
ModeShape

Reference Guide
2.0.0.Final

by Randall M. Hauch and Brian Carothers

iii

Target audience .. ix

1. Introduction to ModeShape ... 1

1.1. Use cases for ModeShape .. 1

1.2. What is metadata? .. 2

1.3. What is JCR? ... 3

1.4. Project roadmap ... 5

1.5. ModeShape modules .. 5

1.6. What's new? ... 10

I. Developers and Contributors ... 13

2. Developer tools .. 15

2.1. Development methodology .. 15

2.2. JDK .. 16

2.3. JIRA ... 16

2.4. Subversion ... 16

2.5. Git .. 18

2.6. Maven .. 18

2.6.1. Building ... 19

2.7. Continuous integration with Hudson ... 20

2.8. Eclipse IDE .. 21

2.9. Releasing ... 22

2.9.1. Building all artifacts and assemblies .. 22

2.9.2. Determine the version to be released .. 23

2.9.3. Release dry run ... 23

2.9.4. Prepare for the release ... 23

2.9.5. Perform the release .. 24

2.10. Summary .. 25

3. Testing ... 27

3.1. Unit tests .. 27

3.2. Integration tests .. 27

3.3. Writing tests ... 28

3.4. Technology Compatibility Kit (TCK) tests .. 29

II. ModeShape Core .. 31

4. Execution Context ... 33

4.1. Security .. 35

4.1.1. JAAS ... 37

4.1.2. Web application security ... 38

4.2. Namespace Registry ... 39

4.3. Class Loaders .. 42

4.4. MIME Type Detectors ... 44

4.5. Property factory and value factories ... 46

4.6. Summary .. 46

5. Graph Model .. 49

5.1. Names ... 49

5.2. Paths ... 50

ModeShape

iv

5.3. Properties ... 54

5.4. Values and Value Factories ... 57

5.5. Readable, TextEncoder, and TextDecoder .. 66

5.6. Locations .. 69

5.7. Graph API .. 72

5.7.1. Using Workspaces ... 72

5.7.2. Working with Nodes ... 74

5.8. Requests .. 77

5.9. Request processors .. 87

5.10. Observation .. 88

5.10.1. Observable .. 89

5.10.2. Observers .. 89

5.10.3. Changes .. 90

5.11. Summary .. 91

6. Connector Framework ... 93

6.1. Connectors ... 93

6.2. Out-of-the-box connectors ... 97

6.3. Writing custom connectors ... 97

6.3.1. Creating the Maven 2 project .. 98

6.3.2. Implementing a RepositorySource ... 101

6.3.3. Implementing a RepositoryConnection ... 104

6.3.4. Testing custom connectors ... 109

6.4. Summary .. 109

7. Sequencing framework .. 111

7.1. Sequencers .. 111

7.2. Stream Sequencers ... 111

7.3. Path Expressions .. 114

7.4. Out-of-the-box Sequencers .. 116

7.5. Creating Custom Sequencers .. 116

7.5.1. Creating the Maven 2 project .. 117

7.5.2. Testing custom sequencers ... 122

7.6. Summary .. 124

III. ModeShape JCR .. 125

8. Configuration ... 127

8.1. Configuring ModeShape .. 127

8.1.1. Loading from a Configuration File .. 127

8.1.2. Programmatic Configuration .. 130

8.1.3. Loading from a Configuration Repository .. 133

8.2. Deploying ModeShape via JNDI ... 134

8.2.1. Example application using JCR and JNDI 134

8.2.2. Configuring JCR and JNDI .. 135

8.3. Setting the Classpath .. 138

8.3.1. Building against ModeShape via Maven ... 138

8.3.2. Add dependencies for logging ... 141

v

8.3.3. Building against ModeShape via JARs ... 142

8.4. What's next ... 142

9. Using the JCR API with ModeShape .. 143

9.1. What's new in JCR 2.0? .. 143

9.1.1. Connecting ... 143

9.1.2. Identifiers ... 144

9.1.3. Binary Values ... 144

9.1.4. Node Type Management ... 145

9.1.5. Queries .. 146

9.1.6. Workspace Management .. 146

9.1.7. Observation .. 146

9.1.8. Locking .. 146

9.1.9. Versioning .. 147

9.1.10. Importing and Exporting .. 147

9.1.11. Orderable Child Nodes ... 147

9.1.12. Paths ... 147

9.1.13. getItem(String) .. 148

9.2. Obtaining a JCR Repository .. 148

9.2.1. URL formats .. 150

9.2.2. Accessing Repositories from JNDI ... 151

9.2.3. Cleaning Up after JcrRepositoryFactory ... 151

9.3. ModeShape's JcrEngine .. 152

9.4. Creating JCR Sessions ... 153

9.4.1. Using JAAS ... 153

9.4.2. Using Custom Security ... 156

9.4.3. Using HTTP Servlet security ... 156

9.4.4. Guest (Anonymous) User Access .. 157

9.5. JCR Specification Support ... 157

9.5.1. Required features ... 157

9.5.2. Optional features .. 158

9.5.3. TCK Compatibility features .. 158

9.5.4. JCR Security .. 159

9.5.5. Built-In Node Types .. 161

9.5.6. Custom Node Type Registration .. 161

9.6. Summary .. 164

10. Querying and Searching using JCR ... 165

10.1. JCR Query API ... 165

10.2. JCR XPath Query Language .. 167

10.2.1. Column Specifiers .. 167

10.2.2. Type Constraints .. 168

10.2.3. Property Constraints ... 169

10.2.4. Path Constraints ... 170

10.2.5. Ordering Specifiers ... 171

10.2.6. Miscellaneous ... 172

