
JBoss® Portal 2.7.0

Reference Guide
July 2008

iii

Please Read: Important Trademark Information .. xi

JBoss Portal - Overview .. xiii

Feature List ... xv

Target Audience .. xix

Acknowledgments .. xxi

1. System Requirements ... 1

1.1. Minimum System Requirements .. 1

1.2. Supported Operating Systems ... 1

1.3. JBoss Application Server .. 1

1.4. Databases .. 1

1.5. Source Building .. 2

2. Installation ... 3

2.1. The JBoss Portal and JBoss AS Bundle .. 3

2.2. Installing the Binary Download ... 4

2.2.1. Setting up your Environment ... 5

2.2.2. Deploying JBoss Portal .. 8

2.3. Installing from the Sources .. 9

2.3.1. Getting the Sources ... 9

2.3.2. JBoss EAP and JBoss AS Setup .. 11

2.3.3. Building and Deploying from the Sources ... 13

2.3.4. Database Setup ... 15

2.3.5. Datasource Configuration .. 15

2.4. Deploying JBoss Portal ... 16

3. Customizing your Installation .. 19

3.1. Changing the Port ... 19

3.2. Changing the Context Path ... 20

3.2.1. Changing the context-root ... 21

3.3. Forcing the Database Dialect ... 21

3.3.1. Database Dialect Settings for JBoss Portal .. 21

3.3.2. DB Dialect Settings for the CMS Component ... 22

3.4. Configuring the Email Service .. 22

3.5. Configuring proxy settings ... 23

3.6. Disabling Dynamic Proxy Un-wrapping ... 24

4. Upgrading JBoss Portal 2.6 to 2.7 ... 25

4.1. Usage of JBossActionRequest ... 25

5. Portlet Primer .. 27

5.1. JSR-168 and JSR-286 overview .. 27

5.1.1. Portal Pages .. 27

5.1.2. Rendering Modes ... 28

5.1.3. Window States ... 28

5.2. Tutorials ... 29

5.2.1. Deploying your first Portlet .. 29

5.2.2. JavaServer™ Pages Portlet Example ... 36

6. XML Descriptors .. 45

JBoss® Portal 2.7.0

iv

6.1. DTDs ... 45

6.1.1. The JBoss Portlet DTD ... 46

6.1.2. The JBoss Portlet Instance DTD ... 50

6.1.3. The JBoss Portal Object DTD ... 54

6.1.4. The JBoss Portal App DTD ... 62

6.2. Portlet Descriptors .. 63

6.2.1. *-object.xml Descriptors .. 63

6.2.2. The portlet-instances.xml Descriptor ... 66

6.2.3. The jboss-portlet.xml Descriptor .. 69

6.2.4. The portlet.xml Descriptor ... 72

6.3. JBoss Portal Descriptors ... 74

6.3.1. Datasource Descriptors (portal-*-ds.xml) ... 74

6.3.2. Portlet Debugging (jboss-portal.sar/conf/config.xml) 78

6.3.3. Log in to Dashboard ... 78

6.4. Descriptor Examples ... 79

6.4.1. Defining a new Portal Page .. 79

6.4.2. Defining a new Portal Instance ... 83

7. Portal URLs ... 87

7.1. Introduction to Portals ... 87

7.2. Accessing a Portal .. 88

7.3. Accessing a Page ... 88

7.4. Accessing CMS Content .. 88

8. JBoss Portal support for Portlet 2.0 coordination features .. 89

8.1. Introduction ... 89

8.1.1. Explicit vs. implicit coordination ... 89

8.2. General configuration considerations .. 90

8.2.1. Overview of the configuration interface .. 91

8.3. Alias Bindings ... 92

8.3.1. Definition ... 92

8.3.2. Configuration via XML .. 93

8.3.3. Graphical configuration ... 94

8.4. Parameter bindings ... 95

8.4.1. Definition ... 95

8.4.2. Configuration via XML .. 96

8.4.3. Graphical configuration ... 97

8.5. Event wirings .. 99

8.5.1. Definition ... 99

8.5.2. Configuration via XML .. 99

8.5.3. Graphical configuration ... 100

8.6. <implicit-mode> ... 103

8.7. Coordination Samples ... 104

9. Error Handling Configuration ... 105

9.1. Error Types .. 105

9.2. Control Policies ... 105

v

9.2.1. Policy Delegation and Cascading .. 105

9.2.2. Default Policy ... 105

9.2.3. Portal Policy ... 106

9.2.4. Page Policy .. 106

9.3. Configuration using XML Descriptors .. 106

9.3.1. Portal Policy Properties ... 106

9.3.2. Page Policy Properties ... 108

9.4. Using JSP™ to Handle Errors ... 109

9.5. Configuration using the Portal Management Application 110

10. Content Integration .. 113

10.1. Window content .. 114

10.2. Content customization ... 115

10.3. Content Driven Portlet ... 115

10.3.1. Displaying content .. 115

10.3.2. Configuring content ... 115

10.3.3. Step by step example of a content driven portlet 116

10.4. Configuring window content in deployment descriptor 125

11. Widget Integration .. 127

11.1. Introduction ... 127

11.2. Widget portlet configuration .. 127

12. Portlet Modes ... 129

12.1. Admin Portlet Mode ... 129

12.1.1. Portlet configuration .. 129

12.1.2. Declarative instance security configuration ... 129

12.1.3. Instance security configuration with the administration portlet 130

13. Portal API ... 131

13.1. Introduction ... 131

13.2. Portlet to Portal communication .. 132

13.2.1. Requesting a sign out ... 132

13.2.2. Setting up the web browser title .. 132

13.3. Portal URL .. 133

13.4. Portal session ... 133

13.5. Portal runtime context .. 134

13.6. Portal nodes ... 134

13.7. Portal navigational state .. 136

13.8. Portal events ... 136

13.8.1. Portal node events ... 137

13.8.2. Portal session events .. 141

13.8.3. Portal user events .. 141

13.9. Examples .. 142

13.9.1. UserAuthenticationEvent example .. 142

13.9.2. Achieving Inter Portlet Communication with the events mechanism 144

13.9.3. Link to other pages ... 148

13.9.4. Samples ... 149

JBoss® Portal 2.7.0

vi

14. Clustering Configuration .. 151

14.1. Introduction ... 151

14.2. Considerations .. 152

14.3. JBoss Portal Clustered Services .. 152

14.3.1. Portal Session Replication ... 152

14.3.2. Hibernate clustering .. 153

14.3.3. Identity clustering .. 154

14.3.4. CMS clustering ... 155

14.4. Setup .. 156

14.5. Portlet Session Replication .. 158

14.5.1. JBoss Portal configuration ... 159

14.5.2. Portlet configuration .. 159

14.5.3. Limitations .. 160

15. Web Services for Remote Portlets (WSRP) .. 161

15.1. Introduction ... 161

15.2. Level of support in JBoss Portal ... 161

15.3. Deploying JBoss Portal's WSRP services ... 162

15.3.1. Considerations to use WSRP when running Portal on a non-default port

or hostname .. 162

15.3.2. Considerations to use WSRP with SSL .. 162

15.4. Making a portlet remotable .. 162

15.5. Consuming JBoss Portal's WSRP portlets from a remote Consumer 164

15.6. Consuming remote WSRP portlets in JBoss Portal .. 164

15.6.1. Overview .. 164

15.6.2. Configuring a remote producer walk-through .. 165

15.6.3. WSRP Producer descriptors .. 170

15.6.4. Examples ... 172

15.7. Consumers maintenance ... 174

15.7.1. Modifying a currently held registration .. 174

15.7.2. Consumer operations .. 178

15.7.3. Erasing local registration data ... 179

15.8. Configuring JBoss Portal's WSRP Producer .. 180

15.8.1. Overview .. 180

15.8.2. Default configuration ... 180

15.8.3. Registration configuration .. 181

15.8.4. WSRP validation mode ... 183

16. Security .. 185

16.1. Securing Portal Objects ... 185

16.2. Securing the Content Management System .. 187

16.2.1. CMS Security Configuration .. 187

16.3. Authentication with JBoss Portal .. 190

16.3.1. Authentication configuration ... 190

16.3.2. The portal servlet ... 191

16.4. Authorization with JBoss Portal .. 191

vii

16.4.1. The portal permission ... 192

16.4.2. The authorization provider ... 192

16.4.3. Making a programmatic security check ... 193

16.4.4. Configuring an authorization domain .. 194

17. JBoss Portal Identity Management .. 195

17.1. Identity management API ... 195

17.1.1. How to obtain identity modules services ? .. 200

17.1.2. API changes since 2.4 .. 201

17.2. Identity configuration ... 203

17.2.1. Main configuration file architecture (identity-config.xml) 204

17.3. User profile configuration ... 209

17.4. Identity modules implementations ... 212

17.4.1. Database modules .. 212

17.4.2. Delegating UserProfile module .. 213

17.4.3. Database UserProfile module implementation 214

18. JBoss Portal Identity Portlets .. 215

18.1. Introduction ... 215

18.1.1. Features .. 215

18.2. Configuration ... 215

18.2.1. Captcha support ... 216

18.2.2. Lost password .. 218

18.2.3. Reset password .. 219

18.2.4. jBPM based user registration .. 219

18.2.5. The configuration file .. 220

18.2.6. Customize e-mail templates .. 222

18.3. User interface customization .. 222

18.3.1. Example 1: required fields ... 222

18.3.2. Example 2: dynamic values (dropdown menu with predefined values) 223

18.3.3. Example 3: adding new properties ... 225

18.3.4. Illustration .. 226

18.3.5. Customizing the View Profile page .. 228

18.4. Customizing the workflow .. 229

18.4.1. Duration of process validity ... 230

18.5. Disabling the Identity Portlets ... 230

18.5.1. Enabling the Identity Portlets ... 230

19. Authentication and Authorization .. 231

19.1. Authentication in JBoss Portal .. 231

19.1.1. Configuration .. 231

19.2. JAAS Login Modules ... 231

19.2.1. org.jboss.portal.identity.auth.IdentityLoginModule 231

19.2.2. org.jboss.portal.identity.auth.DBIdentityLoginModule 232

19.2.3. org.jboss.portal.identity.auth.SynchronizingLdapLoginModule 233

19.2.4. org.jboss.portal.identity.auth.SynchronizingLdapExtLoginModule 234

19.2.5. org.jboss.portal.identity.auth.SynchronizingLoginModule 235

JBoss® Portal 2.7.0

viii

20. LDAP .. 237

20.1. How to enable LDAP usage in JBoss Portal .. 237

20.2. Configuration of LDAP connection .. 239

20.2.1. Connection Pooling ... 239

20.2.2. SSL ... 240

20.2.3. ExternalContext .. 241

20.3. LDAP Identity Modules .. 242

20.3.1. Common settings .. 242

20.3.2. UserModule .. 242

20.3.3. RoleModule .. 245

20.3.4. MembershipModule ... 247

20.3.5. UserProfileModule .. 249

20.4. LDAP server tree shapes ... 250

20.4.1. Keeping users membership in role entries .. 250

20.4.2. Keeping users membership in user entries ... 255

20.5. Synchronizing LDAP configuration .. 260

20.6. Supported LDAP servers ... 261

21. Single Sign On ... 263

21.1. Overview of SSO in portal ... 263

21.2. Using an Apache Tomcat Valve ... 263

21.2.1. Enabling the Apache Tomcat SSO Valve ... 263

21.2.2. Example of usage .. 263

21.3. CAS - Central Authentication Service ... 266

21.3.1. Integration steps ... 266

21.4. Java™ Open Single Sign-On (JOSSO) ... 269

21.4.1. Integration steps ... 270

22. CMS Portlet .. 275

22.1. Introduction ... 275

22.2. Features ... 275

22.3. CMS content ... 276

22.3.1. Configuring a window to display CMS content 276

22.4. CMS Configuration .. 276

22.4.1. Display CMS content .. 276

22.4.2. Service Configuration .. 277

22.4.3. Configuring the Content Store Location .. 278

22.5. Localization Support .. 281

22.6. CMS Service ... 281

22.6.1. CMS Interceptors .. 281

23. Portal Workflow ... 287

23.1. jBPM Workflow Engine Integration ... 287

23.2. CMS Publish/Approve Workflow Service ... 287

24. Navigation Tabs ... 291

24.1. Explicit ordering of tabs ... 291

24.2. Translating tab labels .. 292

ix

24.2.1. Method one: Multiple display-name .. 292

24.2.2. Defining a resource bundle and supported locales 292

25. Layouts and Themes ... 295

25.1. Overview .. 295

25.2. Header ... 296

25.2.1. Overview .. 296

25.3. Layouts ... 299

25.3.1. How to define a Layout ... 299

25.3.2. How to use a Layout .. 300

25.3.3. Where to place the Descriptor files .. 301

25.3.4. Layout JSP™ tags .. 301

25.4. RenderSets ... 303

25.4.1. What is a RenderSet .. 303

25.4.2. How is a RenderSet defined ... 304

25.4.3. How to specify what RenderSet to use ... 305

25.5. Themes .. 307

25.5.1. What is a Theme .. 307

25.5.2. How to define a Theme .. 308

25.5.3. How to use a Theme .. 309

25.5.4. How to write your own Theme ... 311

25.6. Other Theme Functionalities and Features .. 312

25.6.1. Content Rewriting and Header Content Injection 312

25.6.2. Declarative CSS Style injection ... 313

25.6.3. Disabling Portlet Decoration .. 313

25.7. Theme Style Guide (based on the Industrial theme) .. 314

25.7.1. Overview .. 314

25.7.2. Main Screen Shot ... 315

25.7.3. List of CSS Selectors ... 315

25.8. Additional Ajax selectors .. 346

26. Ajax .. 349

26.1. Introduction ... 349

26.2. Ajaxified markup .. 349

26.2.1. Ajaxified layouts ... 349

26.2.2. Ajaxified renderers .. 350

26.3. Ajaxified pages .. 351

26.3.1. Drag and Drop ... 351

26.3.2. Partial refresh ... 352

27. Troubleshooting and FAQ .. 357

27.1. Troubleshooting and FAQ .. 357

A. *-object.xml DTD ... 361

B. portlet-instances.xml DTD .. 369

C. jboss-portlet.xml DTD .. 375

x

xi

Please Read: Important Trademark Information

Sun, JavaServer, JSP, Java, JMX, JDK, Java runtime environment, J2EE, JVM, Javadoc, 100%

Pure Java, JDBC, and JavaScript are trademarks or registered trademarks of Sun Microsystems,

Inc. in the United States and other countries.

JBoss is a registered trademark of Red Hat, Inc. in the U.S. and other countries.

Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.

Oracle is a registered trademark of Oracle International Corporation.

Microsoft, Windows, Active Directory, and SQL Server are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

UNIX is a registered trademark of The Open Group.

MySQL is a trademark or registered trademark of MySQL AB in the U.S. and other countries.

Apache is a trademark of The Apache Software Foundation.

Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries.

All other trademarks referenced herein are the property of their respective owners.

xii

xiii

JBoss Portal - Overview

Many IT organizations look to achieve a competitive advantage for the enterprise by improving

business productivity and reducing costs. Today's top enterprises are realizing this goal by

deploying enterprise portals within their IT infrastructure. Enterprise portals simplify access to

information by providing a single source of interaction with corporate information. Although today's

packaged portal frameworks help enterprises launch portals more quickly, only JBoss® Portal

can deliver the benefits of a zero-cost open source license, combined with a flexible and scalable

underlying platform.

JBoss Portal provides an open source and standards-based environment for hosting and serving

a portal's Web interface, publishing and managing its content, and customizing its experience.

It is entirely standards-based, and supports the JSR-168 Portlet Specification (Portlet 1.0)

[http://www.jcp.org/en/jsr/detail?id=168] and JSR-286 Portlet Specification (Portlet 2.0) [http://

www.jcp.org/en/jsr/detail?id=286] , which allows you to easily plug-in standards-compliant portlets

to meet your specific portal needs. JBoss Portal is available through the business-friendly

LGPL [http://jboss.com/opensource/lgpl/faq] open source license, and the JBoss Enterprise Portal

Plarform is supported by JBoss Enterprise Middleware Professional Support and Consulting [http:/

/www.jboss.com/services/index]. JBoss support services are available to assist you in designing,

developing, deploying, and ultimately managing your portal environment. JBoss Portal is currently

developed by JBoss Enterprise Middleware developers, and community contributors.

The JBoss Portal framework and architecture include the portal container, and support a wide

range of features, including standard portlets, single sign-on, clustering, and internationalization.

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://jboss.com/opensource/lgpl/faq
http://jboss.com/opensource/lgpl/faq
http://www.jboss.com/services/index
http://www.jboss.com/services/index
http://www.jboss.com/services/index

JBoss Portal - Overview

xiv

Portal themes and layouts are configurable. Fine-grained security administration -- down to portlet

permissions -- rounds out the security model.

JBoss Portal Resources:

1. JBoss Portal Home Page [http://labs.jboss.com/jbossportal]

2. Forums: User [http://www.jboss.org/index.html?module=bb&op=viewforum&f=215] | Design

[http://www.jboss.org/index.html?module=bb&op=viewforum&f=205] | WSRP [http://jboss.org/

index.html?module=bb&op=viewforum&f=232]

3. Wiki [http://www.jboss.com/wiki/Wiki.jsp?page=JBossPortal]

4. PortletSwap.com Portlet Exchange [http://www.portletswap.com]

5. Our Roadmap [http://jira.jboss.com/jira/browse/

JBPORTAL?report=com.atlassian.jira.plugin.system.project:roadmap-panel]

The JBoss Portal team encourages you to use this guide to install and configure JBoss Portal. If

you encounter any configuration issues or simply want to take part in our community, we would

love to hear from you in our forums.

http://labs.jboss.com/jbossportal
http://labs.jboss.com/jbossportal
http://www.jboss.org/index.html?module=bb&op=viewforum&f=215
http://www.jboss.org/index.html?module=bb&op=viewforum&f=215
http://www.jboss.org/index.html?module=bb&op=viewforum&f=205
http://www.jboss.org/index.html?module=bb&op=viewforum&f=205
http://jboss.org/index.html?module=bb&op=viewforum&f=232
http://jboss.org/index.html?module=bb&op=viewforum&f=232
http://jboss.org/index.html?module=bb&op=viewforum&f=232
http://www.jboss.com/wiki/Wiki.jsp?page=JBossPortal
http://www.jboss.com/wiki/Wiki.jsp?page=JBossPortal
http://www.portletswap.com
http://www.portletswap.com
http://jira.jboss.com/jira/browse/JBPORTAL?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.com/jira/browse/JBPORTAL?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.com/jira/browse/JBPORTAL?report=com.atlassian.jira.plugin.system.project:roadmap-panel

xv

Feature List

The following list details features found in this release of JBoss Portal. For a technical view of

the JBoss Portal features, refer to the Project Roadmap and Task List [http://jira.jboss.com/jira/

browse/JBPORTAL] .

Technology and Architecture

• JEMS: leverages the power of JBoss Enterprise Middleware Services: JBoss Application

Server, JBoss Cache, JGroups, and Hibernate.

• Database Agnostic: works with any RDBMS supported by Hibernate.

• Java™ Authentication and Authorization Service (JAAS): custom authentication via JAAS

login modules.

• Caching: utilizes render-view caching for improved performance.

• Clustering: cluster support allows the portal state to be clustered for all portal instances.

• Hot-deployment: leverages JBoss dynamic auto-deployment features.

• SAR Installer: browser-based installer makes installation and initial configuration a breeze.

Single Sign On

• Leverages Apache Tomcat and JBoss Single Sign On (SSO) solutions.

• Integrates with Java Open Single Sign-On (JOSSO) and Central Authentication Service

(CAS) out of the box. Experimental support for the Open Web SSO project (OpenSSO).

LDAP

• Connect to virtually any LDAP server.

• Integrates with Sun™ Active Directory and OpenLDAP out of the box. Experimental

support for Microsoft® Active Directory®.

Supported Standards

• Portlet Specification and API 1.0 (JSR-168).

• Portlet Specification and API 2.0 (JSR-286).

• Content Repository for Java™ technology API (JSR-170).

• JavaServer™ Faces 1.2 (JSR-252).

• JavaServer™ Faces 2.0 (JSR-314).

http://jira.jboss.com/jira/browse/JBPORTAL
http://jira.jboss.com/jira/browse/JBPORTAL
http://jira.jboss.com/jira/browse/JBPORTAL

Feature List

xvi

• Java Management Extension (JMX™) 1.2.

• Web Services for Remote Portlets (WSRP) 1.0: refer to WSRP support in JBoss Portal

[http://docs.jboss.com/jbportal/v2.6.5/referenceGuide/html/wsrp.html#wsrp_support] for further

details.

• Full J2EE™ 1.4 compliance when used with JBoss Application Server.

Portal and Portal Container

• Multiple Portal Instances: the ability to have multiple portal instances running inside one portal

container.

• IPC: the Inter-Portlet Communication API enables portlets to create links to other objects, such

as pages, portals, and windows.

• Dynamic: the ability for administrators and users to create and destroy objects such as portlets,

pages, portals, themes, and layouts at runtime.

• Internationalization: the ability to use internationalization resource files for every portlet.

• Pluggable Services: with authentication performed by the servlet container and JAAS, it is

possible to swap the authentication scheme.

• Page-based Architecture: allows the grouping and division of portlets on a per-page basis.

• Existing Framework Support: portlets utilizing Apache Struts, Spring Web MVC, Sun JSF-RI,

AJAX, and Apache MyFaces are supported.

Themes and Layouts

• Swapping Themes and Layouts: new themes and layouts containing images can easily be

deployed in WAR archives.

• Flexible API: the Theme and Layout APIs are designed to separate the business layer from

the presentation layer.

• Per-page Layout Strategy: different layouts can be assigned to different pages.

User and Group Functionality

• User Registration and Validation: configurable registration parameters allow user email

validation before activation.

• Workflow: ability to define your own jBPM workflow on user registration.

• User Log In: makes use of servlet container authentication.

• Create and Edit Users: ability for administrators to create and edit user profiles.

http://docs.jboss.com/jbportal/v2.6.5/referenceGuide/html/wsrp.html#wsrp_support
http://docs.jboss.com/jbportal/v2.6.5/referenceGuide/html/wsrp.html#wsrp_support

xvii

• Create and Edit Roles: ability for administrators to create and edit roles.

• Role Assignment: ability for administrators to assign users to roles.

• CAPTCHA Support: distinguish between humans and machines when registering.

Permissions Management

• Extendable Permissions API: allows custom portlet permissions based on role definition.

• Administrative Interface: allows permission assignments to roles at any time for any deployed

portlet, page, or portal instance.

Content Management System

• JCR-compliant: the CMS is powered by Apache Jackrabbit, an open source implementation

of the Java™ content repository API.

• Database and File System Store Support: configure the content store for either a file system

or an RDBMS.

• External Blob Support: configurable content store, allowing large blobs to reside on a file

system, and content node references and properties to reside in an RDBMS.

• Version and History Support: all content edited and created is auto-versioned with a history

of edits, that can be viewed at any time.

• Content Serving Search-engine-friendly URLS: http://your-domain/portal/content/

index.html (does not apply to portlet actions).

• No Long Portal URLS: serve binaries with simple URLs (http://your-domain/files/

products.pdf).

• Multiple HTML Portlet Instance Support: allows extra instances of static content from the

CMS to be served under separate windows.

• Directory Support: create, move, delete, copy, and upload entire directory trees.

• File Functions: create, move, delete, copy, and upload files.

• Embedded Directory-browser: when creating, moving, deleting, or copying files,

administrators can navigate the directory tree to find the collection they want to perform the

action on.

• Ease-of-use Architecture: all actions to be performed on files and folder are one mouse-click

away.

• Full-featured HTML Editor: the HTML editor contains a WYSIWYG mode, preview

functionality, and HTML source editting mode. HTML commands support tables, fonts, zooming,

image and URL linking, flash movie support, bullet and numbered list, and dozens more.

Feature List

xviii

• Editor Style Sheet Support: to easily chose classes, the WYSIWYG editor displays the current

portal style sheet.

• Internationalization Support: content can be attributed to a specific locale, and then served

to the user based on his or hers Web browser settings.

• Workflow Support: basic submit for review and approval process.

xix

Target Audience

This guide is aimed towards portlet developers, portal administrators, and those wishing to

implement and extend the JBoss Portal framework. For end-user documentation, please refer to

the JBoss Portal User Manual from the JBoss Portal Documentation Library [http://labs.jboss.com/

portal/jbossportal/docs/index.html] .

http://labs.jboss.com/portal/jbossportal/docs/index.html
http://labs.jboss.com/portal/jbossportal/docs/index.html
http://labs.jboss.com/portal/jbossportal/docs/index.html

xx

xxi

Acknowledgments

We would like to thank the developers that participate in the JBoss Portal project.

Specifically:

• Luca Stancapiano, Luc Boudreau and Anton Borisow for their Italian, Canadian French and

Russian localization contributions.

• Antoine Herzog and Peter Johnson for helping in the forums.

• Mark Fernandes and Paul Tamaro from Novell, for their hard work in supplying the portal project

with usable and attractive themes and layouts in the 2.4 version of JBoss Portal.

• Martin Holzner from Novell, for his work on themes in the 2.4 version of JBoss Portal.

• Kev "kevs3d" Roast for supplying us with two working portlets that integrate existing frameworks

in to the portal: Sun JSF-RI and Spring MVC portlets.

• Swarn "sdhaliwal" Dhaliwal for supplying us with the Struts-Bridge, that will allow for existing

Apache Struts applications to work with JBoss Portal.

• A few Red Hat employees: Remy Maucherat for Apache Tomcat configuration, Magesh Kumar

Bojan and Martin Putz for always being there to help our customers, Prabhat Jha for making sure

that JBoss Portal runs great everywhere, Murray Mc Allister for his work on the doc, Noel Rocher

for his contributions and early feedback on JBoss Portal 2.6, James Cobb for the renaissance

theme and many others !

• The JBoss Labs (http://www.jboss.org) team for building a great infrastructure on top of

JBoss Portal 2.6, providing very useful feedback, and giving us the initial Drag and Drop

implementation.

• Everyone in general who participates on the code, in the forums and on the Wiki.

Contributions of any kind are always welcome. You can contribute by providing ideas, filing bug

reports, producing code, designing a theme, writing documentation, and so on. If you think your

name is missing from this page, please let us know.

http://www.jboss.org

xxii

Chapter 1.

1

System Requirements
Thomas Heute

Roy Russo

The following chapter details hardware and software versions that are compatible with JBoss

Portal. The hardware and software listed has either been tested, or reported as working by users.

Before reporting a problem, make sure you are using compatible hardware and software.

If you successfully installed JBoss Portal on versions not listed here, please let us know so it can

be added to this section.

1.1. Minimum System Requirements

• JDK™ 5 (JDK 6 is not part of the test platform)

• 512 MB RAM

• 100 MB hard disk space

• 400 MHz CPU

1.2. Supported Operating Systems

JBoss Portal is 100% Pure Java™, and therefore it is interoperable with most operating systems

capable of running a Java Virtual Machine (JVM™), including Linux®, Windows®, UNIX®

operating systems, and Mac OS X.

1.3. JBoss Application Server

JBoss Portal 2.7.0 is tested with JBoss Application Server (AS) JBoss AS 4.2.3, JBoss Enterprise

Application Platform (EAP) 4.2 and JBoss EAP 4.3. It is highly recommended that customers

who have access to the JBoss Customer Support Portal (CSP) [https://support.redhat.com/portal/

login.html] use JBoss EAP 4.3. Customers who do not have access to the JBoss CSP should use

JBoss AS [http://labs.jboss.com/jbossas/].

Warning

JBoss AS versions 4.0.x are not supported.

1.4. Databases

JBoss Portal is database-agnostic. The following list outlines known-to-be-working database

vendor and version combinations:

https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
http://labs.jboss.com/jbossas/
http://labs.jboss.com/jbossas/

Chapter 1. System Requirements

2

• MySQL® 4 (use Connector/J 3.1 [http://dev.mysql.com/downloads/connector/j/3.1.html]) and 5

(known issue [http://wiki.jboss.org/wiki/Wiki.jsp?page=AvoidMySQL5DataTruncationErrors])

• PostgreSQL 8.x

• Hypersonic SQL

• Apache Derby

• Oracle® Database 9 and 10g (use the latest driver from the Oracle 10 branch [http://

www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html] even if you are running

Oracle 9)

• Microsoft® SQL Server®

• MaxDB

JBoss Portal employs Hibernate as an interface to a Relational Database Management System

(RDBMS). Most Relational Database Management Systems supported by Hibernate will work with

JBoss Portal.

1.5. Source Building

The source building mechanism works on Linux, Windows, Mac OS X, and UNIX operating

systems.

http://dev.mysql.com/downloads/connector/j/3.1.html
http://dev.mysql.com/downloads/connector/j/3.1.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=AvoidMySQL5DataTruncationErrors
http://wiki.jboss.org/wiki/Wiki.jsp?page=AvoidMySQL5DataTruncationErrors
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Chapter 2.

3

Installation
Depending on your needs, there are several different methods to install JBoss Portal. Pre-

configured clustered versions (JBoss Portal Binary (Clustered)) are available from

the JBoss Portal Downloads [http://labs.jboss.com/portal/jbossportal/download/index.html] page.

Clustered versions of JBoss Portal must be deployed in the JBOSS_INSTALLATION_DIRECTORY/

server/all/deploy/ directory. All JBoss AS instances must reference the same datasource.

Refer to Section 2.3.2.2, “Operating System Environment Settings” for details on how to configure

JBoss Portal for clustering.

An environment variable, JBOSS_HOME , is configured in Section 2.3.2.2, “Operating

System Environment Settings” . References to $JBOSS_HOME assume this to be your

JBOSS_INSTALLATION_DIRECTORY .

2.1. The JBoss Portal and JBoss AS Bundle

This is the easiest and fastest way to get JBoss Portal installed and running. The JBoss Portal and

JBoss AS bundle contains JBoss AS, JBoss Portal, and the embedded Hypersonic SQL database.

To install the JBoss Portal and JBoss AS bundle:

1. Get the bundle: the bundle is available from the JBoss Portal Downloads [http://

labs.jboss.com/portal/jbossportal/download/index.html] page. Bundles use the JBoss Portal

+ JBoss AS naming convention.

2. Extract the bundle: extract the ZIP archive. It does not matter which directory is used. On

Windows, the recommended directory is C:\jboss- version-number .

3. Start the server: change into the JBOSS_PORTAL_INSTALLATION_DIRECTORY/bin/ directory.

On Windows, execute run.bat . On Linux, run the sh run.sh command. To specify a

configuration to use, for example, the default configuration, append the -c default option to

the run.bat or sh run.sh commands.

4. Log in to JBoss Portal: using a Web browser, navigate to http://localhost:8080/portal to open

the JBoss Portal homepage. Log in using one of the two default accounts: username user ,

password user , or username admin , password admin :

http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://localhost:8080/portal

Chapter 2. Installation

4

SQL Errors. Tables are automatically created the first time JBoss Portal starts. When deployed

for the first time, JBoss Portal checks for the existence of the initial tables, which have not been

created yet. This causes errors such as the following, which can safely be ignored:

WARN [JDBCExceptionReporter] SQL Error: -22, SQLState: S0002

ERROR [JDBCExceptionReporter] Table not found in statement ...

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_repositoryentry' doesn't exist

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_version_refs' doesn't exist

2.2. Installing the Binary Download

The binary package typically consists of the jboss-portal.sar/ directory, documentation such

as the JBoss Portal User Guide and the JBoss Portal Reference Guide, and a set of pre-configured

Datasource descriptors that allow JBoss Portal to communicate with an external database. This

installation method is recommended for users who already have JBoss EAP or JBoss AS installed,

or those who need to install JBoss Portal in a clustered environment.

Setting up your Environment

5

2.2.1. Setting up your Environment

2.2.1.1. Getting the Binary

The binary download is available from the JBoss Portal Downloads [http://labs.jboss.com/portal/

jbossportal/download/index.html] page. Look for the JBoss Portal Binary package. Once the

binary ZIP file has been downloaded and extracted, the folder hierarchy will look similar to the

following:

Files contained in this download are used in later sections. Download and extract the JBoss Portal

binary ZIP file before proceeding.

2.2.1.2. JBoss EAP and JBoss AS Setup

Before deploying JBoss Portal, make sure you have JBoss EAP or JBoss AS installed. Customers

who have access to the JBoss Customer Support Portal (CSP) [https://support.redhat.com/

portal/login.html] are advised to download and install JBoss EAP 4.3. Customers who do not have

access to the JBoss CSP are advised to use JBoss AS [http://labs.jboss.com/jbossas/downloads/]

. For JBoss AS installation instructions, please refer to the JBoss AS Installation Guide [http://

labs.jboss.com/jbossas/docs/index.html] .

Use the JBoss EAP and JBoss AS ZIP file

Only use the JBoss EAP and JBoss AS ZIP file versions. DO NOT ATTEMPT to

deploy JBoss Portal on the installer version of JBoss EAP or JBoss AS.

2.2.1.3. Operating System Environment Settings

For JBoss EAP, JBoss AS, and build targets to work, you must configure a JBOSS_HOME

environment variable. This environment variable must point to the root directory of the JBoss EAP

or JBoss AS installation directory, which is the directory where the JBoss EAP or JBoss AS files

were extracted to.

On Windows, this is accomplished by going to Start > Settings > Control Panel > System >

Advanced > Environment Variables . Under the System Variables section, click New . Set the

JBOSS_HOME environment variable to the location of your JBoss EAP or JBoss AS installation

directory:

http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
http://labs.jboss.com/jbossas/downloads/
http://labs.jboss.com/jbossas/downloads/
http://labs.jboss.com/jbossas/docs/index.html
http://labs.jboss.com/jbossas/docs/index.html
http://labs.jboss.com/jbossas/docs/index.html

Chapter 2. Installation

6

To configure the JBOSS_HOME environment variable on Linux:

1. Add the following line to the ~/.bashrc file. Note: this must be configured while logged in as

the user who runs JBoss EAP or JBoss AS:

 export JBOSS_HOME=/path/to/jboss/installation/

2. Run the following command to enable the JBOSS_HOME environment variable:

Setting up your Environment

7

source ~/.bashrc

JBoss EAP JBOSS_HOME Environment Variable

If you are running JBoss EAP, configure the JBOSS_HOME environment variable to

point to the /path/to/jboss-eap- version /jboss-as/ directory.

2.2.1.4. Database Setup

A database is required for JBoss Portal to run. JBoss EAP and JBoss AS include an embedded

Hypersonic SQL database that JBoss Portal can use; however, this is only recommended for

developer use. The following databases are recommended for production use, and have had test

suites run against them: MySQL® 4 and 5, Microsoft® SQL Server® , PostgreSQL 8, and Oracle®

Database 9 and 10. JBoss Portal can use any database that is supported by Hibernate.

To configure a database to use with JBoss Portal:

1. Create a new database: this guide assumes that the new database is called jbossportal .

2. Grant access rights for a user to the jbossportal database: JBoss Portal needs to create

tables and modify table data. Grant access rights to a desired user to the jbossportal database.

Configure the same username and password in the Datasource descriptor.

3. Deploy an RDBMS JDBC™ connector: an RDBMS JDBC connector is required for JBoss

Portal to communicate with a database. Copy the connector into the $JBOSS_HOME/server/

default/lib/ directory. For example, an RDBMS JDBC connector for MySQL can be

download from http://www.mysql.com/products/connector/j/ . For the correct RDMBS JDBC

connector, please refer to the database documentation.

2.2.1.5. Datasource Descriptors

The JBoss Portal binary download that was extracted in Section 2.2.1.1, “Getting the Binary”

, contains pre-configured Datasource descriptors for the more popular databases. Datasource

descriptors are provided for the MySQL 4 and 5, PostgreSQL, Microsoft SQL Server, and Oracle

databases, and can be found in the setup subdirectory where the JBoss Portal binary was

extracted to:

http://www.mysql.com/products/connector/j/

Chapter 2. Installation

8

Copy the Datasource descriptor that matches your database into the $JBOSS_HOME/server/

configuration /deploy/ directory, where configuration is either all, default, minimal

or production. The production configuration only exists on JBoss EAP, and not JBoss AS.

For example, if you are using the all configuration, copy the Datasource descriptor into the

$JBOSS_HOME/server/all/deploy/ directory.

After the Datasource descriptor has been copied into the deploy directory, make sure the user-

name , password , connection-url , and driver-class , are correct for your chosen database.

Datasource descriptor files can be deployed to test before being used in production. The following

is an example Datasource descriptor for a PostgreSQL database:

 <?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>PortalDS</jndi-name>

 <connection-url>jdbc:postgresql:jbossportal</connection-url>

 <driver-class>org.postgresql.Driver</driver-class>

 <user-name>portal</user-name>

 <password>portalpassword</password>

 </local-tx-datasource>

</datasources>

For further details about Datasource descriptors, please refer to the JBoss JDBC Datasource

Wiki page [http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource] .

2.2.2. Deploying JBoss Portal

To start JBoss EAP or JBoss AS and deploy JBoss Portal:

1. Datasource descriptor: if you have not done so already, change into the setup subdirectory

where the JBoss Portal binary was extracted to. Copy the correct Datasource descriptor file (

*-ds.xml) you modified in the previous steps into the $JBOSS_HOME/server/ configuration

/deploy/ directory.

http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource
http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource
http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource

Installing from the Sources

9

2. Start the server: change into the $JBOSS_HOME/bin/ directory. On Windows, execute run.bat

. On Linux, run the sh run.sh command. To specify a configuration to use, for example, the

default configuration, append the -c default option to the run.bat or sh run.sh commands.

3. Log in to JBoss Portal: using a Web browser, navigate to http://localhost:8080/portal to open

the JBoss Portal homepage. Log in using one of the two default accounts: username user ,

password user , or username admin , password admin .

SQL Errors. Tables are automatically created the first time JBoss Portal starts. When deployed

for the first time, JBoss Portal checks for the existence of the initial tables, which have not been

created yet. This causes errors such as the following, which can safely be ignored:

WARN [JDBCExceptionReporter] SQL Error: -22, SQLState: S0002

ERROR [JDBCExceptionReporter] Table not found in statement ...

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_repositoryentry' doesn't exist

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_version_refs' doesn't exist

2.3. Installing from the Sources

2.3.1. Getting the Sources

The JBoss Portal source files can be obtained from the JBoss Portal Downloads [http://

labs.jboss.com/portal/jbossportal/download/index.html] page. The source files download uses a

JBoss Portal Source Code naming convention. As well, the sources can be obtained from SVN.

The latest sources for the 2.7. x versions are located at http://anonsvn.jboss.org/repos/portal/

branches/JBoss_Portal_Branch_2_7 .

Several modules have been extracted from the JBoss Portal SVN repository. These modules have

a different lifecycle and a different version scheme. The following is a list of modules used in JBoss

Portal 2.7.0, and the locations of their source code:

• JBoss Portal Common 1.2.2: http://anonsvn.jboss.org/repos/portal/modules/common/tags/

JBP_COMMON_1_2_2

• JBoss Portal Web 1.2.2: http://anonsvn.jboss.org/repos/portal/modules/web/tags/

JBP_WEB_1_2_2

• JBoss Portal Test 1.0.3: http://anonsvn.jboss.org/repos/portal/modules/test/tags/

JBP_TEST_1_0_3

• JBoss Portal Portlet 2.0.4: http://anonsvn.jboss.org/repos/portal/modules/portlet/tags/

JBP_PORTLET_2_0_4

http://localhost:8080/portal
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://labs.jboss.com/portal/jbossportal/download/index.html
http://anonsvn.jboss.org/repos/portal/branches/JBoss_Portal_Branch_2_7
http://anonsvn.jboss.org/repos/portal/branches/JBoss_Portal_Branch_2_7

Chapter 2. Installation

10

• JBoss Portal Identity 1.0.5: http://anonsvn.jboss.org/repos/portal/modules/identity/tags/

JBP_IDENTITY_1_0_5

• JBoss Portal CMS 1.2.1: http://anonsvn.jboss.org/repos/portal/modules/cms/tags/

JBP_CMS_1_2_1

After checking out the source from SVN, or after extracting the JBoss Portal Source Code ZIP

file, a directory structure similar to the following will be created:

If the source files were obtained from SVN, change into the trunk/src/ directory to see the

directories from the above image. As well, there is an empty thirdparty directory. This directory

contains files after building the JBoss Portal source code (refer to Section 2.3.3, “Building and

JBoss EAP and JBoss AS Setup

11

Deploying from the Sources”). For more information about the JBoss Portal SVN repository, and

accessing different versions of the JBoss Portal codebase, refer to the JBoss Portal SVN Repo

[http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalSVNRepo] page on the JBoss Wiki.

2.3.2. JBoss EAP and JBoss AS Setup

2.3.2.1. JBoss Application Server Setup

Before deploying JBoss Portal, make sure you have JBoss EAP or JBoss AS installed. Customers

who have access to the JBoss Customer Support Portal (CSP) [https://support.redhat.com/

portal/login.html] are advised to download and install JBoss EAP 4.3. Customers who do not have

access to the JBoss CSP are advised to use JBoss AS [http://labs.jboss.com/jbossas/downloads/]

. For JBoss AS installation instructions, please refer to the JBoss AS Installation Guide [http://

labs.jboss.com/jbossas/docs/index.html] .

Use the JBoss EAP and JBoss AS ZIP file

Only use the JBoss EAP and JBoss AS ZIP file versions. DO NOT ATTEMPT to

deploy JBoss Portal on the installer version of JBoss EAP or JBoss AS. We

are currently working on aligning the Application installer with JBoss Portal.

2.3.2.2. Operating System Environment Settings

For JBoss EAP, JBoss AS, and build targets to work, you must configure a JBOSS_HOME

environment variable. This environment variable must point to the root directory of the JBoss EAP

or JBoss AS installation directory, which is the directory where the JBoss EAP or JBoss AS files

were extracted to.

On Windows, this is accomplished by going to Start > Settings > Control Panel > System >

Advanced > Environment Variables . Under the System Variables section, click New . Set the

JBOSS_HOME environment variable to the location of your JBoss EAP or JBoss AS installation

directory:

http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalSVNRepo
http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalSVNRepo
https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
https://support.redhat.com/portal/login.html
http://labs.jboss.com/jbossas/downloads/
http://labs.jboss.com/jbossas/downloads/
http://labs.jboss.com/jbossas/docs/index.html
http://labs.jboss.com/jbossas/docs/index.html
http://labs.jboss.com/jbossas/docs/index.html

Chapter 2. Installation

12

To configure the JBOSS_HOME environment variable on Linux:

1. Add the following line to the ~/.bashrc file. Note: this must be configured while logged in as

the user who runs JBoss EAP or JBoss AS:

 export JBOSS_HOME=/path/to/jboss/installation/

2. Run the following command to enable the JBOSS_HOME environment variable:

Building and Deploying from the Sources

13

source ~/.bashrc

JBoss EAP JBOSS_HOME Environment Variable

If you are running JBoss EAP, configure the JBOSS_HOME environment variable to

point to the /path/to/jboss-eap- version /jboss-as/ directory.

2.3.3. Building and Deploying from the Sources

During the first build, third-party libraries are obtained from an online repository, so you must be

connected to the Internet, and if you are behind a proxy server, you need to define your proxy

server address and proxy server port number. To define a proxy server, add the following line to

the $JBOSS_HOME/bin/run.conf file:

 JAVA_OPTS=-Dhttp.proxyHost=<proxy-hostname> -Dhttp.proxyPort=<proxy-port>

Replace proxy-hostname with the proxy server's hostname, and proxy-port with the correct

proxy server port number.

To build and deploy JBoss Portal from the sources, change into the

JBOSS_PORTAL_SOURCE_DIRECTORY/build/ directory, where JBOSS_PORTAL_SOURCE_DIRECTORY

is the directory where the JBoss Portal source code was downloaded to. Then, Windows users

need to run the build.bat deploy command, and Linux users need to run the sh build.sh

deploy command.

At the end of the build process, the jboss-portal.sar file is copied into the $JBOSS_HOME/

server/default/deploy/ directory:

Chapter 2. Installation

14

Portal Modules

The previous steps install a bare version of JBoss Portal. In previous versions,

several additional modules were deployed as well, but this has since been

modularized to provide greater flexibility. To deploy additional modules, refer to the

Portal's module list [http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalModules] for

more information. To deploy all modules at once, change into the build directory. If

you are running Linux, run the sh build.sh deploy-all command. On Windows,

run the build.bat deploy-all command.

To build the clustered version on Linux operating systems:

1. Change into the JBOSS_PORTAL_SOURCE_DIRECTORY/build/ directory, and run the following

command:

sh build.sh main

2. Change into the JBOSS_PORTAL_SOURCE_DIRECTORY/core/ directory, and run the following

command:

sh build.sh deploy-ha

After the sh build.sh deploy-ha command completes, the jboss-portal-ha.sar file is

copied into the $JBOSS_HOME/server/all/deploy/ directory.

To build the clustered version on Windows, repeat the previous steps, replacing sh build.sh

with build.bat .

http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalModules
http://wiki.jboss.org/wiki/Wiki.jsp?page=PortalModules

Database Setup

15

2.3.4. Database Setup

A database is required for JBoss Portal to run. JBoss EAP and JBoss AS include an embedded

Hypersonic SQL database that JBoss Portal can use; however, this is only recommended for

developer use. The following databases are recommended for production use, and have had

test suites run against them: MySQL 4 and 5, Microsoft SQL Server, PostgreSQL 8, and Oracle

Database 9 and 10. JBoss Portal can use any database that is supported by Hibernate.

To configure a database to use with JBoss Portal:

1. Create a new database: this guide assumes that the new database is called jbossportal .

2. Grant access rights for a user to the jbossportal database: JBoss Portal needs to create

tables and modify table data. Grant access rights to a desired user to the jbossportal database.

Configure the same username and password in the Datasource descriptor.

3. Deploy an RDBMS JDBC connector: an RDBMS JDBC connector is required for JBoss Portal

to communicate with a database. Copy the connector into the $JBOSS_HOME/server/default/

lib/ directory. For example, an RDBMS JDBC connector for MySQL can be download from

http://www.mysql.com/products/connector/j/ . For the correct RDMBS JDBC connector, please

refer to the database documentation.

2.3.5. Datasource Configuration

The JBoss Portal binary download that was extracted in Section 2.2.1.1, “Getting the Binary”

, contains pre-configured Datasource descriptors for the more popular databases. Datasource

descriptors are provided for the MySQL 4 and 5, PostgreSQL, Microsoft SQL Server, and Oracle

databases, and can be found in the setup subdirectory where the JBoss Portal binary was

extracted to:

Copy the Datasource descriptor that matches your database into the $JBOSS_HOME/

server/ configuration /deploy/ directory, where configuration is either all, default,

minimal, or production. For example, if you are using the production configuration, copy

the Datasource descriptor into the $JBOSS_HOME/server/production/deploy/ directory. The

production configuration only exists on JBoss EAP installations, and not JBoss AS.

After the Datasource descriptor has been copied into the deploy directory, make sure the user-

name , password , connection-url , and driver-class , are correct for your chosen database.

http://www.mysql.com/products/connector/j/

Chapter 2. Installation

16

Datasource descriptor files can be deployed to test before being used in production. The following

is an example Datasource descriptor for a PostgreSQL database:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>PortalDS</jndi-name>

 <connection-url>jdbc:postgresql:jbossportal</connection-url>

 <driver-class>org.postgresql.Driver</driver-class>

 <user-name>portal</user-name>

 <password>portalpassword</password>

 </local-tx-datasource>

</datasources>

For further details about Datasource descriptors, please refer to the JBoss JDBC Datasource

Wiki page [http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource] .

2.4. Deploying JBoss Portal

To start JBoss EAP or JBoss AS and deploy JBoss Portal:

1. Datasource descriptor: if you have not done so already, change into the setup subdirectory

where the JBoss Portal binary was extracted to. Copy the correct Datasource descriptor file (

*-ds.xml) you modified in the previous steps into the $JBOSS_HOME/server/ configuration

/deploy/ directory.

2. Start the server: change into the $JBOSS_HOME/bin/ directory. On Windows, execute run.bat

. On Linux, run the sh run.sh command. To specify a configuration to use, for example, the

default configuration, append the -c default option to the run.bat or sh run.sh commands.

3. Log in to JBoss Portal: using a Web browser, navigate to http://localhost:8080/portal to open

the JBoss Portal homepage. Log in using one of the two default accounts: username user ,

password user , or username admin , password admin .

SQL Errors. Tables are automatically created the first time JBoss Portal starts. When deployed

for the first time, JBoss Portal checks for the existence of the initial tables, which have not been

created yet. This causes errors such as the following, which can safely be ignored:

WARN [JDBCExceptionReporter] SQL Error: -22, SQLState: S0002

ERROR [JDBCExceptionReporter] Table not found in statement ...

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource
http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource
http://wiki.jboss.org/wiki/Wiki.jsp?page=CreateAJDBCDataSource
http://localhost:8080/portal

Deploying JBoss Portal

17

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_repositoryentry' doesn't exist

WARN [JDBCExceptionReporter] SQL Error: 1146, SQLState: 42S02

ERROR [JDBCExceptionReporter] Table 'jbossportal.jbp_cms_version_refs' doesn't exist

18

Chapter 3.

19

Customizing your Installation
Thomas Heute

Roy Russo

This chapter describes how to customize the default installation. This includes the JBoss

EAP or JBoss AS listening port, email and proxy settings, and database dialect settings. For

further configuration details, refer to Section 6.3, “JBoss Portal Descriptors” and Chapter 27,

Troubleshooting and FAQ.

3.1. Changing the Port

It is common for web services to run on port 80. By default, JBoss EAP and

JBoss AS use port 8080. If you can not use port forwarding [http://wiki.jboss.org/wiki/

Wiki.jsp?page=UsingPortForwardingWithJBoss], it is recommended to change the port JBoss

EAP or JBoss AS listens on. To change the default port, open the $JBOSS_HOME/server/

default/deploy/jboss-web.deployer/server.xml file, and edit the Connector port value for

the jboss.web service; however, this configuration only applies to Apache Tomcat:

<Service name="jboss.web">

<Connector port="8088" address="${jboss.bind.address}"

This example changes the default port to port 8088. The JBoss EAP or JBoss AS server must be

restarted before the new port settings take affect.

The default SSL port is 8843. To enable HTTPS support, refer to the JBoss AS Guide [http:/

/docs.jboss.org/jbossas/jboss4guide/r4/html/ch9.chapt.html#d0e21962]. For further information,

refer to the Apache Tomcat SSL configuration how-to [http://tomcat.apache.org/tomcat-6.0-doc/

ssl-howto.html].

Please refer to Section 15.3.1, “Considerations to use WSRP when running Portal on a non-default

port or hostname” to update the WSRP service after having changed the port.

Root User Privileges

Linux operating systems require root user privileges to run a service on a port less

than 1024. Starting JBoss EAP or JBoss AS on port 80 as a non-privileged user will

not work. Running JBoss EAP or JBoss AS as the root user could lead to security

breaches.

http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingPortForwardingWithJBoss
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingPortForwardingWithJBoss
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingPortForwardingWithJBoss
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch9.chapt.html#d0e21962
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch9.chapt.html#d0e21962
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch9.chapt.html#d0e21962
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Chapter 3. Customizing your I...

20

3.2. Changing the Context Path

By default, the main JBoss Portal page is accessible by navigating to http://localhost:8080/portal/

index.html. This can be changed to a different path, for example, http://localhost:8080/index.html.

The context path can be changed when using the deployed jboss-portal.sar/, or before

building from source. To change the context path when using the JBoss Portal binary package:

1. Open the $JBOSS_HOME/server/default/deploy/jboss-portal.sar/portal-server.war/WEB-INF/

jboss-web.xml file. If this file does not exist, copy and save the following example:

<?xml version="1.0"?>

<jboss-web>

 <security-domain>java:jaas/portal</security-domain>

 <context-root>/portal</context-root>

 <replication-config>

 <replication-trigger>SET</replication-trigger>

 </replication-config>

 <resource-ref>

 <res-ref-name>jdbc/PortalDS</res-ref-name>

 <jndi-name>java:PortalDS</jndi-name>

 </resource-ref>

</jboss-web>

2. Edit the <context-root> element with the desired context path:

<context-root>/testing</context-root>

Using this example, the main JBoss Portal page would be reached by navigating to http://

localhost:8080/testing.

To change the context path when building from source:

1. Change into the directory where the JBoss Portal Source Code ZIP file was extracted to,

or where the source from SVN was checked out to. Copy the build/etc/local.properties-

example file and save it as build/local.properties.

2. Open the build/local.properties file and edit the portal.web.context-root option with

the desired context path:

Context root for the portal main servlet

Changing the context-root

21

portal.web.context-root=/testing

Using this example, the main JBoss Portal page would be reached by navigating to http://

localhost:8080/testing.

3. To clean the project, make sure you are connected to the Internet, and change into the build/

directory. Run the ant clean command.

4. Rebuild and redeploy JBoss Portal. Refer to Section 2.3, “Installing from the Sources” for build

instructions.

3.2.1. Changing the context-root

By default, Apache Tomcat holds on to the root context, /. You may need to remove the

$JBOSS_HOME/server/default/deploy/jboss-web.deployer/ROOT.war/ directory, or add a

jboss-web.xml file, which declares another context-root other than /, under the $JBOSS_HOME/

server/default/deploy/jboss-web.deployer/ROOT.war/WEB-INF/ directory, for the above

changes to take affect. The following is an example jboss-web.xml file, which changes the

Apache Tomcat context path to /tomcat-root:

<?xml version="1.0"?>

<jboss-web>

 <context-root>/tomcat-root</context-root>

</jboss-web>

3.3. Forcing the Database Dialect

This sections describes how to override the Database (DB) dialect settings. Under most

circumstances, the auto-detect feature works. If the Hibernate dialect is not working correctly,

override the default behavior by following the instructions in this section.

3.3.1. Database Dialect Settings for JBoss Portal

All hibernate.cfg.xml files in all JBoss Portal modules you intend to use need to be modified.

The hibernate.cfg.xml files are found in the jboss-portal.sar/module/conf/hibernate/

directory/ directory, where module is the module name, and directory is a directory that,

depending on the module, may or may not exist.

To modify these files to force the DB dialect, un-comment the following line from each

hibernate.cfg.xml file in each JBoss Portal module you intend to use, so that it looks like the

following:

Chapter 3. Customizing your I...

22

<!-- Force the dialect instead of using autodetection -->

<property name="dialect">org.hibernate.dialect.PostgreSQLDialect</property>

Note: this example is for a PostgreSQL database. If you use another database, you need to

modify org.hibernate.dialect.PostgreSQLDialect to reflect the correct database. For a list

of supported dialects, refer to the dialects list on the Hibernate website [http://www.hibernate.org/

hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects].

3.3.2. DB Dialect Settings for the CMS Component

To modify the DB dialect setting for the JBoss Portal CMS component:

1. Open the jboss-portal.sar/portal-cms.sar/conf/hibernate/cms/hibernate.cfg.xml

file.

2. Un-comment the following line, so that it looks like the following:

<!-- Force the dialect instead of using autodetection -->

<property name="dialect">org.hibernate.dialect.PostgreSQLDialect</property>

Note: this example is for a PostgreSQL database. If you use another database, you need to

modify org.hibernate.dialect.PostgreSQLDialect to reflect the correct database. For a list

of supported dialects, refer to the dialects list on the Hibernate website [http://www.hibernate.org/

hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects].

3.4. Configuring the Email Service

If you have a standard setup and a mail server installed, the email service should work without

any extra configuration. Most Linux distributions have a mail server installed by default. The email

service, for example, can be used to verify a user's email address when a user subscribes, or for

CMS workflow notifications.

The email service is configured using the $JBOSS_HOME/server/default/deploy/jboss-

portal.sar/META-INF/jboss-service.xml file. The following is an example of the section

which is used to configure the email service:

<mbean

code="org.jboss.portal.core.impl.mail.MailModuleImpl"

name="portal:service=Module,type=Mail"

xmbean-dd=""

xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects

Configuring proxy settings

23

<xmbean/>

<depends>jboss:service=Mail</depends>

<depends>portal:service=Module,type=IdentityServiceController</depends>

<attribute name="QueueCapacity">-1</attribute>

<attribute name="Gateway">localhost</attribute>

<attribute name="SmtpUser"></attribute>

<attribute name="SmtpPassword"></attribute>

<attribute name="JavaMailDebugEnabled">false</attribute>

<attribute name="SMTPConnectionTimeout">100000</attribute>

<attribute name="SMTPTimeout">10000</attribute>

<attribute name="JNDIName">java:portal/MailModule</attribute>

</mbean>

A different SMTP server (other than localhost) can be configured, along with a SMTP username

and an SMTP password. The following is an example configuration that uses the Gmail SMTP

server:

<mbean

code="org.jboss.portal.core.impl.mail.MailModuleImpl"

name="portal:service=Module,type=Mail"

xmbean-dd=""

xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

<xmbean/>

<depends>jboss:service=Mail</depends>

<depends>portal:service=Module,type=IdentityServiceController</depends>

<attribute name="QueueCapacity">-1</attribute>

<attribute name="Gateway">smtp.gmail.com</attribute>

<attribute name="SmtpUser">username@gmail.com</attribute>

<attribute name="SmtpPassword">myPassword</attribute>

<attribute name="JavaMailDebugEnabled">false</attribute>

<attribute name="SMTPConnectionTimeout">100000</attribute>

<attribute name="SMTPTimeout">10000</attribute>

<attribute name="JNDIName">java:portal/MailModule</attribute>

</mbean>

Using this example, replace username@gmail.com and myPassword with your correct Gmail

username and password.

3.5. Configuring proxy settings

There are a couple of scenarios where you need your proxy to be correctly defined at the JVM™

level so that you can access documents from Internet. It could be to get the thirdparty libraries if

Chapter 3. Customizing your I...

