
JBoss DNA

1

Getting Started Guide
ISBN:

Publication date:

JBoss DNA

JBoss DNA: Getting Started Guide
by Randall Hauch

Legal Notice

 1801 Varsity Drive

 Raleigh, NC27606-2072USA

 Phone: +1 919 754 3700

 Phone: 888 733 4281

 Fax: +1 919 754 3701

 PO Box 13588Research Triangle Park, NC27709USA

Copyright © 2008 by Red Hat, Inc. This copyrighted material is made available to anyone wishing to use,

modify, copy, or redistribute it subject to the terms and conditions of the GNU Lesser General Public License

[http://www.gnu.org/licenses/lgpl-2.1.html], as published by the Free Software Foundation.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other

countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl-2.1.html

JBoss DNA

v

What this book covers .. vii

1. Introduction ... 1

2. Understanding JBoss DNA ... 3

1. Overview ... 3

2. Architecture ... 3

3. Sequencing content ... 6

4. Federating content ... 8

4.1. Connecting to information sources ... 9

4.2. Building the unified graph .. 10

4.3. Searching and querying ... 10

4.4. Updating content ... 11

4.5. Observing changes ... 11

3. Running the example application .. 13

1. Downloading and compiling .. 14

2. Running the example ... 16

3. Summarizing what we just did .. 22

4. Using JBoss DNA .. 25

1. Configuring the Sequencing Service ... 25

2. Configuring the Observation Service ... 28

3. Shutting down JBoss DNA services .. 29

4. Reviewing the example application ... 30

5. Summarizing what we just did .. 36

5. Creating custom sequencers .. 37

1. Creating the Maven 2 project ... 37

2. Implementing the StreamSequencer interface .. 40

3. Testing custom sequencers .. 44

4. Deploying custom sequencers .. 46

6. Looking to the future .. 47

vi

vii

What this book covers

The goal of this book is to help you learn about JBoss DNA and how you can use it in

your own applications to get the most out of your JCR repositories.

The first part of the book starts out with an introduction to content repositories and

an overview of the JCR API, both of which are important aspects of JBoss DNA. This

is followed by an overview of the JBoss DNA project, its architecture, and a basic

roadmap for what's coming next.

The next part of the book covers how to download and build the examples, how

to use JBoss DNA with existing repositories, and how to build and use custom

sequencers.

If you have any questions or comments, please feel free to contact JBoss

DNA's user mailing list [mailto:dna-users@jboss.org] or use the user forums

[http://www.jboss.com/index.html?module=bb&op=viewforum&f=272] . If you'd like to

get involved on the project, join the mailing lists [http://www.jboss.org/dna/lists.html]

, download the code [http://www.jboss.org/dna/subversion.html] and get it building,

and visit our JIRA issue management system [http://jira.jboss.org/jira/browse/DNA] .

If there's something in particular you're interested in, talk with the community - there

may be others interested in the same thing.

mailto:dna-users@jboss.org
mailto:dna-users@jboss.org
http://www.jboss.com/index.html?module=bb&op=viewforum&f=272
http://www.jboss.com/index.html?module=bb&op=viewforum&f=272
http://www.jboss.org/dna/lists.html
http://www.jboss.org/dna/lists.html
http://www.jboss.org/dna/subversion.html
http://www.jboss.org/dna/subversion.html
http://jira.jboss.org/jira/browse/DNA
http://jira.jboss.org/jira/browse/DNA

viii

Chapter 1.

1

Introduction
There are a lot of choices for how applications can store information persistently

so that it can be accessed at a later time and by other processes. The challenge

developers face is how to use an approach that most closely matches the needs

of their application. This choice becomes more important as developers choose to

focus their efforts on application-specific logic, delegating much of the responsibilities

for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The

Java language makes working with files relatively easy, but Java really doesn't

provide many bells and whistles. So using files is an easy choice when the

information is either not complicated (for example property files), or when users

may need to read or change the information outside of the application (for example

log files or configuration files). But using files to persist information becomes more

difficult as the information becomes more complex, as the volume of it increases, or if

it needs to be accessed by multiple processes. For these situations, other techniques

often offer better choices.

Another technique built into the Java language is Java serialization , which is capable

of persisting the state of an object graph so that it can be read back in at a later time.

However, Java serialization can quickly become tricky if the classes are changed,

and so it's beneficial usually when the information is persisted for a very short period

of time. For example, serialization is sometimes used to send an object graph from

one process to another.

One of the more popular persistence technologies is the relational database .

Relational database management systems have been around for decades and are

very capable. The Java Database Connectivity (JDBC) API provides a standard

interface for connecting to and interacting with relational databases. However, it is a

low-level API that requires a lot of code to use correctly, and it still doesn't abstract

away the DBMS-specific SQL grammar. Also, working with relational data in an

object-oriented language can feel somewhat unnatural, so many developers map this

data to classes that fit much more cleanly into their application. The problem is that

manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC

code.

Object-relational mapping libraries automate the creation of this mapping layer and

result in far less code that is much more maintainable with performance that is often

as good as (if not better than) handwritten JDBC code. The new Java Persistence

API (JPA) [http://java.sun.com/developer/technicalArticles/J2EE/jpa/] provide a

standard mechanism for defining the mappings (through annotations) and working

with these entity objects. Several commercial and open-source libraries implement

JPA, and some even offer additional capabilities and features that go beyond JPA.

For example, Hibernate [http://www.hibernate.org] is one of the most feature-rich

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction

2

JPA implementations and offers object caching, statement caching, extra association

mappings, and other features that help to improve performance and usefulness.

While relational databases and JPA are solutions that work for many applications,

they become more limited in cases when the information structure is highly flexible,

is not known a priori , or is subject to frequent change and customization. In

these situations, content repositories may offer a better choice for persistence.

Content repositories are almost a hybrid between relational databases and file

systems, and typically provide other capabilities as well, including versioning,

indexing, search, access control, transactions, and observation. Because of this,

content repositories are used by content management systems (CMS), document

management systems (DMS), and other applications that manage electronic files

(e.g., documents, images, multi-media, web content, etc.) and metadata associated

with them (e.g., author, date, status, security information, etc.). The Content

Repository for Java technology API [http://www.jcp.org/en/jsr/detail?id=170] provides

a standard Java API for working with content repositories. Abbreviated "JCR",

this API was developed as part of the Java Community Process under JSR-170

[http://www.jcp.org/en/jsr/detail?id=170] and is being revised under JSR-283

[http://www.jcp.org/en/jsr/detail?id=283] .

The JBoss DNA project is building the tools and services that surround content

repositories. Nearly all of these capabilities are to be hidden below the JCR API and

involve automated processing of the information in the repository. Thus, JBoss DNA

can add value to existing repository implementations. For example, JCR repositories

offer the ability to upload files into the repository and have the file content indexed

for search purposes. JBoss DNA also defines a library for "sequencing" content - to

extract meaningful information from that content and store it in the repository, where

it can then be searched, accessed, and analyzed using the JCR API.

JBoss DNA is building other features as well. One goal of JBoss DNA is to create

federated repositories that dynamically merge the information from multiple

databases, services, applications, and other JCR repositories. Another is to create

customized views based upon the type of data and the role of the user that is

accessing the data. And yet another is to create a REST-ful API to allow the JCR

content to be accessed easily by other applications written in other languages.

The next chapter in this book goes into more detail about JBoss DNA and its

architecture, the different components, what's available now, and what's coming in

future releases. Chapter 3 then provides instructions for downloading and running

the sequencer examples for the current release. Chapter 4 walks through how to use

JBoss DNA in your applications, while Chapter 5 goes over how to create custom

sequencers. Finally, Chapter 6 wraps things up with a discussion about the future of

JBoss DNA.

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 2.

3

Understanding JBoss DNA

1. Overview

JBoss DNA is a repository and set of tools that make it easy to capture, version,

analyze, and understand the fundamental building blocks of information. As models,

service and process definitions, schemas, source code, and other artifacts are added

to the repository, JBoss DNA "sequences" the makeup of these components and

extracts their structure and interdependencies. The JBoss DNA web application

allows end users to access, visualize, and edit this information in the terminology and

structure they are familiar with. Such domain-specific solutions can be easily created

with little or no programming.

JBoss DNA supports the Java Content Repository (JCR) standard and is able

to provide a single integrated view of multiple repositories, external databases,

services, and applications, ensuring that JBoss DNA has access to the latest and

most reliable master data. For instance, DNA could provide in a single view valuable

insight into the business processes and process-level services impacted by a change

to in an intermediary web server operation defined via WSDL. Similarly, a user could

quickly view and navigate the dependencies between the data source models and

transformation information stored within a content repository, the code base stored

within a version control system, and the database schemas used by an application.

2. Architecture

The architecture for JBoss DNA consists of several major components that will be

built on top of standard APIs, including JCR, JDBC, JNDI and HTTP. The goal is to

allow these components to be assembled as needed and add value on top of other

DNA components or third-party systems that support these standard APIs.

Chapter 2. Understanding JBos...

