm Transacti onManager Servi ces" depends-on="bt mConfi g" destroy-
nmet hod="shut down" />

<bean i d="j bpnirxManager" cl ass="org. spri ngfranework.transaction.jta.JtaTransacti onManager">
<property name="transacti onManager" ref="Bitroni xTransacti onManager" />
<property nanme="user Transaction" ref="Bitroni xTransacti onManager" />

</ bean>

with this we have ready persistence configuration that gives us:
« JTA transaction manager (backed by bitronix - for unit tests or servlet containers)
* entity manager factory for persistence unit named org.jbpm.persistence.spring.jta

2. Configure resource that we are going to use - business process

<bean i d="process" fact ory- net hod="newd assPat hResour ce"
class="org. ki e.internal .io. ResourceFactory">
<constructor-arg>
<val ue>j bpni processes/ sanpl e. bprm</ val ue>
</ constructor-arg>
</ bean>

this configures single process that will be available for execution - sample.bpmn that will be
taken from class path. This is the simplest way to get your processes included when trying
out jopm.

477

Integration

3. Configure RuntimeEnvironment with our infrastructure (entity manager, transaction manager,
resources)

<bean i d="runti meEnvironment"
cl ass="org. ki e. spring. factorybeans. Runti neEnvi r onment Fact or yBean" >

<property name="type" val ue="DEFAULT"/>

<property name="entityManager Factory" ref="jbpnEM"/>

<property name="transacti onManager" ref="jbpniTxManager"/>

<property name="assets">

<map>
<entry key-ref ="process"><util: constant static-
field="org.kie.api.io. ResourceType. BPM\2"/ ></entry>
</ map>
</ property>
</ bean>

that gives us default runtime environment ready to be used to create instance of a Runtime-
Manager.

4. Create RuntimeManager with the environment we just setup

<bean i d="runti neManager" cl ass="org. ki e. spring. fact orybeans. Runti mreManager Fact or yBean"
destroy- net hod="cl ose" >

<property name="identifier" value="spring-rni/>

<property name="runtinmeEnvironnment" ref="runtineEnvironnment"/>
</ bean>

with just four steps you are ready to execute your processes with Spring and jBPM 6, utilizing
EntityManagerFactory and JTA transaction manager.

Complete spring configuration file can be found here [https://github.com/droolsjbpm/drool-
sjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml].

This is just one configuration setup that jBPM 6 supports - JTA transaction manager and Entity-
ManagerFactory, others are:

« JTA and SharedEntityManager
 Local Persistence Unit and EntityManagerFactory
* Local Persistence Unit and SharedEntityManager

For more details about difference configuration options look at the example configura-
tion files [https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/re-
sources/jbpm] and test cases [https://github.com/droolsjbpm/droolsjppm-integration/tree/mas-
ter/kie-spring/src/test/java/org/kie/spring/jbpm].

478

https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm

Integration

20.3.2. jBPM services with Spring

In case more dynamic nature is required in your Spring application then more appropriate could be
to build up so called execution server based on jbpm services. jBPM services has been designed in
a way to make them framework agnostic and in case framework specific addons are required they
will be brought by additional module. So the code logic of the services is embedded in jbpm-kie-
services. These are pure java services and by that can be easily consumed by Spring application.

Dynamic nature means that processes (And other assets like data model, rules, forms, etc) can
be added and removed without restarting application.

There is almost no code involved to completely configure jBPM services in spring besides single
interface that needs to be implemented - IdentityProvider that depends on your security configu-
ration. One built with Spring Security can be like following though it might not cover all features
one can have for Spring application.

inmport java.util.ArraylList;
inmport java.util.Collections;
inmport java.util.List;

inmport org.kie.internal.identity.ldentityProvider;

import org.springfranework. security.core. Aut henticati on;

import org.springfranework. security.core. G antedAuthority;

import org.springframework. security.core.context.SecurityContextHol der;

public class SpringSecurityldentityProvider inplenments IdentityProvider {
public String getNane() {

Aut henti cation auth = SecurityContext Hol der. get Cont ext (). get Aut henti cati on();
if (auth !'= null && auth.isAuthenticated()) {
return auth. get Nane();

}

return "systent;

}

public List<String> getRoles() {
Aut henti cation auth = SecurityContext Hol der. get Cont ext (). get Aut henti cati on();
if (auth !'= null && auth.isAuthenticated()) {
Li st<String> roles = new ArrayList<String>();

for (GantedAuthority ga : auth.getAuthorities()) {
rol es. add(ga. get Authority());
}

return roles;

}

return Collections.enmptyList();
}

publ i c bool ean hasRole(String role) {
return false;

479

Integration

20.3.2.1. Configure |BPM services in Spring application

As usual, first thing to start with is transaction configuration:

<cont ext : annot ati on-config />
<t x: annotation-driven />
<t x:jta-transaction-nmanager />

<bean i d="transacti onManager"
cl ass="org. springfranmework. transaction.jta.JtaTransacti onManager" />

Next configuration of JPA and persistence follows:

<bean i d="entityManager Fact ory"
cl ass="org. springfranmewor k. orm j pa. Local Cont ai ner Ent i t yManager Fact or yBean"
on="transacti onManager" >
<property nanme="persistenceXnl Locati on" val ue="cl asspat h: / META- | NF/ j bpm per si stence. xm " />
</ bean>

Configure security and user/group information providers

<util:properties id="rol eProperties" |ocation="classpath:/roles.properties" />

<bean i d="user G oupCal | back"
class="org.j bpm services. task.identity.JBossUser GroupCal | backl npl ">
<constructor-arg nane="user G oups" ref="rol eProperties"></constructor-arg>
</ bean>

<bean id="identityProvider" class="org.jbpm spring. SpringSecurityldentityProvider"/>

Configure runtime manager factory that is Spring context aware and by that can interact with
spring container in correct way and supporting services (transactional command service and task
service)

<bean i d="runti meManager Fact ory"
cl ass="org. ki e. spri ng. manager . Spri ngRunt i meManager Fact or yl npl ">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="user G oupCal | back" ref="user G oupCal | back"/>
</ bean>

480

depends-

Integration

<bean i d="transacti onCndServi ce
cl ass="org.j bpm shared. services. i npl. Transacti onal ConmandSer vi ce" >

<constructor-arg nane="enf" ref="entityManager Fact ory"></constructor-arg>
</ bean>

<bean id="taskService" class="org.kie.spring.factorybeans. TaskServi ceFactoryBean" destroy-
met hod="cl ose" >
<property name="entityManager Factory" ref="entityManagerFactory"/>
<property name="transacti onManager" ref="transacti onManager"/>
<property nanme="user GroupCal | back" ref="user G oupCal | back"/>
<property nanme="listeners">
<list>
<bean cl ass="org. j bpm servi ces. t ask. audi t . JPATaskLi f eCycl eEvent Li st ener" >
<constructor-arg val ue="true"/>
</ bean>
</list>
</ property>
</ bean>

Configure jBPM services as spring beans

<!-- definition service -->
<bean id="definitionService" class="org.jbpm kie.services.inpl.bpm2. BPM\2Dat aSer vi cel npl "/ >

<l-- runtinme data service -->

<bean id="runti nmeDat aServi ce" class="org.jbpmkie.services.inpl.RuntineDataServicelnpl">
<property name="conmandServi ce" ref="transacti onCrdService"/>
<property name="identityProvider" ref="identityProvider"/>
<property name="t askServi ce" ref="taskService"/>

</ bean>
<l-- -- deploynent service -->
<bean i d="depl oynent Servi ce" cl ass="org.j bpm ki e. servi ces. i npl . KMbdul eDepl oynent Servi ce"

depends-on="ent it yManager Fact ory" init-net hod="onlnit">
<property name="bpmm2Servi ce" ref="definitionService"/>
<property name="enf" ref="entityManagerFactory"/>

<property name="nanager Factory" ref="runtineManager Factory"/>
<property name="identityProvider" ref="identityProvider"/>
<property name="runti neDat aServi ce" ref="runtineDataService"/>

</ bean>
<!-- process service -->
<bean i d="processService" cl ass="org.j bpm ki e. servi ces. inpl.ProcessServicel npl " depends-

on="depl oynent Servi ce" >
<property name="dat aServi ce" ref="runti neDataService"/>
<property name="depl oynment Servi ce" ref="depl oynment Service"/>

</ bean>
<l-- user task service -->
<bean id="userTaskService" class="org.jbpmkie.services.inpl.UserTaskServicelnpl" depends-

on="depl oynent Servi ce">
<property name="dataServi ce" ref="runti neDataService"/>
<property name="depl oynent Servi ce" ref="depl oynent Service"/>
</ bean>

481

Integration

<l-- register runtine data service as |istener on depl oynment service soit can receive notification
about depl oyed and undepl oyed units -->
<bean i d="dat a" cl ass="org. spri ngf ranewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean"

depends- on="depl oynent Ser vi ce" >
<property name="target Obj ect" ref="depl oynent Servi ce"></property>
<property name="t ar get Met hod" ><val ue>addLi st ener </ val ue></ property>
<property name="argunments">
<list>
<ref bean="runti neDataService"/>
</list>
</ property>
</ bean>

And this is all is needed to build fully featured execution server with Spring and jBPM services. A
complete Spring web application with this setup can be found here [https://github.com/mswider-
ski/spring-jbpm-app].

20.4. Ejb

jBPM since version 6.2 provides out of the box integration layer with Enterprise Java Beans (EJB)
for both local and remote interaction.

Ejb services are brought by following modules:

* jbpm-services-ejb-api
API module that extends jbpm-services-api with EJB specific interfaces and objects
 jbpm-services-ejb-impl
EJB extension to core services
« jbpm-services-ejb-timer
jBPM Scheduler Service implementation backed by EJB Timer Service
» jbpm-services-ejb-client

EJB remote client implementation for remote interaction, provides JBoss AS support out of the
box

EJB layer is based on jbpm services and thus provides almost same capabilities as the core
module though there are some imiliations when it comes to remote interfaces. Main difference is
for the DeploymentService that has been limited for remote ejb service to following methods:

 deploy
* undeploy

* activate

482

https://github.com/mswiderski/spring-jbpm-app
https://github.com/mswiderski/spring-jbpm-app
https://github.com/mswiderski/spring-jbpm-app

Integration

+ deactivate
« isDeployed

Main rationale behind is to avoid returning runtime objects such as RuntimeManager over EJB
remote as it won't bring any value because it will be "disconnected"” state.

All other services do provide exact same set of functionality as core module.

20.4.1. Ejb services implementation

Ejb services as an extension of core services provide EJB based execution semantic and based
on various EJB specific features.
» DeploymentServiceEJBImpl

is implemented as ejb singleton with container managed concurrency and lock type set to write
* DefinitionServiceEIBImpl

is implemented as ejb singleton with container managed concurrency with overall lock type set
to read, except buildProcessDefinition method that has lock type set to write

* ProcessServiceEJBImpl
is implemented as stateless session bean
* RuntimeDataServiceEJBImpl

is implemented as ejb singleton with mojority of methods with lock type read, except following
that are with lock type write:

» onDeploy
» onUnDeploy
* onActivte
» onDeactivate
» UserTaskServiceEJBImpl
is implemented as stateless session bean
Transactions
Transaction is managed by EJB container thus there is no need to setup any sort of transaction

manager or user transaction within application code.

Identity provider

483

Integration

Identity provider by default is backed by EJBContext and will rely on caller principal information for
both name and roles. When inspecting IdentityProvider interface there are two methods related
to roles:

« getRoles

this method returns empty list due to the fact EJBContext does not provide options to fetch all
roles for given user

* hasRole
this method will delegate to context's isCallerinRole method

This means that ejb must be secured according to JEE security practices to authentiate and au-
thorize users so valid information will be available. In case no authentication/authorization is con-
figured for EJB services an anonymous user is always assumed.

In addition to that, EJB services acept CDI sytly injection for IdentityProvider in case an-
other (non ejb) security model is used. Simply create valid CDI bean that implements
org.kie.internal.identity.ldentityProvider and make it available for injection with application and
such implementation will take precedence over EJBContext based identity provider.

Deployment synchronization

Deployment synchronization is enabled by default and will attempt to synchronize any deploy-
ments every 3 seconds. It is implemented as ejb singleton with container managed concurrency
and lock type set to write. Under the covers it utilizes EJB TimerService to schedule the synchro-
nization jobs.

EJB Scheduler Service

jBPM uses scheduler service to deal with time based activities such as timer events, deadlines,
etc. When running in EJB environment and EJB Timer Service based scheduler will be used. It
will be automatically registered for all instances of RuntimeManager. When it comes to cluster
support application server specific configuration might be required.

UserGroupCallback and Userinfo selection

UserGroupCallback and Userinfo might differ for various applications and thus should be sort of
pluggable. With EJB we could not make it directly available for injections as they could not be
injected with common type so there is another mechanism that allows to select one of provided out
of the box implementation or to give a custom one. This mechanism is based on ssytem properties:

 org.jbpm.ht.callback

specify what implementation of user group callback will be selected

484

Integration

mvel - default mostly used for testing

Idap - Idap backed implementation - requires additional configuration via
jbpm.usergroup.callback.properties file

db - data base backed implementation - requires additional configuration via
jbpm.usergroup.callback.properties file

jaas - delegates to container to fetch information about user data

props - simple property based callback - requires additional file that will keep all information
(users and groups)

custom - custom implementation that requires to have additional system property set (FQCN
of the implementation) - org.jopm.ht.custom.callback

 org.jbpm.ht.userinfo

specify what implementation of UserInfo shall be used, one of:

Idap - backed by Idap - requires configuration via jopm-user.info.properties file
db - backed by data base - requires configuration via jopm-user.info.properties file
props - backed by simple property file

custom - custom implementation that requires to have additional system property set (FQCN
of the implementation) - org.jopm.ht.custom.userinfo

System properties can either be added to the startup configuration of the server (jvm) which is
recommended or be set programmatically before services will be used - for example with custom
@Startup bean that will configure it properly for selected callback and user info.

A example application that utilizes EJB services can be found here [https://github.com/jsvi-
tak/jbpm-6-examples/tree/master/rewards-basic].

20.4.2. Local interface

Local EJB services are brought via dedicated local interfaces that extends core services:

« org.jopm.services.ejb.api.DefinitionServiceEJBLocal

« org.jopm.services.ejb.api.DeploymentServiceEJBLocal

 org.jopm.services.ejb.api.ProcessServiceEJBLocal

 org.jopm.services.ejb.api.RuntimeDataServiceEJBLocal

» org.jopm.services.ejb.api.UserTaskServiceEJBLocal

These interfaces should be used as injection points and shall be annotated with @EJB:

485

https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic

Integration

@B
private DefinitionServiceEIJBLocal bpmm2Servi ce;

@JB

private Depl oynent Servi ceEJBLocal depl oynent Servi ce;

@JB
private ProcessServi ceEJBLocal processService;

@JB
private RuntinmeDataServi ceEJBLocal runtineDataService;

Once injected operations can be invoked on them as with core modules, there are no restrictions
to their usage.

20.4.3. Remote interface

Remote EJB services are defined as dedicated remote interfaces that extends core services:

« org.jopm.services.ejb.api.DefinitionServiceEJBRemote
 org.jopm.services.ejb.api.DeploymentServiceEJBRemote
 org.jopm.services.ejb.api.ProcessServiceEJBRemote
* org.jopm.services.ejb.api.RuntimeDataServiceEJBRemote
 org.jppm.services.ejb.api.UserTaskServiceEJBRemote
These can be used similar way as local interfaces except for handling custom types. Custom types
can be defined:
 globally

such types are available on application classpath - included in the enterprise application
* locally to the deployment unit

such types are declared as project (kjar) dependency and are resolved on deployment time
Globally available types do not require any special handling as they will be available for EJB
container when remote requests are handled - marshalling of incoming data. Though local custom
types won't be visible by default to EJB container as they are not on application classpath. Thus
special handling of such types is required.

EJB services provides easy yet rather powerful mechanism to resolve the issue - it comes with
two additional types:

* org.jopm.services.ejb.remote.api.RemoteObject

486

Integration

Serializable wrapper class for single value parameters
 org.jopm.services.ejb.remote.api.RemoteMap

Dedicated java.util.Map implementation to simplify remote invocation of service methods that
accept custom object input. This map is backed by an internal map that holds already serialized
content to avoid additional serialization on sending time. That removes the burden of ensuring
that container will know about all custom data model classes as part of global classpath.

This implementation does not support all methods that are usually not used when sending data.
It shall be considered only as a wrapper only and not actual and complete implementation of
a map.

These special objects will perform eager serialization to bytes using ObjectinputStream to remove
the need of serialization from the EJB client/container. Though it might be worse in case of per-
formance it does overcome much more complecated handling of class loaders on EJB container
side to allow use of custom types defined in the project.

Here is an example code needed to work with local types and remote EJB:

/] start a process with custom types via renote EJBMap<String, Object> paraneters = new
Renot eMap() ; Person person = new org. j bpm test. Person("john", 25, true); paraneters. put("person”,
person); Long processlnstanceld = processService.startProcess(depl oynmentUnit.getldentifier(),

"cust om dat a- pr oj ect . wor k- on- cust om dat a", paraneters);// fetch task dat a and
conpl ete task with custom types via renote EJBMap<Stri ng, bj ect > dat a =

user TaskSer vi ce. get Taskl nput Cont ent ByTaskl d(t askl d) ; Person fronTaskPerson =

dat a. get (" _person"); f roniraskPer son. set Nane("John Doe"); Renot eMap outcone = new
Renot eMap() ; out cone. put (" person_", fronflaskPerson); user TaskSer vi ce. conpl et e(t askl d,

"john", outcone);

EJBMap<String, Object> paraneters = new
Renot eMap() ; Person person = new org. jbpmtest.Person("john", 25,
true); paraneters. put ("person”,

person); Long processlnstanceld = processService. startProcess(deploynentUnit.getldentifier(),
"cust om dat a- pr oj ect . wor k- on- cust om dat a",

paranmeters);// fetch task data and conplete task with customtypes via renote
EJBMap<String, Object> data =
user TaskSer vi ce. get Taskl nput Cont ent By Taskl d(t askl d) ;
Person froniraskPerson =
dat a. get (" _person"); fronTaskPer son. set Nane(" John
Doe");
Renot eMap out come = new
Renot eMap() ; out come. put (" person_",
f ronifaskPer son) ;
user TaskServi ce. conpl ete(taskld, "john",

Similar way RemoteObject can be used for example to send evnet to process instance:

487

Integration

/1 send event with customtype via renote EJB
Person person = new org.jbpmtest.Person("john", 25, true);

Renpt e(oj ect nyObj ect = new Renot eCbj ect (person);

processServi ce. si gnal Processl nst ance(processl nstanceld, "MSignal", nyObject);

These illustrates how to wrap custom data when interacting with remote EJB services. Next section
will introduce how to make a connection to a remote service vai client code.