24

you decided to build JBoss Portal from the sources, to access RSS feeds or weather information

in the samples portlet we provide or for your own needs.

To configure the proxy settings, you need to know the proxy host and the port to use. Then, add

them when starting Java.

Usually setting up JAVA_OPTS environment variable to -Dhttp.proxyHost=YOUR_PROXY_HOST

-Dhttp.proxyPort=YOUR_PROXY_PORT is enough.

3.6. Disabling Dynamic Proxy Un-wrapping

JBoss Portal uses the JBoss Microkernel for the service infrastructure. The JBoss Microkernel

provides injection of services into other services, otherwise known as wiring. Due to the

Microkernel being JMX™ based, it is only possible to inject dynamic proxies that talk to the

MBeanServer. The overhead at runtime is minimal since the Microkernel implementation is highly

optimized; however, when it is used with Java 5, a noticeable bottleneck occurs due to the fact

that the implementation of the JMX API classes, javax.management.*, provided by the Java

Platform, perform synchronization. This does not occur under JDK™ 1.4, since those classes are

implemented by JBoss MX.

JBoss Portal services use a special kind of Model MBean called JBossServiceModelMBean,

which allows the un-wrapping of injected dynamic proxies, and replaces them with Plain Old Java

Object (POJO) services. This removes the bottleneck when using Java 5, and also provides a

performance boost on JDK 1.4. By default this feature is enabled, but it is possible to disable.

To do this on Linux operating systems, change into the $JBOSS_HOME/bin/ directory and run the

following command:

sh run.sh -Dportal.kernel.no_proxies=false

On Windows, run the following command:

run.bat -Dportal.kernel.no_proxies=false

Chapter 4.

25

Upgrading JBoss Portal 2.6 to 2.7
Thomas Heute

Warning

Before performing any instructions or operations in this chapter, back up your

database and the entire JBoss EAP or JBoss AS directory!

JBoss Portal 2.7 compatibility with JBoss Portal 2.6 is very high. The main differences are the

use of JSR-286 features to replace JBoss Portal specific features. The database schema hasn't

changed.

4.1. Usage of JBossActionRequest

Usage of JBossActionRequest is not available directly anymore. From now on it is only accessible

if the org.jboss.portlet.filter.JBossPortletFilter is applied on the portlet. To do so, first you will need

to change the portlet.xml descriptor in order to declare the new portlet as a JSR-286 portlet so

that the filter can be applied. For a portlet named MyFooPortlet it would now look like this:

<portlet-app

 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://

java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

 <filter>

 <filter-name>JBoss Portlet Filter</filter-name>

 <filter-class>org.jboss.portlet.filter.JBossPortletFilter</filter-class>

 <lifecycle>ACTION_PHASE</lifecycle>

 <lifecycle>RENDER_PHASE</lifecycle>

 </filter>

 <filter-mapping>

 <filter-name>JBoss Portlet Filter</filter-name>

 <portlet-name>MyFooPortlet</portlet-name>

 </filter-mapping>

 <portlet>

Chapter 4. Upgrading JBoss Po...

26

 <description>My foo portlet</description>

 <portlet-name>MyFooPortlet</portlet-name>

 ...

 </portlet>

</portlet-app>

By not adding this filter on a portlet using JBossActionRequest/JBossActionResponse, an error

message such as: The request isn't a JBossRenderRequest, you probably need to activate the

JBoss Portlet Filter: org.jboss.portlet.filter.JBossPortletFilter on MyFooPortlet

Chapter 5.

27

Portlet Primer
Chris Laprun

Thomas Heute

5.1. JSR-168 and JSR-286 overview

The Portlet Specifications aims at defining portlets that can be used by any JSR-168 (Portlet

1.0) [http://www.jcp.org/en/jsr/detail?id=168] or JSR-286 (Portlet 2.0) [http://www.jcp.org/en/jsr/

detail?id=286] portlet container. Most Java EE portals include one, it is obviously the case for

JBoss Portal which includes the JBoss Portlet container supporting the two versions. This chapter

gives a brief overview of the Portlet Specifications but portlet developers are strongly encouraged

to read the JSR-286 Portlet Specification [http://www.jcp.org/en/jsr/detail?id=286] .

JBoss Portal is fully JSR-286 compliant, which means any JSR-168 or JSR-286 portlet behaves

as it is mandated by the respective specifications inside the portal.

5.1.1. Portal Pages

A portal can be seen as pages with different areas, and inside areas, different windows, and each

window having one portlet:

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286

Chapter 5. Portlet Primer

28

5.1.2. Rendering Modes

A portlet can have different view modes. Three modes are defined by the JSR-286 specification:

• view - generates markup reflecting the current state of the portlet.

• edit - allows a user to customize the behavior of the portlet.

• help - provides information to the user as to how to use the portlet.

5.1.3. Window States

Window states are an indicator of how much page real-estate a portlet consumes on any given

page. The three states defined by the JSR-168 specification are:

• normal - a portlet shares this page with other portlets.

• minimized -a portlet may show very little information, or none at all.

• maximized - a portlet may be the only portlet displayed on this page.

Tutorials

29

5.2. Tutorials

The tutorials contained in this chapter are targeted toward portlet developers. Although

they are a good starting and reference point, it is highly recommend that portlet

developers read and understand the JSR-286 Portlet Specification [http://www.jcp.org/

en/jsr/detail?id=286] . Feel free to use the JBoss Portal User Forums [http://jboss.org/

index.html?module=bb&op=viewforum&f=215] for user-to-user help.

5.2.1. Deploying your first Portlet

5.2.1.1. Introduction

This section describes how to deploy a portlet in JBoss Portal. You will find the SimplestHelloWorld

portlet in the examples directory at the root of your JBoss Portal binary package.

5.2.1.2. Compiling

This example is using Maven to compile and build the web archive. If you don't have Maven

already installed, you will find a version for your operating system here [http://maven.apache.org/

download.html]

To compile and package the application, go to the SimplestHelloWorld directory and type mvn

package .

Once successfully packaged, the result should be available in: SimplestHelloWorld/target/

SimplestHelloWorld-0.0.1.war . Simply copy that file into JBOSS_HOME/server/default/

deploy , then start JBoss Application Server if it was not already started.

You should now see a new page called SimplestHelloWorld , with a window inside containing

the portlet instance we have created, as seen below.

5.2.1.3. Package Structure

Now that we have seen how to deploy an existing web application, let's

have a look inside.

Like other Java Platform, Enterprise Edition (Java EE) applications, portlets are packaged in

WAR files. A typical portlet WAR file can include servlets, resource bundles, images, HTML,

http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://jboss.org/index.html?module=bb&op=viewforum&f=215
http://jboss.org/index.html?module=bb&op=viewforum&f=215
http://jboss.org/index.html?module=bb&op=viewforum&f=215
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 5. Portlet Primer

30

JavaServer™ Pages (JSP™), and other static or dynamic files. The following is an example of

the directory structure of the HelloWorldPortlet portlet:

|-- SimplestHelloWorld-0.0.1.war

| `-- WEB-INF

| |-- classes

| | `-- org

| | `-- jboss

| | `-- portal

| | `-- portlet

| | `-- samples

| | `-- SimplestHelloWorldPortlet.class

| |-- default-object.xml

| |-- portlet-instances.xml

| |-- portlet.xml

| `-- web.xml

The compiled Java class implementing javax.portlet.Portlet (through

javax.portlet.GenericPortlet)

default-object.xml is an optional file, it is used to define the layout of the portal. It can be

used to define the different portals, pages and windows. The same result can be obtained

through the administration portal. Note that the definition of the layout is stored in database,

this file is then used to populate the database during deployment which can be very useful

during development.

portlet-instances.xml is also optional, it allows to create a portlet instance from the

SimpleHelloWorld portlet definition. Creating instances can also be done through the

administration portal. Note that the definition of instances is stored in database, this file is

then used to populate the database during deployment which can be very useful during

development. Having portlet-instances.xml and default-object.xml included in this package

ensures that the portlet will appear directly on the portal by just deploying the web application.

This is the mandatory descriptor files for portlets. It is used during deployment..

This is the mandatory descriptor for web applications.

Deploying your first Portlet

31

5.2.1.4. Portlet Class

Let's study the Java class in detail.

The following file is the SimplestHelloWorldPortlet/src/main/java/org/jboss/portal/

portlet/samples/SimplestHelloWorldPortlet.java Java source.

package org.jboss.portal.portlet.samples;

import java.io.IOException;

import java.io.PrintWriter;

import javax.portlet.GenericPortlet;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

public class SimplestHelloWorldPortlet extends GenericPortlet

{

 public void doView(RenderRequest request,

 RenderResponse response) throws IOException

 {

 PrintWriter writer = response.getWriter();

 writer.write("Hello World !");

 writer.close();

 }

}

All portlets must implement the javax.portlet.Portlet interface. The portlet

API provides a convenient implementation of this interface, in the form of the

javax.portlet.GenericPortlet class, which among other things, implements the Portlet

render method to dispatch to abstract mode-specific methods to make it easier to support the

standard portlet modes. As well, it provides a default implementation for the processAction

, init and destroy methods. It is recommended to extend GenericPortlet for most cases.

As we extend from GenericPortlet , and are only interested in supporting the view

mode, only the doView method needs to be implemented, and the GenericPortlet render

implemention calls our implementation when the view mode is requested.

Use the RenderResponse to obtain a writer to be used to produce content.

Write the markup to display.

Chapter 5. Portlet Primer

32

Closing the writer.

Markup Fragments

Portlets are responsible for generating markup fragments, as they are included on

a page and are surrounded by other portlets. In particular, this means that a portlet

outputting HTML must not output any markup that cannot be found in a <body>

element.

5.2.1.5. Application Descriptors

JBoss Portal requires certain descriptors to be included in a portlet WAR file. Some of these

descriptors are defined by the Portlet Specification, and others are specific to JBoss Portal.

The following is an example of the SimplestHelloWorldPortlet/WEB-INF/portlet.xml file.

This file must adhere to its definition in the JSR-286 Portlet Specification. You may define more

than one portlet application in this file:

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

 <portlet>

 <portlet-name>SimplestHelloWorldPortlet</portlet-name>

 <portlet-class>

 org.jboss.portal.portlet.samples.SimplestHelloWorldPortlet

 </portlet-class>

 <supports>

 <mime-type>text/html</mime-type>

 </supports>

 <portlet-info>

 <title>Simplest Hello World Portlet</title>

 </portlet-info>

 </portlet>

</portlet-app>

Deploying your first Portlet

33

Define the portlet name. It does not have to be the class name.

The Fully Qualified Name (FQN) of your portlet class must be declared here.

The <supports> element declares all of the markup types that a portlet supports in the

render method. This is accomplished via the <mime-type> element, which is required for

every portlet. The declared MIME types must match the capability of the portlet. As well,

it allows you to pair which modes and window states are supported for each markup type.

All portlets must support the view portlet mode, so this does not have to be declared. Use

the <mime-type> element to define which markup type your portlet supports, which in this

example, is text/html . This section tells the portal that it only outputs HTML.

When rendered, the portlet's title is displayed as the header in the portlet window, unless it

is overridden programmatically. In this example, the title would be Simplest Hello World

Portlet .

The SimplestHelloWorldPortlet/WEB-INF/portlet-instances.xml file is a JBoss Portal

specific descriptor, that allows you to create instances of portlets. The <portlet-ref> value

must match the <portlet-name> value given in the SimplestHelloWorldPortlet/WEB-INF/

portlet.xml file. The <instance-id> value can be named anything, but it must match the

<instance-ref> value given in the *-object.xml file, which in this example, would be the

SimplestHelloWorldPortlet/WEB-INF/default-object.xml file.

The following is an example of the SimplestHelloWorldPortlet/WEB-INF/portlet-

instances.xml file:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portlet Instances 2.6//EN"

 "http://www.jboss.org/portlet/dtd/portlet-instances_2_6.dtd">

<deployments>

 <deployment>

 <instance>

 <instance-id>SimplestHelloWorldInstance</instance-id>

 <portlet-ref>SimplestHelloWorldPortlet</portlet-ref>

 </instance>

 </deployment>

</deployments>

The *-object.xml file is a JBoss Portal specific descriptor that allow users to define the structure

of their portal instances, and create and configure their windows and pages. In the following

example:

• a portlet window is created.

Chapter 5. Portlet Primer

34

• specifies that the window displays the markup generated by the SimplestHelloWorldInstance

portlet instance.

• the window is assigned to the page that we are creating and called SimplestHelloWorld page.

• the <region> element specifies where the window appears on the page.

The following is an example SimplestHelloWorldPortlet/WEB-INF/default-object.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <parent-ref>default</parent-ref>

 <if-exists>overwrite</if-exists>

 <page>

 <page-name>SimplestHelloWorld</page-name>

 <window>

 <window-name>SimplestHelloWorldWindow</window-name>

 <instance-ref>SimplestHelloWorldInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 </window>

 </page>

 </deployment>

</deployments>

Tells the portal where this portlet appears. In this case, default.default specifies that the

portlet appears in the portal instance named default , and on the page named default .

Instructs the portal to overwrite or keep this object if it already exists. Accepted values are

overwrite and keep . The overwrite option destroys the existing object, and creates a new

one based on the content of the deployment. The keep option maintains the existing object

deployment, or creates a new one if it does not exist.

Here we are creating a new page to put the new window on. We give that new page a name

that will be by default used on the tab of the default theme.

A unique name given to the portlet window. This can be named anything.

Deploying your first Portlet

35

The value of <instance-ref> must match the value of one of the <instance-id> elements

found in the HelloWorldPortlet/WEB-INF/portlet-instances.xml file.

Specifies where the window appears within the page layout.

Specifies where the window appears within the page layout.

The following diagram illustrates the relationship between the portlet.xml , portlet-

instances.xml , and default-object.xml descriptors:

JBoss Portal 2.6 introduced the notion of content-type , which is a generic mechanism to

specify what content displayed by a given portlet window. The window section of the previous

example, SimplestHelloWorldPortlet/WEB-INF/default-object.xml , can be re-written to

take advantage of the new content framework. The following is an example deployment descriptor

that uses the new content framework:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <parent-ref>default.default</parent-ref>

 <if-exists>overwrite</if-exists>

 <window>

 <window-name>SimplestHelloWorldWindow</window-name>

 <content>

 <content-type>portlet</content-type>

 <content-uri>SimplestHelloWorldInstance</content-uri>

 </content>

Chapter 5. Portlet Primer

36

 <region>center</region>

 <height>1</height>

 </window>

 </deployment>

</deployments>

This declaration is equivalent to the previous SimplestHelloWorldPortlet/WEB-INF/default-

object.xml example. Use <content-type> to specify the content to display. In this

example, the content being displayed by the SimplestHelloWorldWindow is a portlet . The

<content-uri> element specifies which content to display, which in this example, is the

SimplestHelloWorldInstance :

<content>

 <content-type>portlet</content-type>

 <content-uri>SimplestHelloWorldInstance</content-uri>

</content>

To display certain content or a file, use the cms content-type, with the <content-uri> element

being the path to the file in the CMS. This behavior is pluggable: you can plug in almost any type

of content.

Beware of context-path change. If the context-path change the portal may not be able to

find a reference on your portlets anymore. For that reason it's recommended to add the following

descriptor WEB-INF/jboss-portlet.xml which is not mandatory:

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <app-id>SimplestHelloWorld</app-id>

</portlet-app>

5.2.2. JavaServer™ Pages Portlet Example

5.2.2.1. Introduction

Now we will add more features to the previous example and also use a JSP page to render the

markup. We will use the portlet tag library to generate links to our portlet in different ways and

JavaServer™ Pages Portlet Example

37

use the other standard portlet modes. This example can be found in the directory JSPHelloUser.

Use mvn package then copy JSPHelloUser/target/JSPHelloUser-0.0.1.war in the deploy

directory of JBoss Application Server. Point your brwoser to , you should see the following:

Note

The EDIT button only appears with logged-in users, which is not the case on the

screenshot

5.2.2.2. Package Structure

The structure doesn't change much at the exception of adding some JSP files detailed later.

The JSPHelloUser portlet contains the traditional portlet and JBoss Portal specific application

descriptors. The following is an example of the directory structure of the JSPHelloUser portlet:

JSPHelloUser-0.0.1.war

 |-- META-INF

 | |-- MANIFEST.MF

 | `-- maven

 | `-- org.jboss.portal.example

 | `-- JSPHelloUser

Chapter 5. Portlet Primer

38

 | |-- pom.properties

 | `-- pom.xml

 |-- WEB-INF

 | |-- classes

 | | `-- org

 | | `-- jboss

 | | `-- portal

 | | `-- portlet

 | | `-- samples

 | | `-- JSPHelloUserPortlet.class

 | |-- default-object.xml

 | |-- jboss-portlet.xml

 | |-- portlet-instances.xml

 | |-- portlet.xml

 | `-- web.xml

 `-- jsp

 |-- edit.jsp

 |-- hello.jsp

 |-- help.jsp

 `-- welcome.jsp

5.2.2.3. Portlet Class

Let's study the Java class in detail.

The following file is the JSPHelloUser/src/main/java/org/jboss/portal/portlet/

samples/JSPHelloUserPortlet.java Java source. It is split in different pieces.

package org.jboss.portal.portlet.samples;

package org.jboss.portal.portlet.samples;

import java.io.IOException;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.GenericPortlet;

import javax.portlet.PortletException;

import javax.portlet.PortletRequestDispatcher;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import javax.portlet.UnavailableException;

JavaServer™ Pages Portlet Example

39

public class JSPHelloUserPortlet extends GenericPortlet

{

 public void doView(RenderRequest request, RenderResponse response)

 throws PortletException, IOException

 {

 String sYourName = (String) request.getParameter("yourname");

 if (sYourName != null)

 {

 request.setAttribute("yourname", sYourName);

 PortletRequestDispatcher prd =

 getPortletContext().getRequestDispatcher("/jsp/hello.jsp");

 prd.include(request, response);

 }

 else

 {

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/

welcome.jsp");

 prd.include(request, response);

 }

 }

...

As in the first portlet, we override the doView method.

Here we try to obtain the value of the render parameter names yourname . If defined we want

to redirect to the hello.jsp JSP page, otherwise to the welcome.jsp JSP page.

Very similar to the Servlet way, we get a request dispatcher on a file located within the web

archive.

The last step is to perform the inclusion of the markup obtained from the JSP.

We have seen the VIEW portlet mode, the spec defines two other modes that can be used called

EDIT and HELP . In order to enable those modes, they will need to be defined in the portlet.xml

descriptor as we will see later. Having those modes defined will enable the corresponding buttons

on the portlet's window.

The generic portlet that is inherited dispatches the different views to methods named: doView ,

doHelp and doEdit . Let's watch the code for those two last portlet modes.

...

Chapter 5. Portlet Primer

40

 protected void doHelp(RenderRequest rRequest, RenderResponse rResponse) throws

 PortletException, IOException,

 UnavailableException

 {

 rResponse.setContentType("text/html");

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/help.jsp");

 prd.include(rRequest, rResponse);

 }

 protected void doEdit(RenderRequest rRequest, RenderResponse rResponse) throws

 PortletException, IOException,

 UnavailableException

 {

 rResponse.setContentType("text/html");

 PortletRequestDispatcher prd = getPortletContext().getRequestDispatcher("/jsp/edit.jsp");

 prd.include(rRequest, rResponse);

 }

...

If you have read the portlet specification carefully you should have notice that portlet calls happen

in one or two phases. One when the portlet is just rendered, two when the portlet is actionned

then rendered. An action phase is a phase where some state change. The render phase will

have access to render parameters that will be passed each time the portlet is refreshed (with the

exception of caching capabilities).

The code to be executed during an action has to be implemented in the processAction method

of the portlet.

...

 public void processAction(ActionRequest aRequest, ActionResponse aResp onse)

 throws PortletException, IOException,

 UnavailableException

 {

 String sYourname = (String) aRequest.getParameter("yourname");

 aResponse.setRenderParameter("yourname", sYourname);

 }

...

processAction is the method from GernericPorlet to override for the action phase.

Here we retrieve the parameter obtained through an action URL .

JavaServer™ Pages Portlet Example

41

Here we need to keep the value of yourname to make it available in the rendering phase.

With the previous line, we are simply copying an action parameter to a render parameter for

the sake of this example.

5.2.2.4. JSP™ files and the Portlet Tag Library

Let's have a look inside the JSP pages.

The help.jsp and edit.jsp files are very simple, they simply display some text. Note that we

used CSS styles as defined in the portlet specification. It ensures that the portlet will look "good"

within the theme and accross portal vendors.

<div class="portlet-section-header">Help mode</div>

<div class="portlet-section-body">This is the help mode, a convenient place to give the user some

 help information.</div>

<div class="portlet-section-header">Edit mode</div>

<div class="portlet-section-body">This is the edit mode, a convenient place to let the user change

 his portlet preferences.</div>

Now let's have a look at the landing page, it contains the links and form to call our portlet:

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<div class="portlet-section-header">Welcome !</div>

<div class="portlet-font">Welcome on the JSP Hello User portlet,

my name is JBoss Portal. What's yours ?</div>

<div class="portlet-font">Method 1: We simply pass the parameter to the render phase:

<a href="<portlet:renderURL><portlet:param name="yourname" value="John Doe"/>

 </portlet:renderURL>">John Doe</div>

<div class="portlet-font">Method 2: We pass the parameter to the render phase, using valid XML:

Chapter 5. Portlet Primer

42

Please check the source code to see the difference with Method 1.

<portlet:renderURL var="myRenderURL">

 <portlet:param name="yourname" value='John Doe'/>

</portlet:renderURL>

<a href="<%= myRenderURL %>">John Doe</div>

<div class="portlet-font">Method 3: We use a form:

<portlet:actionURL var="myActionURL"/>

<form action="<%= myActionURL %>" method="POST">

 Name:

 <input class="portlet-form-input-field" type="text" name="yourname"/>

 <input class="portlet-form-button" type="Submit"/>

</form>

</div>

Since we will use the portlet taglib, we first need to declare it.

The first method showed here is the simplest one, portlet:renderURL will create a URL

that will call the render phase of the current portlet and append the result at the place of the

markup (Here within a tag...). We also added a parameter directly on the URL.

In this method instead of having a tag within another tag, which is not XML valid, we use the

var attribute. Instead of printing the url the portlet:renderURL tag will store the result in

the referenced variable (myRenderURL in our case).

The variable myRenderURL is used like any other JSP variable.

The third method mixes form submission and action request. Like in the second method, we

used a temporary variable to put the created URL into.

The action URL is used in the HTML form.

On the third method, first the action phase is triggered then later in the request, the render phase

is triggered, which output some content back to the web browser based on the available render

parameters.

JavaServer™ Pages Portlet Example

43

5.2.2.5. JSF™ example using the JBoss Portlet Bridge

In order to write a portlet using JSF we need a piece of software

called 'bridge' that lets us write a portlet application as if it was a JSF

application, the bridge takes care of the interactions between the two

layers.

Such an example is available in examples/JSFHelloUser, it uses the JBoss Portlet Bridge. The

configuration is slightly different from a JSP application, since it is a bit tricky it is usally a good

idea to copy an existing application that starting from scratch.

First, as any JSF application, the file faces-config.xml is required. It includes the following

required information in it:

<faces-config>

...

 <application>

 <view-handler>org.jboss.portletbridge.application.PortletViewHandler</view-handler>

 <state-manager>org.jboss.portletbridge.application.PortletStateManager</state-manager>

 </application>

...

</faces-config>

The portlet bridge libraries must be available and are usually bundled with the WEB-INF/lib

directory of the web archive.

The other difference compare to a regular portlet application, can be found in the portlet descriptor.

All details about it can be found in the JSR-301 specification that the JBoss Portlet Bridge

implements.

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

Chapter 5. Portlet Primer

44

 version="2.0">

 <portlet>

 <portlet-name>JSFHelloUserPortlet</portlet-name>

 <portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>view</portlet-mode>

 <portlet-mode>edit</portlet-mode>

 <portlet-mode>help</portlet-mode>

 </supports>

 <portlet-info>

 <title>JSF Hello User Portlet</title>

 </portlet-info>

 <init-param>

 <name>javax.portlet.faces.defaultViewId.view</name>

 <value>/jsf/welcome.jsp</value>

 </init-param>

 <init-param>

 <name>javax.portlet.faces.defaultViewId.edit</name>

 <value>/jsf/edit.jsp</value>

 </init-param>

 <init-param>

 <name>javax.portlet.faces.defaultViewId.help</name>

 <value>/jsf/help.jsp</value>

 </init-param>

 </portlet>

</portlet-app>

All JSF portlets define javax.portlet.faces.GenericFacesPortlet as portlet class. This

class is part of the JBoss Portlet Bridge

This is a mandatory parameter to define what's the default page to display.

This parameter defines which page to display on the 'edit' mode.

This parameter defines which page to display on the 'help' mode.

Chapter 6.

45

XML Descriptors
Thomas Heute

Roy Russo

6.1. DTDs

To use a DTD, add the following declaration to the start of the desired descriptors:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

"-//JBoss Portal//DTD Portal Object 2.6//EN"

"http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

If you do not use the DTD declaration, the previous mechanism for XML validation is used. The

DTD is more strict, specifically with the order of XML elements. The following is an example from

a *-object.xml descriptor, which is valid if you are not using the DTD, but is rejected if you are:

<if-exists>overwrite</if-exists>

<parent-ref>default.default</parent-ref>

The correct element order, and one which is valid against the DTD, is as follows:

<parent-ref>default.default</parent-ref>

<if-exists>overwrite</if-exists>

The following DTDs are available:

• for -object.xml descriptors: "-//JBoss Portal//DTD Portal Object 2.6//EN"

• for jboss-app.xml descriptors: "-//JBoss Portal//DTD JBoss Web Application 2.6//EN"

• for jboss-portlet.xml descriptors: "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

• for portlet-instances.xml descriptors: "-//JBoss Portal//DTD Portlet Instances 2.6/

/EN"

Chapter 6. XML Descriptors

46

The DTDs are located in the $JBOSS_HOME/server/configuration/deploy/jboss-

portal.sar/dtd/ directory.

6.1.1. The JBoss Portlet DTD

The following items refer to elements found in the JBoss Portlet DTD, $JBOSS_HOME/server/

configuration/deploy/jboss-portal.sar/dtd/jboss-portlet_version_number.dtd:

<!ELEMENT portlet-app (remotable?,portlet*,service*)>

Use the <remotable> element to configure the default behavior of portlets with respect to WSRP

exposure: if no value is given, the value is either the value globally defined at the portlet application

level, or false. Accepted values are true and false.

You can configure specific settings of the portlet container for each portlet defined in the WEB-

INF/portlet.xml file. Use the <service> element to inject services into the portlet context of

applications.

<!ELEMENT portlet (portlet-name,remotable?,ajax?,session-config?,transaction?,

header-content?,portlet-info?)>

Additional configuration of the portlet. The <portlet-name> element defines the portlet name. It

must match a portlet defined in the WEB-INF/portlet.xml file for that application.

Use the <remotable> element to configure the default behavior of portlets with respect to WSRP

exposure: if no value is given, the value is either the value globally defined at the portlet application

level, or false.

The <trans-attribute> element specifies the behavior of the portlet when it is invoked at runtime

with respect to the transactional context. Depending on how the portlet is invoked, a transaction

may or may not exist before the portlet is invoked. The portal transaction is usually present in

the local context. The default value is NotSupported, which means that the portal transaction is

suspended for the duration of the portlet's invocation. Accepted values are Required, Mandatory,

Never, Supports, NotSupported, and RequiresNew.

The following is an example section from a WEB-INF/portlet.xml file, which uses the <portlet-

name>, <remotable>, and <trans-attribute> elements:

<portlet>

 <portlet-name>MyPortlet</portlet-name>

The JBoss Portlet DTD

47

 <remotable>true</remotable>

 <trans-attribute>Required</trans-attribute>

</portlet>

<!ELEMENT portlet-name (#PCDATA)>

The portlet name.

<!ELEMENT remotable (#PCDATA)>

Accepted values are true and false.

<!ELEMENT ajax (partial-refresh)>

Use the ajax element to configure the Asynchronous JavaScript and XML (AJAX) capabilities of

the portlet.

<!ELEMENT partial-refresh (#PCDATA)>

If a portlet uses the true value for the <partial-refresh> element, the portal uses partial-page

refreshing and only renders that portlet. If the <partial-refresh> element uses a false value,

the portal uses a full-page refresh when the portlet is refreshed.

<!ELEMENT session-config (distributed)>

The <session-config> element configures the portlet session for the portlet. The <distributed>

element instructs the container to distribute the session attributes using portal session replication.

This only applies to local portlets, not remote portlets.

The following is an example of the <session-config> and <distributed> elements:

Chapter 6. XML Descriptors

48

<session-config>

 <distributed>true</distributed>

</session-config>

<!ELEMENT distributed (#PCDATA)>

Accepted values are true and false. The default value is false.

<!ELEMENT transaction (trans-attribute)>

The <transaction> element defines how the portlet behaves with regards to the transactional

context. The <trans-attribute> element specifies the behavior of the portlet when it is invoked

at runtime, with respect to the transactional context. Depending on how the portlet is invoked, a

transaction may or may not exist before the portlet is invoked. The portal transaction is usually

present in the local context.

The following is an example of the <transaction> and <trans-attribute> elements:

<transaction>

 <trans-attribute>Required</transaction>

<transaction>

<!ELEMENT trans-attribute (#PCDATA)>

The default value is NotSupported, which means that the portal transaction is suspended for the

duration of the portlet's invocation. Accepted values are Required, Mandatory, Never, Supports,

NotSupported, and RequiresNew.

<!ELEMENT header-content (link|script|meta)*>

Specify the content to be included in the portal aggregated page when the portlet is present on

that page. This setting only applies when the portlet is used in the local mode.

The JBoss Portlet DTD

49

<!ELEMENT link EMPTY>

No content is allowed inside a link element.

<!ELEMENT script (#PCDATA)>

Use the <script> element for inline script definitions.

<!ELEMENT meta EMPTY>

No content is allowed for the <meta> element.

<!ELEMENT service (service-name,service-class,service-ref)>

Declare a service that will be injected by the portlet container as an attribute of the portlet context.

The following is an example of the <service> element:

<service>

 <service-name>UserModule</service-name>

 <service-class>org.jboss.portal.identity.UserModule</service-class>

 <service-ref>:service=Module,type=User</service-ref>

</service>

To use an injected service in a portlet, perform a lookup of the <service-name>, for example,

using the init() lifecycle method:

public void init()

{

 UserModule userModule = (UserModule)getPortletContext().getAttribute("UserModule");

Chapter 6. XML Descriptors

50

}

<!ELEMENT service-name (#PCDATA)>

The <service-name> element defines the name that binds the service as a portlet context

attribute.

<!ELEMENT service-class (#PCDATA)>

The <service-class> element defines the fully qualified name of the interface that the service

implements.

<!ELEMENT service-ref (#PCDATA)>

The <service-ref> element defines the reference to the service. In the JMX Microkernel

environment, this consist of the JMX name of the service MBean. For an MBean reference, if the

domain is left out, the current domain of the portal is used.

6.1.2. The JBoss Portlet Instance DTD

The following items refer to elements found in the JBoss Portlet

Instance DTD, $JBOSS_HOME/server/configuration/deploy/jboss-portal.sar/dtd/

portlet-instances_version_number.dtd:

<!ELEMENT deployments (deployment*)>

The <deployments> element is a container for <deployment> elements.

<!ELEMENT deployment (if-exists?,instance)>

The <deployment> element is a container for the <instance> element.

The JBoss Portlet Instance DTD

51

<!ELEMENT if-exists (#PCDATA)>

The <if-exists> element defines the action to take if an instance with the same name already

exists. Accepted values are overwrite and keep. The overwrite option destroys the existing

object, and creates a new one based on the content of the deployment. The keep option maintains

the existing object deployment, or creates a new one if it does not exist.

<!ELEMENT instance (instance-id,portlet-ref,display-name*,preferences?,

security-constraint?, (display-name* | (resource-bundle, supported-locale+)))>

The <instance> element is used in the WEB-INF/portlet-instances.xml file, which creates

instances of portlets. The portlet will only be created and configured if the portlet is present, and

if an instance with the same name does not already exist.

The following is an example of the <instance> element, which also contains the <security-

constraint> element. Descriptions of each element follow afterwards:

<instance>

 <instance-id>MyPortletInstance</instance-id>

 <portlet-ref>MyPortlet</portlet-ref>

 <preferences>

 <preference>

 <name>abc</name>

 <value>def</value>

 </preference>

 </preferences>

 <security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

 </security-constraint>

</instance>

<!ELEMENT instance-id (#PCDATA)>

Chapter 6. XML Descriptors

52

The instance identifier. The <instance-id> value can be named anything, but it must match the

<instance-ref>value given in the *-object.xml file.

<!ELEMENT portlet-ref (#PCDATA)>

The <portlet-ref> element defines the portlet that an instance represents. The <portlet-ref>

value must match the <portlet-name> given in the WEB-INF/portlet.xml file.

<!ELEMENT preferences (preference+)>

The <preferences> element configures an instance with a set of preferences.

<!ELEMENT preference (name,value)>

The <preference> element configures one preference, which is part of a set of preferences. Use

the <preferences> element to define a set of preferences.

<!ELEMENT name (#PCDATA)>

A name.

<!ELEMENT value (#PCDATA)>

A string value.

<!ELEMENT security-constraint (policy-permission*)>

The <security-constraint> element is a container for <policy-permission> elements. The

following is an example of the <security-constraint> and <policy-permission> elements:

The JBoss Portlet Instance DTD

53

<security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<!ELEMENT policy-permission (action-name*,unchecked?,role-name*)>

The <policy-permission> element secures a specific portlet instance based on a user's role.

<!ELEMENT action-name (#PCDATA)>

The <action-name> element defines the access rights given to the role defined. Accepted values

are:

• view: users can view the page.

• viewrecursive: users can view the page and child pages.

• personalize: users are able personalize the page's theme.

• personalizerecursive: users are able personalize the page and child pages themes.

<!ELEMENT unchecked EMPTY>

If present, the <unchecked> element defines anyone can view the instance.

Chapter 6. XML Descriptors

54

<!ELEMENT role-name (#PCDATA)>

The <role-name> element defines a role that the security constraint will apply to. The following

example only allows users that are part of the EXAMPLEROLE role to access the instance:

<role-name>EXAMPLEROLE</role-name>

6.1.3. The JBoss Portal Object DTD

The following items refer to elements found in the JBoss Portal

Object DTD, $JBOSS_HOME/server/configuration/deploy/jboss-portal.sar/dtd/portal-

object_version_number.dtd:

<!ELEMENT deployments (deployment*)>

The <deployments> element is a container for <deployment> elements.

<!ELEMENT deployment (parent-ref?,if-exists?,(context|portal|page|window))>

The <deployment> element is a generic container for portal object elements. The <parent-ref>

child element gives the name of the parent object that the current object will use as parent. The

optional <if-exists> element defines the action to take if an instance with the same name already

exists. The default behavior of the <if-exists> element is to keep the existing object, and not

to create a new object.

The following is an example of the <deployment> and <parent-ref> elements:

<deployment>

 <parent-ref>default</parent-ref>

 <page>

 ...

 </page>

</deployment>

All portal objects have a common configuration which can include:

The JBoss Portal Object DTD

55

• a listener: specifies the ID of a listener in the listener registry. A listener object is able to listen

to portal events, which apply to the portal node hierarchy.

• properties: a set of generic properties owned by the portal object. Certain properties drive the

behavior of the portal object.

• security-constraint: defines the security configuration for the portal object.

<!ELEMENT parent-ref (#PCDATA)>

The <parent-ref> element contains a reference to the parent object. The naming convention for

naming objects is to concatenate the names of the path to the object, and separate the names

using a period. If the path is empty, the empty string must be used. The <parent-ref> element

tells the portal where the portlet appears. The syntax for the <parent-ref> element is portal-

instance.portal-page.

The following is an example of the root having an empty path:

<parent-ref />

The following specifies that the portlet appears in the portal instance named default:

<parent-ref>default</parent-ref>

The following specifies that the portlet appear in the portal instance named default, and on the

page named default:

<parent-ref>default.default</parent-ref>

<!ELEMENT if-exists (#PCDATA)>

The <if-exists> element defines the action to take if an instance with the same name already

exists. Accepted values are overwrite and keep. The overwrite option destroys the existing

Chapter 6. XML Descriptors

56

object, and creates a new one based on the content of the deployment. The keep option matains

the existing object deployment, or creates a new one if it does not exist.

<!ELEMENT context (context-name,properties?,listener?,security-constraint?,portal*,

(display-name* | (resource-bundle, supported-locale+)))>

The context type of the portal object. A context type represent a node in a tree, which does not

have a visual representation, and only exists under the root. A context can only have children that

use the portal type.

<!ELEMENT context-name (#PCDATA)>

The context name.

<!ELEMENT portal (portal-name,supported-modes,supported-window-

states?,properties?,listener?,

security-constraint?,page*, (display-name* | (resource-bundle, supported-locale+)))>

A portal object that uses the portal type. A portal type represents a virtual portal, and can only

have children that use the page type. In addition to the common portal object elements, it also

allows you to declare modes and window states that are supported.

<!ELEMENT portal-name (#PCDATA)>

The portal name.

<!ELEMENT supported-modes (mode*)>

The <supported-modes> elements defines the supported modes of the portal. Accepted values

are view, edit, and help.

The following is an example of the <supported-mode> and <mode> elements:

The JBoss Portal Object DTD

57

<supported-mode>

 <mode>view</mode>

 <mode>edit</mode>

 <mode>help</mode>

</supported-mode>

<!ELEMENT mode (#PCDATA)>

The portlet mode value. If there are no declarations of modes or window states, the default values

are view, edit, help, and normal, minimized, maximized, respectively.

<!ELEMENT supported-window-states (window-state*)>

Use the <supported-window-states> element to define the supported window states of the

portal. The following is an example of the <supported-window-states> and <window-state>

elements:

<supported-window-states>

 <window-state>normal</window-state>

 <window-state>minimized</window-state>

 <window-state>maximized</window-state>

</supported-window-states>

<!ELEMENT window-state (#PCDATA)>

Use the <window-state> element to define a window states. Accepted values are normal,

minimized, and maximized.

<!ELEMENT page (page-name,properties?,listener?,security-constraint?,(page | window)*,

(display-name* | (resource-bundle, supported-locale+)))>

Chapter 6. XML Descriptors

58

A portal object that uses the page type. A page type represents a page, and can only have children

that use the page and window types. The children windows are the windows of the page, and the

children pages are the subpages of the page.

<!ELEMENT page-name (#PCDATA)>

The page name.

<!ELEMENT window (window-name,(instance-ref|content),region,height,initial-window-state?,

initial-mode?,properties?,listener?, (display-name* | (resource-bundle, supported-locale+)))>

A portal object that uses the window type. A window type represents a window. Besides the

common properties, a window has content, and belongs to a region on the page.

The <instance-ref> and <content> elements, configured in the WEB-INF/*-object.xml files,

define the content of a window. The <content> element is generic, and describes any kind of

content. The <instance-ref> element is a shortcut to define the content-type of the portlet, which

points to a portlet instance. The value of <instance-ref> must match the value of one of the

<instance-id> elements in the WEB-INF/portlet-instances.xml file.

<!ELEMENT window-name (#PCDATA)>

The window name value.

<!ELEMENT instance-ref (#PCDATA)>

Define the content of the window as a reference to a portlet instance. This value is the ID of a

portlet instance, and must much the value of one of the <instance-id> elements in the WEB-INF/

portlet-instances.xml file. The following is an example of the <instance-ref> element:

<instance-ref>MyPortletInstance</instance-ref>

The JBoss Portal Object DTD

59

<!ELEMENT region (#PCDATA)>

The region the window belongs to. The <region> element specifies where the window appears

on the page.

<!ELEMENT height (#PCDATA)>

The height of the window in a particular region.

<!ELEMENT listener (#PCDATA)>

Define a listener for a portal object. This value is the ID of the listener.

<!ELEMENT content (content-type,content-uri)>

Define the content of a window in a generic manner. The content is defined by the type of content,

and a URI, which acts as an identifier for the content. The following is an example of the <content>

element, which is configured in the WEB-INF/*-object.xml files:

<content>

 <content-type>portlet</content-type>

 <content-uri>MyPortletInstance</content-uri>

</content>

<content>

 <content-type>cms</content-type>

 <content-uri>/default/index.html</content-uri>

</content>

<!ELEMENT content-type (#PCDATA)>

Chapter 6. XML Descriptors

60

The content type of the window. The <content-type> element specifies the content to display,

for example, a portlet.

<!ELEMENT content-uri (#PCDATA)>

The content URI of the window. The <content-uri> element specifies which content to display,

for example, a portlet instance. To display a file from the CMS, use the <content-uri> element

to define the full path to that file in the CMS.

<!ELEMENT properties (property*)>

A set of generic properties for the portal object. The <properties> elements contain definitions

specific to a portal object.

<!ELEMENT property (name,value)>

A generic string property. The following table lists accepted values. This table is not exhaustive:

Table 6.1. Properties

Name Description

layout.id Defines the layout to use for the portal object

and sub-objects if they do not override the

value.

theme.id Defines the theme used for the portal object

and sub-objects if they do not override the

value.

portal.defaultObjectName Defines the default child object. If applied

to a context, it defines the default portal.

If applied to a portal, it defines the default

portal page.

<!ELEMENT name (#PCDATA)>

A name value.

The JBoss Portal Object DTD

61

<!ELEMENT value (#PCDATA)>

A value.

<!ELEMENT security-constraint (policy-permission*)>

The <security-constraint> element is a container for <policy-permission> elements. The

following is an example of the <security-constraint> and <policy-permission> elements:

<security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<!ELEMENT policy-permission (action-name*,unchecked?,role-name*)>

The <policy-permission> element is secures a specific portlet instance based on a user's role.

<!ELEMENT action-name (#PCDATA)>

The <action-name> element defines the access rights given to the role defined. Accepted values

are:

• view: users can view the page.

Chapter 6. XML Descriptors

62

• viewrecursive: users can view the page and child pages.

• personalize: users are able personalize the page's theme.

• personalizerecursive: users are able personalize the page and child pages themes.

<!ELEMENT unchecked EMPTY>

If present, the <unchecked> element defines that anyone can view the instance.

<!ELEMENT role-name (#PCDATA)>

The <role-name> element defines a role that the security constraint applies to. The following

example only allows users that are part of the EXAMPLEROLE role to access the instance:

<role-name>EXAMPLEROLE</role-name>

6.1.4. The JBoss Portal App DTD

The following items refer to elements found in the JBoss Portal App DTD, $JBOSS_HOME/server/

configuration/jboss-portal.sar/dtd/jboss-app_version_number.dtd:

<Element <![CDATA[<!ELEMENT jboss-app (app-name?)>

<!DOCTYPE jboss-app PUBLIC

 "-//JBoss Portal//DTD JBoss Web Application 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-app_2_6.dtd">

<!ELEMENT app-name (#PCDATA)>

Portlet Descriptors

63

When a web application is deployed, the context path under which it is deployed is taken as

the application name. The application name value in the <app-name> element overrides it. When

a component references a portlet, it needs to reference the application too, and if the portlet

application WAR file is renamed, the reference is no longer valid; therefore, the <app-name>

element is used to have an application name that does not depend upon the context path, under

which the application is deployed.

6.2. Portlet Descriptors

The following sections describe the descriptors that define portal objects, such as portals,

pages, portlet instances, windows, and portlets. Refer to Section 5.2, “Tutorials” and Section 6.4,

“Descriptor Examples” for examples on using these descriptors within a portlet application.

6.2.1. *-object.xml Descriptors

The *-object.xml descriptors define portal instances, pages, windows, and the window layout.

As well, themes and layouts for specific portal instances, pages, and windows, can be defined.

The following example defines a portlet window being added to the default page, in the default

portal. For advanced functionality using these descriptors, refer to Section 6.4, “Descriptor

Examples”:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <parent-ref>default.default</parent-ref>

 <if-exists>overwrite</if-exists>

 <window>

 <window-name>HelloWorldJSPPortletWindow</window-name>

 <instance-ref>HelloWorldJSPPortletInstance</instance-ref>

 <region>center</region>

 <height>1</height>

 </window>

 </deployment>

</deployments>

•
<deployments>...</deployments>

Chapter 6. XML Descriptors

64

The <deployments> element encapsulates the entire document, and is a container for

<deployment> elements. Multiple deployments can be specified within the <deployments>

element.

•
<deployment>...</deployment>

The <deployment> element specifies object deployments, such as portals, pages, windows,

and so on.

•
<if-exists>...</if-exists>

The <if-exists> element defines the action to take if an instance with the same name already

exists. Accepted values are overwrite and keep. The overwrite option destroys the existing

object, and creates a new one based on the content of the deployment. The keep option

maintains the existing object deployment, or creates a new one if it does not exist.

•
<parent-ref>...</parent-ref>

The <parent-ref> element contains a reference to the parent object. The naming convention

for naming objects is to concatenate the names of the path to the object, and separate the

names using a period. If the path is empty, the empty string must be used. The <parent-ref>

element tells the portal where the portlet appears. The syntax for the <parent-ref> element

is portal-instance.portal-page.

In the example above, a window is defined, and assigned to default.default. This means

the window appears on the default page, in the default portal.

•
<window>...</window>

The <window> element defines a portlet window. The <window> element requires an

<instance-ref> element, which assigns a portal instance to a window.

•
<window-name>...</window-name>

The <window-name> element defines the unique name given to a portlet window. This can be

named anything.

*-object.xml Descriptors

65

•
<instance-ref>...</instance-ref>

The <instance-ref> elements define the portlet instances that windows represent. This value

is the ID of a portlet instance, and must match the value of one of the <instance-id> elements

in the WEB-INF/portlet-instances.xml file.

•

<region>...</region>

<height>...</height>

The <region> and <height> elements define where the window appears within the page

layout. The <region> element specifies where the window appears on the page. The <region>

element often depends on other regions defined in the portal layout. The <height> element can

be assigned a value between one and X.

The previous *-object.xml example makes reference to items found in other descriptor

files. The following diagram illustrates the relationship between the portlet.xml, portlet-

instances.xml, and *-object.xml descriptors:

Are *-object.xml descriptors required?

Technically, they are not. The portal object hierarchy, such as creating portals,

pages, instances, and organizing them on the page, can be defined using the

management portlet, which is accessible to JBoss Portal administrators.

Chapter 6. XML Descriptors

66

6.2.2. The portlet-instances.xml Descriptor

The portlet-instances.xml descriptor is JBoss Portal specific, and allows developers to

instantiate one-or-many instances of one-or-many portlets. The benefit of this allows one

portlet to be instantiated several times, with different preference parameters. The following

example instantiates two separate instances of the NewsPortlet, both using different parameters.

One instance draws feeds from Red Hat announcements, and the other from McDonalds

announcements:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portlet Instances 2.6//EN"

 "http://www.jboss.org/portal/dtd/portlet-instances_2_6.dtd">

<deployments>

 <deployment>

 <instance>

 <instance-id>NewsPortletInstance1</instance-id>

 <portlet-ref>NewsPortlet</portlet-ref>

 <preferences>

 <preference>

 <name>expires</name>

 <value>180</value>

 </preference>

 <preference>

 <name>RssXml</name>

 <value>http://finance.yahoo.com/rss/headline?s=rhat</value>

 </preference>

 </preferences>

 <security-constraint>

 <policy-permission>

 <action-name>view</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 </instance>

 </deployment>

 <deployment>

 <instance>

 <instance-id>NewsPortletInstance2</instance-id>

 <portlet-ref>NewsPortlet</portlet-ref>

 <preferences>

 <preference>

 <name>expires</name>

The portlet-instances.xml Descriptor

67

 <value>180</value>

 </preference>

 <preference>

 <name>RssXml</name>

 <value>http://finance.yahoo.com/rss/headline?s=mcd</value>

 </preference>

 </preferences>

 <security-constraint>

 <policy-permission>

 <action-name>view</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 </instance>

 </deployment>

</deployments>

•
<deployments>...</deployments>

The <deployments> element encapsulates the entire document, and is a container for

<deployment> elements. Multiple deployments can be specified within the <deployments>

element.

•

<deployment>

 <instance>...</instance>

</deployment>

The <deployment> element, and the embedded <instance> element, specify a portlet

instance. The <deployment> element specifies object deployments, such as portals, pages,

windows, and so on. The <instance> element creates instances of portlets. The portlet will

only be created and configured if the portlet is present, and if an instance with the same name

does not already exist.

•
<instance-id>...</instance-id>

The <instance-id> elements defines a unique name given to an instance of a portlet. The

<instance-id> value can be named anything, but it must match the value of one of the

<instance-ref> elements in the WEB-INF/*-object.xml file.

Chapter 6. XML Descriptors

68

•
<portlet-ref>...</portlet-ref>

The <portlet-ref> element defines the portlet that an instance represents. The <portlet-

ref> value must match the <portlet-name> given in the WEB-INF/portlet.xml file.

•

<preferences>

 <preference>...</preference>

</preferences>

The <preference> element configures a preference as a key-value pair. This value can be

composed of a single string value, for example, the preference fruit can have the apple value.

As well, this value can be composed of multiple strings, for example, the preference fruits can

have values of apple, orange, and kiwi:

<preferences>

 <preference>

 <name>fruits</name>

 <value>apple</value>

 <value>orange</value>

 <value>kiwi</value>

 </preference>

</preferences>

The <preference> element configures one preference, which is part of a set of preferences.

Use the <preferences> element to define a set of preferences.

•
<security-constraint>

 <policy-permission>

 <action-name>viewrecursive</action-name>

 <unchecked/>

 </policy-permission>

</security-constraint>

The <security-constraint> element is a container for <policy-permission> elements. This

example demonstrates the <security-constraint> and <policy-permission> elements.

The <action-name> element defines the access rights given to the role defined. Accepted

values are:

The jboss-portlet.xml Descriptor

69

• view: users can view the page.

• viewrecursive: users can view the page and child pages.

• personalize: users are able personalize the page's theme.

• personalizerecursive: users are able personalize the page and child pages themes.

You must define a role that the security constraint will apply to:

• unchecked: anyone can view the page.

• <role-name>EXAMPLEROLE</role-name>: only allow users that are part of the EXAMPLEROLE

role to access the instance.

The previous portlet-instances.xml example makes reference to items found in other

descriptor files. The following diagram illustrates the relationship between the portlet.xml,

portlet-instances.xml, and *-object.xml descriptors:

Is the portlet-instances.xml descriptor required?

Technically, it is not. The portal object hierarchy, such as creating portals, pages,

instances, and organizing them on the page, can be defined using the management

portlet, which is accessible to JBoss Portal administrators.

6.2.3. The jboss-portlet.xml Descriptor

The jboss-portlet.xml descriptor allows you to use JBoss-specific functionality within your

portlet application. This descriptor is covered by the JSR-168 Portlet Specification [http:/

/www.jcp.org/en/jsr/detail?id=168], and is normally packaged inside your portlet WAR file,

alongside the other descriptors in these sections.

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168

Chapter 6. XML Descriptors

70

6.2.3.1. Injecting Header Content

The following example injects a specific style sheet, /images/management/management.css,

allowing the portlet to leverage a specific style:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <portlet>

 <portlet-name>ManagementPortlet</portlet-name>

 <header-content>

 <link rel="stylesheet" type="text/css" href="/images/management/management.css"

 media="screen"/>

 </header-content>

 </portlet>

</portlet-app>

Use the <header-content> and <link> elements to specify a style sheet.

6.2.3.2. Injecting Services in the portlet Context

The following example injects the UserModule service as an attribute to the portlet context:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <service>

 <service-name>UserModule</service-name>

 <service-class>org.jboss.portal.identity.UserModule</service-class>

 <service-ref>:service=Module,type=User</service-ref>

 </service>

</portlet-app>

This allows the portlet to leverage the service, for example:

The jboss-portlet.xml Descriptor

71

UserModule userModule = (UserModule) getPortletContext().getAttribute("UserModule");

String userId = request.getParameters().getParameter("userid");

User user = userModule.findUserById(userId);

6.2.3.3. Defining extra portlet Information

As of JBoss Portal 2.6.3, icons can be defined for a portlet by using the <icon>, <small-icon>,

and <large-icon> elements:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <portlet>

 <portlet-name>ManagementPortlet</portlet-name>

 <portlet-info>

 <icon>

 <small-icon>/images/smallIcon.png</small-icon>

 <large-icon>/images/largeIcon.png</small-icon>

 </icon>

 </portlet-info>

 </portlet>

</portlet-app>

References to icons can be absolute, for example, http://www.example.com/images/

smallIcon.png, or relative to the web application context, for example, /images/smallIcon.png.

Icons can be used by different parts of the portlet user interface.

6.2.3.4. Portlet Session Replication in a Clustered Environment

For information about portlet session replication in clustered environments, refer to Section 14.5,

“Portlet Session Replication”.

Is the jboss-portlet.xml descriptor required?

Technically, it is not; however, it may be required to access JBoss-specific

functionality that is not covered by the Portlet specification.

Chapter 6. XML Descriptors

72

6.2.4. The portlet.xml Descriptor

The portlet.xml descriptor is the standard portlet descriptor covered by the JSR-168 Portlet

Specification [http://www.jcp.org/en/jsr/detail?id=168]. Developers are strongly encouraged to

read the JSR-168 Portlet Specification [http://www.jcp.org/en/jsr/detail?id=168] items covering

the correct use of this descriptor, as it is only covered briefly in these sections. Normally the

portlet.xml descriptor is packaged inside your portlet WAR file, alongside the other descriptors

in these sections. The following example is a modified version of the JBoss Portal UserPortlet

definition:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app

 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

 version="1.0">

 <portlet>

 <description>Portlet providing user login/logout and profile management</description>

 <portlet-name>UserPortlet</portlet-name>

 <display-name>User Portlet</display-name>

 <portlet-class>org.jboss.portal.core.portlet.user.UserPortlet</portlet-class>

 <init-param>

 <description>Initialize the portlet with a default page to render</description>

 <name>>default-view</name>

 <value>/WEB-INF/jsf/objects.xhtml</value>

 </init-param>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 </supports>

 <supported-locale>en</supported-locale>

 <supported-locale>fr</supported-locale>

 <supported-locale>es</supported-locale>

 <resource-bundle>Resource</resource-bundle>

 <portlet-info>

 <title>User portlet</title>

 </portlet-info>

 </portlet>

</portlet-app>

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168

The portlet.xml Descriptor

73

•
<portlet-app>...</portlet-app>

The <portlet-app> element encapsulates the entire document. Multiple portlets can be

specified using the <portlet-app> element.

•
<portlet>...</portlet>

The <portlet> element defines one portlet that is deployed within this archive.

•
<description>...</description>

The <description> element is a verbal description of the portlet's function.

•
<portlet-name>...</portlet-name>

The <portlet-name> element defines the portlet name. It does not have to be the class name.

•
<portlet-class>...</portlet-class>

The <portlet-class> element defines the Fully Qualified Name (FQN) of the portlet class.

•

<init-param>

 <name>...</name>

 <value>...</value>

</init-param>

The <init-param> element specifies initialization parameters to create an initial state inside

your portlet class. This is usually used in the portlet's init() method, but not necessarily. Unlike

a preference, an init-parameter is data that does not change at runtime and does not go into

a database. If the value is changed in the descriptor, the change takes immediate effect after

re-deploying the portlet. Multiple <init-param> elements can be used.

•
<supports>...</supports>

Chapter 6. XML Descriptors

74

The <supports> element declares all of the markup types that a portlet supports. Use the

<mime-type> element to declare supported capabilities, for example, if the only outputs are text

and HTML, use <mime-type>text/html</mime-type>. Use the <portlet-mode> element to

define the supported portlet modes for the portlet. For example, all portlets must support the

view portlet mode, which is defined using <portlet-mode>view</portlet-mode>.

•
<supported-locale>...</supported-locale>

The <supported-locale> elements advertise the supported locales for the portlet. Use multiple

<supported-locale> elements to specify multiple locales.

•
<resource-bundle>...</resource-bundle>

The <resource-bundle> element specifies the resource bundle that contains the localized

information for the specified locales.

•

<portlet-info>

 <title>...</title>

</portlet-info>

The <title> element defines the portlet's title, which is displayed in the portlet window's title

bar.

The portlet.xml Example

This portlet.xml example is not a replacement for what is covered in the JSR-168

Portlet Specification [http://www.jcp.org/en/jsr/detail?id=168].

6.3. JBoss Portal Descriptors

This section describes Datasource descriptors, which are required for JBoss Portal to

communicate with a database, and briefly covers the jboss-portal.sar/conf/config.xml

descriptor, which can be used for configuring logging, and configuring which page a user goes

to when they log in.

6.3.1. Datasource Descriptors (portal-*-ds.xml)

JBoss Portal requires a Datasource descriptor to be deployed alongside the jboss-

portal.sar, in order to communicate with a database. This section explains where to

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168

Datasource Descriptors (portal-*-ds.xml)

75

obtain template Datasource descriptors, how to compile them from source, and how to

configure them for your installation. For an in-depth introduction to datasources, refer to the

JBoss AS documentation online on the JBoss Datasource Wiki page [http://wiki.jboss.org/wiki/

Wiki.jsp?page=ConfigDataSources].

6.3.1.1. Datasource Descriptors included in Binary releases

Several template Datasource descriptors are included in the binary and bundled distributions of

JBoss Portal. They are commonly located in the jboss-portal-version/setup/ directory:

The jboss-portal-version/setup/ directory contains sample Datasource descriptors for the

MySQL, Microsoft SQL Server, PostgreSQL, and Oracle databases, which can be customized for

your own database:

6.3.1.2. Building Datasource Descriptors from Source

To build the Datasource descriptors from source:

1. Obtain the JBoss Portal source code: Section 2.3, “Installing from the Sources”.

2. Configure the JBOSS_HOME environment variable: Section 2.3.2.2, “Operating System

Environment Settings”.