4

As shown in the diagram above, the major components are (starting at the top):

• DNA Eclipse Plugins enable Eclipse users to access the contents of a JBoss

DNA repository.

• DNA JDBC Driver provides a driver implementation, allowing JDBC-aware

applications to connect to and use a JBoss DNA repository.

Architecture

5

• DNA Remote JCR is a client-side component for accessing remote JCR

repositories.

• DNA Web Application is used by end users and domain experts to visualize,

search, edit, change and tag the repository content. The web application uses

views to define how different types of information are to be presented and edited

in domain-specific ways. The goal is that this web application is easily customized

and branded for inclusion into other solutions and application systems. The DNA

Web Application operates upon any JCR-compliant repository, although it does

rely upon the DNA analysis and templating services.

• DNA Publishing Server allows content to be downloaded, uploaded, and edited

using the Atom Publishing Protocol. With the DNA Publishing Server, the content

of the repository can easily be created, read, edited, and deleted using the

standard HTTP operations of POST, GET, PUT, and DELETE (respectively).

More and more tools are being created that support working with Atom Publishing

servers. The DNA Publishing Server operates upon any JCR-compliant repository.

• DNA WebDAV Server allows clients such as Microsoft Windows and Apple OS

X to connect to, read, and edit the content in the repository using the WebDAV

standard. Since WebDAV is an extension of HTTP, web browsers are able to read

(but not modify) the content served by a WebDAV compliant server. The DNA

WebDAV Server operates upon any JCR-compliant repository.

• DNA Sequencers are pluggable components that make it possible for content to

be uploaded to the repository and automatically processed to extract meaningful

structure and place that structure in the repository. Once this information is in

the repository, it can be viewed, edited, analyzed, searched, and related to other

content. DNA defines a Java interface that sequencers must implement. DNA

sequencers operate upon any JCR-compliant repository.

• DNA Analyses are pluggable components that analyze content and the

relationships between content to generate reports or to answer queries. DNA will

include some standard analyzers, like dependency analysis and similarity analysis,

that are commonly needed by many different solutions. DNA analyzers operate

upon any JCR-compliant repository.

• DNA Views are definitions of how types of information are to be presented in a

user interface to allow for creation, reading, editing, and deletion of information.

DNA view definitions consist of data stored in a JCR repository, and as such

views can be easily added, changed or removed entirely by using the DNA Web

Application, requiring no programming.

• DNA Federation is an implementation of the JCR API that builds the content

within the repository by accessing and integrating information from multiple

sources. DNA Federation allows the integration of external systems, like other JCR

repositories, databases, applications, and services.

Chapter 2. Understanding JBos...

6

• DNA Connectors are used to communicate with these external sources of

information. In the federation engine, each source is able to contribute node

structure and node properties to any part of the federated graph, although typically

many connectors will contribute most of their information to isolated subgraphs.

The result is that integration from a wide range of systems can be integrated

and accessed through the DNA Web Application, DNA Publishing Server, and

DNA WebDAV Server. Connectors also may optionally participate in distributed

transactions by exposing an XAResource.

• DNA Maven is a classloader library compatible with Maven 2 project

dependencies. This allows the creation of Java ClassLoader instances using

Maven 2 style paths, and all dependencies are transitively managed and included.

Continue reading the rest of this chapter for more detail about the sequencing

framework available in this release, or the federation engine and connectors that will

be the focus of the next release. Or, skip to the examples to see how to start using

JBoss DNA 0.1 today.

3. Sequencing content

The current JBoss DNA release contains a sequencing framework that is designed

to sequence data (typically files) stored in a JCR repository to automatically extract

meaningful and useful information. This additional information is then saved back into

the repository, where it can be accessed and used.

In other words, you can just upload various kinds of files into a JCR repository, and

DNA automatically processes those files to extract meaningful structured information.

For example, load DDL files into the repository, and let sequencers extract the

structure and metadata for the database schema. Load Hibernate configuration files

into the repository, and let sequencers extract the schema and mapping information.

Load Java source into the repository, and let sequencers extract the class structure,

JavaDoc, and annotations. Load a PNG, JPEG, or other image into the repository,

and let sequencers extract the metadata from the image and save it in the repository.

The same with XSDs, WSDL, WS policies, UML, MetaMatrix models, etc.

JBoss DNA sequencers sit on top of existing JCR repositories (including federated

repositories) - they basically extract more useful information from what's already

stored in the repository. And they use the existing JCR versioning system. Each

sequencer typically processes a single kind of file format or a single kind of content.

The following sequencers are included in JBoss DNA:

• Image sequencer - A sequencer that processes the binary content of an image

file, extracts the metadata for the image, and then writes that image metadata

to the repository. It gets the file format, image resolution, number of bits per

Sequencing content

7

pixel (and optionally number of images), comments and physical resolution from

JPEG, GIF, BMP, PCX, PNG, IFF, RAS, PBM, PGM, PPM, and PSD files. (This

sequencer may be improved in the future to also extract EXIF metadata from

JPEG files; see DNA-26 [http://jira.jboss.org/jira/browse/DNA-26] .)

• MP3 sequencer - A sequencer that processes the contents of an MP3 audio

file, extracts the metadata for the file, and then writes that image metadata to the

repository. It gets the title, author, album, year, and comment. (This sequencer

may be improved in the future to also extract other ID3 metadata from other audio

file formats; see DNA-26 [http://jira.jboss.org/jira/browse/DNA-66] .)

As the community develops additional sequencers, they will also be included in

JBoss DNA. Some of those that have been identified as being useful include:

• XML Schema Document (XSD) Sequencer - Process XSD files and extract

the various elements, attributes, complex types, simple types, groups, and other

information. (See DNA-32 [http://jira.jboss.org/jira/browse/DNA-32])

• Web Service Definition Language (WSDL) Sequencer - Process WSDL files

and extract the services, bindings, ports, operations, parameters, and other

information. (See DNA-33 [http://jira.jboss.org/jira/browse/DNA-33])

• Hibernate File Sequencer - Process Hibernate configuration (cfg.xml) and

mapping (hbm.xml) files to extract the configuration and mapping information. (See

DNA-61 [http://jira.jboss.org/jira/browse/DNA-61])

• XML Metadata Interchange (XMI) Sequencer - Process XMI documents that

contain UML models or models using another metamodel, extracting the model

structure into the repository. (See DNA-31 [http://jira.jboss.org/jira/browse/DNA-31]

)

• ZIP Archive Sequencer - Process ZIP archive files to extract (explode) the

contents into the repository. (See DNA-63 [http://jira.jboss.org/jira/browse/DNA-63]

)

• Java Archive (JAR) Sequencer - Process JAR files to extract

(explode) the contents into the classes and file resources. (See DNA-64

[http://jira.jboss.org/jira/browse/DNA-64])

• Java Class File Sequencer - Process Java class files (bytecode) to extract

the class structure (including annotations) into the repository. (See DNA-62

[http://jira.jboss.org/jira/browse/DNA-62])

• Java Source File Sequencer - Process Java source files to extract the

class structure (including annotations) into the repository. (See DNA-51

[http://jira.jboss.org/jira/browse/DNA-51])

http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-66
http://jira.jboss.org/jira/browse/DNA-66
http://jira.jboss.org/jira/browse/DNA-32
http://jira.jboss.org/jira/browse/DNA-32
http://jira.jboss.org/jira/browse/DNA-33
http://jira.jboss.org/jira/browse/DNA-33
http://jira.jboss.org/jira/browse/DNA-61
http://jira.jboss.org/jira/browse/DNA-61
http://jira.jboss.org/jira/browse/DNA-31
http://jira.jboss.org/jira/browse/DNA-31
http://jira.jboss.org/jira/browse/DNA-63
http://jira.jboss.org/jira/browse/DNA-63
http://jira.jboss.org/jira/browse/DNA-64
http://jira.jboss.org/jira/browse/DNA-64
http://jira.jboss.org/jira/browse/DNA-62
http://jira.jboss.org/jira/browse/DNA-62
http://jira.jboss.org/jira/browse/DNA-51
http://jira.jboss.org/jira/browse/DNA-51

Chapter 2. Understanding JBos...

8

• PDF Sequencer - Process PDF files to extract the document metadata, including

table of contents. (See DNA-50 [http://jira.jboss.org/jira/browse/DNA-50])

• Maven 2 POM Sequencer - Process Maven 2 Project Object Model (POM) files

to extract the project information, dependencies, plugins, and other content. (See

DNA-24 [http://jira.jboss.org/jira/browse/DNA-24])

• Data Definition Language (DDL) Sequencer - Process various dialects of DDL,

including that from Oracle, SQL Server, MySQL, PostgreSQL, and others. May

need to be split up into a different sequencer for each dialect. (See DNA-26

[http://jira.jboss.org/jira/browse/DNA-26])

• MP3 and MP4 Sequencer - Process MP3 and MP4 audio files to extract the

name of the song, artist, album, track number, and other metadata. (See DNA-30

[http://jira.jboss.org/jira/browse/DNA-30])

The examples in this book go into more detail about how sequencers are managed

and used, and Chapter 5 goes into detail about how to write custom sequencers.