20.4.3.1. Remote EJB client

Remote client support is provided by implemetation of ClientServiceFactory interface thatis facede
for application server specific code:

| **

* Generic service factory used for rempte | ook ups that are usually container specific.
*

*/
public interface dientServiceFactory {

/**

* Returns unique nanme of given factory inplenmentation
* @eturn

*/

String get Nane();

* Returns renpte view of given service interface fromsel ected application

* @aram application application identifier on the container

* @aram servicelnterface renpte service interface to be found

* @eturn

* @hrows Nam ngException

*/
<T> T get Service(String application, Cass<T> servicelnterface) throws Nam ngException;

}

Implementations can be dynamically registered using ServiceLoader mechanism and by default
there is only one available for JBoss AS/EAP/Wildfly. Each ClientServiceFactory must provide
name which will be used to register it within the client registry so it can be then easily looked up.

Here is a code used to get hold of default JBoss based remote client:

/1 get hold of valid client service factory
ClientServiceFactory factory = Servi ceFactoryProvider. getProvi der ("JBoss");

/1 application is the nanme known to application server aka nodul e nanme
String application = "sanpl e-war-ej b-app";

/] get given service out of the factory

488

Integration

Depl oynment Ser vi ceEJBRenpt e depl oynent Servi ce = factory. get Servi ce(application
Depl oynment Ser vi ceEJBRenot e. cl ass) ;

With service available all know to its interface methods are ready to be used.

When working with JBoss AS and remote client you can add following maven dependency to bring
in all EJB client libraries:

<dependency>
<gr oupl d>or g. j boss. as</ gr oupl d>
<artifactld> boss-as-ejb-client-bonk/artifactld>
<version>7. 2. 0. Final </version> <!-- use valid version for the server you run on -->
<opt i onal >t rue</ optional >
<t ype>ponx/type>
</ dependency>

20.5. OSGi

All core jBPM JARs (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These
manifest files are automatically generated by the build. You can plug these JARs directly into an
OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each JAR
in OSGi is called a bundle and has its own Classloader. Each bundle specifies the packages it
exports (makes publicly available) and which packages it imports (external dependencies). OSGi
will use this information to wire the classloaders of different bundles together; the key distinction is
you don't specify what bundle you depend on, or have a single monolithic classpath, instead you
specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed
and it'll wire up the correct one. Further to this Bundles can register services for other bundles to
use. These services need initialisation, which can cause ordering problems - how do you make
sure you don't consume a service before its registered? OSGi has a nhumber of features to help
with service composition and ordering. The two main ones are the programmatic ServiceTracker
and the XML based Declarative Services. There are also other projects that help with this; Spring
DM, iPOJO, Gravity.

The following jBPM JARs are OSGi-enabled:

e jbpm-flow
 jbpm-flow-builder

* jbpm-bpmn2

489

Part VI. Advanced Topics

Some more advanced topics

Chapter 21. Domain-specific
Processes

21.1. Introduction

jBPM provides the ability to create and use domain-specific task nodes in your business process-
es. This simplifies development when you're creating business processes that contain tasks deal-
ing with other technical systems.

When using jBPM, we call these domain-specific task nodes "custom work items" or (custom)
"service nodes". There are two separate aspects to creating and using custom work items:

» Adding a node with a custom work item to a process definition using the Eclipse editor or jBPM
designer.

» Creating a custom work item handler that the jBPM engine will use when executing the custom
work item in a running process.

With regards to a BPMN2 process, custom work items are certain types of <t ask> nodes. In
most cases, custom work items are <t ask> nodes in a BPMN2 process definition, although they
can also be used with certain other task type nodes such as, among others, <ser vi ceTask> or
<sendTask> nodes.

Tip

When creating custom work items, it's important to separate the data associated
with the work item, from how the work item should be handled. In other words,
separate the what from the how. That means that custom work items should be:

 declarative (what, not how)

« high-level (no code)
On the other hand, custom work item handlers, which are Java classes, should be:

» procedural (how, not what)

 low-level (because it's code!)
Work item handlers should almost never contain any data.

Users can thus easily define their own set of domain-specific service nodes and integrate them
with the process language. For example, the next figure shows an example of a healthcare-re-
lated BPMN2 process. The process includes domain-specific service nodes for measuring blood
pressure, prescribing medication, notifying care providers and following-up on the patient.

491

Domain-specific Processes

& BP Medication

Vs
O o= Blood Pressure @
=) N

g @{ g Notry G]—‘<">_"©
=

21.2. Overview

Before moving on to an example, this section explains what custom work items and custom work
item handlers are.

21.2.1. Work Item Definitions

In short, we use the term custom work item when we're describing a node in your process that
represents a domain-specific task and as such, contains extra properties and is handled by a
Wor ki t enHandl er implementation.

Because it's a domain-specific task, that means that a custom work item is equivalent to a <t ask>
or <t ask>-type node in BPMN2. However, a Wr kl t emis also Java class instance that's used
when a Wr kI t enHandl er instance is called to complete the task or work item.

Depending on the BPMN2 editor you're using, you can create a custom work item definition in
one of two ways:

« If you're using Designer, then this means creating a MVEL based definition and adding the
definition in Designer itself. A description of this can be found in the ??? section in the ???
chapter. Once this is done, a new service node will appear on the BPMN 2.0 palette.

« Ifyou're using the Eclipse BPMN 2.0 modeler plugin (which can be found here [http://eclipse.org/
bpmn2-modeler/]), then you'll can modify the BPMN2 <t ask> or <t ask>-type element to work
with Wor ki t enHand! er implementations. See the ??? section in the ??? chapter.

21.2.2. Work Item Handlers

A work item handler is a Java class used to execute (or abort) work items. That also means
that the class implements the org. ki e. runti me. i nst ance. Wr kil t enHandl er interface. While
jBPM provides some custom Wor ki t enHandl er instances (listed below), a Java developer with a

492

http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/

Domain-specific Processes

minimal knowledge of jBPM can easily create a new work item handler class with its own custom
business logic.

Among others, jBPM offers the following Wor k1 t emHandl er implementations:

 Inthe j bpm bpm2 module, or g. j bpm bpm?2. handl er package:
» ReceiveTaskHandler (for use with BPMN element <r ecei veTask>)
» SendTaskHandler (for use with BPMN element <sendTask>)
» ServiceTaskHandler (for use with BPMN element <ser vi ceTask>)

* Inthe j bpm wor ki t ens module, in various packages under the or g. j bpm process. worki t em
package:

» ArchiveWorkltemHandler
There are a many more Wor ki t emHand| er implementations present in the j bpm wor ki t ens mod-
ule. If you're looking for specific integration logic with Twitter, for example, we recommend you
take a look at the classes made available there.

In general, aWor kil t enHandl er's . execut eWsrklten(...) and. abortWrklten(...) methods
will do the following:

1. Extract information about the task being executed (or aborted) from the Wor kI t eminstance

2. Execute the necessary business logic. This might be mean interacting with a web service,
database, or other technical component.

3. Inform the process engine that the work item has been completed (or aborted) by calling one
of the following two methods on the Wor ki t emvanager instance passed to the method:

Wor ki t emVanager . conpl et eWorklten(l ong workltem d, Map<String, Object> results)
Wor k1t emVanager . abort Wor ki t en{ | ong workl t en d)

In order to make sure that your custom work item handler is used for a particular process instance,
it's necessary to register the work item handler before starting the process. This makes the engine
aware of your Wor ki t emHandl| er so that the engine can use it for the proper node. For example:

ksessi on. get Wor kI t emvlinager () . regi st er Wor kl t enHandl er (" Not i fi cati on",
new Noti ficati onWorkltenHandl er());

The ksessi on variable above is a St at ef ul Know edgeSessi on (and also a Ki eSessi on) in-
stance. The example code above comes from the example that we will go through in the next
session.

Work item handler life cycle management

493

Domain-specific Processes

Work item handler is registered on kie session and then can be used whenever process engine
encounters a node that should be handled by that handler. Depending on the implementation of
the handler (e.g. some handler might keep state or depend on some resources such as data base
connection) there might be a need to maintain life cycle of the handler. To ease the way of doing
that jJBPM comes with two additional interfaces that handler might implement:

« org.kie.internal.runtime.Closeable - allows auto close of the handler whenever owner (work item
handler manager) of it is closed or disposed. This is useful in case a handler can be quickly
and frequently recreated so the engine will have it for the execution and when disposed it will
dispose as well all handlers of Closeable type.

« org.kie.internal.runtime.Cacheable - allows handlers to be cached and resused to avoid recre-
ation of the objects. There might be several reasons of doing so - expensive bootstrap of the
handler, dependency to external resources - socket connections, db connections, web service
client. While this brings powerful feature to the work item handler management it does put addi-
tional requirement on the implementation - needs to deal with exceptions internally and recover
from any failures. In case recovery cannot be performed it needs to remove itself from the cache.

Closeable interface is handled for all use cases, while Cacheable is available only when Runtime-
Manager is used. RuntimeManager provides caching capabilities via its CacheManager (available
via InternalRuntimeManager in case self removal is required).

Tip

You can use different work item handlers for the same process depending on the
system on which it runs: by registering different work item handlers on different
systems, you can customize how a custom work item is processed on a particular
system. You can also substitute mock Wor ki t enHandl er instances when testing.

21.3. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work item
is defined by a unique name and includes additional parameters that describe the work in more
detail. Work items can also return information after they have been executed, specified as results.

Our notification work item could be defined using a work definition with four parameters and no
results. For example:
* Name: "Notification"
* Parameters:
¢ From [String type]

e To [String type]

494

Domain-specific Processes

» Message [String type]

* Priority [String type]
21.3.1. The Notification Work Item Definition

21.3.1.1. Creating the work item definition

In our example we will create a MVEL work item definition that defines a "Notification" work item.
Using MVEL is the default way to This file will be placed in the project classpath in a directory
called META- | NF. The work item configuration file for this example, MyWor kDef i ni ti ons. wi d, will
look like this:

inmport org.drools.core. process. core. datatype.inpl.type. StringDat aType;
[

/1 the Notification work item

[
"nanme" : "Notification",
"paraneters" : [
"Message" : new StringDataType(),
"Fron : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),

1,
"di spl ayNane" : "Notification",
"icon" : "icons/notification.gif"

The project directory structure could then look something like this:

proj ect/src/ mai n/ resour ces/ META- | NF/ MyWor kDef i ni ti ons. wi d

We also want to add a specific icon to be used in the process editor with the work item. To add
this, you will need . gi f or . png images with a pixel size of 16x16. We put them in a directory
outside of the META- I NF directory, for example, here:

proj ect/src/ mai n/resources/icons/notification.gif

21.3.1.2. Registering the work definition

The jBPM Eclipse editor uses the configuration mechanisms supplied by Drools to register
work item definition files. That means adding a drool s. wor kDefi ni ti ons property to the
drool s. rul ebase. conf file in the META- | NF.

495

Domain-specific Processes

The dr ool s. wor kDef i ni ti ons property represents a list of files containing work item definitions,
separated using spaces. If you want to exclude all other work item definitions and only use your
definition, you could use the following:

drool s. wor kDefi niti ons = MyWor kDefinitions. wd

However, if you only want to add the newly created node definition to the existing palette nodes,
you can define the dr ool s. wor kDef i ni ti ons property as follows:

drool s. wor kDef i ni ti ons = MyWor kDef i nitions.w d WrkDefi nitions.conf

We recommended that you use the extension . wi d for your own definitions of domain specif-
ic nodes. The . conf extension used with the default definition file, Wor kDef i ni ti ons. conf, for
backward compatibility reasons.

21.3.1.3. Using your new work item in your processes

We've created our work item definition and configured it, so nhow we can start using it in our
processes. The process editor contains a separate section in the palette where the different ser-
vice nodes that have been defined for the project appear.

496

Domain-specific Processes

[% Select

| Marquee

—+ Sequence Flow

== Components <0

Start Event

® End Event

Rule Task

@ Gateway [diverge]

@ Gateway [converge]

(=) Reusable Sub-Process

Script Task

) Timer Event

®) Error Event

[Message Event

User Task

(=) Embedded Sub-Process

(w] Multiple Instances

= Service Tasks £

§ Notification h

Using drag and drop, a notification node can be created inside your process. The properties can
be filled in using the properties view.

Besides any custom properties, the following three properties are available for all work items:

1. Paramet er Mappi ng: Allows you to map the value of a variable in the process to a parameter
of the work item. This allows you to customize the work item based on the current state of
the actual process instance (for example, the priority of the natification could be dependent of
some process-specific information).

2. Resul t Mappi ng: Allows you to map a result (returned once a work item has been executed)
to a variable of the process. This allows you to use results in the remainder of the process.

497

Domain-specific Processes

3. Wit for conpletion: By default, the process waits until the requested work item has been
completed before continuing with the process. It is also possible to continue immediately after
the work item has been requested (and not waiting for the results) by setting wait for com
pl eti on to false.

Here is an example that creates a domain specific node to execute Java, asking for the class and
method parameters. It includes a custom j ava. gi f icon and consists of the following files and
resulting screenshot:

inmport org.drools.core.process. core.datatype.inpl.type. StringDataType;
[

/1 the Java Node work item | ocated in:

/] project/src/min/resources/ META- | NF/ JavaNodeDefiniti on.w d

[

name" : "JavaNode",
"paraneters" : [
"class" : new StringDataType(),
"met hod" : new StringDataType(),
I,
"di spl ayNarme" : "Java Node",
"icon" : "icons/java.gif"

/1 located in: project/src/main/resources/META-| NF/ drool s. rul ebase. conf
dr ool s. wor kDef i niti ons = JavaNodeDefinition.w d WrkDefinitions. conf

/1 icon for java.gif located in:
/1 project/src/ main/resources/icons/java.gif

498

Domain-specific Processes

[+ Select

' Marquee O

— Sequence

Flow l

= Components < r - \i

N . ava Node =
) Start Event L@J J
@® End Event)

Rule Task

'
@ Gateway O

[diverge]

@ Gateway
[converge]

(=) Reusable
Sub-Process

Script Task
) Timer Event
@ Error Event

Message
Event

User Task

(=) Embedded
Sub-Process

(w) Multiple

(= Service Ta... <«
= Log
= Email
% Java Node

499

Domain-specific Processes

21.3.2. The Notificati onwrkl t enHandl er

21.3.2.1. Creating a new work item handler

Once we've created our Notificati on work item definition (see the sections above), we can
then create a custom implementation of a work item handler that will contain the logic to send
the notification.

In order to execute our Notification work items, we first create a Not i fi cati onWor ki t enHand! er
that implements the Wor ki t enHandl er interface:

package com sanpl €;

inmport org.kie.api.runtinme.process. Wrkltem
inmport org.kie.api.runtime.process. WrkltenmHandl er;
inmport org.kie.api.runtime.process. Wrkltemvanager ;

public class NotificationWrkltenHandl er inplenments WorkltenmHandl er {

public void executeWrkltenm Wrkltem workltem WorkltenmMVanager nmanager) {
/] extract paraneters
String from= (String) workltem getParaneter("Froni);
String to = (String) workltem getParaneter("To");
String nessage = (String) workltem getParaneter("Mssage");
String priority = (String) workltem getParameter("“Priority");

/1 send emil
Emai | Servi ce service = ServiceRegi stry.getlnstance().ge tEnmail Service();
service. sendEnmi | (from to, "Notification", message);

/1 notify manager that work item has been conpl eted
manager . conpl et eWorkltem(workltemgetld(), null);

public void abortWrklten(Wrkltem workltem Wrkltenvanager manager) {
/1 Do nothing, notifications cannot be aborted

The Ser vi ceRegi stry class is simply a made-up class that we're using for this example.
In your own Wor ki t enHandl er implementations, the code containing your domain-specific
logic would go here.

Notifying the Wor kI t emvanager instance when your a work item has been completed is cru-
cial. For many synchronous actions, like sending an email in this case, the Wor kI t enHandl er
implementation will notify the Wor ki t emManager in the execut ewor ki ten(...) method.

This Wor kil t enHandl er sends a notification as an email and then notifies the WorkltemManager
that the work item has been completed.

500

Domain-specific Processes

Note that not all work items can be completed directly. In cases where executing a work item takes
some time, execution can continue asynchronously and the work item manager can be notified
later.

In these situations, it might also be possible that a work item is aborted before it has been com-
pleted. The Wor ki t enHandl er . abort Wrkl t en(. ..) method can be used to specify how to abort
such work items.

Tip
1

Remember, if the Wor ki t emvanager is not notified about the completion, the
process engine will never be notified that your service node has completed.

21.3.2.2. Registering the work item handler

Wor ki t enrHandl er instances need to be registered with the Wor ki t emvanager in order to be used.
In this case, we need to register an instance of our Not i fi cati onVr ki t enHandl er in order to
use it with our process containing a Not i fi cat i on work item. We can do that like this:

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Know edgeSessi on() ;
ksessi on. get Wor kI t emVlinager () . r egi st er Wor kI t enHandl er (

"Notification",

new Noti ficati onWrkltenHandl er ()
)

This is the drools name of the <t ask> (or other task type) node. See below for an example.
This is the instance of our custom work item handler instance!

If we were to look at the BPMN2 syntax for our process with the Noti fi cati on process, we
would see something like the following example. Note the use of the t ns: t askNane attribute in the
<t ask> node. This is necessary for the Wr ki t emvanager to be able to see which Wor ki t enHan-
dl er instance should be used with which task or work item.

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions id="Definition"
xm ns="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL"
xs: schemalLocati on="http://ww. ong. or g/ spec/ BPM\V 20100524/ MODEL BPM\20. xsd"

xm ns:tns="http://ww.jboss. org/drool s">

<process i sExecutabl e="true" id="myCustonProcess" nanme="Domai n- Speci fic Process" >

501

Domain-specific Processes

<task id="_5" nanme="Notification Task" tns:taskNane="Notification" >

Tip

Different work item handlers could be used depending on the context. For example,
during testing or simulation, it might not be necessary to actually execute the work
items. In this case specialized dummy work item handlers could be used during
testing.

21.4. Service Repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.
Think for example about integration with Twitter, doing file system operations or sending email.
Once such a domain-specific service has been created, you might want to make it available to
other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services
you might need and importing these services into your workspace. These will then automatically
be added to your palette and you can start using them in your processes. You can also import
additional artefacts like for example an icon, any dependencies you might need, a default handler
that will be used to execute the service (although you're always free to override the default, for
example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could
be to a directory in your file system but also a public or private URL) and select the services you
would like to import. For example, in Eclipse, right-click your project that contains your processes
and select "Configure ... -> Import jJBPM services ...". This will open up a repository browser. In the
URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository
that hosts some common service implementations out-of-the-box), or use the "..." button to browse
to a folder on your file system. Click the Get button to retrieve the contents of that repository.