ModeShape

vi

10.3. JCR-SQL Query Language .. 172

10.3.1. Queries .. 173

10.4. JCR-SQL2 Query Language .. 175

10.4.1. Queries .. 176

10.4.2. Sources ... 177

10.4.3. Joins .. 177

10.4.4. Equi-Join Conditions ... 178

10.4.5. Same-Node Join Conditions .. 178

10.4.6. Child-Node Join Conditions ... 178

10.4.7. Descendant-Node Join Conditions ... 178

10.4.8. Constraints ... 179

10.4.9. And Constraints .. 179

10.4.10. Or Constraints .. 179

10.4.11. Not Constraints ... 179

10.4.12. Comparison Constraints .. 180

10.4.13. Between Constraints ... 180

10.4.14. Property Existence Constraints .. 180

10.4.15. Set Constraints ... 180

10.4.16. Full-text Search Constraints ... 181

10.4.17. Same-Node Constraint .. 182

10.4.18. Child-Node Constraints ... 182

10.4.19. Descendant-Node Constraints ... 182

10.4.20. Paths and Names ... 182

10.4.21. Static Operands .. 183

10.4.22. Bind Variables .. 183

10.4.23. Dynamic Operands ... 184

10.4.24. Ordering ... 185

10.4.25. Columns ... 185

10.4.26. Limit and Offset .. 185

10.5. Full-Text Search Language .. 186

10.5.1. Full-text Search Language .. 187

10.6. JCR Query Object Model (JCR-QOM) API .. 187

11. Accessing ModeShape Remotely ... 191

11.1. The ModeShape WebDAV Server .. 191

11.1.1. Configuring the ModeShape WebDAV Server 191

11.1.2. Deploying the ModeShape WebDAV Server 197

11.2. The ModeShape REST Server ... 199

11.2.1. Supported Resources and Methods ... 199

11.2.2. Configuring the ModeShape REST Server 205

11.2.3. Deploying the ModeShape REST Server 208

11.2.4. ModeShape REST Client API .. 211

11.3. Repository Providers ... 212

11.4. Summary .. 213

IV. Connector Library ... 215

vii

12. In-Memory Connector ... 217

13. File System Connector ... 221

14. JPA Connector ... 227

14.1. Simple Model .. 232

15. JCR Connector ... 235

16. Federation Connector .. 239

16.1. Projections .. 239

16.2. Multiple Projections ... 240

16.3. Processing flow ... 245

16.4. Update operations ... 247

16.5. Configuration ... 247

16.6. Repository Source properties ... 248

17. Subversion Connector ... 251

18. JBoss Cache Connector .. 255

19. Infinispan Connector .. 259

19.1. Considerations for Distributed Sources ... 262

20. JDBC Metadata Connector ... 263

V. Sequencer Library ... 269

21. Compact Node Type (CND) Sequencer .. 271

22. XML Document Sequencer ... 273

23. ZIP File Sequencer ... 275

24. Microsoft Office Document Sequencer .. 277

25. Java Source File Sequencer .. 279

26. Java Class File Sequencer ... 285

27. Image Sequencer ... 289

28. MP3 Sequencer .. 291

29. DDL File Sequencer ... 293

29.1. Example ... 294

30. Text Sequencers .. 297

30.1. Delimited Text Sequencer .. 298

30.2. Fixed Width Text Sequencer .. 299

VI. MIME Type Detector Library ... 301

31. Aperture MIME type detector ... 303

32. Writing custom detectors ... 305

33. Looking to the future ... 309

viii

ix

Target audience

This reference guide is for application developers that want a better understanding of how

ModeShape works, how to take advantage of its advanced features, and how to extend the

functionality. This document is also very valuable for community developers because it covers the

design and implementation of most of the components that make up ModeShape.

For a higher-level introduction to ModeShape, see the Getting Started [http://docs.jboss.org/

modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html] document.

If you have any questions or comments, please feel free to use ModeShape's user

mailing list [mailto:modeshape-users@lists.jboss.org] or user forums [http://community.jboss.org/

community/modeshape]. We welcome all who want to get involved [http://www.modeshape.org/

community.html]. If there's something in particular you're interested in, talk with the community

- there may be others interested in the same thing.

http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://www.modeshape.org/community.html
http://www.modeshape.org/community.html
http://www.modeshape.org/community.html

x

Chapter 1.

1

Introduction to ModeShape
ModeShape is a JCR [http://www.jcp.org/en/jsr/detail?id=283] implementation that provides

access to content stored in many different kinds of systems. A ModeShape repository isn't yet

another silo of isolated information, but rather it's a JCR view of the information you already have

in your environment: files systems, databases, other repositories, services, applications, etc.