4. Federating content

There is a lot of information stored in many of different places: databases,

repositories, SCM systems, registries, file systems, services, etc. The purpose of

the federation engine is to allow applications to use the JCR API to access that

information as if it were all stored in a single JCR repository, but to really leave the

information where it is.

Why not just move the information into a JCR repository? Most likely there are

existing applications that rely upon that information being where it is. If we were to

move it, then all those applications would break. Or they'd have to be changed to use

JCR. If the information is being used, the most practical thing is to leave it where it is.

Then why not just copy the information into a JCR repository? Actually, there

are times when it's perfectly reasonable to make a copy of the data. Perhaps the

system managing the existing information cannot handle the additional load of

more clients. Or, perhaps the information doesn't change, or it does change and

we want snapshots that don't change. But more likely, the data does change. So if

applications are to use the most current information and we make copies of the data,

we have to keep the copies synchronized with the master. That's generally a lot of

work.

The JBoss DNA federation engine lets us leave the information where it is, yet lets

client applications use the JCR API to access all the information without caring

where the information really exists. If the underlying information changes, client

applications using JCR observation will be notified of the changes. If a JBoss DNA

federated repository is configured to allow updates, client applications can change

the information in the repository and JBoss DNA will propagate those changes down

to the original source.

http://jira.jboss.org/jira/browse/DNA-50
http://jira.jboss.org/jira/browse/DNA-50
http://jira.jboss.org/jira/browse/DNA-24
http://jira.jboss.org/jira/browse/DNA-24
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-30
http://jira.jboss.org/jira/browse/DNA-30

Connecting to information sources

9

4.1. Connecting to information sources

The JBoss DNA federation engine will use connectors to interact with different

information sources to get at the content in those systems. Some ideas for

connectors include:

• JCR Repository Connector - Connect to and interact with other JCR repositories.

• File System Connector - Expose the files and directories on a file system through

JCR.

• Maven 2 Repository Connector - Access and expose the contents of a Maven 2

repository (either on the local file system or via HTTP) through JCR.

• JDBC Metadata Connector - Connect to relational databases via JDBC and

expose their schema as content in a repository.

• UDDI Connector - Interact with UDDI registries to integrate their content into a

repository.

• SVN Connector - Interact with Subversion software configuration management

(SCM) repositories to expose the managed resources through JCR. Consider

using the SVNkit [http://svnkit.com/] (dual license) library for an API into

Subversion.

• CVS Connector - Interact with CVS software configuration management (SCM)

repositories to expose the managed resources through JCR.

• JDBC Storage Connector - Store and access information in a relational

database. Also useful for persisting information in the federated repository not

stored elsewhere.

• Distributed Database Connector - Store and access information in a Hypertable

[http://www.hypertable.org/] or HBase [http://hadoop.apache.org/hbase/]

distributed databases. Also useful for persisting information in the federated

repository not stored elsewhere.

If the connectors allow the information they contribute to be updated, they

must provide an XAResource implementation that can be used with a Java

Transaction Service. Connectors that provide read-only access need not provide an

implementation.

Also, connectors talk to sources of information, and it's quite likely that the same

connector is used to talk to different sources. Each source contains the configuration

details (e.g., connection information, location, properties, options, etc.) for working

with that particular source, as well as a reference to the connector that should be

used to establish connections to the source. And of course, sources can be added or

removed without having to stop and restart the federated repository.

http://svnkit.com/
http://svnkit.com/
http://www.hypertable.org/
http://www.hypertable.org/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/

Chapter 2. Understanding JBos...

10

4.2. Building the unified graph

The federation engine works by effectively building up a single graph by querying

each source and merging or unifying the responses. This information is cached,

which improves performance, reduces the number of (potentially expensive) remote

calls, reduces the load on the sources, and helps mitigate problems with source

availability. As clients interact with the repository, this cache is consulted first. When

the requested portion of the graph (or "subgraph") is contained completely in the

cache, it is retuned immediately. However, if any part of the requested subgraph is

not in the cache, each source is consulted for their contributions to that subgraph,

and any results are cached.

This basic flow makes it possible for the federated repository to build up a local

cache of the integrated graph (or at least the portions that are used by clients). In

fact, the federated repository caches information in a manner that is similar to that of

the Domain Name System (DNS). As sources are consulted for their contributions,

the source also specifies whether it is the authoritative source for this information

(some sources that are themselves federated may not be the information's authority),

whether the information may be modified, the time-to-live (TTL) value (the time after

which the cached information should be refreshed), and the expiration time (the

time after which the cached information is no longer valid). In effect, the source has

complete control over how the information it contributes is cached and used.

The federated repository also needs to incorporate negative caching , which is

storage of the knowledge that something does not exist. Sources can be configured

to contribute information only below certain paths (e.g., /A/B/C), and the federation

engine can take advantage of this by never consulting that source for contributions

to information on other paths. However, below that path, any negative responses

must also be cached (with appropriate TTL and expiry parameters) to prevent the

exclusion of that source (in case the source has information to contribute at a later

time) or the frequent checking with the source.

4.3. Searching and querying

The JBoss DNA federated repository will also support queries against the integrated

and unified graph. In some situations the query can be determined to apply to

a single source, but in most situations the query must be planned (and possibly

rewritten) such that it can be pushed down to all the appropriate sources. Also, the

cached results must be consulted prior to returning the query results, as the results

from one source might have contributions from another source.

Note

It is hoped that the MetaMatrix query engine can be used for

this purpose after it is open-sourced. This engine implements

Updating content

11

sophisticated query planning and optimization techniques for working

efficiently with multiple sources.

Searching the whole federated repository is also important. This allows users to

simply supply a handful of search terms, and to get results that are ranked based

upon how close each result is to the search terms. (Searching is very different from

querying, which involves specifying the exact semantics of what is to be searched

and how the information is to be compared.) JBoss DNA will incorporate a search

engine (e.g., likely to be Lucene) and will populate the engine's indexes using the

federated content and the cached information. Notifications of changing information

will be reflected in the indexes, but some sources may want to explicitly allow or

disallow periodic crawling of their content.

4.4. Updating content

The JBoss DNA federated repositories also make it possible for client applications

to make changes to the unified graph within the context of distributed transactions.

According to the JCR API, client applications use the Java Transaction API (JTA)

to control the boundaries of their transactions. Meanwhile, the federated repository

uses a distributed transaction service [http://www.jboss.org/jbosstm/] to coordinate

the XA resources provided by the connectors.

It is quite possible that clients add properties to nodes in the unified graph, and that

this information cannot be handled by the same underlying source that contributed

to the node. In this case, the federated repository can be configured with a fallback

source that will be used used to store this "extra" information.

It is a goal that non-XA sources (i.e., sources that use connectors without

XA resources) can participate in distributed transactions through the use of

compensating transactions . Because the JBoss DNA federation engine implements

the JCR observation system, it is capable of recording all of the changes made to the

distributed graph (and those changes sent to each updatable source). Therefore, if a

non-XA source is involved in a distributed transaction that must be rolled back, any

changes made to non-XA sources can be undone. (Of course, this does not make

the underlying source transactional: non-transactional sources still may expose the

interim changes to other clients.)

4.5. Observing changes

The JCR API supports observing a repository to receive notifications of additions,

changes and deletions of nodes and properties. The JBoss DNA federated repository

will support this API through two primary means.

When the changes are made through the federated repository, the JBoss DNA

federation engine is well aware of the set of changes that have been (or are being)

made to the unified graph. These events are directly propagated to listeners.

http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/

Chapter 2. Understanding JBos...

12

Sources have the ability to publish events, making it possible for the JBoss DNA

federation engine and clients that have registered listeners to be notified of changes

in the information managed by that source. These events are first processed by the

federation engine and possibly altered based upon contributions from other sources.

(The federation engine also uses these events to update or purge information in the

cache, which may add to the event set.) The resulting (and possibly altered) event

set is then sent to all client listeners.

Chapter 3.

13

Running the example application
This chapter provides instructions for downloading and running a sample application

that demonstrates how JBoss DNA works with a JCR repository to automatically

sequence changing content to extract useful information. So read on to get the

simple application running, and then in the next chapter we'll dive into the source

code for the example and show how to use JBoss DNA in your own applications.

JBoss DNA uses Maven 2 for its build system, as is this example. Using Maven 2

has several advantages, including the ability to manage dependencies. If a library is

needed, Maven automatically finds and downloads that library, plus everything that

library needs. This means that it's very easy to build the examples - or even create a

maven project that depends on the JBoss DNA JARs.

Note

To use Maven with JBoss DNA, you'll need to have JDK 5 or 6

[http://java.sun.com/javase/downloads/index_jdk5.jsp] and Maven

2.0.7 (or higher).