502

Domain-specific Processes

& Import services [‘$_<|

LRL: F:Yjbpm-service-repository E]

[=- Comrmunication
Jabber
Email
Twitter

Data

File System

Google

Java
% Java !':

Cther
Service

Automatically add to service configuration file
Automatically add libraries to project
Automatically register handlers

Select the service you would like to import and then click the Import button. Note that the Eclipse
wizard allows you to define whether you would like to automatically configure the service (so it
shows up in the palette of your processes), whether you would also like to download any depen-
dencies that might be needed for executing the service and/or whether you would like to automat-
ically register the default handler, so make sure to mark the right checkboxes before importing
your service (if you are unsure what to do, leaving all check boxes marked is probably best).

After importing your service, (re)open your process diagram and the new service should show up
in your palette and you can start using it in your process. Note that most services also include
documentation on how to use them (e.g. what the different input and output parameters are) when
you select them browsing the service repository.

Click on the image below to see a screencast where we import the Twitter service in a new jBPM
project and create a simple process with it that sends an actual tweet. Note that you need the
necessary Twitter keys and secrets to be able to programmatically send tweets to your Twitter ac-
count. How to create these is explained here [http://docs.jboss.org/jbpm/v6.0/repository/Twitter/],
but once you have these, you can just drop them in your project using a simple configuration file.

503

http://docs.jboss.org/jbpm/v6.0/repository/Twitter/
http://docs.jboss.org/jbpm/v6.0/repository/Twitter/

Domain-specific Processes

- TR, LRL: Fi'thorr-se-ceseoasibory [][Gt] - 1;3 3 Ii‘all-'ll
= Commurcebon -
ol S G mgen |] ik 3% Gutine £ =
= E Cral -
2| — a
E 2 swither & Dot fn pufme &b A able,
B moinsn fava # FeSysien
=R T, IETE R A e
F] FrocessTest = Caea
B M sroinai frasounces Xavea
&0 camcde born # Othar
£ B L System Lbrary Goslno] @ Sorvice
£ B 0P Liorsry
B
[Pl futenaizaly sdd o service configuraton fie
[+ Atomatdzaly add Branes b praject
[#lasmnsazaly eogpter hardem
s
Twitter
A servize for tRiRer ENCSSATES, NEHT twittes g, nE v =
|
Eummcim o
Message Stmng | The message that needs o bl:#zt as the taitier status
Resulis
Figure 21.1.

[http://people.redhat.com/kverlaen/twitter-repository.swf]

21.4.1. Public JBPM service repository

We are building a public service repository that contains predefined services that people can use
out-of-the-box if they want to:

http://docs.jboss.org/jbpm/v6.0/repository/

This repository contains some integrations for common services like Twitter integration or file
system operations that you can import. Simply point the import wizard to this URL to start browsing
the repository.

If you have an implementation of a common service that you would like to contribute to the com-
munity, do not hesitate to contact someone from the development team. We are always looking
for contributions to extend our repository.

21.4.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration
file that contains the necessary information (this is an extended version of the normal work defin-

504

http://people.redhat.com/kverlaen/twitter-repository.swf
http://docs.jboss.org/jbpm/v6.0/repository/

Domain-specific Processes

ition configuration file as described earlier in this chapter) and putting the necessary files (like an
icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and
icon), with some additional ones. For example, the following extended configuration file describes
the Twitter integration service (as shown in the screencast above):

inmport org.drools.core. process. core. datatype.inpl.type. StringDataType;
[
[

"name" : "Twitter",
"description" : "Send a Twitter nessage",
"paraneters" : [
"Message" : new StringDataType()
]

i splayName" : "Twitter",
"ecl i pse: cust onEdi tor"
"org.drool s. eclipse.flow cormon. editor.editpart.work. Sanpl eCust onEdi tor",
"icon" : "twitter.gif",
"category" : "Communication",
"defaul tHandl er" : "org.jbpm process.workitemtw tter.TwitterHandl er",
"docunentation" : "index.htm",
"dependenci es" : [
“file:./lib/jbpmtwitter.jar",
"file:./lib/twitterdj-core-2.2.2.jar"
]
]

» The icon property should refer to a file with the given file name in the same folder as the ex-
tended configuration file (so it can be downloaded by the import wizard and used in the process
diagrams). Icons should be 16x16 GIF files.

» The category property defines the category this service should be placed under when browsing
the repository.

» The defaultHandler property defines the default handler implementation (i.e. the Java class that
implements the Wor kI t enHand! er interface and can be used to execute the service). This can
automatically be registered as the handler for that service when importing the service from the
repository.

« The documentation property defines a documentation file that describes what the service does
and how it works. This property should refer to a HTML file with the given name in the same
folder as the extended configuration file (so it can be shown by the import wizard when browsing
the repository).

» The dependencies property defines additional dependencies that are necessary to execute this
service. This usually includes the handler implementation JAR, but could also include additional
external dependencies. These dependencies should also be located on the repository on the

505

Domain-specific Processes

given location (relative to the folder where the extended configuration file is located), so they
can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an i ndex. conf file that references all the folders
that should be processed when searching for services on the repository. Each of those folders
should then contain:

« An extended configuration file with the same name as the folder (e.g. Twi tt er. conf)
« The icon as references in the configuration file

« The documentation as references in the configuration file

» The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains
an i ndex. conf file, that will be used to scan additional sub-folders. Note that the hierarchical
structure of the repository is not shown when browsing the repository using the import wizard, as
the category property in the configuration file is used for that.

506

Chapter 22. Exception Management

22.1. Overview

This chapter will describe how to deal with unexpected behavior in your business processes using
both BPMN2 and technical mechanisms.

The first section will explain Technical Exceptions: we'll go through an example that uses both
BPMN2 and Wor k1 t entHand| er implementations in order to isolate and handle exceptions caused
by a technical component. We will also explain how to modify the example to suit other use cases.

The second section will define and explain the types of (BPMN2) exceptions that can happen or
be used in a business process.

22.2. Introduction

What happens to a business process when something unexpected happens during the process?
Most of the time, when creating and designing a new process definition, the first step is to describe
the normative or desirable behaviour. However, a process definition that only describes all of the
normal tasks and their execution order is incomplete.

The next step is to think about what might go wrong when the business process is run. What
would happen if any of the human or technical actors in the process do not respond in unexpected
ways? Will any of the technical systems that the process interacts with return unexpected results
-- Or not return any results at all?

Deviations from the normative or "happy" flow of a business process are called exceptions. In
some cases, exceptions might not be that unusual, such as trying to debit an empty bank account.
However, some processes might contain many complex situations involving exceptions, all of
which must be handled correctly.

@ Note
The rest of chapter assumes that you know how to create custom <t ask> nodes
and how to implement and register Wor ki t enHandl er implementations. More infor-
mation about these topics can be found in the Domain-specific Processes chapter.

22.3.1. Technical Exceptions

Technical exceptions happen when a technical component of a business process acts in an un-
expected way. When using Java based systems, this often results in a literal Java Exception being
thrown by the system.

Technical components used in a process can fail in a way that can not be described using BPMNZ2.
In this case, it's important to handle these exceptions in expected ways.

507

Exception Management

The following types of code might throw exceptions:

« Any code that is present in the process definition itself
« Any code that is executed during a process and is not part of jBPM

« Any code that interacts with a technical component outside of the process engine
However, those are somewhat abstract definitions. We can narrow down the places at which an
exception might be thrown. Technical exceptions can occur at the following points:

1. Code present in <scri pt Task> nodes or in the jopm-specific <onEnt ry> and <onExi t > ele-
ments

2. Code executed in Wor ki t entHand| er s associated with <t ask> and task-type nodes
It is much easier to ensure correct exception handling for <t ask> and other task-type nodes that
use Wr ki t enHandl er implementations, than for code executed directly in a <scri pt Task>.

Exceptions thrown by <scri pt Task> can cause the process to fail in an unrecoverable fashion.
While there are certain things that you can do to contain the damage, a process that has failed in
this way can not be restarted or otherwise recovered. This also applies for other nodes in a process
definition that contain script code in the node definition, such as the <onEntry> and <onExi t >
elements.

When jBPM engine does throw an exception generated by the code in a <scri pt Task> the ex-
ception thrown is a special Java exception called the Wor kf | owRunt i meExcept i on that contains
information about the process.

Warning

Again, exceptions generated by a <scr i pt Task> node (and other nodes containing
script code) will leave the process unrecoverable. In fact, often, the code that starts
the process itself will end up throwing the exception generated by the business
process, without returning a reference to the process instance.

For this reason, it's important to limit the scope of the code in these nodes to op-
erations dealing with process variables. Using a <scri pt Task> to interact with a
different technical component, such as a database or web service has significant
risks because any exceptions thrown will corrupt or abort the process.

<t ask> nodes, <servi ceTask> nodes and the rest of the t ask-type nodes are
explicitly meant for interacting with other systems -- not <scri pt Task> nodes! Use
<t ask>-type nodes to interact with other technical components.

508

Exception Management

22.3.1.1. Handling exceptions in wrkitenHandl er instances

Wor kI t enHandl er classes are used when your process interacts with other technical systems.
For an introduction to them and how to use them in processes, please see the Domain-specific
Processes chapter.

While you can build exception handling into your own Wr ki t emhandl er implementations, there
are also two “handler decorator” classes that you can use to wrap a Wr ki t enhandl er implemen-
tation.

These two wrapper classes include logic that is executed when an exception is thrown during the
execution (or abortion) of a work item.

Table 22.1. Exception Handling wer ki t enHandl er Wrapper classes

Decorator classes in the Description
org. j bpm bpm2. handl er package

Si gnal | i ngTaskHandl er Decor at or This class wraps an existing Wor ki t emHan-
dl er implementation. When the . execut e-
Worklten(...) or.abortWrklten(...)
methods of the original Wor ki t enHandl er in-
stance throw an exception, the Si gnal | i ng-
TaskHandl er Decor at or will catch the ex-
ception and signal the process instance us-
ing a configurable event type. The exception
thrown will be passed as part of the event.
This functionality can be used to signal an
Event SubProcess defined in the process def-
inition.

Loggi ngTaskHandl er Decor at or This class reacts to all exceptions thrown by
the . executeWorklten(...) or.abort-
Worklten(...) WrkltenHandl er methods
by logging the errors. It also saves any excep-
tions thrown so to an internal list so that they
can be retrieved later for inspection or further
logging. Lastly, the content and format of the
message logged upon an exception are con-
figurable.

While the two classes described above should cover most cases involving exception handling, a
Java developer with some experience with jBPM should be able to create a Wor ki t entHandl er
that executes custom code upon an exception.

If you do decide to write a custom Wor ki t enHandl er that includes exception handling logic, keep
the following checklist in mind:

1. Are you catching all possible exceptions that you want to (and no more, or less)?

509

Exception Management

2. Are you making sure to either complete or abort the work item after an exception has been
caught? If not, are there mechanisms to retry the process later? Or are incomplete process
instances acceptable?

3.>
What other actions should be taken when an exception is caught? Do you want to simply log
the exception, or is it also important to interact with other technical systems? Do you want to
trigger a (BPMNZ2) subprocess that will handle the exception?

Important

When you use the Workltemvanager to signal that the work item has
been completed or aborted, make sure to do that after you've sent
any signals to the process instance. Depending on how you've de-
fined your process, calling Workltenmvanager. conpl eteWorklten(...) or
Wor ki t emvanager . abor t Wor ki t ent(. . .) will trigger the completion of the process
instance. This is because the these methods trigger the jBPM process engine to
continue the process flow.

In the next section, we'll describe an example that uses the Si gnal | i ngTaskHandl er Decor at or
to signal an event subprocess when a work item handler throws an exception.

22.3.2. Technical Exception Examples

22.3.2.1. Example: service task handlers

We'll go through one example in this section, and then look quickly at how you can change it to
get the behavior you want. The example involves an <err or > event that's caught by an (Error)
Event SubProcess.

When an Error Event is thrown, the containing process will be interrupted. This means that after
the process flow attached to the error event has executed, the following will happen:

1. process execution will stop, and no other parts of the process will execute
2. the process instance will end up in an aborted state (instead of completed)

The example we'll go through contains an <er r or >, but at the end of the section, we'll show how
you can change the process to use a <si gnal > instead.

Tip

The code and BPMN2 process definition shown in the next
section are available in the jbpmexanples module. See the
or g. j bpm exanpl es. except i ons. Except i onHandl i ngErr or Exanpl e class for
the Java code. The BPMN2 process definition is available in the excep-

510

Exception Management

ti ons/ Excepti onHandl i ngW t hEr r or . bprm2 file in the sr ¢/ mai n/ r esour ces di-

rectory of the j bpm exanpl es module.

22.3.2.1.1. BPMN2 configuration

Let's look at the BPMN2 process definition first. Besides the definition of the process, the BPMN2
elements defined before the actual process definition are also important. Here's an image of the
BPMNZ2 process that we'll be using in the example:

Excention Handler

2

i

Exception

Throw

Handle

Exception
subStart subEnd

Figure 22.1.

The BPMN2 process fragment below is part of the process shown above, and contains some
notes on the different BPMN2 elements.

<itemDefinition id="_stringltent structureRef="java.lang. String"/>
<message i d="_nessage" itenRef="_stringlteni/>

<interface id="_servicelnterface"
nanme="or g.j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_serviceQperation" nanme="t hrowException">
<i nMessageRef >_nessage</i nMessageRef >
</ oper ati on>
</interface>

<error id="_exception" errorCode="code" structureRef="_ex ceptionltent/>

<itenDefinition id="_exceptionlten structureRef="org.kie .api.runtine.process.Wrkltent/>
<message i d="_exceptionMessage" itenRef="_exceptionltent/ >

<interface i d="_handl i ngServi cel nterface"
nane="or g.j bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_handlingServi ceOperati on" nane="handl eExcepti on">
<i nMessageRef >_excepti onMessage</ i nMessageRef >
</ oper ati on>
</interface>

511

Exception Management

<process id="ProcessWthExcepti onHandl i ngError" name="Service Process" isExecutable="true"
processType="Private">

<l-- properties -->

<property id="servicelnputltent itenBubjectRef="_string Itenl/>

<property id="exceptionlnputltent itenBubjectRef="_exce ptionlteni/>

<!-- nmin process -->
<startEvent id="_1" name="Start" />
<servi ceTask id="_2" nane="Thr ow Excepti on" i npl enent ati on="C her"

oper at i onRef =" _servi ceQperati on">
<l-- rest of the serviceTask el enent and process definition... -->

<subProcess id="_X" nane="Exception Handl er" triggeredByEvent="true" >
<start Event id="_X-1" name="subStart">
<dat aCut put id="_X-1_Qutput" nane="event"/>
<dat aCut put Associ at i on>
<sour ceRef > X-1_CQut put </ sour ceRef >
<t ar get Ref >excepti onl nput | t enx/t ar get Ref >
</ dat aCut put Associ ati on>
<errorEventDefinition id="_X-1_ED 1" errorRef="_exc eption" />
</startEvent >

<l-- rest of the subprocess definition... -->
</ subProcess>

</ process>

This <i t enDef i ni t i on>element defines a data structure that we then use in the ser vi cel n-

put | t emproperty in the process.

This <nessage> element (1rst reference) defines a message that has a String as its content
(as defined by the <i t enDef i nti on> element on line above). The <i nt er f ace> element
below it refers to it (2nd reference) in order to define what type of content the service (defined
by the <i nt er f ace>) expects.

This <er r or > element (1rst reference) defines an error for use later in the process: an Event
SubProcess is defined that is triggered by this error (2nd reference). The content of the error
is defined by the <i t enDef i nti on> element defined below the <err or > element.

This <i t enDef i nti on> element (1rst reference) defines an item that contains a Wr kl t em
instance. The <message> element (2nd reference) then defines a message that uses this item
definition to define its content. The <i nt er f ace> element below that refers to the <message>
definition (3rd reference) in order to define the type of content that the service expects.

In the process itself, a <property> element (4th reference) is defined as having the con-
tent defined by the initial <i t enDef i nti on>. This is helpful because it means that the Event
SubProcess can then store the error it receives in that property (5th reference).

512

Exception Management

@

22.3.2.1.2. si gnal | i ngTaskHandl er Decor at or and Wr kI t enHandl er configuration

Now that BPMNZ2 process definition is (hopefully) a little clearer, we can look at how to set up
jBPM to take advantage of the above BPMN2.

In the (BPMNZ2) process definition above, we define two different <ser vi ceTask> activities. The
org. j bpm bpm2. handl er. Servi ceTaskHandl er class is the default task handler class used for
<servi ceTask> tasks. If you don't specify a Wor kil t enHandl er implementation for a <servi c-
eTask>, the Servi ceTaskHandl er class will be used.

In the code below, you'll see that we actually wrap or decorate the Ser vi ceTaskHandl er class with
a Si gnal | i ngTaskHandl er Decor at or instance. We do this in order to define the what happens
when the Ser vi ceTaskHandl er throws an exception.

In this case, the Servi ceTaskHandl er will throw an exception because it's configured to call
the Excepti onServi ce. t hr owExcept i on method, which throws an exception. (See the _han-
dl i ngServi cel nt er f ace <i nt er f ace> element in the BPMN2.)

In the code below, we also configure which (error) event is sent to the process instance by the Si g-
nal | i ngTaskHandl er Decor at or instance. The Si gnal | i ngTaskHandl er Decor at or does this
when an exception is thrown in a task. In this case, since we've defined an <er r or > with the error
code “code” in the BPMN2, we set the signal to Er r or - code.

Important

When signalling the jBPM process engine with an event of some sort, you should
keep in mind the rules for signalling process events.

 Error events can be signalled by sending an "Error-" + <the er r or Code attribute
value> value to the session.

» Signal events can be signalled by sending the name of the signal to the session.

inmport java.util.HashMap;
inmport java.util.Mp;

inport org.jbpm bpm2. handl er. Servi ceTaskHandl er;
inport org.jbpm bpm2. handl er. Si gnal | i ngTaskHandl er Decor at or ;

513

Exception Management

inport org.jbpm exanpl es. exceptions. servi ce. Excepti onServi ce;
inmport org.kie.api.KieBase;

inport org.kie.api.io.ResourceType;

inmport org.kie.api.runtine.Ki eSessi on;

inmport org.kie.api.runtime.process. Processl nstance;

inport org.kie.internal.buil der.Know edgeBui | der;

inport org.kie.internal.buil der. Know edgeBui | der Fact ory;
inport org.kie.internal.io.ResourceFactory;

public class ExceptionHandl i ngError Exanpl e {

public static final void main(String[] args) {
runExanpl e() ;

publ

Task",

ic static Processlnstance runkExanple() {

Ki eSessi on ksession = createKi eSession();

String event Type = "Error-code”;

Si gnal | i ngTaskHandl er Decor at or si gnal | i ngTaskW appe r

new Si gnal | i ngTaskHandl er Decor at or (Ser vi ceTaskHandl er. cl ass, event Type);
signal I i ngTaskW apper . set Wr kl t enExcept i onPar anet er

ksessi on. get Wor ki t emMVanager () . r egi st er Wor ki t enHandl er (" Ser vi ce

si gnal | i ngTaskW apper) ;

Map<String, Object> parans = new HashMap<String, Object>();
parans. put ("servicelnputltent, "Input to Original Service");

Processl nstance processlnstance = ksession.startProcess("ProcessWthExcepti onHandl i ngError",

return processlnstance;

private static KieSession createKieSession() {
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;

kbui | der . add(Resour ceFact ory. newd assPat hResour ce(" excepti ons/

Excepti onHandl i ngW t hError. bprm2"), Resour ceType. BPM\2) ;

Ki eBase kbase = kbuil der. newknow edgeBase() ;
return kbase. newKi eSessi on();

Here we define the name of the event that will be sent to the process instance if the wrapped
Wor kil t emHand| er implementation throws an exception. The event Type string is used when
instantiating the Si gnal | i ngTaskHandl er Decor at or class.

