JBoss DNA

1

Getting Started Guide

ISBN:
Publication date:

JBoss DNA

JBoss DNA: Getting Started Guide
by Randall Hauch

Legal Notice

1801 Varsity Drive

Raleigh, NC27606-2072USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588Research Triangle Park, NC27709USA

Copyright © 2008 by Red Hat, Inc. This copyrighted material is made available to anyone wishing to use,
modify, copy, or redistribute it subject to the terms and conditions of the GNU Lesser General Public License
[http://www.gnu.org/licenses/Igpl-2.1.html], as published by the Free Software Foundation.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl-2.1.html

JBoss DNA

What thiS DOOK COVEISeiiieiiiii e e e e e e Vii

I o1 o o 11 T3 1T o PR 1
2. Understanding JB0OSS DNA ...t 3
I @ YT YT P 3

A ol o1 1= Tox 11] PPN 3

3. SeqUENCING CONTENTciiiiiiieiii e 6

4, Federating CONTENTccouuiiii i e e e aa s 8

4.1. Connecting to information SOUICEScoeuviiiiiiiiiiieiiiieeeeiie 9

4.2. Building the unified graphcocociiiiiiiii 10

4.3. Searching and qQUENYINGvieiiiiiiieiiiiee e 10

4.4, Updating CONENTiiiiiiiii e e e 11

4.5. ObServing Changesccouuuiieiiiiie e 11

3. Running the example appliCationcooeeviiiiiiiiiie e 13
1. Downloading and COmMPIliNgcoouuuiiiiiiiie e 14

2. RUNNING the @XamMPIEciiie e 16

3. Summarizing what we just didccooiiiiiiiiii 22

4, USING JBOSS DINA L.oooiiiii e 25
1. Configuring the Sequencing SErviCeccccooiiiiiiiiiiiiiiii e 25

2. Configuring the Observation ServiCeccccvuiveiiiiiiiiiieiiie e, 28

3. Shutting down JB0OSS DNA SEIVICESc.uuiiiiiiiiiieiiiiieeeeei e 29

4. Reviewing the example applicationccooveiiiiiiii i, 30

5. Summarizing what we just didcccooiiiiiiii 36

5. Creating CUSIOM SEOUENCELSuueieieiiiieeie ettt eeee e e e e e et s e et e e e eat e e eaneeeanas 37
1. Creating the Maven 2 Projectcoveiieiiieiiiiieeee e 37

2. Implementing the StreamSequencer interfacecccccceveviieviiineieenn, 40

3. Testing CUSIOM SEOUENCETSeiiiriieeiiiie et e et 44

4. Deploying CUSIOM SEQUENCELSciivueiiiieiiiie et e eee e e et e e eae e et e eeaeesanees 46

6. LOOKING 10 the TULUMEcooiiiiiiii e a7

vi

What this book covers

The goal of this book is to help you learn about JBoss DNA and how you can use it in
your own applications to get the most out of your JCR repositories.

The first part of the book starts out with an introduction to content repositories and
an overview of the JCR API, both of which are important aspects of JBoss DNA. This
is followed by an overview of the JBoss DNA project, its architecture, and a basic
roadmap for what's coming next.

The next part of the book covers how to download and build the examples, how
to use JBoss DNA with existing repositories, and how to build and use custom
sequencers.

If you have any questions or comments, please feel free to contact JBoss

DNA's user mailing list [mailto:dna-users@jboss.org] or use the user forums
[http://www.jboss.com/index.html?module=bb&op=viewforum&f=272] . If you'd like to
get involved on the project, join the mailing lists [http://www.jboss.org/dna/lists.html]

, download the code [http://www.jboss.org/dna/subversion.html] and get it building,
and visit our JIRA issue management system [http://jira.jposs.org/jira/browse/DNA] .
If there's something in particular you're interested in, talk with the community - there
may be others interested in the same thing.

Vii

mailto:dna-users@jboss.org
mailto:dna-users@jboss.org
http://www.jboss.com/index.html?module=bb&op=viewforum&f=272
http://www.jboss.com/index.html?module=bb&op=viewforum&f=272
http://www.jboss.org/dna/lists.html
http://www.jboss.org/dna/lists.html
http://www.jboss.org/dna/subversion.html
http://www.jboss.org/dna/subversion.html
http://jira.jboss.org/jira/browse/DNA
http://jira.jboss.org/jira/browse/DNA

viii

Chapter 1.

Introduction

There are a lot of choices for how applications can store information persistently

so that it can be accessed at a later time and by other processes. The challenge
developers face is how to use an approach that most closely matches the needs

of their application. This choice becomes more important as developers choose to
focus their efforts on application-specific logic, delegating much of the responsibilities
for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The
Java language makes working with files relatively easy, but Java really doesn't
provide many bells and whistles. So using files is an easy choice when the
information is either not complicated (for example property files), or when users

may need to read or change the information outside of the application (for example
log files or configuration files). But using files to persist information becomes more
difficult as the information becomes more complex, as the volume of it increases, or if
it needs to be accessed by multiple processes. For these situations, other techniques
often offer better choices.

Another technique built into the Java language is Java serialization , which is capable
of persisting the state of an object graph so that it can be read back in at a later time.
However, Java serialization can quickly become tricky if the classes are changed,
and so it's beneficial usually when the information is persisted for a very short period
of time. For example, serialization is sometimes used to send an object graph from
one process to another.

One of the more popular persistence technologies is the relational database .
Relational database management systems have been around for decades and are
very capable. The Java Database Connectivity (JDBC) API provides a standard
interface for connecting to and interacting with relational databases. However, it is a
low-level API that requires a lot of code to use correctly, and it still doesn't abstract
away the DBMS-specific SQL grammar. Also, working with relational data in an
object-oriented language can feel somewhat unnatural, so many developers map this
data to classes that fit much more cleanly into their application. The problem is that
manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC
code.

Object-relational mapping libraries automate the creation of this mapping layer and
result in far less code that is much more maintainable with performance that is often
as good as (if not better than) handwritten JDBC code. The new Java Persistence
API (JPA) [http://java.sun.com/developer/technicalArticles/J2EE/jpa/] provide a
standard mechanism for defining the mappings (through annotations) and working
with these entity objects. Several commercial and open-source libraries implement
JPA, and some even offer additional capabilities and features that go beyond JPA.
For example, Hibernate [http://www.hibernate.org] is one of the most feature-rich

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction

JPA implementations and offers object caching, statement caching, extra association
mappings, and other features that help to improve performance and usefulness.

While relational databases and JPA are solutions that work for many applications,
they become more limited in cases when the information structure is highly flexible,
is not known a priori, or is subject to frequent change and customization. In

these situations, content repositories may offer a better choice for persistence.
Content repositories are almost a hybrid between relational databases and file
systems, and typically provide other capabilities as well, including versioning,
indexing, search, access control, transactions, and observation. Because of this,
content repositories are used by content management systems (CMS), document
management systems (DMS), and other applications that manage electronic files
(e.g., documents, images, multi-media, web content, etc.) and metadata associated
with them (e.qg., author, date, status, security information, etc.). The Content
Repository for Java technology API [http://www.jcp.org/en/jsr/detail?id=170] provides
a standard Java API for working with content repositories. Abbreviated "JCR",

this APl was developed as part of the Java Community Process under JSR-170
[http://lwww.jcp.org/en/jsr/detail?id=170] and is being revised under JSR-283
[http://www.jcp.org/en/jsr/detail?id=283] .

The JBoss DNA project is building the tools and services that surround content
repositories. Nearly all of these capabilities are to be hidden below the JCR API and
involve automated processing of the information in the repository. Thus, JBoss DNA
can add value to existing repository implementations. For example, JCR repositories
offer the ability to upload files into the repository and have the file content indexed
for search purposes. JBoss DNA also defines a library for "sequencing" content - to
extract meaningful information from that content and store it in the repository, where
it can then be searched, accessed, and analyzed using the JCR API.

JBoss DNA is building other features as well. One goal of JBoss DNA is to create
federated repositories that dynamically merge the information from multiple
databases, services, applications, and other JCR repositories. Another is to create
customized views based upon the type of data and the role of the user that is
accessing the data. And yet another is to create a REST-ful API to allow the JCR
content to be accessed easily by other applications written in other languages.

The next chapter in this book goes into more detail about JBoss DNA and its
architecture, the different components, what's available now, and what's coming in
future releases. Chapter 3 then provides instructions for downloading and running
the sequencer examples for the current release. Chapter 4 walks through how to use
JBoss DNA in your applications, while Chapter 5 goes over how to create custom
sequencers. Finally, Chapter 6 wraps things up with a discussion about the future of
JBoss DNA.

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 2.

Understanding JBoss DNA

1. Overview

JBoss DNA is a repository and set of tools that make it easy to capture, version,
analyze, and understand the fundamental building blocks of information. As models,
service and process definitions, schemas, source code, and other artifacts are added
to the repository, JBoss DNA "sequences" the makeup of these components and
extracts their structure and interdependencies. The JBoss DNA web application
allows end users to access, visualize, and edit this information in the terminology and
structure they are familiar with. Such domain-specific solutions can be easily created
with little or no programming.

JBoss DNA supports the Java Content Repository (JCR) standard and is able

to provide a single integrated view of multiple repositories, external databases,
services, and applications, ensuring that JBoss DNA has access to the latest and
most reliable master data. For instance, DNA could provide in a single view valuable
insight into the business processes and process-level services impacted by a change
to in an intermediary web server operation defined via WSDL. Similarly, a user could
quickly view and navigate the dependencies between the data source models and
transformation information stored within a content repository, the code base stored
within a version control system, and the database schemas used by an application.