Maven can be downloaded from http://maven.apache.org/ , and is

installed by unzipping the maven-2.0.7-bin.zip file to a convenient

location on your local disk. Simply add $MAVEN_HOME/bin to your path

and add the following profile to your ~/.m2/settings.xml file:

<settings>

 <profiles>

 <profile>

 <id>jboss.repository</id>

 <activation>

 <property>

 <name>!jboss.repository.off</name>

 </property>

 </activation>

 <repositories>

 <repository>

 <id>snapshots.jboss.org</id>

 <url>http://snapshots.jboss.org/maven2</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 <repository>

 <id>repository.jboss.org</id>

 <url>http://repository.jboss.org/maven2</url>

 <snapshots>

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://maven.apache.org/

Chapter 3. Running the exampl...

14

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>repository.jboss.org</id>

 <url>http://repository.jboss.org/maven2</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </pluginRepository>

 <pluginRepository>

 <id>snapshots.jboss.org</id>

 <url>http://snapshots.jboss.org/maven2</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

 </profile>

 </profiles>

</settings>

This profile informs Maven of the two JBoss repositories (snapshots

and releases) that contain all of the JARs for JBoss DNA and all

dependent libraries.

1. Downloading and compiling

The next step is to download

[http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-

gettingstarted-examples.zip] the example for this Getting Started guide, and extract

the contents to a convenient location on your local disk. You'll find the example

contains the following files, which are organized according to the standard Maven

directory structure:

examples/pom.xml

 sequencers/pom.xml

 /src/main/assembly

 /config

 /java

 /resources

 /test/java

 /resources

http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip
http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip
http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip

Downloading and compiling

15

There are essentially two Maven projects: a sequencers project and a parent project.

All of the source for the example is located in the sequencers subdirectory. And

you may have noticed that none of the JBoss DNA libraries are there. This is where

Maven comes in. The two pom.xml files tell Maven everything it needs to know about

what libraries are required and how to build the example.

In a terminal, go to the examples directory and run mvn install. This command

downloads all of the JARs necessary to compile and build the example, including

the JBoss DNA libraries, the libraries they depend on, and any missing Maven

components. (These are downloaded from the JBoss repositories only once and

saved on your machine. This means that the next time you run Maven, all the

libraries will already be available locally, and the build will run much faster.) The

command then continues by compiling the example's source code (and unit tests)

and running the unit tests. The build is successful if you see the following:

$ mvn install

...

[INFO]

 --

[INFO] Reactor Summary:

[INFO]

 --

[INFO] Getting Started examples

 SUCCESS [2.106s]

[INFO] Sequencer Examples

 SUCCESS [9.768s]

[INFO]

 --

[INFO]

 --

[INFO] BUILD SUCCESSFUL

[INFO]

 --

[INFO] Total time: 12 seconds

[INFO] Finished at: Wed May 07 12:00:06 CDT 2008

[INFO] Final Memory: 14M/28M

[INFO]

 --

$

If there are errors, check whether you have the correct version of Maven installed

and that you've correctly updated your Maven settings as described above.

Chapter 3. Running the exampl...

16

If you've successfully built the examples, there will be a

examples/sequencers/target/dna-example-sequencers-basic.dir/ directory

that contains the following:

• run.sh is the *nix shell script that will run the example.

• log4j.properties is the Log4J configuration file.

• jackrabbitConfig.xml is the Jackrabbit configuration file, which is set up to use

a transient in-memory repository.

• jackrabbitNodeTypes.cnd defines the additional JCR node types used by this

example.

• sample1.mp3 is a sample MP3 audio file you'll use later to upload into the

repository.

• caution.gif , caution.png , and caution.jpg are images that you'll use later

and upload into the repository.

• lib subdirectory contains the JARs for all of the JBoss DNA artifacts as well as

those for other libraries required by JBoss DNA and the example.

Note

JBoss DNA 0.1 and the examples are currently tested with Apache

Jackrabbit [http://jackrabbit.apache.org/] version 1.3.3. This version

is stable and used by a number of other projects and applications.

However, you should be able to use a newer version of Jackrabbit,

as long as that version uses the same JCR API. For example, version

1.4.2 was released on March 26, 2008 and should be compatible.

Just remember, if the version of Jackrabbit you want to use for these

examples is not in the Maven repository, you'll have to either add it

or add it locally. For more information, see the Maven documentation

[http://maven.apache.org/].

2. Running the example

This example consists of a client application that sets up an in-memory JCR

repository and that allows a user to upload files into that repository. The client also

sets up the DNA services with two sequencers so that if any of the uploaded files are

PNG, JPEG, GIF, BMP or other images, DNA will automatically extract the image's

metadata (e.g., image format, physical size, pixel density, etc.) and store that in the

http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Running the example

17

repository. Alternatively, if the uploaded file is an MP3 audio file, DNA will extract

some of the ID3 metadata (e.g., the author, title, album, year and comment) and

store that in the repository.

To run the client application, go to the

examples/sequencers/target/dna-example-sequencers-basic.dir/ directory

and type ./run.sh . You should see the command-line client and its menus in your

terminal:

Figure 3.1. Example Client

From this menu, you can upload a file into the repository, search for media in the

repository, print sequencing statistics, or quit the application.

The first step is to upload one of the example images. If you type

'u' and press return, you'll be prompted to supply the path to the file

you want to upload. Since the application is running from within the

examples/sequencers/target/dna-example-sequencers-basic.dir/ directory,

you can specify any of the files in that directory without specifying the path:

Chapter 3. Running the exampl...

18

Figure 3.2. Uploading an image using the Example Client

You can specify any fully-qualified or relative path. The application will notify you

if it cannot find the file you specified. The example client configures JBoss DNA to

sequence and MP3 audio files and image files with one of the following extensions

(technically, nodes that have names ending in the following): jpg , jpeg , gif , bmp

, pcx , png , iff , ras , pbm , pgm , ppm , and psd . Files with other extensions in the

repository path will be ignored. For your convenience, the example provides several

files that will be sequenced (caution.png , caution.jpg , caution.gif , and

sample1.mp3) and one image that will not be sequenced (caution.pict). Feel

free to try other files.

After you have specified the file you want to upload, the example application asks

you where in the repository you'd like to place the file. (If you want to use the

suggested location, just press return .) The client application uses the JCR API

to upload the file to that location in the repository, creating any nodes (of type

nt:folder) for any directories that don't exist, and creating a node (of type nt:file

) for the file. And, per the JCR specification, the application creates a jcr:content

node (of type nt:resource) under the file node. The file contents are placed

on this jcr:content node in the jcr:data property. For example, if you specify

/a/b/caution.png , the following structure will be created in the repository:

 /a (nt:folder)

 /b (nt:folder)

 /caution.png (nt:file)

 /jcr:content (nt:resource)

 @jcr:data = {contents of the file}

Running the example

19

 @jcr:mimeType = {mime type of the

 file}

 @jcr:lastModified = {now}

Other kinds of files are treated in a similar way.

When the client uploads the file using the JCR API, DNA gets notified of the

changes, consults the sequencers to see whether any of them are interested in the

new or updated content, and if so runs those sequencers. The image sequencer

processes image files for metadata, and any metadata found is stored under the

/images branch of the repository. The MP3 sequencer processes MP3 audio files

for metadata, and any metadata found is stored under the /mp3s branch of the

repository. All of this happens asynchronously, so any DNA activity doesn't impede

or slow down the client activities.

So, after the file is uploaded, you can search the repository for the image metadata

using the "s" menu option:

Chapter 3. Running the exampl...

20

Figure 3.3. Searching for media using the Example Client

Here are the search results after the sample1.mp3 audio file has been uploaded (to

the /a/b/sample1.mp3 location):

Running the example

21

Figure 3.4. Searching for media using the Example Client

You can also display the sequencing statistics using the "d" menu option:

Chapter 3. Running the exampl...

22

Figure 3.5. Sequencing statistics using the Example Client

These stats show how many nodes were sequenced, and how many nodes were

skipped because they didn't apply to the sequencer's criteria.

Note

There will probably be more nodes skipped than sequenced, since

there are more nt:folder and nt:resource nodes than there are

nt:file nodes with acceptable names.

You can repeat this process with other files. Any file that isn't an image or MP3 files

(as recognized by the sequencing configurations that we'll describe later) will not be

sequenced.

3. Summarizing what we just did

In this chapter you downloaded and installed the example application and used it to

upload files into a JCR repository. JBoss DNA automatically sequenced the image

and/or MP3 files you uploaded, extracted the metadata from the files, and stored that

metadata inside the repository. The application allowed you to see this metadata and

the sequencing statistics.

This application was very simplistic. In fact, running through the example probably

only took you a minute or two. So while this application won't win any awards, it does

show the basics of what JBoss DNA can do.

Summarizing what we just did

23

In the next chapter we'll venture into the code to get an understanding of how JBoss

DNA actually works and how you can use it in your own applications.

24

Chapter 4.

25

Using JBoss DNA
As we've mentioned before, JBoss DNA is able to work with existing JCR

repositories. Your client applications make changes to the information in those

repositories, and JBoss DNA automatically uses its sequencers to extract additional

information from the uploaded files.