Then we construct an instance of the Si gnal | i ngTaskHandl er Decor at or class. In this case,
we simply give it the class name of the Wor ki t enHandl er implementation class to instantiate,
but another constructor is available that we can pass an instance of a Wor ki t entHandl er
implementation to (necessary if the Wor ki t enHandl er implementation does not have a no-
argument constructor).

When an exception is thrown by the wrapped Wr ki t enHandl er, the Si gnal | i ngTaskHan-
dl er Decor at or saves it as a parameter in the Wr kl t eminstance with a parameter name
that we configure the Si gnal | i ngTaskHandl er Decor at or to give it (see the code below for
the Except i onSer vi ce).

514

Nanme(Excepti onServi ce. except i onPar anet er Nane) ;

par ans) ;

Exception Management

22.3.2.1.3. Excepti onServi ce setup and configuration

In the BPMN2 process definition above, a service interface is defined that references the Excep-
ti onServi ce class:

<inter
face id="_handlingServicelnterface" nane="org.] bpm exanpl es. excepti ons. servi ce. Excepti onServi ce">
<operation id="_handlingServi ceOperation" nane="handl eExcepti on">

In order to fill in the blanks a little bit, the code for the Except i onSer vi ce class has been included
below. In general, you can specify any Java class with the default or an other no-argument con-
structor and have it executed during a <ser vi ceTask>

public class ExceptionService {
public static String exceptionParaneterName = "ny.exception. paraneter. nane";

public void handl eException(Wrkltem workltem {
System out. println("Handling exception caused by work item'" + workltem getName() + "' (id:
" + workltemgetld() + ")");

Map<String, Object> parans = workltem getParaneters();
Throwabl e throwabl e = (Throwabl e) parans. get (excepti onPar anet er Nane) ;
t hrowabl e. pri nt St ackTrace();

public String throwException(String nmessage) {
throw new Runti meException("Service failed with input:

+ nessage);

public static void set Excepti onParaneterName(String exceptionParam {
excepti onPar aret er Nane = excepti onPar am

22.3.2.1.4. Changing the example to use a <si gnal >

In the example above, the thrown Error Event interrupts the process: no other flows or activities
are executed once the Error Event has been thrown.

However, when a Signal Event is processed, the process will continue after the Signal Event
SubProcess (or whatever other activities that the Signal Event triggers) has been executed. Fur-
thermore, this implies that the the process will not end up in an aborted state, unlike a process
that throws an Error Event.

In the process above, we use the <err or > element in order to be able to use an Error Event:

515

Exception Management

<error id="_exception" errorCode="code" structureRef="_exceptionlteni/>

When we want to use a Signal Event instead, we remove that line and use a <si gnal > element:

<signal id="exception-signal" structureRef="_exceptionlteni/>

However, we must also change all references to the "_excepti on" <er r or > so that they now refer
to the "except i on- si gnal " <si gnal >.

That means that the <er r or Event Def i nt i on> element in the <st art Event >,

<errorEventDefinition id="_X-1_ED 1" errorRef="_exception" />

must be changed to a <si gnal Event Def i nti on> which would like like this:
<si gnal EventDefinition id="_X-1_ED 1" signal Ref ="exception-signal"/>

In short, we have to make the following changes to the <st art Event > in the Event SubProcess:

1. It will now contain a <si gnal Event Def i nti on> instead of a <err or Event Def i nti on>

2. The errorRef attribute in the <erroEvent Defi nti on> is now a si gnal Ref attribute in the
<si gnal Event Defi nti on>.

3. The i d attribute in the si gnal Ref is of course now the id of the <si gnal > element. Before it
was id of <err or > element.

4. Lastly, when we signal the process in the Java code, we do not signal "Er r or - code" but simply
"exception-signal ", the i d of the <si gnal > element.

22.3.2.2. Example: logging exceptions thrown by bad <scri pt Task>
nodes
In this section, we'll briefly describe what's possible when dealing with <scri pt Task> nodes that

throw exceptions, and then quickly go through an example (also available in the j bpm exanpl es
module) that illustrates this.

22.3.2.2.1. Introduction

If you're reading this, then you probably already have a problem: you're either expecting to run into
this problem because there are scripts in your process definition that might throw an exception,
or you're already running a process instance with scripts that are causing a problem.

516

Exception Management

Unfortunately, if you're running into this problem, then there is not much you can do. The only
thing that you can do is retrieve more information about exactly what's causing the problem. Luck-
ily, when a <scri pt Task> node causes an exception, the exception is then wrapped in a Wor k-
fl owRunt i neExcepti on.

What type of information is available? The Wor kf | owRunt i neExcept i on instance will contain the
information outlined in the following table. All of the fields listed are available via the normal get *
methods.

Table 22.2. Information contained in wer kf | owRunt i neExcept i on instances.

Field name Type Description

processl nst ancel d | ong The id of the Processl n-

st ance instance in which

the exception occurred. This
Processl nst ance may not ex-
ist anymore or be available in
the database if using persis-
tence!

processld String The id of the process defin-
ition that was used to start
the process (i.e. "Excep-
tionScript Task" in

ksessi on. start Process("ExceptionScri pt Task");

)

nodel d | ong The value of the (BPMN2) id
attribute of the node that threw
the exception.

nodeNane String The value of the (BPMN2)
name attribute of the node that
threw the exception.

vari abl es Map<String, Object> The map containing the vari-
ables in the process instance
(experimental).

message String The short message indicating
what went wrong.

cause Thr owabl e The original exception that
was thrown.

517

Exception Management

22.3.2.2.2. Example: Exceptions thrown by a <scri pt Task>.

The following code illustrates how to extract extra information from a process instance that throws
a Wor kf | owRunt i meExcept i on exception instance.

inmport org.jbpmworkflow instance. Wr kf | owRunt i neExcepti on;
inport org.kie. api.Ki eBase;

inport org.kie.api.io.ResourceType;

inport org.kie.api.runtine.Ki eSessi on;

inport org.kie.api.runtime.process. Processl|nstance;
inport org.kie.internal.buil der.Know edgeBui | der;

inmport org.kie.internal.buil der. Know edgeBui |l der Factory;
inport org.kie.internal.io.ResourceFactory;

public class ScriptTaskExcepti onExanpl e {

public static final void main(String[] args) {
runExanpl e() ;

public static void runExanpl e() {
Ki eSessi on ksessi on = creat eKi eSessi on();
Map<String, Object> parans = new HashMap<String, Object>();

String varNanme = "var1l";
parans. put (varNane , "val ueOne");
try {

Processl nstance processl nstance = ksessi on. start Process("Excepti onScri pt Task", parans);
} catch(Workfl owRunti meException wre) {
String nsg = "An exception happened in
+ "process instance [" + wfre.getProcesslnstancel d()
+ "] of process [" + wfre.getProcessld()
+ "] in node [id: " + wfre.getNodel d()
+ ", nanme: " + wfre.get NodeNane()
+"] and variable " + varNane +" had the value [" + wfre. getVari abl es(). get (var Nane)
+1

System out . println(nsg);

private static Ki eSession createKieSession() {
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(Resour ceFact ory. newC assPat hResour ce("excepti ons/
Scri pt TaskExcepti on. bpmm2"), Resour ceType. BPM\2) ;
Ki eBase kbase = kbuil der. newkKnow edgeBase() ;
return kbase. newKi eSessi on();

518

Exception Management

22.4.1. Business Exceptions

Business Exceptions are exceptions that are designed and managed in the BPMN2 specification
of a business process. In other words, Business Exceptions are exceptions which happen at the
process or workflow level, and are not related to the technical components.

Many of the elements in BPMN2 related to Business Exceptions are related to Compensation and
Business Transactions. Compensation, in particular, is complexer than many other parts of the
BPMN2 specification.

Full support for compensation and business transactions is expected with the release of jBPM 6.1
or 6.2. Once that has been implemented, this section will contain more information about using
those BPMN2 features with jBPM.

22.4.1.1. Business Exceptions elements in BPMN2

The following attempts to briefly describe Compensation and Business Transaction related ele-
ments in BPMN2. For more complete information about these elements and their uses, see the
BPMN2 specification, Bruce Silver's book BPMN Met hod and Styl e or any of the other available
books about the use of BPMNZ2.

Table 22.3. BPMN2 Exception Handling Elements

BPMNZ2 Element types Description

Errors Error Events can be used to signal when a
process has encountered an unexpected situ-
ation: signalling an error is often called throw-
ing an error.

Boundary Error Events in a different part of
the process can then be used to catch the er-
ror and initiate a sequence of activities to han-
dle the exception.

Errors themselves can be extended with extra
information that is passed from the throwing
to catching event. This is done with the use of
an Item Definition.

Compensation Exception handling activities associated with
the normal activities in a Business Transac-
tion are triggered by Compensation Events.

There are 3 types of compensation events: In-
termediate (a.k.a. Boundary) (catch) events,
Start (catch) events, and Intermediate or End
(throw) events.

519

Exception Management

BPMN2 Element types Description

Compensation Boundary (catch) events may
only be attached to activities (e.g. tasks) that
could cause an exception. These Boundary
events are then associated (not linked!) with
a Task that will be executed if the Boundary
event catches a (thrown) Compensation sig-
nal.

Start (catch) events are used when defining
an Compensation Event SubProcess, which
requires them in order to be able to catch a
(thrown) Compensation signal.

Compensation Intermediate and End events
are used in order to throw Compensation
Events. These events often follow decision
nodes that determine whether the workflow
executed up to that point has succeeded. If
not, the path including the Intermediate or
End Event is chosen in order to trigger Com-
pensatoin for the activities that did not suc-
ceed.

BPMNZ2 contains a number of constructs to model exceptions in business processes. There are
several advantages to doing exception handling at the business process level (as opposed to
handling it with code):

e Transparency

» Being able to quickly see what happens in exceptional situations means that the results and
performance of a process is more easily monitored and measured.

« It also increases how easily a process can be implemented as well as how maintainable a
process definition is.

» Business Logic Isolation

» Again, the idea behind using a business process is to isolate the business logic from the
technical code. This simplifies the complexity of the system and increases how quickly you
can create new business processes and change existing ones.

» Implementing exception handling at a technical level often takes more time because it's often
complexer and specific to a system.

520

Exception Management

22.4.1.2. Designing a workflow with Business Exceptions

Where are business exceptions likely to occur? There is academic research on this, but some
possible examples are:
« When an interaction with an external party or 3rd party system does not go as planned

« When you can not fully check the the input data in your process (like a client's address infor-
mation, for example)

« In general, if there are parts of your process that are particularly dependent on one of the
following, a business exception will be a good idea:

» Company policy or policy governing certain (in-house) procedures

» Laws governing the business process (such as age requirements, for example)

521

Chapter 23. Flexible Processes

Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be
a growing need amongst end users for more flexible and adaptive business processes, without
ending up with overly complex solutions. Everyone seems to agree that using a process-centric
approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge
workers" no longer want to be locked into rigid processes but wants to have the power and flexibility
to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition
of what it might or might not mean, as this has been a hot topic for discussion, it refers to the
basic idea that many applications in the real world cannot really be described completely from
start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes
a different approach: instead of trying to model what should happen from start to finish, let's give
the end user the flexibility to decide what should happen at runtime. In its most extreme form for
example, case management doesn't even require any process definition at all. Whenever a new
case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where
care plans can be used to describe how patients should be treated in specific circumstances,
but people like general practitioners still need to have the flexibility to add additional steps and
deviate from the proposed plan, as each case is unique. And there are similar examples in claim
management, help desk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where
we don't model any process up front), you still need a lot of the other features a BPM system
(usually) provides: there still is a clear need for audit logs, monitoring, coordinating various ser-
vices, human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cas-
es are somewhere in between, or might even evolve from case management to more structured
business process over time (when we for example try to extract common approaches from many
cases). If we can offer flexibility as part of our processes, can't we let the users decide how and
where they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your
processes. The first example shows a care plan that shows the tasks that should be performed
when a patient has high blood pressure. While a large part of the process is still well-structured,
the general practitioner can decide himself which tasks should be performed as part of the sub-
process. And he also has the ability to add new tasks during that period, tasks that were not
defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc
sub-process to model this kind of flexibility, possibly augmented with rules or event processing to
help in deciding which fragments to execute.

522

Flexible Processes

AR Sl PV

| B Moaors SP | |

.

| i Mt HFI]
R -6
[.';lﬂmbﬂ'hﬂ:l—{ mm_,-;g{—.@
i -\\‘ _{

@

'

®

Figure 23.1. Healthcare: high blood pressure

The second example actually goes a lot further than that. In this example, an internet provider
could define how cases about internet connectivity problems will be handled by the internet
provider. There are a number of actions the case worker can select from, but those are simply
small process fragments. The case worker is responsible for selecting what to do next and can
even add new tasks dynamically. As you can see, there is not process from start to finish anymore,
but the user is responsible for selecting which process fragments to execute.

O —{ Crieabe Probdem E.:ne]

I Update Probilem Descrp‘ﬂun]

[f}l Parfamm Systerm Chagrostics]—{Aﬂ.ﬂy’!ﬂ- DHagrastics Hﬁl Rledpnel ﬂlaqnnwr.s]

B Comtact Cursman

—@®
*\ Sokvid
[S Request Techaician J—-[I Technician Vs }—b®
: \—{ | Uipdate CaseJ—-[i Folow LlpJ
Chose Case @

O _..I % Escalate Case | @

Figure 23.2. Telecom: process fragments

523

Flexible Processes

And in its most extreme form, we even allow you to create case instances without a process
definition, where what needs to be performed is selected purely at runtime. This however doesn't
mean you can't figure out anymore what 's actually happening. For example, meetings can be
very ad hoc and dynamic, but we usually want a log of what was actually discussed. The following
screenshot shows how our regular audit view can still be used in this case, and the end user
could then for example get a lot more info about what actually happened by looking at the data
associated with each of those steps. And maybe, over time, we can even automate part of that
by using a semi-structured process.

— = started: Company Meeting
= 4] List Attendees
#1 Agenda Overview

#] Agenda Topic: New Hires

+#] Agenda Topic: Customer Feedback
] Agenda Topic Moved to Next Meeting: Company Party

] Questions?

=] Question: Fix Problems with Coffee Machine?

=«_ completed: Company Meeting

Figure 23.3. Audit log for dynamic case

524

Chapter 24. Concurrency and
asynchronous execution

24.1. Concurrency

In the following text, we will refer to two types of "multi-threading”: logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement brings
with it a number of complications. While it might seem that multi-threading would bring perfor-
mance benefits with it, the extra logic needed to make sure the different threads work together
well means that this is not guaranteed. There is also the extra overhead incurred because we
need to avoid race conditions and deadlocks.

24.1.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially trig-
ger each of the outgoing branches, one after the other. This is possible since execution is almost
always instantaneous, meaning that it is extremely fast and produces almost no overhead. As a
result, the user will usually not even notice this. Similarly, action scripts in a process are also syn-
chronously executed, and the engine will wait for them to finish before continuing the process. For
example, doing a Thread.sleep(...) as part of a script will not make the engine continue execution
elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the com-
pleteWorkltem(...) method to return before continuing execution. It is important that your service
handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

525

Concurrency and asyn-
chronous execution

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

24.1.2. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session. How-
ever, there are cases in which it's necessary to run multiple processes in different knowledge
sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple
knowledge sessions (and processes), there is a guideline that users should be aware of. The
following paragraphs explain why this guideline is important to follow.

Tip
@

Please make sure to use a database that allows row-level locks as well as ta-
ble-level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each
with its own knowledge session instance. On each thread, jBPM processes are being started using
the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally
simultaneously finished a process. At this point, because persistence is being used, both thread
A and B will be committing changes to the database. If row-level locks are not possible, then the
following situation can occur;

» Thread A has a lock on the Processinstancelnfo table, having just committed a change to that
table.

« Thread A wants a lock on the Sessioninfo table in order to commit a change there.

» Thread B has the opposite situation: it has a lock on the Sessioninfo table, having just committed
a change there.

« Thread B wants a lock on the Processinstancelnfo table, even though Thread A already has
alock on it.

This is a deadlock situation which the database and application will not be able to solve. However,
if row-level locks are possible (and enabled!!) in the database (and tables used), then this situation
will not occur.

526

Concurrency and asyn-
chronous execution

24.2. Asynchronous execution

24.2.1. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the
technology you're using. If you're only using Java, you could execute the actual service in a new
thread:

public class MyServiceTaskHandl er inpl ements WorkltenHandl er {

public void executeWrklten(Wrkltemworkltem WrkltenManager manager) {
new Thread(new Runnabl e() {
public void run() {
/1 Do the heavy lifting here ...

}
}).start();

}

public void abortWrkltem Workltemworkltem Workltenmvanager manager) {
}
}

It's advisable to have your handler contact a service that executes the business operation, in-
stead of having it perform the actual work. If anything goes wrong with a business operation, it
doesn't affect your process. The loose coupling that this provides also gives you greater flexibility
in reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to
add a task there. To implement an asynchronous handler, you usually have to simply do an asyn-
chronous invocation of this service. This usually depends on the technology you use to do the
communication, but this might be as simple as asynchronously invoking a web service, or sending
a JMS message to the external service.

24.2.2. jbpm executor

In version 6, jBPM introduces new component called jopm executor which provides quite ad-
vanced features for asynchronous execution. It delivers generic environment for background exe-
cution of commands. Commands are nothing more than business logic encapsulated within simple
interface. It does not have any process runtime related information, that means no need to com-
plete work items, or anything of that sort. It purely focuses on the business logic to be executed.
It receives data via CommandContext and returns results of the execution with ExecutionResults.

Before looking into details on jBPM support for asynchronous execution let's look at what are the
common requirements for such execution:

« allows asynchronous execution of given piece of business logic

527

Concurrency and asyn-
chronous execution

« allows to retry in case of resources are temporarily unavailable e.g. external system interaction

« allows to handle errors in case all retries have been attempted

» provides cancellation option

 provides history log of execution

When confronting these requirements with the "simple async handler" (executed as separate
thread) you can directly notice that all of these would need to be implemented all over again by
different systems. Due to that a common, generic component has been provided out of the box

to simplify and empower usage.

jBPM executor operates on commands, which are essential piece of code that is going to be

executed as background job.

| **

*

*

Executor's Command are dedicated to contain purely business |ogic that shoul d be executed.