3. Change into the JBOSS_PORTAL_SOURCE_DIRECTORY/build/ directory. To build the JBoss

Portal source code on Linux, run the sh build.sh deploy command, or, if you are running

Windows, run the build.bat deploy command. If this is the first build, third-party libraries are

obtained from an online repository, so you must be connected to the Internet. After building,

if the JBOSS_PORTAL_SOURCE_DIRECTORY/thirdparty/ directory does not exist, it is created,

http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigDataSources
http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigDataSources
http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigDataSources

Chapter 6. XML Descriptors

76

and populated with the files required for later steps. For further details, refer to Section 2.3.3,

“Building and Deploying from the Sources”.

4. Change into the JBOSS_PORTAL_SOURCE_DIRECTORY/core/ directory, and run the sh build.sh

datasource command, or, if you are running Windows, run the build.bat datasource

command:

Note: if the JBoss Portal source was not built as per step 3, the sh build.sh datasource and

build.bat datasource commands fail with an error, such as the following:

BUILD FAILED

java.io.FileNotFoundException: /jboss-portal-2.6.3.GA-src/core/../thirdparty/libraries.ent

(No such file or directory)

The datasource build process produces the following directory and file structure, with the

Datasource descriptors in the JBOSS_PORTAL_SOURCE_DIRECTORY/core/output/resources/

setup directory:

Datasource Descriptors (portal-*-ds.xml)

77

The following is an example Datasource descriptor for a PostgreSQL database:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>PortalDS</jndi-name>

 <connection-url>jdbc:postgresql:jbossportal</connection-url>

 <driver-class>org.postgresql.Driver</driver-class>

 <user-name>portal</user-name>

 <password>portalpassword</password>

Chapter 6. XML Descriptors

78

 </local-tx-datasource>

</datasources>

Make sure the user-name, password, connection-url, and driver-class, are correct for your

chosen database.

6.3.2. Portlet Debugging (jboss-portal.sar/conf/config.xml)

By default, JBoss Portal is configured to display all errors. This behavior can be configured by

modifying the jboss-portal.sar/conf/config.xml file:

<!-- When a window has restrictedaccess : show or hide values are permitted -->

<entry key="core.render.window_access_denied">show</entry>

<!-- When a window is unavailable : show or hide values are permitted -->

<entry key="core.render.window_unavailable">show</entry>

<!-- When a window produces an error : show, hide or message_only values are permitted -->

<entry key="core.render.window_error">message_only</entry>

<!-- When a window produces an internal error : show, hide are permitted -->

<entry key="core.render.window_internal_error">show</entry>

<!-- When a window is not found : show or hide values are permitted -->

<entry key="core.render.window_not_found">show</entry>

For these parameters, accepted values are show and hide. Depending on the setting, and the

actual error, either an error message is displayed, or a full stack trace within the portlet window

occurs. Additionally, the core.render.window_error property supports the message_only value.

The message_only value will only display an error message, whereas the show value will, if

available, display the full stack trace.

6.3.3. Log in to Dashboard

By default, when a user logs in they are forwarded to the default page of the default portal. In

order to forward a user to their Dashboard, set the core.login.namespace value to dashboard

in the jboss-portal.sar/conf/config.xml file:

<!-- Namespace to use when logging-in, use "dashboard" to directly

log-in the dashboard otherwise use "default" -->

<entry key="core.login.namespace">dashboard</entry>

Descriptor Examples

79

6.4. Descriptor Examples

6.4.1. Defining a new Portal Page

The sample application descriptor in this section creates a new page, MyPage,

in a portal. To illustrate this example, download the HelloWorldPortalPage [http://

anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip] portlet. To

use the HelloWorldPortalPage portlet:

1. Download the HelloWorldPortalPage [http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/

bundles/HelloWorldPortalPage.zip] portlet.

2. Unzip the HelloWorldPortalPage ZIP file.

3. To expand the WAR file, which gives you access to the XML descriptors, change into the

HelloWorldPortalPage/ directory, and run the ant explode command.

4. If you did not expand the helloworldportalpage.war file, copy the

helloworldportalpage.war file into the correct JBoss AS or JBoss EAP deploy/ directory.

If you expanded the helloworldportalpage.war file, copy the HelloWorldPortalPage/

output/lib/exploded/helloworldportalpage.war/ directory into the correct JBoss AS or

JBoss EAP deploy/ directory. For example, if you are using the default JBoss AS profile,

copy the WAR file or the expanded directory into the $JBOSS_HOME/server/default/deploy/

directory.

The HelloWorldPortalPage portlet is hot-deployable, so the JBoss EAP or JBoss AS server does

not have to be restarted after deploying the HelloWorldPortalPage portlet. The following is an

example of the HelloWorldPortalPage/WEB-INF/helloworld-object.xml descriptor:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <if-exists>overwrite</if-exists>

 <parent-ref>default</parent-ref>

 <properties/>

 <page>

 <page-name>MyPage</page-name>

 <window>

 <window-name>HelloWorldPortletPageWindow</window-name>

 <instance-ref>HelloWorldPortletPageInstance</instance-ref>

http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortalPage.zip

Chapter 6. XML Descriptors

80

 <region>center</region>

 <height>0</height>

 </window>

 <security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>viewrecursive</action-name>

 </policy-permission>

 </security-constraint>

 </page>

 </deployment>

</deployments>

A depoloyment is composed of a <deployments> element, which is a container for <deployment>

elements. In the previous example, a page is defined, the portlet is placed as a window on a page,

and an instance of the portlet is created. The Mangement portlet (bundled with JBoss Portal) can

modify portal instances, page position, and so on.

The following list describes elements in a *-object.xml file:

•

<if-exists>

The <if-exists> element defines the action to take if an instance with the same name already

exists. Accepted values are overwrite and keep. The overwrite option destroys the existing

object, and creates a new one based on the content of the deployment. The keep option matains

the existing object deployment, or creates a new one if it does not exist.

•

<parent-ref>

The <parent-ref> element contains a reference to the parent object. The naming convention

for naming objects is to concatenate the names of the path to the object, and separate the

names using a period. If the path is empty, the empty string must be used. The <parent-ref>

element tells the portal where the portlet appears. The syntax for the <parent-ref> element

is portal-instance.portal-page.

•

<properties>

Defining a new Portal Page

81

A set of generic properties for the portal object. The <properties> elements contains definitions

specific to a page. This is commonly used to define the specific theme and layout to use. If not

defined, the default portal theme and layout are used.

•

<page>

The start of a page definition. Among others, the <page> element is a container for the <page-

name>, <window>, and <security-constraint> elements.

•

<page-name>

The page name.

•

<window>

The <window> element defines a portlet window. The <window> element requires an

<instance-ref> element, which assigns a portal instance to a window.

•

<window-name>

The <window-name> element defines the unique name given to a portlet window. This can be

named anything.

•

<instance-ref>

The <instance-ref> elements define the portlet instances that windows represent. This value

is the ID of a portlet instance, and must match the value of one of the <instance-id> elements

in the WEB-INF/portlet-instances.xml file.

•

<region>...</region>

<height>...</height>

Chapter 6. XML Descriptors

82

The <region> and <height> elements define where the window appears within the page

layout. The <region> element specifies where the window appears on the page. The <region>

element often depends on other regions defined in the portal layout. The <height> element can

be assigned a value between one and X.

•

<instance>

The <instance> element creates instances of portlets. The portlet will only be created and

configured if the portlet is present, and if an instance with the same name does not already exist.

•

<instance-name>

The <instance-name> element maps to the <instance-ref> element.

•

<component-ref>

The <component-ref> element takes the name of the application, followed by the name of the

portlet, as defined in the WEB-INF/portlet.xml file.

The <security-constraint> element is a container for <policy-permission> elements. The

following is an example of the <security-constraint> and <policy-permission> elements:

<security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

Defining a new Portal Instance

83

<action-name>

The <action-name> element defines the access rights given to the role defined. Accepted values

are:

• view: users can view the page.

• viewrecursive: users can view the page and child pages.

• personalize: users are able personalize the page's theme.

• personalizerecursive: users are able personalize the page and child pages themes.

<unchecked/>

If present, the <unchecked> element defines that anyone can view the instance.

<role-name>

The <role-name> element defines a role that the security constraint will apply to. The following

example only allows users that are part of the EXAMPLEROLE role to access the instance:

<role-name>EXAMPLEROLE</role-name>

6.4.2. Defining a new Portal Instance

The sample application descriptor in this section creates a new portal instance, HelloPortal,

that contains two pages. To illustrate this example, download the HelloWorldPortal [http://

anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip] portlet. To use

the HelloWorldPortal portlet:

1. Download the HelloWorldPortal [http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/

bundles/HelloWorldPortal.zip] portlet.

2. Unzip the HelloWorldPortal ZIP file.

3. To expand the WAR file, which gives you access to the XML descriptors, change into the

HelloWorldPortal/ directory, and run the ant explode command.

http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip
http://anonsvn.jboss.org/repos/portletswap/portlets/2_4/bundles/HelloWorldPortal.zip

Chapter 6. XML Descriptors

84

4. If you did not expand the helloworldportal.war file, copy the helloworldportal.war

file into the correct JBoss AS or JBoss EAP deploy/ directory. If you expanded

the helloworldportal.war file, copy the HelloWorldPortal/output/lib/exploded/

helloworldportal.war/ directory into the correct JBoss AS or JBoss EAP deploy/ directory.

For example, if you are using the default JBoss AS profile, copy the WAR file or the expanded

directory into the $JBOSS_HOME/server/default/deploy/ directory.

The HelloWorldPortal portlet is hot-deployable, so the JBoss EAP or JBoss AS server does not

have to be restarted after deploying the HelloWorldPortal portlet. The following is an example of

the HelloWorldPortal/WEB-INF/helloworld-object.xml descriptor:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <parent-ref/>

 <if-exists>overwrite</if-exists>

 <portal>

 <portal-name>HelloPortal</portal-name>

 <supported-modes>

 <mode>view</mode>

 <mode>edit</mode>

 <mode>help</mode>

 </supported-modes>

 <supported-window-states>

 <window-state>normal</window-state>

 <window-state>minimized</window-state>

 <window-state>maximized</window-state>

 </supported-window-states>

 <properties>

 <!-- Set the layout for the default portal -->

 <!-- see also portal-layouts.xml -->

 <property>

 <name>layout.id</name>

 <value>generic</value>

 </property>

 <!-- Set the theme for the default portal -->

 <!-- see also portal-themes.xml -->

 <property>

 <name>theme.id</name>

 <value>renaissance</value>

Defining a new Portal Instance

85

 </property>

 <!-- set the default render set name (used by the render tag in layouts) -->

 <!-- see also portal-renderSet.xml -->

 <property>

 <name>theme.renderSetId</name>

 <value>divRenderer</value>

 </property>

 </properties>

 <security-constraint>

 <policy-permission>

 <action-name>personalizerecursive</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 <page>

 <page-name>default</page-name>

 <security-constraint>

 <policy-permission>

 <action-name>viewrecursive</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 <window>

 <window-name>MyPortletWindow</window-name>

 <instance-ref>MyPortletInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 </window>

 </page>

 </portal>

 </deployment>

 <deployment>

 <parent-ref>HelloPortal</parent-ref>

 <if-exists>overwrite</if-exists>

 <page>

 <page-name>foobar</page-name>

 <security-constraint>

 <policy-permission>

 <action-name>viewrecursive</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 <window>

 <window-name>MyPortletWindow</window-name>

Chapter 6. XML Descriptors

86

 <instance-ref>MyPortletInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 </window>

 </page>

 </deployment>

</deployments>

When deployed, this example registers a new portal instance, HelloPortal, that contains two

pages. To view the default page in the HelloPortal instance, navigate to http://localhost:8080/

portal/portal/HelloPortal, and for the second page, http://localhost:8080/portal/portal/HelloPortal/

foobar.

Portal Instance default Page

For a portal instance to be accessible via a Web browser, you must define a default

page.

http://localhost:8080/portal/portal/HelloPortal
http://localhost:8080/portal/portal/HelloPortal
http://localhost:8080/portal/portal/HelloPortal/foobar
http://localhost:8080/portal/portal/HelloPortal/foobar

Chapter 7.

87

Portal URLs
Julien Viet

Thomas Heute

Roy Russo

7.1. Introduction to Portals

Portal URLs are often very complicated; however, it is possible to setup entry points in portals

that follow simple patterns.

Each portal container can contain multiple portals. Within a given portal, windows are organized

into pages, with a page being a collection of windows associated to a name:

Before reading the following sections, be familiar with how to define pages and portal. Refer to

Section 6.4.1, “Defining a new Portal Page” for details.

Chapter 7. Portal URLs

88

7.2. Accessing a Portal

The default portal is used when no portal is specified. How selection is done:

• /portal/ points to the default page of the default portal.

• /portal/portal-name/ points to the default page of the portal-name portal.

Note
The default page or portal can be specified either by using the admin portlet or by

using the XML descriptors as explained in the XML descriptor chapter.

7.3. Accessing a Page

Each portal can have multiple pages, with each portal having a default page. When a portal is

selected, a page must be used, and all windows in that page are rendered. The page selection

mechanism is as follows:

/portal/default/page-name renders the page-name page.

7.4. Accessing CMS Content

The CMSPortlet delivers content transparently, without modifying the displayed URL. It is

desirable to display binary content, such as GIF, JPEG, PDF, ZIP, and so on, outside of the

confines of the portal. For example, /content/default/images/jboss_logo.gif displays the

jboss_logo.gif file outside of the portal.

To display content outside of the portal, the portal interprets any path beginning with /content

as a request for CMS content. As long as the <mime-type> is not text/html, or text/text, and

the path to the content begins with /content, the content is rendered independently, outside of

the portal.

Chapter 8.

89

JBoss Portal support for Portlet 2.0

coordination features
Boleslaw Dawidowicz

Chris Laprun

8.1. Introduction

While the Portlet 2.0 specification provides for more advanced coordination between portlets than

the 1.0 version of the specification, it is left up to specific implementations how portlets are wired

together. This chapter will look into how the coordination features are implemented in JBoss Portal.

If you are interested in these features, we strongly encourage you to read the Portlet 2.0 (JSR-286)

specification as we will assume in this chapter that you are familiar with the different coordination

concepts.

8.1.1. Explicit vs. implicit coordination

Most JSR-286 specification implementations support the coordination features using what is called

an implicit coordination model. This model is called implicit because the relations between the

different interacting portlets are inferred based on the event or parameter names that are used

to pass information between the portlets. This follows the well-known principle of convention over

configuration and provides a good default behavior as it doesn't require explicit user action to wire

portlets.

However, such an implicit model of how portlets are wired together fails to handle more complex

cases. In particular, it is often the case that semantically related events or public parameters are

named differently by different portlet providers. As it is not always possible to modify the portlets

to adjust for this minor naming difference of otherwise semantically compatible portlets, JBoss

Portal introduces an explicit coordination model that takes precedence over the implicit model

when so required.

Consider, for example, the following case: we have 3 windows (A, B and C) on a given page. Each

window is associated to a given portlet (Portlet A, Portlet B and Portlet C, respectively).

Portlet A can produce the Event A event, while Portlet B and Portlet C can consume Event

B and Event C, respectively. Assuming that these events are semantically equivalent, we would

like to wire these portlets via their events such that when Portlet A emits an Event A, it gets

converted to the appropriate event and transmitted to both Portlet B and Portlet C so that their

respective windows can be appropriately updated. This scenario, as depicted below, is impossible

using implicit wiring of events:

Chapter 8. JBoss Portal suppo...

90

Example 8.1.

We look at how to bypass the default implicit model using JBoss Portal's explicit model in the rest

of this chapter. It is, however, interesting to note that JBoss Portal can function with both models

at the same time. More precisely, it is possible to use the implicit handling of coordination while

still specifying explicit wirings, as we will see later.

8.2. General configuration considerations

As most other features of JBoss Portal, the coordination functionality can be configured either

declaratively using the now familiar *-object.xml descriptors (see Chapter 6, XML Descriptors

for a refresher on these descriptors) or, at runtime, using the administration configuration GUI.

We detail, below, both configuration options for each type of coordination entities.

Overview of the configuration interface

91

Note
Explicit coordination is currently scoped only at the page level. More specificially,

explicit coordination between portlets is only supported between portlets located

on the same page.

8.2.1. Overview of the configuration interface

Launching JBoss Portal's administration interface, you will notice a few changes. In particular, a

new option is available on page configuration screens: the ability to configure coordination using

the Coordination action:

Figure 8.1.

Clicking on that link will bring you to the coordination configuration for that particular page.

The interface is organized in three sections, each of which is collapsible by clicking on the

section header. These sections detail the configuration for each coordination element that can be

controlled by JBoss Portal:

• Alias bindings

• Parameter bindings

• Event wirings

We will look at the specific configuration and what each of these concepts mean later. Here is how

the interface looks like for a page, with both the alias and parameter bindings section collapsed:

Chapter 8. JBoss Portal suppo...

92

Figure 8.2.

8.3. Alias Bindings

8.3.1. Definition

Alias bindings are a JBoss Portal specific feature which allows users to define an alias to a public

render parameter that can be used in URLs to pass a value to all portlet windows reacting to

the aliased public parameter(s). The syntax for the URL is as follows: {portal URL}/{page

name}?{alias name}={alias value}.

It is, for example, possible to alias public render parameters paramA and paramC to the "alias"

name so that JBoss Portal's event bus can transmit that value to interested portlets on a given

page when the requested page URL contains a value for the appropriate URL parameter:

Configuration via XML

93

Example 8.2.

8.3.2. Configuration via XML

Explicit alias bindings can be defined in any page definition of your *-object.xml descriptors.

For example, this is how the example that we detailed above would be implemented, within a

page definition:

...

<coordination>

 <bindings>

 <implicit-mode>FALSE</implicit-mode>

 <alias-binding>

 <id>alias</id>

 <qname>paramA</qname>

 <qname>paramC</qname>

 </alias-binding>

 </bindings>

Chapter 8. JBoss Portal suppo...

94

</coordination>

Coordination configuration is done via the newly introduced <coordination> element.

Alias bindings are defined using the <bindings> element. Note that this element is also

where parameter bindings are defined.

We specify here that we want JBoss Portal to send parameter values when an explicit

bindings are defined (<implicit-mode> set to FALSE).

An alias binding definition consists of:

• an id used to identify it

• a list of public render parameter names or previously defined alias or parameter binding

names

In this example, we defined an alias binding named "alias" which aliases the public render

parameters paramA and paramC.

8.3.3. Graphical configuration

Creating a new alias binding is done by first selecting one or more public parameters that will be

used for the binding:

Figure 8.3.

The interface will prompt you for a name for this new binding:

Parameter bindings

95

Figure 8.4.

Clicking on Create alias will create the new binding and it will appear in the existing binding lists:

Figure 8.5.

8.4. Parameter bindings

8.4.1. Definition

A parameter binding allows users to specify that public render parameters with different names

are semantically equivalent so that when one such parameter is updated, all the portlets that can

handle such a parameter receive the update, regardless of the name of the parameter that got

updated. In the implicit case, portlets can only react to changes of values in parameters whose

name they know.

Consider the following example. We are deploying two portlets, Portlet A and Portlet B,

from different vendors and assign them to Window A and Window B, respectively. Each portlet

can react to a specific public render parameter ({nsA}paramA and {nsB}paramB, respectively).

Under the implicit coordination model, these portlets wouldn't be able to communicate even if

both parameters were semantically equivalent. JBoss Portal's explicit coordination model allows

users to explicit the semantic link between both parameter names such that, when Portlet A

updates the value of {nsA}paramA, Portlet B gets notified of the update via a change of value

of {nsB}paramB:

Chapter 8. JBoss Portal suppo...

96

Example 8.3.

8.4.2. Configuration via XML

Explicit parameter bindings can be defined in any page definition of your *-object.xml

descriptors. For example, this is how the example that we detailed above would be implemented,

within a page definition:

...

<coordination>

 <bindings>

 <parameter-binding>

Graphical configuration

97

 <id>parameterBinding</id>

 <window-coordination>

 <window-name>Window A</window-name>

 <qname>{nsA}paramA</qname>

 </window-coordination>

 <window-coordination>

 <window-name>Window B</window-name>

 <qname>{nsB}paramB</qname>

 </window-coordination>

 </parameter-binding>

 </bindings>

</coordination>

Coordination configuration is done via the newly introduced <coordination> element.

Parameter bindings are defined using the <bindings> element. Note that this element is also

where alias bindings are defined. Note here that we don't specify a value for the <implicit-

mode> element, it will thus default to TRUE, meaning that implicit binding of parameters will

also be performed by JBoss Portal in addition to the explicit binding we are defining here.

A parameter binding definition consists of:

• an id used to identify it

• a list of <window-coordination> elements identifying which parameters will be bound for

which portlets

In this example, we defined a parameter binding named "parameterBinding" which

specifies that whenever Window A or Window B updates the value of the public parameter

{nsA}paramA or {nsA}paramA (respectively), the other will receive the new value for the

public render parameter it knows about.

A window / parameter name pair identifying either a public parameter to be wired.

8.4.3. Graphical configuration

Creating a new parameter binding is done by first selecting a public parameter / window from

the list:

Chapter 8. JBoss Portal suppo...

98

Figure 8.6.

The interface will prompt you for a name for this new binding:

Figure 8.7.

Clicking on Create binding will create the new binding and it will appear in the existing binding

lists:

Figure 8.8.

Event wirings

99

8.5. Event wirings

8.5.1. Definition

An event wiring wires an event produced by specified portlet windows to consumer portlet

windows. In the implicit form, this wiring associates producer and consumer via the event's

qualified name (QName).

8.5.2. Configuration via XML

Explicit event wirings can be defined in any page definition of your *-object.xml descriptors. For

example, this is how the example that we detailed above would be implemented, within a page

definition:

...

<coordination>

 <wirings>

 <implicit-mode>TRUE</implicit-mode>

 <event-wiring>

 <name>wiring</name>

 <sources>

 <window-coordination>

 <window-name>Window A</window-name>

 <qname>Event A</qname>

 </window-coordination>

 </sources>

 <destinations>

 <window-coordination>

 <window-name>Window B</window-name>

 <qname>Event B</qname>

 </window-coordination>

 <window-coordination>

 <window-name>Window C</window-name>

 <qname>Event C</qname>

 </window-coordination>

 </destinations>

 </event-wiring>

 </wirings>

Chapter 8. JBoss Portal suppo...

100

</coordination>

Coordination configuration is done via the newly introduced <coordination> element.

Event wirings are defined using the <wirings> element.

We specify here that we default to implicit wiring of events for this page. However, we will

define one explicit event wiring that will take precedence over the implicit wiring when needed.

An event wiring definition consists of:

• a name used to identify it

• a list of source events that are to be mapped to the destination ones

• a list of destination events that will be mapped from the source events

The name of the event wiring which must be unique in the scope of the specified page.

The list of source events, each being identified by a <window-coordination> element.

A window / event name pair identifying either a source or destination of event to be mapped.

The list of destination events, each being identified by a <window-coordination> element.

8.5.3. Graphical configuration

Creating a new event wiring is fairly easy as the interface will guide you. First, it will present a list

of available produced events on this page:

Figure 8.9.

Select an event. The interface will display the list of all windows producing this event for this page.

Note also that your selection is summarized on the right side of the screen:

Graphical configuration

101

Figure 8.10.

Selecting one or more windows (here we selected two) will continue the process. The interface

will now present you with the list of consumed events on this page, while your new event wiring

is still be being built up on the right side of the screen:

Figure 8.11.

Select a destination event and be presented with the list of windows consuming that event:

Chapter 8. JBoss Portal suppo...

102

Figure 8.12.

Select one or more destination windows to which the source event will be mapped via the

destination event. You will now be ask to name your new event wiring after having the opportunity

to review what will be created. We name our new event wiring foo here:

<implicit-mode>

103

Figure 8.13.

Click on the Create wiring button. Your new event wiring has been created and will appear in

the list of existing wirings:

Figure 8.14.

8.6. <implicit-mode>

While the new <coordination> element can be used in both <page> and <portal> elements, the

only configuration that can be specified at the portal level is whether to use the implicit mode or not:

<portal>

Chapter 8. JBoss Portal suppo...

104

 ...

 <coordination>

 <bindings>

 <implicit-mode>TRUE</implicit-mode>

 </bindings>

 <wirings>

 <implicit-mode>FALSE</implicit-mode>

 </wirings>

 </coordination>

 ...

</portal>

Specifying this <implicit-mode> element at the portal level allows the user to specify which

default behavior to apply to child pages. Quite reasonably, if <implicit-mode> is set to TRUE then

the implicit mode will be used by default. This does not, however, preclude specific pages to define

explicit associations where needed. Setting <implicit-mode> to FALSE, however, completely

deactivates the implicit handling of coordination features, leaving it up to users to configure only

the associations that need to be made. Note also that the implicit mode can be set for either

bindings or wirings. If no value is provided, implicit mode is used by default.

8.7. Coordination Samples

As part of the core-samples module, JBoss Portal provides several examples of how coordination

can be used. These examples are gathered in the Coordination Samples page. You can look at

how the examples are configured using the administration interface or by looking at the portal-

coordination-samples.war/WEB-INF/default-object.xml file.

Chapter 9.

105

Error Handling Configuration
Julien Viet

The JBoss Portal request pipeline allows fine-grained, dynamic configuration of how JBoss Portal

behaves when errors occur during runtime.

9.1. Error Types

There are several types of errors that can occur during a request:

• Access denied: the user does not have the required permissions to access the resource.

• Error: an anticipated error, such as when a portlet throws an exception.

• Internal error: an unexpected error.

• Resource not found: the resource was not found.

• Resource unavailable: the resource was found, but was not serviceable.

9.2. Control Policies

If an error occurs, the request control-flow changes according to the configuration. This

configuration is known as the control policy.

9.2.1. Policy Delegation and Cascading

When a control policy is invoked, the response sent by the control flow can be changed. If the

control policy ignores the error, the error is handled by the next policy. If the control policy provides

a new response, the next policy is not invoked, since the new response is not an error.

If a portlet in a page produces an exception, the following reactions are possible:

• the error is displayed in the window.

• the window is removed from the aggregation.

• a portal error page is displayed.

• a HTTP 500 error response is sent to the Web browser.

9.2.2. Default Policy

The default policy applies when errors are not handled by another level. By default, errors are

translated into the most appropriate HTTP response:

Chapter 9. Error Handling Con...

106

• Access denied: HTTP 403 Forbidden

• Error: HTTP 500 Internal Server Error

• Internal error: HTTP 500 Internal Server Error

• Resource not found: HTTP 404 Not Found

• Resource unavailable: HTTP 404 Not Found

9.2.3. Portal Policy

The portal error-policy controls the response sent to the Web browser when an error occurs. A

default error policy exists, which can be configured per portal. If an error occurs, the policy can

either handle a redirect to a JSP page, or ignore it. If the error is ignored, it is handled by the

default policy, otherwise a JSP page is invoked with the appropriate request attributes, allowing

page customization.

9.2.4. Page Policy

The window error-policy controls how pages react to aggregation errors. Most of the time pages

are an aggregation of several portlet windows, and the action to take when an error occurs differs

from other policies. When an error occurs, the policy can either handle it, or ignore it. If the error

is ignored, it is handled by the portal policy. Possible actions taken after such errors are:

• remove the window from the aggregation.

• replace the markup of the window using a redirect to a JSP page.

9.3. Configuration using XML Descriptors

Different policies are configured using portal object properties, allowing the error-handling policy

for objects to be configured in XML descriptors -- the *-object.xml files -- for a portal deployment.

9.3.1. Portal Policy Properties

A set of properties configure the the behavior of the portal policy. These properties are only taken

into account for objects that use the portal type. The following table represents possible portal-

policy properties:

Table 9.1.

Property Name Description Possible Values

control.portal.access_denied when access is denied ignore and jsp

control.portal.unavailable when a resource

is unavailable

ignore and jsp

Portal Policy Properties

107

Property Name Description Possible Values

control.portal.not_found when a resource is not found ignore and jsp

control.portal.internal_error when an unexpected

error occurs

ignore and jsp

control.portal.error when an expected

error occurs

ignore and jsp

control.portal.resource_uri the path to the JSP

used for redirections

a valid path to a JSP

located in the portal-

core.war/ directory

The following portal configuration demonstrates the use of portal-policy properties:

<portal>

 <portal-name>MyPortal</portal-name>

 ...

 <properties>

 <property>

 <name>control.portal.access_denied</name>

 <value>ignore</value>

 </property>

 <property>

 <name>control.portal.unavailable</name>

 <value>ignore</value>

 </property>

 <property>

 <name>control.portal.not_found</name>

 <value>ignore</value>

 </property>

 <property>

 <name>control.portal.internal_error</name>

 <value>jsp</value>

 </property>

 <property>

 <name>control.portal.error</name>

 <value>jsp</value>

 </property>

 <property>

 <name>control.portal.resource_uri</name>

 <value>/WEB-INF/jsp/error/portal.jsp</value>

 </property>

 ...

 </properties>

Chapter 9. Error Handling Con...

108

 ...

</portal>

9.3.2. Page Policy Properties

A set of properties configure the behavior of the page policy. These properties are only taken into

account for objects that use the portal type. The following table represents possible page-policy

properties:

Table 9.2.

Property name Description Possible values

control.page.access_denied when access is denied ignore, jsp and hide

control.page.unavailable when a resource

is unavailable

ignore, jsp and hide

control.page.not_found when a resource is not found ignore, jsp and hide

control.page.internal_error when an unexpected

error occurs

ignore, jsp and hide

control.page.error when an expected

error occurs

ignore, jsp and hide

control.page.resource_uri the path to the JSP

used for redirections

ignore, jsp and hide

The following page configuration demonstrates the use of page-policy properties:

<page>

 <page-name>MyPortal</page-name>

 ...

 <properties>

 <property>

 <name>control.page.access_denied</name>

 <value>hide</value>

 </property>

 <property>

 <name>control.page.unavailable</name>

 <value>hide</value>

 </property>

 <property>

 <name>control.page.not_found</name>

 <value>hide</value>

 </property>

Using JSP™ to Handle Errors

109

 <property>

 <name>control.page.internal_error</name>

 <value>jsp</value>

 </property>

 <property>

 <name>control.page.error</name>

 <value>jsp</value>

 </property>

 <property>

 <name>control.page.resource_uri</name>

 <value>/WEB-INF/jsp/error/page.jsp</value>

 </property>

 ...

 </properties>

 ...

</page>

Page Property Inheritance for Objects

When page properties are configured for objects that use the portal type, the

properties are inherited by pages in that portal.

9.4. Using JSP™ to Handle Errors

As described in previous sections, error handling can be redirected to a JSP™ page. Two pages

can be created to handle errors: one for the portal level, and the other for the page level. Portal

level error-handling requires a page that produces a full page, and page-level handling requires

a page that produces markup, but only for a window. When the page is invoked, a set of request

attributes are passed. The following table represents possible request attributes:

Table 9.3.

Attribute Name Attribute Description Attribute Value

org.jboss.portal.control.ERROR_TYPE the error type possible values are

ACCESS_DENIED,

UNAVAILABLE, ERROR,

INTERNAL_ERROR,

and NOT_FOUND

org.jboss.portal.control.CAUSE a cause which is

thrown, that can be null

the object is a subclass

of java.lang.Throwable

org.jboss.portal.control.MESSAGE an error message

that can be null

text

Chapter 9. Error Handling Con...

110

JSP™ Location
The JavaServer Pages must be located in the jboss-portal.sar/portal-

core.war/ web application.

9.5. Configuration using the Portal Management

Application

The error handling policy can be configured via the portal management application. To access

the portal management application:

1. Use a Web browser to navigate to http://localhost:8080/portal.

2. Click the Login button on the top right-hand of the welcome page, and log in as the admin user.

3. Click the Admin tab on the top right-hand of the welcome page. Four tabs will appear on the

left-hand side of the page.

4. Click the Admin tab to open the portal management application, and then click the Portal

Objects tab to display available portals.

Configuration options are available as part of the properties for each configuration level. You can

specify the default error handling policy (at the root of the portal object hierarchy) for each portal,

or each page, by clicking on the Properties button for each page or portal:

http://localhost:8080/portal

Configuration using the Portal Management

Application

111

As well, you can specify how dashboards should behave with respect to error handling, by clicking

on the Dashboards tab in the portal management application:

The page specified with On error redirect to this resource is used when the Redirect

to the specified resource action is selected for an error type, such as When access to the

page is denied. After making changes, click the Update button for settings to take effect.

112

Chapter 10.

113

Content Integration
Julien Viet

Thomas Heute

Since JBoss Portal 2.6 it is possible to provide an easy integration of content within the portal. Up

to the 2.4 version content integration had to be done by configuring a portlet to show some content

from an URI and then place that portlet on a page. The new content integration capabilities allows

to directly configure a page window with the content URI by removing the need to configure a

portlet for that purpose.

Note
We do not advocate to avoid the usage portlet preferences, we rather advocate

that content configuration managed at the portal level simplifies the configuration:

it helps to make content a first class citizen of the portal instead of having an

intermediary portlet that holds the content for the portal. The portlet preferences

can still be used to configure how content is displayed to the user.

The portal uses portlets to configure content

Chapter 10. Content Integration

114

The portal references directly the content and use portlet to interact with content

10.1. Window content

The content of a window is defined by

• The content URI which is the resource that the window is pointing to. It is an arbitrary string that

the portal cannot interpret and is left up to the content provider to interpret.

• The window content type which defines how the portal interpret the window content

• The default content type is for portlets and has the value portlet. In this case the content URI

is the portlet instance id.

• The CMS content type allows to integrate content from the CMS at the page and it has the

value cms. For that content type, the content URI is the CMS file path.

• The content parameters which are a set of additional key/value string pairs holding state that

is interpreted by the content provider.

At runtime when the portal needs to render a window it delegates the production of markup to a

content provider. The portal comes with a preconfigured set of providers which handles the portlet

and the cms content types. The most natural way to plug a content provider in the portal is to

use a JSR 286 Portlet. Based on a few carefully chosen conventions it is possible to provide an

efficient content integration with the benefit of using standards and without requiring the usage

of a proprietary API.

Content customization

115

10.2. Content customization

Content providers must be able to allow the user or administrator to chose content from the

external resource it integrates in the portal in order to properly configure a portal window. A

few interactions between the portal, the content provider and the portal user are necessary to

achieve that goal. Here again it is possible to provide content customization using a JSR 286

Portlet. For that purpose two special portlet modes called edit_content and select_content has

been introduced. It signals to the portlet that it is selecting or editing the content portion of the state

of a portlet. select_content is used to select a new content to put in a window while edit_content

is used to modify the previously defined content, often the two modes will display the same thing.

The traditional edit mode is not used because the edit mode is more targeted to configure how

the portlet shows content to the end user rather than what content it shows.

Example of content customization - CMS Portlet

10.3. Content Driven Portlet

Portlet components are used to integrate content into the portal. It relies on a few conventions

which allow the portal and the portlet to communicate.

10.3.1. Displaying content

At runtime the portal will call the portlet with the view mode when it displays content. It will send

information about the content to display using the public render parameter urn:jboss:portal:content

uri to the portlet. Therefore the portlet has just to read the render parameters and use them to

properly display the content in the portlet. The public render parameters values are the key/value

pairs that form the content properties and the resource URI of the content to display.

10.3.2. Configuring content

As explained before, the portal will call the portlet using the edit_content mode. In that mode the

portlet and the portal will communicate using either action or render parameters. We have two

use cases which are:

Chapter 10. Content Integration

116

• The portal needs to configure a new content item for a new window. In that use case the portal

will not send special render parameters to the portlet and the initial set of render parameters

will be empty. The portlet can then use render parameters in order to provide navigation in the

content repository. For example the portlet can navigate the CMS tree and store the current

CMS path in the render parameters. Whenever the portlet has decided to tell the portal that

content has been selected by the user it needs to trigger a JSR-286 event with the uri and

eventual parameters as payload.

• The second use case happens when the portal needs to edit existing content. In such situation

everything works as explained before except that the initial set of render parameters of the

portlet will be prepopulated with the content uri URI and parameters.

10.3.3. Step by step example of a content driven portlet

10.3.3.1. The Portlet skeleton

Here is the base skeleton of the content portlet. The FSContentDrivenPortlet shows the files which

are in the war file in which the portlet is deployed. The arbitrary name filesystem will be the content

type interpreted by the portlet.

public class FSContentDrivenPortlet extends GenericPortlet

{

 /** The edit_content mode. */

 public static final PortletMode EDIT_CONTENT_MODE = new PortletMode("edit_content");

 ...

}

10.3.3.2. Overriding the dispatch method

First the doDispatch(RenderRequest req, RenderResponse resp) is overridden in order to branch

the request flow to a method that will take care of displaying the editor.

protected void doDispatch(RenderRequest req, RenderResponse resp)

 throws PortletException, PortletSecurityException, IOException

{

 if (EDIT_CONTENT_MODE.equals(req.getPortletMode()))

 {

 doEditContent(req, resp);

Step by step example of a content driven portlet

117

 }

 else

 {

 super.doDispatch(req, resp);

 }

}

10.3.3.3. Utilities methods

The portlet also needs a few utilities methods which take care of converting content URI to a file

back and forth. There is also an implementation of a file filter that keep only text files and avoid

the WEB-INF directory of the war file for security reasons.

protected File getFile(String contentURI) throws IOException

{

 String realPath = getPortletContext().getRealPath(contentURI);

 if (realPath == null)

 {

 throw new IOException("Cannot access war file content");

 }

 File file = new File(realPath);

 if (!file.exists())

 {

 throw new IOException("File " + contentURI + " does not exist");

 }

 return file;

}

 protected String getContentURI(File file) throws IOException

 {

 String rootPath = getPortletContext().getRealPath("/");

 if (rootPath == null)

 {

 throw new IOException("Cannot access war file content");

 }

 // Make it canonical

 rootPath = new File(rootPath).getCanonicalPath();

 // Get the portion of the path that is significant for us

Chapter 10. Content Integration

118

 String filePath = file.getCanonicalPath();

 return filePath.length() >=

 rootPath.length() ? filePath.substring(rootPath.length()) : null;

 }

 private final FileFilter filter = new FileFilter()

 {

 public boolean accept(File file)

 {

 String name = file.getName();

 if (file.isDirectory())

 {

 return !"WEB-INF".equals(name);

 }

 else if (file.isFile())

 {

 return name.endsWith(".txt");

 }

 else

 {

 return false;

 }

 }

 };

10.3.3.4. The editor

The editor is probably the longest part of the portlet. It tries to stay simple though and goes directly

to the point.

Content editor of FSContentDrivenPortlet in action

Step by step example of a content driven portlet

119

protected void doEditContent(RenderRequest req, RenderResponse resp)

 throws PortletException, PortletSecurityException, IOException

{

 String uri = req.getParameter("current_uri");

 if (uri == null)

 {

 // Get the uri value optionally provided by the portal

 uri = req.getParameter("uri");

 }

 // Get the working directory directory

 File workingDir = null;

 String currentFileName = null;

 if (uri != null)

 {

 workingDir = getFile(uri).getParentFile();

 currentFileName = getFile(uri).getName();

 }

 else

 {

 // Otherwise try to get the current directory we are browsing,

 // if no current dir exist we use the root

 String currentDir = req.getParameter("current_dir");

 if (currentDir == null)

 {

 currentDir = "/";

 }

 workingDir = getFile(currentDir);

 }

 // Get the parent path

 String parentPath = getContentURI(workingDir.getParentFile());

 // Get the children of the selected file, we use a filter

 // to retain only text files and avoid WEB-INF dir

 File[] children = workingDir.listFiles(filter);

 // Configure the response

 resp.setContentType("text/html");

 PrintWriter writer = resp.getWriter();

 //

Chapter 10. Content Integration

120

 writer.print("Directories:
");

 writer.print("");

 PortletURL choseDirURL = resp.createRenderURL();

 if (parentPath != null)

 {

 choseDirURL.setParameter("current_dir", parentPath);

 writer.print("..");

 }

 for (int i = 0;i < children.length;i++)

 {

 File child = children[i];

 if (child.isDirectory())

 {

 choseDirURL.setParameter("current_dir", getContentURI(child));

 writer.print("" + child.getName() +

 "");

 }

 }

 writer.print("
");

 //

 writer.print("Files:
");

 writer.print("");

 PortletURL selectFileURL = resp.createActionURL();

 selectFileURL.setParameter("content.action.select", "select");

 for (int i = 0;i < children.length;i++)

 {

 File child = children[i];

 if (child.isFile())

 {

 selectFileURL.setParameter("current_uri", getContentURI(child));

 if (child.getName().equals(currentFileName))

 {

 writer.print("" + child.getName() + "");

 }

 else

 {

 writer.print("" + child.getName() + "");

 }

 }

 }

 writer.print("
");

 //

Step by step example of a content driven portlet

121

 writer.close();

}

10.3.3.5. Viewing content at runtime

Last but not least the portlet needs to implement the doView(RenderRequest req,

RenderResponse resp) method in order to display the file that the portal window wants to show.

protected void doView(RenderRequest req, RenderResponse resp)

 throws PortletException, PortletSecurityException, IOException

{

 // Get the URI provided by the portal

 String uri = req.getParameter("uri");

 // Configure the response

 resp.setContentType("text/html");

 PrintWriter writer = resp.getWriter();

 //

 if (uri == null)

 {

 writer.print("No selected file");

 }

 else

 {

 File file = getFile(uri);

 FileInputStream in = null;

 try

 {

 in = new FileInputStream(file);

 FileChannel channel = in.getChannel();

 byte[] bytes = new byte[(int)channel.size()];

 ByteBuffer buffer = ByteBuffer.wrap(bytes);

 channel.read(buffer);

 writer.write(new String(bytes, 0, bytes.length, "UTF8"));

 }

 catch (FileNotFoundException e)

 {

 writer.print("No such file " + uri);

 getPortletContext().log("Cannot find file " + uri, e);

 }

 finally

Chapter 10. Content Integration

122

 {

 if (in != null)

 {

 in.close();

 }

 }

 }

 //

 writer.close();

}

10.3.3.6. Hooking the portlet into the portal

Management portlet with filesystem content type enabled

Finally we need to make the portal aware of the fact that the portlet can edit and interpret content.

For that we need a few descriptors. The portlet.xml descriptor will define our portlet, the portlet-

instances.xml will create a single instance of our portlet. The web.xml descriptor will contain a

servlet context listener that will hook the content type in the portal content type registry.

First, we need to define the portlet's particular event and render parameters:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

Step by step example of a content driven portlet

123

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://

java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"

 version="2.0">

 <portlet>

 <description>File System Content Driven Portlet</description>

 <portlet-name>FSContentDrivenPortlet</portlet-name>

 <display-name>File System Content Driven Portlet</display-name>

 <portlet-class>org.jboss.portal.core.samples.basic.FSContentDrivenPortlet</portlet-class>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 <portlet-mode>EDIT_CONTENT</portlet-mode>

 </supports>

 <portlet-info>

 <title>File Portlet</title>

 <keywords>sample,test</keywords>

 </portlet-info>

 <supported-public-render-parameter>uri</supported-public-render-parameter>

 <supported-publishing-event xmlns:x="urn:jboss:portal:content">x:select</supported-

publishing-event>

 </portlet>

 <public-render-parameter>

 <identifier>uri</identifier>

 <qname xmlns:c="urn:jboss:portal:content">c:uri</qname>

 </public-render-parameter>

 <event-definition>

 <qname xmlns:x="urn:jboss:portal:content">x:select</qname>

 <value-type>java.lang.String</value-type>

 </event-definition>

</portlet-app>

Note that here we need to use a JSR-286 portlet, this portlet will use the event

urn:jboss:portal:content select and have a payload of type java.lang.String. This event will be used

to tell the portal the URI selected by the user. This same portlet will also be in charge of rendering

the content based on that URI, it will then also need to access the public render parameter qualified

with the name: urn:jboss:portal:content uri.

The portlet.xml descriptor

Chapter 10. Content Integration

124

<deployments>

 ...

 <deployment>

 <instance>

 <instance-id>FSContentDrivenPortletInstance</instance-id>

 <portlet-ref>FSContentDrivenPortlet</portlet-ref>

 </instance>

 </deployment>

 ...

</deployments

The portlet-instances.xml descriptor

<web-app>

 ...

 <context-param>

 <param-name>org.jboss.portal.content_type</param-name>

 <param-value>filesystem</param-value>

 </context-param>

 <context-param>

 <param-name>org.jboss.portal.portlet_instance</param-name>

 <param-value>FSContentDrivenPortletInstance</param-value>

 </context-param>

 <listener>

 <listener-class>org.jboss.content.ContentTypeRegistration</listener-class>

 </listener>

 ...

</web-app>

The web.xml descriptor

Warning
You don't need to add the listener class into your war file. As it is provided by the

portal it will always be available.

Configuring window content in deployment

descriptor

125

10.4. Configuring window content in deployment

descriptor

How to create a portlet that will enable configuration of content at runtime has been covered above,

however it is also possible to configure content in deployment descriptors. With our previous

example it would give the following snippet placed in a *-portal.xml file:

<window>

<window-name>MyWindow</window-name>

<content>

 <content-type>filesystem</content-type>

 <content-uri>/dir1/foo.txt</content-uri>

</content>

<region>center</region>

<height>1</height>

</window>

Final effect - portal window with FSContentDrivenPortlet

Note
How to configure CMS file this way is covered in the CMS chapter: Section 22.3,

“CMS content”

126

Chapter 11.

127

Widget Integration
Emanuel Muckenhuber

11.1. Introduction

JBoss Portal supports the integration of Google gadgets and Netvibes (UWA [http://

dev.netvibes.com/doc/uwa_specification] compatible) widgets out of the box. This integration

allows you to display the content of the widget within a portlet. Both types can be added in the

administration interface by editing the 'Page Layout' of a page or in the configuration of the users

dashboard when selecting the appropriate 'Content type'.

11.2. Widget portlet configuration

It is possible to modify certain behavior of caching and fetching widgets by changing the init-param

values of the portlet.

• connectionTimeout

Connection timeout used for the directory lookup in milliseconds.

• widgetExpiration

Time in minutes for which a widget should be cached. After this time the cached widget

information will be deleted and fetched again when the information are needed.

• queryExpiration

Times in minutes for which a directory query should be cached. After this time the cached query

information will be deleted.

• fetchWidgetsOnDirectoryLookup

This parameter defines if all widgets from a directory lookup should be fetched at the time of the

query or not. The default values is false. This means that widgets are only fetched on demand

- when the information is really needed.

The parameter for both widget types can be changed identically in either:

• jboss-portal.sar/portal-widget.war/WEB-INF/portlet.xml (for google gadgets)

• or jboss-portal.sar/portal-widget-netvibes.war/WEB-INF/portlet.xml (for netvibes widgets).

...

 <portlet>

http://dev.netvibes.com/doc/uwa_specification
http://dev.netvibes.com/doc/uwa_specification
http://dev.netvibes.com/doc/uwa_specification

Chapter 11. Widget Integration

128

 ...

 <init-param>

 <name>connectionTimeout</name>

 <value>5000</value>

 </init-param>

 <init-param>

 <name>widgetExpiration</name>

 <value>360</value>

 </init-param>

 <init-param>

 <name>queryExpiration</name>

 <value>60</value>

 </init-param>

 <init-param>

 <name>fetchWidgetsOnDirectoryLookup</name>

 <value>false</value>

 </init-param>

 ...

 </portlet>

...

For Netvibes widgets it is also possible to define a init-param called defaultHeight to set a specific

default height if no height attribute is defined by the widget itself. The default value is 250.

Chapter 12.

129

Portlet Modes
Julien Viet

JBoss Portal supports the standard portlet modes defined by the JSR-168 specification which are

view, edit and help. In addition of that it also supports the admin portlet mode.

12.1. Admin Portlet Mode

The admin mode defines a mode for the portlet which allows the administration of the portlet.

Access to this mode is only granted to users having an appropriate role. In order to grant admin

access to a portlet, the user must have a role which grants him the admin action permission on the

portlet instance. This can be done in the instance deployment descriptor or using the administation

portlet of the portal.

12.1.1. Portlet configuration

In order to be able to use the admin mode, the portlet must declare it in the portlet deployment

descriptor.

<portlet-app>

 ...

 <portlet>

 ...

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>admin</portlet-mode>

 </supports>

 ...

 </portlet>

 ...

 <custom-portlet-mode>

 <name>admin</name>

 </custom-portlet-mode>

 ...

</portlet-app>

12.1.2. Declarative instance security configuration

The following example shows the configuration of a portlet instance that grants the admin action

permission to the Admin security role. It also grants the view action permission to all users.

Chapter 12. Portlet Modes

130

...

<instance>

 <instance-id>ModePortletInstance</instance-id>

 <portlet-ref>ModePortlet</portlet-ref>

 <security-constraint>

 <policy-permission>

 <action-name>admin</action-name>

 <role-name>Admin</role-name>

 </policy-permission>

 <policy-permission>

 <action-name>view</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

</instance>

...

12.1.3. Instance security configuration with the administration

portlet

At runtime the security configuration section of the administration portlet can be used to grant or

revoke the admin access. It can be done by clicking the security action of the portlet instance and

then use the security editor.

Edit the security instance configuration

Chapter 13.

131

Portal API
Julien Viet

Thomas Heute

13.1. Introduction

JBoss Portal provides an Application Programming Interface (API) which allows to write code that

interacts with the portal. The life time and validity of the API is tied to the major version which

means that no changes should be required when code is written against the API provided by the

JBoss Portal 2.x versions and used in a later version of JBoss Portal 2.x.

The Portal API package prefix is org.jboss.portal.api. All of the classes that are part of

this API are prefixed with this package name except for the org.jboss.portal.Mode and

org.jboss.portal.WindowState classes. These two classes were defined before the official Portal

API framework was created and so the names have been maintained for backward compatibility.

The Portlet API defines two classes that represent a portion of the visual state of a Portlet which are

javax.portlet.PortletMode and javax.portlet.WindowState. Likewise the Portal API defines similar

classes named org.jboss.portal.Mode and org.jboss.portal.WindowState which offer comparable

characteristics, the main differences are:

• Usage of factory methods to obtain instances.

• Classes implements the java.io.Serializable interface.

The Mode class

Chapter 13. Portal API

132

The WindowState class

Note

In the Portal API, the Mode interface is named like this because it does represent

the mode of some visual object. The Portlet API names it PortletMode because it

makes the assumption that the underlying object is of type Portlet.

13.2. Portlet to Portal communication

There are times when a portlet needs to signal the portal or share information with it. The portal

is the only authority to decide if it will take into account that piece of information or ignore it. In

JBoss Portal we use as much as possible the mechanisms offered by the portlet spec to achieve

that communication.

13.2.1. Requesting a sign out

If a portlet desires to sign out the user, it can let the portal know by triggering a JSR-286 portlet

event. To do so, simply defines the event "signOut" in the namespace "urn:jboss:portal" as a

publishing event. In the action phase of the portlet, trigger the event, as a payload you can specify

a redirection URL. If the payload is null, it will redirect the user to the default page of the default

portal. See the following snippet to use in the action phase, it will ask the portal to sign out the

user and redirect him to the JBoss Portal blog:

QName name = new QName("urn:jboss:portal", "signOut");

response.setEvent(name, "http://blog.jboss-portal.org");

13.2.2. Setting up the web browser title

The JSR-286 specification introduced a new phase for setting up the HTML headers. It is

commonly used to add stylesheets and javascript to the page. An extension of it for JBoss Portal

lets you define the web browser title. To define the web browser title, a portlet simply needs

to define a new header element "title". This could be done by a portlet overriding the method

doHeaders(RenderRequest req, RenderResponse resp) to add such an element.

public void doHeaders(RenderRequest req, RenderResponse resp)

{

 Element element = resp.createElement("title");

 element.setTextContent("My new web browser title");

 resp.addProperty(MimeResponse.MARKUP_HEAD_ELEMENT, element);

}

Portal URL

133

Warning

It several portlets on a page defines a web browser title, only one of them will be

displayed. We can consider that the title to be displayed will be randomly chosen.

13.3. Portal URL

The Portal API defines the org.jboss.portal.api.PortalURL interface to represent URL managed

by the portal.

The PortalURL interface

• The setAuthenticated(Boolean wantAuthenticated) methods defines if the URL requires the

authentication of the user. If the argument value is true then the user must be authenticated to

access the URL, if the argument value is false then the user should not be authenticated. Finally

if the argument value is null then it means that the URL authenticated mode should reuse the

current mode.

• The setSecure(Boolean wantSecure) methods defines the same as above but for the transport

guarantee offered by the underlying protocol which means most of the time the secure HTTP

protocol (HTTPS).

• The setRelative(boolean relative) defines the output format of the URL and whether the created

URL will be an URL relative to the same web server or will be the full URL.

• The toString() method will create the URL as a string.

13.4. Portal session

The PortalSession interface

Chapter 13. Portal API

134

It is possible to have access to a portion of the portal session to store objects. The

org.jboss.portal.api.session.PortalSession interface defines its API and is similar to the

javax.servlet.http.HttpSession except that it does not offer methods to invalidate the session as

the session is managed by the portal.

13.5. Portal runtime context

The PortalRuntimeContext interface

The org.jboss.portal.api.PortalRuntimeContext gives access to state or operations associated at

runtime with the current user of the portal. The String getUserId() retrieve the user id and can

return null if no user is associated with the context. It also gives access to the PortalSession

instance associated with the current user. Finally it gives access to the NavigationalStateContext

associated with the current user.

13.6. Portal nodes

The portal structure is a tree formed by nodes. It is possible to programmatically access the portal

tree in order to

• discover the tree structure of the portal

• create URL that will render the different portal nodes

• access the properties of a specific node

Portal nodes

135

The PortalNode interface

As usual with tree structures, the main interface to study is the

org.jboss.portal.api.node.PortalNode. That interface is intentionally intended for obtaining useful

information from the tree. It is not possible to use it to modify the tree shape because it is not

intended to be a management interface.

public interface PortalNode

{

 int getType();

 String getName();

 String getDisplayName(Locale locale);

 Map getProperties();

 PortalNodeURL createURL(PortalRuntimeContext portalRuntimeContext);

 ...

}

The interface offers methods to retrieve informations for a given node such as the node type, the

node name or the properties of the node. The noticeable node types are:

• PortalNode.TYPE_PORTAL : the node represents a portal

• PortalNode.TYPE_PAGE : the node represents a portal page

• PortalNode.TYPE_WINDOW : the node represents a page window

The org.jboss.portal.api.node.PortalNodeURL is an extension of the PortalURL interface which

adds additional methods useful for setting parameters on the URL. There are no guarantees

that the portal node will use the parameters. So far portal node URL parameters are only useful

for nodes of type PortalNode.TYPE_WINDOW and they should be treated as portlet render

parameters in the case of the portlet is a local portlet and is not a remote portlet. The method that

creates portal node URL requires as parameter an instance of PortalRuntimeContext.

The interface also offers methods to navigate the node hierarchy:

public interface PortalNode

{

 ...

 PortalNode getChild(String name);

 Collection getChildren();

 PortalNode getRoot();

 PortalNode getParent();

 ...

Chapter 13. Portal API

136

}

13.7. Portal navigational state

The navigational state is a state managed by the portal that associates to each user the

state triggered by its navigation. A well known part of the navigational state are the render

parameters provided at runtime during the call of the method void render(RenderRequest req,

RenderResponse resp). The portal API offers an interface to query and update the navigational

state of the portal. For now the API only exposes mode and window states of portal nodes of

type window.

The NavigationalStateContext interface

13.8. Portal events

Portal events are a powerful mechanism to be aware of what is happening in the portal at runtime.

The base package for event is org.jboss.portal.api.event and it contains the common event classes

and interfaces.

The PortalEvent class

The org.jboss.portal.api.event.PortalEvent abstract class is the base class for all kind of portal

events.

The PortalEventContext interface

Portal node events

137

The org.jboss.portal.api.event.PortalEventContext interface defines the context in which an event

is created and propagated. It allows retrieval of the PortalRuntimeContext which can in turn be

used to obtain the portal context.

The PortalEventListener interface

The org.jboss.portal.api.event.PortalEventListener interface defines the contract that class

can implement in order to receive portal event notifications. It contains the method void

onEvent(PortalEvent event) called by the portal framework.

Listeners declaration requires a service to be deployed in JBoss that will instantiate the service

implementation and register it with the service registry. We will see how to achieve that in the

example section of this chapter.

Note

The event propagation model uses one instance of a listener class to receive

all portal events that may be routed to that class when appropriate. Therefore

implementors needs to be aware of that model and must provide thread safe

implementations.

13.8.1. Portal node events

Portal node events extend the abstract portal event framework in order to provide notifications

about user interface events happening at runtime. For instance when the portal renders a page

or a window, a corresponding event will be fired.

Chapter 13. Portal API

138

The portal node event class hierarchy

The org.jboss.portal.api.node.event.PortalNodeEvent class extends the

org.jboss.portal.api.node.PortalEvent class and is the base class for all events of portal nodes. It

defines a single method PortalNode getNode() which can be used to retrieve the node targetted

by the event.

The org.jboss.portal.api.node.event.WindowEvent is an extension for portal nodes of type window.

It provides access to the mode and window state of the window. It has 3 subclasses which

represent different kind of event that can target windows.

Portal node events

139

The org.jboss.portal.api.node.event.WindowNavigationEvent is fired when the window

navigational state changes. For a portlet it means that the window is targetted by an URL of type

render.

The org.jboss.portal.api.node.event.WindowActionEvent is fired when the window is targetted by

an action. For a portlet it means that the window is targetted by an URL of type action.

The org.jboss.portal.api.node.event.WindowRenderEvent is fired when the window is going to be

rendered by the portal.

The org.jboss.portal.api.node.event.PageEvent is an extension for portal nodes of type page.