Note

Configuring JBoss DNA sequencers is a bit more manual than is

ideal. As you'll see, JBoss DNA uses dependency injection to allow

a great deal of flexibility in how it can be configured and customized.

However, the next release will provide a much easier mechanism for

configuring not only the sequencer service but also the upcoming

federation engine and JCR implementation.

1. Configuring the Sequencing Service

The JBoss DNA sequencing service is the component that manages the sequencers

and that reacts to changes in JCR repositories and then running the appropriate

sequencers. This involves processing the changes on a node, determinine which (if

any) sequencer should be run on that node, and for each sequencer constructing the

execution environment, calling the sequencer, and saving the information generated

by the sequencer.

To set up the sequencing service, an instance is created and dependent components

are injected into the object. This includes among other things:

• An execution context that defines the context in which the service runs, including

a factory for JCR sessions given names of the repository and workspace. This

factory must be configured, and is how JBoss DNA knows about your JCR

repositories and how to connect to them. More on this a bit later.

• An optional factory for class loaders used to load sequencers. If no factory is

supplied, the service uses the current thread's context class loader (or if that is null

the class loader that loaded the sequencing service class).

• An java.util.concurrent.ExecutorService used to execute the

sequencing activites. If none is supplied, a new single-threaded executor

is created by calling Executors.newSingleThreadExecutor().

(This can easily be changed by subclassing and overriding the

SequencerService.createDefaultExecutorService() method.)

• Filters for sequencers and events. By default, all sequencers are considered for

"node added", "property added" and "property changed" events.

Chapter 4. Using JBoss DNA

26

As mentioned above, the ExecutionContext provides access to a SessionFactory

that is used by JBoss DNA to establish sessions to your JCR repositories. Two

implementations are available:

• The JndiSessionFactory looks up JCR Repository instances in JNDI using

names that are supplied when creating sessions. This implementation also has

methods to set the JCR Credentials for a given workspace name.

• The SimpleSessionFactory has methods to register the JCR Repository

instances with names, as well as methods to set the JCR Credentials for a given

workspace name.

You can use the SimpleExecutionContext implementation of ExecutionContext

and supply a SessionFactory instance, or you can provide your own

implementation.

Here's an example of how to instantiate and configure the SequencingService:

SimpleSessionFactory sessionFactory = new SimpleSessionFactory();

sessionFactory.registerRepository("Main Repository",

 this.repository);

Credentials credentials = new SimpleCredentials("jsmith",

 "secret".toCharArray());

sessionFactory.registerCredentials("Main Repository/Workspace1",

 credentials);

ExecutionContext executionContext = new

 SimpleExecutionContext(sessionFactory);

// Create the sequencing service, passing in the execution context

 ...

SequencingService sequencingService = new SequencingService();

sequencingService.setExecutionContext(executionContext);

After the sequencing service is created and configured, it must be started.

The SequencingService has an administration object (that is an instance of

ServiceAdministrator) with start(), pause(), and shutdown() methods.

The latter method will close the queue for sequencing, but will allow sequencing

operations already running to complete normally. To wait until all sequencing

operations have completed, simply call the awaitTermination method and pass it

the maximum amount of time you want to wait.

sequencingService.getAdministrator().start();

The sequencing service must also be configured with the sequencers that it will use.

This is done using the addSequencer(SequencerConfig) method and passing a

SequencerConfig instance that can create. Here's an example:

Configuring the Sequencing Service

27

String name = "Image Sequencer";

String desc = "Sequences image files to extract the characteristics

 of the image";

String classname =

 "org.jboss.dna.sequencer.images.ImageMetadataSequencer";

String[] classpath = null; // Use the current classpath

String[] pathExpressions =

 {"//(*.(jpg|jpeg|gif|bmp|pcx|png))[*]/jcr:content[@jcr:data] =>

 /images/$1"};

SequencerConfig imageSequencerConfig = new SequencerConfig(name,

 desc, classname, classpath, pathExpressions);

sequencingService.addSequencer(imageSequencerConfig);

name = "Mp3 Sequencer";

desc = "Sequences mp3 files to extract the id3 tags of the audio

 file";

classname = "org.jboss.dna.sequencer.mp3.Mp3MetadataSequencer";

String[] mp3PathExpressions = {"//(*.mp3)[*]/jcr:content[@jcr:data]

 => /mp3s/$1"};

SequencerConfig mp3SequencerConfig = new SequencerConfig(name,

 desc, classname, classpath, mp3PathExpressions);

sequencingService.addSequencer(mp3SequencerConfig);

This is pretty self-explanatory, except for the classpath and pathExpression

parameters. The classpath parameter defines the classpath that is passed to the

class loader factory mentioned above. Our sequencer is on the classpath, so we can

simply use null here.

The path expression is more complicated. Sequencer path expressions are used by

the sequencing service to determine whether a particular changed node should be

sequenced. The expressions consist of two parts: a selection criteria and an output

expression. Here's a simple example:

/a/b/c@title => /d/e/f

Here, the /a/b/c@title is the selection criteria that applies when the /a/b/c

node has a title property that is added or changed. When the selection criteria

matches a change event, the sequencer will be run and any generated output will be

inserted into the repository described by the output expression. In this example, the

generated output would be placed at the /d/e/f node.

Note

Sequencer path expressions can be fairly complex and may use

wildcards, specificy same-name sibling indexes, provide optional and

Chapter 4. Using JBoss DNA

28

choice elements, and may capture parts of the selection criteria for

use in the output expression. The path expression used in the image

sequencer configuration example above shows a more complex

example:

//(*.(jpg|jpeg|gif|bmp|pcx|png))[*]/

jcr:content[@jcr:data] => /images/$1

This uses "//" to select any node at any level in the repository whose

name ends with "." and one of the extensions (e.g., ".jpg", ".jpeg", etc.)

and that has a child node named "jcr:content" that has a "jcr:data"

property. It also selects the file name as the first capture group (the

first set of parentheses) for use in the output expression. In this

example, any sequencer output is placed on a node with that same

file name under the "/images" node.

Other things are possible, too. For example, the name of the

repository/workspace (as used by the SessionFactory) may be

specified at the beginning of the select criteria and/or the output

expression. This means it's possible to place the sequencer output in

a different repository than the node being sequenced.

For more detail about sequencer path

expressions, see the

org.jboss.dna.repository.sequencer.SequencerPathExpression

class and the corresponding org.jboss.dna.repository.sequencer.SequencerPathExpressionTest

test case.

After the service is started, it is ready to start reacting to changes in the repository.

But it first must be wired to the repositories using listener. This is accomplished using

the ObservationService described in the next section.

2. Configuring the Observation Service

The JBoss DNA ObservationService is responsible for listening to one or more

JCR repositories and multiplexing the events to its listeners. Unlike JCR events,

this framework embeds in the events the name of the repository and workspace

that can be passed to a SessionFactory to obtain a session to the repository in

which the change occurred. This simple design makes it very easy for JBoss DNA to

concurrently work with multiple JCR repositories.

Configuring an ObservationService is pretty easy, especially if you reuse the same

SessionFactory supplied to the SequencingService. Here's an example:

Shutting down JBoss DNA services

29

this.observationService = new ObservationService(sessionFactory);

this.observationService.getAdministrator().start();

Note

Both the ObservationService implement AdministeredService,

which has a ServiceAdministrator used to start, pause, and

shutdown the service. In other words, the lifecycle of the services are

managed in the same way.

After the observation service is started, listeners can be added. The

SequencingService implements the required interface, and so it may be registered

directly:

observationService.addListener(sequencingService);

Finally, the observation service must be wired to monitor one or your JCR

repositories. This is done with one of the monitor(...) methods:

int eventTypes = Event.NODE_ADDED | Event.PROPERTY_ADDED |

 Event.PROPERTY_CHANGED;

observationService.monitor("Main Repository/Workspace1",

 eventTypes);

At this point, the observation service is listening to a JCR repository, and forwarding

the appropriate events to the sequencing service, which will asynchronously process

the changes and sequence the information added to or changed in the repository.

3. Shutting down JBoss DNA services

The JBoss DNA services are utilizing resources and threads that must be released

your application is ready to shut down. The safe way to do this is to simply obtain

the ServiceAdministrator for each service (via the getServiceAdministrator()

method) and call shutdown(). As previously mentioned, the shutdown method will

simply prevent new work from being process and will not wait for existing work to be

completed. If you want to wait until the service completes all its work, you must wait

until the service terminates. Here's an example that shows how this is done:

// Shut down the service and wait until it's all shut down ...

sequencingService.getAdministrator().shutdown();

Chapter 4. Using JBoss DNA

30

sequencingService.getAdministrator().awaitTermination(5,

 TimeUnit.SECONDS);

// Shut down the observation service ...

observationService.getAdministrator().shutdown();

observationService.getAdministrator().awaitTermination(5,

 TimeUnit.SECONDS);

At this point, we've covered how to configure and use the JBoss DNA services in

your application. The next chapter goes back to the sample application to show how

all these pieces fit together.