It should not have any reference to underlying process engi ne and shoul d not be concerned

with any process runtinme related | ogic such us conpleting work item sending signals, etc.

Information that are taken from process will be delivered as part of data instance of
<code>CommandCont ext </ code>. Dependi ng on the execution context that data can vary but
in nost of the cases following will be given:

<l i >busi nessKey - usually unique identifier of the caller</Ili>

* cal | backs - FQCN of t he <code>ConmandCol | back</

code> that shall be used on command conpl etion</Ii>

*
*
*
*

*

*

*

*/

</ ul >

Wien executed as part of the process (work item handl er) additional data can be expected:

workltem- the actual work itemthat is being executed with all its parameters</Ili>
processlnstanceld - id of the process instance that triggered this work
deploynentld - if given process instance is part of an active deploynment

| nportant note about inplenentations is that it shall always be possible to be initialized with default
as executor service is an async conponent so it will initialize the conmand on denmand using reflection.

constri

In case there is a heavy logic on initialization it should be placed in another service inplenentation that

can be | ooked up fromw thin command.

public interface Comrand {

Looking at the interface above, there is no specific integration with the jBPM runtime engine, it's
decoupled from it to put main focus on the actual logic that shall be executed as part of that

/**

* Executed this command' s | ogic.

* @aramctx - contextual data given by the executor service

* @eturn returns any results in case of successful execution

* @hrows Exception in case execution failed and shall be retried if possible
&l

publ i c ExecutionResul ts execute(ComandContext ctx) throws Exception;

528

Concurrency and asyn-
chronous execution

command rather to worry about integration with process engine. This design promotes reuse of
already existing logic by simply wrapping it with Command implementation.

Input data is transferred from process engine to command via CommandContext. It acts purely
as data transfer object and puts single requirement on the data it holds - all objects must be
serializable.

/**

* Data holder for any contextual data that shall be given to the command upon executi on.

* |nportant note that every object that is added to the data container nust be serializable
* meaning it nmust inplenent <code>java.io. Seriazliabl e</code>

*
*/
public class ComrandContext inplenents Serializable {

private static final long serial VersionU D = -1440017934399413860L;
private Map<String, Qbject> data;

publ i c ConmandCont ext () {
data = new HashMap<String, Object>();

publ i c ConmandCont ext (Map<Stri ng, Object> data) {
this.data = data;

public void setData(Map<String, Object> data) {
this.data = data;

public Map<String, Object> getData() {
return data;

public Object getData(String key) {
return data. get (key);

public void setData(String key, Object value) {
dat a. put (key, val ue);

public Set<String> keySet () {
return data. keySet ();

@verride
public String toString() {
return "CommandContext{" + "data=" + data + '}';

Next outcome is provided to process engine via ExecutionResults, which is very similar in nature
to the CommandContext and acts as data transfer object.

529

Concurrency and asyn-
chronous execution

/**
* Data hol der for command's result data. Whatever conmmand produces should be placed in
* this results sothey can be | ater on referenced by nane by the requester - e.g. process i nstance.

*
&l
public class ExecutionResults inplenments Serializable {

private static final long serial VersionU D = -1738336024526084091L;
private Map<String, Object> data = new HashMap<String, Object>();

public ExecutionResults() {
}

public void setData(Mp<String, Object> data) {
this.data = data;

public Map<String, Object> getData() {
return data;

public Cbject getData(String key) {
return data. get (key);

public void setData(String key, Object value) {
dat a. put (key, val ue);

public Set<String> keySet() {
return data. keySet ();

@verride
public String toString() {
return "ExecutionResults{" + "data=" + data + '}"';

Executor covers all requirements listed above and provides user interface as part of jppm console
and kie workbench (kie-wb) applications.

e bt aran Eoan oy BT

Figure 24.1.

530

Concurrency and asyn-
chronous execution

Above screenshot illustrates history view of executor's job queue. As can be seen on it there are
several options available:

« view details of the job
 cancel given job

 create new job
24.2.2.1. WorkltemHandler backed with jbpm executor

jBPM (again in version 6) provides an out of the box async work item handler that is backed by the
jbpm executor. So by default all features that executor delivers will be available for background
execution within process instance. AsyncWorkltemHandler can be configured in two ways:

 as generic handler that expects to get the command name as part of work item parameters
« as specific handler for given type of work item - for example web service

Option 1 is by default configured for jopm console and kie-wb web applications and is registered
under async name in every ksession that is bootstrapped within the applications. So whenever
there is a need to execute some logic asynchronously following needs to be done at modeling
time (using jopm web designer):

 specify async as TaskName property
 create data input called CommandClass
« assign fully qualified class name for the CommandClass data input

Next follow regular way to complete process modeling. Note that all data inputs will be transferred
to executor so they must be serializable.

Second option allows to register different instances of AsyncWorkltemHandler for different work
items. Since it's registered for dedicated work item most likely the command will be dedicated
to that work item as well. If so CommandClass can be specified on registration time instead of
requiring it to be set as work item parameters. To register such handlers for jopm console or kie-
wb additional class is required to inform what shall be registered. A CDI bean that implements
WorkltemHandlerProducer interface needs to be provided and placed on the application classpath
so CDI container will be able to find it. Then at modeling time TaskName property needs to be
aligned with those used at registration time.

24.2.2.2. Configuration

jbpm executor is configurable to allow fine tuning of its environment. In general jopm executor
runs as a thread pool that periodically checks for waiting jobs and executes them when needed.
Configuration of jopm executor is done via system properties:

 org.kie.executor.disabled = true|false - allows to completely disable executor component

531

Concurrency and asyn-
chronous execution

* org.kie.executor.pool.size = Integer - allows to specify thread pool size where default it 1

 org.kie.executor.retry.count = Integer - allows to specify number of retries in case of errors while
running a job

« org.kie.executor.interval = Integer - allows to specify interval (in seconds) that executor will use
while checking for waiting jobs where default is 3 seconds

« org.kie.executor.timeunit = String - allows to specify timer unit used for calculating interval, value
must be a valid constant of java.util.concurrent. TimeUnit, by default it's SECONDS.

24.2.2.3. Reoccurring jobs

jbpm executor introduced (in verion 6.2) extension to jobs (aka commands) that allow single job
to be executed multiple times. That feature is brought to the executor via additional interface that
command should implement.

| **

* Marks given executor conmand it is reoccurring and shall be reschedul ed after conpletion
of single instance.

*/
public interface Reoccurring {
/**

* Returns next tine to be schedul ed. Date nust be in future as jobs cannot be schedul ed i n past.
* Returns null in case it should not be schedul ed any nore.
* @eturn
*/
Dat e get Schedul eTi me();
}

Reoccurring interface is very simple and enforces implementation to provide the next schedule
time that the command should be executed at. It must already be valid date that is not in the
past. In case no more invocation of given command should happen return value of this method
should be null.

An excellent example of such command is org.joppm.executor.commands.LogCleanupCommand
that provides easy and convineint way to schedule periodic clean up of jBPM log tables on defined
time intervals. See this article [http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environ-
ment-healthy.html] to see it in action and how to configure and run it.

24.2.2.4. Run jobs on same server node on which it was scheduled

By default jopm executor is cluster ready and by that will distribute jobs across all cluster members.
That might result in execution of given job on different cluster member than it was scheduled which
is not always desired. To override this mechanism job can set 'Owner' as part of their data when
being registered wher owner is the executor instance that is scheduling the job.

532

http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html

Concurrency and asyn-
chronous execution

ConmmandCont ext ctx = new CommandCont ext () ;
ctx.setData("sone data", "data...");
ctx.setData("Retries", 0);

ctx.setData(" Omner", Executor Service. EXECUTOR | D);

That will ensure that only the isntance that scheduled the job will be the one which will execute
it. Note that it might impact the time when the job is executed especially in cases where given
cluster member will be unavailable.

533

Chapter 25. Release Notes

25.1. |BPM 6.2

25.1.1. New and Noteworthy in j[BPM 6.2.0

The following features were added to the jBPM core on top of 6.1.

25.1.1.1. |BPM services

jBPM services modules have been significantly refactored to provide clear separation between
the logic they bring and various frameworks that can be used to consume those services. With
version 6.2 following modules are available:

« jbpm-services-api - clear services api that shall be used by any client code that consumes
services

 jbpm-kie-services - core implementation of the services that do not have any framework specific
code (e.g. CDI)

» jbpm-services-cdi - CDI specific code on top of jbpm-kie-services

 jbpm-services-ejb-api - ejb related extensions to services api - mainly to provide remote capa-
blities for the interfaces

 jbpm-services-ejb-impl - ejb specific code on top of jbpm-kie-services

» jbpm-services-ejb-client - ejb client implementation to interact with services over remote ejb
invocation - currently JBoss specific implementation available

» jbpm-service-ejb-timer - ejb timer service backed by JEE timer service provided by container

jBPM services are intended to be base of execution server (regardless of what framework is
used to build it up completely) so should be considered as first choice when enbedding jbpm
in custom applications. With 6.2 capabilities it already provides support for most common frame-
works used - CDI, EJB, Spring (should simply rely on core implementation). See this article [http://
mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html] for details and ex-
ample.

25.1.1.2. Process engine extensions

1. Lazy initialization of runtime engine components by RuntimeManager to make runtime engine
creation lightweight

534

http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html
http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html
http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html

Release Notes

RuntimeEngine has been enhanced to lazy initialize its components (KieSession, TaskService,
AuditService) to improve overall performance of retriveing RuntimeEngine instances from Run-
timeManager.

2. Life cycle management for work item handlers and event listeners

Handler and listeners can implement additional interface to be managed by runtime engine,
see work item handler life cycle management for more details.

3. Deployments are now by default stored in data base (as deployment descriptors) to servive
server restarts

Prior to verion 6.2 deployments that were handled by DeploymentService implementation were
not persisted so they required to be handled separately - in case of kie-workbench they were
stored inside system.git repo. With version 6.2 deployment service will persist that information
directly into db which will make it easier in many cases including clustering as it will not require
VFES clustering (Zookeeper and Helix) setup.

4. Extension to deployment descriptor to specify classes (by FQCN) that should be added to JAXB
context for remote interfaces interaction

Deployment descriptor accept new set of elements

<r enot eabl e- cl asses> L <r enot abl e- cl ass>org. j bpm t est. Cust onCl ass</r enot abl e-cl ass>
...</renoteabl e-cl asses>
abl e-cl asses>
<renot abl e-
cl ass>org. j bpm test. Cust onCl ass</renot abl e- cl ass>

5. Classpath scanning for classes to be included in JAXB context for remote interfaces interaction

Classes annotated with javax.xml.bind.annotation.XmIRootElement and
org.kie.api.remote.Remotable will be automatically added to JAXB context of given deployment
as soon as they are defined as project dependency. At the same time all classes included in
project itself are also added to deployment's JAXB context.

6. jbpm executor has been enhanced to provide support for:
 requeue failed jobs so they can be executed once the error that caused them to is resolved.

* reoccuring jobs that allows single definition to be repeatedly invoked based on
time intervals, e.g. daily jobs to clean up history log tables. See this article
[http://mswiderski.blogspot.com/2014/12/keep-your-jppm-environment-healthy.html] for de-
tails and example.

7. CRON support for intermediate and boundary timer events

535

http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html

Release Notes

8. Enhanced support for multi instance activities to support completion condition as MVEL ex-
pression

25.1.1.3. OSGi

While a number of core jars were OSGi-ready (in v5 already), a significant number of additional
jars were now added to this list, including for example the human task service, the runtime man-
agers, full persistence, etc. As a result, full core engine functionality is now available on top of
OSGi. Specific extensions and tests showing it in action are available for Apache Karaf and Aries
Blueprint (in the droolsjbpme-integration repository).

25.1.1.4. Camel handler

A new out-of-the-box service task has been implemented for using Apache Camel to connect a
process to the outside world using some of the numerous Camel endpoint URIs. The service task
allows you to for example specify how to pass data to an FTP endpoint by configuring properties
such as hostname, port, username, payload, etc. for some common endpoints like (S)FTP, File,
JMS, XSLT, etc. but you can use virtually any of the available endpoints by defining the URI
yourself (http://camel.apache.org/uris.html).

25.1.1.5. Form Modeler improvements

Support for JavaScript code:

» Added field property on simple fields to allow the user to add JavaScript code on the onchange
event. This will allow the user to add richer functionallities on the forms.

» Simplified the autogenerated field id's in order to allow the user to access the inputs directly
via JavaScript.

New field types:

» Added configurable ComboBox and RadioGroup fields. This new fields types allow the user
to add ComboBoxes and Radio Button groups selecting their data source from the list of the
Sources registered on the application.

e Added support to simple types Lists (java.util.List<String>, java.util.List<Integer>,
java.util.List<Long>...). This fields allow the user to upload multiple basic values (strings, num-
bers, dates and booleans) storing them on java.util.List

25.1.2. New and Noteworthy in KIE Workbench 6.2.0

25.1.2.1. Project Editor permissions

The ability to configure role-based permissions for the Project Editor have been added.

Permissions can be configured using the WEB- I NF/ cl asses/ wor kbench- pol i cy. properties
file.

536

Release Notes

The following permissions are supported:-

+ Save button
f eature. wb_proj ect _aut hori ng_save
* Delete button
feature.wb_project_authoring_delete
» Copy button
f eature. wb_proj ect _aut hori ng_copy
* Rename button
f eature. wb_proj ect _aut hori ng_renane
 Build & Deploy button

f eat ure. wb_proj ect _aut hori ng_bui | dAndDepl oy

25.1.2.2. Unify validation style in Guided Decision Table Wizard.

All of our new screens use GWT-Bootstrap widgets and alert users to input errors in a consistent
way.

One of the most noticable differences was the Guided Decision Table Wizard that alerted errors
in a way inconsistent with our use of GWT-Bootstrap.

This Wizard has been updated to use the new look and feel.

OutputField

Sc1ScoreCardData Fact binding

Facts that need to be referenced in
the actions need to be given an
identifier. If an identifier is not given
the system will create one.

Binding: | g5 | ?}

Duplicate bindings detected

Figure 25.1. New Guided Decision Table Wizard validation

537

Release Notes

25.1.2.3. Improved Wizards

During the re-work of the Guided Decision Table's Wizard to make it's validation consistent with
other areas of the application we took the opportunity to move the Wizard Framework to GWT-

Bootstrap too.

The resulting appearance is much more pleasing. We hope to migrate more legacy editors to
GWT-Bootstrap as time and priorities permit.

' Summary

+f Imports

+7 Add Fact Patterns

4 Add Constraints

+ Add Actions to update Facts
+ Add Actions to insert Facts

4 Columns to expand

Guided Decision Table Wizard

Define actions to insert new Facts\Pattemns.

Available patterns Chosen patterns

Applicant LoanApplication

Bankruptcy
DataField

>>
IncomeSource

Available fields

this : this

amount : Whole numb
approved : True or Fal

approvedRate : Whole

Chosen fields

[Amount loaned] amount

2>

<< <<

LoanApplication deposit : Whole numb

OutputField explanation : Text
SclScoreCardData insuranceCost : Whole

lengthYears : Whole n-
» » »

Binding 2]

Logically insert a fact - the fact will be deleted when the supporting evidence is removed. @

* Column header (description): | Amount loaned
(optional) value list: 2]

Default value:

< Previous Next » Cancel

Figure 25.2. New Wizard Framework

25.1.2.4. Consistent behaviour of XLS, Guided Decision Tables and
Guided Templates

Consistency is a good thing for everybody. Users can expect different authoring metaphores to
produce the same rule behaviour (and developers know when something is a bug!).

There were a few inconsistencies in the way XLS Decision Tables, Guidied Decision Tables and
Guided Rule Templates generated the underlying rules for empty cells. These have been elimi-
nated making their operation consistent.

« If all constraints have null values (empty cells) the Pattern is not created.

538

Release Notes

Should you need the Pattern but no constraints; you will need to include the constraintt hi s !

= null.

This operation is consistent with how XLS and Guided Decision Tables have always worked.

* You can define a constraint on a String field for an empty String or white-space by delimiting it
with double-quotation marks. The enclosing quotation-marks are removed from the value when

generating the rules.

The use of quotation marks for other String values is not required and they can be omitted.
Their use is however essential to differentiate a constraint for an empty String from an empty
cell - in which case the constraint is omitted.

25.1.2.5. Improved Metadata Tab

The Metadata tab provided in previous versions was redesigned to provide a better asset version-
ing information browsing and recovery. Now every workbench editor will provide an "Overview

tab" that will enable the user to manage the following information.

'4:] Droots Workbench x
&e +H & |[127.00.1

@ UberFire

Explore ~
Project Explorer @

demo ~ / uf-playground v / mortgages ~

& <default>

& org
& mortgages

g DRL ~

E DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~

@) cupsp russ ~
Bankruptcy history
No bad credit checks
no NINJAs
ReglaRestored
Underage

@ GUIDED RULES (WITH DSL) ~
CreditApproval
RegexDslRule

% | JAvA SOURCEFILES ~

@ TEST SCENARIOS ~

New ~

E

Project

Repository ~

Underage.rdrl - Guided Rules

Type: Guided Rules
Description
Used in projects mortgages

Last modified
Created on:

By/admin on 2014-09-02 17:58

Version history Metadata

Date

By/Walter Medvedeo on 2013-09-16 13:54

Commit Message Author

Current Tuesday, 2014 Sep...
Select Tuesday, 2014 Sep...
Select Wednesday, 2013 ...
Editor ~ Overview Source Config
Problems
Level Text

Applicant age chan admin

Applicant age chan admin

project refactoring t... Walter Medvedeo

4 4 130f3 »

Flle

Sawe || Delete | | Rename || Copy | | Validate | | Latest Version ™

Comments i
project refactoring to use mortgages package
Version 2
admin:

Applicant age changed to 22
"Age should be change t0 23"
U |

Applicant age changed to 23

Refresh

Column Line

= |[=

Figure 25.3. Improved Metadata Tab

 Versions history

539

Release Notes

The versions history shows a tabular view of the asset versions and provides a "Select" button
that will enable the user to load a previously created version.

Type: Guided Rules Comments
Description No description yet - what does this rule
#
Used in projects mortgages S
Last modified By/admin on 2014-09-02 17:98 "Age should be change to 23 *
Created on: By/Walter Medvedeo on 2013-09-18 15:54 2012.09.02 11
Version history Metadata
Date Commit Message Auther

Current Tuesday, 2014 Sep... = Applicant age chan... admin

Select Tuesday, 2014 Sep... Applicant age chan... admin

Select Wednesday, 2013 ... project refactoring t... Walter Medvedeo

Figure 25.4. Versions history

Metadata

4 130f3 b B M

The metadata section gets access to additional file attributes.