The org.jboss.portal.api.node.event.PageRenderEvent is fired when the page is going to be

rendered by the portal.

13.8.1.1. Portal node event propagation model

A portal node event is fired when an event of interest happens to a portal node of the portal tree.

The notification model is comparable to the bubbling propagation model [http://en.wikipedia.org/

wiki/DOM_Events#Event_flow] defined by the DOM specification. When an event is fired, the

event is propagated in the hierarchy from the most inner node where the event happens to the

root node of the tree.

The portal node event propagation model

http://en.wikipedia.org/wiki/DOM_Events#Event_flow
http://en.wikipedia.org/wiki/DOM_Events#Event_flow
http://en.wikipedia.org/wiki/DOM_Events#Event_flow

Chapter 13. Portal API

140

13.8.1.2. Portal node event listener

The org.jboss.portal.api.node.event.PortalNodeEventListener interface should be used instead of

the too generic org.jboss.portal.api.event.PortalEventListener when it comes down of listening

portal node events. Actually it does not replace it, the PortalEventListener interface semantic

allows only traditional event delivering. The PortalNodeEventListener interface is designed to

match the bubbling effect during an event delivery.

The PortalNodeEvent onEvent(PortalNodeEventContext context, PortalNodeEvent event)

method declares a PortalNodeEvent as return type. Commonly the method returns null; however,

a returned PortalNodeEvent replaces the event in the listeners subsequently called during the

event bubbling process.

13.8.1.3. Portal node event context

The PortalNodeEventContext interface

The org.jboss.portal.api.node.event.PortalNodeEventContext interface extends the

PortalEventContext interface and plays an important role in the event delivery model explained in

the previous section. That interface gives full control over the delivery of the event to ascendant

nodes in the hierarchy, even more it gives the possibility to replace the current event being

delivered by a new event that will be transformed into the corresponding portal behavior. However

there are no guarantees that the portal will turn the returned event into a portal behavior, here the

portal provides a best effort policy, indeed sometime it is not possible to achieve the substitution

of one event by another.

Here the simplest implementation of a listener that does nothing except than correctly passing the

control to a parent event listener if there is one.

public PortalNodeEvent onEvent(PortalNodeEventContext context, PortalNodeEvent event)

{

 return context.dispatch();

}

The method PortalNode getNode() returns the current node being selected during the event

bubbler dispatching mechanism.

Portal session events

141

13.8.2. Portal session events

The life cycle of the session of the portal associated with the user can also raise events. This kind

of event is not bound to a portal node since it is triggered whenever a portal session is created

or destroyed

The PortalSessionEvent class

There are two different types of events:

• org.jboss.portal.api.session.event.PortalSessionEvent.SESSION_CREATED, fired when a

new portal session is created

• org.jboss.portal.api.session.event.PortalSessionEvent.SESSION_DESTROYED, fired when a

new portal session is destroyed

13.8.3. Portal user events

The life cycle of the portal user can also raise events such as its authentication. A subclass of

the wider scope UserEvent class is provided and triggers events whenever a user signs in or out.

The UserEvent object gives access to the user name of the logged-in user through the method

String getId().

Chapter 13. Portal API

142

The UserEvent class and UserAuthenticationEvent sub-classes

The UserAuthenticationEvent triggers two events that can be catched:

• org.jboss.portal.api.session.event.UserAuthenticationEvent.SIGN_IN, fired when a portal user

signs in

• org.jboss.portal.api.session.event.UserAuthenticationEvent.SIGN_OUT, fired when a portal

user signs out

Based on the UserEvent class other custom user related events could be added like one that

would trigger when a new user is being registered

13.9. Examples

The events mechanism is quite powerful, in this section of the chapter we will see few simple

examples to explain how it works.

13.9.1. UserAuthenticationEvent example

In this example, we will create a simple counter of the number of logged-in registered users. In

order to do that we just need to keep track of Sign-in and Sign-out events.

First, let's write our listener. It just a class that will implement

org.jboss.portal.api.event.PortalEventListener and its unique method void

onEvent(PortalEventContext eventContext, PortalEvent event). Here is such an example:

UserAuthenticationEvent example

143

package org.jboss.portal.core.portlet.test.event;

import[...]

public class UserCounterListener implements PortalEventListener

{

 /** Thread-safe long */

 private final SynchronizedLong counter = new SynchronizedLong(0);

 /** Thread-safe long */

 private final SynchronizedLong counterEver = new SynchronizedLong(0);

 public void onEvent(PortalEventContext eventContext, PortalEvent event)

 {

 if (event instanceof UserAuthenticationEvent)

 {

 UserAuthenticationEvent userEvent = (UserAuthenticationEvent)event;

 if (userEvent.getType() == UserAuthenticationEvent.SIGN_IN)

 {

 counter.increment();

 counterEver.increment();

 }

 else if (userEvent.getType() == UserAuthenticationEvent.SIGN_OUT)

 {

 counter.decrement();

 }

 System.out.println("Counter : " + counter.get());

 System.out.println("Counter ever: " + counterEver.get());

 }

 }

}

On this method we simply filter down to UserAuthenticationEvent then depending on the type of

authentication event we update the counters. counter keeps track of the registered and logged-in

users, while counterEver only counts the number of times people logged-in the portal.

Now that the Java class has been written we need to register it so that it can be called when the

events are triggered. To do so we need to register it as an MBean. It can be done by editing the

sar descriptor file: YourService.sar/META-INF/jboss-service.xml so that it looks like the following:

Chapter 13. Portal API

144

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <mbean

 code="org.jboss.portal.core.event.PortalEventListenerServiceImpl"

 name="portal:service=ListenerService,type=counter_listener"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <depends

 optional-attribute-name="Registry"

 proxy-type="attribute">portal:service=ListenerRegistry</depends>

 <attribute name="RegistryId">counter_listener</attribute>

 <attribute name="ListenerClassName">

 org.jboss.portal.core.portlet.test.event.UserCounterListener

 </attribute>

 </mbean>

</server>

This snippet can be kept as it is, providing you change the values:

• name: Must follow the pattern: portal:service=ListenerService,type={{UNIQUENAME}}

• RegistryId: Must match the type (here: counter_listener)

• ListenerClassName: Full path to the listener (here:

org.jboss.portal.core.portlet.test.event.UserCounterListener).

That's it - we now have a user counter that will display it states each time a user logs-in our logs-out.

13.9.2. Achieving Inter Portlet Communication with the events

mechanism

The first version of the Portlet Specification (JSR 168), regretfully, did not cover interaction

between portlets. The side-effect of diverting the issue to the subsequent release of the

specification, has forced portal vendors to each craft their own proprietary API to achieve inter

portlet communication. Here we will see how we can use the event mechanism to pass parameters

from one portlet to the other (and only to the other portlet).

The overall scenario will be that Portlet B will need to be updated based on some parameter set

on Portlet A. To achieve that we will use a portal node event.

Portlet A is a simple Generic portlet that has a form that sends a color name:

public class PortletA extends GenericPortlet

Achieving Inter Portlet Communication with the

events mechanism

145

{

 protected void doView(RenderRequest request, RenderResponse response)

 throws PortletException, PortletSecurityException, IOException

 {

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<form action=\"" + response.createActionURL() + "\" method=\"post\">");

 writer.println("<select name=\"color\">");

 writer.println("<option>blue</option>");

 writer.println("<option>red</option>");

 writer.println("<option>black</option>");

 writer.println("</select>");

 writer.println("<input type=\"submit\"/>");

 writer.println("</form>");

 writer.close();

 }

}

The other portlet (Portlet B) that will receive parameters from Portlet A is also a simple Generic

portlet:

public class PortletB extends GenericPortlet

{

 public void processAction(ActionRequest request, ActionResponse response)

 throws PortletException, PortletSecurityException, IOException

 {

 String color = request.getParameter("color");

 if (color != null)

 {

 response.setRenderParameter("color", color);

 }

 }

 protected void doView(RenderRequest request, RenderResponse response)

 throws PortletException, PortletSecurityException, IOException

 {

 String color = request.getParameter("color");

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<div" +

Chapter 13. Portal API

146

 (color == null ? "" : " style=\"color:" + color + ";\"") +

 ">some text in color</div>");

 writer.close();

 }

 // Inner listener explained after

}

With those two portlets in hands, we just want to pass parameters from Portlet A to Portlet B (the

color in as a request parameter in our case). In order to achieve this goal, we will write an inner

Listener in Portlet B that will be triggered on any WindowActionEvent of Portlet A. This listener

will create a new WindowActionEvent on the window of Portlet B.

public static class Listener implements PortalNodeEventListener

{

 public PortalNodeEvent onEvent(PortalNodeEventContext context, PortalNodeEvent event)

 {

 PortalNode node = event.getNode();

 // Get node name

 String nodeName = node.getName();

 // See if we need to create a new event or not

 WindowActionEvent newEvent = null;

 if (nodeName.equals("PortletAWindow") && event instanceof WindowActionEvent)

 {

 // Find window B

 WindowActionEvent wae = (WindowActionEvent)event;

 PortalNode windowB = node.resolve("../PortletBWindow");

 if (windowB != null)

 {

 // We can redirect

 newEvent = new WindowActionEvent(windowB);

 newEvent.setParameters(wae.getParameters());

 newEvent.setMode(wae.getMode());

 newEvent.setWindowState(WindowState.MAXIMIZED);

 // Redirect to the new event

 return newEvent;

 }

 }

 // Otherwise bubble up

Achieving Inter Portlet Communication with the

events mechanism

147

 return context.dispatch();

 }

}

It is important to note here some of the important items in this listener class. Logic used to

determine if the requesting node was Portlet A.:

nodeName.equals("PortletAWindow")

Get the current window object so we can dispatch the event to it:

PortalNode windowB = node.resolve("../PortletBWindow");

Set the original parameter from Portlet A, so Portlet B can access them in its processAction():

newEvent.setParameters(wae.getParameters());

We still need to register our listener as an mbean:

<mbean

 code="org.jboss.portal.core.event.PortalEventListenerServiceImpl"

 name="portal:service=ListenerService,type=test_listener"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <depends

 optional-attribute-name="Registry"

 proxy-type="attribute">portal:service=ListenerRegistry</depends>

 <attribute name="RegistryId">test_listener</attribute>

 <attribute name="ListenerClassName">

 org.jboss.portal.core.samples.basic.event.PortletB$Listener

 </attribute>

</mbean>

For node events, we also need to declare on which node we want to listen, this is done by modifying

the *-object.xml that defines your portal nodes. In this example we want to trigger the listener

each time the window containing the portlet A is actioned. We can add the listener tag to specify

Chapter 13. Portal API

148

that out listener with RegistryId=test_listener should be triggered on events on the embedding

object.

...

 <window>

 <window-name>PortletAWindow</window-name>

 <instance-ref>PortletAInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 <listener>test_listener</listener>

 </window>

...

Of course we could have added it at the page level instead of the window level. Note that a unique

listener can be specified, the event mechanism is primarily done to let the developer change the

navigation state of the portal, this example being a nice side-effect of this feature.

Note

The portlet 2.0 specification (JSR 286) will cover Inter Portlet Communication so

that portlets using it can work with different portal vendors.

13.9.3. Link to other pages

Linking to some other pages or portals is also out of the scope of the portlet specification. As seen

previously JBoss Portal offers an API in order to create links to other portal nodes. The JBoss

request gives access to the current window node from which we can navigate from.

// Get the ParentNode. Since we are inside a Window, the Parent is the Page

PortalNode thisNode = req.getPortalNode().getParent();

// Get the Node in the Portal hierarchy tree known as "../default"

PortalNode linkToNode = thisNode.resolve("../default");

// Create a RenderURL to the "../default" Page Node

PortalNodeURL pageURL = resp.createRenderURL(linkToNode);

// Output the Node's name and URL for users

Samples

149

html.append("Page: " + linkToNode.getName() + " -> ");

html.append("" + linkToNode.getName() + "");

From this, it is easy to create a menu or sitemap, the List getChildren() method will return all the

child nodes on which the user has the view right access.

13.9.4. Samples

Those examples are available in the core-samples package in the sources of JBoss Portal. There

are more examples of events usage in the samples delivered with JBoss Portal. One of them

shows the usage of a portal node event to only have one window in normal mode at a time in a

region. Anytime another window is being put in normal mode, all the other windows of the same

regions are automatically minimized.

150

Chapter 14.

151

Clustering Configuration
Julien Viet

Roy Russo

This section covers configuring JBoss Portal for a clustered environment.

14.1. Introduction

JBoss Portal leverages various clustered services that are found in JBoss Application Server. This

section briefly details how each is leveraged:

• JBoss Cache: Used to replicate data among the different hibernate session factories that are

deployed in each node of the cluster.

• JBoss HA Singleton:

1. Used to make the deployer a singleton on the cluster, in order to avoid concurrency issues

when deploying the various *-object.xml files. Without that, each node would try to create the

same objects in the database when it deploys an archive containing such descriptors.

2. Used with JCR. The Apache Jackrabbit server is not able to run in a cluster by itself, therefore

we make a singleton on the cluster. This provides HA-CMS, which is similar to the current

HA JBossMQ provided in JBoss AS.

• HA-JNDI: Used to replicate a proxy that will talk to the HA CMS on the cluster.

• Http Session Replication: Used to replicate the portal and the portlet sessions.

• JBoss SSO: Used to replicate the user identity, an authenticated user does not have to login

again when failover occurs.

Note
JBoss Clustering details can be found in the Wiki [http://wiki.jboss.org/wiki/

Wiki.jsp?page=JBossHA] or the clustering documentation [http://labs.jboss.com/

jbossas/docs/].

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossHA
http://labs.jboss.com/jbossas/docs/
http://labs.jboss.com/jbossas/docs/
http://labs.jboss.com/jbossas/docs/

Chapter 14. Clustering Config...

152

14.2. Considerations

When you want to run JBoss Portal on a cluster there are a few things to keep in mind:

• Deploy the portal under the all application server configuration as it contains the clustering

services that is leveraged by JBoss Portal.

• All the portal instances have to use the same datasource : the database is used to store

the portal persistent state like pages. If you don't use a shared database then you will have

consistency problems.

14.3. JBoss Portal Clustered Services

14.3.1. Portal Session Replication

The portal associates with each user a http session in order to keep specific objects such as:

• Navigational state : this is mainly the state of different portlet windows that the user will

manipulate during its interactions with the portal. For instance a maximized portlet window with

specific render parameters.

• WSRP objects : the WSRP protocol can require to provide specific cookies during interactions

with a remote portlet.

Hibernate clustering

153

Replicating the portal session ensures that this state will be kept in sync on the cluster, e.g The

user will see exactly the same portlet window on every node of the cluster. The activation of the

portal session replication is made through the configuration of the web application that is the main

entry point of the portal. This setting is available in the file jboss-portal.sar/portal-server.war/WEB-

INF/web.xml

<web-app>

 <description>JBoss Portal</description>

 <!-- Comment/Uncomment to enable portal session replication -->

 <distributable/>

 ...

</web-app>

14.3.2. Hibernate clustering

JBoss Portal leverages hibernate for its database access. In order to improve performances it

uses the caching features provided by hibernate. On a cluster the cache needs to be replicated in

order to avoid state inconsistencies. Hibernate is configured with JBoss Cache which performs that

synchronization transparently. Therefore the different hibernate services must be configured to

use JBoss Cache. The following hibernate configurations needs to use a replicated JBoss Cache :

• jboss-portal.sar/conf/hibernate/user/hibernate.cfg.xml

• jboss-portal.sar/conf/hibernate/instances/hibernate.cfg.xml

• jboss-portal.sar/conf/hibernate/portal/hibernate.cfg.xml

• jboss-portal.sar/conf/hibernate/portlet/hibernate.cfg.xml

The cache configuration should look like :

<!--

 | Uncomment in clustered mode : use transactional replicated cache

 -->

 <property

 name="cache.provider_class">org.jboss.portal.core.hibernate.JMXTreeCacheProvider

 </property>

 <property name="cache.object_name">portal:service=TreeCacheProvider,type=hibernate

 </property>

<!--

 | Comment in clustered mode

 <property name="cache.provider_configuration_file_resource_path">

Chapter 14. Clustering Config...

154

 conf/hibernate/instance/ehcache.xml</property>

 <property name="cache.provider_class">org.hibernate.cache.EhCacheProvider</property>

-->

Also we need to ensure that the cache is deployed by having in the file jboss-portal.sar/META-

INF/jboss-service.xml the cache service uncommented :

<!--

 | Uncomment in clustered mode : replicated cache for hibernate

 -->

 <mbean

 code="org.jboss.cache.TreeCache"

 name="portal:service=TreeCache,type=hibernate">

 <depends>jboss:service=Naming</depends>

 <depends>jboss:service=TransactionManager</depends>

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.JBossTransactionManagerLookup</attribute>

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="CacheMode">REPL_SYNC</attribute>

 <attribute name="ClusterName">portal.hibernate</attribute>

 </mbean>

 <mbean

 code="org.jboss.portal.core.hibernate.JBossTreeCacheProvider"

 name="portal:service=TreeCacheProvider,type=hibernate">

 <depends optional-attribute-name="CacheName">portal:service=TreeCache,type=hibernate

 </depends>

 </mbean>

More information can be found here [http://wiki.jboss.org/wiki/

Wiki.jsp?page=JBossCacheHibernate].

14.3.3. Identity clustering

JBoss Portal leverages the servlet container authentication for its own authentication mechanism.

When the user is authenticated on one particular node he will have to reauthenticate again if

a different node of the cluster (during a failover for instance) is used. This is valid only for the

FORM based authentication which is the default form of authentication that JBoss Portal uses.

Fortunately JBoss provides transparent reauthentication of the user called JBoss clustered SSO.

Its configuration can be found in $JBOSS_HOME/server/all/deploy/jboss-web.deployer/

server.xml and you will need to uncomment the following valve:

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate

CMS clustering

155

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" />

More information can be found here [http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn].

14.3.4. CMS clustering

The CMS backend storage relies on the Apache Jackrabbit project. Jackrabbit does not support

clustering out of the box. So the portal run the Jackrabbit service on one node of the cluster

using the HA-Singleton [http://www.onjava.com/pub/a/onjava/2003/08/20/jboss_clustering.html]

technology. The file jboss-portal.sar/portal-cms.sar/META-INF/jboss-service.xml contains the

configuration. We will not reproduce it in this documentation as the changes are quite complex

and numerous. Access from all nodes of the cluster is provided by a proxy bound in HA-JNDI. In

order to avoid any bottleneck JBoss Cache is leveraged to cache CMS content cluster wide.

http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn
http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn
http://www.onjava.com/pub/a/onjava/2003/08/20/jboss_clustering.html
http://www.onjava.com/pub/a/onjava/2003/08/20/jboss_clustering.html

Chapter 14. Clustering Config...

156

14.4. Setup

We are going to outline how to setup a two node cluster on the same machine in order to test

JBoss Portal HA. The only missing part from the full fledged setup is the addition of a load balancer

in front of Apache Tomcat. However a lot of documentation exist on the subject. A detailed step

by step setup of Apache and mod_jk is available from the JBoss Wiki [http://wiki.jboss.org/wiki/

Wiki.jsp?page=UsingMod_jk1.2WithJBoss].

As we need two application servers running at the same time, we must avoid any conflict. For

instance we will need Apache Tomcat to bind its socket on two different ports otherwise a network

conflict will occur. We will leverage the service binding manager this chapter [http://docs.jboss.org/

jbossas/jboss4guide/r3/html/ch10.html] of the JBoss AS documentation.

The first step is to copy the all configuration of JBoss into two separate configurations that we

name ports-01 and ports-02 :

>cd $JBOSS_HOME/server

>cp -r all ports-01

>cp -r all ports-02

Edit the file $JBOSS_HOME/server/ports-01/conf/jboss-service.xml and uncomment the service

binding manager :

<mbean code="org.jboss.services.binding.ServiceBindingManager"

 name="jboss.system:service=ServiceBindingManager">

 <attribute name="ServerName">ports-01</attribute>

 <attribute name="StoreURL">

 ${jboss.home.url}/docs/examples/binding-manager/sample-bindings.xml</attribute>

 <attribute

 name="StoreFactoryClassName">org.jboss.services.binding.XMLServicesStoreFactory</

attribute>

</mbean>

Edit the file $JBOSS_HOME/server/ports-02/conf/jboss-service.xml, uncomment the service

binding manager and change the value ports-01 into ports-02:

<mbean code="org.jboss.services.binding.ServiceBindingManager"

 name="jboss.system:service=ServiceBindingManager">

 <attribute name="ServerName">ports-02</attribute>

http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss
http://docs.jboss.org/jbossas/jboss4guide/r3/html/ch10.html
http://docs.jboss.org/jbossas/jboss4guide/r3/html/ch10.html
http://docs.jboss.org/jbossas/jboss4guide/r3/html/ch10.html

Setup

157

 <attribute name="StoreURL">

 ${jboss.home.url}/docs/examples/binding-manager/sample-bindings.xml</attribute>

 <attribute name="StoreFactoryClassName">

 org.jboss.services.binding.XMLServicesStoreFactory</attribute>

</mbean>

Setup a database that will be shared by the two nodes and obviously we cannot use an embedded

database. For instance using postgresql we would need to copy the file portal-postgresql-ds.xml

into $JBOSS_HOME/server/ports-01/deploy and $JBOSS_HOME/server/ports-02/deploy.

Copy JBoss Portal HA to the deploy directory of the two configurations.

JBoss Cache. To improve CMS performance JBoss Cache is leveraged to cache the content

cluster wide. We recommend that you use the following version of JBoss Cache for best

performance:

• JBoss Cache 1.4.0.SP1 and above

• JGroups 2.2.7 or 2.2.8

When building from source the following command: {core}/build.xml deploy-ha automatically

upgrades your JBoss Cache version.

Alternative: If upgrading your JBoss Cache version is not an option, the following configuration

change is needed in the jboss-portal-ha.sar/portal-cms.sar/META-INF/jboss-

service.xml. Replace the following configuration in the cms.pm.cache:service=TreeCache

Mbean:

<!--

 Configuring the PortalCMSCacheLoader

 CacheLoader configuration for 1.4.0

-->

<attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>false</passivation>

 <preload></preload>

 <shared>false</shared>

 <cacheloader>

 <class>org.jboss.portal.cms.hibernate.state.PortalCMSCacheLoader</class>

 <properties></properties>

 <async>false</async>

 <fetchPersistentState>false</fetchPersistentState>

 <ignoreModifications>false</ignoreModifications>

 </cacheloader>

 </config>

Chapter 14. Clustering Config...

158

</attribute>

with the following configuration:

<!--

 Configuring the PortalCMSCacheLoader

 CacheLoader configuratoon for 1.2.4SP2

-->

<attribute

 name="CacheLoaderClass">org.jboss.portal.cms.hibernate.state.PortalCMSCacheLoader

</attribute>

<attribute name="CacheLoaderConfig" replace="false"></attribute>

<attribute name="CacheLoaderPassivation">false</attribute>

<attribute name="CacheLoaderPreload"></attribute>

<attribute name="CacheLoaderShared">false</attribute>

<attribute name="CacheLoaderFetchTransientState">false</attribute>

<attribute name="CacheLoaderFetchPersistentState">false</attribute>

<attribute name="CacheLoaderAsynchronous">false</attribute>

Finally we can start both servers, open two shells and execute :

>cd $JBOSS_HOME/bin

>sh run.sh -c ports-01

>cd $JBOSS_HOME/bin

>sh run.sh -c ports-02

14.5. Portlet Session Replication

Web containers offer the capability to replicate sessions of web applications. In the context of a

portal using portlets the use case is different. The portal itself is a web application that benefits

of web application session replication. We have to make the distinction between local or remote

portlets :

• Local portlets are web applications deployed in the same virtual machine as the portal web

application. At runtime the access to a portlet is done using the mechanism of request

JBoss Portal configuration

159

dispatching. The portlet session is actually a mere wrapper of the underlying http session of the

web application in which the portlet is deployed.

• Remote portlets are accessed using a web service, we will not cover the replication in this

chapter.

The servlet specification is very loose on the subject of replication and does not state anything

about the replication of sessions during a dispatched request. JBoss Portal offers a portlet session

replication mechanism that leverages the usage of the portal session instead which has several

advantages

• Replicate only the portlet that requires it.

• Portal session replication is just web application replication and is very standard.

There are, however, some limitations. For example, you can only replicate portlet-scoped

attributes of a portlet session. This means that any application-scoped attribute are not replicated.

14.5.1. JBoss Portal configuration

The mandatory step to make JBoss Portal able to replicate portlet sessions is to configure the

portal web application to be distributed as explained in Section 14.3.1, “Portal Session Replication”

14.5.2. Portlet configuration

In order to activate portlet session replication you need to:

• Add a Portal-specific listener class to the /WEB-INF/web.xml file of your portlet web application

• Configure your portlet to be distributed in the /WEB-INF/jboss-portlet.xml file

<web-app>

 ...

 <listener>

 <listener-class> org.jboss.portal.portlet.session.SessionListener </listener-class>

 </listener>

 ...

</web-app>

Example web.xml

<portlet-app>

 ...

Chapter 14. Clustering Config...

160

 <portlet>

 <portlet-name>YourPortlet</portlet-name>

 ...

 <session-config>

 <distributed>true</distributed>

 </session-config>

 ...

 </portlet>

 ...

</portlet-app>

Configure YourPortlet to be replicated in jboss-portlet.xml

14.5.3. Limitations

As we noted above there are advantages as well as limitations to the clustering configuration

• You can only replicate portlet scoped attributes of a portlet. The main reason of this is to keep

consistency with the session state. If accessing a portlet would trigger replication of application

scoped attribute during the rendering of a page then another portlet on the same page could

use this attribute for generating its markup. Then the state seen by this second portlet would not

necessarily be the same depending on the order in which the portlets on this page are rendered.

• Mutable objects need an explicit call to setAttribute(String name, Object value) on the portlet

session object in order to trigger replication by the container.

public void processAction(ActionRequest req, ActionResponse resp)

 throws PortletException, IOException

{

 ...

 if ("addItem".equals(action))

 {

 PortletSession session = req.getPortletSession();

 ShoppingCart cart = (PortletSession)session.getAttribute("cart");

 cart.addItem(item);

 // Perform an explicit set in order to signal to the container that the object

 // state has changed

 session.setAttribute("cart", cart);

 }

 ...

}

Chapter 15.

161

Web Services for Remote Portlets

(WSRP)
Julien Viet

Chris Laprun

15.1. Introduction

The Web Services for Remote Portlets specification defines a web service interface for accessing

and interacting with interactive presentation-oriented web services. It has been produced through

the efforts of the Web Services for Remote Portlets (WSRP) OASIS Technical Committee. It is

based on the requirements gathered and on the concrete proposals made to the committee.

Scenarios that motivate WSRP functionality include:

• Content hosts, such as portal servers, providing Portlets as presentation-oriented web services

that can be used by aggregation engines.

• Aggregating frameworks, including portal servers, consuming presentation-oriented web

services offered by content providers and integrating them into the framework.

More information on WSRP can be found on the official website for WSRP [http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrp]. We suggest reading the primer [http:/

/www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp] for a good, albeit technical,

overview of WSRP.

15.2. Level of support in JBoss Portal

The WSRP Technical Committee defined WSRP Use Profiles [http://www.oasis-open.org/

committees/download.php/3073] to help with WSRP interoperability. We will refer to terms defined

in that document in this section.

JBoss Portal provides a Simple level of support for our WSRP Producer except that out-of-band

registration is not currently handled. We support in-band registration and persistent local state

(which are defined at the Complex level).

On the Consumer side, JBoss Portal provides a Medium level of support for WSRP, except that

we only handle HTML markup (as Portal itself doesn't handle other markup types). We do support

explicit portlet cloning and we fully support the PortletManagement interface.

As far as caching goes, we have Level 1 Producer and Consumer. We support Cookie handling

properly on the Consumer and our Producer requires initialization of cookies (as we have found

that it improved interoperabilty with some consumers). We don't support custom window states or

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/download.php/3073
http://www.oasis-open.org/committees/download.php/3073
http://www.oasis-open.org/committees/download.php/3073

Chapter 15. Web Services for ...

162

modes, as Portal doesn't either. We do, however, support CSS on both the Producer (though it's

more a function of the portlets than inherent Producer capability) and Consumer.

While we provide a complete implementation of WSRP 1.0, we do need to go through

the Conformance statements [http://www.oasis-open.org/committees/download.php/6018] and

perform more interoperability testing (an area that needs to be better supported by the WSRP

Technical Committee and Community at large).

15.3. Deploying JBoss Portal's WSRP services

JBoss Portal provides a complete support of WSRP 1.0 standard interfaces and offers both

consumer and producer services. WSRP support is provided by the portal-wsrp.sar service

archive, included in the main jboss-portal.sar service archive, if you've obtained JBoss Portal

from a binary distribution. If you don't intend on using WSRP, we recommend that you remove

portal-wspr.sar from the main jboss-portal.sar service archive.

If you've obtained the source distribution of JBoss Portal, you need to build and

deploy the WSRP service separately. Please follow the instructions on how to install

JBoss Portal from the sources [http://docs.jboss.com/jbportal/v2.6/reference-guide/en/html/

installation.html#install_source]. Once this is done, navigate to JBOSS_PORTAL_HOME_DIRECTORY/

wsrp and type: build deploy At the end of the build process, portal-wsrp.sar is copied to

JBOSS_HOME/server/default/deploy.

15.3.1. Considerations to use WSRP when running Portal on a

non-default port or hostname

If you have modified the port number on which Portal runs or bound your Application Server

to a specific host name, you will also need update the port and/or hostname information for

WSRP [http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPChangePorts] as found on JBoss Portal's

wiki [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal].

15.3.2. Considerations to use WSRP with SSL

It is possible to use WSRP over SSL for secure exchange of data. Please refer to the instructions

[http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPUseSSL] on how to do so from JBoss Portal's wiki

[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal].

15.4. Making a portlet remotable

JBoss Portal does NOT, by default, expose local portlets for consumption by remote WSRP

consumers. In order to make a portlet remotely available, it must be made "remotable" by adding a

remotable element to the jboss-portlet.xml deployment descriptor for that portlet. If a jboss-

portlet.xml file does not exist, one must be added to the WEB-INF folder of the web application

containing the portlet.

In the following example, the "BasicPortlet" portlet is specified as being remotable. The remotable

element is optional.

http://www.oasis-open.org/committees/download.php/6018
http://www.oasis-open.org/committees/download.php/6018
http://docs.jboss.com/jbportal/v2.6/reference-guide/en/html/installation.html#install_source
http://docs.jboss.com/jbportal/v2.6/reference-guide/en/html/installation.html#install_source
http://docs.jboss.com/jbportal/v2.6/reference-guide/en/html/installation.html#install_source
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPChangePorts
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPChangePorts
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPChangePorts
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPUseSSL
http://wiki.jboss.org/wiki/Wiki.jsp?page=WSRPUseSSL
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossPortal

Making a portlet remotable

163

Example 15.1.

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE portlet-app PUBLIC "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <portlet>

 <portlet-name>BasicPortlet</portlet-name>

 <remotable>true</remotable>

 </portlet>

</portlet-app>

It is also possible to specify that all the portlets declared within a given jboss-portlet.xml file

have a specific "remotable" status by default. This is done by adding a single remotable element

to the root portlet-app element. Usually, this feature will be used to remotely expose several

portlets without having to specify the status for all the declared portlets. Let's look at an example:

Example 15.2.

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 <remotable>true</remotable>

 <portlet>

 <portlet-name>RemotelyExposedPortlet</portlet-name>

 ...

 </portlet>

 <portlet>

 <portlet-name>NotRemotelyExposedPortlet</portlet-name>

 <remotable>false</remotable>

 ...

 </portlet>

</portlet-app>

In the example above, we defined two portlets with a default "remotable" status set to true. This

means that all portlets defined in this descriptor are, by default, exposed remotely by JBoss Portal's

WSRP producer. Note, however, that it is possible to override the default behavior by adding a

Chapter 15. Web Services for ...

164

remotable element to a portlet description. In that case, the "remotable" status defined by the

portlet takes precedence over the default. In the example above, the RemotelyExposedPortlet

inherits the "remotable" status defined by default since it does not specify a remotable element in

its description. The NotRemotelyExposedPortlet, however, overrides the default behavior and

is not remotely exposed. Note that in the absence of a top-level remotable element, portlets are

NOT remotely exposed.

15.5. Consuming JBoss Portal's WSRP portlets from a

remote Consumer

WSRP Consumers vary a lot as far as how they are configured. Most of them require that you

either specify the URL for the Producer's WSDL definition or the URLs for the individual endpoints.

Please refer to your Consumer's documentation for specific instructions. For instructions on how

to do so in JBoss Portal, please refer to Section 15.6, “Consuming remote WSRP portlets in JBoss

Portal”.

JBoss Portal's Producer is automatically set up when you deploy a portal instance with the

WSRP service. You can access the WSDL file at http://{hostname}:{port}/portal-wsrp/

MarkupService?wsdl. You can access the endpoint URLs at:

• http://{hostname}:{port}/portal-wsrp/ServiceDescriptionService

• http://{hostname}:{port}/portal-wsrp/MarkupService

• http://{hostname}:{port}/portal-wsrp/RegistrationService

• http://{hostname}:{port}/portal-wsrp/PortletManagementService

The default hostname is localhost and the default port is 8080.

15.6. Consuming remote WSRP portlets in JBoss Portal

15.6.1. Overview

To be able to consume WSRP portlets exposed by a remote producer, JBoss Portal's WSRP

consumer needs to know how to access that remote producer. One can configure access to a

remote producer using WSRP Producer descriptors. Alternatively, a portlet is provided to configure

remote producers.

Once a remote producer has been configured, it can be made available in the list of portlet

providers in the Management portlet on the Admin page of JBoss Portal. You can then examine

the list of portlets that are exposed by this producer and configure the portlets just like you would

for local portlets.

JBoss Portal's default configuration exposes some of the sample portlets for remote consumption.

As a way to test the WSRP service, a default consumer has been configured to consume these

portlets. To make sure that the service indeed works, check that there is a portlet provider with

Configuring a remote producer walk-through

165

the self identifier in the portlet providers list in the Management portlet of the Admin page. All

local portlets marked as remotable are exposed as remote portlets via the self portlet provider so

that you can check that they work as expected with WSRP. The portal-wsrp.sar file contains

a WSRP Producer descriptor (default-wsrp.xml) that configures this default producer. This file

can be edited or removed if needed.

15.6.2. Configuring a remote producer walk-through

Let's work through the steps of defining access to a remote producer so that its portlets can be

consumed within JBoss Portal. We will configure access to BEA's public WSRP producer. We will

first examine how to do so using the configuration portlet. We will then show how the same result

can be accomplish with a producer descriptor.

15.6.2.1. Using the configuration portlet

As of Portal 2.6, a configuration portlet is provided to configure access to remote WSRP Producers

grahically. You can access it at http://{hostname}:{port}/portal/auth/portal/admin/

WSRP or by logging in as a Portal administrator and clicking on the WSRP tab in the Admin portal.

If all went well, you should see something similar to this:

This screen presents all the configured producers associated with their status and possible actions

on them. A Consumer can be active or inactive. Activating a Consumer means that it is ready to act

as a portlet provider. Deactivating it will remove it from the list of available portlet providers. Note

also that a Consumer can be marked as requiring refresh meaning that the information held about

it might not be up to date and refreshing it from the remote Producer might be a good idea. This

can happen for several reasons: the service description for that remote Producer has not been

fetched yet, the cached version has expired or modifications have been made to the configuration

that could potentially invalidate it, thus requiring re-validation of the information.

Next, we create a new Consumer which we will callbea. Type "bea" in the "Create a consumer

named:" field then click on "Create consumer":

Chapter 15. Web Services for ...

166

You should now see a form allowing you to enter/modify the information about the Consumer. Set

the cache expiration value to 300 seconds and enter the WSDL URL for the producer in the text

field and press the "Refresh & Save" button:

This will retrieve the service description associated with the Producer which WSRP is described

by the WSDL file found at the URL you just entered. In our case, querying the service description

will allow us to learn that the Producer requires registration and that it expects a value for the

registration property named registration/consumerRole:

Note
At this point, there is no automated way to learn about which possible values (if

any) are expected by the remote Producer. In the case of BEA's public producer,

the possible values are indicated in the registration property description. This is

not always the case... Please refer to the specific Producer's documentation.

Enter "public" as the value for the registration property and press "Save & Refresh" once more.

You should now see something similar to:

Configuring a remote producer walk-through

167

The Consumer for the bea Producer should now be available as a portlet provider and is ready

to be used.

A producer is configured, by default, by retrieving the producer's information via a WSDL URL.

There are rare cases, however, where URLs need to be provided for each of the producer's end

points. You can do exactly that by unchecking the "Use WSDL?" checkbox, as is the case for

the self producer:

15.6.2.2. Using a WSRP Producer XML descriptor

We will create a public-bea-wsrp.xml descriptor. Note that the actual name does not matter as

long as it ends with -wsrp.xml:

Chapter 15. Web Services for ...

168

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE deployments PUBLIC "-//JBoss Portal//DTD WSRP Remote Producer

 Configuration 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-wsrp-consumer_2_6.dtd">

<deployments>

 <deployment>

 <wsrp-producer id="bea" expiration-cache="300">

 <endpoint-wsdl-url>http://wsrp.bea.com:7001/producer/producer?WSDL</endpoint-wsdl-url>

 <registration-data>

 <property>

 <name>registration/consumerRole</name>

 <lang>en</lang>

 <value>public</value>

 </property>

 </registration-data>

 </wsrp-producer>

 </deployment>

</deployments>

This producer descriptor gives access to BEA's public WSRP producer. We will look at the details

of the different elements later. Note for now the producer-id element with a "bea" value. Put this

file in the deploy directory and start the server (with JBoss Portal and its WSRP service deployed).

Note
A DTD and an XML Schema for WSRP Producer XML descriptors

are available in jboss-portal.sar/portal-wsrp.sar/dtd/jboss-wsrp-

consumer_2_6.dtd and jboss-portal.sar/portal-wsrp.sar/xsd/jboss-

wsrp-consumer_2_6.xsd

15.6.2.3. Configuring access to a remote portlet

Let's now look at the Admin page and the Management portlet. Click on the "Portlet definitions"

tab at the top. Once this is done, look at the list of available portlet providers. If all went well, you

should see something similar to this:

Configuring a remote producer walk-through

169

We have 3 available portlet providers: local, self andbea. The local portlet provider exposes

all the portlets deployed in this particular instance of Portal. As explained above, the self provider

refers to the default WSRP consumer bundled with Portal that consumes the portlets exposed

by the default WSRP producer. The bea provider corresponds to BEA's public producer we just

configured. Select it and click on "View portlets". You should now see something similar to:

From there on out, you should be able to configure WSRP portlets just as any other. In particular,

you can create an instance of one of the remote portlets offered by BEA's public producer just like

you would create an instance of a local portlet and then assign it to a window in a page. If you go

to that page, you should see something similar to below for this portlet:

Chapter 15. Web Services for ...

170

15.6.3. WSRP Producer descriptors

A WSRP Producer descriptor is an XML file which name ends in -wsrp.xml and which can be

dropped in the deploy directory of the JBoss application server or nested in .sar files. It is possible

to configure access to several different producers within a single descriptor or use one file per

producer, depending on your needs. An XML Schema for the WSRP Producer descriptor format

can be found at jboss-portal.sar/portal-wsrp.sar/xsd/jboss-wsrp-consumer_2_6.xsd,

while a (legacy) DTD can be found at jboss-portal.sar/portal-wsrp.sar/dtd/jboss-wsrp-

consumer_2_6.dtd.

Note
It is important to note how WSRP Producer descriptors are processed. They are

read the first time the WSRP service starts and the associated information is then

put in the Portal database. Subsequent launch of the WSRP service will use the

database-stored information for all producers which identifier is already known to

Portal. More specifically, all the descriptors are scanned for producer identifiers.

Any identifier that is already known will be bypassed and the configuration

associated with this remote producer in the database will be used. If a producer

identifier is found that wasn't already in the database, that producer information

will be processed and recorded in the database. Therefore, if you wish to delete

a producer configuration, you need to delete the associated information in the

database (this can be accomplished using the configuration portlet as we saw in

Section 15.6.2.1, “Using the configuration portlet”) AND remove the associated

information in any WSRP Producer descriptor (if such information exists) as the

producer will be re-created the next time the WSRP is launched if that information

is not removed.

15.6.3.1. Required configuration information

Let's now look at which information needs to be provided to configure access to a remote producer.

First, we need to provide an identifier for the producer we are configuring so that we can refer to it

afterwards. This is accomplished via the mandatory id attribute of the <wsrp-producer> element.

JBoss Portal also needs to learn about the remote producer's endpoints to be able to connect to

the remote web services and perform WSRP invocations. Two options are currently supported to

provide this information:

• You can provide the URLs for each of the different WSRP interfaces offered by the

remote producer via the <endpoint-config> element and its <service-description-url>,

<markup-url>, <registration-url> and <portlet-management-url> children. These URLs

are producer-specific so you will need to refer to your producer documentation or WSDL file to

determine the appropriate values.

WSRP Producer descriptors

171

• Alternatively, and this is the easiest way to configure your producer, you can provide a URL

pointing to the WSDL description of the producer's WSRP services. This is accomplished via

the <endpoint-wsdl-url> element. JBoss Portal will then heuristically determine, from the

information contained in the WSDL file, how to connect appropriately to the remote WSRP

services.

Note
It is important to note that, when using this method, JBoss Portal will try to match

a port name to an interface based solely on the provided name. There are no

standard names for these ports so it is possible (though rare) that this matching

process fails. In this case, you should look at the WSDL file and provide the

endpoint URLs manually, as per the previous method.

Both the id attribute and either <endpoint-config> or <endpoint-wsdl-url> elements are

required for a functional remote producer configuration.

15.6.3.2. Optional configuration

It is also possible to provide addtional configuration, which, in some cases, might be important to

establish a proper connection to the remote producer.

One such optional configuration concerns caching. To prevent useless roundtrips between the

local consumer and the remote producer, it is possible to cache some of the information sent

by the producer (such as the list of offered portlets) for a given duration. The rate at which the

information is refreshed is defined by the expiration-cache attribute of the <wsrp-producer>

element which specifies the refreshing period in seconds. For example, providing a value of 120

for expiration-cache means that the producer information will not be refreshed for 2 minutes after

it has been somehow accessed. If no value is provided, JBoss Portal will always access the

remote producer regardless of whether the remote information has changed or not. Since, in most

instances, the information provided by the producer does not change often, we recommend that

you use this caching facility to minimize bandwidth usage.

Additionally, some producers require consumers to register with them before authorizing them to

access their offered portlets. If you know that information beforehand, you can provide the required

registration information in the producer configuration so that the Portal consumer can register with

the remote producer when required.

Note
At this time, though, only simple String properties are supported and it is not

possible to configure complex registration data. This should however be sufficient

for most cases.

Registration configuration is done via the <registration-data> element. Since JBoss Portal

can generate the mandatory information for you, if the remote producer does not require any

Chapter 15. Web Services for ...

172

registration properties, you only need to provide an empty <registration-data> element. Values

for the registration properties required by the remote producer can be provided via <property>

elements. See the example below for more details. Additionally, you can override the default

consumer name automatically provided by JBoss Portal via the <consumer-name> element. If you

choose to provide a consumer name, please remember that this should uniquely identify your

consumer.

15.6.4. Examples

Here is the configuration of the self producer as found in default-wsrp.xml with a cache

expiring every five minutes:

Example 15.3.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC "-//JBoss Portal//DTD WSRP Remote Producer Configuration

 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-wsrp-consumer_2_6.dtd">

<deployments>

 <deployment>

 <wsrp-producer id="self" expiration-cache="300">

 <!--

 we need to use the individual endpoint configuration because the configuration via

 wsdl forces an immediate attempt to access the web service description which is not

 available yet at this point of deployment

 -->

 <endpoint-config>

 <service-description-url>

 http://localhost:8080/portal-wsrp/ServiceDescriptionService

 </service-description-url>

 <markup-url>http://localhost:8080/portal-wsrp/MarkupService</markup-url>

 <registration-url>

 http://localhost:8080/portal-wsrp/RegistrationService

 </registration-url>

 <portlet-management-url>

 http://localhost:8080/portal-wsrp/PortletManagementService

 </portlet-management-url>

 </endpoint-config>

 <registration-data/>

 </wsrp-producer>

 </deployment>

</deployments>

Examples

173

Here is an example of a WSRP descriptor with a 2 minute caching time and manual definition of

the endpoint URLs:

Example 15.4.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC "-//JBoss Portal//DTD WSRP Remote Producer Configuration

 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-wsrp-consumer_2_6.dtd">

<deployments>

 <deployment>

 <wsrp-producer id="MyProducer" expiration-cache="120">

 <endpoint-config>

 <service-description-url>

 http://www.someproducer.com/portal-wsrp/ServiceDescriptionService

 </service-description-url>

 <markup-url>

 http://www.someproducer.com/portal-wsrp/MarkupService

 </markup-url>

 <registration-url>

 http://www.someproducer.com/portal-wsrp/RegistrationService

 </registration-url>

 <portlet-management-url>

 http://www.someproducer.com/portal-wsrp/PortletManagementService

 </portlet-management-url>

 </endpoint-config>

 </wsrp-producer>

 </deployment>

</deployments>

Here is an example of a WSRP descriptor with endpoint definition via remote WSDL file,

registration data and cache expiring every minute:

Example 15.5.

<?xml version="1.0" encoding="UTF-8"?>

Chapter 15. Web Services for ...

174

<!DOCTYPE deployments PUBLIC "-//JBoss Portal//DTD WSRP Remote Producer Configuration

 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-wsrp-consumer_2_6.dtd">

<deployments>

 <deployment>

 <wsrp-producer id="AnotherProducer" expiration-cache="60">

 <endpoint-wsdl-url>http://example.com/producer/producer?WSDL</endpoint-wsdl-url>

 <registration-data>

 <property>

 <name>property name</name>

 <lang>en</lang>

 <value>property value</value>

 </property>

 </registration-data>

 </wsrp-producer>

 </deployment>

</deployments>

15.7. Consumers maintenance

15.7.1. Modifying a currently held registration

15.7.1.1. Registration modification for service upgrade

Producers often offer several levels of service depending on consumers' subscription levels (for

example). This is implemented at the WSRP level with the registration concept: producers assert

which level of service to provide to consumers based on the values of given registration properties.

It is therefore sometimes necessary to modify the registration that concretizes the service

agreement between a consumer and a producer. An example of easily available producer offering

different level of services is BEA's public producer. We configured access to that producer

in Section 15.6.2.1, “Using the configuration portlet”. If you recall, the producer was requiring

registration and required a value to be provided for the registration/consumerRole property.

The description of that property indicated that three values were possible: public, partner or

insider each corresponding to a different service level. We registered using the public service

level. This gave us access to three portlets as shown here:

Modifying a currently held registration

175

Suppose now that we would like to upgrade our service level to the "insider" level. We will need to

tell BEA's producer that our registration data has been modified. Let's see how to do this. Assuming

you have configured access to the producer as previously described, please go to the configuration

screen for the bea producer and modify the value of the registration/consumerRole to insider

instead of public:

Now click on "Update properties" to save the change. A "Modify registration" button should now

appear to let you send this new data to the remote producer:

Click on this new button and, if everything went well and your updated registration has been

accepted by the remote producer, you should see something similar to:

Chapter 15. Web Services for ...

176

You can now check the list of available portlets from the bea provider and verify that new portlets

are now available:

15.7.1.2. Registration modification on producer error

It can also happen that a producer administrator decided to require more information from

registered consumers. In this case, invoking operations on the producer will fail with an

OperationFailedFault. JBoss Portal will attempt to help you in this situation. Let's walk through

an example using the self producer. Let's assume that registration is required without any

registration properties (as is the case by default). If you go to the configuration screen for this

producer, you should see:

Modifying a currently held registration

177

Now suppose that the administrator of the producer now requires a value to be provided for an

email registration property. We will actually see how to do perform this operation in JBoss Portal

when we examine how to configure Portal's producer in Section 15.8, “Configuring JBoss Portal's

WSRP Producer”. Operations with this producer will now fail. If you suspect that a registration

modification is required, you should go to the configuration screen for this remote producer and

refresh the information held by the consumer by pressing "Refresh & Save":

Chapter 15. Web Services for ...

178

As you can see, the configuration screen now shows the currently held registration information

and the expected information from the producer. Enter a value for the email property and then

click on "Modify registration". If all went well and the producer accepted your new registration data,

you should see something similar to:

Note
As of WSRP 1, it is rather difficult to ascertain for sure what caused an

OperationFailedFault as it is the generic exception returned by producers if

something didn't quite happen as expected during a method invocation. This

means that OperationFailedFault can be caused by several different reasons,

one of them being a request to modify the registration data. Please take a look at

the log files to see if you can gather more information as to what happened. WSRP

2 introduces an exception that is specific to a request to modify registrations thus

reducing the ambiguity that currently exists.

15.7.2. Consumer operations

Several operations are available from the consumer list view of the WSRP configuration portlet:

Erasing local registration data

179

The available operations are:

• Configure: displays the consumer details and allows user to edit them

• Refresh: forces the consumer to retrieve the service description from the remote producer to

refresh the local information (offered portlets, registration information, etc.)

• Activate/Deactivate: activates/deactivates a consumer, governing whether it will be available to

provide portlets and receive portlet invocations

• Register/Deregister: registers/deregisters a consumer based on whether registration is required

and/or acquired

• Delete: destroys the consumer, after deregisterting it if it was registered

15.7.3. Erasing local registration data

There are rare cases where it might be required to erase the local information without being able

to deregister first. This is the case when a consumer is registered with a producer that has been

modified by its administrator to not require registration anymore. If that ever was to happen (most

likely, it won't), you can erase the local registration information from the consumer so that it can

resume interacting with the remote producer. To do so, click on "Erase local registration" button

next to the registration context information on the consumer configuration screen:

Warning: This operation is dangerous as it can result in inability to interact with the remote

producer if invoked when not required. A warning screen will be displayed to give you a chance

to change your mind:

Chapter 15. Web Services for ...

180

15.8. Configuring JBoss Portal's WSRP Producer

15.8.1. Overview

You can configure the behavior of Portal's WSRP Producer by using the WSRP administration

interface, which is the preferred way, or by editing the conf/config.xml file found in

portal-wsrp.sar. Several aspects can be modified with respects to whether registration

is required for consumers to access the Producer's services. An XML Schema for the

configuration format is available at jboss-portal.sar/portal-wsrp.sar/xsd/jboss-wsrp-

producer_2_6.xsd, while a (legacy) DTD is available at jboss-portal.sar/portal-wsrp.sar/

dtd/jboss-wsrp-producer_2_6.dtd

15.8.2. Default configuration

The default producer configuration is to require that consumers register with it before providing

access its services but does not require any specific registration properties (apart from what is

mandated by the WSRP standard). It does, however, require consumers to be registered before

sending them a full service description. This means that our WSRP producer will not provide the list

of offered portlets and other capabilities to unregistered consumers. The producer also uses the

default RegistrationPolicy paired with the default RegistrationPropertyValidator. We will

look into property validators in greater detail later in Section 15.8.3, “Registration configuration”.

Suffice to say for now that this allows users to customize how Portal's WSRP Producer decides

whether a given registration property is valid or not.

Registration configuration

181

JBoss Portal 2.6.3 introduces a web interface to configure the producer's behavior. You can

access it by clicking on the "Producer Configuration" tab of the "WSRP" page of the "admin" portal.

Here's what you should see with the default configuration:

As would be expected, you can specify whether or not the producer will send the full service

description to unregistered consumers, and, if it requires registration, which RegistrationPolicy

to use (and, if needed, which RegistrationPropertyValidator), along with required registration

property description for which consumers must provide acceptable values to successfully register.

15.8.3. Registration configuration

In order to require consumers to register with Portal's producer before interacting with it, you

need to configure Portal's behavior with respect to registration. Registration is optional, as are

registration properties. The producer can require registration without requiring consumers to pass

any registration properties as is the case in the default configuration. Let's configure our producer

starting with a blank state:

We will allow unregistered consumers to see the list of offered portlets so we leave the first

checkbox ("Access to full service description requires consumers to be registered.") unchecked.

We will, however, specify that consumers will need to be registered to be able to interact with

our producer. Check the second checkbox ("Requires registration. Modifying this information will

trigger invalidation of consumer registrations."). The screen should now refresh and display:

Chapter 15. Web Services for ...

182

You can specify the fully-qualified name for your RegistrationPolicy and

RegistrationPropertyValidator there. We will keep the default value. See Section 15.8.3.1,

“Customization of Registration handling behavior” for more details. Let's add, however, a

registration property called email. Click "Add property" and enter the appropriate information in

the fields, providing a description for the registration property that can be used by consumers to

figure out its purpose:

Press "Save" to record your modifications.

Note
At this time, only String (xsd:string) properties are supported. If your application

requires more complex properties, please let us know.

Note
If consumers are already registered with the producer, modifying the configuration

of required registration information will trigger the invalidation of held registrations,

requiring consumers to modify their registration before being able to access the

producer again. We saw the consumer side of that process in Section 15.7.1.2,

“Registration modification on producer error”.

WSRP validation mode

183

15.8.3.1. Customization of Registration handling behavior

Registration handling behavior can be customized by users to suit their Producer needs. This

is accomplished by providing an implementation of the RegistrationPolicy interface. This

interface defines methods that are called by Portal's Registration service so that decisions can

be made appropriately. A default registration policy that provides basic behavior is provided and

should be enough for most user needs.

While the default registration policy provides default behavior for most registration-related

aspects, there is still one aspect that requires configuration: whether a given value for a

registration property is acceptable by the WSRP Producer. This is accomplished by plugging a

RegistrationPropertyValidator in the default registration policy. This allows users to define

their own validation mechanism.

Please refer to the Javadoc™ for org.jboss.portal.registration.RegistrationPolicy

and org.jboss.portal.Registration.policies.RegistrationPropertyValidator for more

details on what is expected of each method.

Defining a registration policy is required for the producer to be correctly configured. This is

accomplished by specifying the qualified class name of the registration policy. Since we anticipate

that most users will use the default registration policy, it is possible to provide the class name of

your custom property validator instead to customize the default registration policy behavior. Note

that property validators are only used by the default policy.

Note
Since the policy or the validator are defined via their class name and dynamically

loaded, it is important that you make sure that the identified class is available

to the application server. One way to accomplish that is to deploy your policy

implementation as JAR file in your AS instance deploy directory. Note also that,

since both policies and validators are dynamically instantiated, they must provide

a default, no-argument constructor.

15.8.4. WSRP validation mode

The lack of conformance kit and the wording of the WSRP specification leaves room for differing

interpretations, resulting in interoperability issues. It is therefore possible to encounter issues when

using consumers from different vendors. We have experienced such issues and have introduced

a way to relax the validation that our WSRP producer performs on the data provided by consumers

to help with interoperability by accepting data that would normally be invalid. Note that we only

relax our validation algorithm on aspects of the specification that are deemed harmless such as

invalid language codes.

By default, the WSRP producer is configured in strict mode. If you experience issues with a given

consumer, you might want to try to relax the validation mode. This is accomplished by unchecking

the "Use strict WSRP compliance." checkbox on the Producer configuration screen.

184

Chapter 16.

185

Security
Roy Russo

Julien Viet

16.1. Securing Portal Objects

This section describes how to secure portal objects (portal instances, pages, and portlet

instances), using the JBoss Portal *-object.xml descriptor OR portlet-instances.xml descriptor.

View the User Guide for information on how to secure objects using the Management Portlet.

Securing portal objects declaratively, is done through the *-object.xml (Section 6.2.1, “*-

object.xml Descriptors”), for Portal Instances and Pages, or the portlet-instances.xml (

Section 6.2.2, “The portlet-instances.xml Descriptor”) for Portlet Instances. The portion you

will be adding to each object is denoted by the <security-constraint> tag:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

<deployments>

 <deployment>

 <parent-ref>default</parent-ref>

 <if-exists>overwrite</if-exists>

 <properties/>

 <page>

 <page-name>MyPage</page-name>

 <window>

 <window-name>HelloWorldPortletPageWindow</window-name>

 <instance-ref>HelloWorldPortletPageInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 </window>

 <security-constraint>

 <policy-permission>

 <action-name>viewrecursive</action-name>

 <unchecked/>

 </policy-permission>

 </security-constraint>

 </page>

 </deployment>

Chapter 16. Security

186

</deployments>

The basic principle of the security mechanism is that everything is restricted unless you grant

privileges. You grant privilege on a portal node by adding a security constraint as explained here:

<security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>viewrecursive</action-name>

 </policy-permission>

</security-constraint>

The example above will grant the view privilege to anyone (unchecked role) to the current object

and any child object recursively.

The security contraint portion is worth taking a look at, in an isolated fashion. It allows you to

secure a specific window/page/portal-instance based on a user's role.

Role definition: You must define a role that this security constraint will apply to. Possible values

are:

• <unchecked/> Anyone can view this page.

• <role-name>SOMEROLE</role-name> Access to this page is limited to the defined role.

Access Rights: You must define the access rights given to the role defined. Possible values are:

• view Users can view the page.

• viewrecursive Users can view the page and child pages.

• personalize Users are able to personalize the page's theme.

• personalizerecursive Users are able to personalize the page AND its children's pages themes.

Restricting access

Out of the box the default portal as a viewrecursive right for all the users, it means

that whenever a page is added, this page will be seen by any user. To restrict

access to this page, the default portal security constraint must be changed from

viewrecursive to view, and viewrecursive security constraints must be added to its

children so that they can be viewed except the one you want to restrict access to.