2. Architecture

The architecture for JBoss DNA consists of several major components that will be
built on top of standard APlIs, including JCR, JDBC, JNDI and HTTP. The goal is to
allow these components to be assembled as needed and add value on top of other
DNA components or third-party systems that support these standard APIs.

Chapter 2. Understanding JBos...

JDEC JCR
DNA Eclipse

Clients Plugins (SWT) DNAJDBEC DNA Remote
Driver JCR

HTTPIAPPIREST HTTPIAPPIREST HTTP/APPIREST

AT TP HTTP/APPIREST HTTP/WebDA
Servers S e
DNA Web Application DMNA Publishing Server DNA WebDAV Sa
DNA Sequencers DNA Analyses . DMNA Lifecyt
Services HL e Manageme
JCR
Federation .
JEoss DNA Federation
~onnectors DB Repos JDB Schema § Directory

Repository RDEMS RODEMS

As shown in the diagram above, the major components are (starting at the top):

* DNA Eclipse Plugins enable Eclipse users to access the contents of a JBoss
DNA repository.

+ DNA JDBC Driver provides a driver implementation, allowing JDBC-aware
applications to connect to and use a JBoss DNA repository.

Architecture

DNA Remote JCR is a client-side component for accessing remote JCR
repositories.

DNA Web Application is used by end users and domain experts to visualize,
search, edit, change and tag the repository content. The web application uses
views to define how different types of information are to be presented and edited
in domain-specific ways. The goal is that this web application is easily customized
and branded for inclusion into other solutions and application systems. The DNA
Web Application operates upon any JCR-compliant repository, although it does
rely upon the DNA analysis and templating services.

DNA Publishing Server allows content to be downloaded, uploaded, and edited
using the Atom Publishing Protocol. With the DNA Publishing Server, the content
of the repository can easily be created, read, edited, and deleted using the
standard HTTP operations of POST, GET, PUT, and DELETE (respectively).
More and more tools are being created that support working with Atom Publishing
servers. The DNA Publishing Server operates upon any JCR-compliant repository.

DNA WebDAYV Server allows clients such as Microsoft Windows and Apple OS

X to connect to, read, and edit the content in the repository using the WebDAV
standard. Since WebDAYV is an extension of HTTP, web browsers are able to read
(but not modify) the content served by a WebDAV compliant server. The DNA
WebDAYV Server operates upon any JCR-compliant repository.

DNA Sequencers are pluggable components that make it possible for content to
be uploaded to the repository and automatically processed to extract meaningful
structure and place that structure in the repository. Once this information is in
the repository, it can be viewed, edited, analyzed, searched, and related to other
content. DNA defines a Java interface that sequencers must implement. DNA
sequencers operate upon any JCR-compliant repository.

DNA Analyses are pluggable components that analyze content and the
relationships between content to generate reports or to answer queries. DNA will
include some standard analyzers, like dependency analysis and similarity analysis,
that are commonly needed by many different solutions. DNA analyzers operate
upon any JCR-compliant repository.

DNA Views are definitions of how types of information are to be presented in a
user interface to allow for creation, reading, editing, and deletion of information.
DNA view definitions consist of data stored in a JCR repository, and as such
views can be easily added, changed or removed entirely by using the DNA Web
Application, requiring no programming.

DNA Federation is an implementation of the JCR API that builds the content
within the repository by accessing and integrating information from multiple
sources. DNA Federation allows the integration of external systems, like other JCR
repositories, databases, applications, and services.

Chapter 2. Understanding JBos...

* DNA Connectors are used to communicate with these external sources of
information. In the federation engine, each source is able to contribute node
structure and node properties to any part of the federated graph, although typically
many connectors will contribute most of their information to isolated subgraphs.
The result is that integration from a wide range of systems can be integrated
and accessed through the DNA Web Application, DNA Publishing Server, and
DNA WebDAV Server. Connectors also may optionally participate in distributed
transactions by exposing an XAResource.

« DNA Maven is a classloader library compatible with Maven 2 project
dependencies. This allows the creation of Java ClassLoader instances using
Maven 2 style paths, and all dependencies are transitively managed and included.

Continue reading the rest of this chapter for more detail about the sequencing
framework available in this release, or the federation engine and connectors that will
be the focus of the next release. Or, skip to the examples to see how to start using
JBoss DNA 0.1 today.

3. Sequencing content

The current JBoss DNA release contains a sequencing framework that is designed

to sequence data (typically files) stored in a JCR repository to automatically extract
meaningful and useful information. This additional information is then saved back into
the repository, where it can be accessed and used.

In other words, you can just upload various kinds of files into a JCR repository, and
DNA automatically processes those files to extract meaningful structured information.
For example, load DDL files into the repository, and let sequencers extract the
structure and metadata for the database schema. Load Hibernate configuration files
into the repository, and let sequencers extract the schema and mapping information.
Load Java source into the repository, and let sequencers extract the class structure,
JavaDoc, and annotations. Load a PNG, JPEG, or other image into the repository,
and let sequencers extract the metadata from the image and save it in the repository.
The same with XSDs, WSDL, WS policies, UML, MetaMatrix models, etc.

JBoss DNA sequencers sit on top of existing JCR repositories (including federated
repositories) - they basically extract more useful information from what's already
stored in the repository. And they use the existing JCR versioning system. Each
sequencer typically processes a single kind of file format or a single kind of content.

The following sequencers are included in JBoss DNA:

« Image sequencer - A sequencer that processes the binary content of an image
file, extracts the metadata for the image, and then writes that image metadata
to the repository. It gets the file format, image resolution, number of bits per

Sequencing content

pixel (and optionally number of images), comments and physical resolution from
JPEG, GIF, BMP, PCX, PNG, IFF, RAS, PBM, PGM, PPM, and PSD files. (This
sequencer may be improved in the future to also extract EXIF metadata from
JPEG files; see DNA-26 [http://jira.jboss.org/jira/browse/DNA-26] .)

* MP3 sequencer - A sequencer that processes the contents of an MP3 audio
file, extracts the metadata for the file, and then writes that image metadata to the
repository. It gets the title, author, album, year, and comment. (This sequencer
may be improved in the future to also extract other ID3 metadata from other audio
file formats; see DNA-26 [http://jira.jboss.org/jira/browse/DNA-66] .)

As the community develops additional sequencers, they will also be included in
JBoss DNA. Some of those that have been identified as being useful include:

* XML Schema Document (XSD) Sequencer - Process XSD files and extract
the various elements, attributes, complex types, simple types, groups, and other
information. (See DNA-32 [http://jira.jboss.org/jira/browse/DNA-32])

* Web Service Definition Language (WSDL) Sequencer - Process WSDL files
and extract the services, bindings, ports, operations, parameters, and other
information. (See DNA-33 [http://jira.jpboss.org/jira/browse/DNA-33])

« Hibernate File Sequencer - Process Hibernate configuration (cfg.xml) and
mapping (hbm.xml) files to extract the configuration and mapping information. (See
DNA-61 [http://jira.jboss.org/jira/browse/DNA-61])

« XML Metadata Interchange (XMI) Sequencer - Process XMI documents that
contain UML models or models using another metamodel, extracting the model
structure into the repository. (See DNA-31 [http://jira.jboss.org/jira/browse/DNA-31]

)

« ZIP Archive Sequencer - Process ZIP archive files to extract (explode) the
contents into the repository. (See DNA-63 [http://jira.jboss.org/jira/browse/DNA-63]

)

« Java Archive (JAR) Sequencer - Process JAR files to extract
(explode) the contents into the classes and file resources. (See DNA-64
[http:/ijira.jboss.org/jira/browse/DNA-64])

« Java Class File Sequencer - Process Java class files (bytecode) to extract
the class structure (including annotations) into the repository. (See DNA-62
[http://jira.jboss.org/jira/browse/DNA-62])

« Java Source File Sequencer - Process Java source files to extract the
class structure (including annotations) into the repository. (See DNA-51
[http://jira.jboss.org/jira/browse/DNA-51])

http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-66
http://jira.jboss.org/jira/browse/DNA-66
http://jira.jboss.org/jira/browse/DNA-32
http://jira.jboss.org/jira/browse/DNA-32
http://jira.jboss.org/jira/browse/DNA-33
http://jira.jboss.org/jira/browse/DNA-33
http://jira.jboss.org/jira/browse/DNA-61
http://jira.jboss.org/jira/browse/DNA-61
http://jira.jboss.org/jira/browse/DNA-31
http://jira.jboss.org/jira/browse/DNA-31
http://jira.jboss.org/jira/browse/DNA-63
http://jira.jboss.org/jira/browse/DNA-63
http://jira.jboss.org/jira/browse/DNA-64
http://jira.jboss.org/jira/browse/DNA-64
http://jira.jboss.org/jira/browse/DNA-62
http://jira.jboss.org/jira/browse/DNA-62
http://jira.jboss.org/jira/browse/DNA-51
http://jira.jboss.org/jira/browse/DNA-51

Chapter 2. Understanding JBos...

« PDF Sequencer - Process PDF files to extract the document metadata, including
table of contents. (See DNA-50 [http://jira.jboss.org/jira/browse/DNA-50])

« Maven 2 POM Sequencer - Process Maven 2 Project Object Model (POM) files
to extract the project information, dependencies, plugins, and other content. (See
DNA-24 [http://jira.jboss.org/jira/browse/DNA-24])

« Data Definition Language (DDL) Sequencer - Process various dialects of DDL,
including that from Oracle, SQL Server, MySQL, PostgreSQL, and others. May
need to be split up into a different sequencer for each dialect. (See DNA-26
[http://jira.jboss.org/jira/browse/DNA-26])

* MP3 and MP4 Sequencer - Process MP3 and MP4 audio files to extract the
name of the song, artist, album, track number, and other metadata. (See DNA-30
[http:/ijira.jboss.org/jira/browse/DNA-30])

The examples in this book go into more detail about how sequencers are managed
and used, and Chapter 5 goes into detail about how to write custom sequencers.