540

Release Notes

Type: Guided Rules Comments
Description No descripti
5 admin:
Used in projects mortgages "Age should be change to 23 "
Last modified By/admin on 2014-09-02 17:38 2014.09.02 1801
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history ~ Metadata

Categories: L
Note: Applicant age changed to 23
URI:

git://master@uf-playground/mortgages/src/main/resources/org/mortgages/Underage. rdrl
Subject:
Type:

External link:

Source:

Figure 25.5. Metadata section
+ Comments area

The redesigned comments area enables much clearer discussions on a file.
 Version selection dropdown

The "Version selector dropdown" located at the menu bar provides the ability to load and restore
previous versions from the "Editor tab", without having to open the "Overview tab" to load the
"Version history".

541

Release Notes

Underage.rdrl - Guided Rules

None selected

EXTENDS
WHEN
1. There is a LoanApplication [application]
There is an Applicant with:
2 age less than v|23
THEN
1. delete LoanApplication [application]
Set value of LoanApplication [application]
2:
Set value of LoanApplication [application]
(show
options...)

Editor Overview Source Config

oo
approved false
explanation Underage

Figure 25.6. Version selection dropdown

25.1.2.6. Improved Data Objects Editor

The Java editor was unified to the standard workbench editors functioning.

every data object is edited on his own editor window.

Save Delete Remame Copy @ Validate | Latest Version ™
Version 1
project refactoring to use mortgages package
| Version 2
Applicant age changed to 22
Version 3
Applicant age changed to 23
L] a
a a

It means that and now

542

x

%
agedl|

B 2

agedk

LE

Release Notes

) KIE Workbench x

e+ (& [localhost P+ =

KIE Workbench

Explore ~ New Item ~ Repository ~ Q
Project Explorer & = ~ Applicant.java - Data Objects Save Delete || Rename Copy | Validate LlatestVerson™ | X ™| A
demo ~ | uf-playground ~ / mortgages ~
Create new field Data Object Field

T T BT *Id Label
en Pro itor
g 2 Identifier Applicant
Label
E DRL ~
org.mortgages.Applicant Description
g DATA OBJECTS ~
Identifier Label Type
Applicant Package org.mortgages v o
Bankruptcy
Superclass ava.lang.Object v
IncomeSource applicationDate Date I 9N
LoanApplication
approved Boolean Drools & JBPM parameters:
DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
g] creditRating String TypeSafe v @
E ENUMERATION DEFINITIONS ~ name String ClassReactive (-]
PropertyReactive (7]
@ GUIDED DECISION TABLES =
Role + @
@ GUIDED RULES ~ Timestamp v e
@ GUIDED RULES (WITH DSL) = Duration v e
Expires
@ TEST SCENARIOS ~ ©
Remotable @
Editor ~ Overview Source
»
Messages Refresh || Clear | | x| ™| A

Figure 25.7. Improved Data Object Editor

« "New -> Data Object" option was added to create the data objects.

« Overview tab was added for every file to manage the file metadata and have access to the file
versions history.

» Editable "Source Tab" tab was added. Now the Java code can be modified by administrators
using the workbench.

» "Editor" - "Source Tab" round trip is provided. This will let administrators to do manual changes
on the generated Java code and go back to the editor tab to continue working.

» Class usages detection. Whenever a Data Object is about to be deleted or renamed, the project
will be scanned for the class usages. If usages are found (e.g. in drl files, decision tables, etc.)
the user will receive an alert. This will prevent the user from breaking the project build.

543

Release Notes

) KIE Workbench x

$ W,>> & [localhost: w =

Usages Detected

Class: org.mortgages.Applicant is being used in the following files, do you still
want to delete it?

pproval.rasir

RegexDsIRule.rdslr

credit ratings

ApplicantDs!.ds!

No bad credit checks.rdrl

Underage.rarl

NINJAs scenario

©ves, e ey

Figure 25.8. Usages detection

25.1.2.7. Execution Server Management Ul

A new perspective called Management has been added under Servers top level menu. This per-
spective provides users the ability to manage multiple execution servers with multiple containers.
Available features includes connect to already deployed execution servers; create new, start, stop,
delete or upgrade containers.

544

Release Notes

800 KIE Workbench s

KIE Workbench

Home Authoring Deploy anagement ~

Server Management Browser Container Info [mortgages] x
ce Register £ Refresh
Start Scanner = Stop Scanner Scan Now @
® MyServer
® mortgages

http://localhost:8081/kie-server-
services/services/rest/server/containers/mortgages

I Group Id Artifact Id Version
mortgages mortgages LATEST Upgrade
Group Id Artifact 1d Version
mortgages mortgages 0.01

Figure 25.9. Management perspective

Note

Current version of Execution Server just supports rule based execution.

25.1.2.8. Social Activities

A brand new feature called Social Activities has been added under a new top level menu item
group called Activity.

This new feature is divided in two different perspectives: Timeline Perspective and People Per-
spective.

The Timeline Perspective shows on left side the recent assets created or edited by the logged
user. In the main window there is the "Latest Changes" screen, showing all the recent updated
assets and an option to filter the recent updates by repository.

545

Release Notes

Recent Assets Latest Changes
Ef_-ig anotherDRL.drl edited today Showing updates for: | Latest Changes |

B Finance.java

—= . = i added 05/09/2014 11:48:52
HE‘:E sampleDrl.drl edited today [admin o)

1N

- = in edited 05/09/2014 11:49:35 "JIRA[1234]"
s) Finance.java added today E_‘..‘a admin /09/ []
& :
]
E‘i - Finance.java edited today = sampleDrl.drl
= 1 ﬂ director edited 05/09/2014 11:47:15 "JIRA[123]"
% anotherDRL.drl

admin edited 05/09/2014 11:46:38 "rule changed for X"

Figure 25.10. Timeline Perspective

The People Perspective is the home page of an user. Showing his infos (including a gravatar
picture from user e-mail), user connections (people that user follow) and user recent activities.
There is also a way to edit an user info. The search suggestion can be used to navigate to a user
profile, follow him and see his updates on your timeline.

Eder Ignatowicz's Profile " Eder Ignatowicz's Recent Activities

Connections:

]

= anotherDRL.drl edited today

- sampleDrl.drl edited today

-
i

W4

User name:admin

E-mail:ignatowicz@gmail.com

Edit my infos

Figure 25.11. People Perspective

546

Release Notes

Edit my infos

E-mail

ignatowicz@gmail.com

Real Name

Eder Ignatowicz

Figure 25.12. Edit User Info

25.1.2.9. Contributors Dashboard

A brand new perspective called Contributors has been added under a new top level menu item
group called Activity. The perspective itself is a dashboard which shows several indicators about
the contributions made to the managed organizations / repositories within the workbench. Every
time a organization/repository is added/removed from the workbench the dashboard itself is up-
dated accordingly.

This new perspective allows for the monitoring of the underlying activity on the managed repos-
itories.

547

Release Notes

KIE Workbench

Contributors

Commits per organization

Activity ~

Contributors

#Commits evolution

500 60
o 45
£ 400
£
3 30
5 30
o
b
£ demo. 18
S
£ 0 o
O T T T T T T T I
-, NN e‘q_n e&a e‘q_n e&a PR d‘ﬂ'“ A AN a® e&a e‘@ e&a
100 PEA s d@t 0% 0P ot e et Pt T S0 :?\90 Ry
1 2 3 P-%eg‘@ a0 e 3 ged P-QFO@ oo
#repositories
SUNDAY
- Select Organization - v P
- Select Repository - A ai TUESDAY
2012 maz WEDNESDAY
- Select Author - v f=po -
o4 THURSDAY
- Select Top Contributor - v
FRIDAY
SATURDAY

Author

Repository

Date

Commit

David Gutierrez
Administrator User
David Gutierrez
Administrator User

David Gutierrez

Figure 25.13

jopm-playground
jopm-playground
jbpm-playground
jbpm-playgreund

jbpm-playground

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

delete {{Evaluation/.pom.xml}

hjk

delete {{Evaluation/src/main/resource. .
hjk

delete {{Evaluation/_project.imports}

M4 1501237 » » M

. Contributors perspective

25.1.2.10. Package selector
The location of new assets whilst authoring was driven by the context of the Project Explorer.
This has been replaced with a Package Selector in the New Resource Popup.

The location defaults to the Project Explorer context but different packages can now be more
easily chosen.

548

Release Notes

* Resource Name

Location

Create new Guided Rule

resource name

org.mortgages

<default>
org

org.mortgages

urgpz

(DSL)

O Ok Cancel

Figure 25.14. Package selector

25.1.2.11. Improved visual consistency

All Popups have been refactored to use GWT-Bootstrap widgets.

Whilst a simple change it brings greater visual consistency to the application as a whole.

549

Release Notes

Condition column configuration

Pattern:LoanApplication [applicatinn
Calculation type:® Literal value) Formula® Predicate

Fielg: @mount ey

Operator.greater than g7

From Entry Point:

Column header (description); &mount min
(optional) value list:
Default value:

Binding:

Hide column:_

O Ok Cancel

Figure 25.15. Example Guided Decision Table Editor popup

550

Release Notes

_"'\1("

Modify constraints for LoanApplication

Modify constraints for LoanApplication

Add a restriction on a field

Multiple field constraint
Advanced options:

Add a new formula style expression

Mew formula

Expression editor Expression editor

Wariable name

d

v ©

Set

Figure 25.16. Example Guided Rule Editor popup

25.1.2.12. Guided Decision Tree Editor

A new editor has been added to support modelling of simple decision trees.

See the applicable section within the User Guide for more information about usage.

dtl.tdrl - Guided Decision Trees

Save || Delete || Rename || Copy

Applicant

Applicant
o -
................... $a i ————
[Y-
approved "
. pproved. gy g b 8 L creditRating == AA —— creditRating == OK creditRating == Sub prime
. creditRating
"""""""" Update $a - Updatesa ——————— QUpdate$sa —
Bankrupicy

IncomeSource

LoanApplication

Actions

Figure 25.17. Example Guided Decision Tree

551

Release Notes

25.1.2.13. Create Repository Wizard

A wizard has been created to guide the repository creation process. Now the user can decide
at repository creation time if it should be a managed or unmanaged repository and configure all
related parameters.

New Repository
+ Baslic Settings
Managed Repository Settings Repository Name
DemoRepository

* In Organizational Unit

demo v

¥/ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next > Cancel [Finish

Figure 25.18. Create Repository Wizard 1/2

552

Release Notes

New Repository

+ Basic Settings
+ Managed Repository
Settings

Repository Type:

Single-project Repository

Create a single managed project in this repository. Use this option for simple or self-contained projects.

* Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/devirelease)

Project Settings:
*Name

DemoRepository
Description

enter project description
* Group

demo
* Artifact

DemoRepository

* Version

1.0.0-SNAPSHOT

< Previous

Figure 25.19. Create Repository Wizard 2/2

25.1.2.14. Repository Structure Screen

Next »

The new Repository Structure Screen will let users to manage the projects for a given repository,
as well as other operations related to managed repositories like: branch creation, assets promotion

and project release.

553

Release Notes

@ KIE Workbench %\

&° »% (& | [localhost:8080/kie-wb-6.3.0-SNAPSHOT-eap6_4/kie-wb htmlitorg kie workbench.common.screens.messageconsole.MessageConsole s [=

KIE Workbench

Explore ~ New Item ~ Search Q

Project Explorer Repository Structure & |~ Repository Structure ManagedRepositoryExample (master) - > ManagedRepositoryExample:demo:1.0.0... confgure | Promote Release | | x | ™ | A

B IS ™
demo ~ ' ManagedRepositoryExample ~ / Module2 ~

master + Repository Groupld EET)
Repository Artifactld
Repository Version BRGS0

Open Project Editor

[Hodues

© Add Module

Module

Module1 © Deete

Module2 # Edit © Delete

Figure 25.20. Repository Structure Screen for a Managed Repository

554

Release Notes

@ KIE Workbench

& »» (& [localhost: ol @ =

KIE Workbench

Explore ~ New Item ~ Q
Project Explorer &~ Unmanaged Repository uf-playground (master) configure | | Promote | | Release | | x || 7 || &
demo ~ / uf-playground - ' mortgages -

Open Project Editor

— No Ihems found —

© New Project
Module
"
Messages Refresh | Cear | | x| ¥ || A
Javascript:; Text Flle Column Line i

Figure 25.21. Repository Structure Screen for an Unmanaged Repository

25.1.2.15. Plugin Management

A new perspective called Plugin Management has been added under Extensions top level
menu. This perspective provides users the ability to create his own workbench plugins. Available
features includes creation of perspectives via a programmable or a drag and drop interface; create
new screens, editors, splashscreens and dynamic menus.

555

Release Notes

KIE Workbench [

KIE Warkbench

ie-wh il [null Tpath_uri-detaulliplog

VAnguiaiDemorscreen pluginlile_name=screen pluginBhas_version_support=tnedname

Angula

(B cocae o))

Plugins Explorer Wew.. ™

RequiresRework Form
org. kie.guvnor. TestResults
DisplayerScreen
CategoryManager
FullTestSearchForm
FileMNavigator

Process Details Multi
DashboardPanel
RepositoryEditor

Inbax

Tasks List

org. kie_workbench.common.screens. messagen
FindForm
SocialHomePageMainPresenter
Process Instance List
ApproveOperation Form
Requests List

AngularDemo

B EDITORPLUGIN =
& SPLASHSCREEN FLUGIN =

B DYMAMIC MENU ~

Screen Plugln Editor [AngularDemo]

Angular | JavaScript

1= kdiv ng-cortroller="TodoCtrl "> .
2 <spane{{remaining(J}} of {{todos.length}} remaining 'emolae

= [archive]

4- <ul cless-"unstyled

5 <li ng-repeqt="tode in todos™s

€ <input type-"checkbox” ng-model-"todo.done"s

7 <span class="done-{{todo, done}} ={{todo, text}}</spc
a

2

e~ <form ng-subeit-"addTode(}">

1 <input type="text” ng-model="todoText"” size="38" placet
12
< main - vascript

1= Ffunction TodoCtrl(1

2

3 $scope.placeText - "MiscellaneousFeatures”;

4

5- $scope.todos = [

[[text: 'learn angular', done: truel,

7 {text: "build on angular opp’, done: false}

2 1

9

1e- §scope.oddTode = function (3 {

1 $scope. todos. push{{text: $scope.todoText, done: false}):
12 Sscope, todeText -~ ')

13 Ee

14

nd-color: blue;

Choose File... Upioad

Figure 25.22. Creation of perspectives via programmable interface

556

Media

Release Notes

3 KIE Warkbomeh Ll

L ¢ 127.0.0.1 .BE8AKe-wh. himiTgwi.codesvr=127.0.0.1:358 76 null]?paih_uri=dedauliiplugins @sysiem/SamplelLayouliperspec pout

Plugins Explorer New.. ™| - Perspective Editor [SampleLayout] Swve | Delese | Retame || Copy | Tegs
21 PERSPECTIVE PLUGIN »
 Container i Grid System
PERSPECTIVE LAYOUT PLLIGIN = = m
& Components
SampleLayout [Column] { Column |
= T
[SYes—— @ conae | e emcn s
- — Sales Results o
@ SPLASHSCREENM PLUGIN
row =3
I DYMAMIC MENU = m
. (7 oo | mee
g
e
— |
—
—

a 1250000000 2500,000000 3750000000 5,000,000,000

Figure 25.23. Creation of perspectives via drag and drop interface
25.1.2.16. Apps

A new perspective called Apps has been added under Extensions top level menu. This perspec-

tive provides users the ability to access and organize his workbench plugins created in Plugin
Management.

557

Release Notes

JQ KIE Warkbanch L+

& 127.0.0,1:8880kie-wh. hbml T gwl.oodesvi=127.0,0, 18887 #AppsHomae Prasanier o By~ Googhe q
.) P £ 7

Figure 25.24. Apps Perspective

25.2.1BPM 6.1

25.2.1. New and Noteworthy in jBPM 6.1.0

jBPM 6.1 comes with a ton of smaller improvements and bug fixes (done over the last few months
on top of 6.0.1.Final), and also includes some important new features, adding to the foundation
delivered as part of jBPM 6.0.

25.2.1.1. Embedding forms in external applications

Now you can embed and run process/task forms that live inside the Kie-Workbench just adding a
JavaScript library to your webapps. Look at the Using forms on client applications section to see
the full functionality and usage examples.

25.2.1.2. Attaching documents to forms

Added new file type to manage upload documents on forms and store them on process variables.
Using the Pluggable Variable Persistence you'll be able to create your own Marshalling Strategy
and store the document contents on different systems (Database, Alfresco, Google Docs...) or
use the default implementation and store them in your File System.

25.2.1.3. Web Service (SOAP) interface for remote API

The execution server, that is part of the jppm-console web tooling, now also comes with a Web
Service interface (in addition to the existing REST, JMS and Java client interfaces).

25.2.1.4. Deployment descriptors

Deployment descriptors have been added as an optional, yet powerful way of configuring deploy-
ment units - kjars. Deployment descriptors allow to configure (among others)

558

Release Notes

 persistence unit names

« work item handlers

event listeners (process, agenda, task)

roles (for authorizarion - see section 1.5)

Deployment descriptors can be configured on various levels for enhanced flexibility to allow simple
override functionality. Detailed definition of deployment descriptor can be found in section 14.1.1.
Deployment descriptors

25.2.1.5. Role-based authorization at runtime for process definitions
and process instances

The process definition and process instance view in the jopm console now also take the role-
based access control restrictions into account that can be defined on the project the process is
defined in. You can limit the visibility of a project (or repository as a whole) by associating some
roles with it that are required to be able to see the project (or repository). This can be done when
creating the repository, or bu using the command line interface to connect to the execution server.
The deployment descriptor (see previous section) also allows you to further customize these roles
at deployment time. At runtime, the views will check if the current logged in user has one of the
necessary roles to be able to see that process. If not, the user will not see this process or process
instance in the process definition or process instance list respectively.

25.2.1.6. |BPM installer updates

The installer is updated to support:

« Wildfly 8.1 as application server
» Eclipse BPMN2 Modeler 1.0.2

» Eclipse Kepler SR2
25.2.1.7.]JBPM Spring integration

Spring integration has been improved to allow complete configuration of jBPM runtime using
Spring XML. That essentially means there are number of factory beans provided as part of drool-
sjbpm-integration module that significanlty simplifies configuration of jBPM. Moreover it allows
various configuration options such as:

 reply on JTA and entity manager factory

 rely on JTA and shared entity manager

« rely on local transactions and entity manager factory

559

Release Notes

« rely on local transactions and shared entity manager

Details about spring configuration can be found in this article [http://
mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html].

25.2.1.8. Other

Smaller enhancements also include:
« Task service (query) improvements, significantly speeding up queries when you have a large
numbers of tasks in the database.

» Various improvements to the asynchronous job executor so it can handle larger loads more
easily and can be configured (number of parallel threads executing the jobs, retries, etc.).

« Ability to configure task administrator groups in a UserTask (similar to how you already could
configure individual task administrators).

* Removed limitation on custom implementations of work item handler, event listeners that had
to be placed on global classpath - usually in jppm-console.war/WEB-INF/lib. With that custom
classes can be added as maven dependencies into the project and will be registered on under-
lying components (ksession).