We provide three live samples of this descriptor, here Section 6.2.2, “The portlet-

instances.xml Descriptor” , Section 6.4.1, “Defining a new Portal Page” ,and Section 6.4.2,

“Defining a new Portal Instance”

Securing the Content Management System

187

16.2. Securing the Content Management System

The JBoss Portal CMS system consists of a directory structure of Files organized unto their

respective Folders. Both Files and Folders are considered to be CMS resources that can be

secured based on portal Roles and/or Users.

The following features are supported by the fine grained security system of Portal CMS:

• You can associate "Read", "Write", and "Manage" Permissions at the CMS node level. (Both

Files and Folders are treated as CMS nodes)

• The Permissions are propagated recursively down a folder hierarchy

• Any Permissions specified explicitly on the CMS Node overrides the policy inherited via

recursive propagation

• You can manage the Permissions using the CMS Admin GUI tool via the newly added "Secure

Node" feature

Table 16.1. Portal CMS Permission Matrix:

Permissions Allowed Actions Implies

Read Read Contents of Folder, File

and its versions

N/A

Write Create and Update new

Folder and File

Read Access

Manage Delete/Copy/Move/Rename

Folders and Files

Read and Write Access

16.2.1. CMS Security Configuration

The configuration for the CMS Security service is specified in the jboss-portal.sar/portal-

cms.sar/META-INF/jboss-service.xml file. The portion of the configuration relevant for

securing the CMS service is listed as follows:

 <!-- CMS Authorization Security Service -->

 <mbean

 code="org.jboss.portal.cms.security.AuthorizationManagerImpl"

 name="portal:service=AuthorizationManager,type=cms"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <attribute name="JNDIName">java:portal/cms/AuthorizationManager</attribute>

 <depends optional-attribute-name="Provider" proxy-type="attribute">

Chapter 16. Security

188

 portal:service=AuthorizationProvider,type=cms

 </depends>

 </mbean>

 <mbean

 code="org.jboss.portal.cms.security.AuthorizationProviderImpl"

 name="portal:service=AuthorizationProvider,type=cms"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <!--

 NOTE: cmsRootUserName denotes a single Portal user that has access to everything in

 the CMS. Denote this user

 carefully and should be synonymous to the 'root' user in UNIX operating systems. By default:

 this value is the built-in

 'admin' user account. This can be changed to any other user account registered in your Portal

 -->

 <attribute name="CmsRootUserName">admin</attribute>

 <depends optional-attribute-name="IdentityServiceController" proxy-

type="attribute">portal:service=Module,type=IdentityServiceController</depends>

 </mbean>

 <!-- ACL Security Interceptor -->

 <mbean

 code="org.jboss.portal.cms.impl.interceptors.ACLInterceptor"

 name="portal:service=Interceptor,type=Cms,name=ACL"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <attribute name="JNDIName">java:/portal/cms/ACLInterceptor</attribute>

 <attribute name="CmsSessionFactory">java:/portal/cms/CMSSessionFactory</attribute>

 <attribute name="IdentitySessionFactory">java:/portal/IdentitySessionFactory</attribute>

 <attribute name="DefaultPolicy">

 <policy>

 <!-- permissions on the root cms node -->

 <criteria name="path" value="/">

 <permission name="cms" action="read">

 <role name="Anonymous"/>

 </permission>

 <permission name="cms" action="write">

 <role name="User"/>

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin"/>

 </permission>

 </criteria>

CMS Security Configuration

189

 <!-- permissions on the default cms node -->

 <criteria name="path" value="/default">

 <permission name="cms" action="read">

 <role name="Anonymous"/>

 </permission>

 <permission name="cms" action="write">

 <role name="User"/>

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin"/>

 </permission>

 </criteria>

 <!-- permissions on the private/protected node -->

 <criteria name="path" value="/default/private">

 <permission name="cms" action="manage">

 <role name="Admin"/>

 </permission>

 </criteria>

 </policy>

 </attribute>

 <depends optional-attribute-name="AuthorizationManager" proxy-type="attribute">

 portal:service=AuthorizationManager,type=cms

 </depends>

 <depends>portal:service=Hibernate,type=CMS</depends>

 <depends>portal:service=Module,type=IdentityServiceController</depends>

 </mbean>

16.2.1.1. CMS Super User

A CMS Super User is a designated Portal User Account that has access to all resources/functions

in the CMS. It is a concept similar to the super user concept in a Linux and UNIX security

systems. This account should be carefully used and properly protected. By default, JBoss Portal

designates the built-in 'admin' user account as a CMS Super User. This can be changed by

modifying the cmsRootUserName value in the jboss-portal.sar/portal-cms.sar/META-INF/

jboss-service.xml configuration.

 <mbean

 code="org.jboss.portal.cms.security.AuthorizationProviderImpl"

 name="portal:service=AuthorizationProvider,type=cms"

 xmbean-dd=""

Chapter 16. Security

190

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <!--

 NOTE: cmsRootUserName denotes a single Portal user that has access to everything in

 the CMS. Denote this user

 carefully and should be synonymous to the 'root' user in UNIX operating systems. By default:

 this value is the built-in

 'admin' user account. This can be changed to any other user account registered in your Portal

 -->

 <attribute name="CmsRootUserName">admin</attribute>

 <depends optional-attribute-name="IdentityServiceController" proxy-

type="attribute">portal:service=Module,type=IdentityServiceController</depends>

 </mbean>

16.2.1.2. CMS Security Console

The CMS Security Console is used to assign proper permissions to all the nodes/content

in the CMS. Besides protection on CMS content, this console itself needs to be secured

against unauthorized acceess. Currently, the console can be accessed only by Portal users

that are members of the specified Role. By default, JBoss Portal uses the built-in Admin role

to allow access to this security console. This can be customized by modifying the value of

defaultAdminRole option specified in jboss-portal.sar/conf/identity/standardidentity-

config.xml

16.3. Authentication with JBoss Portal

JBoss Portal relies on Java Platform, Enterprise Edition (Java EE) for the authentication of users.

The Java EE authentication has its advantages and drawbacks. The main motivation for using

Java EE security is the integration with the application server and the operational environment in

which the portal is deployed. The servlet layer provides already the authentication functionality

and obviously it is not a responsibility of the portal. Whenever a user is authenticated by the servlet

layer its security identity is propagated throughout the call stack in the different layers of the Java

EE stack. The weaknesses are the lack of an explicit logout mechanism and the lack of dynamicity

in the mapping of URL as security resources. However JBoss Portal improves that behavior when

it is possible to do so.

16.3.1. Authentication configuration

JBoss Portal can be seen before all as a web application and therefore inherits all the configuration

mechanisms related to web applications. The main entry point of the whole portal is the jboss-

portal.sar/portal-server.war deployment which is the web application that defines and maps the

portal servlet. Here you can configure various things

The portal servlet

191

• In the WEB-INF/web.xml you can change the authentication mode. The default authentication

mechanism uses the form based authentication, however you can change it to any of the

mechanism provided by the servlet specification.

• In the WEB-INF/jboss-web.xml you can change the security domain used by the portal. The

default security domain used by the portal is java:/jaas/portal. That setting is specific to the

JBoss Application Server and how it binds the Java EE security to the operational environment.

A security domain is a scope defined at the Application Server Level and defines usually a

JAAS authentication stack. The portal security domain authentication stack is defined in the

jboss-portal.sar/conf/login-config.xml and is dynamically deployed with the portal. The JBoss

Application Server documentation is certainly the best reference for that topic.

• The files login.jsp and error.jsp represent the pages used the form based authentication

process. More information can be found in any good servlet documentation.

16.3.2. The portal servlet

The portal defines a single servlet to take care of all portal requests. The class name of that servlet

is org.jboss.portal.server.servlet.PortalServlet. That servlet needs to be declared two times with

different configurations otherwise the portal would not be able to know about some request details

which are importants.

• PortalServletWithPathMapping is used for path mapping mappings.

• PortalServletWithDefaultServletMapping is used for the default servlet mapping.

The portal servlet is mapped four times with different semantics, the differences between the

semantics are related to the transport layer. Each one of those for mappings will have the same

request meaning for the portal beside the transport aspect. By default those mappings are

• /* : the default access, does not define any security constraint. This is the default access that

everybody uses.

• /sec/* : the secured access, requires https usage. It is triggered when a portlet is defined as

secure or when a secure portlet link is created. It requires the configuration of the https connector

in JBoss Web. The JBoss Application Server documentation provides more information about it.

• /auth/* : the authenticated access, requires the user to be authenticated to be used.

• /authsec/* : combine the two previous options into a single one.

Usually ones should not care much about those mappings as the portal will by itself switch to

the most appropriate mapping.

16.4. Authorization with JBoss Portal

JBoss Portal defines a framework for authorization. The default implementation of that framework

is based on the Java Authorization Contract for Containers (JACC) which is implemented by

J2EE™ 1.4 Application Servers. This section of the documentation focuses on defining the

Chapter 16. Security

192

framework and its usage and is not an attempt to define what authorization is or is not because it

is out of scope of this context. Instead we will try to straightforwardly describe the framework and

how it is used. No specific knowledge is expected about JACC although it is a recommended read.

16.4.1. The portal permission

The org.jboss.portal.security.PortalPermission object is used to describe a permission for the

portal. It extends the java.security.Permission class and any permission checked in the portal

should extend the PortalPermission as well. That permission adds two fields to the Permission

class

• uri : is a string which represents an URI of the resource described by the permission.

• collection : an object of class org.jboss.portal.security.PortalPermissionCollection which is used

when the permission act as a container for other permissions. If that object exists then the uri

field should be null as a portal permission represents an uri or acts as a container in an exclusive

manner.

16.4.2. The authorization provider

The org.jboss.portal.security.spi.provider.AuthorizationDomain is an interface which provides

access to several services.

public interface AuthorizationDomain

{

 String getType();

 DomainConfigurator getConfigurator();

 PermissionRepository getPermissionRepository();

 PermissionFactory getPermissionFactory();

}

• org.jboss.portal.security.spi.provider.DomainConfigurator provides configuration access to an

authorization domain. The authorization schema is very simple as it consists of bindings

between URI, roles and permissions.

• org.jboss.portal.security.spi.provider.PermissionRepository provides runtime access to the

authorization domain. Usually it is used to retrieve the permissions for a specific role and URI.

It is used at runtime by the framework to take security decisions.

• org.jboss.portal.security.spi.provider.PermissionFactory is a factory to instantiate permissions

for the specific domain. It is used at runtime to create permissions objects of the appropriate

type by the security framework.

Making a programmatic security check

193

16.4.3. Making a programmatic security check

Making a security check is an easy thing as it consists in creating a permission of the appropriate

type and make a check against the org.jboss.portal.spi.auth.PortalAuthorizationManager

service. That service is used by the portal to make security checks. It is connected

to the different authorization providers in order to take decisions at runtime based

on the type of the permission. Access to that service is done through the

org.jboss.portal.spi.auth.PortalAuthorizationManagerFactory. The factory is a portal service which

is usually injected in other services like that

<?xml version="1.0" encoding="UTF-8"?>

<server>

 ...

 <mbean

 code='MyService"

 name="portal:service=MyService">

 <depends

 optional-attribute-name="PortalAuthorizationManagerFactory"

 proxy-type="attribute">portal:service=PortalAuthorizationManagerFactory</depends>

 ...

 </mbean>

 ...

</server>

It can be injected in the servlet context of a war file in the file WEB-INF/jboss-portlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

<portlet-app>

 ...

 <service>

 <service-name>PortalAuthorizationManagerFactory</service-name>

 <service-class>

 org.jboss.portal.security.spi.auth.PortalAuthorizationManagerFactory

 </service-class>

 <service-ref>:service=PortalAuthorizationManagerFactory</service-ref>

 </service>

 ...

</portlet-app>

Chapter 16. Security

194

Here is an example of how a security check is made for a specific page

PortalAuthorizationManager pam = factory.getManager();

PortalObjectId id = page.getId();

PortalObjectPermission perm = new PortalObjectPermission(id,

 PortalObjectPermission.VIEW_MASK);

if (pam.checkPermission(perm) == false)

{

 System.out.println("Current user is not authorized to view page " + id);

}

16.4.4. Configuring an authorization domain

Configuring a domain can be done through the DomainConfigurator interface

public interface DomainConfigurator

{

 Set getSecurityBindings(String uri);

 void setSecurityBindings(String uri, Set securityBindings)

 throws SecurityConfigurationException;

 void removeSecurityBindings(String uri) throws SecurityConfigurationException;

}

The various methods of that interface allows to configure security bindings for

a given resource where a resource is naturally identified by an URI. The

org.jboss.portal.security.RoleSecurityBinding object is an object which encapsulate a role name

and a set of actions bound to this role.

RoleSecurityBinding binding1 = new RoleSecurityBinding(Collections.singleton("view"), "Admin");

RoleSecurityBinding binding2 = new RoleSecurityBinding(Collections.singleton("view"), "User");

Set bindings = new HashSet();

bindings.add(binding1);

bindings.add(binding2);

configurator.setSecurityBinding(pageURI, bindings);

Chapter 17.

195

JBoss Portal Identity Management
Boleslaw Dawidowicz

This chapter addresses identity management in JBoss Portal 2.6

17.1. Identity management API

Since JBoss Portal 2.6 there are 4 identity services and 2 identity related interfaces. The goal

of having such a fine grained API is to enable flexible implementations based on different

identity storage like relational databases or LDAP servers. The Membership service takes care

of managing the relationship between user objects and role objects. The User Profile service is

responsible for managing the profile of a user, it has database and LDAP implementations as well

as a mode that combines data from both.

• The org.jboss.portal.identity.User interface represents a user and exposes the following

operations:

 /** The user identifier. */

 public Object getId();

 /** The user name. */

 public String getUserName();

 /** Set the password using proper encoding. */

 public void updatePassword(String password);

 /** Return true if the password is valid. */

 public boolean validatePassword(String password);

Warning

Important Note! The proper usage of getId() method is:

// Always use it like this:

user.getId().toString();

// Do not use it like this:

Chapter 17. JBoss Portal Iden...

196

// We would get a Long object if we are using the database implementation

(Long)user.getId();

// We would get a String with an LDAP server

(String)user.getId();

This is because the ID value depends on the User implementation. It'll probably

be String object with the LDAP implementation and a Long object with the

database implementation but it could be something else if one has chosen to

make its own implementation.

• The org.jboss.portal.identity.Role interface represents a Role and exposes the following

operations:

/** The role identifier. */

public Object getId();

/** The role name used in security rules. This name can not be modified */

public String getName();

/** The role display name used on screens. This name can be modified */

public String getDisplayName();

/** */

public void setDisplayName(String name);

• The org.jboss.portal.identity.UserModule interface exposes operations for users

management:

/**Retrieve a user by its name.*/

User findUserByUserName(String userName)

 throws IdentityException, IllegalArgumentException, NoSuchUserException;

/**Retrieve a user by its id.*/

User findUserById(Object id)

 throws IdentityException, IllegalArgumentException, NoSuchUserException;

/**Retrieve a user by its id.*/

User findUserById(String id)

Identity management API

197

 throws IdentityException, IllegalArgumentException, NoSuchUserException;

/** Creates a new user with the specified name.*/

User createUser(String userName, String password)

 throws IdentityException, IllegalArgumentException;

/** Remove a user.*/

void removeUser(Object id)

 throws IdentityException, IllegalArgumentException;

/** Get a range of users.*/

Set findUsers(int offset, int limit)

 throws IdentityException, IllegalArgumentException;

/** Get a range of users.*/

Set findUsersFilteredByUserName(String filter, int offset, int limit)

 throws IdentityException, IllegalArgumentException;

/**Returns the number of users.*/

int getUserCount() throws IdentityException, IllegalArgumentException;

• The org.jboss.portal.identity.RoleModule interface exposes operations for roles

management:

/** Retrieves a role by its name*/

Role findRoleByName(String name)

 throws IdentityException, IllegalArgumentException;

/**Retrieve a collection of role from the role names.*/

Set findRolesByNames(String[] names)

 throws IdentityException, IllegalArgumentException;

/** Retrieves a role by its id.*/

Role findRoleById(Object id)

 throws IdentityException, IllegalArgumentException;

/** Retrieves a role by its id.*/

Role findRoleById(String id)

 throws IdentityException, IllegalArgumentException;

/** Create a new role with the specified name.*/

Role createRole(String name, String displayName)

Chapter 17. JBoss Portal Iden...

198

 throws IdentityException, IllegalArgumentException;

/** Remove a role.*/

void removeRole(Object id)

 throws IdentityException, IllegalArgumentException;

/** Returns the number of roles. */

int getRolesCount()

 throws IdentityException;

/** Get all the roles */

Set findRoles() throws IdentityException;

• The MembershipModule interface exposes operations for obtaining or managing relationships

beetween users and roles. The role of this service is to decouple relationship information from

user and roles. Indeed while user role relationship is pretty straightforward with a relational

database (using a many to many relationship with an intermediary table), with an LDAP server

there a different ways to define relationships between users and roles.

/** Return the set of role objects that a given user has.*/

Set getRoles(User user) throws IdentityException, IllegalArgumentException;

Set getUsers(Role role) throws IdentityException, IllegalArgumentException;

/** Creates a relationship beetween a role and set of users. Other roles that have

 assotiontions with those users remain unaffected.*/

void assignUsers(Role role, Set users) throws IdentityException, IllegalArgumentException;

/** Creates a relationship beetween a user and set of roles. This operation will erase any

 other assotientions beetween the user and roles not specified in the provided set.*/

void assignRoles(User user, Set roles) throws IdentityException, IllegalArgumentException;

/** Returns role members based on rolename - depreciated method ethod here only

 for compatibility with old RoleModule interface */

Set findRoleMembers(String roleName, int offset, int limit, String userNameFilter)

 throws IdentityException, IllegalArgumentException;

• The UserProfileModule interface exposes operations to access and manage informations

stored in User profile:

Identity management API

199

public Object getProperty(User user, String propertyName)

 throws IdentityException, IllegalArgumentException;

public void setProperty(User user, String name, Object property)

 throws IdentityException, IllegalArgumentException;

public Map getProperties(User user)

 throws IdentityException, IllegalArgumentException;

public ProfileInfo getProfileInfo()

 throws IdentityException;

Warning
UserProfileModule.getProperty() method returns an Object. In most cases with

DB backend it will always be String object. But normally you should check what

object will be retrieved using getProfileInfo() method.

• The ProfileInfo interface can be obtained using the UserProfileModule and exposes meta

information of a profile:

/** Returns a Map o PropertyInfo objects describing profile properties */

public Map getPropertiesInfo();

public PropertyInfo getPropertyInfo(String name);

• PropertyInfo interface expose methods to obtain information about accessible property in User

profile

public static final String ACCESS_MODE_READ_ONLY = "read-only";

public static final String ACCESS_MODE_READ_WRITE = "read-write";

public static final String USAGE_MANDATORY = "mandatory";

public static final String USAGE_OPTIONAL = "optional";

public static final String MAPPING_DB_TYPE_COLUMN = "column";

public static final String MAPPING_DB_TYPE_DYNAMIC = "dynamic";

public String getName();

public String getType();

Chapter 17. JBoss Portal Iden...

200

public String getAccessMode();

public String getUsage();

public LocalizedString getDisplayName();

public LocalizedString getDescription();

public String getMappingDBType();

public String getMappingLDAPValue();

public String getMappingDBValue();

public boolean isMappedDB();

public boolean isMappedLDAP();

17.1.1. How to obtain identity modules services ?

The advocated way to get a reference to the identity modules is by using JNDI:

import org.jboss.portal.identity.UserModule;

import org.jboss.portal.identity.RoleModule;

import org.jboss.portal.identity.MembershipModule;

import org.jboss.portal.identity.UserProfileModule;

[...]

(UserModule)new InitialContext().lookup("java:portal/UserModule");

(RoleModule)new InitialContext().lookup("java:portal/RoleModule");

(MembershipModule)new InitialContext().lookup("java:portal/MembershipModule");

(UserProfileModule)new InitialContext().lookup("java:portal/UserProfileModule");

Another way to do this is, if you are fimiliar with JBoss Microkernel architecture is to get the

IdentityServiceController mbean. You may want to inject it into your services like this:

<depends optional-attribute-name="IdentityServiceController" proxy-type="attribute">

 portal:service=Module,type=IdentityServiceController

API changes since 2.4

201

</depends>

or simply obtain in your code by doing a lookup using the

portal:service=Module,type=IdentityServiceController name. Please refer to the JBoss

Application Server documentation if you want to learn more about service MBeans. Once you

obtained the object you can use it:

(UserModule)identityServiceController.getIdentityContext()

 .getObject(IdentityContext.TYPE_USER_MODULE);

(RoleModule)identityServiceController.getIdentityContext()

 .getObject(IdentityContext.TYPE_ROLE_MODULE);

(MembershipModule)identityServiceController.getIdentityContext()

 .getObject(IdentityContext.TYPE_MEMBERSHIP_MODULE);

(UserProfileModule)identityServiceController.getIdentityContext()

 .getObject(IdentityContext.TYPE_USER_PROFILE_MODULE);

17.1.2. API changes since 2.4

Because in JBoss Portal 2.4 there were only UserModule , RoleModule , User and Role

interfaces some API usages changed. Here are the most important changes you will need to aply

to your code while migrating your aplication to 2.6:

• For the User interface:

// Instead of: user.getEnabled()

userProfileModule.getProperty(user, User.INFO_USER_ENABLED);

// Instead of: user.setEnabled(value)

userProfileModule.setProperty(user, User.INFO_USER_ENABLED, value);

// In a similar way you should change rest of methods that are missing in User interface

// in 2.6 by the call to the UserProfileModule

// Instead of: user.getProperties()

userProfileModule.getProperties(user);

Chapter 17. JBoss Portal Iden...

202

// Instead of: user.getGivenName()

userProfileModule.getProperty(user, User.INFO_USER_NAME_GIVEN);

// Instead of: user.getFamilyName()

userProfileModule.getProperty(user, User.INFO_USER_NAME_FAMILY);

// Instead of: user.getRealEmail()

userProfileModule.getProperty(user, User.INFO_USER_EMAIL_REAL);

// Instead of: user.getFakeEmail()

userProfileModule.getProperty(user, User.INFO_USER_EMAIL_FAKE);

// Instead of: user.getRegistrationDate()

userProfileModule.getProperty(user, User.INFO_USER_REGISTRATION_DATE);

// Instead of: user.getViewRealEmail()

userProfileModule.getProperty(user, User.INFO_USER_VIEW_EMAIL_VIEW_REAL);

// Instead of: user.getPreferredLocale()

userProfileModule.getProperty(user, User.INFO_USER_LOCALE);

// Instead of: user.getSignature()

userProfileModule.getProperty(user, User.INFO_USER_SIGNATURE);

// Instead of: user.getLastVisitDate()

userProfileModule.getProperty(user, User.INFO_USER_LAST_LOGIN_DATE);

• The RoleModule interface:

// Instead of

// RoleModule.findRoleMembers(String roleName, int offset, int limit, String userNameFilter)

// throws IdentityException;

membershipModule.findRoleMembers(String roleName, int offset, int limit,

 String userNameFilter)

// Instead of

// RoleModule.setRoles(User user, Set roles) throws IdentityException;

membershipModule.assignRoles(User user, Set roles)

// Instead of

// RoleModule.getRoles(User user) throws IdentityException;

Identity configuration

203

membershipModule.getRoles(User user)

17.2. Identity configuration

In order to understand identity configuration you need to understand its architecture. Different

identity services like UserModule, RoleModule and etc are just plain Java classes that are

instantiated and exposed by the portal. So an *example* of UserModule service could be a plain

Java bean object that would be:

• Instantiated using reflection

• Initialized/Started by invoking some methods

• Registered/Exposed using JNDI and/or mbeans (JBoss Microkernel) services, so other

services of the portal can use it

• Managed in the matter of lifecycle - so it'll be stopped and unregistered during portal shutdown

As you see from this point of view, configuration just specifies what Java class will be used and

how it should be used by portal as a service.

Note
We use JBoss Microcontainer internally to manage the sub system made of those

components so if you are interested in implementing custom services - look on the

methods that are used by this framework.

In JBoss Portal we provide a very flexible configuration. It is very easy to rearrange and customize

services, provide alternative implementations, extend the existing ones or provide a custom

identity model.

To grasp the full picture of the configuration of identity services let's start from its root component.

Whole configuration and setup of identity components is done by the IdentityServiceController

service. It brings to life and registers all other services such as UserModule, RoleModule,

MembershipModule and UserProfileModule. IdentityServiceController is defined in jboss-

portal.sar/META-INF/jboss-service.xml

<mbean

 code="org.jboss.portal.identity.IdentityServiceControllerImpl"

 name="portal:service=Module,type=IdentityServiceController"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

Chapter 17. JBoss Portal Iden...

204

 <depends>portal:service=Hibernate</depends>

 <attribute name="JndiName">java:/portal/IdentityServiceController</attribute>

 <attribute name="RegisterMBeans">true</attribute>

 <attribute name="ConfigFile">conf/identity/identity-config.xml</attribute>

 <attribute name="DefaultConfigFile">conf/identity/standardidentity-config.xml</attribute>

</mbean>

We can specify a few options here:

• RegisterMBeans - defines if IdentityServiceController should register components which are

instantiated as mbeans

• ConfigFile - defines the location of the main identity services configuration file. It describes and

configures all the components like UserModule, RoleModule... that need to be instantiated

• DefaultConfigFile - defines the location of the configuration file containing the default values.

For each component defined in ConfigFile, the IdentityServiceController will obtain a set of

default options from this file. That helps to keep the main main configuration file simple, short

and easy to read. Potentially it provides more powerful customizations.

17.2.1. Main configuration file architecture (identity-config.xml)

The file describing portal identity services contains three sections:

<identity-configuration>

 <datasources>

 <!-- Datasources section -->

 <datasource> ... </datasource>

 <datasource> ... </datasource>

 ...

 </datasources>

 <modules>

 <!-- Modules section -->

 <module> ... </module>

 <module> ... </module>

 ...

 </modules>

 <options>

 <!-- Options section -->

 <option-group> ... </option-group>

 <option-group> ... </option-group>

 ...

 </options>

Main configuration file architecture (identity-

config.xml)

205

</identity-configuration>

By default you can find it in jboss-portal.sar/conf/identity/identity-config.xml

17.2.1.1. Datasources

This section defines datasource components. They will be processed and instantiated before

components in Module section, so they will be ready to serve them.

Note
This section isn't used with Database configuration as in JBoss Portal services

exposing Hibernate are defined separately. It is used by LDAP configuration and

we will use it as an example

<datasource>

 <name>LDAP</name>

 <service-name>portal:service=Module,type=LDAPConnectionContext</service-name>

 <class>org.jboss.portal.identity.ldap.LDAPConnectionContext</class>

 <config>

 <option>

 <name>host</name>

 <value>jboss.com</value>

 </option>

 <option>

 <name>port</name>

 <value>10389</value>

 </option>

 <option>

 <name>adminDN</name>

 <value>cn=Directory Manager</value>

 </option>

 <option>

 <name>adminPassword</name>

 <value>xxxxx</value>

 </option>

 <!-- Other options here.... -->

 </config>

</datasource>

Chapter 17. JBoss Portal Iden...

206

Note
If you look into JBoss Portal configuration files you will find that <service-name/>

and <class/> are specified in DefaultConfigFile and not in ConfigFile. So here

is how it works: those two will be picked up from default configuration. The same

rule is effective for the options - additional options will be picked up from default

configuration. What is linking configuration in those two files is the <name> tag.

17.2.1.2. Modules

Modules are core service components like UserModule, RoleModule and etc.

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

 <implementation>DB</implementation>

 <!--name of service and class for creating mbean-->

 <service-name>portal:service=Module,type=User</service-name>

 <class>org.jboss.portal.identity.db.HibernateUserModuleImpl</class>

 <!--set of options that are in the instantiated object-->

 <config>

 <option>

 <name>sessionFactoryJNDIName</name>

 <value>java:/portal/IdentitySessionFactory</value>

 </option>

 <option>

 <name>jNDIName</name>

 <value>java:/portal/UserModule</value>

 </option>

 </config>

</module>

• implementation - defines the scope under which the configuration for different implementations

of modules types resides. It enables to define the default options of the configuration of the

different implementations of same module types in one configuration file.

• type - must be unique name across all modules defined in the main configuration file.

This is important as module will be stored with such name within IdentityContext registry

at runtime. Standard names are used (User, Role, Membership, UserProfile). Together with

implementation will create unique pair within file with default configuration values.

Main configuration file architecture (identity-

config.xml)

207

• service-name - will be used for the name when registered as an MBean.

• class - Java class that will be use to instantiate the module.

• config - contains options related to this module

Note
Here you can easily see the whole idea about having two config files - main one

and the one with default values. The above code snippet with User module comes

from standardidentity-config.xml, so the file that defines default configuration

values. Because of this in the main configuration file the definition of User module

will be as short as:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

 <implementation>DB</implementation>

 <config/>

</module>

As you can see we specify only the type and the implementation - all the other

values (service-name, class and set of options) are read from default configuration.

But remember that you can still overwrite any of those values in the main config

simply by overriding them.

17.2.1.3. Options

This section provides common options that are accessible by identity modules. We set options

here that may need to be shared. They are grouped, and can have many values:

<options>

<!--Common options section-->

<option-group>

 <group-name>common</group-name>

 <option>

 <name>userCtxDN</name>

 <value>ou=People,dc=example,dc=com</value>

 </option>

 <option>

 <name>uidAttributeID</name>

Chapter 17. JBoss Portal Iden...

208

 <value>uid</value>

 </option>

 <option>

 <name>passwordAttributeID</name>

 <value>userPassword</value>

 </option>

 <option>

 <name>roleCtxDN</name>

 <value>ou=Roles,dc=example,dc=com</value>

 </option>

 <option>

 <name>ridAttributeId</name>

 <value>cn</value>

 </option>

 <option>

 <name>roleDisplayNameAttributeID</name>

 <value>cn</value>

 </option>

 <option>

 <name>membershipAttributeID</name>

 <value>member</value>

 </option>

 <option>

 <name>membershipAttributeIsDN</name>

 <value>true</value>

 </option>

</option-group>

<option-group>

 <group-name>userCreateAttibutes</group-name>

 <option>

 <name>objectClass</name>

 <value>top</value>

 <value>uidObject</value>

 <value>person</value>

 <value>inetUser</value>

 </option>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <option>

 <name>sn</name>

 <value>none</value>

User profile configuration

209

 </option>

</option-group>

Note
In this section we use the same inheritance mechanism. When an option is not set,

its value will be read from the default config file. But this also means that you may

need to overwrite some values that are specific to your LDAP architecture. All the

options will be described along with module implementations that use them.

17.3. User profile configuration

UserProfileModule has additional configuration file that defines user properties. It is specified in

configuration in:

 <module>

 <type>UserProfile</type>

 <implementation>DELEGATING</implementation>

 (...)

 <config>

 (...)

 <option>

 <name>profileConfigFile</name>

 <value>conf/identity/profile-config.xml</value>

 </option>

 </config>

 </module>

This means that you can configure user profile in jboss-portal.sar/conf/identity/profile-config.xml

<profile>

Chapter 17. JBoss Portal Iden...

210

 <property>

 <name>user.name.nickName</name>

 <type>java.lang.String</type>

 <access-mode>read-only</access-mode>

 <usage>mandatory</usage>

 <display-name xml:lang="en">Name</display-name>

 <description xml:lang="en">The user name</description>

 <mapping>

 <database>

 <type>column</type>

 <value>jbp_uname</value>

 </database>

 </mapping>

 </property>

 <property>

 <name>user.business-info.online.email</name>

 <type>java.lang.String</type>

 <access-mode>read-write</access-mode>

 <usage>mandatory</usage>

 <display-name xml:lang="en">Email</display-name>

 <description xml:lang="en">The user real email</description>

 <mapping>

 <database>

 <type>column</type>

 <value>jbp_realemail</value>

 </database>

 <ldap>

 <value>mail</value>

 </ldap>

 </mapping>

 </property>

 <property>

 <name>portal.user.location</name>

 <type>java.lang.String</type>

 <access-mode>read-write</access-mode>

 <usage>optional</usage>

 <display-name xml:lang="en">Location</display-name>

 <description xml:lang="en">The user location</description>

 <mapping>

 <database>

 <type>dynamic</type>

User profile configuration

211

 <value>portal.user.location</value>

 </database>

 </mapping>

 </property>

 (...)

</properties>

Configuration file contains properties definition that can be retrieved using the PropertyInfo

interface. Each property used in portal has to be defined here.

Note
Some information provided here can have a large impact on the behavior of

the UserProfileModule. For instance access-mode can be made read-only and

the value provided in type will be checked during setProperty()/getProperty()

operations. On the other hand tags like usage, description or display-name have

mostly informational meaning at the moment and are used by the management

tools at runtime.

• name - property name. This value will be used to refer to the property in UserProfileModule

• type - Java type of property. This type will be checked when in UserProfileModule methods

invocation.

• access-mode - possible values are read-write and read-only

• usage - property usage can be mandatory or optional.

• display-name - property display name.

• description - description of property.

• mapping - defines how property is mapped in the underlaying storage mechanism. It can be

mapped in database either as a column or dynamic value. It can also be mapped as ldap

attribute.

Note
In current implementation column and dynamic mappings have the same effect,

as database mappings are defined in hibernate configuration.

Chapter 17. JBoss Portal Iden...

212

Note
Property can have both ldap and database mappings. In such situation when

LDAP support is enabled ldap mapping will take precedense. Also even when

using LDAP some properties will be mapped to LDAP and some to database.

Its because LDAP schema doesn't support all attributes proper to for portal

properties. To solve this we have DelegatingUserProfileModuleImpl that will

delegate method invocation to ldap or database related UserProfile module.

When LDAP support is enabled and property need to be stored in database

user will be synchronized into database when needed. This behavior can be

configured.

17.4. Identity modules implementations

Note
Identity modules implementations related to LDAP are described in LDAP chapter

17.4.1. Database modules

JBoss portal comes with a set of database related identity modules implementations done using

Hibernate - those are configured by default. Those are not very configurable in identity-config.xml

file. The reason is that to keep backwards compatibility of database schema with previous

portal version, we reused most of hibernate implementation. If you want to tweak the hibernate

mappings you should look into files in jboss-portal.sar/conf/hibernate. Also those modules

rely on hibernate SessionFactory components that are created in SessionFactoryBinder mbeans

defined in jboss-portal.sar/META-INF/jboss-service.xml

Classes implementing identity modules:

• org.jboss.portal.identity.db.HibernateUserModuleImpl - implementaing UserModule

interface

• org.jboss.portal.identity.db.HibernateRoleModuleImpl - implementaing RoleModule

interface

• org.jboss.portal.identity.db.HibernateMembershipModuleImpl - implementaing

MembershipModule interface

• org.jboss.portal.identity.db.HibernateUserProfileModuleImpl - implementaing

UserProfileModule interface

For each of those modules you can alter two config options:

Delegating UserProfile module

213

• sessionFactoryJNDIName - JNDI name under which hibernate SessionFactory object is

registered

• jNDIName - JNDI name under which this module should be registered

17.4.2. Delegating UserProfile module

Delegating UserProfileModule implementation has very specific role. When we use a storage

mechanism like LDAP we may not be able to map all user properties into LDAP attributes

because of schema limitations. To solve this problem we still can use the database to store

user properties that do not exist in the LDAP schema. The Delegating user profile module

will recognize if a property is mapped as ldap or database and delegate setProperty()/

getProperty() method invocation to proper module implementation. This is implemented in

org.jboss.portal.identity.DelegatingUserProfileModuleImpl. If property is mapped either as

ldap and database the ldap mapping will have higher priority.

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>UserProfile</type>

 <implementation>DELEGATING</implementation>

 <!--name of service and class for creating mbean-->

 <service-name>portal:service=Module,type=UserProfile</service-name>

 <class>org.jboss.portal.identity.DelegatingUserProfileModuleImpl</class>

 <!--set of options that are set in instantiated object-->

 <config>

 <option>

 <name>jNDIName</name>

 <value>java:/portal/UserProfileModule</value>

 </option>

 <option>

 <name>dbModuleJNDIName</name>

 <value>java:/portal/DBUserProfileModule</value>

 </option>

 <option>

 <name>profileConfigFile</name>

 <value>conf/identity/profile-config.xml</value>

 </option>

 </config>

</module>

Chapter 17. JBoss Portal Iden...

214

Module options are:

• dbModuleJNDIName - JNDI name under which database implementation of UserProfileModule

is registered.

• ldapModuleJNDIName - JNDI name under which ldap implementation of UserProfileModule

is registered.

• profileConfigFile - configuration file for user properties.

17.4.3. Database UserProfile module implementation

Because of the behavior described in the previous section, database UserProfileModule requires

some special features. If a user is present in LDAP server but a writable property isn't mapped as

an LDAP attribute, such property requires to be stored in the database. In order to achieve such

result the user need to be synchronized from LDAP into the database first.

Class org.jboss.portal.identity.db.HibernateUserProfileModuleImpl has additional synchronization

features. Here are the options:

• synchronizeNonExistingUsers - when set to "true" if the user subject to the operation does

not exist, then it will created it in database. By default it is "true".

• acceptOtherImplementations - if set to "true" module will accept user objects other than

org.jboss.portal.identity.db.HibernateUserImpl. This is needed to enable cooperation with

UserModule implementations other than org.jboss.portal.identity.db.HibernateUserModuleImpl.

The default value is set "true".

• defaultSynchronizePassword - if this option is set, the value will be used as a password for

synchronized user.

• randomSynchronizePassword - if this option is set to "true" synchronized user will have

random generated password. This is mostly used for the security reasons. Default value is

"false".

• sessionFactoryJNDIName - JNDI name under which this user will be registered.

• profileConfigFile - file with user profile configuration. If this option is not set, and we use

delegating UserProfileModule, profile configuration will be obtained from it.

Chapter 18.

215

JBoss Portal Identity Portlets
Emanuel Muckenhuber

18.1. Introduction

Since JBoss Portal 2.6.2 two new Identity Portlets are shipped by default:

• The User Portlet

• The Identity Management Portlet

As the names indicate - the User Portlet is responsible for actions related to the end user. Whereas

the Identity Management Portlet contains all the functionality for managing users and roles.

Warning
The Identity portlets will evolve over time, therefore usage and configuration might

change.

18.1.1. Features

The identity portlets provide the following features:

• Email verification: The users can receive an email with a link on which they must click to confirm

the creation of the new account. (Disabled by default,see Section 18.2.4, “jBPM based user

registration”)

• Captcha support: The users are prompted to copy letters from a deformed image. (Disabled by

default, see Section 18.2.1, “Captcha support”)

• Lost password: The users can receive a new password by email, any user with access to the

admin portlet can also reset another user's password and send the new one by email in one

click. (Disabled by default, see Section 18.2.2, “Lost password”)

• jBPM based user registration: Several business processes are available out of the box (this

includes administration approval), this can be extended to custom ones. See Section 18.2.4,

“jBPM based user registration”.

• User and role management: Ability for the administrator to add and edit users as well as adding,

18.2. Configuration

This section covers the configuration of the Identity Portlets.

Chapter 18. JBoss Portal Iden...

216

18.2.1. Captcha support

CAPTCHA is an acronym for Completely Automated Public Turing test to tell Computers

and Humans Apart. This is providing a mechanism to prevent automated programs from using

different services. The User Portlet uses JCaptcha to provide a challenge-response.

Note

By default the captcha service needs a XServer to generate the images. For using

the captcha service without a XServer make sure you run the JVM with the following

option:

-Djava.awt.headless=true

Captcha support

217

The registration page with captcha.

The captcha support can be enabled by changing the portlet preference 'captcha' to 'true'. If

enabled, captcha will be used for the registration and lost password action.

...

<portlet>

...

 <display-name>User portlet</display-name>

...

 <portlet-preferences>

 <preference>

Chapter 18. JBoss Portal Iden...

218

 <name>captcha</name>

 <value>true</value>

 </preference>

 </portlet-preferences>

</portlet>

...

18.2.2. Lost password

The lost password feature enables the end user to reset his password by entering his username.

Note
This feature requires a properly configured MailModule. See Section 3.4,

“Configuring the Email Service”.

The lost password page with captcha enabled.

Reset password

219

The lost password feature can be enabled by changing the portlet preference 'lostPassword' to

'true'. If captcha is enabled it will be also used for verifying the lost password action.

...

<portlet>

...

 <display-name>User portlet</display-name>

...

 <portlet-preferences>

 <preference>

 <name>lostPassword</name>

 <value>true</value>

 </preference>

 </portlet-preferences>

</portlet>

...

18.2.3. Reset password

The reset password feature is similar to the lost password feature, but it is used in the User

Management Portlet to reset the password of a user. That means changing the password of a

user is slightly simplified, because a random password will be generated and sent to the users

e-mail address.

...

<portlet>

...

 <display-name>User management portlet</display-name>

...

 <portlet-preferences>

 <preference>

 <name>resetPassword</name>

 <value>true</value>

 </preference>

 </portlet-preferences>

</portlet>

...

18.2.4. jBPM based user registration

JBoss Portal supports three different subscription modes by default:

Chapter 18. JBoss Portal Iden...

220

• Automatic subscription (no jBPM required), the users can register and directly login.

• E-Mail validation, the users need to click on a link sent by email before being able to login.

• E-Mail validation and admin approval, the users need to validate their email, then an admin

needs to approve the newly created account.

Note
The subscription mode has to be defined in the configuration file as explained here:

Section 18.2.5, “The configuration file”.

Warning
Make sure that the application server is restarted after re-deploying the Identity

Portlets. This is required to make sure that the registration and approval process

works properly!

Approve or reject pending registrations (jbp_identity_validation_approval_workflow).

18.2.5. The configuration file

The Identity Portlets use some metadata which can be easily changed in the main configuration

file, which is located at jboss-portal.sar/portal-identity.sar/conf/identity-ui-

configuration.xml as shown here:

<identity-ui-configuration>

 <subscription-mode>automatic</subscription-mode>

 <admin-subscription-mode>automatic</admin-subscription-mode>

 <overwrite-workflow>false</overwrite-workflow>

 <email-domain>jboss.org</email-domain>

The configuration file

221

 <email-from>no-reply@jboss.com</email-from>

 <password-generation-characters>a...Z</password-generation-characters>

 <default-roles>

 <role>User</role>

 </default-roles>

 <!-- user interface components -->

 <ui-components>

 <ui-component name="givenname">

 <property-ref>user.name.given</property-ref>

 </ui-component>

 <ui-component name="familyname">

 <property-ref>user.name.family</property-ref>

 </ui-component>

 ...

</identity-ui-configuration>

• subscription-mode: defines the User Portlet registration process

• automatic: no validation nor approval (default)

• jbp_identity_validation_workflow: e-mail validation, no approval

• jbp_identity_validation_approval_workflow: e-mail validation and approval

• custom: Take a look at Customizing the workflow

• admin-subscription-mode: jBPM process used in the User Management Portlet for creating

users

• automatic: no validation nor approval (default)

• jbp_identity_validation_workflow: e-mail validation, no approval

• jbp_identity_validation_approval_workflow: e-mail validation and approval

• custom: Take a look at Customizing the workflow

• overwrite-workflow: if set to 'true' the workflow will be overwritten during the next startup

(default: false)

• email-domain: e-mail domain used in the validation e-mail by the template (can be anything)

• email-from: e-mail fro field used by the validation e-mail

• password-generation-characters: characters to use to generate a random password

• default-roles: one or more default roles

• available element: role

Chapter 18. JBoss Portal Iden...

222

• ui-components: Defines the available user interface components. Take a look at the next

section for further details.

Due to the differentiation between subscription-mode and admin-subscription-mode it is possible

to require e-mail validation and approval for new registrations and e-mail validation only when a

user is created in the user management portlet.

18.2.6. Customize e-mail templates

The email templates can be found in the folder: portal-identity.sar/conf/templates/

New languages can be added by creating a new file like: emailTemplate_fr.tpl

18.3. User interface customization

The following three examples describe common use cases for customizing the User Portlet.

• Example 1: Describes how to tag a input field as required and add it to the registration page.

• Example 2: Shows how to create a simple dropdown menu.

• Example 3: Describes how to add new properties.

Note
This is not a JavaServer Faces tutorial. Basic knowledge of this technology is a

precondition for customizing the User Portlet Interface.

18.3.1. Example 1: required fields

This example explains how to change optional properties to required properties, of course once

this is done, we will also need to add the corresponding fields in the registration page.

Here are the modifications in portal-identity.sar/conf/identity-ui-configuration.xml, we simply

changed the required element to true on our two fields corresponding to the given and family

names.

<identity-ui-configuration>

...

 <!-- user interface components -->

 ...

 <ui-component name="givenname">

 <property-ref>user.name.given</property-ref>

 <required>true</required>

 </ui-component>

 <ui-component name="familyname">

 <property-ref>user.name.family</property-ref>

 <required>true</required>

 </ui-component>

Example 2: dynamic values (dropdown menu

with predefined values)

223

 ...

</identity-ui-configuration>

Now that we changed those values to "required" we need to give a chance to the user to enter

those values, here are the changes done in portal-identity.sar/portal-identity.war/WEB-INF/jsf/

common/register.xhtml

...

 <h:outputText value="#{bundle.IDENTITY_GIVENNAME}"/>

 <h:inputText id="givenname" value="#{manager.uiUser.attribute.givenname}"

 required="#{metadataservice.givenname.required}"/>

 <h:panelGroup />

 <h:message for="givenname" />

 <h:outputText value="#{bundle.IDENTITY_FAMILYNAME}"/>

 <h:inputText id="lastname" value="#{manager.uiUser.attribute.familyname}"

 required="#{metadataservice.familyname.required}"/>

 <h:panelGroup />

 <h:message for="lastname"/>

...

That's it - from now on the given name and family name will be required on registration. We

dynamically obtain the values from the descriptor. Now if i just wanted to make them back to

optional, i would change the values only in the descriptor, letting the user enter or not those values.

18.3.2. Example 2: dynamic values (dropdown menu with

predefined values)

If the data to enter is a choice instead of a free-text value, you can also define those in the

descriptor like shown here:

<identity-ui-configuration>

...

 <!-- user interface components -->

 ...

 <ui-component name="interests">

 <property-ref>portal.user.interests</property-ref>

 <values>

 <value key="board">snowboarding</value>

 <value key="ski">skiing</value>

 <value key="sledge">sledging</value>

Chapter 18. JBoss Portal Iden...

224

 </values>

 </ui-component>

 ...

</identity-ui-configuration>

In portal-identity.sar/portal-identity.war/WEB-INF/jsf/common/profile.xhtml - change inputText to

a selectOneMenu:

 ...

 <h:outputText value="#{bundle.IDENTITY_INTERESTS}"/>

 <h:selectOneMenu id="interests" value="#{manager.uiUser.attribute.interests}"

 required="#{metadataservice.interests.required}">

 <f:selectItems value="#{metadataservice.interests.values}" />

 </h.selectOneMenu>

 <h:panelGroup />

 <h:message for="interests"/>

...

For localizing dynamic values it is also possible to use the resource bundle. This can be done by

adding the key with a prefix (to i.e. Identity.properties) like in the following listing. The key will be

stored in the users property and is used to identify the element. The value of the configuration file

will only be used if no localization information is found.

...

IDENTITY_DYNAMIC_VALUE_BOARD=localized snowboarding

IDENTITY_DYNAMIC_VALUE_SKI=localized skiing

IDENTITY_DYNAMIC_VALUE_SLEDGE=localized sledging

...

Note

If the value is not required a blank element will be added at the top.

Example 3: adding new properties

225

18.3.3. Example 3: adding new properties

Note
Please make sure you read at least the section about user profile configuration:

Section 17.3, “User profile configuration”, to add a new value on the interface it

also has to be defined in your model, as shown on Step 1.

step 1: add a new property to profile-config.xml e.g. a dynamic property called gender:

...

 <property>

 <name>user.gender</name>

 <type>java.lang.String</type>

 <access-mode>read-write</access-mode>

 <usage>optional</usage>

 <display-name xml:lang="en">Gender</display-name>

 <description xml:lang="en">The gender</description>

 <mapping>

 <database>

 <type>dynamic</type>

 <value>user.gender</value>

 </database>

 </mapping>

 </property>

...

Note
It is recommended to use the 'User Information Attribute Names' from the Portlet

Specification [http://jcp.org/en/jsr/detail?id=168] for defining properties.

step 2: add the property to the identity-ui-configuration: (portal-identity.sar/conf/identity-ui-

configuration.xml)

...

 <ui-component name="gender">

 <property-ref>user.gender</property-ref>

 <required>true</required>

 <values>

http://jcp.org/en/jsr/detail?id=168
http://jcp.org/en/jsr/detail?id=168
http://jcp.org/en/jsr/detail?id=168

Chapter 18. JBoss Portal Iden...

226

 <value key="male">Male</value>

 <value key="female">Female</value>

 </values>

 </ui-component>

...

Note
The property-ref must match a property from the profile-config.xml.

step 3: add your custom ui-component to the profile page: (portal-identity.sar/portal-identity.war/

WEB-INF/jsf/profile.xhtml)

...

 <h:outputText value="#{bundle.IDENTITY_GENDER}"/>

 <h:selectOneMenu id="gender" value="#{manager.uiUser.attribute.gender}"

 required="#{metadataservice.gender.required}">

 <f:selectItems value="#{metadataservice.gender.values}" />

 </h.selectOneMenu>

 <h:panelGroup />

 <h:message for="gender"/>

...

Note
Don't forget to add the localization elements.

18.3.4. Illustration

Illustration

227

Illustration of the relationship between the configuration files.

The JSF-View in more detail:

• manager.uiUser.attribute: manages and stores the dynamic properties

• examples: manager.uiUser.attribute.gender, manager.uiUser.attribute.interests

<h:inputText id="gender" value="#{manager.uiUser.attribute.gender}" />

• metadataservice

• required - references the required attribute from the ui-component

example: metadataservice.gender.required

<h:inputText id="gender" value="#{manager.uiUser.attribute.gender}"

 required="#{metadataservice.gender.required}"/>

• values - references the values list from the ui-component

Chapter 18. JBoss Portal Iden...

228

example: metadataservice.gender.values

<h:selectOneMenu id="interests" value="#{manager.uiUser.attribute.interests}">

 <f:selectItems value="#{metadataservice.interests.values}" />

</h:selectOneMenu>

• validator - references the name of a registered JSF validator

example:metadataservice.gender.validator - the first validator of the validator list

example: metadataservice.gender.validators[0] - the validator list with an index

<f:validator validatorId="#{metadataservice.gender.validator}"/>

• converter - references the name of a registered JSF converter

example: metadataservice.gender.converter

<f:converter converterId="#{metadataservice.gender.converter}"/>

• readOnly - references the access-mode of profile-config.xml

possible usage i.e. in /WEB-INF/jsf/common/profile.xhtml

<h:inputText value="#{manager.uiUser.attribute.nickname}"

 disabled="#{metadataservice.nickname.readOnly}" />

Warning

The values of the profile-config.xml have a higher priority than the values in the user

portlet configuration. That means if the 'usage' is 'mandatory' in profile-config.xml

and 'required' is 'false' it will be overwritten by the value from the profile config!

18.3.5. Customizing the View Profile page

By default not all values of the user profile will be displayed on the View profile page. For

customization it is possible to add further properties to the page by editing the file: portal-

identity.sar/portal-identity.war/WEB-INF/jsf/profile/viewProfile.xhtml

Customizing the workflow

229

18.4. Customizing the workflow

Note

For more details about jBPM please read the jBPM documentation [http://

docs.jboss.com/jbpm/v3/userguide/index.html]

The process definitions are located in: portal-identity.sar/conf/processes. To create a custom

workflow, you can extend the existing process description file: custom.xml.

Available variables in the business process:

• name: portalURL

type: java.lang.String

description: represents the full url of the portal e.g. http://localhost:8080/portal

• name: locale

type: java.util.Locale

description: the requested locale at registration

• name: email

type: java.lang.String

description: the e-mail address of the user in case of registration.

In case of changing the e-mail the new e-mail address.

• name: user

type: org.jboss.portal.core.identity.services.workflow.UserContainer

description: Seralizable Object containing user information through the jBPM process

• name: validationHash

type: java.lang.String

description: hash used for the validation part. Only available after executing

SendValidationEmailAction

Note
Make sure that the filename and the process name match! e.g. conf/processes/

custom.xml and process-definition name="custom".

When using a custom workflow it is possible to customize the status message after registering in

the locale bundle: (e.g. portal-identity.sar/conf/bundles/Identity.properties)

...

http://docs.jboss.com/jbpm/v3/userguide/index.html
http://docs.jboss.com/jbpm/v3/userguide/index.html
http://docs.jboss.com/jbpm/v3/userguide/index.html

Chapter 18. JBoss Portal Iden...

230

IDENTITY_VERIFICATION_STATUS_REGISTER_CUSTOM=Customized message here

...

18.4.1. Duration of process validity

By default requests (e.g. e-mail validation and registrations) expire after some time in the validation

state. Therefore it is not required to add additional maintenance mechanism to invalidate a request.

The default expiration time is 2 days, but is quite easy to change the timing by editing the duedate

attribute in the process definition. changes in: portal-identity.sar/conf/processes/*.xml

<process-definition>

...

 <state name="validate_email">

 <timer name="time_to_expire" duedate="2 days" transition="timedOut" />

 </state>

...

</process-definition>

For further information take a look at the jBPM documentation [http://docs.jboss.com/jbpm/v3/

userguide/index.html] on Duration.

18.5. Disabling the Identity Portlets

Due to the fact that the former user portlets are still included in JBoss Portal 2.6.2 it is possible to

activate it in the Portal Admin interface, by using the PortletInstances:

• UserPortletInstance: The former user portlet

• RolePortletInstance: The former role managment portlet

18.5.1. Enabling the Identity Portlets

When migrating from former versions of JBoss Portal the Identity User Portlets won't be

displayed by default, but windows can be created on basis of the existing Portlet Instances

which are deployed by default. (The instances names being IdentityUserPortletInstance and

IdentityAdminPortletInstance.)

http://docs.jboss.com/jbpm/v3/userguide/index.html
http://docs.jboss.com/jbpm/v3/userguide/index.html
http://docs.jboss.com/jbpm/v3/userguide/index.html

Chapter 19.

231

Authentication and Authorization
Boleslaw Dawidowicz

This chapter describes the authentication mechanisms in JBoss Portal

19.1. Authentication in JBoss Portal

JBoss Portal is heavily standard based so it leverages Java Authentication and Authorization

Service (JAAS) in JBoss Application Server. Because of this it can be configured in a very

flexible manner and other authentication solutions can be plugged in easily. To better understand

authentication mechanisms in JBoss Portal please refer to Security chapter. To learn more

about JAAS look for proper documentation on Java Security [http://java.sun.com/javase/6/docs/

technotes/guides/security/] website. To learn more about security in JBoss Application Server

please read JBossSX [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossSX] documentation.

19.1.1. Configuration

You can configure the JAAS authentication stack in jboss-portal.sar/conf/login-config.xml. It

is important to remember that authorization in portal starts at the JAAS level - configured

LoginModules apply proper Principal objects representing the roles of authenticated user. As

you can see in jboss-portal.sar/portal-server.war/WEB-INF/web.xml portal servlet is secured

with specified role ("Authenticated"). In the default portal configuration this role is dynamically

added by IdentityLoginModule. If you reconfigure the default JAAS authentication chain with

other LoginModule implementations, you should remember that you must deal with that security

constraints in order to be able to access portal. For example if you place only one LoginModule

that will authenticate users against LDAP server you may consider adding all users in your LDAP

tree to such role.

19.2. JAAS Login Modules

JBoss Portal comes with a few implementations of JAAS LoginModule interface

19.2.1. org.jboss.portal.identity.auth.IdentityLoginModule

This is the standard portal LoginModule implementation that uses portal identity modules in

order to search users and roles. By default it is the only configured LoginModule in the portal

authentication stack. Its behavior can be altered with the following options:

• userModuleJNDIName - JNDI name of portal UserModule.

• roleModuleJNDIName - JNDI name of portal RoleModule.

• membershipModuleJNDIName - JNDI name of portal MembershipModule.

• additionalRole - additional user Principal that will be added to user Subject. This is important

as in default portal configuration it is the role that portal servlet is secured with.

http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossSX
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossSX

Chapter 19. Authentication an...

232

• havingRole - only users belonging to role specified with this option will be authenticated.

• unauthenticatedIdentity - the principal to use when a null username and password are seen.

Note
IdentityLoginModule extends

org.jboss.security.auth.spi.UsernamePasswordLoginModule so if you are familiar

with JBossSX you can apply few other options like "password-stacking". Please

refer to JBossSX documentation.

19.2.2. org.jboss.portal.identity.auth.DBIdentityLoginModule

This LoginModule implementation extends JBossSX

org.jboss.security.auth.spi.DatabaseServerLoginModule and can be used to authenticate

against Database. The main purpose of this module is to be configured directly against

portal database (instead of using portal identity modules like in IdentityLoginModule). So

if you are using custom LoginModule implementation you can place this module with

"sufficient" flag. This can be extremely useful. For example if you authenticate against

LDAP server using JBossSX LdapLoginModule you can fallback to users present in

portal database and not present in LDAP like "admin" user. Please look into this [http://

wiki.jboss.org/wiki/Wiki.jsp?page=DatabaseServerLoginModule] wiki page to learn more about

DatabaseServerLoginModule configuration

Options are:

• dsJndiName - The name of the DataSource of the database containing the Principals and

Roles tables

• principalsQuery - The prepared statement query, equivalent to: "select Password from

Principals where PrincipalID=?"

• rolesQuery - The prepared statement query, equivalent to: "select Role, RoleGroup from Roles

where PrincipalID=?"

• hashAlgorithm - The name of the java.security.MessageDigest algorithm to use to hash

the password. There is no default so this option must be specified to enable hashing.