4. Federating content

There is a lot of information stored in many of different places: databases,
repositories, SCM systems, registries, file systems, services, etc. The purpose of
the federation engine is to allow applications to use the JCR API to access that
information as if it were all stored in a single JCR repository, but to really leave the
information where it is.

Why not just move the information into a JCR repository? Most likely there are
existing applications that rely upon that information being where it is. If we were to
move it, then all those applications would break. Or they'd have to be changed to use
JCR. If the information is being used, the most practical thing is to leave it where it is.

Then why not just copy the information into a JCR repository? Actually, there

are times when it's perfectly reasonable to make a copy of the data. Perhaps the
system managing the existing information cannot handle the additional load of

more clients. Or, perhaps the information doesn't change, or it does change and

we want snapshots that don't change. But more likely, the data does change. So if
applications are to use the most current information and we make copies of the data,
we have to keep the copies synchronized with the master. That's generally a lot of
work.

The JBoss DNA federation engine lets us leave the information where it is, yet lets
client applications use the JCR API to access all the information without caring
where the information really exists. If the underlying information changes, client
applications using JCR observation will be notified of the changes. If a JBoss DNA
federated repository is configured to allow updates, client applications can change
the information in the repository and JBoss DNA will propagate those changes down
to the original source.

http://jira.jboss.org/jira/browse/DNA-50
http://jira.jboss.org/jira/browse/DNA-50
http://jira.jboss.org/jira/browse/DNA-24
http://jira.jboss.org/jira/browse/DNA-24
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-26
http://jira.jboss.org/jira/browse/DNA-30
http://jira.jboss.org/jira/browse/DNA-30

Connecting to information sources

4.1. Connecting to information sources

The JBoss DNA federation engine will use connectors to interact with different
information sources to get at the content in those systems. Some ideas for
connectors include:

« JCR Repository Connector - Connect to and interact with other JCR repositories.

» File System Connector - Expose the files and directories on a file system through
JCR.

* Maven 2 Repository Connector - Access and expose the contents of a Maven 2
repository (either on the local file system or via HTTP) through JCR.

+ JDBC Metadata Connector - Connect to relational databases via JDBC and
expose their schema as content in a repository.

« UDDI Connector - Interact with UDDI registries to integrate their content into a
repository.

« SVN Connector - Interact with Subversion software configuration management
(SCM) repositories to expose the managed resources through JCR. Consider
using the SVNKit [http://svnkit.com/] (dual license) library for an API into
Subversion.

* CVS Connector - Interact with CVS software configuration management (SCM)
repositories to expose the managed resources through JCR.

« JDBC Storage Connector - Store and access information in a relational
database. Also useful for persisting information in the federated repository not
stored elsewhere.

« Distributed Database Connector - Store and access information in a Hypertable
[http://Iwww.hypertable.org/] or HBase [http://hadoop.apache.org/hbase/]
distributed databases. Also useful for persisting information in the federated
repository not stored elsewhere.

If the connectors allow the information they contribute to be updated, they

must provide an XAResour ce implementation that can be used with a Java
Transaction Service. Connectors that provide read-only access need not provide an
implementation.

Also, connectors talk to sources of information, and it's quite likely that the same
connector is used to talk to different sources. Each source contains the configuration
details (e.g., connection information, location, properties, options, etc.) for working
with that particular source, as well as a reference to the connector that should be
used to establish connections to the source. And of course, sources can be added or
removed without having to stop and restart the federated repository.

http://svnkit.com/
http://svnkit.com/
http://www.hypertable.org/
http://www.hypertable.org/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/

Chapter 2. Understanding JBos...

4.2. Building the unified graph

The federation engine works by effectively building up a single graph by querying
each source and merging or unifying the responses. This information is cached,
which improves performance, reduces the number of (potentially expensive) remote
calls, reduces the load on the sources, and helps mitigate problems with source
availability. As clients interact with the repository, this cache is consulted first. When
the requested portion of the graph (or "subgraph") is contained completely in the
cache, it is retuned immediately. However, if any part of the requested subgraph is
not in the cache, each source is consulted for their contributions to that subgraph,
and any results are cached.

This basic flow makes it possible for the federated repository to build up a local
cache of the integrated graph (or at least the portions that are used by clients). In
fact, the federated repository caches information in a manner that is similar to that of
the Domain Name System (DNS). As sources are consulted for their contributions,
the source also specifies whether it is the authoritative source for this information
(some sources that are themselves federated may not be the information's authority),
whether the information may be modified, the time-to-live (TTL) value (the time after
which the cached information should be refreshed), and the expiration time (the

time after which the cached information is no longer valid). In effect, the source has
complete control over how the information it contributes is cached and used.

The federated repository also needs to incorporate negative caching , which is
storage of the knowledge that something does not exist. Sources can be configured
to contribute information only below certain paths (e.g., / A/ B/ C), and the federation
engine can take advantage of this by never consulting that source for contributions
to information on other paths. However, below that path, any negative responses
must also be cached (with appropriate TTL and expiry parameters) to prevent the
exclusion of that source (in case the source has information to contribute at a later
time) or the frequent checking with the source.

4.3. Searching and querying

The JBoss DNA federated repository will also support queries against the integrated
and unified graph. In some situations the query can be determined to apply to

a single source, but in most situations the query must be planned (and possibly
rewritten) such that it can be pushed down to all the appropriate sources. Also, the
cached results must be consulted prior to returning the query results, as the results
from one source might have contributions from another source.

’n Note

It is hoped that the MetaMatrix query engine can be used for
this purpose after it is open-sourced. This engine implements

10

Updating content

sophisticated query planning and optimization techniques for working

efficiently with multiple sources.

Searching the whole federated repository is also important. This allows users to
simply supply a handful of search terms, and to get results that are ranked based
upon how close each result is to the search terms. (Searching is very different from
querying, which involves specifying the exact semantics of what is to be searched
and how the information is to be compared.) JBoss DNA will incorporate a search
engine (e.g., likely to be Lucene) and will populate the engine's indexes using the
federated content and the cached information. Notifications of changing information
will be reflected in the indexes, but some sources may want to explicitly allow or
disallow periodic crawling of their content.

4.4. Updating content

The JBoss DNA federated repositories also make it possible for client applications
to make changes to the unified graph within the context of distributed transactions.
According to the JCR API, client applications use the Java Transaction API (JTA)
to control the boundaries of their transactions. Meanwhile, the federated repository
uses a distributed transaction service [http://www.jboss.org/jbosstm/] to coordinate
the XA resources provided by the connectors.

It is quite possible that clients add properties to nodes in the unified graph, and that
this information cannot be handled by the same underlying source that contributed

to the node. In this case, the federated repository can be configured with a fallback
source that will be used used to store this "extra" information.

It is a goal that non-XA sources (i.e., sources that use connectors without

XA resources) can participate in distributed transactions through the use of
compensating transactions . Because the JBoss DNA federation engine implements
the JCR observation system, it is capable of recording all of the changes made to the
distributed graph (and those changes sent to each updatable source). Therefore, if a
non-XA source is involved in a distributed transaction that must be rolled back, any
changes made to non-XA sources can be undone. (Of course, this does not make
the underlying source transactional: non-transactional sources still may expose the
interim changes to other clients.)

4.5. Observing changes

The JCR API supports observing a repository to receive notifications of additions,
changes and deletions of nodes and properties. The JBoss DNA federated repository
will support this API through two primary means.

When the changes are made through the federated repository, the JBoss DNA
federation engine is well aware of the set of changes that have been (or are being)
made to the unified graph. These events are directly propagated to listeners.

11

http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/

Chapter 2. Understanding JBos...

Sources have the ability to publish events, making it possible for the JBoss DNA
federation engine and clients that have registered listeners to be notified of changes
in the information managed by that source. These events are first processed by the
federation engine and possibly altered based upon contributions from other sources.
(The federation engine also uses these events to update or purge information in the
cache, which may add to the event set.) The resulting (and possibly altered) event
set is then sent to all client listeners.

12

Chapter 3.

Running the example application

This chapter provides instructions for downloading and running a sample application
that demonstrates how JBoss DNA works with a JCR repository to automatically
sequence changing content to extract useful information. So read on to get the
simple application running, and then in the next chapter we'll dive into the source
code for the example and show how to use JBoss DNA in your own applications.

JBoss DNA uses Maven 2 for its build system, as is this example. Using Maven 2
has several advantages, including the ability to manage dependencies. If a library is
needed, Maven automatically finds and downloads that library, plus everything that
library needs. This means that it's very easy to build the examples - or even create a
maven project that depends on the JBoss DNA JARs.

Note

To use Maven with JBoss DNA, you'll need to have JDK 5 or 6
[http://java.sun.com/javase/downloads/index_jdk5.jsp] and Maven
2.0.7 (or higher).

Maven can be downloaded from http://maven.apache.org/ , and is
installed by unzipping the maven- 2. 0. 7- bi n. zi p file to a convenient
location on your local disk. Simply add $MAVEN_HOME/ bi n to your path
and add the following profile to your ~/ . n2/ set ti ngs. xni file:

<settings>
<profil es>
<profil e>
<i d>j boss. reposi tory</id>
<activati on>
<pr operty>
<nane>!j boss. reposi tory. of f </ name>
</ property>
</ activation>
<repositories>
<r eposi tory>
<i d>snapshot s. j boss. or g</i d>
<url >http://snapshots. jboss. or g/ maven2</ url >
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</repository>
<r eposi tory>
<i d>repository.jboss.org</id>
<url| >http://repository.jboss. org/ mven2</url >
<snapshot s>

13

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://maven.apache.org/

Chapter 3. Running the exampl...