25.2.2. New and Noteworthy in KIE Workbench 6.1.0

25.2.2.1. Data Modeler - round trip and source code preservation

Full round trip between Data modeler and Java source code is now supported. No matter where
the Java code was generated (e.g. Eclipse, Data modeller), data modeler will only update the
necessary code blocks to maintain the model updated.

25.2.2.2. Data Modeler - improved annotations

New annotations @TypeSafe, @ClassReactive, @PropertyReactive, @ Timestamp, @Duration
and @Expires were added in order enrich current Drools annotations manged by the data modeler.

25.2.2.3. Standardization of the display of tabular data

We have standardized the display of tabular data with a new table widget.

The new table supports the following features:

» Selection of visible columns
» Resizable columns

* Moveable columns

560

http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html
http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html
http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html

Release Notes

— s |
— r
Open Format MName Created Date

Open Dummy rule.drl 2014 Jun 10 14:50:34

Open ApplicantDsl.dsl 2014 Jun 10 14:50:35
credit ratings.enumeration 2014 Jun 10 14:50:36

Open

Open Pricing loans.gdst 2014 Jun 10 14:50:37
Bankruptcy history.rdrl 2014 Jun 10 14:50:39

Open

Figure 25.25. New table

The table is used in the following scenarios:

Inbox (Incoming changes)

 Inbox (Recently edited)

 Inbox (Recently opened)

» Project Problems summary

« Artifact Repository browser

 Project Editor Dependency grid

» Project Editor KSession grid

 Project Editor Work Item Handlers Configuration grid
 Project Editor Listeners Configuration grid

« Search Results grid

25.2.2.4. Generation of nodify(x) {...} blocks

M W M »

The Guided Rule Editor, Guided Template Editor and Guided Decision Table Editor have been

changed to generate nodi fy(x){...}

561

1-10 of 15

Release Notes

Historically these editors supported the older updat e(x) syntax and hence rules created within
the Workbench would not respond correctly to @r opert yReact i ve and associated annotations
within a model. This has now been rectified with the use of nodi fy(x){...} blocks.

25.3. jBPM 6.0

25.3.1. New and Noteworthy in KIE API16.0.0

25.3.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

[OptaPIanner Drools UberFire iBPM]

)
[v
[Drools WBj/ iBPM-WB J

Figure 25.26. KIE Anatomy

25.3.1.2. Maven aligned projects and modules and Maven Deploy-
ment

One of the biggest complaints during the 5.x series was the lack of defined methodology for de-
ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A

562

Release Notes

big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the sys-
tem. Building and deploying activities are now aligned with Maven and Maven repositories. The
utilization for loading rules and processess is now convention and configuration oriented, instead
of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven reposito-
ries. Maven is then used to declare and build the classpath of dependencies, for KIE to access.

25.3.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 25.1. Declare KieBases and KieSessions

<kmodul e xm ns="http://jboss.org/kie/6.0.0/knodul e">
<kbase nanme="kbasel" packages="org. nypackages>
<ksessi on nanme="ksessionl"/>
</ kbase>
</ kmodul e>

Example 25.2. Utilize the KieSession

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

25.3.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase, in addition to all the rules, function and processes directly defined
into it, will also contain the ones created in the included KieBase. This inclusion can be done
declaratively in the kmodule.xml file

Example 25.3. Including a KieBase into another declaratively

<knmodul e xm ns="http://jboss.org/kie/6.0.0/knodul e">
<kbase nanme="kbase2" incl udes="kbasel">
<ksessi on nanme="ksessi on2"/>
</ kbase>
</ kmodul e>

or programmatically using the Ki eMbdul eMbdel .

563

Release Notes

Example 25.4. Including a KieBase into another programmatically

Ki eMbdul eMbdel knodul e = Ki eServi ces. Factory. get (). newki eModul eMbdel () ;
Ki eBaseMdbdel ki eBaseMbdel 1 = knodul e. newKi eBaseMdel (" KBase2") . addl ncl ude("KBasel");

25.3.1.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml'in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are
supported.

Example 25.5. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (
ks. newRel easel d("org. nygroup", "nyartefact", "1.0"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

KieContainers can be dynamically updated to a specific version, and resolved through Maven
if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally
updated.

Example 25.6. Dynamically Update - Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(
ks. newRel easel d("org. nygroup", "nyartefact", "1.1"));

25.3.1.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.
It continuously monitors your Maven repository to check if a new release of a Kie project has
been installed and if so, deploys it in the Ki eCont ai ner wrapping that project. The use of the
Ki eScanner requires kie-ci.jar to be on the classpath.

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

564

Release Notes

Example 25.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = KieServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0- SNAPSHOT");
Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also pos-
sible to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in
the Maven repository, an updated version of the Kie project used by that Ki eCont ai ner it auto-
matically downloads the new version and triggers an incremental build of the new project. From
this moment all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the
new project version.

25.3.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance prob-
lems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at the
KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add and
remove rules, but there can now be no referencing between namespaces in DRL files; i.e. func-
tions can only be used by the namespaces that declared them. The recommendation is to use
static Java methods in your project, which is visible to all namespaces; but those cannot (like other
classes on the root KieContainer ClassLoader) be dynamically updated.

25.3.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through Maven de-
pendency "knowledge-api-legacy5-adapter”. Because the nature of deployment has significantly
changed in 6.0, it was not possible to provide an adapter bridge for the KnowledgeAgent. If any
other methods are missing or problematic, please open a JIRA, and we'll fix for 6.1

25.3.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued ref-
erences to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

565

Release Notes

25.3.2. New and Noteworthy in jBPM 6.0.0

25.3.2.1. KIE API

A new public API has been created for interacting with the core engine (shared between jBPM and
Drools). This not only handles runtime operations to start processes, etc. but also instantiating
sessions, registering listeners, configuration, etc.

New APIs were added in various areas, like for example the TaskService interface was moved
to the public API, the new RuntimeManager was introduced and a lot of related interfaces and
classes were added as well.

For backwards compatibility with v5, a knowledge-api JAR has been constructed, that implements
the old v5 knowledge-api interfaces on top of the v6 engine. Make sure to include this JAR in your
classpath if you want to keep using the v5 API.

25.3.2.2. BPM Core Engine

The execution engine itself has (mostly) remained the same, although we've done various im-
provements in the following areas:

« RuntimeManager: instantiating a ksession (and an associated task service) has been simplified
significantly, by introducing a runtime manager where you can simply ask for a reference to
a ksession whenever you need it. The Runtime manager is responsible for initialization, con-
figuration and disposal of the ksession (and task service), and three predefined strategies are
available:

 Singleton: the RuntimeManager reused the same ksession for all requests (and executes the
requests in sequence, one at a time)

» Session per request: the RuntimeManager instantiates a new ksession per request that will
be used for executing that request and disposed at the end. Each request will receive its own
ksession and they can all be executed in parallel.

» Session per process instance: the RuntimeManager reuses the same ksession for all requests
related to one specific process instance. This might be necessary if you are storing data
inside your session (for example for rule evaluations) that you need to be available later in
the process as well. Note that the session is disposed after each command but stored in the
database so it can be restored whenever necessary.

» jBPM Services (CDI): To simplify integration of jBPM inside CDI-based applications, the jopm-
services module contains various CDI services that you can configure and use inside your
application simply by injecting the necessary services (like a RuntimeManager or TaskService
for example) inside your application, making integration easier than ever.

« Timer service: a Quartz-based timer service is how available, that allows you to dispose your
session at any point in time, and the timer service will be responsible for rehydrating a ksession
whenever a timer should be fired. This timer service also works in a clustered environment,

566

Release Notes

where multiple nodes can work together on sharing the work load but timers will only be fired
once by one of the nodes.

« Exception and compensation management: various improvements in this area allow you to use
more BPMNZ2 constructs related to exception and compensation management in your process-
es, and various strategies have been extended and documented to better handle exceptions
in different ways.

» Asynchronous handlers: asynchronous execution of interaction with external services can now
be implemented by reusing the asynchronous job executor.

e Asynchronous auditing using JMS: audit logging can now also be done asynchronously by
sending the events to a JMS queue rather than persisting them as part of the engine transaction.

The task service has been refactored significantly as well, and the TaskService APIs have been
moved to the public kie-api. Although the TaskService interfaces themselves haven't changed
a lot, the internal implementation has been simplified. Auditing for the task-related operations
(similar to the runtime engine auditing) has been added.

By default, a local task service will always be used by a ksession to perform various task-related
operations (creating a task, being notified when a task is completed). Setting up a remote singleton
task service and connecting multiple ksessions to this (using Mina or HornetQ) as was possible
in jBPM5 is no longer possible, as it introduces more challenges that it brings advantages. Since
the jBPM execution service now also provides a remote API for all task-related operations, we
believe this setup is no longer necessary, and has been replaced by the use of a local task service
in all use cases.

25.3.2.3. |BPM Designer

jBPM designer has been reimplemented and is fully integrated into the workbench. It now easily
integrates with many of the workbench services available. In addition, the following features were
added/improved on:

« Improvement of jBPM Simulation engine and the Ul. Added ability to specify simulation proper-
ties on more node type and added more results graphs such as the the Total Cost graph.

* Many updates to the Designer Toolbar for usability purposes.

 Visual Validation update - it now is a real-time visualization of issues done during process mod-
eling.

« Ability to generate task forms for specific task node.
* Integration with the jBPM Form Modeler for both task and process forms.

» Update to process properties - added grouping of properties into sections making it more user
friendly to find properties.

« Update to Object Library - added type specific tasks to palette (rather than having to morph to
a certain type after adding a task to the canvas).

567

Release Notes

» Save/Remove/CopyDelete feature have been added directly into Designer and integrate with
the workbench services for those operations.

« Autosave - option for users to enable auto-saving of their business process during modeling.

* Two new default Service Tasks (REST and Web Services)

25.3.2.4. jBPM Data Modeler

A new web-based data modeler is integrated in the workbench, which allows non-technical users
to create data models (to be used in your processes and rules) in a user-friendly manner. These
models are saved as Java classes (with the necessary annotations) in the project and added to
the kjar upon build and deploy. Check the chapter on Data Modeler in the Workbench Part for
all the details.

25.3.2.5. Form Modeler

A new web-based form modeler is integrated in the workbench, which allows non-technical users
to create forms (for starting processes and/or completing human task). The form modeler is a
WYSIWYG editor where you can drag and drop form elements (text boxes, labels, etc.), link it to
data that is expected as input or output of the form, customize properties of each element and the
layout, etc. These forms are then shown when starting the process or completing a task, integrated
into the appropriate runtime views. Check the chapter on Form Modeler in the Workbench Part
for all the details.

25.3.2.6. BPM Console

The jBPM console has been reimplemented and is integrated into the workbench as well. It pro-
vides similar features as jBPM5 (starting process instances, inspecting current state and variables,
looking at task lists) but is now much more powerful and exposes a lot more features. Check the
chapter on Process and Task Management in the Workbench Part for all the details.

25.3.2.7. BAM / Reporting

A new web-based monitoring and reporting tool has been integrated in the workbench. This
displays charts, tables, etc. about the current status of your application(s). It comes with some
process and task dashboards out-of-the-box (showing for example the number of running process
instances, the number of tasks completed per time frame, etc.). These dashboards however can
be fully customized to show the data that is relevant to you, including for example your own data
sources, making domain-specific charts (for example showing your key performance indicators
(KPIs) instead of generic process-related charts). Check the chapter on Business Activity Moni-
toring in the Workbench Part for all the details.

25.3.2.8. Workbench

A workbench application, based on the UberFire framework, now unifies all web-based editors
and tools into one large, configurable web application. It has many features, including:

568

Release Notes

» Configurable workspace where you layout your own views by dragging and dropping

 Unified login and role-based authentication, where what features you see depends on your role
(admin, analyst, developer, user, manager, etc.).

« A new home screen that will guide you through the life cycle of your business processes (au-
thoring, deployment, execution, tasks and reporting).

» Git-based repository that supports versioning and collaboration.

« New project structure where artifacts (processes, rules, etc.) are combined into kjars (we re-
moved the custom binary packages and replaced them with a normal JAR, containing the source
artifacts) when a project is built. These kjars now also include not only processes and rules,
but also forms, configuration files, data models (Java classes), etc. Kjars are Maven artefacts
themselves (they have a group, id and version) and exposed as a Maven repository. When
creating a ksession, Maven can be used to download the necessary kjars for your project from
this Maven repository.

e Sample pl aygr ound repositories are (optionally) installed when starting up the workbench the
first time, to get you started quickly with some predefined examples.

Check the Workbench Part for all the details.
25.3.2.9. Remote API

The remote API has been redesigned and allows users to remotely connect to a running execution
server and pass commands. The remote runtime APl exposes (almost) the entire KieSession and
TaskService API using REST or JMS, so commands can be sent to the remote execution server
for processing and the results are returned. See the chapter on Business Activity Monitoring for
all the details.

Guvnor also provides a REST API to access the various repositories, projects and artifacts inside
these projects and manage and build them.

25.3.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued perfor-
mance problems with the various JCR implementations, which would slow down once the number
of files and number of versions become too high. There has been a big "low tech" drive, to remove

569

Release Notes

complexity. Everything is now stored as a file, including meta data. The database is only there
to provide fast indexing and search. So importing and exporting is all standard Git and external
sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

) KIE Drools Workbench
\;D % localhost MLARES M Q @ et x
Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer & Guided Editor [Bankruptcy history] Save || Delete || Rename || Copy | Vaidate | | x ||~
EXTENDS Mone selected o
demo ~ uf-playground ~ mortgages ~ a
WHEN s
= <default> 1. ThereisalLoanApplication [a]
The following exists
& org There is a Bankruptcy with:
= mortgages any ofthe following:
2 yearOfOccurrence| greater than j 1990
amountOwed greater than j 10000
% DRL THEN

1. delete LoanApplication [a]

(© DOMAIN SPECIFIC LANGUAGE DEFINITION i fals
Set value of LoanApplication [a] approved false j:

2 -
(® ENUMERATION DEFINITION L

Edit Source Config Metadata
/ GUIDED DECISION TABLE

@ GUIDED RULE Problems ~1=

Bankruptcy history Level Text File Column Line
No bad credit checks

[ERR 102] Line

no NINJAs 7:0 mismatched
[%] . . Dummy rule.drl o 7
Underage input ‘then"in rule

"Dmmy rule”

Figure 25.27. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

570

Release Notes

plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-

WB.
' ™
Uberfire
|org uberfire]
s githul. comidrecisbpeyutarion 3
pS oy
' ™
* Maven Reposilory
Guvnor * Projact Service
[org guvnorguvnoe] * Inbox;
* WoarkMow
hiips:¥github. comddroots bpeigumon [
oy
" ™
. * Hame page
kie-wb-common * Projact Explonar
[org. ke lg-wh-common] * Data Modaller
* Meta Data
- * Search
g gtk gl v T
Py
' R S
* DRL : . JBPFM Consale
drools-wb * Guided Edilors I jopmewb } " FBPM Desigrer
[rg droals:droals-wh] ‘ T'HH Scenanas : [org ppmibpm-wt]
1
N e e === -
g gt wady, £ |u.'||.|miu||;-|;#;gh\ - _._T‘
~ % .- .
f /o~ L
{
kie-drools-whb kie-wh 1 kie-jbpme-wi
1
i

|org ke kla-drools-wh]

S

[org kiekie-wh)

se-wh-dminbuons | itiosaigthu com/drooisbpmikie-wh-distrioutions.

[org. ke kig-bpm-wh]

- .

hN

Figure 25.28. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

+ KIE Drools Workbench

¢ Drools Editors, for rules and supporting assets.

571

Release Notes

» jBPM Designer, for Rule Flow and supporting assets.

« KIE Workbench

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.
e jBPM Form Builder.
« BAM.

Workbench highlights:

» New flexible Workbench environment, with perspectives and panels.
* New packaging and build system following KIE API.
e Maven based projects.
» Maven Artifact Repository replaces Global Area, with full dependency support.

* New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java class-
es to the authoring environment. Java classes are packaged into the project and can be used
within rules, processes etc and externally in your own applications.

« Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

 Incremental Build system showing, near real-time validation results of your project and assets.
The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

25.3.4. New and Noteworthy in Integration 6.0.0

25.3.4.1. CDI

CDlI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect
@KSessi on("kbasel")
@KRel easel d(groupld = "jar1l", rtifactld = "art1l", version = "1.0")

572

Release Notes

private Ki eBase kbaselv10;

@ nj ect

@KBase(" kbasel")

@KRel easel d(groupld = "jar1l", rtifactld = "art1l", version
private Ki eBase kbaselv10;

"
=
=

-

Figure 25.29. Side by side version loading for 'jar1.KBasel' KieBase

@ nj ect

@Sessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld = "artl1l", version = "1.0")
private Ki eSession ksessi onv10;

@ nj ect
@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld = "art1", version = "1.1")
private KieSession ksessionvll;

Figure 25.30. Side by side version loading for 'jar1.KBasel' KieBase

25.3.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml
with a more powerful spring version. The aim is for consistency with kmodule.xml

25.3.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for con-
sistency with spring and kmodule.xml

25.3.4.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

573

	jBPM Documentation
	Table of Contents
	
	Part I. Getting Started
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Process Designer
	1.5. Data Modeler
	1.6. Form Modeler
	1.7. Process Instance and Task Management
	1.8. Business Activity Monitoring
	1.9. Workbench
	1.10. Eclipse Developer Tools

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting Started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	2.5. Getting Involved
	2.5.1. Sign up to jboss.org
	2.5.2. Sign the Contributor Agreement
	2.5.3. Submitting issues via JIRA
	2.5.4. Fork GitHub
	2.5.5. Writing Tests
	2.5.6. Commit with Correct Conventions
	2.5.7. Submit Pull Requests

	2.6. What to do if I encounter problems or have questions?

	Chapter 3. jBPM Installer
	3.1. Prerequisites
	3.2. Downloading the Installer
	3.3. Demo Setup
	3.4. 10-Minute Tutorial using the Workbench
	3.5. 10-Minute Tutorial using Eclipse
	3.6. Configuration
	3.6.1. Playgrounds
	3.6.2. Workbench Authentication
	3.6.3. Using your own database
	3.6.3.1. Introduction
	3.6.3.2. Database setup
	3.6.3.3. Configuration
	3.6.3.4. Using a different database

	3.6.4. jBPM database schema scripts (DDL scripts)
	3.6.5. jBPM installer script

	3.7. Frequently Asked Questions

	Chapter 4. Examples
	4.1. Introduction
	4.2. Human Resources Example
	4.2.1. The KIE Project: human-resources
	4.2.2. Building the Human Resources Example
	4.2.3. Create a new Process Instance

	4.3. Examples zip

	Part II. jBPM Core
	Chapter 5. Core Engine API
	5.1. Overview
	5.2. KieBase
	5.3. KieSession
	5.3.1. ProcessRuntime
	5.3.2. Event Listeners
	5.3.3. Correlation Keys
	5.3.4. Threads