When hashAlgorithm is specified, the clear text password obtained from the CallbackHandler

is hashed before it is passed to UsernamePasswordLoginModule.validatePassword as the

inputPassword argument. The expectedPassword as stored in the users.properties file must

be comparably hashed.

• hashEncoding - The string format for the hashed pass and st be either "base64" or "hex".

Base64 is the default.

• additionalRole - additional user Principal that will be added to user Subject.

http://wiki.jboss.org/wiki/Wiki.jsp?page=DatabaseServerLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=DatabaseServerLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=DatabaseServerLoginModule

org.jboss.portal.identity.auth.SynchronizingLdapLoginModule

233

Configuration using portal database will look like this:

<login-module code = "org.jboss.portal.identity.auth.DBIdentityLoginModule"

 flag="sufficient">

 <module-option name="dsJndiName">java:/PortalDS</module-option>

 <module-option name="principalsQuery">

 SELECT jbp_password FROM jbp_users WHERE jbp_uname=?

 </module-option/>

 <module-option name="rolesQuery">

 SELECT jbp_roles.jbp_name, 'Roles' FROM jbp_role_membership INNER JOIN

 jbp_roles ON jbp_role_membership.jbp_rid = jbp_roles.jbp_rid INNER JOIN jbp_users ON

 jbp_role_membership.jbp_uid = jbp_users.jbp_uid WHERE jbp_users.jbp_uname=?

 </module-option>

 <module-option name="hashAlgorithm">MD5</module-option>

 <module-option name="hashEncoding">HEX</module-option>

 <module-option name="additionalRole">Authenticated</module-option>

</login-module>

Note
SQL query should be in single line. This code snipped was formatted like this only

to fit documentation page.

19.2.3. org.jboss.portal.identity.auth.SynchronizingLdapLoginModule

This module can be used instead of the IdentityLoginModule to bind to LDAP.

org.jboss.portal.identity.auth.SynchronizingLDAPLoginModule class is a wrapper around

LdapLoginModule [http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule] from JBossSX. It

extends it so all configuration that can be applied to LdapExtLoginModule remains valid here.

For a user that was authenticated successfully it will try to call the identity modules from portal,

then check if such user exists or not, and if does not exist it will try to create it. Then for all roles

assigned to this authenticated principal it will try to check and create them using identity modules.

This behavior can be altered using following options:

• userModuleJNDIName - JNDI name of portal UserModule. This option is obligatory if

synchronizeIdentity option is set to true

• roleModuleJNDIName - JNDI name of portal RoleModule. This option is obligatory if

synchronizeIdentity and synchronizeRoles options are set to true

http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule

Chapter 19. Authentication an...

234

• membershipModuleJNDIName - JNDI name of portal MembershipModule. This option is

obligatory if synchronizeIdentity and synchronizeRoles options are set to true

• userProfileModuleJNDIName - JNDI name of portal UserProfileModule. This option is

obligatory if synchronizeIdentity option is set to true

• synchronizeIdentity - if set to true module will check if successfully authenticated user exist

in portal and if not it will try to create it. If user exists module will update its password to the

one that was just validated.

• synchronizeRoles - if set to true module will iterate over all roles assigned to authenticated

user and for each it will try to check if such role exists in portal and if not it will try to create it.

This option is checked only if synchronizeIdentity is set to true;

• additionalRole - module will add this role name to the group of principals assigned to the

authenticated user.

• defaultAssignedRole - if synchronizeIdentity is set to true, module will try to assign portal role

with such name to the authenticated user. If such role doesn't exist in portal, module will try

to create it.

For obvious reasons this is designed to use with portal identity modules configured with DB and

not LDAP

19.2.4. org.jboss.portal.identity.auth.SynchronizingLdapExtLoginModule

All options that apply for SynchronizingLdapLoginModule also apply here. It's the

same kind of wrapper made around LdapExtLoginModule [http://wiki.jboss.org/wiki/

Wiki.jsp?page=LdapExtLoginModule] from JBossSX. Sample configuration can look like this:

 <login-module code="org.jboss.portal.identity.auth.SynchronizingLDAPExtLoginModule"

 flag="required">

 <module-option name="synchronizeIdentity">true</module-option>

 <module-option name="synchronizeRoles">true</module-option>

 <module-option name="additionalRole">Authenticated</module-option>

 <module-option name="defaultAssignedRole">User</module-option>

 <module-option name="userModuleJNDIName">java:/portal/UserModule</module-option>

 <module-option name="roleModuleJNDIName">java:/portal/RoleModule</module-option>

 <module-option name="membershipModuleJNDIName">java:/portal/MembershipModule

 </module-option>

 <module-option name="userProfileModuleJNDIName">java:/portal/UserProfileModule

 </module-option>

 <module-option name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory

 </module-option>

 <module-option name="java.naming.provider.url">ldap://example.com:10389/

 </module-option>

http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule

org.jboss.portal.identity.auth.SynchronizingLoginModule

235

 <module-option name="java.naming.security.authentication">simple</module-option>

 <module-option name="bindDN">cn=Directory Manager</module-option>

 <module-option name="bindCredential">secret</module-option>

 <module-option name="baseCtxDN">ou=People,dc=example,dc=com</module-option>

 <module-option name="baseFilter">(uid={0})</module-option>

 <module-option name="rolesCtxDN">ou=Roles,dc=example,dc=com</module-option>

 <module-option name="roleFilter">(member={1})</module-option>

 <module-option name="roleAttributeID">cn</module-option>

 <module-option name="roleRecursion">-1</module-option>

 <module-option name="searchTimeLimit">10000</module-option>

 <module-option name="searchScope">SUBTREE_SCOPE</module-option>

 <module-option name="allowEmptyPasswords">false</module-option>

</login-module>

19.2.5. org.jboss.portal.identity.auth.SynchronizingLoginModule

This module is designed to provide synchronization support for any other LoginModule placed

in the authentication stack. It leverages the fact that in JAAS authentication process occurs in

two phases. In first phase when login() method is invoked it always returns "true". Because of

this behavior SynchronizingLoginModule should be always used with "optional" flag. More over

it should be placed after the module we want to leverage as a source for synchronization and

that module should have "required" flag set. During the second phase when commit() method is

invoked it gets user Subject and its Principals and tries to synchronize them into storage configured

for portal identity modules. For this purposes such options are supported:

• userModuleJNDIName - JNDI name of portal UserModule. This option is obligatory if

synchronizeIdentity option is set to true

• roleModuleJNDIName - JNDI name of portal RoleModule. This option is obligatory if

synchronizeIdentity and synchronizeRoles options are set to true

• membershipModuleJNDIName - JNDI name of portal MembershipModule. This option is

obligatory if synchronizeIdentity and synchronizeRoles options are set to true

• userProfileModuleJNDIName - JNDI name of portal UserProfileModule. This option is

obligatory if synchronizeIdentity option is set to true

• synchronizeIdentity - if set to true module will check if successfully authenticated user exist

in portal and if not it will try to create it. If user exists module will update its password to the

one that was just validated.

• synchronizeRoles - if set to true module will iterate over all roles assigned to authenticated

user and for each it will try to check if such role exists in portal and if not it will try to create it.

This option is checked only if synchronizeIdentity is set to true;

Chapter 19. Authentication an...

236

• additionalRole - module will add this role name to the group of principals assigned to the

authenticated user.

• defaultAssignedRole - if synchronizeIdentity is set to true, module will try to assign portal role

with such name to the authenticated user. If such role doesn't exist in portal, module will try

to create it.

Note
Example of usage in LDAP authentication can be found in next chapter.

Chapter 20.

237

LDAP
Boleslaw Dawidowicz

This chapter describes how to setup LDAP support in JBoss Portal

Note
To be able to fully understand this chapter you should also read JBoss Portal

Identity management and Authentication chapters before

20.1. How to enable LDAP usage in JBoss Portal

We'll describe here the simple steps that you will need to perform to enable LDAP support in

JBoss Portal. For additional information you need to read more about configuration of identity and

specific implementations of identity modules

There are two ways to achieve this:

• jboss-portal.sar/META-INF/jboss-service.xml in section:

<mbean

 code="org.jboss.portal.identity.IdentityServiceControllerImpl"

 name="portal:service=Module,type=IdentityServiceController"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <depends>portal:service=Hibernate</depends>

 <attribute name="JndiName">java:/portal/IdentityServiceController</attribute>

 <attribute name="RegisterMBeans">true</attribute>

 <attribute name="ConfigFile">conf/identity/identity-config.xml</attribute>

 <attribute name="DefaultConfigFile">conf/identity/standardidentity-config.xml</attribute>

</mbean>

change identity-config.xml to ldap_identity-config.xml

• Swap the names or content of files in jboss-portal.sar/conf/identity/identity-config.xml and

jboss-portal.sar/conf/identity/ldap_identity-config.xml

After doing one of the above changes you need to edit configuration file that you choose to use

(identity-config.xml or ldap_identity-config.xml) and configure LDAP connection options in section:

Chapter 20. LDAP

238

<datasource>

 <name>LDAP</name>

 <config>

 <option>

 <name>host</name>

 <value>jboss.com</value>

 </option>

 <option>

 <name>port</name>

 <value>10389</value>

 </option>

 <option>

 <name>adminDN</name>

 <value>cn=Directory Manager</value>

 </option>

 <option>

 <name>adminPassword</name>

 <value>qpq123qpq</value>

 </option>

 </config>

</datasource>

You also need to specify options for your LDAP tree (described in configuration documentation)

like those:

<option-group>

 <group-name>common</group-name>

 <option>

 <name>userCtxDN</name>

 <value>ou=People,dc=portal26,dc=jboss,dc=com</value>

 </option>

 <option>

 <name>roleCtxDN</name>

 <value>ou=Roles,dc=portal26,dc=jboss,dc=com</value>

 </option>

</option-group>

Configuration of LDAP connection

239

Note
Under PORTAL_SOURCES/identity/src/resources/example/ you can find a

sample ldif that you can use to populate LDAP server and quickly start playing

with it.

20.2. Configuration of LDAP connection

20.2.1. Connection Pooling

JBoss Portal uses connection pooling [http://java.sun.com/products/jndi/tutorial/ldap/connect/

pool.html] provided by JNDI [http://java.sun.com/products/jndi/], and is enabled by default. Use

the following options to configure connection pooling settings:

<datasource>

 <name>LDAP</name>

 <config>

 ...

 <!-- com.sun.jndi.ldap.connect.pool -->

 <option>

 <name>pooling</name>

 <value>true</value>

 </option>

 <!-- com.sun.jndi.ldap.connect.pool.protocol -->

 <option>

 <name>poolingProtocol</name>

 <value>plain ssl</value>

 </option>

 <!-- com.sun.jndi.ldap.connect.pool.timeout -->

 <option>

 <name>poolingTimeout</name>

 <value>300000</value>

 </option>

 <!-- com.sun.jndi.ldap.connect.pool.debug -->

 <option>

 <name>pooling</name>

 <value> ... </value>

 </option>

http://java.sun.com/products/jndi/tutorial/ldap/connect/pool.html
http://java.sun.com/products/jndi/tutorial/ldap/connect/pool.html
http://java.sun.com/products/jndi/tutorial/ldap/connect/pool.html
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/

Chapter 20. LDAP

240

 <!-- com.sun.jndi.ldap.connect.pool.initsize -->

 <option>

 <name>poolingInitsize</name>

 <value> ... </value>

 </option>

 <!-- com.sun.jndi.ldap.connect.pool.maxsize -->

 <option>

 <name>poolingMaxsize</name>

 <value> ... </value>

 </option>

 <!-- com.sun.jndi.ldap.connect.pool.prefsize -->

 <option>

 <name>poolingPrefsize</name>

 <value> ... </value>

 </option>

 ...

 </config>

</datasource>

Remember, as it is described in the JNDI documentation [http://java.sun.com/products/

jndi/tutorial/ldap/connect/config.html], these options are system properties, not environment

properties, and as such, they affect all connection pooling requests in the Java runtime

environment™.

20.2.2. SSL

The setup is very similar to the one described in LdapLoginModule wiki page [http://www.jboss.org/

wiki/Wiki.jsp?page=LdapLoginModule]

You need to modify your identity configuration file and add "protocol"

<datasource>

 <name>LDAP</name>

 <config>

 ...

 <option>

 <name>protocol</name>

 <value>ssl</value>

 </option>

 ...

http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html
http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html
http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html
http://www.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://www.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://www.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule

ExternalContext

241

 </config>

</datasource>

Then you need to have LDAP server certificate imported into your keystore. You can use following

command:

keytool -import -file ldapcert.der -keystore ldap.truststore

Now you need to change the settings to use the alternative truststore. That can be done in the

properties-service.xml in deploy directory:

<attribute name="Properties">

 javax.net.ssl.trustStore=../some/path/to/ldap.truststore

 javax.net.ssl.trustStorePassword=somepw

</attribute>

20.2.3. ExternalContext

Instead of configuring your own connection you can use JNDI context federation

mechanism in JBoss Application Server. Configuration of ExternalContext is described in

JBoss Application Server documentation [http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/

html_single/#d0e6877]

When you have ExternalContext configured you can use it in JBoss Portal by providing proper

JNDI name in the configuration:

<datasource>

 <name>LDAP</name>

 <config>

 <option>

 <name>externalContextJndiName</name>

 <value>external/ldap/jboss</value>

 </option>

 </config>

</datasource>

http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#d0e6877
http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#d0e6877
http://docs.jboss.com/jbossas/guides/j2eeguide/r2/en/html_single/#d0e6877

Chapter 20. LDAP

242

Note
When using "externalContextJndiName" you don't need to specify any other option

for this datasource

20.3. LDAP Identity Modules

JBoss Portal comes with base LDAP implementation of all identity modules.

20.3.1. Common settings

For all modules you can set two config options:

• jNDIName - JNDI name under which this module will be registered

• connectionJNDIName - JNDI name under which LDAP datasource is registered

Note
Most configuration of LDAP identity modules is done in options section by adding

module specific options in "common" option-group or in other module specific

groups.

20.3.2. UserModule

Table 20.1. Comparision of UserModule implementations

UserModuleFeatures

LDAPUserModuleImpl LDAPExtUserModuleImpl

User creation X -

User removal X -

User search Flat - one level scope Flexible filter - sub tree scope

20.3.2.1. LDAPUserModuleImpl

This is the base implementation of LDAP UserModule. It supports user creation, but will retrieve

users and create them in strictly specified place in LDAP tree.

To enable it in your configuration you should have:

UserModule

243

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

 <implementation>LDAP</implementation>

 <config/>

</module>

org.jboss.portal.identity.ldap.LDAPUserModuleImpl configuration option-groups options:

• common:

• userCtxDN - DN that will be used as context for user searches

• uidAttributeID - attribute name under which user name is specified. Default value is "uid"

• passwordAttributeID - attribute name under which user password is specified. Default value

is "userPassword"

• principalDNPrefix and principalDNSuffix

• searchTimeLimit - The timeout in milliseconds for the user searches. Defaults to 10000 (10

seconds).

• userCreateAttibutes: This option-group defines a set of ldap attributes that will be set on user

entry creation. Option name will be used as attribute name, and option values as attribute

values. This enables to fulfill LDAP schema requirements.

Example configuration:

<option-group>

 <group-name>common</group-name>

 <option>

 <name>userCtxDN</name>

 <value>ou=People,o=portal,dc=my-domain,dc=com</value>

 </option>

 <option>

 <name>uidAttributeID</name>

 <value>uid</value>

 </option>

 <option>

 <name>passwordAttributeID</name>

 <value>userPassword</value>

 </option>

</option-group>

Chapter 20. LDAP

244

<option-group>

 <group-name>userCreateAttibutes</group-name>

 <option>

 <name>objectClass</name>

 <!--This objectclasses should work with Red Hat Directory-->

 <value>top</value>

 <value>person</value>

 <value>inetOrgPerson</value>

 </option>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <option>

 <name>sn</name>

 <value>none</value>

 </option>

</option-group>

20.3.2.2. LDAPExtUserModuleImpl

Aim of this implementation is to give more flexibility for users retrieval. You can specify LDAP filter

that will be used for searches. This module doesn't support user creation and removal

To enable it in your configuration you should have:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

 <implementation>LDAP</implementation>

 <class>org.jboss.portal.identity.ldap.LDAPExtUserModuleImpl</class>

 <config/>

</module

org.jboss.portal.identity.ldap.LDAPExtUserModuleImpl configuration option-groups options:

• common:

• userCtxDN - DN that will be used as context for user searches. More than one value can

be specified.

RoleModule

245

• userSearchFilter - ldap filter to search users with. {0} will be substitute with user name.

Example filter can look like this: "(uid={0})". This substituion behavior comes from the standard

DirContext.search(Name, String, Object, SearchControls cons) method

• uidAttributeID - attribute name under which user name is specified. Default value is "uid"

• searchTimeLimit - The timeout in milliseconds for the user searches. Defaults to 10000 (10

seconds).

20.3.3. RoleModule

Table 20.2. Comparision of RoleModule implementations

RoleModuleFeatures

LDAPRoleModuleImpl LDAPExtRoleModuleImpl

Role creation X -

Role removal X -

Role search Flat - one level scope Flexible filter - sub tree scope

20.3.3.1. LDAPRoleModuleImpl

This is the base implementation of LDAP RoleModule. It supports user creation, but will retrieve

roles and create them in strictly specified place in LDAP tree.

To enable it in your configuration you should have:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>Role</type>

 <implementation>LDAP</implementation>

 <config/>

</module>

org.jboss.portal.identity.ldap.LDAPRoleModuleImpl configuration option-groups options:

• common:

• roleCtxDN - DN that will be used as context for role searches.

• ridAttributeID - attribute name under which role name is specified. Default value is "cn".

• roleDisplayNameAttributeID - attribute name under which role display name is specified.

Default value is "cn".

Chapter 20. LDAP

246

• searchTimeLimit - The timeout in milliseconds for the roles searches. Defaults to 10000 (10

seconds).

20.3.3.2. LDAPExtRoleModuleImpl

Aim of this implementation is to give more flexibility for roless retrieval. You can specify LDAP

filter that will be used for searches. This module doesn't support role creation and removal

This module doesn't support role creation and removal

To enable it in your configuration you should have:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>Role</type>

 <implementation>LDAP</implementation>

 <class>org.jboss.portal.identity.ldap.LDAPExtRoleModuleImpl</class>

 <config/>

</module>

org.jboss.portal.identity.ldap.LDAPExtRoleModuleImpl configuration option-groups options:

• common:

• roleCtxDN - DN that will be used as context for role searches. More than one value can be

specified.

• roleSearchFilter - ldap filter to search roles with. {0} will be substitute with role name.

Example filter can look like this: "(cn={0})". This substituion behavior comes from the standard

DirContext.search(Name, String, Object, SearchControls cons) method.

• ridAttributeID - attribute name under which role name is specified. Default value is "cn".

• roleDisplayNameAttributeID - attribute name under which role display name is specified.

Default value is "cn".

• searchTimeLimit - The timeout in milliseconds for the roles searches. Defaults to 10000 (10

seconds).

• searchScope - Sets the search scope to one of the strings. The default is

SUBTREE_SCOPE.

• OBJECT_SCOPE - only search the named roles context.

MembershipModule

247

• ONELEVEL_SCOPE - search directly under the named roles context.

• SUBTREE_SCOPE - If the roles context is not a DirContext, search only the object. If the

roles context is a DirContext, search the subtree rooted at the named object, including the

named object itself.

Note
In UserModule there are two methods that handle offset/limit (pagination) behavior.

/** Get a range of users.*/

Set findUsers(int offset, int limit) throws IdentityException,

 IllegalArgumentException;

/** Get a range of users.*/

Set findUsersFilteredByUserName(String filter, int offset, int limit)

 throws IdentityException, IllegalArgumentException;

Pagination support is not widely implemented in LDAP servers. Because

UserModule implementations rely on JNDI and are targetted to be LDAP server

agnostic those methods aren't very effecient. As long as you don't rely on portal

user management and use dedicated tools for user provisioning it shouldn't bother

you. Otherwise you should consider extending the implementation and providing

solution dedicated to your LDAP server.

20.3.4. MembershipModule

Table 20.3. Comparision of MembershipModule implementations

MembershipModuleFeatures

LDAPStaticGroupMembershipModuleImplLDAPStaticRoleMembershipModuleImpl

Role assignment stored in

LDAP role entry

X -

Role assignment stored in

LDAP user entry

- X

User/Role relationship

creation

X X

Chapter 20. LDAP

248

20.3.4.1. LDAPStaticGroupMembershipModuleImpl

This module support tree shape where role entries keep information about users that are their

members.

To enable it in your configuration you should have:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>Membership</type>

 <implementation>LDAP</implementation>

 <config/>

</module>

org.jboss.portal.identity.ldap.LDAPStaticGroupMembershipModuleImpl configuration option-

groups options:

• common:

• membershipAttributeID - LDAP attribute that defines member users ids. This will be used

to retrieved users from role entry.

• membershipAttributeIsDN - defines if values of attribute defined in membershipAttributeID

are fully qualified LDAP DNs.

20.3.4.2. LDAPStaticRoleMembershipModuleImpl

This module support tree shape where user entries keep information about roles that they belong

to.

To enable it in your configuration you should have:

<module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>Membership</type>

 <implementation>LDAP</implementation>

 <class>org.jboss.portal.identity.ldap.LDAPStaticRoleMembershipModuleImpl</class>

 <config/>

</module>

UserProfileModule

249

org.jboss.portal.identity.ldap.LDAPStaticRoleMembershipModuleImpl configuration option-

groups options:

• common:

• membershipAttributeID - LDAP attribute that defines role ids that user belongs to. This will

be used to retrieved roles from user entry.

• membershipAttributeIsDN - defines if values of attribute defined in membershipAttributeID

are fully qualified LDAP DNs.

20.3.5. UserProfileModule

20.3.5.1. LDAPUserProfileModuleImpl

This is standard implementation that enables to retrieve user properties from atributes in LDAP

entries.

To enable it in your configuration you should have:

<module>

 <type>UserProfile</type>

 <implementation>DELEGATING</implementation>

 <config>

 <option>

 <name>ldapModuleJNDIName</name>

 <value>java:/portal/LDAPUserProfileModule</value>

 </option>

 </config>

</module>

<module>

 <type>DBDelegateUserProfile</type>

 <implementation>DB</implementation>

 <config>

 <option>

 <name>randomSynchronizePassword</name>

 <value>true</value>

 </option>

 </config>

</module>

<module>

 <type>LDAPDelegateUserProfile</type>

 <implementation>LDAP</implementation>

Chapter 20. LDAP

250

 <config/>

</module>

Note
Using such configuration you will have LDAP MembershipModule along with

DB MembershipModule and Delegating MembershipModule. Please read Identity

chapter to see why this is important.

org.jboss.portal.identity.ldap.LDAPUserModuleImpl configuration option-groups options:

• common:

• profileConfigFile - file with user profile configuration. If this option is not set, and we use

delegating UserProfileModule, profile configuration will be obtained from it.

20.4. LDAP server tree shapes

JBoss Portal supports full user/role management for simple LDAP tree shapes. Some more

flexible trees can be supported by LdapExtUserModuleImpl and LdapExtRoleModuleImpl - but

without user/role creation and removal capabilities. However if you have complex LDAP tree you

should consider using SynchronizingLoginModule described in Authentication chapter along with

dedicated tools for user provisioning provided with LDAP server.

In following subsections we will describe two base LDAP tree shapes along with example LDIFs

and portal identity modules configurations. Those two examples differ only by using different

MembershipModule implementations and describe only tree shapes with supported user/role

creation and removal capabilities.

20.4.1. Keeping users membership in role entries

In this example, information about users/roles assignment is stored in roles entries using LDAP

"member". Of course any other attribute that comes with schema can be used for this.

Example tree shape in LDAP browser

Keeping users membership in role entries

251

Chapter 20. LDAP

252

20.4.1.1. Example LDIF

dn: dc=example,dc=com

objectclass: top

objectclass: dcObject

objectclass: organization

dc: example

o: example

dn: ou=People,dc=example,dc=com

objectclass: top

objectclass: organizationalUnit

ou: People

dn: uid=user,ou=People,dc=example,dc=com

objectclass: top

objectclass: inetOrgPerson

objectclass: person

uid: user

cn: JBoss Portal user

sn: user

userPassword: user

mail: email@email.com

dn: uid=admin,ou=People,dc=example,dc=com

objectclass: top

objectclass: inetOrgPerson

objectclass: person

uid: admin

cn: JBoss Portal admin

sn: admin

userPassword: admin

mail: email@email.com

dn: ou=Roles,dc=example,dc=com

objectclass: top

objectclass: organizationalUnit

ou: Roles

dn: cn=User,ou=Roles,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

Keeping users membership in role entries

253

cn: User

description: the JBoss Portal user group

member: uid=user,ou=People,dc=example,dc=com

dn: cn=Admin,ou=Roles,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

cn: Echo

description: the JBoss Portal admin group

member: uid=admin,ou=People,dc=example,dc=com

20.4.1.2. Example identity configuration

 <modules>

 <module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

 <module>

 <type>Role</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

 <module>

 <type>Membership</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

 <module>

 <type>UserProfile</type>

 <implementation>DELEGATING</implementation>

 <config>

 <option>

 <name>ldapModuleJNDIName</name>

 <value>java:/portal/LDAPUserProfileModule</value>

 </option>

 </config>

 </module>

 <module>

 <type>DBDelegateUserProfile</type>

Chapter 20. LDAP

254

 <implementation>DB</implementation>

 <config>

 <option>

 <name>randomSynchronizePassword</name>

 <value>true</value>

 </option>

 </config>

 </module>

 <module>

 <type>LDAPDelegateUserProfile</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

</modules>

<options>

 <option-group>

 <group-name>common</group-name>

 <option>

 <name>userCtxDN</name>

 <value>ou=People,dc=example,dc=com</value>

 </option>

 <option>

 <name>roleCtxDN</name>

 <value>ou=Roles,dc=example,dc=com</value>

 </option>

 </option-group>

 <option-group>

 <group-name>userCreateAttibutes</group-name>

 <option>

 <name>objectClass</name>

 <!--This objectclasses should work with Red Hat Directory-->

 <value>top</value>

 <value>person</value>

 <value>inetOrgPerson</value>

 </option>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <option>

 <name>sn</name>

 <value>none</value>

Keeping users membership in user entries

255

 </option>

 </option-group>

 <option-group>

 <group-name>roleCreateAttibutes</group-name>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <!--Some directory servers require this attribute to be valid DN-->

 <!--For safety reasons point to the admin user here-->

 <option>

 <name>member</name>

 <value>uid=admin,ou=People,dc=example,dc=com</value>

 </option>

 </option-group>

</options>

20.4.2. Keeping users membership in user entries

In this example, information about users/roles assignment is stored in user entries using LDAP

"memberOf". Of course any other attribute that comes with schema can be used for this.

Example tree shape in LDAP browser

Chapter 20. LDAP

256

20.4.2.1. Example LDIF

dn: dc=example,dc=com

objectclass: top

objectclass: dcObject

objectclass: organization

dc: example

o: example

dn: o=example2,dc=example,dc=com

objectclass: top

objectclass: organization

o: example2

dn: ou=People,o=example2,dc=example,dc=com

objectclass: top

objectclass: organizationalUnit

ou: People

dn: uid=admin,ou=People,o=example2,dc=example,dc=com

objectclass: top

objectclass: inetOrgPerson

Keeping users membership in user entries

257

objectclass: inetUser

uid: admin

cn: JBoss Portal admin

sn: admin

userPassword: admin

mail: email@email.com

memberOf: cn=Admin,ou=Roles,o=example2,dc=example,dc=com

dn: uid=user,ou=People,o=example2,dc=example,dc=com

objectclass: top

objectclass: inetOrgPerson

objectclass: inetUser

uid: user

cn: JBoss Portal user

sn: user

userPassword: user

mail: email@email.com

memberOf: cn=User,ou=Roles,o=example2,dc=example,dc=com

dn: ou=Roles,o=example2,dc=example,dc=com

objectclass: top

objectclass: organizationalUnit

ou: Roles

dn: cn=User,ou=Roles,o=example2,dc=example,dc=com

objectClass: top

objectClass: organizationalRole

cn: User

description: the JBoss Portal user group

dn: cn=Admin,ou=Roles,o=example2,dc=example,dc=com

objectClass: top

objectClass: organizationalRole

cn: Echo

description: the JBoss Portal admin group

20.4.2.2. Example identity configuration

 <modules>

 <module>

 <!--type used to correctly map in IdentityContext registry-->

 <type>User</type>

Chapter 20. LDAP

258

 <implementation>LDAP</implementation>

 <config/>

 </module>

 <module>

 <type>Role</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

 <module>

 <type>Membership</type>

 <implementation>LDAP</implementation>

 <class>org.jboss.portal.identity.ldap.LDAPStaticRoleMembershipModuleImpl</class>

 <config/>

 </module>

 <module>

 <type>UserProfile</type>

 <implementation>DELEGATING</implementation>

 <config>

 <option>

 <name>ldapModuleJNDIName</name>

 <value>java:/portal/LDAPUserProfileModule</value>

 </option>

 </config>

 </module>

 <module>

 <type>DBDelegateUserProfile</type>

 <implementation>DB</implementation>

 <config>

 <option>

 <name>randomSynchronizePassword</name>

 <value>true</value>

 </option>

 </config>

 </module>

 <module>

 <type>LDAPDelegateUserProfile</type>

 <implementation>LDAP</implementation>

 <config/>

 </module>

</modules>

<options>

 <option-group>

 <group-name>common</group-name>

Keeping users membership in user entries

259

 <option>

 <name>userCtxDN</name>

 <value>ou=People,dc=example,dc=com</value>

 </option>

 <option>

 <name>roleCtxDN</name>

 <value>ou=Roles,dc=example,dc=com</value>

 </option>

 <option>

 <name>membershipAttributeID</name>

 <value>memberOf</value>

 </option>

 </option-group>

 <option-group>

 <group-name>userCreateAttibutes</group-name>

 <option>

 <name>objectClass</name>

 <!--This objectclasses should work with Red Hat Directory-->

 <value>top</value>

 <value>person</value>

 <value>inetOrgPerson</value>

 </option>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <option>

 <name>sn</name>

 <value>none</value>

 </option>

 </option-group>

 <option-group>

 <group-name>roleCreateAttibutes</group-name>

 <!--Schema requires those to have initial value-->

 <option>

 <name>cn</name>

 <value>none</value>

 </option>

 <!--Some directory servers require this attribute to be valid DN-->

 <!--For safety reasons point to the admin user here-->

 <option>

 <name>member</name>

 <value>uid=admin,ou=People,dc=example,dc=com</value>

Chapter 20. LDAP

260

 </option>

 </option-group>

</options>

20.5. Synchronizing LDAP configuration

Like it was described in previous section, you can meet some limitations in identity modules

support for more complex LDAP tree shapes. To workaround this you can use identity

synchronization on JAAS level. JBoss Portal comes with SynchronizingLoginModule that can

be easily configured with other authentication solutions that support JAAS framework. Here we

want to provide a simple example on how it can be integrated with LdapExtLoginModule [http://

wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule] from JBossSX framework.

First of all portal identity modules should be configured to work with portal database - default

configuration. This is important as we will leverage them, and we want to synchronize users identity

into default portal storage mechanism. So lets look at simple configuration that should take place

in jboss-portal.sar/conf/login-config.xml

<policy>

 <!-- For the JCR CMS -->

 <application-policy name="cms">

 <authentication>

 <login-module code="org.apache.jackrabbit.core.security.SimpleLoginModule"

 flag="required"/>

 </authentication>

 </application-policy>

 <application-policy name="portal">

 <authentication>

 <login-module code="org.jboss.security.auth.spi.LdapExtLoginModule" flag="required">

 <module-option name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory

 </module-option>

 <module-option name="java.naming.provider.url">ldap://example.com:10389/

 </module-option>

 <module-option name="java.naming.security.authentication">simple</module-option>

 <module-option name="bindDN">cn=Directory Manager</module-option>

 <module-option name="bindCredential">lolo</module-option>

 <module-option name="baseCtxDN">ou=People,dc=example,dc=com</module-option>

 <module-option name="baseFilter">(uid={0})</module-option>

 <module-option name="rolesCtxDN">ou=Roles,dc=example,dc=com</module-option>

 <module-option name="roleFilter">(member={1})</module-option>

http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule

Supported LDAP servers

261

 <module-option name="roleAttributeID">cn</module-option>

 <module-option name="roleRecursion">-1</module-option>

 <module-option name="searchTimeLimit">10000</module-option>

 <module-option name="searchScope">SUBTREE_SCOPE</module-option>

 <module-option name="allowEmptyPasswords">false</module-option>

 </login-module>

 <login-module code="org.jboss.portal.identity.auth.SynchronizingLoginModule"

 flag="optional">

 <module-option name="synchronizeIdentity">true</module-option>

 <module-option name="synchronizeRoles">true</module-option>

 <module-option name="additionalRole">Authenticated</module-option>

 <module-option name="defaultAssignedRole">User</module-option>

 <module-option name="userModuleJNDIName">java:/portal/UserModule</module-option>

 <module-option name="roleModuleJNDIName">java:/portal/RoleModule</module-option>

 <module-option name="membershipModuleJNDIName">java:/portal/MembershipModule

 </module-option>

 <module-option name="userProfileModuleJNDIName">java:/portal/UserProfileModule

 </module-option>

 </login-module>

 </authentication>

 </application-policy>

</policy>

Few things are important in this configuration:

• LdapExtLoginModule has flag="required" set which means that if this single LoginModule

return fail from authentication request whole process will fail. SynchronizingLoginModule has

flag="optional". Such combination is critical as SynchronizingLoginModule always authenticates

user sucessfully no matter what credentials were provided. You always must have at least one

LoginModule that you will rely on.

• SynchronizingLoginModule is always the last one in whole authentication chain. This is

because in commit phase it will take users Subject and its Principals (roles) assigned by

previous LoginModules and try to synchronize them. Roles assigned to authenticated user by

LoginModules after it won't be handled.

20.6. Supported LDAP servers

LDAP servers support depends on few conditions. In most cases they differ in schema support

- various objectClass objects are not present by default in server schema. Sometimes it can be

workarounded by manually extending schema.

Servers can be

Chapter 20. LDAP

262

• Supported

• Not Supported

• Experimental - implementation can work with such server but it's not well tested so shouldn't

be considered for production.

Table 20.4. Support of identity modules with different LDAP servers

UserModule RoleModule MembershipModuleUserProfileModuleLDAP

Server LDAPUserModuleImplLDAPExtUserModuleImplLDAPRoleModuleImplLDAPExtRoleModuleImplLDAPStaticGroupMembershipModuleImplLDAPStaticRoleMembershipModuleImplLDAPUserProfileModuleImpl

Red Hat

Directory

Server

Supported Supported Supported Supported Supported Supported Supported

OpenDS Supported Supported Supported Supported SupportedNot SupportedSupported

OpenLDAP Supported Supported Supported Supported SupportedNot SupportedSupported

Chapter 21.

263

Single Sign On
Boleslaw Dawidowicz

Sohil Shah

This chapter describes how to setup SSO in JBoss Portal

21.1. Overview of SSO in portal

Portal as an integration and aggregation platform provides some form of SSO by itself. When you

log into the portal you gain access to many systems through portlets using a single identity. Still

in many cases you need to integrate the portal infrastructure with other SSO enabled systems.

There are many different Identity Management solutions on the market. In most cases each SSO

framework provides its own way to plug into Java EE application. For custom configurations you

need to have a good understanding of JBoss Portal Identity management and authentication

mechanisms.

21.2. Using an Apache Tomcat Valve

JBoss Application Server embeds Apache Tomcat as the default servlet container. Tomcat

provides a builtin SSO support using a valve. The Single Sign On Valve caches credentials on

the server side, and then invisibly authenticate users when they reach different web applications.

Credentials are stored in a host-wide session which means that SSO will be effective throughout

the session.

21.2.1. Enabling the Apache Tomcat SSO Valve

To enable SSO valve in Apache Tomcat you should uncomment the following line

<Valve className=’org.apache.catalina.authenticator.SingleSignOn’/>

in the $JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml file. More

information can be found here [http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn].

21.2.2. Example of usage

Lets look a little bit closer and configure SSO between portal and other web application. As

an example we'll use jmx-console web-app that comes with every JBoss Application Server

installation. You can find more information on how to secure jmx-console in JBoss AS wiki [http:/

/wiki.jboss.org/wiki/Wiki.jsp?page=SecureTheJmxConsole].

1. Take a clean install of JBoss Application Server

http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn
http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureTheJmxConsole
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureTheJmxConsole
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureTheJmxConsole

Chapter 21. Single Sign On

264

2. Edit $JBOSS_HOME/server/default/deploy/jmx-console.war/WEB-INF/web.xml file and make

sure it contains following content:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>HtmlAdaptor</web-resource-name>

 <description>An example security config that only allows users with the

 role JBossAdmin to access the HTML JMX console web application

 </description>

 <url-pattern>/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Admin</role-name>

 </auth-constraint>

</security-constraint>

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Public</web-resource-name>

 <url-pattern>/public/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

</security-constraint>

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>jmx-console</realm-name>

</login-config>

<security-role>

 <role-name>Admin</role-name>

</security-role>

This will secure jmx-console web application using BASIC browser authentication and restrict

access for users with Admin role only.

Example of usage

265

3. Edit $JBOSS_HOME/server/default/conf/props/jmx-console-roles.properties file and make it

contain:

admin=JBossAdmin,HttpInvoker,Admin

This file is a simple identity store for this web application authentication. It will make user admin

belongs to Admin role.

4. Deploy JBoss Portal

5. Run JBoss Application Server

6. Now you can check that when you go to

• http://localhost:8080/portal

• http://localhost:8080/jmx-console

you need to authenticate separately into each of those web applications.

7. Shutdown Application Server

8. Uncomment the following line

<Valve className=’org.apache.catalina.authenticator.SingleSignOn’/>

in the $JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml file. More

information can be found here [http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn].

Run JBoss Application Server.

Now if you log into portal as user admin with password admin, you won't be asked for credentials

when accessing jmx-console. This should work in both directions.

Note
Please note that in this example jmx-console uses BASIC authentication method.

This means that user credentials are cached on the client side by browser and

passed on each request. Once authenticated to clear authentication cache you

may need to restart browser.

http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn
http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn

Chapter 21. Single Sign On

266

21.3. CAS - Central Authentication Service

This Single Sign On plugin enables seamless integration between JBoss Portal and the CAS

Single Sign On Framework. Details about CAS can be found here [http://www.ja-sig.org/products/

cas/]

21.3.1. Integration steps

Note
The steps below assume that CAS server and JBoss Portal will be deployed on

the same JBoss Application Server instance. CAS will be configured to leverage

identity services exposed by JBoss Portal to perform authentication. Procedure

may be slightly different for other deployment scenarios. Both JBoss Portal and

CAS will need to be configured to authenticate against same database or LDAP

server. Please see CAS documentation to learn how to setup it up against proper

identity store.

Note
Configuration below assumes that JBoss Application Server is HTTPS enabled

and operates on standard ports: 80 (for HTTP) and 443 (for HTTPS).

1. Install CAS server (v 3.0.7). This should be as simple as deploying single cas.war file.

2. Copy portal-identity-lib.jar and portal-identity-sso-lib.jar files from $JBOSS_HOME/server/

default/deploy/jboss-portal.sar/lib to $JBOSS_HOME/server/default/deploy/cas.war/WEB-INF/

lib.

3. Edit $JBOSS_HOME/server/default/deploy/jboss-portal.sar/portal-server.war/WEB-INF/

context.xml file and enable proper Apache Tomcat Valve by uncommenting following lines:

<Valve className="org.jboss.portal.identity.sso.cas.CASAuthenticationValve"

 casLogin="https://localhost/cas/login"

 casValidate="https://localhost/cas/serviceValidate"

 casServerName="localhost"

 authType="FORM"

/>

http://www.ja-sig.org/products/cas/
http://www.ja-sig.org/products/cas/
http://www.ja-sig.org/products/cas/

Integration steps

267

Update valve options as follow:

• casLogin: URL of your CAS Authentication Server

• casValidate: URL of your CAS Authentication Server validation service

• casServerName: the hostname:port combination of your CAS Authentication Server

Note
CAS client requires to use SSL connection. To learn how to setup JBoss

Application Server to use HTTPS see here

4. Copy casclient.jar into $JBOSS_HOME/server/default/deploy/jboss-portal.sar/lib. You can

download this file from CAS homepage or from JBoss repository under http://

repository.jboss.com/cas/3.0.7/lib/

Note
The CAS engine does not accept self-signed SSL certificates. This requirement

is fine for production use where a production level SSL certificate is available.

However, for testing purposes, this can get a little annoying. Hence, if you are

having this issue, you can use casclient-lenient.jar instead.

5. Edit $JBOSS_HOME/server/default/deploy/jboss-portal.sar/META-INF/jboss-service.xml file

and uncomment following lines:

<mbean

 code="org.jboss.portal.identity.sso.cas.CASAuthenticationService"

 name="portal:service=Module,type=CASAuthenticationService"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <depends>portal:service=Module,type=IdentityServiceController</depends>

 <attribute name="HavingRole"></attribute>

</mbean>

Chapter 21. Single Sign On

268

This will expose special service in JBoss Portal that can be leveraged by CAS

AuthenticationHandler if the server is deployed on the same application server instance. This

AuthenticationHandler will be enabled in next 2 steps.

6. Edit $JBOSS_HOME/server/default/deploy/cas.war/WEB-INF/deployerConfigContext.xml and

add following line in the authenticationHandlers section:

<bean class="org.jboss.portal.identity.sso.cas.CASAuthenticationHandler" />

This can replace default SimpleTestUsernamePasswordAuthenticationHandler so whole part

of this config file can look as follows:

 <property name="authenticationHandlers">

 <list>

 <!--

 | This is the authentication handler that authenticates services by means of callback via

 SSL, thereby validating

 | a server side SSL certificate.

 +-->

 <bean

 class="org.jasig.cas.authentication.handler.support.HttpBasedServiceCredentialsAuthenticationHandler">

 <property

 name="httpClient"

 ref="httpClient" />

 </bean>

 <!--

 | This is the authentication handler declaration that every CAS deployer will need to change

 before deploying CAS

 | into production. The default SimpleTestUsernamePasswordAuthenticationHandler

 authenticates UsernamePasswordCredentials

 | where the username equals the password. You will need to replace this with an

 AuthenticationHandler that implements your

 | local authentication strategy. You might accomplish this by coding a new such handler

 and declaring

Java™ Open Single Sign-On (JOSSO)

269

 | edu.someschool.its.cas.MySpecialHandler here, or you might use one of the handlers

 provided in the adaptors modules.

 +-->

 <bean class="org.jboss.portal.identity.sso.cas.CASAuthenticationHandler" />

 </list>

</property>

To test the integration:

• Go to your portal. Typically, http://localhost:8080/portal

• Click on the "Login" link on the main portal page

• This should bring up the CAS Authentication Server's login screen instead of the default JBoss

Portal login screen

• Input your portal username and password. For built-in portal login try user:user or admin:admin

• If login is successful, you should be redirected back to the portal with the appropriate user

logged in

21.4. Java™ Open Single Sign-On (JOSSO)

JBoss Portal enables seamless integration with JOSSO server. More details on JOSSO can be

found here [http://www.josso.org/]

Note
The steps below assume that JOSS server and JBoss Portal will be deployed on

the same JBoss Application Server instance. JOSSO will be configured to leverage

identity services exposed by JBoss Portal to perform authentication. Procedure

may be slightly different for other deployment scenarios. Both JBoss Portal and

JOSSO will need to be configured to authenticate against same database or LDAP

server. Please see JOSSO documentation to learn how to setup it up against

proper identity store.

Note
Configuration below assumes that JOSSO is already installed and deployed in the

JBoss Application Server. This involves adding proper jar files into the classpath

and altering several configuration files (adding Apache Tomcat Valves, security

realm and specific JOSSO configuration files). For JBoss setup please refer to

JOSSO documentation [http://www.josso.org/jboss4-howto.html]

http://www.josso.org/
http://www.josso.org/
http://www.josso.org/jboss4-howto.html
http://www.josso.org/jboss4-howto.html

Chapter 21. Single Sign On

270

21.4.1. Integration steps

1. Copy portal-identity-lib.jar and portal-identity-sso-lib.jar files from $JBOSS_HOME/

server/default/deploy/jboss-portal.sar/lib to $JBOSS_HOME/server/default/deploy/josso.ear/

josso.war/WEB-INF/lib.

2. Edit $JBOSS_HOME/server/default/deploy/jboss-portal.sar/portal-server.war/WEB-INF/

context.xml file and enable proper Apache Tomcat Valve by uncommenting following lines:

<Valve className="org.jboss.portal.identity.sso.josso.JOSSOLogoutValve"/>

3. Edit $JBOSS_HOME/server/default/config/josso-agent-config.xml and mapping for portal web

application:

<partner-apps>

 ...

 <partner-app>

 <context>/portal</context>

 </partner-app>

 ...

 </partner-apps>

Complete config file can look as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<agent>

 <class>org.josso.jb4.agent.JBossCatalinaSSOAgent</class>

Integration steps

271

 <gatewayLoginUrl>http://localhost:8080/josso/signon/login.do</gatewayLoginUrl>

 <gatewayLogoutUrl>http://localhost:8080/josso/signon/logout.do</gatewayLogoutUrl>

 <service-locator>

 <class>org.josso.gateway.WebserviceGatewayServiceLocator</class>

 <endpoint>localhost:8080</endpoint>

 </service-locator>

 <partner-apps>

 <partner-app>

 <context>/partnerapp</context>

 </partner-app>

 <partner-app>

 <context>/portal</context>

 </partner-app>

 </partner-apps>

</agent>

4. Edit $JBOSS_HOME/server/default/deploy/jboss-portal.sar/portal-server.war/login.jsp and

$JBOSS_HOME/server/default/deploy/jboss-portal.sar/portal-server.war/erros.jsp and

uncomment following line:

<%

 response.sendRedirect(request.getContextPath() + "/josso_login/");

%>

(make sure to remove java style comment '/* */' - not the xml one).

5. Edit $JBOSS_HOME/server/default/deploy/jboss-portal.sar/META-INF/jboss-service.xml file

and uncomment following lines:

<mbean

 code="org.jboss.portal.identity.sso.josso.JOSSOIdentityServiceImpl"

 name="portal:service=Module,type=JOSSOIdentityService"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

Chapter 21. Single Sign On

272

 <xmbean/>

 <depends>portal:service=Module,type=IdentityServiceController</depends>

</mbean>

This will expose a special service in JBoss Portal that can be leveraged by JOSSO Credential

and Identity Stores if the server is deployed on the same application server instance.

6. Edit $JBOSS_HOME/server/default/deploy/josso.ear/josso.war/WEB-INF/classes/josso-

gateway-config.xml and configure following elements:

• Credential Store:

<!-- Basic Authentication Scheme -->

<authentication-scheme>

 <name>basic-authentication</name>

 <class>org.josso.auth.scheme.BindUsernamePasswordAuthScheme</class>

 <!-- === -->

 <!-- JBoss Portal Credential Store -->

 <!-- === -->

 <credential-store>

 <class>org.jboss.portal.identity.sso.josso.JOSSOIdentityStore</class>

 </credential-store>

 <!-- === -->

 <!-- Credential Store Key adapter -->

 <!-- === -->

 <credential-store-key-adapter>

 <class>org.josso.gateway.identity.service.store.SimpleIdentityStoreKeyAdapter</class>

 </credential-store-key-adapter>

</authentication-scheme>

• SSO Identity Store:

Integration steps

273

<sso-identity-manager>

 <class>org.josso.gateway.identity.service.SSOIdentityManagerImpl</class>

 <!-- === -->

 <!-- JBoss Portal Credential Store -->

 <!-- === -->

 <sso-identity-store>

 <class>org.jboss.portal.identity.sso.josso.JOSSOIdentityStore</class>

 </sso-identity-store>

 <!-- === -->

 <!-- Identity Store Key adapter -->

 <!-- === -->

 <sso-identity-store-key-adapter>

 <class>org.josso.gateway.identity.service.store.SimpleIdentityStoreKeyAdapter</class>

 </sso-identity-store-key-adapter>

</sso-identity-manager>

To test the integration:

• Go to your portal. Typically, http://localhost:8080/portal

• Click on the "Login" link on the main portal page

• This should bring up the JOSSO login screen instead of the default JBoss Portal login screen

• Input your portal username and password. For built-in portal login try user:user or admin:admin

• If login is successful, you should be redirected back to the portal with the appropriate user

logged in

274

Chapter 22.

275

CMS Portlet
Roy Russo

Thomas Heute

JBoss Portal packages a Web Content Management System capable of serving and allowing

administration of web content. This chapter describes the CMS Portlet which is responsible

for serving resources requested, the following chapter describes the CMSAdmin Portlet and all

administration functionality.

22.1. Introduction

The CMS Portlet displays content from the file store inside a portlet window, or, in the case of

binary content, outside of the portlet window altogether.

22.2. Features

The CMSPortlet handles all requests for all content types.

Chapter 22. CMS Portlet

276

The methodology of serving content within the CMSPortlet, allows for some beneficial features,

like:

1. Search-engine friendly URLs: http://domain/[portal]/content/company.html

2. Serve binaries with simple urls independent of the portal: http://domain/content/products.pdf

3. Deploy several instances of the CMSPortlet on any page and configure them to display different

start pages.

4. Localization support: CMSPortlet will display content based on the user request locale, or

display content using the default locale setting.

22.3. CMS content

Since 2.6 displaying CMS content in the portal is done using the new content integration feature.

Each window of the portal can be configured to display CMS content directly instead of having to

configure the CMS portlet as it used to be.

22.3.1. Configuring a window to display CMS content

Showing CMS content in a portal window can be done in the deployment descriptor quite easily

<window>

 <window-name>MyCMSWindow</window-name>

 <content>

 <content-type>cms</content-type>

 <content-uri>/default/index.html</content-uri>

 </content>

 <region>center</region>

 <height>1</height>

</window>

At the first display of the window, the content is initialized with the content uri value. When the user

clicks on a link that navigates to another CMS file, the CMS file will be shown in the same window.

22.4. CMS Configuration

22.4.1. Display CMS content

Since 2.6 displaying CMS content in the portal is done using the new content integration feature.

The portal is also able to map urls content to the CMS through a specific window. The CMS portlet

default page is defined as a preference and can be overridden like any other preference up to the

user's preference level. The default CMS portlet displayed when you install JBoss Portal for the

first time is describe in the following file: jboss-portal.sar/portal-core.war/WEB-INF/portlet.xml .

Service Configuration

277

<portlet-preferences>

 <preference>

 <name>indexpage</name>

 <value>/default/index.html</value>

 </preference>

</portlet-preferences>

The preference key is "indexpage". To change the default page, just make sure to create an HTML

document using the CMS Admin portlet then change the value of "indexpage" to the corresponding

path.

22.4.2. Service Configuration

22.4.2.1. Tuning Apache Jackrabbit

JBoss Portal uses Apache Jackrabbit as its Java Content Repository implementation.

Configuration of the service descriptor, allows for changing many of the variables associated with

the service.

Here is the default configuration for the CMS repository found under portal-cms.sar/META-INF-

INF/jboss-service.xml

...

<attribute name="DoChecking">true</attribute>

<attribute name="DefaultContentLocation">portal/cms/conf/default-content/default/</attribute>

<attribute name="DefaultLocale">en</attribute>

<attribute name="RepositoryName">PortalRepository</attribute>

<attribute name="HomeDir">${jboss.server.data.dir}${/}portal${/}cms${/}conf</attribute>

...

Below is a list of items found in the service descriptor and their definitions. Only items commonly

changed are covered here and it is recommended you do not change any others unless you are

very brave.

• DoChecking: Should the portal attempt to check for the existence of the repository configuration

files and default content on startup?

• DefaultContentLocation: Location of the default content used to pre-populate the repository.

• DefaultLocale: Two-letter abbreviation of the default locale the portal should use when fetching

content for users. A complete ISO-639 list can be found here [http://ftp.ics.uci.edu/pub/ietf/http/

related/iso639.txt] .

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt

Chapter 22. CMS Portlet

278

• HomeDir: Location of configuration information for the repository when in 100% FileSystem

store mode. Otherwise, its in the database.

22.4.2.2. Changing the url under which the content should be

accessible

By default, the content will be accessible to a url like this: http://www.example.com/content/[...],

if you need or prefer to change "content" to something else you will need to edit the following

file: portal-cms.sar/META-INF-INF/jboss-service.xml and change the value of Prefix to

something else. Please note that you cannot change it to "nothing", you need to provide a value.

...

<mbean

 code="org.jboss.portal.core.cms.CMSObjectCommandFactory"

 name="portal:commandFactory=CMSObject"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.common.system.JBossServiceModelMBean">

 <xmbean/>

 <attribute name="Prefix">content</attribute>

 <attribute name="TargetWindowRef">default.default.CMSPortletWindow</attribute>

 <depends optional-attribute-name="Factory" proxy-type="attribute">

 portal:commandFactory=Delegating

 </depends>

 <depends optional-attribute-name="CMSService" proxy-type="attribute">

 portal:service=CMS

 </depends>

</mbean>

...

• Prefix: This is the context path prefix that will trigger the portal to render content. By default,

navigating to a URL such as http://localhost:8080/[portal_context]/content/Test.PDF will trigger

the portal to display the PDF isolated from the portal pages. The path following the Prefix has

to be absolute when fetching content.

22.4.3. Configuring the Content Store Location

By default, the JBoss Portal CMS stores all node properties, references, and binary content in

the database, using the portal datasource. The location of some of these items is configurable,

and there are 3 options:

• Section 22.4.3.1, “100% Filesystem Storage”

Configuring the Content Store Location

279

• Section 22.4.3.2, “100% Database Storage”

• Section 22.4.3.3, “Mixed Storage”

22.4.3.1. 100% Filesystem Storage

To enable 100% Filesystem storage, you must edit the file: jboss-portal.sar/portal-cms.sar/

META-INF/jboss-service.xml . You will note that the file is set to use the HibernateStore and

HibernatePersistenceManager classes, by default. To have the CMS use 100% file system

storage, simply comment these blocks. Then, you should uncomment to use the LocalFileSystem

and XMLPersistenceManager classes. Follow these steps to activate 100% FS storage:

1. Comment out the following blocks (there are 3 in total):

<!-- HibernateStore: uses RDBMS + Hibernate for storage -->

<FileSystem class="org.jboss.portal.cms.hibernate.HibernateStore">

...

</FileSystem>

And uncomment the blocks under them (there are 3 in total):

<!-- LocalFileSystem: uses FileSystem for storage. -->

<FileSystem class="org.apache.jackrabbit.core.fs.local.LocalFileSystem">

...

</FileSystem>

2. Now comment out the following blocks (there are 2 in total):

<!-- HibernatePersistentManager: uses RDBMS + Hibernate for storage -->

<PersistenceManager

 class="org.jboss.portal.cms.hibernate.state.HibernatePersistenceManager">

...

</PersistenceManager>

And uncomment the blocks under them (there are 2 in total):

Chapter 22. CMS Portlet

280

<!-- XMLPersistenceManager: uses FileSystem for storage -->

<PersistenceManager

 class="org.apache.jackrabbit.core.state.xml.XMLPersistenceManager"/>

Warning
If you do any change at the workspaces configuration you will need

to delete the file $JBOSS_HOME/server/xxx/data/portal/cms/conf/workspaces/

default/workspace.xml before restarting JBoss or redeploying JBoss Portal. If you

forget to do that, the changes won't affect the CMS. For the same reason, you also

need to delete that file if you recompile JBoss Portal after changing the name of

the datasource. Note that on a cluster environment, you need to remove that file

(if it exists) on all the nodes.

22.4.3.2. 100% Database Storage

This is the default configuration for the CMS store. Please view the original jboss-portal.sar/portal-

cms.sar/META-INF/jboss-service.xml , for guidance on how to reset it.

22.4.3.3. Mixed Storage

Mixed storage consists of meta-data being stored in the DB and blobs being stored on the

Filesystem. This is the recommended setting for those of you that serve large files or stream

media content.

Setting the repository this way is simple. Change every instance in the file jboss-portal.sar/portal-

cms.sar/META-INF/jboss-service.xml , from:

<param name="externalBLOBs" value="false"/>

to:

<param name="externalBLOBs" value="true"/>

Warning
If you do any change at the workspaces configuration you will need

to delete the file $JBOSS_HOME/server/xxx/data/portal/cms/conf/workspaces/

default/workspace.xml before restarting JBoss or redeploying JBoss Portal. If you

forget to do that, the changes won't affect the CMS. For the same reason, you also

need to delete that file if you recompile JBoss Portal after changing the name of

Localization Support

281

the datasource. Note that on a cluster environment, you need to remove that file

(if it exists) on all the nodes.

22.5. Localization Support

The CMS Portlet now serves content based on the user's locale setting. For example: if a user's

locale is set to Spanish in his browser, and he requests URL: default/index.html , the CMSPortlet

will first try and retrieve the Spanish version of that file. If a Spanish version is not found, it will

then try and retrieve the default language version set for the CMSPortlet.

22.6. CMS Service

The CMS portlet calls a CMS service that can be reused in your own portlets.

22.6.1. CMS Interceptors

Since JBoss Portal 2.4 you can add your own interceptor stack to the CMS service. The

interceptors are called around each command (Get a file, write a file, create a folder...), this is a

very easy way to customize some actions based on your needs.

To create your own interceptor you just need to extend the

org.jboss.portal.cms.CMSInterceptor class and provide the content of the

invoke(JCRCommand) method. Do not forget to make a call to JCRCommand.invokeNext() or the

command will never be executed.