<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>repository.jboss.org</id>
<url >http://repository.jboss. org/ maven2</ url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</ pl ugi nReposi tory>
<pl ugi nReposi t ory>
<i d>snapshot s. j boss. org</i d>
<url >http://snapshots. jboss. or g/ maven2</ url >
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</profile>
</profil es>
</settings>

This profile informs Maven of the two JBoss repositories (snapshots
and releases) that contain all of the JARs for JBoss DNA and all
dependent libraries.

1. Downloading and compiling

The next step is to download
[http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-
gettingstarted-examples.zip] the example for this Getting Started guide, and extract
the contents to a convenient location on your local disk. You'll find the example
contains the following files, which are organized according to the standard Maven
directory structure:

exanpl es/ pom xm
sequencer s/ pom xni
/ src/ mai n/ assenbl y
/config
/java
/ resour ces
/test/java
/ resour ces

14

http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip
http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip
http://www.jboss.org/file-access/default/members/dna/downloads/0.1/jboss-dna-0.1-gettingstarted-examples.zip

Downloading and compiling

There are essentially two Maven projects: a sequencer s project and a parent project.
All of the source for the example is located in the sequencer s subdirectory. And

you may have noticed that none of the JBoss DNA libraries are there. This is where
Maven comes in. The two pom xnl files tell Maven everything it needs to know about
what libraries are required and how to build the example.

In a terminal, go to the exanpl es directory and run nvn i nstal | . This command
downloads all of the JARs necessary to compile and build the example, including
the JBoss DNA libraries, the libraries they depend on, and any missing Maven
components. (These are downloaded from the JBoss repositories only once and
saved on your machine. This means that the next time you run Maven, all the
libraries will already be available locally, and the build will run much faster.) The
command then continues by compiling the example's source code (and unit tests)
and running the unit tests. The build is successful if you see the following:

$ nmvn install

[I NFQ

[INFO Getting Started exanples
SUCCESS [2. 106s]

[INFO Sequencer Exanplest .
SUCCESS [9. 768s]

[I NFO

[INFQ Total tine: 12 seconds
[INFQ Finished at: Wed May 07 12:00:06 CDT 2008
[INFO Final Menory: 14M 28M

If there are errors, check whether you have the correct version of Maven installed
and that you've correctly updated your Maven settings as described above.

15

Chapter 3. Running the exampl...

If you've successfully built the examples, there will be a
exanpl es/ sequencer s/t ar get / dna- exanpl e- sequencer s- basi c. di r/ directory
that contains the following:

e run. sh is the *nix shell script that will run the example.
* | og4j . properties isthe Log4J configuration file.

 jackrabbit Config.xnl isthe Jackrabbit configuration file, which is set up to use
a transient in-memory repository.

* jackrabbit NodeTypes. cnd defines the additional JCR node types used by this
example.

« sanpl el. mp3 is a sample MP3 audio file you'll use later to upload into the
repository.

e caution.gif , caution.png,and caution.jpg areimages that you'll use later
and upload into the repository.

* |i b subdirectory contains the JARs for all of the JBoss DNA artifacts as well as
those for other libraries required by JBoss DNA and the example.

Note

JBoss DNA 0.1 and the examples are currently tested with Apache
Jackrabbit [http://jackrabbit.apache.org/] version 1.3.3. This version

is stable and used by a number of other projects and applications.
However, you should be able to use a newer version of Jackrabbit,
as long as that version uses the same JCR API. For example, version
1.4.2 was released on March 26, 2008 and should be compatible.

Just remember, if the version of Jackrabbit you want to use for these
examples is not in the Maven repository, you'll have to either add it
or add it locally. For more information, see the Maven documentation
[http://maven.apache.org/].

2. Running the example

This example consists of a client application that sets up an in-memory JCR
repository and that allows a user to upload files into that repository. The client also
sets up the DNA services with two sequencers so that if any of the uploaded files are
PNG, JPEG, GIF, BMP or other images, DNA will automatically extract the image's
metadata (e.g., image format, physical size, pixel density, etc.) and store that in the

16

http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://maven.apache.org/
http://maven.apache.org/

Running the example

repository. Alternatively, if the uploaded file is an MP3 audio file, DNA will extract
some of the ID3 metadata (e.g., the author, title, album, year and comment) and
store that in the repository.

To run the client application, go to the

exanpl es/ sequencer s/t ar get / dna- exanpl e- sequencer s-basi c. di r/ directory
and type . / run. sh . You should see the command-line client and its menus in your
terminal:

Figure 3.1. Example Client

From this menu, you can upload a file into the repository, search for media in the
repository, print sequencing statistics, or quit the application.

The first step is to upload one of the example images. If you type

'u' and press return, you'll be prompted to supply the path to the file

you want to upload. Since the application is running from within the

exanpl es/ sequencer s/t ar get / dna- exanpl e- sequencer s-basi c. dir/ directory,
you can specify any of the files in that directory without specifying the path:

17

Chapter 3. Running the exampl...

Figure 3.2. Uploading an image using the Example Client

You can specify any fully-qualified or relative path. The application will notify you

if it cannot find the file you specified. The example client configures JBoss DNA to
sequence and MP3 audio files and image files with one of the following extensions
(technically, nodes that have names ending in the following): j pg , j peg, gi f , bnp
,pcx ,png,iff ,ras, pbm, pgm, ppm, and psd . Files with other extensions in the
repository path will be ignored. For your convenience, the example provides several
files that will be sequenced (cauti on. png , cauti on. j pg, caution.gif ,and
sanpl el. np3) and one image that will not be sequenced (cauti on. pi ct). Feel
free to try other files.

After you have specified the file you want to upload, the example application asks
you where in the repository you'd like to place the file. (If you want to use the
suggested location, just press r et urn .) The client application uses the JCR API

to upload the file to that location in the repository, creating any nodes (of type

nt: f ol der) for any directories that don't exist, and creating a node (of type nt: file
) for the file. And, per the JCR specification, the application creates a j cr: cont ent
node (of type nt : r esour ce) under the file node. The file contents are placed

on thisj cr: cont ent node in thej cr: dat a property. For example, if you specify

/ al b/ cauti on. png , the following structure will be created in the repository:

/a (nt:folder)
/b (nt:fol der)
[cauti on. png (nt:file)
/jcr:content (nt:resource)
@cr:data = {contents of the file}

18

Running the example

@cr:mmeType = {m me type of the
file}
@cr:lasthMdified = {now}

Other kinds of files are treated in a similar way.

When the client uploads the file using the JCR API, DNA gets notified of the
changes, consults the sequencers to see whether any of them are interested in the
new or updated content, and if so runs those sequencers. The image sequencer
processes image files for metadata, and any metadata found is stored under the

/i mages branch of the repository. The MP3 sequencer processes MP3 audio files
for metadata, and any metadata found is stored under the / mp3s branch of the
repository. All of this happens asynchronously, so any DNA activity doesn't impede
or slow down the client activities.

So, after the file is uploaded, you can search the repository for the image metadata
using the "s" menu option:

19

Chapter 3. Running the exampl...

Figure 3.3. Searching for media using the Example Client

Here are the search results after the sanpl el. np3 audio file has been uploaded (to
the / a/ b/ sanpl el. mp3 location):

Running the example

Figure 3.4. Searching for media using the Example Client

You can also display the sequencing statistics using the "d" menu option:

Chapter 3. Running the exampl...

Figure 3.5. Sequencing statistics using the Example Client

These stats show how many nodes were sequenced, and how many nodes were
skipped because they didn't apply to the sequencer's criteria.

Note

There will probably be more nodes skipped than sequenced, since

there are more nt : f ol der and nt : r esour ce nodes than there are
nt: fil e nodes with acceptable names.

You can repeat this process with other files. Any file that isn't an image or MP3 files
(as recognized by the sequencing configurations that we'll describe later) will not be

sequenced.

3. Summarizing what we just did

In this chapter you downloaded and installed the example application and used it to
upload files into a JCR repository. JBoss DNA automatically sequenced the image
and/or MP3 files you uploaded, extracted the metadata from the files, and stored that
metadata inside the repository. The application allowed you to see this metadata and
the sequencing statistics.

This application was very simplistic. In fact, running through the example probably
only took you a minute or two. So while this application won't win any awards, it does
show the basics of what JBoss DNA can do.

22

Summarizing what we just did

In the next chapter we'll venture into the code to get an understanding of how JBoss
DNA actually works and how you can use it in your own applications.

23

24

Chapter 4.

Using JBoss DNA

As we've mentioned before, JBoss DNA is able to work with existing JCR
repositories. Your client applications make changes to the information in those
repositories, and JBoss DNA automatically uses its sequencers to extract additional
information from the uploaded files.

Note

Configuring JBoss DNA sequencers is a bit more manual than is
ideal. As you'll see, JBoss DNA uses dependency injection to allow

a great deal of flexibility in how it can be configured and customized.
However, the next release will provide a much easier mechanism for
configuring not only the sequencer service but also the upcoming
federation engine and JCR implementation.

1. Configuring the Sequencing Service

The JBoss DNA sequencing service is the component that manages the sequencers
and that reacts to changes in JCR repositories and then running the appropriate
sequencers. This involves processing the changes on a node, determinine which (if
any) sequencer should be run on that node, and for each sequencer constructing the
execution environment, calling the sequencer, and saving the information generated
by the sequencer.