4. Reviewing the example application

Recall that the example application consists of a client application that sets up an

in-memory JCR repository and that allows a user to upload files into that repository.

The client also sets up the DNA services with an image sequencer so that if

any of the uploaded files are PNG, JPEG, GIF, BMP or other images, DNA will

automatically extract the image's metadata (e.g., image format, physical size, pixel

density, etc.) and store that in the repository. Or, if the client uploads MP3 audio files,

the title, author, album, year, and comment are extract from the audio file and stored

in the repository.

The example is comprised of 3 classes and 1 interface, located in the

src/main/java directory:

 org/jboss/example/dna/sequencers/ConsoleInput.java

 /MediaInfo.java

 /SequencingClient.java

 /UserInterface.java

SequencingClient is the class that contains the main application. MediaInfo is a

simple Java object that encapsulates metadata about a media file (as generated by

the sequencer), and used by the client to pass information to the UserInterface

, which is an interface with methods that will be called at runtime to request data

from the user. ConsoleInput is an implementation of this that creates a text user

interface, allowing the user to operate the client from the command line. We can

easily create a graphical implementation of UserInterface at a later date. We

can also create a mock implementation for testing purposes that simulates a user

entering data. This allows us to check the behaviour of the client automatically using

conventional JUnit test cases, as demonstrated by the code in the src/test/java

directory:

 org/jboss/example/dna/sequencers/SequencingClientTest.java

 /MockUserInterface.java

Reviewing the example application

31

If we look at the SequencingClient code, there are a handful of methods that

encapsulate the various activities.

Note

To keep the code shown in this book as readable as possible, some

of the comments and error handling have been removed.

The startRepository() method starts up an in-memory Jackrabbit JCR repository.

The bulk of this method is simply gathering and passing the information required by

Jackrabbit. Because Jackrabbit's TransientRepository implementation shuts down

after the last session is closed, the application maintains a session to ensure that the

repository remains open throughout the application's lifetime. And finally, the node

type needed by the image sequencer is registered with Jackrabbit.

public void startRepository() throws Exception {

 if (this.repository == null) {

 try {

 // Load the Jackrabbit configuration ...

 File configFile = new File(this.jackrabbitConfigPath);

 String pathToConfig = configFile.getAbsolutePath();

 // Find the directory where the Jackrabbit repository

 data will be stored ...

 File workingDirectory = new

 File(this.workingDirectory);

 String workingDirectoryPath =

 workingDirectory.getAbsolutePath();

 // Get the Jackrabbit custom node definition (CND) file

 ...

 URL cndFile =

 Thread.currentThread().getContextClassLoader().getResource("jackrabbitNodeTypes.cnd");

 // Create the Jackrabbit repository instance and

 establish a session to keep the repository alive ...

 this.repository = new TransientRepository(pathToConfig,

 workingDirectoryPath);

 if (this.username != null) {

 Credentials credentials = new

 SimpleCredentials(this.username, this.password);

 this.keepAliveSession =

 this.repository.login(credentials, this.workspaceName);

 } else {

 this.keepAliveSession = this.repository.login();

Chapter 4. Using JBoss DNA

32

 }

 try {

 // Register the node types (only valid the first

 time) ...

 JackrabbitNodeTypeManager

 mgr =

 (JackrabbitNodeTypeManager)this.keepAliveSession.getWorkspace().getNodeTypeManager();

 mgr.registerNodeTypes(cndFile.openStream(),

 JackrabbitNodeTypeManager.TEXT_X_JCR_CND);

 } catch (RepositoryException e) {

 if (!e.getMessage().contains("already exists"))

 throw e;

 }

 } catch (Exception e) {

 this.repository = null;

 this.keepAliveSession = null;

 throw e;

 }

 }

}

As you can see, this method really has nothing to do with JBoss DNA, other than

setting up a JCR repository that JBoss DNA will use.

The shutdownRepository() method shuts down the Jackrabbit transient repository

by closing the "keep alive session". Again, this method really does nothing

specifically with JBoss DNA, but is needed to manage the JCR repository that JBoss

DNA uses.

public void shutdownRepository() throws Exception {

 if (this.repository != null) {

 try {

 this.keepAliveSession.logout();

 } finally {

 this.repository = null;

 this.keepAliveSession = null;

 }

 }

}

The startDnaServices() method first starts the JCR repository (if it were not

already started), and proceeds to create and configure the SequencingService as

described earlier . This involes setting up the SessionFactory , ExecutionContext

, creating the SequencingService instance, and configuring the image sequencer.

Reviewing the example application

33

The method then continues by setting up the ObservationService as described

earlier and starting the service.

public void startDnaServices() throws Exception {

 if (this.repository == null) this.startRepository();

 if (this.sequencingService == null) {

 SimpleSessionFactory sessionFactory = new

 SimpleSessionFactory();

 sessionFactory.registerRepository(this.repositoryName,

 this.repository);

 if (this.username != null) {

 Credentials credentials = new

 SimpleCredentials(this.username, this.password);

 sessionFactory.registerCredentials(this.repositoryName

 + "/" + this.workspaceName, credentials);

 }

 this.executionContext = new

 SimpleExecutionContext(sessionFactory);

 // Create the sequencing service, passing in the execution

 context ...

 this.sequencingService = new SequencingService();

 this.sequencingService.setExecutionContext(executionContext);

 // Configure the sequencers.

 String name = "Image Sequencer";

 String desc = "Sequences image files to extract the

 characteristics of the image";

 String classname =

 "org.jboss.dna.sequencer.images.ImageMetadataSequencer";

 String[] classpath = null; // Use the current classpath

 String[] pathExpressions

 =

 {"//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd))[*]/

jcr:content[@jcr:data] => /images/$1"};

 SequencerConfig imageSequencerConfig = new

 SequencerConfig(name, desc, classname, classpath,

 pathExpressions);

 this.sequencingService.addSequencer(imageSequencerConfig);

 // Set up the MP3 sequencer ...

 name = "Mp3 Sequencer";

 desc = "Sequences mp3 files to extract the id3 tags of the

 audio file";

 classname =

 "org.jboss.dna.sequencer.mp3.Mp3MetadataSequencer";

Chapter 4. Using JBoss DNA

34

 String[] mp3PathExpressions =

 {"//(*.mp3)[*]/jcr:content[@jcr:data] => /mp3s/$1"};

 SequencerConfig mp3SequencerConfig = new

 SequencerConfig(name, desc, classname, classpath,

 mp3PathExpressions);

 this.sequencingService.addSequencer(mp3SequencerConfig);

 // Use the DNA observation service to listen to the JCR

 repository (or multiple ones), and

 // then register the sequencing service as a listener to

 this observation service...

 this.observationService = new

 ObservationService(this.executionContext.getSessionFactory());

 this.observationService.getAdministrator().start();

 this.observationService.addListener(this.sequencingService);

 this.observationService.monitor(this.repositoryName + "/"

 + this.workspaceName, Event.NODE_ADDED | Event.PROPERTY_ADDED |

 Event.PROPERTY_CHANGED);

 }

 // Start up the sequencing service ...

 this.sequencingService.getAdministrator().start();

}

The shutdownDnaServices() method is pretty straightforward: it just calls shutdown

on each of the services and waits until they terminate.

public void shutdownDnaServices() throws Exception {

 if (this.sequencingService == null) return;

 // Shut down the service and wait until it's all shut down ...

 this.sequencingService.getAdministrator().shutdown();

 this.sequencingService.getAdministrator().awaitTermination(5,

 TimeUnit.SECONDS);

 // Shut down the observation service ...

 this.observationService.getAdministrator().shutdown();

 this.observationService.getAdministrator().awaitTermination(5,

 TimeUnit.SECONDS);

}

None of the other methods really do anything with JBoss DNA per se. Instead, they

merely work with the repository using the JCR API.

The main method of the SequencingClient class creates a SequencingClient

instance, and passes a new ConsoleInput instance:

Reviewing the example application

35

public static void main(String[] args) throws Exception {

 SequencingClient client = new SequencingClient();

 client.setRepositoryInformation("repo", "default", "jsmith",

 "secret".toCharArray());

 client.setUserInterface(new ConsoleInput(client));

}

If we look at the ConsoleInput constructor, it starts the repository, the DNA services,

and a thread for the user interface. At this point, the constructor returns, but the main

application continues under the user interface thread. When the user requests to

quit, the user interface thread also shuts down the DNA services and JCR repository.

public ConsoleInput(SequencerClient client) {

 try {

 client.startRepository();

 client.startDnaServices();

 System.out.println(getMenu());

 Thread eventThread = new Thread(new Runnable() {

 private boolean quit = false;

 public void run() {

 try {

 while (!quit) {

 // Display the prompt and process the

 requested operation ...