JBoss Portal relies on the interceptor mechanism to integrate its Fine Grained Security Service

and the Publish/Approve Workflow Service

To add or remove an interceptor, you just need to edit the following file: portal-cms-sar/META-

INF/jboss-service.xml. It works the same way as the server interceptor, for each interceptor

you need to define an MBean then add it to the cms interceptor stack. For example, if you have

the 2 default interceptors, you should have the following lines in the jboss-service.xml file:

<!-- ACL Security Interceptor -->

<mbean code="org.jboss.portal.cms.impl.interceptors.ACLInterceptor"

 name="portal:service=Interceptor,type=Cms,name=ACL" xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <attribute name="JNDIName">

 java:/portal/cms/ACLInterceptor

 </attribute>

 <attribute name="CmsSessionFactory">

 java:/portal/cms/CMSSessionFactory

 </attribute>

 <attribute name="IdentitySessionFactory">

Chapter 22. CMS Portlet

282

 java:/portal/IdentitySessionFactory

 </attribute>

 <attribute name="DefaultPolicy">

 <policy>

 <!-- permissions on the root cms node -->

 <criteria name="path" value="/">

 <permission name="cms" action="read">

 <role name="Anonymous" />

 </permission>

 <permission name="cms" action="write">

 <role name="User" />

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 <!-- permissions on the default cms node -->

 <criteria name="path" value="/default">

 <permission name="cms" action="read">

 <role name="Anonymous" />

 </permission>

 <permission name="cms" action="write">

 <role name="User" />

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 <!-- permissions on the private/protected node -->

 <criteria name="path" value="/default/private">

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 </policy>

 </attribute>

 <depends optional-attribute-name="AuthorizationManager"

 proxy-type="attribute">

 portal:service=AuthorizationManager,type=cms

 </depends>

 <depends>portal:service=Hibernate,type=CMS</depends>

 <depends>

 portal:service=Module,type=IdentityServiceController

 </depends>

CMS Interceptors

283

</mbean>

<!-- Approval Workflow Interceptor -->

<mbean

 code="org.jboss.portal.cms.impl.interceptors.ApprovalWorkflowInterceptor"

 name="portal:service=Interceptor,type=Cms,name=ApprovalWorkflow"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <attribute name="JNDIName">

 java:/portal/cms/ApprovalWorkflowInterceptor

 </attribute>

 <depends>portal:service=Hibernate,type=CMS</depends>

</mbean>

<!-- CMS Interceptor Registration -->

<mbean

 code="org.jboss.portal.server.impl.invocation.JBossInterceptorStackFactory"

 name="portal:service=InterceptorStackFactory,type=Cms" xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <depends-list optional-attribute-name="InterceptorNames">

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ACL

 </depends-list-element>

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ApprovalWorkflow

 </depends-list-element>

 </depends-list>

</mbean>

The first two MBeans define the interceptors and the third MBean, define which interceptors to

add to the CMS service.

If you create your own interceptor org.example.myCMSInterceptor, the service descriptor file

will look like:

<mbean code="org.example.myCMSInterceptor"

 name="portal:service=Interceptor,type=Cms,name=MyName" xmbean-dd=""

 xmbean-code="org.jboss.portal.common.system.JBossServiceModelMBean">

 <xmbean />

Chapter 22. CMS Portlet

284

</mbean>

<!-- ACL Security Interceptor -->

<mbean code="org.jboss.portal.cms.impl.interceptors.ACLInterceptor"

 name="portal:service=Interceptor,type=Cms,name=ACL" xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <attribute name="JNDIName">

 java:/portal/cms/ACLInterceptor

 </attribute>

 <attribute name="CmsSessionFactory">

 java:/portal/cms/CMSSessionFactory

 </attribute>

 <attribute name="IdentitySessionFactory">

 java:/portal/IdentitySessionFactory

 </attribute>

 <attribute name="DefaultPolicy">

 <policy>

 <!-- permissions on the root cms node -->

 <criteria name="path" value="/">

 <permission name="cms" action="read">

 <role name="Anonymous" />

 </permission>

 <permission name="cms" action="write">

 <role name="User" />

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 <!-- permissions on the default cms node -->

 <criteria name="path" value="/default">

 <permission name="cms" action="read">

 <role name="Anonymous" />

 </permission>

 <permission name="cms" action="write">

 <role name="User" />

 </permission>

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 <!-- permissions on the private/protected node -->

 <criteria name="path" value="/default/private">

CMS Interceptors

285

 <permission name="cms" action="manage">

 <role name="Admin" />

 </permission>

 </criteria>

 </policy>

 </attribute>

 <depends optional-attribute-name="AuthorizationManager"

 proxy-type="attribute">

 portal:service=AuthorizationManager,type=cms

 </depends>

 <depends>portal:service=Hibernate,type=CMS</depends>

 <depends>

 portal:service=Module,type=IdentityServiceController

 </depends>

</mbean>

<!-- Approval Workflow Interceptor -->

<mbean

 code="org.jboss.portal.cms.impl.interceptors.ApprovalWorkflowInterceptor"

 name="portal:service=Interceptor,type=Cms,name=ApprovalWorkflow"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <attribute name="JNDIName">

 java:/portal/cms/ApprovalWorkflowInterceptor

 </attribute>

 <depends>portal:service=Hibernate,type=CMS</depends>

</mbean>

<mbean

 code="org.jboss.portal.server.impl.invocation.JBossInterceptorStackFactory"

 name="portal:service=InterceptorStackFactory,type=Cms" xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean />

 <depends-list optional-attribute-name="InterceptorNames">

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ACL

 </depends-list-element>

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ApprovalWorkflow

 </depends-list-element>

 </depends-list>

</mbean>

<!-- CMS Interceptor Registration -->

Chapter 22. CMS Portlet

286

<mbean

 code="org.jboss.portal.server.impl.invocation.JBossInterceptorStack"

 name="portal:service=InterceptorStack,type=Cms" xmbean-dd=""

 xmbean-code="org.jboss.portal.common.system.JBossServiceModelMBean">

 <xmbean />

 <depends-list optional-attribute-name="InterceptorNames">

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ACL

 </depends-list-element>

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=ApprovalWorkflow

 </depends-list-element>

 <depends-list-element>

 portal:service=Interceptor,type=Cms,name=MyName

 </depends-list-element>

 </depends-list>

</mbean>

Note

The interceptor order is important !

To check that the interceptors have been correctly added, you can check the JMX console,

by going to: http://localhost.localdomain:8080/jmx-console/

HtmlAdaptor?action=inspectMBean&name=portal%3Aservice%3DInterceptorStack%2Ctype%3DCms

You should notice all the interceptors in the attribute "interceptors".

Chapter 23.

287

Portal Workflow
Sohil Shah

JBoss Portal packages a Workflow Service based on jBPM. This service provides you with the

jBPM services that your portal can use to build out the end-user/application workflows that should

meet your portal's requirements.

23.1. jBPM Workflow Engine Integration

The jBPM Workflow service is packaged as an mbean and takes care of all the low-level

jBPM related functions. The configuration is found in portal-workflow.sar/META-INF/jboss-

service.xml.

23.2. CMS Publish/Approve Workflow Service

The CMS Publish/Approval Workflow feature is turned on by default, so that every file that is

created or updated needs to go through an approval process before it can be published to go

live. The current implementation creates a pending queue for managers. The managers can then

either approve or reject the publishing of the document in question.

1. How to activate this feature?

The CMS Publish/Approval Workflow feature can be activated by uncommenting the

ApprovePublishWorkflow attribute of the portal:service=CMS mbean in portal-cms.sar/

META-INF/jboss-service.xml:

<mbean

 code="@cms.service.code@"

 name="portal:service=CMS"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 ...

 <!-- Add this to activate publish/approval workflow integration -->

 <!-- <depends optional-attribute-name="ApprovePublishWorkflow" proxy-

type="attribute">portal:service=ApprovePublish,type=Workflow</depends> -->

 ...

</mbean>

Chapter 23. Portal Workflow

288

2. How to configure this feature?

The workflow service can be configured by editing the

portal:service=ApprovePublish,type=Workflow mbean found in portal-cms.sar/META-

INF/jboss-service.xml.

<!-- ApprovePublish workflow service -->

 <mbean

 code="org.jboss.portal.cms.workflow.ApprovePublishImpl"

 name="portal:service=ApprovePublish,type=Workflow"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <depends optional-attribute-name="WorkflowService" proxy-type="attribute">

 portal:service=Workflow,type=WorkflowService

 </depends>

 <depends optional-attribute-name="IdentityServiceController" proxy-type="attribute">

 portal:service=Module,type=IdentityServiceController

 </depends>

 <!-- JBPM process definition -->

 <attribute name="Process">

 <!-- cms approval workflow -->

 <process-definition name="approval_workflow">

 <start-state>

 <transition to="request_approval"/>

 </start-state>

 <task-node name="request_approval" signal="first">

 <task name="approve_publish">

 <assignment class="org.jboss.portal.cms.workflow.PublishAssignmentHandler"/>

 <event type="task-start">

 <action class="org.jboss.portal.cms.workflow.FinalizePublish"/>

 </event>

 <exception-handler>

 <action class="org.jboss.portal.cms.workflow.TaskExceptionHandler"/>

 </exception-handler>

 </task>

 <transition name="approval" to="end"/>

 <transition name="rejection" to="end"/>

 </task-node>

 <end-state name="end"/>

 </process-definition>

How to configure this feature?

289

 </attribute>

 <!--

 overwrite = false creates the process first time if does not exist, for

 subsequent server restarts, this process definition remains in tact

 overwrite = true creates the process first time if does not exist,

 for subsequent server restarts, it creates a new version of the process definition

 which will be used for processes created from then onwards. Old processes created

 for an older version of the definition remain in tact and use their corresponding

 process definition.

 Typically use overwrite=false and overwrite=true only when a new process definition

 related to this workflow needs to be deployed

 -->

 <attribute name="Overwrite">false</attribute>

 <!--

 A comma separated list of portal roles that are designated

 to act as workflow managers. They are allowed to

 approve/reject content publish requests

 -->

 <attribute name="ManagerRoles">Admin</attribute>

 <attribute name="JNDIName">java:portal/ApprovePublishWorkflow</attribute>

 </mbean>

Of note in this configuration are the Process and ManagerRoles attributes. The Process attribute

is used to provide the jBPM process definition to be followed by the workflow service during the

approval process. This follows the standard jBPM syntax for process definition. ManagerRoles,

on the other hand, is a comma-delimited list of user roles that are being marked as "managers"

who can approve the publication of CMS documents.

290

Chapter 24.

291

Navigation Tabs
Roy Russo

Thomas Heute

The navigation tabs allow users to navigate the portal pages. This section describes some of the

functionality available in configuring them.

24.1. Explicit ordering of tabs

Explicit ordering of the tab display, is accomplished via page properties that are defined in your

-object.xml (Section 6.2.1, “-object.xml Descriptors”). Ordering is accomplished using the

order tag at the page level as a page property.

<page>

 <page-name>default</page-name>

 <properties>

Chapter 24. Navigation Tabs

292

 <property>

 <name>order</name>

 <value>1</value>

 </property>

 </properties>

 ...

</page>

24.2. Translating tab labels

Labels on tabs can be defined in multiple languages. Two different ways can be used, the first

one consist at defining several display name for page objects, the second one consists of defining

a resource bundle where to find the localized display-name. Both methods have advantages and

drawbacks.

24.2.1. Method one: Multiple display-name

In the *-object.xml descriptor under the page element, it is possible to define a display-name

per locale. Here is an example:

<page>

 <page-name>News</page-name>

 <display-name xml:lang="en">News</display-name>

 <display-name xml:lang="it">Novita'</display-name>

 <display-name xml:lang="es">Noticias</display-name>

 <display-name xml:lang="fr">Actualités</display-name>

 ...

</page>

Here we defined a display name for four different languages. The advantage of this method is that

it is simple and the display name is kept along the metadata. The drawback of this method is that if

you may end up with different places to keep your localized data. If you are using resource bundles

for other elements, the second method might be simpler when you add new supported languages.

24.2.2. Defining a resource bundle and supported locales

If you are already using resource bundles for localization you may prefer to point to those files. To

do so you can define the name of your ressource bundle. The files should be in the classloader

of the war containing the *-object.xml where you define them, meaning in the same war file.

Here is an example:

Defining a resource bundle and supported

locales

293

<page>

 <page-name>Weather</page-name>

 <supported-locale>fr</supported-locale>

 <supported-locale>en</supported-locale>

 ...

</page>

With one or the other method, accessing the portal will now display the tab names with the

preferred locale if a localized value exists.

Warning

If you change the values in the descriptor (method 1) or in the resource bundles

(method 2) you need to use the <if-exists>overwrite</if-exists> so that the

values are updated

294

Chapter 25.

295

Layouts and Themes
Martin Holzner

Mark Fernandes

Thomas Heute

25.1. Overview

Portals usually render the markup fragments of several portlets, and aggregate these fragments

into one page that ultimately gets sent back as response. Each portlet on that page will be

decorated by the portal to limit the real estate the portlet has on the page, but also to allow the

portal to inject extra functionality on a per portlet basis. Classic examples of this injection are the

maximize, minimize and mode change links that will appear in the portlet window , together with

the title.

Layouts and themes allow to manipulate the look and feel of the portal. Layouts are responsible to

render markup that will wrap the markup fragments produced by the individual portlets. Themes,

on the other hand, are responsible to style and enhance this markup.

In JBoss Portal, layouts are implemented as a JSP or a Servlet. Themes are implemented using

CSS Style sheets, JavaScript™ and images. The binding element between layouts and themes

are the class and id attributes of the rendered markup.

JBoss Portal has the concept of regions on a page. When a page is defined, and portlet windows

are assigned to the page, the region, and order inside the region, has to be specified as well.

For portal layouts this has significant meaning. It defines the top most markup container that can

wrap portlet content (other then the static markup in the JSP itself). In other words: from a layout

perspective all portlets of a page are assigned to one or more regions. Each region can contain

one or more portlets. To render the page content to return from a portal request, the portal has to

render the layout JSP, and for each region, all the portlets in the region.

Since the markup around each region, and around each portlet inside that region, is effectively

the same for all the pages of a portal, it makes sense to encapsulate it in its own entity.

To implement this encapsulation there are several ways:

• JSP pages that get included from the layout JSP for each region/portlet

• a taglib that allows to place region, window, and decoration tags into the layout JSP

• a taglib that uses a pluggable API to delegate the markup generation to a set of classes

In JBoss Portal you can currently see two out of these approaches, namely the first and the

last. Examples for the first can be found in the portal-core.war, implemented by the nodesk and

phalanx layouts. Examples for the third approach can be found in the same war, implemented by

Chapter 25. Layouts and Themes

296

the industrial and Nphalanx layout. What encapsulates the markup generation for each region,

window, and portlet decoration in this last approach is what's called the RenderSet.

The RenderSet consist of four interfaces that correspond with the four markup containers that

wrap the markup fragments of one of more portlets:

• Region

• Window

• Decoration

• Portlet Content

While we want to leave it open to you to decide which way to implement your layouts and themes,

we strongly believe that the last approach is superior, and allows for far more flexibility, and clearer

separation of duties between portal developers and web designers.

The last topic to introduce in this overview is the one of portal themes. A theme is a collection

of web design artifacts. It defines a set of CSS, JavaScript and image files that together decide

about the look and feel of the portal page. The theme can take a wide spectrum of control over

the look and feel. It can limit itself to decide fonts and colors, or it can take over a lot more and

decide the placement (location) of portlets and much more.

25.2. Header

25.2.1. Overview

The default header is divided into two parts, links to pages displayed as tabs and links to navigate

between portals and dahsboards as well as loggin in and out. Those two parts are included into

the template thanks to the layout as defined in Section 25.3, “Layouts”. In fact, the region named,

dashboardnav will include the navigation links, while the region named navigation will include

the navigation tabs. It is then easy to hide one and/or the other by removing the corresponding

inclusion in the layout.

Screenshot of the header with the 'renaissance' theme

Note
Here, we use split content from rendering by using a CSS style sheet, it allow us to

change the display by switching the CSS without affecting the content. THe Maple

theme will display the links on the left side with a different font for example. THis

is up to you to choose or not this approach

Overview

297

To customize the header there are several options detailed after.

• The first option would simply require to modify the theme CSS, by doing this you could change

the fonts, the way tabs are rendered, colors and many other things but not change the content.

• The second option is to modify the provided JSP files, header.jsp and tabs.jsp. It gives you

more flexibility than the previous solution on modifying the content. Links to legacy application

could easily be added, URLs could be arranged differently, the CSS approach could be replaced

by good old HTML, CSS style names could be changed... The drawback of this method compare

to the next one is the limitation in what is accessible from the JSP.

25.2.1.1. Writing his own JSP™ pages

The content of those two parts are displayed thanks to two different JSP™ pages. By default

you would find those pages in the directory portal-core.war/WEB-INF/jsp/header/. The file

header.jsp is used to display the links that are displayed on the upper right of the default theme.

The file tabs.jsp is used to display the pages tabs appearing on the left.

Again, you have several choices, either to edit the included JSP files directly or create your own,

store them in a web application then edit the following file: jboss-portal.sar/META-INF/jboss-

service.xml. The interesting part in that file is the following:

<mbean

 code="org.jboss.portal.core.aspects.controller.PageCustomizerInterceptor"

 name="portal:service=Interceptor,type=Command,name=PageCustomizer"

 xmbean-dd=""

 xmbean-code="org.jboss.portal.jems.as.system.JBossServiceModelMBean">

 <xmbean/>

 <attribute name="TargetContextPath">/portal-core</attribute>

 <attribute name="HeaderPath">/WEB-INF/jsp/header/header.jsp</attribute>

 <attribute name="TabsPath">/WEB-INF/jsp/header/tabs.jsp</attribute>

 <depends

 optional-attribute-name="PortalAuthorizationManagerFactory"

 proxy-type="attribute">portal:service=PortalAuthorizationManagerFactory</depends>

</mbean>

The three attributes are:

• TargetContextPath: Defines the web application context where the JSP files are located

• HeaderPath: Defines the location (in the web application previously defined) of the JSP in

charge of writing the header links

• TabsPath: Defines the location (in the web application previously defined) of the JSP in charge

of writing the pages links (note that it doesn't have to be renderer as tabs)

Chapter 25. Layouts and Themes

298

Writing the header JSP

A couple of request attributes are set so that they can be used by the JSP, here is the list of

attributes and their meaning:

• org.jboss.portal.header.USER: A org.jboss.portal.identity.User object of the

logged-in user, null if the user is not logged-in.

• org.jboss.portal.header.LOGIN_URL: URL to logging-in.

• org.jboss.portal.header.DASHBOARD_URL: URL to the dashboard, null if the user is already

on the dashboard, null if the user is on the default portal already.

• org.jboss.portal.header.DEFAULT_PORTAL_URL: URL to the default page of the portal

named 'default', null if the user is on the default portal already.

• org.jboss.portal.header.ADMIN_PORTAL_URL: URL to the default page of the admin portal

(named 'admin'), null if the user is on the admin portal already.

• org.jboss.portal.header.EDIT_DASHBOARD_URL: URL to the page content editor of the

dashboard, set only if the user is on the dashboard, null otherwise.

• org.jboss.portal.header.COPY_TO_DASHBOARD_URL: URL to copy a page from a portal to

the personal dashboard, null if the user is on the dashboard.

• org.jboss.portal.header.SIGN_OUT_URL: URL to log out the portal.

Every attribute that is an URL attribute is an object implementing the

org.jboss.portal.api.PortalURL interface. Therefore it is possible to generate the URL using the

toString() method and change various things related to the URL. With that in hand, if someone

just wanted to display the logged-in username and a link to log out, he could write:

<%@ page import="org.jboss.portal.identity.User" %>

<%

 User user = (User) request.getAttribute("org.jboss.portal.header.USER");

 PortalURL signOutURL =

 (PortalURL)request.getAttribute("org.jboss.portal.header.SIGN_OUT_URL");

 PortalURL loginURL = (PortalURL)request.getAttribute("org.jboss.portal.header.LOGIN_URL");

 if (user == null)

 {

%>

 <a href="<%= loginURL %>">Login

<%

 }

 else

Layouts

299

 {

%>

Logged in as: <%= user.getUserName() %>

<a href="<%= signOutURL %>">Logout

<%

 }

%>

Writing the tabs JSP

A couple of request attributes are set so that they can be used by the JSP, here is the list of

attributes and their meaning:

• org.jboss.portal.api.PORTAL_NODE: A org.jboss.portal.api.node.PortalNode object

of the root Portal node. Authorized children and siblings of this object are accessible.

• org.jboss.portal.api.PORTAL_RUNTIME_CONTEXT: A

org.jboss.portal.api.PortalRuntimeContext object that can be used to render URLs.

The default file in charge of displaying the tabs can be found in: portal-core.war/WEB-INF/

jsp/header/

25.3. Layouts

25.3.1. How to define a Layout

Layouts are used by the portal to produce the actual markup of a portal response. After all the

portlets on a page have been rendered and have produced their markup fragments, the layout is

responsible for aggregating all these pieces, mix them with some ingredients from the portal itself,

and at the end write the response back to the requesting client.

Layouts can be either a JSP or a Servlet. The portal determines the layout to use via the configured

properties of the portal, or the requested page. Both, portal and pages, can define the layout to

use in order to render their content. In case both define a layout, the layout defined for the page

will overwrite the one defined for the portal.

A Layout is defined in the layout descriptor named portal-layouts.xml. This descriptor must be part

of the portal application, and is picked up by the layout deployer. If the layout deployer detects

such a descriptor in a web application, it will parse the content and register the layouts with the

layout service of the portal. Here is an example of such a descriptor file:

<layouts>

 <layout>

 <name>phalanx</name>

Chapter 25. Layouts and Themes

300

 <uri>/phalanx/index.jsp</uri>

 </layout>

 <layout>

 <name>industrial</name>

 <uri>/industrial/index.jsp</uri>

 <uri state="maximized">/industrial/maximized.jsp</uri>

 </layout>

</layouts>

25.3.2. How to use a Layout

25.3.2.1. Declarative use

Portals and pages can be configured to use a particular layout. The connection to the desired

layout is made in the portal descriptor (YourNameHere-object.xml). Here is an example of such

a portal descriptor:

<portal>

 <portal-name>default</portal-name>

 <properties>

 <!-- Set the layout for the default portal -->

 <!-- see also portal-layouts.xml -->

 <property>

 <name>layout.id</name>

 <value>phalanx</value>

 </property>

 </properties>

 <pages>

 <page>

 <page-name>theme test</page-name>

 <properties>

 <!-- set a difference layout for this page -->

 <property>

 <name>layout.id</name>

 <value>industrial</value>

 </property>

 </properties>

 </page>

 </pages>

</portal>

The name specified for the layout to use has to match one of the names defined in the portal-

layouts.xml descriptor of one of the deployed applications.

Where to place the Descriptor files

301

As you can see, the portal or page property points to the layout to use via the name of the layout.

The name has been given to the layout in the layout descriptor. It is in that layout descriptor where

the name gets linked to the physical resource (the JSP or Servlet) that will actually render the

layout.

25.3.2.2. Programmatic use

To access a layout from code, you need to get a reference to the LayoutService interface. The

layout service is an mbean that allows access to the PortalLayout interface for each layout that

was defined in a portal layout descriptor. As a layout developer you should never have to deal with

the layout service directly. Your layout hooks are the portal and page properties to configure the

layout, and the layout strategy, where you can change the layout to use for the current request,

before the actual render process begins.

25.3.3. Where to place the Descriptor files

Both descriptors, the portal and the theme descriptor, are located in the WEB-INF/ folder of the

deployed portal application. Note that this is not limited to the portal-core.war, but can be added

to any WAR that you deploy to the same server. The Portal runtime will detect the deployed

application and introspect the WEB-INF folder for known descriptors like the two mentioned here.

If present, the appropriate meta data is formed and added to the portal runtime. From that time

on the resources in that application are available to be used by the portal. This is an elegant way

to dynamically add new layouts or themes to the portal without having to bring down , or even

rebuild the core portal itself.

25.3.4. Layout JSP™ tags

The portal comes with a set of JSP™ tags that allow the layout developer faster development.

There are currently two taglibs, containing tags for different approaches to layouts:

• portal-layout.tld

• theme-basic-lib.tld

The theme-basic-lib.tld contains a list of tags that allow a JSP writer to access the state of the

rendered page content. It is built on the assumption that regions, portlet windows and portlet

decoration is managed inside the JSP.

The portal-layout.tld contains tags that work under the assumption that the RenderSet will take

care of how regions, portlet windows and the portlet decoration will be rendered. The advantage

of this approach is that the resulting JSP is much simpler and easier to read and maintain.

Here is an example layout JSP that uses tags from the latter:

 <%@ taglib uri="/WEB-INF/theme/portal-layout.tld" prefix="p" %>

Chapter 25. Layouts and Themes

302

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title><p:title default="My Great Portal"/></title>

 <meta http-equiv="Content-Type" content="text/html;" />

 <p:theme themeName='renaissance' />

 <p:headerContent />

 </head>

 <body id="body">

 <div id="portal-container">

 <div id="sizer">

 <div id="expander">

 <div id="logoName"></div>

 <table border="0" cellpadding="0" cellspacing="0" id="header-container">

 <tr>

 <td align="center" valign="top" id="header">

 <div id="spacer"></div>

 </td>

 </tr>

 </table>

 <div id="content-container">

 <p:region regionName='This-Is-The-Page-Region-To-Query-The-Page'

 regionID='This-Is-The-Tag-ID-Attribute-To-Match-The-CSS-Selector'/>

 <p:region regionName='left' regionID='regionA'/>

 <p:region regionName='center' regionID='regionB'/>

 <hr class="cleaner" />

 <div id="footer-container" class="portal-copyright">Powered by

 <a class="portal-copyright"

 href="http://www.jboss.com/products/jbossportal">

 JBoss Portal

 </div>

 </div>

 </div>

 </div>

 </div>

 </body>

</html>

25.3.4.1. The title tag

The title tag is used to insert the web browser title defined by a portlet which is part of the page

rendering. The default attribute defines the title to use if no portlet defined a web browser title.

RenderSets

303

25.3.4.2. The theme tag

The theme tag looks for the determined theme of the current request (see Portal Themes for more

details). If no theme was determined, this tag allows an optional attribute 'themeName' that can be

used to specify a default theme to use as a last resort. Based on the determined theme name, the

ThemeService is called to lookup the theme with this name and to get the resources associated

with this theme. The resulting style and link elements are injected, making sure that war context

URLS are resolved appropriately.

25.3.4.3. The headerContent tag

This tags allows portlets to inject content into the header. More details about this function are

mentioned in the 'other Theme Functions' section of this document.

25.3.4.4. The region tag

The region tag renders all the portlets in the specified region of the current page, using the

determined RenderSet to produce the markup that surrounds the individual portlet markup

fragments. The regionName attribute functions as a query param into the current page. It

determines from what page region the portlets will be rendered in this tag. The regionID attribute

is what the RenderSet can use to generate a CSS selector for this particular region. In case of the

divRenderer, a DIV tag with an id attribute corresponding to the provided value will be rendered

for this region. This id in turn can be picked up by the CSS to style the region.

25.4. RenderSets

25.4.1. What is a RenderSet

A RenderSet can be used to produce the markup containers around portlets and portlet regions.

The markup for each region, and each portlet window in a region is identical. Further more, it

is most likely identical across several layouts. The way portlets are arranged and decorated will

most likely not change across layouts. What will change is the look and feel of the decoration, the

images, fonts, and colors used to render each portlet window on the page. This is clearly a task

for the web designer, and hence should be realized via the portal theme. The layout only needs

to provide enough information to the theme so that it can do its job. The RenderSet is exactly

that link between the layout and the theme that takes the information available in the portal and

renders markup containing the current state of the page and each portlet on it. It makes sure that

the markup around each region and portlet contains the selectors that the theme CSS needs to

style the page content appropriately.

A RenderSet consists of the implementations of four interfaces. Each of those interfaces

corresponds to a markup container on the page.

Here are the four markup containers and their interface representation:

• Region - RegionRenderer

Chapter 25. Layouts and Themes

304

• Window - WindowRenderer

• Decoration - DecorationRenderer

• Portlet Content - PortletRenderer

All the renderer interfaces are specified in the org.jboss.portal.theme.render package.

The four markup containers are hierarchical. The region contains one or more windows. A window

contains the portlet decoration and the portlet content.

The region is responsible for arranging the positioning and order of each portlet window. Should

they be arranged in a row or a column? If there are more then one portlet window in a region, in

what order should they appear?

The window is responsible for placing the window decoration, including the portlet title, over the

portlet content, or under, or next to it.

The decoration is responsible for inserting the correct markup with the links to the portlet modes

and window states currently available for each portlet.

The portlet content is responsible for inserting the actually rendered markup fragment that was

produced by the portlet itself.

25.4.2. How is a RenderSet defined

Similar to layouts, render sets must be defined in a RenderSet descriptor. The RenderSet

descriptor is located in the WEB-INF/layout folder of a web application, and is named portal-

renderSet.xml. Here is an example descriptor:

 <?xml version="1.0" encoding="UTF-8"?>

<portal-renderSet>

 <renderSet name="divRenderer">

 <set content-type="text/html">

 <region-renderer>org.jboss.portal.theme.impl.render.DivRegionRenderer</region-renderer>

 <window-renderer>org.jboss.portal.theme.impl.render.DivWindowRenderer</window-

renderer>

 <portlet-renderer>org.jboss.portal.theme.impl.render.DivPortletRenderer</portlet-renderer>

 <decoration-renderer>

 org.jboss.portal.theme.impl.render.DivDecorationRenderer

 </decoration-renderer>

 </set>

 </renderSet>

 <renderSet name="emptyRenderer">

 <set content-type="text/html">

 <region-renderer>org.jboss.portal.theme.impl.render.EmptyRegionRenderer</region-

renderer>

How to specify what RenderSet to use

305

 <window-renderer>org.jboss.portal.theme.impl.render.EmptyWindowRenderer</window-

renderer>

 <portlet-renderer>

 org.jboss.portal.theme.impl.render.EmptyPortletRenderer

 </portlet-renderer>

 <decoration-renderer>

 org.jboss.portal.theme.impl.render.EmptyDecorationRenderer

 </decoration-renderer>

 </set>

 </renderSet>

</portal-renderSet>

25.4.3. How to specify what RenderSet to use

Analogous to how a strategy is specified, the RenderSet can be specified as a portal or page

property, or a particular layout can specify an anonymous RenderSet to use. Here is an example

of a portal descriptor:

 <?xml version="1.0" encoding="UTF-8"?>

<portal>

 <portal-name>default</portal-name>

 <properties>

 <!-- use the divRenderer for this portal -->

 <property>

 <name>theme.renderSetId</name>

 <value>divRenderer</value>

 </property>

 </properties>

 <pages>

 <default-page>default</default-page>

 <page>

 <page-name>default</page-name>

 <properties>

 <!-- overwrite the portal's renderset for this page -->

 <property>

 <name>theme.renderSetId</name>

 <value>emptyRenderer</value>

 </property>

 </properties>

 <window>

 <window-name>TestPortletWindow</window-name>

Chapter 25. Layouts and Themes

306

 <instance-ref>TestPortletInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 </window>

 </page>

 </pages>

</portal>

Here is an example of a layout descriptor with an anonymous RenderSet:

 <?xml version="1.0" encoding="UTF-8"?>

<layouts>

<renderSet>

<set content-type="text/html">

<region-renderer>org.foo.theme.render.MyRegionRenderer</region-renderer>

<window-renderer>org.foo.theme.render.MyWindowRenderer</window-renderer>

<portlet-renderer>org.foo.theme.render.MyPortletRenderer</portlet-renderer>

<decoration-renderer>org.foo.theme.render.MyDecorationRenderer</decoration-renderer>

</set>

</renderSet>

<layout>

<name>generic</name>

<uri>/generic/index.jsp</uri>

<uri state="maximized">/generic/maximized.jsp</uri>

</layout>

</layouts>

Again, analogous to layout strategies, the anonymous RenderSet overwrites the one specified

for the page, and that overwrites the one specified for the portal. In other words: all pages that

use the layout that defines an anonymous RenderSet will use that RenderSet, and ignore what

is defined as RenderSet for the portal or the page.

In addition to specifying the renderSet for a portal or a page, each individual portlet window can

define what renderSet to use for the one of the three aspects of a window, the window renderer,

the decoration renderer, and the portlet renderer. This feature allow you to use the the window

renderer implementation from one renderSet, and the decoration renderer from another. Here is

an example for a window that uses the implementations of the emptyRenderer renderSet for all

three aspects:

 <window>

Themes

307

 <window-name>NavigationPortletWindow</window-name>

 <instance-ref>NavigationPortletInstance</instance-ref>

 <region>navigation</region>

 <height>0</height>

 <!-- overwrite portal and page properties set for the renderSet for this window -->

 <properties>

 <!-- use the window renderer from the emptyRenderer renderSet -->

 <property>

 <name>theme.windowRendererId</name>

 <value>emptyRenderer</value>

 </property>

 <!-- use the decoration renderer from the emptyRenderer renderSet -->

 <property>

 <name>theme.decorationRendererId</name>

 <value>emptyRenderer</value>

 </property>

 <!-- use the portlet renderer from the emptyRenderer renderSet -->

 <property>

 <name>theme.portletRendererId</name>

 <value>emptyRenderer</value>

 </property>

 </properties>

</window>

25.5. Themes

25.5.1. What is a Theme

A portal theme is a collection of CSS styles, JavaScript files, and images, that all work together

to style and enhance the rendered markup of the portal page. The theme works together with the

layout and the RenderSet in producing the content and final look and feel of the portal response.

Through clean separation of markup and styles a much more flexible and powerful approach to

theming portals is possible. While this approach is not enforced, it is strongly encouraged. If you

follow the definitions of the Theme Style Guide (see later), it is not necessary to change the layout

or the strategy, or the RenderSet to achieve very different look and feels for the portal. All you

need to change is the theme. Since the theme has no binary dependencies, it is very simple

to swap, or change individual items of it. No compile or redeploy is necessary. Themes can be

added or removed while the portal is active. Themes can be deployed in separate web applications

furthering even more the flexibility of this approach. Web developers don't have to work with JSP

pages. They can stay in their favorite design tool and simple work against the exploded war content

that is deployed into the portal. The results can be validated life in the portal.

Chapter 25. Layouts and Themes

308

25.5.2. How to define a Theme

Themes can be added as part of any web application that is deployed to the portal server. All what

is needed is a theme descriptor file that is part of the deployed archive. This descriptor indicates

to the portal what themes and theme resources are becoming available to the portal. The theme

deployer scans the descriptor and adds the theme(s) to the ThemeService, which in turn makes

the themes available for consumption by the portal. Here is an example of a theme descriptor:

 <themes>

<theme>

<name>nodesk</name>

<link href="/nodesk/css/portal_style.css" rel="stylesheet" type="text/css" />

<link rel="shortcut icon" href="/images/favicon.ico" />

</theme>

<theme>

<name>phalanx</name>

<link href="/phalanx/css/portal_style.css" rel="stylesheet" type="text/css" />

<link rel="shortcut icon" href="/images/favicon.ico" />

</theme>

<theme>

<name>industrial-CSSSelect</name>

<link rel="stylesheet" id="main_css" href="/industrial/portal_style.css" type="text/css" />

<link rel="shortcut icon" href="/industrial/images/favicon.ico" />

<script language="JavaScript" type="text/javascript">

// MAF - script to switch current tab and css in layout...

function switchCss(currentTab,colNum) {

var obj = currentTab;

var objParent = obj.parentNode;

if (document.getElementById("current") != null) {

var o = document.getElementById("current");

o.setAttribute("id","");

o.className = 'hoverOff';

objParent.setAttribute("id","current");

}

var css = document.getElementById("main_css");

source = css.href;

if (colNum == "3Col") {

if (source.indexOf("portal_style.css" != -1)) {

source = source.replace("portal_style.css","portal_style_3Col.css");

How to use a Theme

309

}

if (source.indexOf("portal_style_1Col.css" != -1)) {

source = source.replace("portal_style_1Col.css","portal_style_3Col.css");

}

}

if (colNum == "2Col") {

if (source.indexOf("portal_style_3Col.css" != -1)) {

source = source.replace("portal_style_3Col.css","portal_style.css");

}

if (source.indexOf("portal_style_1Col.css" != -1)) {

source = source.replace("portal_style_1Col.css","portal_style.css");

}

}

if (colNum == "1Col") {

if (source.indexOf("portal_style_3Col.css" != -1)) {

source = source.replace("portal_style_3Col.css","portal_style_1Col.css");

}

if (source.indexOf("portal_style.css" != -1)) {

source = source.replace("portal_style.css","portal_style_1Col.css");

}

}

css.href = source;

}

</script>

</theme>

</themes>

Themes are defined in the portal-themes.xml theme descriptor, which is located in the WEB-INF/

folder of the web application.

25.5.3. How to use a Theme

Again, analogous to the way it is done for layouts, themes are specified in the portal descriptor as

a portal or page property. The page property overwrites the portal property. In addition to these

two options, themes can also be specified as part of the theme JSP tag , that is placed on the

layout JSP. Here is an example portal descriptor that specifies the phalanx theme as the theme

for the entire portal, and the industrial theme for the theme test page:

 <portal>

 <portal-name>default</portal-name>

 <properties>

 <!-- Set the theme for the default portal -->

Chapter 25. Layouts and Themes

310

 <property>

 <name>layout.id</name>

 <value>phalanx</value>

 </property>

 </properties>

 <pages>

 <page>

 <page-name>theme test</page-name>

 <properties>

 <!-- set a difference layout for this page -->

 <property>

 <name>layout.id</name>

 <value>industrial</value>

 </property>

 </properties>

 <window>

 <window-name>CatalogPortletWindow</window-name>

 <instance-ref>CatalogPortletInstance</instance-ref>

 <region>left</region>

 <height>0</height>

 </window>

 </page>

 </pages>

</portal>

And here is an example of a layout JSP that defines a default theme to use if no other theme was

defined for the portal or page:

 <%@ taglib uri="/WEB-INF/theme/portal-layout.tld" prefix="p" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title><%= "JBoss Portal :: 2.2 early (Industrial)" %></title>

 <meta http-equiv="Content-Type" content="text/html;" />

 <p:theme themeName='industrial' />

 <p:headerContent />

 </head>

 <body id="body">

 <div id="portal-container">

 <div id="sizer">

 <div id="expander">

How to write your own Theme

311

 <div id="logoName"></div>

 <table border="0" cellpadding="0" cellspacing="0"

 id="header-container">

 <tr>

 <td align="center" valign="top" id="header">

 <div id="spacer"></div>

 </td>

 </tr>

 </table>

 <div id="content-container">

 <p:region

 regionName='This-Is-The-Page-Region-To-Query-The-Page'

 regionID='This-Is-The-Tag-ID-Attribute-To-Match-The-CSS-Selector' />

 <p:region regionName='left' regionID='regionA' />

 <p:region regionName='center' regionID='regionB' />

 <hr class="cleaner" />

 <div id="footer-container" class="portal-copyright">

 Powered by

 <a class="portal-copyright"

 href="http://www.jboss.com/products/jbossportal">

 JBoss Portal

 Theme by

 <a class="portal-copyright"

 href="http://www.novell.com">

 Novell

 </div>

 </div>

 </div>

 </div>

 </div>

 </body>

</html>

For the function of the individual tags in this example, please refer to the layout section of this

document.

25.5.4. How to write your own Theme

Ask your favorite web designer and/or consult the Theme Style Guide in this document.

Chapter 25. Layouts and Themes

312

25.6. Other Theme Functionalities and Features

This section contains all the functionalities that don't fit with any of the other topics. Bits and pieces

of useful functions that are related to the theme and layout functionality.

25.6.1. Content Rewriting and Header Content Injection

Portlets can have their content rewritten by the portal. This is useful if you want to uniquely

namespace markup (JavaScript functions for example) in the scope of a page. The rewrite

functionality can be applied to the portlet content (the markup fragment) and to content a portlet

wants to inject into the header. The rewrite is implemented as specified in the WSRP (OASIS:

Web Services for Remote Portlets; producer write). As a result of this, the token to use for rewrite

is the WSRP specified "wsrp_rewrite_". If the portlet sets the following response property

res.setProperty("WSRP_REWRITE","true");

all occurrences of the wsrp_rewrite_ token in the portlet fragment will be replaced with a unique

token (the window id). If the portlet also specifies content to be injected into the header of the

page, that content is also subject to this rewrite.

res.setProperty("HEADER_CONTENT", "

 <script>function wsrp_rewrite_OnFocus(){alert('hello button');}</script>

 ");

Note that in order for the header content injection to work, the layout needs to make use of the

headerContent JSP tag, like:

 <%@ taglib uri="/WEB-INF/theme/portal-layout.tld" prefix="p" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title><JBoss Portal 2.2 early</title>

 <meta http-equiv="Content-Type" content="text/html;" />

 <p:headerContent />

 </head>

 <body id="body">

 <p>...</p>

Declarative CSS Style injection

313

 </body>

</html>

25.6.2. Declarative CSS Style injection

If a portlet needs a CSS style sheet to be injected via a link tag in the page header, it can do so

by providing the context relative URI to the file in the jboss-portlet.xml descriptor, like:

 <portlet-app>

 <portlet>

 <portlet-name>HeaderContentPortlet</portlet-name>

 <header-content>

 <link rel="stylesheet" type="text/css" href="/portlet-styles/HeaderContent.css"

 title="" media="screen" />

 </header-content>

 </portlet>

</portlet-app>

This functionality, just like the previously described header content injection, requires the layout

JSP to add the "headerContent" JSP tag (see example above). One thing to note here is the order

of the tags. If the headerContent tag is placed after the theme tag, it will allow portlet injected CSS

files to overwrite the theme's behavior, making this feature even more powerful!

25.6.3. Disabling Portlet Decoration

One possible use of window properties is demonstrated in the divRenderer RenderSet

implementation. If a window definition (in the portal descriptor) contains a property like:

 <window>

 <window-name>HintPortletWindow</window-name>

 <instance-ref>HintPortletInstance</instance-ref>

 <region>center</region>

 <height>0</height>

 <properties>

 <!-- turn the decoration off for this portlet (i.e. no title and mode/state links) -->

 <property>

 <name>theme.decorationRendererId</name>

 <value>emptyRenderer</value>

 </property>

 </properties>

Chapter 25. Layouts and Themes

314

</window>

the DivWindowRenderer will use the decoration renderer from the emptyRenderer RenderSet to

render the decoration for this window (not delegate to the DivDecorationRenderer). As a result,

the portlet window will be part of the rendered page, but it will not have a title, nor will it have any

links to change the portlet mode or window state.

25.7. Theme Style Guide (based on the Industrial

theme)

25.7.1. Overview

Note
This section to be updated soon with new CSS selectors found in JBoss Portal 2.6.

The current definitions remain, but the newer additions with regards to dashboards/

drag-n-drop have not been documented as of yet.

This document outlines the different selectors used to handle the layout and look/feel of the

Industrial theme included in the JBoss portal.

A couple of things to know about the theming approach discussed below:

• Main premise behind this approach was to provide a clean separation between the business

and presentation layer of the portal. As we go through each selector and explain the relation to

the visual presentation on the page, this will become more apparent.

• The flexibility of the selectors used in the theme stylesheet allow a designer to very easily

customize the visual aspects of the portal, thereby taking the responsibility off of the developers

hands through allowing the designer to quickly achieve the desired effect w/out the need to dive

down into code and/or having to deploy changes to the portal. This saves time and allows both

developers and designers to focus on what they do best.

• This theme incorporates a liquid layout approach which allows elements on a page to expand/

contract based on screen resolution and provides a consistent look across varying display

settings. However, the stylesheet is adaptable to facilitate a fixed layout and/or combination

approach where elements are pixel based and completely independent of viewport.

• The pieces that make up the portal theme consist of at least one stylesheet and any associated

images. Having a consolidated set of files to control the portal look and feel allows administrators

to effortlessly swap themes on the fly. In addition, this clean separation of the pieces that make

up a specific theme will enable sharing and collaboration of different themes by those looking

to get involved or contribute to the open source initiative.

Main Screen Shot

315

25.7.2. Main Screen Shot

Screen shot using color outline of main ID selectors used to control presentation and layout:

• Red Border - portal-container

• Yellow Border - header-container

• Orange Border - content-container

• Blue Border - regionA/regionB

• Green Border - portlet-container

25.7.3. List of CSS Selectors

The following is a list of the selectors used in the theme stylesheet, including a brief explanation

of how each selector is used in the portal:

Chapter 25. Layouts and Themes

316

• Portal Body Selector

#body {

 background-color: #FFFFFF;

 background-image: url(images/header_bg.gif);

 background-repeat: repeat-x;

 margin: 0px;

 padding: 0px;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 background-repeat: repeat-x;

 font-size: 11px;

 color: #656565;

}

Usage: This selector controls the background of the page, and can be modified to set a base

font-family, layout margin, etc. that will be inherited by all child elements that do not have their

own individual style applied. By default, the selector pulls an image background for the page.

• Portal Header Selectors

#spacer {

 width: 770px;

 line-height: 0px;

 font-size: 0px;

 height: 0px;

}

Usage: Spacer div used to keep header at certain width regardless of display size. This is done

to avoid overlapping of tab navigation in header. To account for different display sizes, this

selector can be modified to force a horizontal scroll in the browser which eliminates any issue

with overlapping elements in the header.

#header-container {

 background-repeat: repeat-y;

 height: 100%;

 min-width: 1000px;

 width: 100%;

 position: absolute;

 bottom: 5px;*/

 }

List of CSS Selectors

317

Usage: Wrapper selector used to control the position of the header on the page. This selector

is applied as an ID on the table used to structure the header. You can adjust the attributes to

reposition the header location on the page and/or create margin space on the top, right, bottom

and left sides of the header.

Screenshot:

#header {

 height: 65px;

 width: 100%;

 padding: 0px;

 margin: 0px;

 z-index: 1;

}

Usage: This selector applies the header background image in the portal. It can be adjusted to

accommodate a header background of a certain width/height or, as it currently does, repeat the

header graphic so that it tiles across the header portion of the page.

#logoName {

 background-image: url(images/logo.gif);

 background-repeat: no-repeat;

 float: left;

 width: 250px;

 height: 25px;

 z-index: 2;

 position: absolute;

 left: 20px;

 top: 10px;

}

Usage: Logo selector which is used to brand the header with a specific, customized logo. The

style is applied as an ID on an absolutely positioned DIV element which enables it to be moved

to any location on the page, and allows it to be adjusted to accommodate a logo of any set

width/height.

• Portal Layout Region Selectors

Chapter 25. Layouts and Themes

318

#portal-container {

/* part of below IE hack to preserve min-width for portlet regions */

/*width: 100%;*/

 margin: 4px 2% 0px 2%;

 padding: 0 350px 0 350px;

}

Usage: Wrapper for entire portal which starts/ends after/before the BODY tag (see red border

in screen shot). The padding attribute for this selector is used to preserve a minimum width

setting for the portlet regions (discussed below). Similar to body selector, this style can modified

to create margin or padding space on the top, right, bottom and left sections of the page. It

provides the design capability to accommodate most layouts (e.g. a centered look such as the

phalanx theme where there is some spacing around the content of the portal, or a full width look

as illustrated in the Industrial theme).

Screenshot:

List of CSS Selectors

319

/* min width for IE */

#expander {

 position: relative;

 padding: 0 0 0 0;

 margin: 0 -350px 0 -350px;

 min-width: 770px;

 padding: 0 0 0 0;

}

/* min width hack for IE */

#sizer {

 width: 100%;

}

Chapter 25. Layouts and Themes

320

/* IE Hack */

* html #portal-container,

 * html #sizer,

 * html #expander {

 height: 0;

}

Usage: These selectors are used in conjunction with the above, portal-container, selector to

preserve a minimum width setting for the portlet regions. This was implemented to maintain a

consistent look across different browsers.

#content-container {

 height: 100%;

 text-align: left;

 width: 100%;

 min-width: 770px;

 /*

 position: absolute;

 top: 70px;

 left: 0px; / * z-index: 1; * /

 / * part of below IE hack

padding: 0 350px 0 350px; * /

 padding: 0px 100px 0px 0px;

 */

}

Usage: Wrapper that contains all regions in portal with the exception of the header (see orange

border in screen shot). Its attributes can be adjusted to create margin space on page, as well

as control positioning of the area of the page below the header.

/* portlet regions within content-container. this includes footer-container. */

#regionA {

 width: 30%;

 float: left;

 margin: 0px;

 padding: 0px;

 min-width: 250px; /*height: 300px;*/

}

Usage: First portlet region located within the content-container (see blue border in screen shot).

This selector controls the width of the region as well as its location on the page. Designers can

List of CSS Selectors

321

very easily reposition this region in the portal (e.g. swap left regionA with right regionB, etc.) by

adjusting the attributes of this selector.

#regionB {

 /* test to swap columns..

margin: 0 30% 0 0; */

 /*two column layout

margin: 0 0 0 30%;*/

 padding: 0px; /* test to add 3rd region in layout...*/

 width: 67%;

 float: left; /*height: 300px;*/

}

Usage: Second portlet region located within the content-container (see blue border in screen

shot). Similar to regionA, this selector controls the width of the region as well as its location

on the page.

#regionC {

/* inclusion of 3rd region - comment out for 2 region testing */

 padding: 0px;

 margin: 0px;

 width: 28%;

 float: left; /*hide 3rd region*/

 display: none;

}

Usage: Third portlet region located within the content-container (please refer to blue border

in screen shot representing regionA and regionB for an example). Used for 3 column layout.

Similar to regionA and regionB, this selector controls the width of the region as well as its location

on the page.

Screenshot:

Chapter 25. Layouts and Themes

322

hr.cleaner {

clear:both;

height:1px;

margin: -1px 0 0 0;

padding:0;

border:none;

visibility: hidden;

}

Usage: Used to clear floats in regionA, regionB and regionC DIVs so that footer spans bottom

of page.

List of CSS Selectors

323

#footer-container {

 padding: 10px;

 text-align: center;

 clear: both;

}

Usage: Footer region located towards the bottom of the content-container (see above screen

shot). This region spans the entire width of the page, but can be adjusted (just like regionA,

regionB and regionC) to take on a certain position and width/height in the layout.

• Portlet Container Window Selectors

.portlet-container {

 padding: 10px;

}

Usage: Wrapper that surrounds the portlet windows (see green border in screen shot).

Currently, this selector is used to create space (padding) between the portlets displayed in each

particular region.

.portlet-titlebar-title {

 color: #656565;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 12px;

 font-weight: bold;

 white-space: nowrap;

 line-height: 100%;

 float: left;

 text-indent: 5px;

 padding-top: 5px;

 padding-bottom: 6px;

}

Usage: Class used to style the title of each portlet window. Attributes of this selector set font

properties, indentation and position of title.

.portlet-mode-container {

 float: right;

 padding-top: 4px;

Chapter 25. Layouts and Themes

324

 white-space: nowrap;

}

Usage: Wrapper that contains the portlet window modes that display in the top right section of

the portlet windows.

.portlet-titlebar-left {

 background-image: url(images/portlet-top-left.gif);

 background-repeat: no-repeat;

 width: 9px;

 height: 29px;

 min-width: 9px;

 background-position: bottom;

}

Usage: Used to style the top left corner of the portlet window. Each portlet window consists

of one table that has 3 columns and 3 rows. This selector styles the first column (TD) in the

first row (TR).

Screenshot:

.portlet-titlebar-center {

 background-image: url(images/portlet-top-middle.gif);

 background-repeat: repeat-x;

 height: 29px;

 background-position: bottom;

}

Usage: Used to style the center section of the portlet title bar. Each portlet window consists of

one table that has 3 columns and 3 rows. This selector styles the second column (TD) in the

first row (TR).

Screenshot:

List of CSS Selectors

325

.portlet-titlebar-right {

 background-image: url(images/portlet-top-right.gif);

 background-repeat: no-repeat;

 width: 10px;

 height: 30px;

 min-width: 10px;

 background-position: bottom left;

}

Usage: Used to style the top right corner of the portlet window. Each portlet window consists

of one table that has 3 columns and 3 rows. This selector styles the third column (TD) in the

first row (TR).

Screenshot:

.portlet-content-left {

 background-image: url(images/portlet-left-vertical.gif);

 background-repeat: repeat-y;

 width: 9px;

 min-width: 9px;

 /*

 width:20px;

 background-color:#FFFFFF;

 border-left: 1px solid #dfe8ed;

 */

}

Chapter 25. Layouts and Themes

326

Usage: Used to style the left hand vertical lines that make up the portlet window. Each portlet

window consists of one table that has 3 columns and 3 rows. This selector styles the first column

(TD) in the second row (TR).

Screenshot:

.portlet-content-center {

 vertical-align: top;

 padding: 0;

 margin: 0;

}

Usage: Used to style the center, content area where the portlet content is injected into the

portlet window (see below screen). Attributes for this selector control the positioning of the

portlet content as well as the background and font properties. Each portlet window consists of

one table that has 3 columns and 3 rows. This selector styles the second column (TD) in the

second row (TR).

List of CSS Selectors

327

Screenshot:

.portlet-body {

 background-color: #FFFFFF;

 padding: 0;

 margin: 0;

}

Usage: An extra selector for controlling the content section of the portlet windows (see below

screen). This was added to better deal with structuring the content that gets inserted/rendered

in the portlet windows, specifically if the content is causing display problems in a portlet.

Screenshot:

Chapter 25. Layouts and Themes

328

.portlet-content-right {

 background-image: url(images/portlet-right-vertical.gif);

 height: 100%;

 background-repeat: repeat-y;

 background-position: left;

 width: 5px;

 min-width: 5px;

 padding: 0;

 margin: 0;

 /*

 width:5px;

 background-color:#FFFFFF;

 border-right: 1px solid #dfe8ed;

 */

}

List of CSS Selectors

329

Usage: Used to style the right hand vertical lines that make up the portlet window. Each portlet

window consists of one table that has 3 columns and 3 rows. This selector styles the third

column (TD) in the second row (TR).

Screenshot:

.portlet-footer-left {

 background-image: url(images/portlet-bottom-left.gif);

 width: 9px;

 height: 4px;

 background-repeat: no-repeat;

 background-position: top right;

 min-width: 9px;

 padding: 0;

 margin: 0;

 /*

 background-color:#FFFFFF;

Chapter 25. Layouts and Themes

330

 border-bottom: 1px solid #98b7c6;

 border-left: 1px solid #dfe8ed;

 height:5px;

 */

}

Usage: Used to style the bottom left corner of the portlet window. Each portlet window consists

of one table that has 3 columns and 3 rows. This selector styles the first column (TD) in the

third row (TR).

Screenshot:

.portlet-footer-center {

 background-image: url(images/portlet-bottom-middle.gif);

 height: 4px;

 background-repeat: repeat-x;

 /* background-color:#FFFFFF;

 border-bottom: 1px solid #98b7c6;

List of CSS Selectors

331

 height:5px;

 */

}

Usage: Used to style the bottom, center of the portlet window (i.e. the bottom horizontal line in

the Industrial theme). Each portlet window consists of one table that has 3 columns and 3 rows.

This selector styles the second column (TD) in the third row (TR).

Screenshot:

.portlet-footer-right {

 background-image: url(images/portlet-bottom-right.gif);

 width: 5px;

 height: 4px;

 background-repeat: no-repeat;

 min-width: 5px;

 /*

 background-color:#FFFFFF;

Chapter 25. Layouts and Themes

332

 border-bottom: 1px solid #98b7c6;

 border-right: 1px solid #dfe8ed;

 height:5px;

 */

}

Usage: Used to style the bottom right corner of the portlet window. Each portlet window consists

of one table that has 3 columns and 3 rows. This selector styles the third column (TD) in the

third row (TR).

Screenshot:

• Portlet Window Mode Selectors

.portlet-mode-maximized {

 background-image: url(images/ico_16_maximize.gif);

 background-repeat: no-repeat;

 width: 16px;

List of CSS Selectors

333

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Selector used to display the portlet maximize mode. Attributes for this selector control

the display and dimensions of the maximize icon, including the behavior of the mouse pointer

when hovering the mode.

.portlet-mode-minimized {

 background-image: url(images/ico_16_minimize.gif);

 background-repeat: no-repeat;

 width: 16px;

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Selector used to display the portlet minimize mode. Attributes for this selector control

the display and dimensions of the minimize icon, including the behavior of the mouse pointer

when hovering the mode.

.portlet-mode-normal {

 background-image: url(images/ico_16_normal.gif);

 width: 16px;

 height: 16px;

 background-repeat: no-repeat;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Selector used to display the portlet normal mode (i.e. the icon that when clicked, restores

the portlet to the original, default view). Attributes for this selector control the display and

dimensions of the normal icon, including the behavior of the mouse pointer when hovering the

mode.

Chapter 25. Layouts and Themes

334

.portlet-mode-help {

 background-image: url(images/ico_16_help.gif);

 width: 16px;

 height: 16px;

 background-repeat: no-repeat;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Selector used to display the portlet help mode. Attributes for this selector control the

display and dimensions of the help icon, including the behavior of the mouse pointer when

hovering the mode.

.portlet-mode-edit {

 background-image: url(images/ico_edit.gif);

 background-repeat: no-repeat;

 width: 28px;

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Selector used to display the portlet edit mode. Attributes for this selector control the

display and dimensions of the edit icon, including the behavior of the mouse pointer when

hovering the mode.

.portlet-mode-remove {

 background-image: url(images/ico_16_remove.gif);

 background-repeat: no-repeat;

 width: 16px;

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

List of CSS Selectors

335

}

Usage: Currently not available. But here is the intended use: Selector used to display the portlet

remove mode. Attributes for this selector control the display and dimensions of the remove icon,

including the behavior of the mouse pointer when hovering the mode.

.portlet-mode-view {

 background-image: url(images/ico_cancel.gif);

 background-repeat: no-repeat;

 width: 28px;

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

 padding-right: 20px;

}

Usage: Selector used to display the portlet view mode. Attributes for this selector control the

display and dimensions of the view icon, including the behavior of the mouse pointer when

hovering the mode.