To set up the sequencing service, an instance is created and dependent components
are injected into the object. This includes among other things:

* An execution context that defines the context in which the service runs, including
a factory for JCR sessions given names of the repository and workspace. This
factory must be configured, and is how JBoss DNA knows about your JCR
repositories and how to connect to them. More on this a bit later.

« An optional factory for class loaders used to load sequencers. If no factory is
supplied, the service uses the current thread's context class loader (or if that is null
the class loader that loaded the sequencing service class).

e Anjava.util.concurrent.Executor Servi ce used to execute the
sequencing activites. If none is supplied, a new single-threaded executor
is created by calling Execut or s. newSi ngl eThr eadExecut or () .

(This can easily be changed by subclassing and overriding the
Sequencer Ser vi ce. cr eat eDef aul t Execut or Servi ce() method.)

« Filters for sequencers and events. By default, all sequencers are considered for
"node added", "property added" and "property changed" events.

25

Chapter 4. Using JBoss DNA

As mentioned above, the Execut i onCont ext provides access to a Sessi onFactory
that is used by JBoss DNA to establish sessions to your JCR repositories. Two
implementations are available:

e The Jndi Sessi onFact ory looks up JCR Reposi t ory instances in JNDI using
names that are supplied when creating sessions. This implementation also has
methods to set the JCR Cr edent i al s for a given workspace name.

e The Si npl eSessi onFact or y has methods to register the JCR Reposi tory
instances with names, as well as methods to set the JCR Cr edent i al s for a given
workspace name.

You can use the Si npl eExecut i onCont ext implementation of Execut i onCont ext

and supply a Sessi onFact or y instance, or you can provide your own

implementation.

Here's an example of how to instantiate and configure the SequencingService:

Si npl eSessi onFact ory sessi onFactory = new Si npl eSessi onFactory();

sessi onFactory. regi st er Reposi tory("Mi n Repository",
this.repository);

Credentials credentials = new Sinpl eCredential s("jsmth",
"secret".toCharArray());

sessi onFactory. regi ster Credenti al s("Mi n Repository/Wrkspacel",
credential s);

Execut i onCont ext executi onCont ext = new
Si npl eExecut i onCont ext (sessi onFactory) ;

[/l Create the sequencing service, passing in the execution context

Sequenci ngServi ce sequenci ngServi ce = new Sequenci ngServi ce();
sequenci ngSer vi ce. set Execut i onCont ext (execut i onCont ext) ;

After the sequencing service is created and configured, it must be started.

The SequencingService has an administration object (that is an instance of

Servi ceAdni ni strator) withstart (), pause(), and shut down() methods.

The latter method will close the queue for sequencing, but will allow sequencing
operations already running to complete normally. To wait until all sequencing
operations have completed, simply call the awai t Ter i nat i on method and pass it
the maximum amount of time you want to wait.

sequenci ngServi ce. get Admi ni strator().start();

The sequencing service must also be configured with the sequencers that it will use.
This is done using the addSequencer (Sequencer Conf i g) method and passing a
Sequencer Confi g instance that can create. Here's an example:

26

Configuring the Sequencing Service

String nane = "l nage Sequencer";
String desc = "Sequences inage files to extract the characteristics
of the inmage";
String classnane =
"org.jboss. dna. sequencer . i mages. | mageMet adat aSequencer";
String[] classpath = null; // Use the current classpath
String[] pat hExpressions =
{"11(*.(jpg|]jpeqg|qgif|bnmp|pcx|png))[*]/jcr:content[@cr:data] =>
/i mages/ $1"};
Sequencer Confi g i mageSequencer Confi g = new Sequencer Confi g(nane,
desc, classname, classpath, pathExpressions);
sequenci ngSer vi ce. addSequencer (i mageSequencer Confi g) ;

nane = "M3 Sequencer";

desc = "Sequences np3 files to extract the id3 tags of the audio
file";

cl assname = "org. | boss. dna. sequencer. np3. Mp3Met adat aSequencer";
String[] np3PathExpressions = {"//(*.np3)[*]/jcr:content[@cr: data]
=> [mp3s/ $1"};

Sequencer Confi g np3Sequencer Confi g = new Sequencer Confi g(nane,
desc, classnanme, classpath, np3Pat hExpressions);
sequenci ngSer vi ce. addSequencer (np3Sequencer Confi g) ;

This is pretty self-explanatory, except for the cl asspat h and pat hExpr essi on
parameters. The classpath parameter defines the classpath that is passed to the
class loader factory mentioned above. Our sequencer is on the classpath, so we can
simply use nul | here.

The path expression is more complicated. Sequencer path expressions are used by
the sequencing service to determine whether a particular changed node should be
sequenced. The expressions consist of two parts: a selection criteria and an output
expression. Here's a simple example:

lalb/lc@itle => /d/elf

Here, the/a/ b/ c@i tl e is the selection criteria that applies when the / a/ b/ ¢

node has atitl e property that is added or changed. When the selection criteria
matches a change event, the sequencer will be run and any generated output will be
inserted into the repository described by the output expression. In this example, the
generated output would be placed at the / d/ e/ f node.

’ﬂ Note

Sequencer path expressions can be fairly complex and may use
wildcards, specificy same-name sibling indexes, provide optional and

27

Chapter 4. Using JBoss DNA

choice elements, and may capture parts of the selection criteria for
use in the output expression. The path expression used in the image
sequencer configuration example above shows a more complex
example:

11 (*. (i pgljpeg|gif|bnp|pcx|png))[*]/
jcr:content[@cr:data] => /inmages/ $1

This uses "/[" to select any node at any level in the repository whose
name ends with "." and one of the extensions (e.g., ".jpg", ".jpeg", etc.)
and that has a child node named "jcr:content” that has a "jcr:data"
property. It also selects the file name as the first capture group (the
first set of parentheses) for use in the output expression. In this

example, any sequencer output is placed on a node with that same

file name under the "/images" node.

Other things are possible, too. For example, the name of the
repository/workspace (as used by the Sessi onFact ory) may be
specified at the beginning of the select criteria and/or the output
expression. This means it's possible to place the sequencer output in
a different repository than the node being sequenced.

For more detail about sequencer path

expressions, see the

org.j boss. dna. reposi tory. sequencer. Sequencer Pat hExpr essi on
class and the corresponding or g. j boss. dna. reposi t ory. sequencer. S
test case.

After the service is started, it is ready to start reacting to changes in the repository.
But it first must be wired to the repositories using listener. This is accomplished using
the Qbser vati onSer vi ce described in the next section.

2. Configuring the Observation Service

The JBoss DNA Obser vat i onSer vi ce is responsible for listening to one or more
JCR repositories and multiplexing the events to its listeners. Unlike JCR events,

this framework embeds in the events the name of the repository and workspace

that can be passed to a Sessi onFact or y to obtain a session to the repository in
which the change occurred. This simple design makes it very easy for JBoss DNA to
concurrently work with multiple JCR repositories.

Configuring an ObservationService is pretty easy, especially if you reuse the same
Sessi onFact ory supplied to the SequencingService. Here's an example:

28

Shutting down JBoss DNA services

thi s. observati onServi ce = new Cbservati onServi ce(sessi onFactory);
thi s. observati onServi ce. get Admi ni strator().start();

Note

Both the ObservationService implement Adni ni st er edSer vi ce,

which has a Ser vi ceAdni ni strat or used to start, pause, and
shutdown the service. In other words, the lifecycle of the services are
managed in the same way.

After the observation service is started, listeners can be added. The
Sequenci ngSer vi ce implements the required interface, and so it may be registered
directly:

observati onServi ce. addLi st ener (sequenci ngServi ce) ;

Finally, the observation service must be wired to monitor one or your JCR
repositories. This is done with one of the noni tor (...) methods:

int event Types = Event. NODE_ADDED | Event. PROPERTY_ADDED |
Event . PROPERTY_CHANGED;

observati onServi ce. noni tor ("M n Repository/Wrkspacel",
event Types);

At this point, the observation service is listening to a JCR repository, and forwarding
the appropriate events to the sequencing service, which will asynchronously process
the changes and sequence the information added to or changed in the repository.

3. Shutting down JBoss DNA services

The JBoss DNA services are utilizing resources and threads that must be released
your application is ready to shut down. The safe way to do this is to simply obtain
the Ser vi ceAdni ni st rat or for each service (via the get Ser vi ceAdni ni strat or ()
method) and call shut down() . As previously mentioned, the shutdown method will
simply prevent new work from being process and will not wait for existing work to be
completed. If you want to wait until the service completes all its work, you must wait
until the service terminates. Here's an example that shows how this is done:

// Shut down the service and wait until it's all shut down ...
sequenci ngSer vi ce. get Admi ni strat or (). shut down();

29

Chapter 4. Using JBoss DNA

sequenci ngSer vi ce. get Admi ni strator().await Term nati on(5,
Ti meUni t . SECONDS) ;

// Shut down the observation service ...

observati onServi ce. get Admi ni strat or (). shutdown();

observati onServi ce. get Adni ni strator (). await Term nati on(5,
Ti meUni t . SECONDS) ;

At this point, we've covered how to configure and use the JBoss DNA services in
your application. The next chapter goes back to the sample application to show how
all these pieces fit together.

4. Reviewing the example application

Recall that the example application consists of a client application that sets up an
in-memory JCR repository and that allows a user to upload files into that repository.
The client also sets up the DNA services with an image sequencer so that if

any of the uploaded files are PNG, JPEG, GIF, BMP or other images, DNA will
automatically extract the image's metadata (e.g., image format, physical size, pixel
density, etc.) and store that in the repository. Or, if the client uploads MP3 audio files,
the title, author, album, year, and comment are extract from the audio file and stored
in the repository.