 }

 } finally {

 try {

 // Terminate ...

 client.shutdownDnaServices();

 client.shutdownRepository();

 } catch (Exception err) {

 System.out.println("Error shutting down

 sequencing service and repository: " + err.getLocalizedMessage());

 err.printStackTrace(System.err);

 }

 }

 }

 });

 eventThread.start();

 } catch (Exception err) {

 System.out.println("Error: " + err.getLocalizedMessage());

 err.printStackTrace(System.err);

 }

}

At this point, we've reviewed all of the interesting code in the example application.

However, feel free to play with the application, trying different things.

Chapter 4. Using JBoss DNA

36

5. Summarizing what we just did

In this chapter we covered the different JBoss DNA components and how they can

be used in your application. Specifically, we described how the SequencingService

and ObservationService can be configured and used. And we ended the chapter

by reviewing the example application, which not only uses JBoss DNA, but also the

repository via the JCR API.

Chapter 5.

37

Creating custom sequencers
The current release of JBoss DNA comes with two sequencers: one that extracts

metadata from a variety of image file formats, and another that extracts some of

the ID3 metadata from MP3 audio files. However, it's very easy to create your own

sequencers and to then configure JBoss DNA to use them in your own application.

Creating a custom sequencer involves the following steps:

• Create a Maven 2 project for your sequencer;

• Implement the org.jboss.dna.spi.sequencers.StreamSequencer interface

with your own implementation, and create unit tests to verify the functionality and

expected behavior;

• Add the sequencer configuration to the JBoss DNA SequencingService in your

application, as described in the previous chapter; and

• Deploy the JAR file with your implementation (as well as any dependencies) and

make them available to JBoss DNA in your application.

It's that simple.

1. Creating the Maven 2 project

The first step is to create the Maven 2 project that you can use to compile your code

and build the JARs. Maven 2 automates a lot of the work, and since you're already

set up to use Maven, using Maven for your project will save you a lot of time and

effort. Of course, you don't have to use Maven 2, but then you'll have to get the

required libraries and manage the compiling and building process yourself.

Note

JBoss DNA may provide in the future a Maven archetype for creating

sequencer projects. If you'd find this useful and would like to help

create it, please join the community.

Note

The dna-sequencer-images

project is a small, self-contained

sequencer implementation that has

only the minimal dependencies.

Chapter 5. Creating custom se...

38

Starting with this project's

source and modifying it to suit

your needs may be the easiest

way to get started. See the

subversion repository:

http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-

images/

You can create your Maven project any way you'd like. For examples,

see the Maven 2 documentation

[http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just

add the dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.jboss.dna</groupId>

 <artifactId>dna-common</artifactId>

 <version>0.1</version>

</dependency>

<dependency>

 <groupId>org.jboss.dna</groupId>

 <artifactId>dna-spi</artifactId>

 <version>0.1</version>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

</dependency>

These are minimum dependencies required for compiling a sequencer. Of course,

you'll have to add other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed

here:

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-images/
http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-images/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Creating the Maven 2 project

39

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.4.3</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.14</version>

 <scope>test</scope>

</dependency>

Testing JBoss DNA sequencers does not require a JCR repository or the JBoss

DNA services. (For more detail, see the testing section.) However, if you want to do

integration testing with a JCR repository and the JBoss DNA services, you'll need

additional dependencies for these libraries.

<dependency>

 <groupId>org.jboss.dna</groupId>

 <artifactId>dna-repository</artifactId>

 <version>0.1</version>

 <scope>test</scope>

</dependency>

<!-- Java Content Repository API -->

<dependency>

 <groupId>javax.jcr</groupId>

 <artifactId>jcr</artifactId>

 <version>1.0.1</version>

 <scope>test</scope>

</dependency>

<!-- Apache Jackrabbit (JCR Implementation) -->

<dependency>

 <groupId>org.apache.jackrabbit</groupId>

 <artifactId>jackrabbit-api</artifactId>

 <version>1.3.3</version>

 <scope>test</scope>

 <!-- Exclude these since they are included in JDK 1.5 -->

 <exclusions>

 <exclusion>

 <groupId>xml-apis</groupId>

 <artifactId>xml-apis</artifactId>

 </exclusion>

 <exclusion>

 <groupId>xerces</groupId>

Chapter 5. Creating custom se...

40

 <artifactId>xercesImpl</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>org.apache.jackrabbit</groupId>

 <artifactId>jackrabbit-core</artifactId>

 <version>1.3.3</version>

 <scope>test</scope>

 <!-- Exclude these since they are included in JDK 1.5 -->

 <exclusions>

 <exclusion>

 <groupId>xml-apis</groupId>

 <artifactId>xml-apis</artifactId>

 </exclusion>

 <exclusion>

 <groupId>xerces</groupId>

 <artifactId>xercesImpl</artifactId>

 </exclusion>

 </exclusions>

</dependency>

At this point, your project should be set up correctly, and you're ready to move on to

writing the Java implementation for your sequencer.

2. Implementing the StreamSequencer interface

After creating the project and setting up the dependencies,

the next step is to create a Java class that implements the

org.jboss.dna.spi.sequencers.StreamSequencer interface. This interface is very

straightforward, and involves a single method:

public interface StreamSequencer {

 /**

 * Sequence the data found in the supplied stream, placing the

 output

 * information into the supplied map.

 *

 * @param stream the stream with the data to be sequenced;

 never null

 * @param output the output from the sequencing operation;

 never null

 * @param progressMonitor the progress monitor that should be

 kept

 * updated with the sequencer's progress and that should be

 * frequently consulted as to whether this operation has been

 cancelled.

Implementing the StreamSequencer interface

41

 */

 void sequence(InputStream stream, SequencerOutput output,

 ProgressMonitor progressMonitor);

The job of a stream sequencer is to process the data in the supplied stream, and

place into the SequencerOutput any information that is to go into the JCR repository.

JBoss DNA figures out when your sequencer should be called (of course using the

sequencing configuration you'll add in a bit), and then makes sure the generated

information is saved in the correct place in the repository.

The SequencerOutput class is fairly easy to use. There are basically two methods

you need to call. One method sets the property values, while the other sets

references to other nodes in the repository. Use these methods to describe the

properties of the nodes you want to create, using relative paths for the nodes and

valid JCR property names for properties and references. JBoss DNA will ensure that

nodes are created or updated whenever they're needed.

public interface SequencerOutput {

 /**

 * Set the supplied property on the supplied node. The allowable

 * values are any of the following:

 * - primitives (which will be autoboxed)

 * - String instances

 * - String arrays

 * - byte arrays

 * - InputStream instances

 * - Calendar instances

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param values the value(s) for the property; may be empty if

 * any existing property is to be removed

 */

 void setProperty(String nodePath, String property,

 Object... values);

 /**

 * Set the supplied reference on the supplied node.

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param paths the paths to the referenced property, which may

 be

 * absolute paths or relative to the sequencer output node;

Chapter 5. Creating custom se...

42

 * may be empty if any existing property is to be removed

 */

 void setReference(String nodePath, String property,

 String... paths);

}

JBoss DNA will create nodes of type nt:unstructured unless you specify the

value for the jcr:primaryType property. You can also specify the values for the

jcr:mixinTypes property if you want to add mixins to any node.

For a complete example of a sequencer, let's look at the

org.jboss.dna.sequencers.image.ImageMetadataSequencer implementation:

public class ImageMetadataSequencer implements StreamSequencer {

 public static final String METADATA_NODE = "image:metadata";

 public static final String IMAGE_PRIMARY_TYPE =

 "jcr:primaryType";

 public static final String IMAGE_MIXINS = "jcr:mixinTypes";

 public static final String IMAGE_MIME_TYPE = "jcr:mimeType";

 public static final String IMAGE_ENCODING = "jcr:encoding";

 public static final String IMAGE_FORMAT_NAME =

 "image:formatName";

 public static final String IMAGE_WIDTH = "image:width";

 public static final String IMAGE_HEIGHT = "image:height";

 public static final String IMAGE_BITS_PER_PIXEL =

 "image:bitsPerPixel";

 public static final String IMAGE_PROGRESSIVE =

 "image:progressive";

 public static final String IMAGE_NUMBER_OF_IMAGES =

 "image:numberOfImages";

 public static final String IMAGE_PHYSICAL_WIDTH_DPI =

 "image:physicalWidthDpi";

 public static final String IMAGE_PHYSICAL_HEIGHT_DPI =

 "image:physicalHeightDpi";

 public static final String IMAGE_PHYSICAL_WIDTH_INCHES =

 "image:physicalWidthInches";

 public static final String IMAGE_PHYSICAL_HEIGHT_INCHES =

 "image:physicalHeightInches";

 /**

 * {@inheritDoc}

 */

 public void sequence(InputStream stream, SequencerOutput

 output,

 ProgressMonitor progressMonitor) {

 progressMonitor.beginTask(10,

 ImageSequencerI18n.sequencerTaskName);

Implementing the StreamSequencer interface

43

 ImageMetadata metadata = new ImageMetadata();

 metadata.setInput(stream);

 metadata.setDetermineImageNumber(true);

 metadata.setCollectComments(true);

 // Process the image stream and extract the metadata ...