.portlet-mode-reload {

 background-image: url(images/ico_16_reload.gif);

 background-repeat: no-repeat;

 width: 16px;

 height: 16px;

 float: left;

 display: inline;

 cursor: pointer;

 padding-left: 3px;

}

Usage: Currently not available. But here is the intended use: Selector used to display the portlet

reload mode. Attributes for this selector control the display and dimensions of the reload icon,

including the behavior of the mouse pointer when hovering the mode.

• Copyright Selectors

.portal-copyright {

 font-family: Verdana, Arial, Helvetica, sans-serif;

Chapter 25. Layouts and Themes

336

 font-size: 10px;

 color: #5E6D7A;

}

a.portal-copyright {

 color: #768591;

 text-decoration: none;

}

a.portal-copyright:hover {

 color: #bcbcbc;

 text-decoration: underline;

}

Usage: The above three selectors are used to style copyright content in the portal. The portal-

copyright selector sets the font properties (color, etc.), and the a.portal-copyright/a.portal-

copyright:hover selectors style any links that are part of the copyright information.

• Table Selectors

.portlet-table-header {

 background-color: #eef;

 padding: 0 5px 5px 5px;

 font-weight: bold;

 color: #656565;

 font-size: 12px;

 border-bottom: 1px solid #d5d5d5;

}

Usage: Intended for styling tables (specifically, the TH or table header elements) that get

rendered within a portlet window.

.portlet-table-body {

}

Usage: Intended for styling the table body element used to group rows in a table.

.portlet-table-alternate {

 background-color: #E6E8E5;

 border-bottom: 1px solid #d5d5d5;

List of CSS Selectors

337

}

Usage: Used to style the background color (and possibly other attributes) for every other row

within a table.

.portlet-table-selected {

 color: #000;

 font-size: 12px;

 background-color: #CBD4E6;

}

Usage: Used to style text, color, etc. in a selected cell range.

.portlet-table-subheader {

 font-weight: bold;

 color: #000;

 font-size: 12px;

}

Usage: Used to style a subheading within a table that gets rendered in a portlet.

.portlet-table-footer {

 padding: 5px 5px 0 5px;

 font-weight: bold;

 color: #656565;

 font-size: 12px;

 border: none;

 border-top: 1px solid #d5d5d5;

}

Usage: Similar to portlet-table-header and portlet-table-body, this selector is used to style the

table footer element which is used to group the footer row in a table.

.portlet-table-text {

 padding: 3px 5px;

 border-bottom: 1px solid #d5d5d5;

}

Chapter 25. Layouts and Themes

338

Usage: Text that belongs to the table but does not fall in one of the other categories (e.g.

explanatory or help text that is associated with the table). This selector can also be modified to

provide styled text that can be used in all tables that are rendered within a portlet.

• FONT Selectors

.portlet-font {

 color: #000000;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 11px;

}

Usage: Used to style the font properties on text used in a portlet. Typically this class is used

for the display of non-accentuated information.

.portlet-font-dim {

 color: #777777;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 11px;

}

Usage: A lighter version (color-wise) of the portlet-font selector.

• FORM Selectors

.portlet-form-label {

 font-size: 10px;

 color: #656565;

}

Usage: Text used for the descriptive label of an entire form (not the label for each actual form

field).

.portlet-form-button {

 font-size: 10px;

 font-weight: bold;

 color: #FFFFFF;

 background-color: #5078aa;

 border-top: 1px solid #97B7C6;

 border-left: 1px solid #97B7C6;

List of CSS Selectors

339

 border-bottom: 1px solid #254869;

 border-right: 1px solid #254869;

}

Usage: Used to style portlet form buttons (e.g. Submit).

.portlet-icon-label {

}

Usage: Text that appears beside a context dependent action icon.

.portlet-dlg-icon-label {

}

Usage: Text that appears beside a "standard" icon (e.g Ok, or Cancel).

.portlet-form-field-label {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 10px;

 color: #000;

 vertical-align: bottom;

 white-space: nowrap

}

Usage: Selector used to style portlet form field labels.

.portlet-form-field {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 10px;

 color: #000; /*margin-top: 10px;*/

}

Usage: Selector used to style portlet form fields (i.e. INPUT controls, SELECT elements, etc.).

• LINK Selectors

Chapter 25. Layouts and Themes

340

.portal-links:link {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 11px;

 font-weight: bold;

 color: #242424;

 text-decoration: none;

}

.portal-links:hover {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 11px;

 font-weight: bold;

 color: #5699B7;

 text-decoration: none;

}

.portal-links:active {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 11px;

 font-weight: bold;

 color: #242424;

 text-decoration: none;

}

.portal-links:visited {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 11px;

 font-weight: bold;

 color: #242424;

 text-decoration: none;

}

Usage: The above four selectors are used to style links in the portal. Each pseudo class (i.e.

hover, active, etc.) provides a different link style.

• MESSAGE Selectors

.portlet-msg-status {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 12px;

 font-style: normal;

 color: #336699;

List of CSS Selectors

341

}

Usage: Selector used to signify the status of a current operation that takes place in the portlet

(e.g. "saving results", "step 1 of 4").

.portlet-msg-info {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 12px;

 font-style: italic;

 color: #000;

}

Usage: Selector used to signify general information in a portlet (e.g. help messages).

.portlet-msg-error {

 color: red;

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 12px;

 font-weight: bold;

}

Usage: Selector used to signify an error message in the portlet (e.g. form validation error).

.portlet-msg-alert {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 12px;

 font-weight: bold;

 color: #821717;

}

Usage: Selector used to style an alert that is displayed to the user.

.portlet-msg-success {

 font-family: Verdana, Arial, Helvetica, Sans-Serif, sans-serif;

 font-size: 12px;

 font-weight: bold;

 color: #359630;

}

Chapter 25. Layouts and Themes

342

Usage: Selector used to indicate successful completion of an action in a portlet (e.g. "save

successful").

• SECTION Selectors

.portlet-section-header {

 font-weight: bold;

 color: #656565;

 font-size: 12px;

}

Usage: Table or section header.

.portlet-section-body {

 color: #656565;

}

Usage: Normal text in a table cell.

.portlet-section-alternate {

 background-color: #F2F2F2;

}

Usage: Used to style background color and text in every other table row.

.portlet-section-selected {

 background-color: #CBD4E6;

}

Usage: Used to style background and font properties in a selected cell range.

.portlet-section-subheader {

 font-weight: bold;

 font-size: 10px;

}

Usage: Used to style a subheading within a table/section that gets rendered in a portlet.

List of CSS Selectors

343

.portlet-section-footer {

 font-size: 11px;

}

Usage: Used to style footer area of a section/table that gets rendered in a portlet.

.portlet-section-text {

 font-size: 12px;

 font-style: italic;

}

Usage: Text that belongs to a section but does not fall in one of the other categories. This

selector can also be modified to provide styled text that can be used in all sections that are

rendered within a portlet.

• MENU Selectors

.portlet-menu {}

Usage: General menu settings such as background color, margins, etc.

.portlet-menu-item {

 color: #242424;

 text-decoration: none;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 12px;

}

Usage: Normal, unselected menu item.

.portlet-menu-item:hover {

 color: #5699B7;

 text-decoration: none;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 12px;

Chapter 25. Layouts and Themes

344

}

Usage: Used to style hover effect on a normal, unselected menu item.

.portlet-menu-item-selected {}

Usage: Applies to selected menu items.

.portlet-menu-item-selected:hover {}

Usage: Selector styles the hover effect on a selected menu item.

.portlet-menu-cascade-item {}

Usage: Normal, unselected menu item that has sub-menus.

.portlet-menu-cascade-item-selected {}

Usage: Selected sub-menu item.

.portlet-menu-description {}

Usage: Descriptive text for the menu (e.g. in a help context below the menu).

.portlet-menu-caption {}

List of CSS Selectors

345

Usage: Selector used to style menu captions.

• WSRP Selectors

.portlet-horizontal-separator {}

Usage: A separator bar similar to a horizontal rule, but with styling matching the page.

.portlet-nestedTitle-bar {}

Usage: Allows portlets to mimic the title bar when nesting something.

.portlet-nestedTitle {}

Usage: Allows portlets to match the textual character of the title on the title bar.

.portlet-tab {}

Usage: Support portlets having tabs in the same style as the page or other portlets.

.portlet-tab-active {}

Usage: Highlight the tab currently being shown.

Chapter 25. Layouts and Themes

346

.portlet-tab-selected {}

Usage: Highlight the selected tab (not yet active).

.portlet-tab-disabled {}

Usage: A tab which can not be currently activated.

.portlet-tab-area {}

Usage: Top level style for the content of a tab.

25.8. Additional Ajax selectors

Since 2.6 JBoss Portal has ajax features. Those features introduce a couple of CSS selectors that

enables further customization of the visual look and feel. Indeed by default those CSS styles are

provided by ajaxified layouts but it may not fit with some themes. It is possible to redefine them

in the stylesheet of the themes.

•

.dyna-region {}

Usage: Denotes a dynamic region which can be subject to ajax capabilities.

•

.dyna-window {}

Usage: Denotes a dynamic window which can be subject to ajax capabilities.

•

.dyna-decoration {}

Additional Ajax selectors

347

Usage: Denotes a dynamic decorator which can be subject to ajax capabilities.

•

.dyna-portlet {}

Usage: Denotes a dynamic content which can be subject to ajax capabilities.

•

.dnd-handle {

 cursor: move;

}

Usage: Denotes the handle offered by draggable windows. By default it changes the mouse

shape to indicate to the user that his mouse is hovering a draggable window.

•

.dnd-droppable {

 border: red 1px dashed;

 background-color: Transparent;

}

Usage: Denotes a zone where a user can drop a window during drag and drop operations. This

selector is added and removed dynamically at runtime by the ajax framework and is not present

in the generated markup.

348

Chapter 26.

349

Ajax
Julien Viet

This section covers the ajax features provided by the portal.

26.1. Introduction

Todo

26.2. Ajaxified markup

26.2.1. Ajaxified layouts

Part of the Ajax capabilities are implemented in the layout framework which provide the structure

for generating portal pages. The good news is that the existing layout only requires a few

modifications in order to be ajaxified.

We will use as example an simplified version of the layout JSP provided in JBoss Portal 2.6 and

outline what are the required changes that makes it an ajaxified layout:

<%@ taglib uri="/WEB-INF/theme/portal-layout.tld" prefix="p" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="Content-Type" content="text/html;"/>

 <!-- inject the theme, default to the Renaissance theme if

 nothing is selected for the portal or the page -->

 <p:theme themeName="renaissance"/>

 <!-- insert header content that was possibly set by portlets on the page -->

 <p:headerContent/>

</head>

<body id="body">

<p:region regionName='AJAXScripts' regionID='AJAXScripts'/>

<div id="portal-container">

 <div id="sizer">

 <div id="expander">

 <div id="logoName"></div>

 <table border="0" cellpadding="0" cellspacing="0" id="header-container">

 <tr>

 <td align="center" valign="top" id="header">

Chapter 26. Ajax

350

 <!-- Utility controls -->

 <p:region regionName='dashboardnav' regionID='dashboardnav'/>

 <!-- navigation tabs and such -->

 <p:region regionName='navigation' regionID='navigation'/>

 <div id="spacer"></div>

 </td>

 </tr>

 </table>

 <div id="content-container">

 <!-- insert the content of the 'left' region of the page,

 and assign the css selector id 'regionA' -->

 <p:region regionName='left' regionID='regionA'/>

 <!-- insert the content of the 'center' region of the page,

 and assign the css selector id 'regionB' -->

 <p:region regionName='center' regionID='regionB'/>

 <hr class="cleaner"/>

 </div>

 </div>

 </div>

</div>

<p:region regionName='AJAXFooter' regionID='AJAXFooter'/>

</body>

</html>

• <p:theme themeName="renaissance"/> should be already present as it exists since 2.4 but is

even more necessary as it will inject in the page the reference to the ajax stylesheet.

• <p:region regionName='AJAXScripts' regionID='AJAXScripts'/> should be added before any

other region in the markup of the layout.

• <p:region regionName='AJAXFooter' regionID='AJAXFooter'/> should be added after any other

region in the markup of the layout.

26.2.2. Ajaxified renderers

At runtime the portal combines the layout and the renderers in order create the markup returned

to the web browser. The most used render set is the divRenderer. Renderers only need a

modification in the deployment descriptor to indicate that they support ajax. Here is the declaration

of the default divRenderer now in 2.6:

Ajaxified pages

351

<renderSet name="divRenderer">

 <set content-type="text/html">

 <ajax-enabled>true</ajax-enabled>

 <region-renderer>org.jboss.portal.theme.impl.render.div.DivRegionRenderer

 </region-renderer>

 <window-renderer>org.jboss.portal.theme.impl.render.div.DivWindowRenderer

 </window-renderer>

 <portlet-renderer>org.jboss.portal.theme.impl.render.div.DivPortletRenderer

 </portlet-renderer>

 <decoration-renderer>org.jboss.portal.theme.impl.render.div.DivDecorationRenderer

 </decoration-renderer>

 </set>

</renderSet>

You should notice the <ajax-enabled>true</ajax-enabled> which indicates that the render set

supports ajaxification.

26.3. Ajaxified pages

The ajaxification of the portal pages can be configured in a fine grained manner. Thanks to the

portal object properties it is possible to control which pages support ajax and which page do not

support ajax. The administrator must pay attention to the fact that property values are inherited

in the object hierarchy.

26.3.1. Drag and Drop

That feature is only effective in dashboards as it requires the offer personalization of the page

layout per user. By default the feature is enabled thanks to a property set on the dashboard object.

It is possible to turn off that property if the administrator does not want to expose that feature to

its user.

In the file jboss-portal.sar/conf/data/default-object.xml is declared and configured the creation of

the dashboard portal:

<deployment>

 <parent-ref/>

 <if-exists>keep</if-exists>

 <context>

 <context-name>dashboard</context-name>

 <properties>

 ...

 <property>

 <name>theme.dyna.dnd_enabled</name>

Chapter 26. Ajax

352

 <value>true</value>

 </property>

 ...

 </properties>

 ...

 </context>

</deployment>

The property theme.dyna.dnd_enabled is set to the value true which means that the dashboard

object will provide the drag and drop feature.

26.3.2. Partial refresh

Partial refresh is a very powerful feature which allows the portal to optimize the refreshing of

portlets on a page. When one portlet is invoked, instead of redrawing the full page, the portal is

able to detect which portlets needs to be refreshed and will update only these portlets.

The portal providing partial refresh

26.3.2.1. Portal objects configuration

Like with the drag and drop feature, partial page refresh is controlled via properties on portal

objects. The name of the property is theme.dyna.partial_refresh_enabled and its values can be

true or false. When this property is set on an object it is automatically inherited by the sub hierarchy

located under that object. By default the drag and drop feature is positioned on the dashboard

object and not on the rest of the portal objects.

<deployment>

 <parent-ref/>

 <if-exists>keep</if-exists>

 <context>

Partial refresh

353

 <context-name>dashboard</context-name>

 <properties>

 ...

 <property>

 <name>theme.dyna.partial_refresh_enabled</name>

 <value>true</value>

 </property>

 ...

 </properties>

 ...

 </context>

</deployment>

Note

The partial page refresh feature is compatible with the Portal API. The Portal API

allows programmatic update of the state of portlets at runtime. For instance it is

possible to modify the window state or the mode of several portlets on a given

page. When such event occurs, the portal detects the changes which occurred and

will update the portlet fragments in the page.

It is possible to change that behavior at runtime using the property editor of the management

portlet. If you want to enable partial refreshing on the default portal you should set the property to

true directly on the portal and all the pages in that portal will automatically inherit those properties.

The default portal configured for partial page refresh

26.3.2.2. Portlet configuration

By default any portlet will support partial refreshing. When does the portal performs partial page

refreshing ? By default it is enabled for action and render links with the following exceptions. In

those situations, the portal will prefer to perform a full page refresh:

Chapter 26. Ajax

354

• Form GET are not handled, however it should not be an issue as this situation is discouraged

by the Portlet specification. It however taken in account, just in case of. Here is an example of

a JavaServer Page that would do one:

<form action="<%= renderResponse.createActionURL() %>" method="get">

 ...

</form>

• Form uploads are not handled.

• Having an interaction that deals with the MAXIMIZED window state. When a window is entering

a maximized state or leaving a maximized window state, the portal will perform a full page

refresh.

It can happen that a portlet does not want to support partial refreshing, in those situations the

jboss-portlet.xml can be used to control that behavior. Since 2.6 an ajax section has been added

in order to configure ajax features related to the portlet.

<portlet>

 <portlet-name>MyPortletNoAjax</portlet-name>

 <ajax>

 <partial-refresh>false</partial-refresh>

 </ajax>

</portlet>

The usage of the partial-refresh set to the value false means that the portlet will not be subject

of a partial page refresh when it is invoked. However the portlet markup can still be subject to

a partial rendering.

26.3.2.3. Limitations

Partial refreshing of portlets has limitations both on the server side (portal) and on the client side

(browser).

26.3.2.3.1. Application scoped session attributes

When partial refresh is activated, the state of a page can potentially become inconsistent. for

example, if some objects are shared in the application scope of the session between portlets.

When one portlet update a session object, the other portlet won't be refreshed and will still display

content based on the previous value of the object in the session. To avoid that, partial refresh

can be deactivated for certain portlets by adding <portlet-refresh>false<portlet-refresh> in the

jboss-portlet.xml file.

Partial refresh

355

26.3.2.3.2. Non ajax interactions

The solution developed by JBoss Portal on the client side is built on top of DOM events emitted

by the web browser when the user interacts with the page. If an interaction is done without an

emission of an event then JBoss Portal will not be able to transform it into a partial refresh and it

will result instead of a full refresh. This can happen with programmatic submission of forms.

<form id="<%= formId %>" action="<%= renderResponse.createActionURL() %>"

 method="post">

 ...

 <select onclick="document.getElementById('<%= formId %>').submit()">

 ...

 </select>

 ...

</form>

356

Chapter 27.

357

Troubleshooting and FAQ
Roy Russo

27.1. Troubleshooting and FAQ

Installation / Configuration

• I am seeing "ERROR [JDBCExceptionReporter] Table not found in statement" in the logfile on

first boot. What is this? [357]

• I want to do a clean install/upgrade over my existing one. What are the steps? [357]

• Is my database vendor/version combination supported? [358]

• How do I force the Hibernate Dialect used for my database? [358]

• How do I change the context-root of the portal to http://localhost:8080/? [358]

CMS

• How do I change the CMS repository configuration? [358]

• On reboot, the CMS is complaining about a locked repository. [358]

• I created a file in the CMSAdmin. How do I view it? [358]

Errors

• When I access a specific portal-instance or page, I keep seeing "401 - not authorized" error in

my browser. [358]

• How do I disable development-mode errors on the presentation layer? [358]

Miscellaneous

• Is there a sample portlet I can look at to learn about portlet development and JBoss Portal

deployments? [358]

I am seeing "ERROR [JDBCExceptionReporter] Table not found in statement" in the logfile

on first boot. What is this?

Ignore this error. It is used by the portal to create the initial database tables. On second boot, you

should not see them at all.

I want to do a clean install/upgrade over my existing one. What are the steps?

Chapter 27. Troubleshooting a...

358

• Shut down JBoss AS

• Delete JBOSS_HOME/server/default/data/portal

• Delete all JBoss Portal tables from your database

• Start JBoss AS.

Is my database vendor/version combination supported?

See Section 1.4, “Databases”

How do I force the Hibernate Dialect used for my database?

See Section 3.3, “Forcing the Database Dialect”

How do I change the context-root of the portal to http://localhost:8080/?

See Section 3.2, “Changing the Context Path”

How do I change the CMS repository configuration?

There are 3 supported modes: 100% DB (default), 100% Filsystem, and Mixed (Blobs on the

Filesystem and metadata in the DB). You can see configuration options here: Section 22.4.3,

“Configuring the Content Store Location”

On reboot, the CMS is complaining about a locked repository.

This occurs when JBoss AS is improperly shutdown or the CMS Service errors on startup. To

remove the lock, shutdown JBoss, and then remove the file under JBOSS_HOME/server/default/

data/portal/cms/conf/.lock.

I created a file in the CMSAdmin. How do I view it?

Using the default configuration, the path to the file in the browser would be: http://localhost:8080/

portal/content/path/to/file.ext. Note that all requests for cms content must be prepended with /

content and then followed by the path/to/the/file.gif as it is in your directory structure.

When I access a specific portal-instance or page, I keep seeing "401 - not authorized" error

in my browser.

You are likely not authorized to view the page or portal instance. You can either modify the

security using the Management Portlet under the Admin Tab, or secure your portlets via the object

descriptor, Section 16.1, “Securing Portal Objects”

How do I disable development-mode errors on the presentation layer?

See: Section 6.3.2, “Portlet Debugging (jboss-portal.sar/conf/config.xml)”

Is there a sample portlet I can look at to learn about portlet development and JBoss Portal

deployments?

Troubleshooting and FAQ

359

• Sample portlets with tutorials can be found here, Section 5.2, “Tutorials”

• Additional Portlets can be found at PortletSwap.com [http://www.portletswap.com] .

http://www.portletswap.com
http://www.portletswap.com

360

361

Appendix A. *-object.xml DTD

 <?xml version="1.0" encoding="UTF-8" ?>

<!--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  ~ JBoss, a division of Red Hat                                              ~

  ~ Copyright 2006, Red Hat Middleware, LLC, and individual                   ~

  ~ contributors as indicated by the @authors tag. See the                    ~

  ~ copyright.txt in the distribution for a full listing of                   ~

  ~ individual contributors.                                                  ~

  ~                                                                           ~

  ~ This is free software; you can redistribute it and/or modify it           ~

  ~ under the terms of the GNU Lesser General Public License as               ~

  ~ published by the Free Software Foundation; either version 2.1 of          ~

  ~ the License, or (at your option) any later version.                       ~

  ~                                                                           ~

  ~ This software is distributed in the hope that it will be useful,          ~

  ~ but WITHOUT ANY WARRANTY; without even the implied warranty of            ~

  ~ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU          ~

  ~ Lesser General Public License for more details.                           ~

  ~                                                                           ~

  ~ You should have received a copy of the GNU Lesser General Public          ~

  ~ License along with this software; if not, write to the Free               ~

  ~ Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA        ~

  ~ 02110-1301 USA, or see the FSF site: http://www.fsf.org.                  ~

 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

->

<!--

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portal Object 2.6//EN"

 "http://www.jboss.org/portal/dtd/portal-object_2_6.dtd">

-->

<!--

The deployements element is a generic container for deployment elements.

-->

<!ELEMENT deployments (deployment*)>

Appendix A. *-object.xml DTD

362

<!--

The deployment is a generic container for portal object elements. The parent-ref

child gives the name of the parent object that the current object will use as parent.

The optional if-exists element define the behavior when a portal object which

an identical name is already child of the parent element. The default behavior of

the if-exist tag is to keep the existing object and not create a new object. The

last element is the portal object itself.

Example:

<deployment>

 <parent-ref>default</parent-ref>

 <page>

 ...

 </page>

</deployment>

All portal objects have a common configuration which can be :

1/ a listener : specifies the id of a listener is the listener registry. A listener

object is able to listen portal events which apply to the portal node hierarchy.

2/ properties : a set of generic properties owned by the portal object. Some

properties can drive the behavior of the object.

3/ security-constraint : defines security configuration of the portal object.

-->

<!ELEMENT deployment (parent-ref?,if-exists?,(context|portal|page|window))>

<!--

Contains a reference to the parent object. The naming convention for naming object

is to concatenate the names of the path to the object and separate the names by a dot.

If the path is empty then the empty string must be used.

Example:

<parent-ref/> the root having an empty path

<parent-ref>default</parent-ref> the object with the name default under the root

having the path (default)

<parent-ref>default.default</parent-ref> the object with the path (default,default)

363

-->

<!ELEMENT parent-ref (#PCDATA)>

<!--

The authorized values are overwrite and keep. Overwrite means that the existing

object will be destroyed and the current declaration will be used. Keep means that

the existing object will not be destroyed and no creation hence will be done.

-->

<!ELEMENT if-exists (#PCDATA)>

<!--

A portal object of type context. A context type represent a node in the tree which

does not have a visual representation. It can exist only under the root. A context can

only have children with the portal type.

-->

<!ELEMENT context (context-name,properties?,listener?,security-constraint?,portal*,

 (display-name* | (resource-bundle, supported-locale+)))>

<!--

The context name value.

-->

<!ELEMENT context-name (#PCDATA)>

<!--

A portal object of type portal. A portal type represents a virtual portal and can

have children of type page. In addition of the common portal object elements it support

also the declaration of the modes and the window states it supports. If no declaration

of modes or window states is done then the default value will be respectively

(view,edit,help) and (normal,minimized,maximized).

-->

<!ELEMENT portal (portal-name,supported-modes,supported-window-states?,properties?,

 listener?,security-constraint?,page*,

 (display-name* | (resource-bundle, supported-locale+)))>

<!--

The portal name value.

-->

<!ELEMENT portal-name (#PCDATA)>

<!--

The supported modes of a portal.

Appendix A. *-object.xml DTD

364

Example:

<supported-mode>

 <mode>view</mode>

 <mode>edit</mode>

 <mode>help</mode>

</supported-mode>

-->

<!ELEMENT supported-modes (mode*)>

<!--

A portlet mode value.

-->

<!ELEMENT mode (#PCDATA)>

<!--

The supported window states of a portal.

Example:

<supported-window-states>

 <window-state>normal</window-state>

 <window-state>minimized</window-state>

 <window-state>maximized</window-state>

</supported-window-states>

-->

<!ELEMENT supported-window-states (window-state*)>

<!--

A window state value.

-->

<!ELEMENT window-state (#PCDATA)>

<!--

A portal object of type page. A page type represents a page which can have children of

type page and window. The children windows are the windows of the page and the children

pages are the subpages of this page.

-->

<!ELEMENT page (page-name,properties?,listener?,security-constraint?,(page|window)*,

 (display-name* | (resource-bundle, supported-locale+)))>

<!ELEMENT display-name (#PCDATA)>

<!ATTLIST display-name

365

 xml:lang NMTOKEN #IMPLIED

>

<!ELEMENT resource-bundle (#PCDATA)>

<!ELEMENT supported-locale (#PCDATA)>

<!--

The page name value.

-->

<!ELEMENT page-name (#PCDATA)>

<!--

A portal object of type window. A window type represents a window. Beside the common

properties a window has a content and belong to a region on the page.

The instance-ref or content tags are used to define the content of the window. The

usage of the content tag is generic and can be used to describe any kind of content.

The instance-ref is a shortcut to define a content type of portlet which points to a

portlet instance.

The region and height defines how the window is placed in the page.

-->

<!ELEMENT window (window-name,(instance-ref|content),region,height,

 initial-window-state?,initial-mode?,properties?,listener?,

 (display-name* | (resource-bundle, supported-locale+)))>

<!--

The window name value.

-->

<!ELEMENT window-name (#PCDATA)>

<!--

Define the content of the window as a reference to a portlet instance. The value

is the id of the instance.

Example:

<instance-ref>MyPortletInstance</instance-ref>

-->

<!ELEMENT instance-ref (#PCDATA)>

<!--

Appendix A. *-object.xml DTD

366

Define the content of the window in a generic manner. The content is define by

the type of the content and an URI which acts as an identificator for the content.

Example:

<content>

 <content-type>portlet</content-type>

 <content-uri>MyPortletInstance</content-uri>

</content>

<content>

 <content-type>cms</content-type>

 <content-uri>/default/index.html</content-uri>

</content>

-->

<!ELEMENT content (content-type,content-uri)>

<!--

The content type of the window.

-->

<!ELEMENT content-type (#PCDATA)>

<!--

The content URI of the window.

-->

<!ELEMENT content-uri (#PCDATA)>

<!--

The region the window belongs to.

-->

<!ELEMENT region (#PCDATA)>

<!--

The window state to use when the window is first accessed

-->

<!ELEMENT initial-window-state (#PCDATA)>

<!--

The mode to use when the window is first accessed

-->

<!ELEMENT initial-mode (#PCDATA)>

<!--

367

The height of the window in the particular region.

-->

<!ELEMENT height (#PCDATA)>

<!--

Define a listener for a portal object. The value is the id of the listener.

-->

<!ELEMENT listener (#PCDATA)>

<!--

A set of generic properties for the portal object.

-->

<!ELEMENT properties (property*)>

<!--

A generic string property.

-->

<!ELEMENT property (name,value)>

<!--

A name value.

-->

<!ELEMENT name (#PCDATA)>

<!--

A value.

-->

<!ELEMENT value (#PCDATA)>

<!--

The security-constraint element is a container for policy-permission elements

Examples:

<security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<security-constraint>

 <policy-permission>

 <unchecked/>

Appendix A. *-object.xml DTD

368

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

-->

<!ELEMENT security-constraint (policy-permission*)>

<!--

The policy-permission element is used to secure a specific portal page based on a

user's role.

-->

<!ELEMENT policy-permission (action-name*,unchecked?,role-name*)>

<!--

The role-name element is used to define a role that this security constraint will apply to

 * <role-name>SOMEROLE</role-name> Access to this portal page is limited to the defined role.

-->

<!ELEMENT action-name (#PCDATA)>

<!--

The unchecked element is used to define (if present) that anyone can view this portal page

-->

<!ELEMENT unchecked EMPTY>

<!--

The action-name element is used to define the access rights given to the role defined.

Possible values are:

 * view - Users can view the page.

-->

<!ELEMENT role-name (#PCDATA)>

369

Appendix B. portlet-instances.xml

DTD

 <?xml version="1.0" encoding="UTF-8" ?>

<!--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  ~ JBoss, a division of Red Hat                                              ~

  ~ Copyright 2006, Red Hat Middleware, LLC, and individual                   ~

  ~ contributors as indicated by the @authors tag. See the                    ~

  ~ copyright.txt in the distribution for a full listing of                   ~

  ~ individual contributors.                                                  ~

  ~                                                                           ~

  ~ This is free software; you can redistribute it and/or modify it           ~

  ~ under the terms of the GNU Lesser General Public License as               ~

  ~ published by the Free Software Foundation; either version 2.1 of          ~

  ~ the License, or (at your option) any later version.                       ~

  ~                                                                           ~

  ~ This software is distributed in the hope that it will be useful,          ~

  ~ but WITHOUT ANY WARRANTY; without even the implied warranty of            ~

  ~ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU          ~

  ~ Lesser General Public License for more details.                           ~

  ~                                                                           ~

  ~ You should have received a copy of the GNU Lesser General Public          ~

  ~ License along with this software; if not, write to the Free               ~

  ~ Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA        ~

  ~ 02110-1301 USA, or see the FSF site: http://www.fsf.org.                  ~

 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

->

<!--

<!DOCTYPE deployments PUBLIC

 "-//JBoss Portal//DTD Portlet Instances 2.6//EN"

 "http://www.jboss.org/portal/dtd/portlet-instances_2_6.dtd">

-->

<!--

The deployements element is a container for deployment elements.

Appendix B. portlet-instances...

370

-->

<!ELEMENT deployments (deployment*)>

<!--

The deployment is a container for an instance element.

-->

<!ELEMENT deployment (if-exists?,instance)>

<!--

The if-exists element is used to define action to take if instance with such name is

already present. Possible values are overwrite or keep . Overwrite will destroy the

existing object in the database and create a new one, based on the content of the

deployment. Keep will maintain the existing object deployment or create a new one if

it does not yet exist.

-->

<!ELEMENT if-exists (#PCDATA)>

<!--

The instance element is used to create an instance of a portlet from the portlet

application of the same war file containing the portlet-instances.xml file. The portlet

will be created and configured only if the portlet is present and an instance with

such a name does not already exist.

Example :

<instance>

 <instance-id>MyPortletInstance</instance-id>

 <portlet-ref>MyPortlet</portlet-ref>

 <preferences>

 <preference>

 <name>abc</name>

 <value>def</value>

 </preference>

 </preferences>

 <security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

 </security-constraint>

</instance>

-->

<!ELEMENT instance (instance-id,portlet-ref,display-name*,preferences?,

371

 security-constraint?, (display-name* | (resource-bundle, supported-locale+)))>

<!ELEMENT display-name (#PCDATA)>

<!ATTLIST display-name

 xml:lang NMTOKEN #IMPLIED

>

<!ELEMENT resource-bundle (#PCDATA)>

<!ELEMENT supported-locale (#PCDATA)>

<!--

The identifier of the instance.

-->

<!ELEMENT instance-id (#PCDATA)>

<!--

The reference to the portlet which is its portlet name.

-->

<!ELEMENT portlet-ref (#PCDATA)>

<!--

Display name is the string used to represent this instance

-->

<!ELEMENT display-name (#PCDATA)>

<!ATTLIST display-name

 xml:lang NMTOKEN #IMPLIED

>

<!--

The preferences element configures the instance with a specific set of preferences.

-->

<!ELEMENT preferences (preference+)>

<!--

The preference configure one preference of a set of preferences.

-->

<!ELEMENT preference (name,value)>

<!--

A name.

-->

<!ELEMENT name (#PCDATA)>

Appendix B. portlet-instances...

372

<!--

A string value.

-->

<!ELEMENT value (#PCDATA)>

<!--

The security-constraint element is a container for policy-permission elements

Examples:

<security-constraint>

 <policy-permission>

 <role-name>User</role-name>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

<security-constraint>

 <policy-permission>

 <unchecked/>

 <action-name>view</action-name>

 </policy-permission>

</security-constraint>

-->

<!ELEMENT security-constraint (policy-permission*)>

<!--

The policy-permission element is used to secure a specific portlet instance based on a

user's role.

-->

<!ELEMENT policy-permission (action-name*,unchecked?,role-name*)>

<!--

The action-name element is used to define the access rights given to the role defined.

Possible values are:

 * view - Users can view the page.

 * viewrecursive - Users can view the page and child pages.

 * personalize - Users are able to view AND personalize the page.

 * personalizerecursive - Users are able to view AND personalize the page AND its child

 pages.

-->

<!ELEMENT action-name (#PCDATA)>

373

<!--

The unchecked element is used to define (if present) that anyone can view this instance

-->

<!ELEMENT unchecked EMPTY>

<!--

The role-name element is used to define a role that this security constraint will apply to

 * <role-name>SOMEROLE</role-name> Access to this instance is limited to the defined role.

-->

<!ELEMENT role-name (#PCDATA)>

374

375

Appendix C. jboss-portlet.xml DTD

 <?xml version="1.0" encoding="UTF-8" ?>

<!--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  ~ JBoss, a division of Red Hat                                              ~

  ~ Copyright 2006, Red Hat Middleware, LLC, and individual                   ~

  ~ contributors as indicated by the @authors tag. See the                    ~

  ~ copyright.txt in the distribution for a full listing of                   ~

  ~ individual contributors.                                                  ~

  ~                                                                           ~

  ~ This is free software; you can redistribute it and/or modify it           ~

  ~ under the terms of the GNU Lesser General Public License as               ~

  ~ published by the Free Software Foundation; either version 2.1 of          ~

  ~ the License, or (at your option) any later version.                       ~

  ~                                                                           ~

  ~ This software is distributed in the hope that it will be useful,          ~

  ~ but WITHOUT ANY WARRANTY; without even the implied warranty of            ~

  ~ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU          ~

  ~ Lesser General Public License for more details.                           ~

  ~                                                                           ~

  ~ You should have received a copy of the GNU Lesser General Public          ~

  ~ License along with this software; if not, write to the Free               ~

  ~ Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA        ~

  ~ 02110-1301 USA, or see the FSF site: http://www.fsf.org.                  ~

 

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

->

<!-- The additional configuration elements of the JBoss portlet container.

<!DOCTYPE portlet-app PUBLIC

 "-//JBoss Portal//DTD JBoss Portlet 2.6//EN"

 "http://www.jboss.org/portal/dtd/jboss-portlet_2_6.dtd">

-->

<!--

The remotable element is used to configure the default behavior of the portlets with

respect to WSRP exposure.

Appendix C. jboss-portlet.xml DTD

376

For each portlet defined in portlet.xml, it is possible to configure specific

settings of the portlet container.

It is also possible to inject services in the portlet context of the application

using the service elements.

-->

<!ELEMENT portlet-app (remotable?,portlet*,service*)>

<!--

Additional configuration for a portlet.

The portlet-name defines the name of the portlet. It must match a portlet defined already

in portlet.xml of the same web application.

The remotable element configures the portlet exposure to WSRP. If no value is present

then the value considered is either the value defined globally at the portlet

application level or false.

The trans-attribute value specifies the behavior of the portlet when it is invoked at

runtime with respect to the transactionnal context. According to how the portlet is

invoked a transaction may exist or not before the portlet is invoked. Usually in the

local context the portal transaction could be present. By default the value considered is

 NotSupported which means that the portal transaction will be suspended for the duration

 of the portlet invocation.

Example:

<portlet>

 <portlet-name>MyPortlet</portlet-name>

 <remotable>true</remotable>

 <trans-attribute>Required</trans-attribute>

</portlet>

-->

<!ELEMENT portlet (portlet-name,remotable?,ajax?,session-config?,transaction?,

 header-content?,portlet-info?)>

<!--

The portlet name.

-->

<!ELEMENT portlet-name (#PCDATA)>

<!--

377

The remotable value is used for WSRP exposure. The accepted values are the

litterals true of false.

-->

<!ELEMENT remotable (#PCDATA)>

<!--

The ajax tag allows to configure the ajax capabilities of the portlet. If

the portlet is tagged as partial-refresh then the portal may use partial page

refreshing and render only that portlet. If the portlet partial-refresh value

is false, then the portal will perform a full page refresh when the portlet is refreshed.

-->

<!ELEMENT ajax (partial-refresh)>

<!--

The authorized values for the partial-refresh element are true or false.

-->

<!ELEMENT partial-refresh (#PCDATA)>

<!--

Additional portlet information

-->

<!ELEMENT portlet-info (icon?)>

<!--

Defines icons for the portlet, they can be used by the administration portlet

to represent a particular portlet.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

A small icon image, usually 16x16, gif, jpg and png are usually supported.

An absolute URL or a URL starting with a '/' in the context of the webapp are accepted:

eg. http://www.example.com/images/smallIcon.png

eg. /images/smallIcon.png

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

A large icon image, usually 32x32, gif, jpg and png are usually supported.

An absolute URL or a URL starting with a '/' in the context of the webapp are accepted:

eg. http://www.example.com/images/smallIcon.png

eg. /images/smallIcon.png

-->

<!ELEMENT large-icon (#PCDATA)>

Appendix C. jboss-portlet.xml DTD

378

<!--

This element configure the portlet session of the portlet.

The distributed element instructs the container to distribute the session attributes

using the portal session replication. It applies only to local portlets are not to

remote portlets. The default value is false.

Example:

<session-config>

 <distributed>true</distributed>

</session-config>

-->

<!ELEMENT session-config (distributed)>

<!--

The authorized values for the distributed element are true or false.

-->

<!ELEMENT distributed (#PCDATA)>

<!--

Defines how the portlet behaves with the transactionnal context. The default value

is Never.

Example:

<transaction>

 <trans-attribute>Required</transaction>

<transaction>

-->

<!ELEMENT transaction (trans-attribute)>

<!--

The trans-attribute value defines the transactionnal behavior. The accepted values

are Required, Mandatory, Never, Supports, NotSupported and RequiresNew.

-->

<!ELEMENT trans-attribute (#PCDATA)>

<!--

Specify content which should be included in the portal aggregated page when the portlet

is present on that page. This setting only applies when the portlet is used in the local mode.

-->

379

<!ELEMENT header-content (link|script|meta)*>

<!--

Creates a header markup element for linked resources,

see http://www.w3.org/TR/html401/struct/links.html#h-12.3

At runtime the href attribute value will be prefixed with the context path

of the web application.

Example:

<link rel="stylesheet" type="text/css" href="/style.css" media="screen"/>

will produce at runtime the following markup

<link rel="stylesheet" type="text/css" href="/my-web-application/style.css" media="screen"/>

-->

<!ATTLIST link

 href CDATA #IMPLIED

 rel CDATA #IMPLIED

 type CDATA #IMPLIED

 media CDATA #IMPLIED

 title CDATA #IMPLIED>

<!--

No content is allowed inside an link element.

-->

<!ELEMENT link EMPTY>

<!--

Creates a header markup for scripting,

see http://www.w3.org/TR/html401/interact/scripts.html

At runtime the src attribute value will be prefixed with the context path

of the web application.

Example 1:

<script type="text/javascript" src="/myscript.js"></script>

will produce at runtime the following markup

<script type="text/javascript" src="/my-web-application/myscript.js"></script>

Appendix C. jboss-portlet.xml DTD

380

Example 2:

<script type="text/javascript">

 function hello() {

 alert('Hello');

 }

</script>

-->

<!ATTLIST script

 src CDATA #IMPLIED

 type CDATA #IMPLIED

 language CDATA #IMPLIED>

<!--

The script header element can contain inline script definitions.

-->

<!ELEMENT script (#PCDATA)>

<!--

Creates a header markup for adding meta data to a page,

see http://www.w3.org/TR/html401/struct/global.html#h-7.4.4

Example:

<meta name="keywords" content="jboss, portal, redhat"/>

-->

<!ATTLIST meta

 name CDATA #REQUIRED

 content CDATA #REQUIRED>

<!--

No content is allowed for meta element.

-->

<!ELEMENT meta EMPTY>

<!--

Declare a service that will be injected by the portlet container as an

attribute of the portlet context.

Example:

<service>

 <service-name>UserModule</service-name>

 <service-class>org.jboss.portal.identity.UserModule</service-class>

381

 <service-ref>:service=Module,type=User</service-ref>

</service>

In the portlet it is then possible to use it by doing a lookup on the service

name, for example in the init() lifecycle method :

public void init()

{

 UserModule userModule = (UserModule)getPortletContext().getAttribute("UserModule");

}

-->

<!ELEMENT service (service-name,service-class,service-ref)>

<!--

The service name that will be used to bind the service as a portlet context attribute.

-->

<!ELEMENT service-name (#PCDATA)>

<!--

The full qualified name of the interface that the service implements.

-->

<!ELEMENT service-class (#PCDATA)>

<!--

The reference to the service. In the JMX Microkernel environment it consist of the JMX

name of the service MBean. For an MBean reference if the domain is left out, then the

current domain of the portal will be used.

-->

<!ELEMENT service-ref (#PCDATA)>

382

	JBoss® Portal 2.7.0
	Table of Contents
	Please Read: Important Trademark Information
	JBoss Portal - Overview
	Feature List
	Target Audience
	Acknowledgments
	Chapter 1. System Requirements
	1.1. Minimum System Requirements
	1.2. Supported Operating Systems
	1.3. JBoss Application Server
	1.4. Databases
	1.5. Source Building

	Chapter 2. Installation
	2.1. The JBoss Portal and JBoss AS Bundle
	2.2. Installing the Binary Download
	2.2.1. Setting up your Environment
	2.2.1.1. Getting the Binary
	2.2.1.2. JBoss EAP and JBoss AS Setup
	2.2.1.3. Operating System Environment Settings
	2.2.1.4. Database Setup
	2.2.1.5. Datasource Descriptors

	2.2.2. Deploying JBoss Portal

	2.3. Installing from the Sources
	2.3.1. Getting the Sources
	2.3.2. JBoss EAP and JBoss AS Setup
	2.3.2.1. JBoss Application Server Setup
	2.3.2.2. Operating System Environment Settings

	2.3.3. Building and Deploying from the Sources
	2.3.4. Database Setup
	2.3.5. Datasource Configuration

	2.4. Deploying JBoss Portal

	Chapter 3. Customizing your Installation
	3.1. Changing the Port
	3.2. Changing the Context Path
	3.2.1. Changing the context-root

	3.3. Forcing the Database Dialect
	3.3.1. Database Dialect Settings for JBoss Portal
	3.3.2. DB Dialect Settings for the CMS Component

	3.4. Configuring the Email Service
	3.5. Configuring proxy settings
	3.6. Disabling Dynamic Proxy Un-wrapping

	Chapter 4. Upgrading JBoss Portal 2.6 to 2.7
	4.1. Usage of JBossActionRequest

	Chapter 5. Portlet Primer
	5.1. JSR-168 and JSR-286 overview
	5.1.1. Portal Pages
	5.1.2. Rendering Modes
	5.1.3. Window States

	5.2. Tutorials
	5.2.1. Deploying your first Portlet
	5.2.1.1. Introduction
	5.2.1.2. Compiling
	5.2.1.3. Package Structure
	5.2.1.4. Portlet Class
	5.2.1.5. Application Descriptors

	5.2.2. JavaServer™ Pages Portlet Example
	5.2.2.1. Introduction
	5.2.2.2. Package Structure
	5.2.2.3. Portlet Class
	5.2.2.4. JSP™ files and the Portlet Tag Library
	5.2.2.5. JSF™ example using the JBoss Portlet Bridge

	Chapter 6. XML Descriptors
	6.1. DTDs
	6.1.1. The JBoss Portlet DTD
	6.1.2. The JBoss Portlet Instance DTD
	6.1.3. The JBoss Portal Object DTD
	6.1.4. The JBoss Portal App DTD

	6.2. Portlet Descriptors
	6.2.1. *-object.xml Descriptors
	6.2.2. The portlet-instances.xml Descriptor
	6.2.3. The jboss-portlet.xml Descriptor
	6.2.3.1. Injecting Header Content
	6.2.3.2. Injecting Services in the portlet Context
	6.2.3.3. Defining extra portlet Information
	6.2.3.4. Portlet Session Replication in a Clustered Environment

	6.2.4. The portlet.xml Descriptor

	6.3. JBoss Portal Descriptors
	6.3.1. Datasource Descriptors (portal-*-ds.xml)
	6.3.1.1. Datasource Descriptors included in Binary releases
	6.3.1.2. Building Datasource Descriptors from Source

	6.3.2. Portlet Debugging (jboss-portal.sar/conf/config.xml)
	6.3.3. Log in to Dashboard

	6.4. Descriptor Examples
	6.4.1. Defining a new Portal Page
	6.4.2. Defining a new Portal Instance

	Chapter 7. Portal URLs
	7.1. Introduction to Portals
	7.2. Accessing a Portal
	7.3. Accessing a Page
	7.4. Accessing CMS Content

	Chapter 8. JBoss Portal support for Portlet 2.0 coordination features
	8.1. Introduction
	8.1.1. Explicit vs. implicit coordination

	8.2. General configuration considerations
	8.2.1. Overview of the configuration interface

	8.3. Alias Bindings
	8.3.1. Definition
	8.3.2. Configuration via XML
	8.3.3. Graphical configuration

	8.4. Parameter bindings
	8.4.1. Definition
	8.4.2. Configuration via XML
	8.4.3. Graphical configuration

	8.5. Event wirings
	8.5.1. Definition
	8.5.2. Configuration via XML
	8.5.3. Graphical configuration

	8.6. <implicit-mode>
	8.7. Coordination Samples

	Chapter 9. Error Handling Configuration
	9.1. Error Types
	9.2. Control Policies
	9.2.1. Policy Delegation and Cascading
	9.2.2. Default Policy
	9.2.3. Portal Policy
	9.2.4. Page Policy

	9.3. Configuration using XML Descriptors
	9.3.1. Portal Policy Properties
	9.3.2. Page Policy Properties

	9.4. Using JSP™ to Handle Errors
	9.5. Configuration using the Portal Management Application

	Chapter 10. Content Integration
	10.1. Window content
	10.2. Content customization
	10.3. Content Driven Portlet
	10.3.1. Displaying content
	10.3.2. Configuring content
	10.3.3. Step by step example of a content driven portlet
	10.3.3.1. The Portlet skeleton
	10.3.3.2. Overriding the dispatch method
	10.3.3.3. Utilities methods
	10.3.3.4. The editor
	10.3.3.5. Viewing content at runtime
	10.3.3.6. Hooking the portlet into the portal

	10.4. Configuring window content in deployment descriptor

	Chapter 11. Widget Integration
	11.1. Introduction
	11.2. Widget portlet configuration

	Chapter 12. Portlet Modes
	12.1. Admin Portlet Mode
	12.1.1. Portlet configuration
	12.1.2. Declarative instance security configuration
	12.1.3. Instance security configuration with the administration portlet

	Chapter 13. Portal API
	13.1. Introduction
	13.2. Portlet to Portal communication
	13.2.1. Requesting a sign out
	13.2.2. Setting up the web browser title

	13.3. Portal URL
	13.4. Portal session
	13.5. Portal runtime context
	13.6. Portal nodes
	13.7. Portal navigational state
	13.8. Portal events
	13.8.1. Portal node events
	13.8.1.1. Portal node event propagation model
	13.8.1.2. Portal node event listener
	13.8.1.3. Portal node event context

	13.8.2. Portal session events
	13.8.3. Portal user events

	13.9. Examples
	13.9.1. UserAuthenticationEvent example
	13.9.2. Achieving Inter Portlet Communication with the events mechanism
	13.9.3. Link to other pages
	13.9.4. Samples

	Chapter 14. Clustering Configuration
	14.1. Introduction
	14.2. Considerations
	14.3. JBoss Portal Clustered Services
	14.3.1. Portal Session Replication
	14.3.2. Hibernate clustering
	14.3.3. Identity clustering
	14.3.4. CMS clustering

	14.4. Setup
	14.5. Portlet Session Replication
	14.5.1. JBoss Portal configuration
	14.5.2. Portlet configuration
	14.5.3. Limitations

	Chapter 15. Web Services for Remote Portlets (WSRP)
	15.1. Introduction
	15.2. Level of support in JBoss Portal
	15.3. Deploying JBoss Portal's WSRP services
	15.3.1. Considerations to use WSRP when running Portal on a non-default port or hostname
	15.3.2. Considerations to use WSRP with SSL

	15.4. Making a portlet remotable
	15.5. Consuming JBoss Portal's WSRP portlets from a remote Consumer
	15.6. Consuming remote WSRP portlets in JBoss Portal
	15.6.1. Overview
	15.6.2. Configuring a remote producer walk-through
	15.6.2.1. Using the configuration portlet
	15.6.2.2. Using a WSRP Producer XML descriptor
	15.6.2.3. Configuring access to a remote portlet

	15.6.3. WSRP Producer descriptors
	15.6.3.1. Required configuration information
	15.6.3.2. Optional configuration

	15.6.4. Examples

	15.7. Consumers maintenance
	15.7.1. Modifying a currently held registration
	15.7.1.1. Registration modification for service upgrade
	15.7.1.2. Registration modification on producer error

	15.7.2. Consumer operations
	15.7.3. Erasing local registration data

	15.8. Configuring JBoss Portal's WSRP Producer
	15.8.1. Overview
	15.8.2. Default configuration
	15.8.3. Registration configuration
	15.8.3.1. Customization of Registration handling behavior

	15.8.4. WSRP validation mode

	Chapter 16. Security
	16.1. Securing Portal Objects
	16.2. Securing the Content Management System
	16.2.1. CMS Security Configuration
	16.2.1.1. CMS Super User
	16.2.1.2. CMS Security Console

	16.3. Authentication with JBoss Portal
	16.3.1. Authentication configuration
	16.3.2. The portal servlet

	16.4. Authorization with JBoss Portal
	16.4.1. The portal permission
	16.4.2. The authorization provider
	16.4.3. Making a programmatic security check
	16.4.4. Configuring an authorization domain

	Chapter 17. JBoss Portal Identity Management
	17.1. Identity management API
	17.1.1. How to obtain identity modules services ?
	17.1.2. API changes since 2.4

	17.2. Identity configuration
	17.2.1. Main configuration file architecture (identity-config.xml)
	17.2.1.1. Datasources
	17.2.1.2. Modules
	17.2.1.3. Options

	17.3. User profile configuration
	17.4. Identity modules implementations
	17.4.1. Database modules
	17.4.2. Delegating UserProfile module
	17.4.3. Database UserProfile module implementation

	Chapter 18. JBoss Portal Identity Portlets
	18.1. Introduction
	18.1.1. Features

	18.2. Configuration
	18.2.1. Captcha support
	18.2.2. Lost password
	18.2.3. Reset password
	18.2.4. jBPM based user registration
	18.2.5. The configuration file
	18.2.6. Customize e-mail templates

	18.3. User interface customization
	18.3.1. Example 1: required fields
	18.3.2. Example 2: dynamic values (dropdown menu with predefined values)
	18.3.3. Example 3: adding new properties
	18.3.4. Illustration
	18.3.5. Customizing the View Profile page

	18.4. Customizing the workflow
	18.4.1. Duration of process validity

	18.5. Disabling the Identity Portlets
	18.5.1. Enabling the Identity Portlets

	Chapter 19. Authentication and Authorization
	19.1. Authentication in JBoss Portal
	19.1.1. Configuration

	19.2. JAAS Login Modules
	19.2.1. org.jboss.portal.identity.auth.IdentityLoginModule
	19.2.2. org.jboss.portal.identity.auth.DBIdentityLoginModule
	19.2.3. org.jboss.portal.identity.auth.SynchronizingLdapLoginModule
	19.2.4. org.jboss.portal.identity.auth.SynchronizingLdapExtLoginModule
	19.2.5. org.jboss.portal.identity.auth.SynchronizingLoginModule

	Chapter 20. LDAP
	20.1. How to enable LDAP usage in JBoss Portal
	20.2. Configuration of LDAP connection
	20.2.1. Connection Pooling
	20.2.2. SSL
	20.2.3. ExternalContext

	20.3. LDAP Identity Modules
	20.3.1. Common settings
	20.3.2. UserModule
	20.3.2.1. LDAPUserModuleImpl
	20.3.2.2. LDAPExtUserModuleImpl

	20.3.3. RoleModule
	20.3.3.1. LDAPRoleModuleImpl
	20.3.3.2. LDAPExtRoleModuleImpl

	20.3.4. MembershipModule
	20.3.4.1. LDAPStaticGroupMembershipModuleImpl
	20.3.4.2. LDAPStaticRoleMembershipModuleImpl

	20.3.5. UserProfileModule
	20.3.5.1. LDAPUserProfileModuleImpl

	20.4. LDAP server tree shapes
	20.4.1. Keeping users membership in role entries
	20.4.1.1. Example LDIF
	20.4.1.2. Example identity configuration

	20.4.2. Keeping users membership in user entries
	20.4.2.1. Example LDIF
	20.4.2.2. Example identity configuration

	20.5. Synchronizing LDAP configuration
	20.6. Supported LDAP servers

	Chapter 21. Single Sign On
	21.1. Overview of SSO in portal
	21.2. Using an Apache Tomcat Valve
	21.2.1. Enabling the Apache Tomcat SSO Valve
	21.2.2. Example of usage

	21.3. CAS - Central Authentication Service
	21.3.1. Integration steps

	21.4. Java™ Open Single Sign-On (JOSSO)
	21.4.1. Integration steps

	Chapter 22. CMS Portlet
	22.1. Introduction
	22.2. Features
	22.3. CMS content
	22.3.1. Configuring a window to display CMS content

	22.4. CMS Configuration
	22.4.1. Display CMS content
	22.4.2. Service Configuration
	22.4.2.1. Tuning Apache Jackrabbit
	22.4.2.2. Changing the url under which the content should be accessible

	22.4.3. Configuring the Content Store Location
	22.4.3.1. 100% Filesystem Storage
	22.4.3.2. 100% Database Storage
	22.4.3.3. Mixed Storage

	22.5. Localization Support
	22.6. CMS Service
	22.6.1. CMS Interceptors

	Chapter 23. Portal Workflow
	23.1. jBPM Workflow Engine Integration
	23.2. CMS Publish/Approve Workflow Service
	1. How to activate this feature?
	2. How to configure this feature?

	Chapter 24. Navigation Tabs
	24.1. Explicit ordering of tabs
	24.2. Translating tab labels
	24.2.1. Method one: Multiple display-name
	24.2.2. Defining a resource bundle and supported locales

	Chapter 25. Layouts and Themes
	25.1. Overview
	25.2. Header
	25.2.1. Overview
	25.2.1.1. Writing his own JSP™ pages

	25.3. Layouts
	25.3.1. How to define a Layout
	25.3.2. How to use a Layout
	25.3.2.1. Declarative use
	25.3.2.2. Programmatic use

	25.3.3. Where to place the Descriptor files
	25.3.4. Layout JSP™ tags
	25.3.4.1. The title tag
	25.3.4.2. The theme tag
	25.3.4.3. The headerContent tag
	25.3.4.4. The region tag

	25.4. RenderSets
	25.4.1. What is a RenderSet
	25.4.2. How is a RenderSet defined
	25.4.3. How to specify what RenderSet to use

	25.5. Themes
	25.5.1. What is a Theme
	25.5.2. How to define a Theme
	25.5.3. How to use a Theme
	25.5.4. How to write your own Theme

	25.6. Other Theme Functionalities and Features
	25.6.1. Content Rewriting and Header Content Injection
	25.6.2. Declarative CSS Style injection
	25.6.3. Disabling Portlet Decoration

	25.7. Theme Style Guide (based on the Industrial theme)
	25.7.1. Overview
	25.7.2. Main Screen Shot
	25.7.3. List of CSS Selectors

	25.8. Additional Ajax selectors

	Chapter 26. Ajax
	26.1. Introduction
	26.2. Ajaxified markup
	26.2.1. Ajaxified layouts
	26.2.2. Ajaxified renderers

	26.3. Ajaxified pages
	26.3.1. Drag and Drop
	26.3.2. Partial refresh
	26.3.2.1. Portal objects configuration
	26.3.2.2. Portlet configuration
	26.3.2.3. Limitations
	26.3.2.3.1. Application scoped session attributes
	26.3.2.3.2. Non ajax interactions

	Chapter 27. Troubleshooting and FAQ
	27.1. Troubleshooting and FAQ

	Appendix A. *-object.xml DTD
	Appendix B. portlet-instances.xml DTD
	Appendix C. jboss-portlet.xml DTD