The example is comprised of 3 classes and 1 interface, located in the
src/ mai n/ j ava directory:

or g/ j boss/ exanpl e/ dna/ sequencer s/ Consol el nput . j ava
/ Medi al nfo. j ava
/ Sequenci ngClient.java
[User | nterface.java

Sequenci ngd i ent is the class that contains the main application. Medi al nf o is a
simple Java object that encapsulates metadata about a media file (as generated by
the sequencer), and used by the client to pass information to the User I nter f ace

, Which is an interface with methods that will be called at runtime to request data
from the user. Consol el nput is an implementation of this that creates a text user
interface, allowing the user to operate the client from the command line. We can
easily create a graphical implementation of User I nt er f ace at a later date. We

can also create a mock implementation for testing purposes that simulates a user
entering data. This allows us to check the behaviour of the client automatically using
conventional JUnit test cases, as demonstrated by the code inthe src/test/j ava
directory:

or g/ j boss/ exanpl e/ dna/ sequencer s/ Sequenci ngd i ent Test . j ava
[/ MockUser | nterface. java

30

Reviewing the example application

If we look at the Sequenci ngd i ent code, there are a handful of methods that
encapsulate the various activities.

’n Note

To keep the code shown in this book as readable as possible, some
of the comments and error handling have been removed.

The st art Reposi t ory() method starts up an in-memory Jackrabbit JCR repository.
The bulk of this method is simply gathering and passing the information required by
Jackrabbit. Because Jackrabbit's Tr ansi ent Reposi t or y implementation shuts down
after the last session is closed, the application maintains a session to ensure that the
repository remains open throughout the application's lifetime. And finally, the node
type needed by the image sequencer is registered with Jackrabbit.

public void startRepository() throws Exception {
if (this.repository == null) {
try {

/1 Load the Jackrabbit configuration ...
File configFile = new Fil e(this.jackrabbitConfigPath);
String pathToConfig = configFile.getAbsol utePat h();

/1 Find the directory where the Jackrabbit repository
data will be stored ...

File worki ngDirectory = new
Fil e(this.workingDirectory);

String workingDirectoryPath =
wor ki ngDi r ect ory. get Absol ut ePat h() ;

/1 Get the Jackrabbit custom node definition (CND) file

URL cndFile =
Thr ead. current Thread() . get Cont ext C assLoader (). get Resour ce("j ackr abbi t NodeTypes. cn(

/]l Create the Jackrabbit repository instance and
establish a session to keep the repository alive ...
this.repository = new Transi ent Reposit ory(pat hToConfi g,
wor ki ngDi r ect or yPat h) ;
if (this.usernane != null) {
Credential s credentials = new
Si npl eCredenti al s(this. usernane, this.password);
t hi s. keepAl i veSessi on =
this.repository.login(credentials, this.wrkspaceNane);
} else {
t hi s. keepAli veSession = this.repository.|login();

31

Chapter 4. Using JBoss DNA

}
try {
/'l Register the node types (only valid the first
time)
Jackr abbi t NodeTypeManager
mgr =

(Jackr abbi t NodeTypeManager)t hi s. keepAl i veSessi on. get Wr kspace() . get NodeTypeManager |
ngr . r egi st er NodeTypes(cndFi | e. openStrean(),
Jackr abbi t NodeTypeManager . TEXT_X JCR _CND) ;
} catch (RepositoryException e) {
if (!e.getMessage().contains("already exists"))
t hrow e;

} catch (Exception e) {
this.repository = null;
thi s. keepAli veSession = null;
throw e;

As you can see, this method really has nothing to do with JBoss DNA, other than
setting up a JCR repository that JBoss DNA will use.

The shut downReposi t ory() method shuts down the Jackrabbit transient repository
by closing the "keep alive session". Again, this method really does nothing
specifically with JBoss DNA, but is needed to manage the JCR repository that JBoss
DNA uses.

public voi d shut downRepository() throws Exception {
if (this.repository !'=null) {

try {
t hi s. keepAl i veSessi on. | ogout () ;
} finally {

this.repository = null;
thi s. keepAli veSession = null;

The st art DnaSer vi ces() method first starts the JCR repository (if it were not

already started), and proceeds to create and configure the Sequenci ngSer vi ce as
described earlier . This involes setting up the Sessi onFact ory , Execut i onCont ext
, Creating the Sequenci ngSer vi ce instance, and configuring the image sequencer.

32

Reviewing the example application

The method then continues by setting up the Cbser vat i onSer vi ce as described
earlier and starting the service.

public void startDnaServices() throws Exception {
if (this.repository == null) this.startRepository();
if (this.sequencingService == null) {

Si npl eSessi onFact ory sessi onFactory = new
Si npl eSessi onFactory();
sessi onFactory. regi st er Reposi tory(this.repositoryNane,
this.repository);
if (this.username !'= null) {
Credentials credentials = new
Si npl eCr edenti al s(this. usernane, this.password);
sessi onFactory. regi sterCredenti al s(this.repositoryNanme
+ "/" + this.wrkspaceNane, credentials);
}
thi s. executi onCont ext = new
Si npl eExecut i onCont ext (sessi onFactory) ;

/'l Create the sequencing service, passing in the execution
cont ext
t hi s. sequenci ngServi ce = new Sequenci ngServi ce();

t hi s. sequenci ngSer vi ce. set Execut i onCont ext (execut i onCont ext) ;

/1 Configure the sequencers.
String nane = "l nage Sequencer";
String desc = "Sequences inmge files to extract the
characteristics of the inage";
String classname =
"org.jboss. dna. sequencer . i mages. | mageMet adat aSequencer";
String[] classpath = null; // Use the current classpath
String[] pat hExpressions
{"/1(*.(jpgljpeg|gif|bmp|pcx|png|iff|ras|pbn pgnfppni psd))[*]/
cr:content[@cr:data] => /inages/$1"};
Sequencer Confi g i mageSequencer Confi g = new
Sequencer Conf i g(name, desc, classnane, classpath,
pat hExpr essi ons) ;
t hi s. sequenci ngServi ce. addSequencer (i mageSequencer Confi g) ;

—

// Set up the MP3 sequencer

name = "M3 Sequencer";

desc = "Sequences np3 files to extract the id3 tags of the
audio file";

cl assname =
"org.jboss. dna. sequencer . np3. Mp3Met adat aSequencer";

33

Chapter 4. Using JBoss DNA

String[] np3Pat hExpressions =
{"//(*.np3)[*]/jcr:content[@cr:data] => /np3s/$1"};

Sequencer Confi g np3Sequencer Config = new
Sequencer Confi g(name, desc, classnane, classpath,
nmp3Pat hExpr essi ons) ;

t hi s. sequenci ngSer vi ce. addSequencer (np3Sequencer Confi g) ;

/] Use the DNA observation service to listen to the JCR
repository (or nultiple ones), and

/'l then register the sequencing service as a listener to
this observation service...

thi s. observati onServi ce = new
Observati onServi ce(this. executi onCont ext. get Sessi onFactory());

thi s. observati onServi ce. get Adm ni strator().start();

thi s. observati onServi ce. addLi st ener (t hi s. sequenci ngServi ce) ;
thi s. observati onServi ce. noni tor (this.repositoryName + "/"
+ thi s. wor kspaceNanme, Event.NODE_ADDED | Event.PROPERTY_ADDED |
Event . PROPERTY_CHANGED) ;
}
// Start up the sequencing service ...
t hi s. sequenci ngServi ce. get Adm ni strator().start();

The shut downDnaSer vi ces() method is pretty straightforward: it just calls shutdown
on each of the services and waits until they terminate.

public void shut downDnaServi ces() throws Exception {
if (this.sequencingService == null) return;

/1 Shut down the service and wait until it's all shut down ...

t hi s. sequenci ngServi ce. get Admi ni strator (). shutdown();

t hi s. sequenci ngSer vi ce. get Adm ni strator().await Term nati on(5,
Ti meUni t . SECONDS) ;

/1 Shut down the observation service ...

t hi s. observati onServi ce. get Adm ni strator (). shutdown();

t hi s. observati onServi ce. get Admi ni strator (). awai t Term nati on(5,
Ti meUni t . SECONDS) ;

}

None of the other methods really do anything with JBoss DNA per se. Instead, they
merely work with the repository using the JCR API.

The mai n method of the Sequenci ngd i ent class creates a Sequenci ngd i ent
instance, and passes a new Consol el nput instance:

34

Reviewing the example application

public static void main(String[] args) throws Exception {
Sequenci ngClient client = new Sequenci ngd i ent();
client.setRepositorylnformation("repo”, "default", "jsmth",
"secret".toCharArray());
client.setUserlnterface(new Consol el nput (client));

If we look at the Consol el nput constructor, it starts the repository, the DNA services,
and a thread for the user interface. At this point, the constructor returns, but the main
application continues under the user interface thread. When the user requests to

quit, the user interface thread also shuts down the DNA services and JCR repository.

publ i ¢ Consol el nput (SequencerCient client) {
try {
client.startRepository();
client.startDnaServices();

System out . println(get Menu());
Thread event Thread = new Thr ead(new Runnabl e() {

private boolean quit = fal se;

public void run() {

try {
while (lquit) {
/1 Display the pronpt and process the
request ed operation ...

}
} finally {
try {

/] Term nate ...
cl i ent. shut downDnaSer vi ces() ;
cl i ent. shut downRepository();
} catch (Exception err) {
Systemout.println("Error shutting down
sequenci ng service and repository: " + err.getlLocalizedMessage());
err.printStackTrace(Systemerr);

1)
event Thread. start();
} catch (Exception err) {
Systemout.println("Error: " + err.getlLocalizedMessage());
err.printStackTrace(Systemerr);

At this point, we've reviewed all of the interesting code in the example application.
However, feel free to play with the application, trying different things.