 if (!metadata.check()) {

 metadata = null;

 }

 progressMonitor.worked(5);

 if (progressMonitor.isCancelled()) return;

 // Generate the output graph if we found useful metadata

 ...

 if (metadata != null) {

 // Place the image metadata into the output map ...

 output.setProperty(METADATA_NODE, IMAGE_PRIMARY_TYPE,

 "image:metadata");

 // output.psetProperty(METADATA_NODE, IMAGE_MIXINS,

 "");

 output.setProperty(METADATA_NODE, IMAGE_MIME_TYPE,

 metadata.getMimeType());

 // output.setProperty(METADATA_NODE, IMAGE_ENCODING,

 "");

 output.setProperty(METADATA_NODE, IMAGE_FORMAT_NAME,

 metadata.getFormatName());

 output.setProperty(METADATA_NODE, IMAGE_WIDTH,

 metadata.getWidth());

 output.setProperty(METADATA_NODE, IMAGE_HEIGHT,

 metadata.getHeight());

 output.setProperty(METADATA_NODE, IMAGE_BITS_PER_PIXEL,

 metadata.getBitsPerPixel());

 output.setProperty(METADATA_NODE, IMAGE_PROGRESSIVE,

 metadata.isProgressive());

 output.setProperty(METADATA_NODE,

 IMAGE_NUMBER_OF_IMAGES, metadata.getNumberOfImages());

 output.setProperty(METADATA_NODE,

 IMAGE_PHYSICAL_WIDTH_DPI, metadata.getPhysicalWidthDpi());

 output.setProperty(METADATA_NODE,

 IMAGE_PHYSICAL_HEIGHT_DPI, metadata.getPhysicalHeightDpi());

 output.setProperty(METADATA_NODE,

 IMAGE_PHYSICAL_WIDTH_INCHES, metadata.getPhysicalWidthInch());

 output.setProperty(METADATA_NODE,

 IMAGE_PHYSICAL_HEIGHT_INCHES, metadata.getPhysicalHeightInch());

 }

 progressMonitor.done();

 }

Chapter 5. Creating custom se...

44

}

Notice how the image metadata is extracted, and the output graph is generated. A

single node is created with the name image:metadata and with the image:metadata

node type. No mixins are defined for the node, but several properties are set on the

node using the values obtained from the image metadata. After this method returns,

the constructed graph will be saved to the repository in all of the places defined by its

configuration. (This is why only relative paths are used in the sequencer.)

Also note how the progress monitor is used. Reporting progress through the supplied

ProgressMonitor is very easy, and it ensures that JBoss DNA can accurately

monitor and report the status of sequencing activities to the users. At the beginning

of the operation, call beginTask(...) with a meaningful message describing the

operation and a total for the amount of work that will be done by this sequencer.

Then perform the sequencing work, periodically reporting work by specifying the

incremental amount of work with the worked(double) method, or by creating a

subtask with the createSubtask(double) method and reporting work against that

subtask monitor.

Your method should periodically use the ProgressMonitor's isCancelled() method

to check whether the operation has been cancelled.. If this method returns true, the

implementation should abort all work as soon as possible and close any resources

that were acquired or opened.

Finally, when your sequencing operation is completed, it should call done() on the

progress monitor.

3. Testing custom sequencers

The sequencing framework was designed to make testing sequencers much easier.

In particular, the StreamSequencer interface does not make use of the JCR API. So

instead of requiring a fully-configured JCR repository and JBoss DNA system, unit

tests for a sequencer can focus on testing that the content is processed correctly and

the desired output graph is generated.

Note

For a complete example of a sequencer unit test, see

the ImageMetadataSequencerTest unit test in the

org.jboss.dna.sequencer.images package of the

dna-sequencers-image project.

The following code fragment shows one way of testing a sequencer, using JUnit 4.4

assertions and some of the classes made available by JBoss DNA. Of course, this

example code does not do any error handling and does not make all the assertions a

real test would.

Testing custom sequencers

45

Sequencer sequencer = new ImageMetadataSequencer();

MockSequencerOutput output = new MockSequencerOutput();

ProgressMonitor progress = new SimpleProgressMonitor("Test

 activity");

InputStream stream = null;

try {

 stream =

 this.getClass().getClassLoader().getResource("caution.gif").openStream();

 sequencer.sequence(stream,output,progress); // writes to

 'output'

 assertThat(output.getPropertyValues("image:metadata",

 "jcr:primaryType"),

 is(new Object[] {"image:metadata"}));

 assertThat(output.getPropertyValues("image:metadata",

 "jcr:mimeType"),

 is(new Object[] {"image/gif"}));

 // ... make more assertions here

 assertThat(output.hasReferences(), is(false));

} finally {

 stream.close();

}

It's also useful to test that a sequencer produces no output for something it should

not understand:

Sequencer sequencer = new ImageMetadataSequencer();

MockSequencerOutput output = new MockSequencerOutput();

ProgressMonitor progress = new SimpleProgressMonitor("Test

 activity");

InputStream stream = null;

try {

 stream =

 this.getClass().getClassLoader().getResource("caution.pict").openStream();

 sequencer.sequence(stream,output,progress); // writes to

 'output'

 assertThat(output.hasProperties(), is(false));

 assertThat(output.hasReferences(), is(false));

} finally {

 stream.close();

}

These are just two simple tests that show ways of testing a sequencer. Some tests

may get quite involved, especially if a lot of output data are produced.

It may also be useful to create some integration tests that configures JBoss DNA

to use the custom sequencer, and to then upload content using the JCR API,

Chapter 5. Creating custom se...

46

verifying that the custom sequencer did run. However, remember that JBoss DNA

runs sequencers asynchronously in the background, and you must sychronize

your tests to ensure that the sequencers have a chance to run before checking the

results. (One way of doing this is to wait for a second after uploading your content,

shutdown the SequencingService and await its termination, and then check that

the sequencer output has been saved to the JCR repository. For an example of this

technique, see the SequencingClientTest unit test in the example application.)

4. Deploying custom sequencers

The first step of deploying a sequencer consists of adding/changing the sequencer

configuration (e.g., SequencerConfig) in the SequencingService. This was covered

in the previous chapter.

The second step is to make the sequencer implementation available to JBoss DNA.

At this time, the JAR containing your new sequencer, as well as any JARs that your

sequencer depends on, should be placed on your application classpath.

Note

A future goal of JBoss DNA is to allow sequencers, connectors and

other extensions to be easily deployed into a runtime repository.

This process will not only be much simpler, but it will also provide

JBoss DNA with the information necessary to update configurations

and create the appropriate class loaders for each extension. Having

separate class loaders for each extension helps prevent the pollution

of the common classpath, facilitates an isolated runtime environment

to eliminate any dependency conflicts, and may potentially enable hot

redeployment of newer extension versions.

Chapter 6.

47

Looking to the future
What's next for JBoss DNA? Well, the sequencing

system is just the beginning. With this release, the

sequencing system is stable enough so that more

sequencers can be developed and used within your

own applications. If you're interested in getting involved

with the JBoss DNA project, consider picking up

one of the sequencers on our roadmap

[http://jira.jboss.org/jira/browse/

DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel].

Or, check out JIRA

[http://jira.jboss.org/jira/secure/

IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/

order=DESC&sorter/field=priority&resolution=-1&component=12311436] for the list

of sequencers we've thought of. If you think of one that's not there, please add it to

JIRA!

The next release will focus on creating the federation engine and connectors for

several popular and ubiquitous systems. The 0.2 release will likely only federate

information in a read-only manner, but updates will soon follow. Also, during the early

part of the next release, the JBoss DNA project will switch to use JDK 6. Java 5 is

being end-of-lifed, so we want to move to a supported JDK. However, a number of

JBoss projects and products continue to require Java 5, so our next release will most

likely use JDK 6 with Java 5 compatibility.

Other components on our roadmap include a web user interface, a REST-ful server,

and a view system that allows domain-specific views of information in the repository.

These components are farther out on our roadmap, and at this time have not been

targeted to a particular release. If any of these are of interest to you, please get

involved in the community.

http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436

48

	JBoss DNA
	Table of Contents
	What this book covers
	Chapter 1. Introduction
	Chapter 2. Understanding JBoss DNA
	1. Overview
	2. Architecture
	3. Sequencing content
	4. Federating content
	4.1. Connecting to information sources
	4.2. Building the unified graph
	4.3. Searching and querying
	4.4. Updating content
	4.5. Observing changes

	Chapter 3. Running the example application
	1. Downloading and compiling
	2. Running the example
	3. Summarizing what we just did

	Chapter 4. Using JBoss DNA
	1. Configuring the Sequencing Service
	2. Configuring the Observation Service
	3. Shutting down JBoss DNA services
	4. Reviewing the example application
	5. Summarizing what we just did

	Chapter 5. Creating custom sequencers
	1. Creating the Maven 2 project
	2. Implementing the StreamSequencer interface
	3. Testing custom sequencers
	4. Deploying custom sequencers

	Chapter 6. Looking to the future