	5.4. RuntimeManager
	5.4.1. Overview
	5.4.2. Strategies
	5.4.3. Usage
	5.4.3.1. Example

	5.4.4. Configuration
	5.4.4.1. Building RuntimeEnvironment
	5.4.4.2. Registering handlers and listeners
	5.4.4.2.1. Registering handlers and listeners in CDI environment

	5.5. Services
	5.5.1. Deployment Service
	5.5.2. Definition Service
	5.5.3. Process Service
	5.5.4. Runtime Data Service
	5.5.5. User Task Service
	5.5.6. Working with deployments

	5.6. Configuration

	Chapter 6. Processes
	6.1. What is BPMN 2.0
	6.2. Process
	6.2.1. Creating a process
	6.2.1.1. Using the graphical BPMN2 Editor
	6.2.1.2. Defining processes using XML
	6.2.1.3. Details: Process properties

	6.3. Activities
	6.3.1. Script task
	6.3.2. Service task
	6.3.3. User task
	6.3.4. Reusable sub-process
	6.3.5. Business rule task
	6.3.6. Embedded sub-process
	6.3.7. Multi-instance sub-process

	6.4. Events
	6.4.1. Start event
	6.4.2. End events
	6.4.2.1. End event
	6.4.2.2. Throwing error event

	6.4.3. Intermediate events
	6.4.3.1. Catching timer event
	6.4.3.2. Catching signal event

	6.5. Gateways
	6.5.1. Diverging gateway
	6.5.2. Converging gateway

	6.6. Others
	6.6.1. Variables
	6.6.2. Scripts
	6.6.3. Constraints
	6.6.4. Timers
	6.6.4.1. Configure timer with delay and period
	6.6.4.2. Configure timer with CRON like expression
	6.6.4.3. Configure timer ISO-8601 date format
	6.6.4.4. Configure timer with process variables

	6.7. Process Fluent API
	6.7.1. Example

	6.8. Testing
	6.8.1. Unit testing
	6.8.1.1. Testing integration with external services
	6.8.1.2. Configuring persistence

	Chapter 7. Human Tasks
	7.1. Introduction
	7.2. Using User Tasks in our Processes
	7.3. Data Mappings
	7.4. Task Lifecycle
	7.5. Task Permissions
	7.5.1. Task Permissions Matrix

	7.6. Task Service and The Process Engine
	7.7. Task Service API
	7.8. Interacting with the Task Service

	Chapter 8. Persistence and Transactions
	8.1. Process Instance State
	8.1.1. Runtime State
	8.1.1.1. Binary Persistence
	8.1.1.2. Safe Points

	8.2. Audit Log
	8.2.1. The jBPM Audit data model
	8.2.2. Storing Process Events in a Database
	8.2.3. Storing Process Events in a JMS queue for further processing

	8.3. Transactions
	8.3.1. Container managed transaction
	8.3.1.1. CMT dispose ksession command

	8.4. Configuration
	8.4.1. Adding dependencies
	8.4.2. Manually configuring the engine to use persistence
	8.4.3. Configuring the engine to use persistence using JBPMHelper - for tests only

	Part III. Workbench
	Chapter 9. Workbench
	9.1. Installation
	9.1.1. War installation
	9.1.2. Workbench data
	9.1.3. System properties

	9.2. Quick Start
	9.2.1. Add repository
	9.2.2. Add project
	9.2.3. Define Data Model
	9.2.4. Define Rule
	9.2.5. Build and Deploy

	9.3. Administration
	9.3.1. Administration overview
	9.3.2. Organizational unit
	9.3.3. Repositories
	9.3.3.1. Repository Editor

	9.4. Configuration
	9.4.1. User management
	9.4.2. Roles
	9.4.2.1. Admin
	9.4.2.2. Developer
	9.4.2.3. Analyst
	9.4.2.4. Business user
	9.4.2.5. Manager/Viewer-only User

	9.4.3. Restricting access to repositories
	9.4.4. Command line config tool
	9.4.4.1. Config Tool Modes
	9.4.4.2. Available Commands
	9.4.4.3. How to use

	9.5. Introduction
	9.5.1. Log in and log out
	9.5.2. Home screen
	9.5.3. Workbench concepts
	9.5.4. Initial layout

	9.6. Changing the layout
	9.6.1. Resizing
	9.6.2. Repositioning

	9.7. Authoring
	9.7.1. Artifact Repository
	9.7.2. Asset Editor
	9.7.3. Project Explorer
	9.7.3.1. Initial view
	9.7.3.2. Different views
	9.7.3.2.1. Project View examples
	9.7.3.2.2. Repository View examples

	9.7.3.3. Download Project or Repository
	9.7.3.4. Branch selector
	9.7.3.5. Copy, Rename, Delete and Download Actions

	9.7.4. Project Editor
	9.7.4.1. Build & Deploy
	9.7.4.2. Project Settings
	9.7.4.2.1. Project General Settings
	9.7.4.2.2. Dependencies
	9.7.4.2.3. Metadata

	9.7.4.3. Knowledge Base Settings
	9.7.4.3.1. Knowledge bases and sessions
	9.7.4.3.1.1. Knowledge base list
	9.7.4.3.1.2. Knowledge base properties
	9.7.4.3.1.3. Knowledge sessions

	9.7.4.3.2. Metadata

	9.7.4.4. Imports
	9.7.4.4.1. Import Suggestions
	9.7.4.4.2. Metadata

	9.7.5. Validation
	9.7.5.1. Problem Panel
	9.7.5.2. On demand validation

	9.7.6. Data Modeller
	9.7.6.1. First steps to create a data model
	9.7.6.2. Data Objects
	9.7.6.3. Properties & relationships
	9.7.6.4. Additional options
	9.7.6.4.1. Additional data object properties ("Data object tab")
	9.7.6.4.2. Additional field properties ("Field tab")

	9.7.6.5. Generate data model code.
	9.7.6.6. Using external models
	9.7.6.6.1. Dependency to a JAR file in local M2 repository
	9.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	9.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	9.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	9.7.6.6.1.4. Save the project to update its dependencies.

	9.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	9.7.6.6.2.1. Open the Maven Artifact Repository editor.
	9.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	9.7.6.6.2.3. Upload the file using the Upload button.
	9.7.6.6.2.4. Guvnor M2 repository files.
	9.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	9.7.6.6.2.6. Add dependency from repository.

	9.7.6.6.3. Using the external objects

	9.7.6.7. Roundtrip and concurrency
	9.7.6.7.1. No changes have been undertaken through the application
	9.7.6.7.2. Changes have been undertaken through the application

	9.7.7. Categories Editor
	9.7.7.1. Launching the Categories Editor
	9.7.7.2. Managing Categories
	9.7.7.3. Adding Categories to assets

	9.8. Embedding Workbench In Your Application
	9.9. Asset Management
	9.9.1. Asset Management Overview
	9.9.2. Managed vs Unmanaged Repositories
	9.9.2.1. Managed Repositories
	9.9.2.2. Unmanaged Repositories

	9.9.3. Asset Management Processes
	9.9.3.1. Configure Repository
	9.9.3.2. Promote Changes Process
	9.9.3.3. Build Process
	9.9.3.4. Release Process

	9.9.4. Usage Flow
	9.9.5. Repository Structure
	9.9.5.1. Single Project Managed Repository
	9.9.5.2. Multi Project Managed Repository
	9.9.5.3. Unmanaged Repository

	9.9.6. Managed Repositories Operations
	9.9.6.1. Branch Selector
	9.9.6.2. Project Operations
	9.9.6.3. Launch Assets Management Processes
	9.9.6.3.1. Launch the Configure Repository Process
	9.9.6.3.2. Launch the Promote Changes Process
	9.9.6.3.3. Launch the Release Process

	9.9.7. Remote APIs

	Chapter 10. Workbench Integration
	10.1. REST
	10.1.1. Job calls
	10.1.2. Repository calls
	10.1.3. Organizational unit calls
	10.1.4. Maven calls
	10.1.5. REST summary

	Chapter 11. Workbench High Availability
	11.1.
	11.1.1. VFS clustering
	11.1.2. jBPM clustering

	Chapter 12. Designer
	12.1. Designer UI Explained
	12.2. Getting started with Modelling
	12.3. Designer Toolbar

	Chapter 13. Forms
	13.1. Configure process and human tasks
	13.2. Generate forms from task definitions
	13.3. Edit forms
	13.3.1. Form generated description
	13.3.2. Customizing form
	13.3.2.1. Moving fields
	13.3.2.2. Adding new fields
	13.3.2.3. Field configuration
	13.3.2.3.1. Generic field properties
	13.3.2.3.2. Specific field properties
	13.3.2.3.3. Complex Fields Configuration
	13.3.2.3.3.1. Simple Object (Subform field Type)
	13.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

	13.3.2.3.4. Formulas

	13.3.2.4. Customizing form layout

	13.3.3. Field types
	13.3.3.1. Custom Field Types
	13.3.3.1.1. How to create Custom Field Types
	13.3.3.1.2. Configuring and using Custom Field Types

	13.4. Document attachments
	13.4.1. Process and forms configuration
	13.4.2. Marshalling strategy and deployment configuration

	13.5. Using forms on client applications
	13.5.1. What does the API provides?
	13.5.2. Sample usage

	Chapter 14. Runtime Management
	14.1. Deployments
	14.1.1. Deployment descriptors

	14.2. Deployment Units List
	14.3. Process Deployments
	14.4. Jobs

	Chapter 15. Process and Task Management
	15.1. Process Management
	15.1.1. Process Definitions
	15.1.1.1. The Process Definition List
	15.1.1.2. The Process Definition Details
	15.1.1.3. Creating Process Instances

	15.2. Tasks
	15.2.1. Task List
	15.2.1.1. Task List (Personal and Group Tasks)
	15.2.1.1.1. Task List (Grid View)
	15.2.1.1.2. Task List (Calendar View)

	15.2.1.2. Task Details
	15.2.1.3. Work on a Task
	15.2.1.4. Task Assignments
	15.2.1.5. Task Comments

	15.2.2. New Task (Ad-Hoc Task)

	Chapter 16. Business Activity Monitoring
	16.1. Overview
	16.2. Business Dashboards
	16.3. Process Dashboard

	Chapter 17. Remote API
	17.1. Remote Java API
	17.1.1. The REST Remote Java RuntimeEngine Factory
	17.1.1.1. Example usage

	17.1.2. The JMS Remote Java RuntimeEngine Factory
	17.1.3. Supported methods

	17.2. REST
	17.2.1. Runtime calls
	17.2.1.1. Process calls
	17.2.1.2. Process calls "with variables"

	17.2.2. History calls
	17.2.2.1. Calls available as of 6.0.1.Final
	17.2.2.1.1. History calls that search by variable

	17.2.2.2. Deprecated history calls available in 6.0.0.Final
	17.2.2.2.1. History calls that search by variable

	17.2.3. Task calls
	17.2.3.1. Task operation calls
	17.2.3.2. Task query call
	17.2.3.3. Other Task calls

	17.2.4. Deployment calls
	17.2.4.1. Asynchrous deployment calls
	17.2.4.2.

	17.2.5. Deployment call details
	17.2.6. Execute calls
	17.2.6.1. Execution call details
	17.2.6.2. Commands accepted

	17.2.7. Additional Information
	17.2.7.1. Serialization: JAXB or JSON
	17.2.7.2. Sending and receiving user class instances
	17.2.7.3. Including the deployment id
	17.2.7.4. Pagination
	17.2.7.5. Map query parameters
	17.2.7.6. Number query parameters
	17.2.7.7. Runtime strategies

	17.2.8. REST summary

	17.3. JMS
	17.3.1. JMS Queue setup
	17.3.2. Using the remote Java API
	17.3.3. Serialization issues
	17.3.4. Example JMS usage

	Part IV. Eclipse
	Chapter 18. jBPM Eclipse Plugin
	18.1. jBPM Eclipse Plugin
	18.1.1. Installation
	18.1.2. jBPM Project Wizard
	18.1.3. New BPMN2 Process Wizard
	18.1.4. jBPM Runtime
	18.1.4.1. Defining a jBPM Runtime
	18.1.4.2. Selecting a runtime for your jBPM project

	18.1.5. jBPM Maven Project Wizard
	18.1.6. Drools Eclipse plugin

	18.2. Debugging
	18.2.1. The Process Instances View
	18.2.2. The Audit View

	18.3. Synchronizing with Workbench Repositories
	18.3.1. Importing a workbench repository
	18.3.2. Committing changes to the workbench
	18.3.3. Updating from to the workbench
	18.3.4. Working on individual projects

	Chapter 19. Eclipse BPMN 2.0 Modeler
	19.1. Overview
	19.2. Installation
	19.3. Documentation

	Part V. Integration
	Chapter 20. Integration
	20.1. Maven
	20.1.1. Maven artifacts as deployment units
	20.1.1.1.

	20.1.2. Use Maven for dependency management

	20.2. CDI
	20.2.1. Overview
	20.2.1.1. DeploymentService
	20.2.1.1.1.

	20.2.1.2. FormProviderService
	20.2.1.3. RuntimeDataService
	20.2.1.4. DefinitionService
	20.2.1.4.1.
	20.2.1.4.2.

	20.2.2. Configuring CDI integration
	20.2.2.1.

	20.2.3. RuntimeManager as CDI bean
	20.2.3.1.

	20.3. Spring
	20.3.1. Direct use of Runtime Manager API
	20.3.1.1. RuntimeEnvironmentFactoryBean
	20.3.1.2. RuntimeManagerFactoryBean
	20.3.1.3. TaskServiceFactoryBean
	20.3.1.4. Sample configuration of RuntimeManager with Spring

	20.3.2. jBPM services with Spring
	20.3.2.1. Configure jBPM services in Spring application

	20.4. Ejb
	20.4.1. Ejb services implementation
	20.4.2. Local interface
	20.4.3. Remote interface
	20.4.3.1. Remote EJB client

	20.5. OSGi

	Part VI. Advanced Topics
	Chapter 21. Domain-specific Processes
	21.1. Introduction
	21.2. Overview
	21.2.1. Work Item Definitions
	21.2.2. Work Item Handlers

	21.3. Example: Notifications
	21.3.1. The Notification Work Item Definition
	21.3.1.1. Creating the work item definition
	21.3.1.2. Registering the work definition
	21.3.1.3. Using your new work item in your processes

	21.3.2. The NotificationWorkItemHandler
	21.3.2.1. Creating a new work item handler
	21.3.2.2. Registering the work item handler

	21.4. Service Repository
	21.4.1. Public jBPM service repository
	21.4.2. Setting up your own service repository

	Chapter 22. Exception Management
	22.1. Overview
	22.2. Introduction
	22.3.
	22.3.1. Technical Exceptions
	22.3.1.1. Handling exceptions in WorkItemHandler instances

	22.3.2. Technical Exception Examples
	22.3.2.1. Example: service task handlers
	22.3.2.1.1. BPMN2 configuration
	22.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration
	22.3.2.1.3. ExceptionService setup and configuration
	22.3.2.1.4. Changing the example to use a <signal>

	22.3.2.2. Example: logging exceptions thrown by bad <scriptTask> nodes
	22.3.2.2.1. Introduction
	22.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.

	22.4.
	22.4.1. Business Exceptions
	22.4.1.1. Business Exceptions elements in BPMN2
	22.4.1.2. Designing a workflow with Business Exceptions

	Chapter 23. Flexible Processes
	Chapter 24. Concurrency and asynchronous execution
	24.1. Concurrency
	24.1.1. Engine execution
	24.1.2. Multiple knowledge sessions and persistence

	24.2. Asynchronous execution
	24.2.1. Asynchronous handlers
	24.2.2. jbpm executor
	24.2.2.1. WorkItemHandler backed with jbpm executor
	24.2.2.2. Configuration
	24.2.2.3. Reoccurring jobs
	24.2.2.4. Run jobs on same server node on which it was scheduled

	Chapter 25. Release Notes
	25.1. jBPM 6.2
	25.1.1. New and Noteworthy in jBPM 6.2.0
	25.1.1.1. jBPM services
	25.1.1.2. Process engine extensions
	25.1.1.3. OSGi
	25.1.1.4. Camel handler
	25.1.1.5. Form Modeler improvements

	25.1.2. New and Noteworthy in KIE Workbench 6.2.0
	25.1.2.1. Project Editor permissions
	25.1.2.2. Unify validation style in Guided Decision Table Wizard.
	25.1.2.3. Improved Wizards
	25.1.2.4. Consistent behaviour of XLS, Guided Decision Tables and Guided Templates
	25.1.2.5. Improved Metadata Tab
	25.1.2.6. Improved Data Objects Editor
	25.1.2.7. Execution Server Management UI
	25.1.2.8. Social Activities
	25.1.2.9. Contributors Dashboard
	25.1.2.10. Package selector
	25.1.2.11. Improved visual consistency
	25.1.2.12. Guided Decision Tree Editor
	25.1.2.13. Create Repository Wizard
	25.1.2.14. Repository Structure Screen
	25.1.2.15. PlugIn Management
	25.1.2.16. Apps

	25.2. jBPM 6.1
	25.2.1. New and Noteworthy in jBPM 6.1.0
	25.2.1.1. Embedding forms in external applications
	25.2.1.2. Attaching documents to forms
	25.2.1.3. Web Service (SOAP) interface for remote API
	25.2.1.4. Deployment descriptors
	25.2.1.5. Role-based authorization at runtime for process definitions and process instances
	25.2.1.6. jBPM installer updates
	25.2.1.7. jBPM Spring integration
	25.2.1.8. Other

	25.2.2. New and Noteworthy in KIE Workbench 6.1.0
	25.2.2.1. Data Modeler - round trip and source code preservation
	25.2.2.2. Data Modeler - improved annotations
	25.2.2.3. Standardization of the display of tabular data
	25.2.2.4. Generation of modify(x) {...} blocks

	25.3. jBPM 6.0
	25.3.1. New and Noteworthy in KIE API 6.0.0
	25.3.1.1. New KIE name
	25.3.1.2. Maven aligned projects and modules and Maven Deployment
	25.3.1.3. Configuration and convention based projects
	25.3.1.4. KieBase Inclusion
	25.3.1.5. KieModules, KieContainer and KIE-CI
	25.3.1.6. KieScanner
	25.3.1.7. Hierarchical ClassLoader
	25.3.1.8. Legacy API Adapter
	25.3.1.9. KIE Documentation

	25.3.2. New and Noteworthy in jBPM 6.0.0
	25.3.2.1. KIE API
	25.3.2.2. jBPM Core Engine
	25.3.2.3. jBPM Designer
	25.3.2.4. jBPM Data Modeler
	25.3.2.5. Form Modeler
	25.3.2.6. jBPM Console
	25.3.2.7. BAM / Reporting
	25.3.2.8. Workbench
	25.3.2.9. Remote API

	25.3.3. New and Noteworthy in KIE Workbench 6.0.0
	25.3.4. New and Noteworthy in Integration 6.0.0
	25.3.4.1. CDI
	25.3.4.2. Spring
	25.3.4.3. Aries Blueprints
	25.3.4.4. OSGi Ready