35

Chapter 4. Using JBoss DNA

5. Summarizing what we just did

In this chapter we covered the different JBoss DNA components and how they can
be used in your application. Specifically, we described how the Sequenci ngSer vi ce
and Gbser vat i onServi ce can be configured and used. And we ended the chapter
by reviewing the example application, which not only uses JBoss DNA, but also the
repository via the JCR API.

36

Chapter 5.

Creating custom sequencers

The current release of JBoss DNA comes with two sequencers: one that extracts
metadata from a variety of image file formats, and another that extracts some of
the ID3 metadata from MP3 audio files. However, it's very easy to create your own
sequencers and to then configure JBoss DNA to use them in your own application.

Creating a custom sequencer involves the following steps:

 Create a Maven 2 project for your sequencer;

e Implement the or g. j boss. dna. spi . sequencer s. St r eanSequencer interface
with your own implementation, and create unit tests to verify the functionality and
expected behavior;

« Add the sequencer configuration to the JBoss DNA Sequenci ngSer vi ce in your
application, as described in the previous chapter; and

« Deploy the JAR file with your implementation (as well as any dependencies) and
make them available to JBoss DNA in your application.
It's that simple.

1. Creating the Maven 2 project

The first step is to create the Maven 2 project that you can use to compile your code
and build the JARs. Maven 2 automates a lot of the work, and since you're already
set up to use Maven, using Maven for your project will save you a lot of time and
effort. Of course, you don't have to use Maven 2, but then you'll have to get the
required libraries and manage the compiling and building process yourself.

Note

JBoss DNA may provide in the future a Maven archetype for creating
sequencer projects. If you'd find this useful and would like to help
create it, please join the community.

Note

The dna- sequencer - i nages
project is a small, self-contained
sequencer implementation that has
only the minimal dependencies.

37

Chapter 5. Creating custom se...

Starting with this project's
source and modifying it to suit
your needs may be the easiest
way to get started. See the

subversion repository:
http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-
images/

You can create your Maven project any way you'd like. For examples,

see the Maven 2 documentation

[http://maven.apache.org/guides/getting-started/
index.htmi#How_do_| _make_my first Maven_project]. Once you've done that, just
add the dependencies in your project's pom xn dependencies section:

<dependency>
<gr oupl d>or g. j boss. dna</ gr oupl d>
<artifactl|d>dna- conmon</artifactld>
<ver si on>0. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j boss. dna</ gr oupl d>
<artifactld>dna-spi</artifactld>
<ver si on>0. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>

</ dependency>

These are minimum dependencies required for compiling a sequencer. Of course,
you'll have to add other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed
here:

<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>4. 4</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hantr est </ gr oupl d>
<artifactld>hancrest-library</artifactld>
<versi on>1. 1</ ver si on>

38

http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-images/
http://anonsvn.jboss.org/repos/dna/trunk/sequencers/dna-sequencer-images/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Creating the Maven 2 project

<scope>t est </ scope>

</ dependency>

<!-- Logging with Log4J -->

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
<versi on>1. 4. 3</versi on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>
<scope>t est </ scope>

</ dependency>

Testing JBoss DNA sequencers does not require a JCR repository or the JBoss
DNA services. (For more detail, see the testing section.) However, if you want to do
integration testing with a JCR repository and the JBoss DNA services, you'll need
additional dependencies for these libraries

<dependency>
<gr oupl d>or g. j boss. dna</ gr oupl d>
<artifactld>dna-repository</artifactld>
<ver si on>0. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
<l-- Java Content Repository APl -->
<dependency>
<gr oupl d>j avax. j cr </ gr oupl d>
<artifactld>cr</artifactld>
<versi on>1. 0. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
<l -- Apache Jackrabbit (JCR I nplenentation) -->
<dependency>
<gr oupl d>or g. apache. j ackr abbi t </ gr oupl d>
<artifactl| d>j ackrabbit-api</artifactld>
<ver si on>1. 3. 3</ versi on>
<scope>t est </ scope>
<I-- Exclude these since they are included in JDK 1.5 -->
<excl usi ons>
<excl usi on>
<gr oupl d>xni - api s</ gr oupl d>
<artifactld>xnm -api s</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>xer ces</ groupl d>

39

Chapter 5. Creating custom se...

<artifactld>xerceslnpl </artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<gr oupl d>or g. apache. j ackr abbi t </ gr oupl d>
<artifactl|d>j ackrabbit-core</artifactld>
<versi on>1. 3. 3</ versi on>
<scope>t est </ scope>
<I-- Exclude these since they are included in JDK 1.5 -->
<excl usi ons>
<excl usi on>
<gr oupl d>xni - api s</ gr oupl d>
<artifactld>xn -api s</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>xer ces</ gr oupl d>
<artifactld>xerceslnpl </artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

At this point, your project should be set up correctly, and you're ready to move on to
writing the Java implementation for your sequencer.

2. Implementing the StreamSequencer interface

After creating the project and setting up the dependencies,

the next step is to create a Java class that implements the

org. j boss. dna. spi . sequencers. St reanSequencer interface. This interface is very
straightforward, and involves a single method:

public interface StreanSequencer {

/**
* Sequence the data found in the supplied stream placing the
out put
* information into the supplied map

*

* @aramstreamthe streamw th the data to be sequenced;

never nul

* @param out put the output fromthe sequenci ng operation;
never nul

* @ar am progresshonitor the progress nmonitor that should be
kept

* updated with the sequencer's progress and that shoul d be
* frequently consulted as to whether this operation has been
cancel | ed.

40

Implementing the StreamSequencer interface

*/
voi d sequence(InputStream stream Sequencer Qutput out put,
Pr ogressMoni t or progresshonitor);

The job of a stream sequencer is to process the data in the supplied stream, and
place into the Sequencer Qut put any information that is to go into the JCR repository.
JBoss DNA figures out when your sequencer should be called (of course using the
sequencing configuration you'll add in a bit), and then makes sure the generated
information is saved in the correct place in the repository.

The Sequencer Qut put class is fairly easy to use. There are basically two methods
you need to call. One method sets the property values, while the other sets
references to other nodes in the repository. Use these methods to describe the
properties of the nodes you want to create, using relative paths for the nodes and
valid JCR property names for properties and references. JBoss DNA will ensure that
nodes are created or updated whenever they're needed.

public interface SequencerQutput {

/**

* Set the supplied property on the supplied node. The allowabl e
* values are any of the follow ng:

* - primtives (which will be autoboxed)
* - String instances

* - String arrays

* - byte arrays

* - I nput Stream i nst ances

* - Cal endar instances

* @aram nodePath the path to the node containing the property;
* may not be null

* @aram property the name of the property to be set

* @aram val ues the value(s) for the property; may be enpty if
* any existing property is to be renoved

*/

voi d setProperty(String nodePath, String property,
oj ect... values);

/**

* Set the supplied reference on the supplied node.

*

* @aram nodePath the path to the node containing the property;

* may not be null

* @aram property the name of the property to be set

* @aram paths the paths to the referenced property, which may
be

* absolute paths or relative to the sequencer output node;

41

Chapter 5. Creating custom se...

* may be enpty if any existing property is to be renoved

*/

voi d set Reference(String nodePath, String property,
String... paths);

JBoss DNA will create nodes of type nt : unst r uct ur ed unless you specify the
value for the j cr: pri mar yType property. You can also specify the values for the
j cr:mi xi nTypes property if you want to add mixins to any node.

For a complete example of a sequencer, let's look at the
org. j boss. dna. sequencer s. i mage. | mageMet adat aSequencer implementation:

public class | nageMet adat aSequencer i npl ements StreanSequencer {

public static final String METADATA NODE = "i nage: net adat a";
public static final String | MAGE_PRI MARY_TYPE =
"jecr:primryType";
public static final String |MAGE_ M XINS = "jcr:mXxinTypes";
public static final String | MAGEM ME_TYPE = "jcr:m neType";
public static final String | MAGE_ENCODI NG = "j cr: encodi ng";
public static final String | MAGE_FORVAT _NAME =
"i mage: f or mat Nane" ;
public static final String | MAGE WDTH = "i nage: wi dt h";
public static final String | MAGE HElI GHT = "i mage: hei ght";
public static final String | MAGE_BI TS PER PI XEL =
"i mage: bi t sPer Pi xel ";
public static final String | MAGE PROGRESSI VE =
"i mage: progressi ve";
public static final String | MAGE_NUMBER OF_I MAGES =
"i mage: nunber O | nages" ;
public static final String | MAGE PHYSI CAL_W DTH DPI =
"i mage: physi cal W dt hDpi ;
public static final String | MAGE_PHYSI CAL_HEI GHT_DPI =
"i mage: physi cal Hei ght Dpi “;
public static final String | MAGE PHYSI CAL_W DTH_| NCHES =
"i mage: physi cal W dt hl nches";
public static final String | MAGE_PHYSI CAL_HEI GHT_I NCHES =
"i mage: physi cal Hei ght | nches";

/**
* {@nheritDoc}
*/
public void sequence(|nputStream stream Sequencer Qut put
out put,

ProgressMoni tor progresshnitor) {
pr ogr essMoni t or . begi nTask(10,
| mageSequencer | 18n. sequencer TaskNane) ;

42

Implementing the StreamSequencer interface

| mgeMet adat a net adata = new | mageMet adat a() ;
nmet adat a. set | nput (stream ;

nmet adat a. set Det er mi nel mageNunber (true) ;

nmet adat a. set Col | ect Conmrent s(true);

/'l Process the image stream and extract the netadata ...
if (!nmetadata.check()) {
nmet adata = nul | ;
}
pr ogr essMoni t or . wor ked(5) ;
if (progresshMonitor.isCancelled()) return;

/] Cenerate the output graph if we found useful netadata

if (metadata != null) {

// Place the inmage nmetadata into the output map ...

out put . set Propert y(METADATA NODE, | MAGE PRI MARY_TYPE,
"i mage: met adat a") ;

/] out put. pset Property(METADATA NODE, | MAGE_M XI NS,
K

out put . set Propert y(METADATA NODE, | MAGE_ M ME_TYPE,
net adat a. get M meType()) ;

/] output.set Property(METADATA NODE, | MAGE_ENCODI NG,
K

out put . set Property(METADATA NODE, | MAGE FORVAT _NAME,
nmet adat a. get For mat Nane()) ;

out put . set Property(METADATA NCDE, | MAGE_W DTH,
nmet adat a. get Wdth());

out put . set Propert y(METADATA NODE, | MAGE HEI GHT,
net adat a. get Hei ght ()) ;

out put . set Property(METADATA NODE, | MAGE BI TS _PER PI XEL,
et adat a. get Bi t sPer Pi xel ());

out put . set Property(METADATA NODE, | MAGE PROGRESSI VE,
nmet adat a. i sProgressive());

out put . set Propert y(METADATA NODE,
| MAGE_NUMBER _CF | MAGES, net adat a. get Nurmber OF | mages()) ;

out put . set Propert y(METADATA NODE,
| MAGE_PHYSI CAL_W DTH_DPI, met adat a. get Physi cal W dt hDpi ()) ;

out put . set Propert y(METADATA NODE,
| MAGE_PHYSI CAL_HEI GHT_DPI, net adat a. get Physi cal Hei ght Dpi ()) ;

out put . set Propert y(METADATA NODE,
| MAGE_PHYSI CAL_W DTH_I NCHES, net adat a. get Physi cal W dt hl nch());

out put . set Propert y(METADATA NCDE,
I MAGE_PHYSI CAL_HEI GHT_I NCHES, net adat a. get Physi cal Hei ght | nch());

}

pr ogr essMoni t or . done() ;

43

Chapter 5. Creating custom se...

Notice how the image metadata is extracted, and the output graph is generated. A
single node is created with the name i mage: net adat a and with the i rage: net adat a
node type. No mixins are defined for the node, but several properties are set on the
node using the values obtained from the image metadata. After this method returns,
the constructed graph will be saved to the repository in all of the places defined by its
configuration. (This is why only relative paths are used in the sequencer.)

Also note how the progress monitor is used. Reporting progress through the supplied
Pr ogr esshoni t or is very easy, and it ensures that JBoss DNA can accurately
monitor and report the status of sequencing activities to the users. At the beginning
of the operation, call begi nTask(. ..) with a meaningful message describing the
operation and a total for the amount of work that will be done by this sequencer.
Then perform the sequencing work, periodically reporting work by specifying the
incremental amount of work with the wor ked(doubl e) method, or by creating a
subtask with the cr eat eSubt ask(doubl e) method and reporting work against that
subtask monitor.

Your method should periodically use the ProgressMonitor's i sCancel | ed() method
to check whether the operation has been cancelled.. If this method returns true, the
implementation should abort all work as soon as possible and close any resources
that were acquired or opened.

Finally, when your sequencing operation is completed, it should call done() on the
progress monitor.

3. Testing custom sequencers

The sequencing framework was designed to make testing sequencers much easier.
In particular, the St r eanSequencer interface does not make use of the JCR API. So
instead of requiring a fully-configured JCR repository and JBoss DNA system, unit
tests for a sequencer can focus on testing that the content is processed correctly and
the desired output graph is generated.

Note

For a complete example of a sequencer unit test, see

the | mageMet adat aSequencer Test unit test in the
org. j boss. dna. sequencer . i mages package of the
dna- sequencer s- i mage project.

The following code fragment shows one way of testing a sequencer, using JUnit 4.4
assertions and some of the classes made available by JBoss DNA. Of course, this
example code does not do any error handling and does not make all the assertions a
real test would.

44

Testing custom sequencers

Sequencer sequencer = new | nageMet adat aSequencer () ;
MockSequencer Qut put out put = new MockSequencer Qut put () ;
Pr ogr essMoni t or progress = new Si npl eProgresshni t or (" Test

activity");
| nput St ream stream = nul | ;
try {
stream =
this.getCl ass().getCl assLoader (). get Resource("caution.gif").openStrean();
sequencer . sequence(st r eam out put , pr ogr ess) ; /Il wites to
' out put’

assert That (out put . get PropertyVal ues("i nage: net adat a",
"jer:primryType"),
is(new Object[] {"image: netadata"}));
assert That (out put . get PropertyVal ues("i nage: net adat a",
"jcr:mnmeType"),
is(new Object[] {"image/gif"}));

/'l ... make nore assertions here
assert That (out put . hasRef erences(), is(false));
} finally {

stream cl ose();

It's also useful to test that a sequencer produces no output for something it should
not understand:

Sequencer sequencer = new | nageMet adat aSequencer () ;
MockSequencer Qut put out put = new MockSequencer Qut put () ;
Pr ogressMoni t or progress = new Si npl eProgresshbni tor (" Test

activity");
| nput Stream stream = nul | ;
try {
stream =
this.getC ass().getCl assLoader (). get Resource("caution. pict").openStrean();
sequencer . sequence(stream out put, progress); /Il wites to
' out put'’

assert That (out put . hasProperties(), is(false));

assert That (out put . hasRef erences(), is(false));
} finally {

stream cl ose();

These are just two simple tests that show ways of testing a sequencer. Some tests
may get quite involved, especially if a lot of output data are produced.

It may also be useful to create some integration tests that configures JBoss DNA
to use the custom sequencer, and to then upload content using the JCR API,

45

Chapter 5. Creating custom se...

verifying that the custom sequencer did run. However, remember that JBoss DNA
runs sequencers asynchronously in the background, and you must sychronize

your tests to ensure that the sequencers have a chance to run before checking the
results. (One way of doing this is to wait for a second after uploading your content,
shutdown the Sequenci ngSer vi ce and await its termination, and then check that
the sequencer output has been saved to the JCR repository. For an example of this
technique, see the Sequenci ngd i ent Test unit test in the example application.)

4. Deploying custom sequencers

The first step of deploying a sequencer consists of adding/changing the sequencer
configuration (e.g., Sequencer Confi g) in the Sequenci ngSer vi ce. This was covered
in the previous chapter.

The second step is to make the sequencer implementation available to JBoss DNA.
At this time, the JAR containing your new sequencer, as well as any JARs that your
sequencer depends on, should be placed on your application classpath.

Note

A future goal of JBoss DNA is to allow sequencers, connectors and
other extensions to be easily deployed into a runtime repository.
This process will not only be much simpler, but it will also provide
JBoss DNA with the information necessary to update configurations

and create the appropriate class loaders for each extension. Having
separate class loaders for each extension helps prevent the pollution
of the common classpath, facilitates an isolated runtime environment
to eliminate any dependency conflicts, and may potentially enable hot
redeployment of newer extension versions.

46

Chapter 6.

Looking to the future

What's next for JBoss DNA? Well, the sequencing

system is just the beginning. With this release, the

sequencing system is stable enough so that more

sequencers can be developed and used within your

own applications. If you're interested in getting involved

with the JBoss DNA project, consider picking up

one of the sequencers on our roadmap

[http://jira.jboss.org/jira/browse/
DNAZ?report=com.atlassian.jira.plugin.system.project:roadmap-panel].

Or, check out JIRA

[http:/ljira.jboss.orgljira/secure/
IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/
order=DESC&sorter/field=priority&resolution=-1&component=12311436] for the list
of sequencers we've thought of. If you think of one that's not there, please add it to
JIRAI

The next release will focus on creating the federation engine and connectors for
several popular and ubiquitous systems. The 0.2 release will likely only federate
information in a read-only manner, but updates will soon follow. Also, during the early
part of the next release, the JBoss DNA project will switch to use JDK 6. Java 5 is
being end-of-lifed, so we want to move to a supported JDK. However, a number of
JBoss projects and products continue to require Java 5, so our next release will most
likely use JDK 6 with Java 5 compatibility.

Other components on our roadmap include a web user interface, a REST-ful server,
and a view system that allows domain-specific views of information in the repository.
These components are farther out on our roadmap, and at this time have not been
targeted to a particular release. If any of these are of interest to you, please get
involved in the community.

47

http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/browse/DNA?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436
http://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311436

48

	JBoss DNA
	Table of Contents
	What this book covers
	Chapter 1. Introduction
	Chapter 2. Understanding JBoss DNA
	1. Overview
	2. Architecture
	3. Sequencing content
	4. Federating content
	4.1. Connecting to information sources
	4.2. Building the unified graph
	4.3. Searching and querying
	4.4. Updating content
	4.5. Observing changes

	Chapter 3. Running the example application
	1. Downloading and compiling
	2. Running the example
	3. Summarizing what we just did

	Chapter 4. Using JBoss DNA
	1. Configuring the Sequencing Service
	2. Configuring the Observation Service
	3. Shutting down JBoss DNA services
	4. Reviewing the example application
	5. Summarizing what we just did

	Chapter 5. Creating custom sequencers
	1. Creating the Maven 2 project
	2. Implementing the StreamSequencer interface
	3. Testing custom sequencers
	4. Deploying custom sequencers

	Chapter 6. Looking to the future