To your applications, ModeShape looks and behaves like a regular JCR repository. Using the

standard JCR 2.0 API (a.k.a. JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]), applications

can search, navigate, version, and listen for changes in the content. But under the covers,

ModeShape gets its content by federating multiple back-end systems (like databases, services,

other repositories, etc.), allowing those systems to continue "owning" the information while

ensuring the unified repository stays up-to-date and in sync.

Of course when you start providing a unified view of all this information, you start recognizing

the need to store more information, including metadata about and relationships between the

existing content. ModeShape lets you do this, too. And ModeShape even tries to help you

discover more about the information you already have, especially the information wrapped up

in the kinds of files often found in enterprise systems: service definitions, policy files, images,

media, documents, presentations, application components, reusable libraries, configuration files,

application installations, databases schemas, management scripts, and so on. As files are loaded

into the repository, you can make ModeShape automatically sequence these files to extract from

their content meaningful information that can be stored in the repository, where it can then be

searched, accessed, and analyzed using the JCR API.

This document goes into detail about how ModeShape works to provide these capabilities. It also

talks in detail about many of the parts within ModeShape - what they do, how they work, and how

you can extend or customize the behavior. In particular, you'll learn about ModeShape connectors

and sequencers, how you can use the implementations included in ModeShape, and how you can

write your own to tailor ModeShape for your needs.

So whether you are a developer on the project, or you're trying to learn the intricate details of how

ModeShape works, this document hopefully serves a good reference for developers on the project.

1.1. Use cases for ModeShape

ModeShape repositories can be used in a variety of applications. One of the more obvious

use cases for a metadata repository is in provisioning and management, where it's critical

to understand and keep track of the metadata for models, database, services, components,

applications, clusters, machines, and other systems used in an enterprise. Governance takes that

a step farther, by also tracking the policies and expectations against which performance of the

systems described by the repository can be verified. In these cases, a repository is an excellent

mechanism for managing this complex and highly-varied information.

But these large and complex use cases aren't the only way to use a ModeShape repository.

You could use an embedded ModeShape repository to manage configuration information for an

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 1. Introduction to Mo...

2

application, or you could use ModeShape just to provide a JCR interface on top of a few non-JCR

systems.

The point is that ModeShape can be used in many different ways, ranging from the very tiny

embedded repository to a large and distributed enterprise-grade repository. The choice is yours.

1.2. What is metadata?

Before we dive into more detail about ModeShape and metadata repositories, it's probably useful

to explain what we mean by the term "metadata." Simply put, metadata is the information you need

to manage something. For example, it's the information needed to configure an operating system,

or the description of the information in an LDAP tree, or the topology of your network. It's the

configuration of an application server or enterprise service bus. It's the steps involved in validating

an application before it can go into production. It's the description of your database schemas, or of

your services, or of the messages going in and coming out of a service. ModeShape is designed

to be a repository for all this (and more).

There are a couple of important things to understand about metadata. First, many systems

manage (and frequently change) their own metadata and information. Databases, applications, file

systems, source code management systems, services, content management systems, and even

other repositories are just a few types of systems that do this. We can't pull the information out and

duplicate it, because then we risk having multiple copies that are out-of-sync. Ideally, we could

access all of this information through a homogenous API that also provides navigation, caching,

versioning, search, and notification of changes. That would make our lives significantly easier.

What we want is federation. We can connect to these back-end systems to dynamically access

the content and project it into a single, unified repository. We can cache it for faster access, as

long as the cache can be invalidated based upon time or event. But we also need to maintain

a clear picture of where all the bits come from, so users can be sure they're looking at the right

information. And we need to make it as easy as possible to write new connectors, since there are

a lot of systems out there that have information we want to federate.

The second important characteristic of the metadata is that a lot of it is represented as files,

and there are a lot of different file formats. These include source code, configuration files, web

pages, database schemas, XML schemas, service definitions, policies, documents, spreadsheets,

presentations, images, audio files, workflow definitions, business rules, and on and on. And

logically if files contain metadata, we want to add those files to our metadata repository. The

problem is, all that metadata is tied up as blobs in the repository. Ideally, our repository would

automatically extract from those files the content that's most useful to us, and place that content

inside the repository where it can be much more easily used, searched, related, and analyzed.

ModeShape does exactly this via a process we call sequencing, and it's an important part of a

metadata repository.

The third important characteristic of metadata is that it rarely stays the same. Different consumers

of the information need to see different views of it. Metadata about two similar systems is not

always the same. The metadata often needs to be tagged or annotated with additional information.

What is JCR?

3

And the things being described often change over time, meaning the metadata has to change,

too. As a result, the way in which we store and manage the metadata has to be flexible and able

to adapt to our ever-changing needs, and the object model we use to interact with the repository

must accommodate these needs. The graph-based nature of the JCR API provides this flexibility

while also giving us the ability to constrain information when it needs to be constrained.

1.3. What is JCR?

There are a lot of choices for how applications can store information persistently so that it can

be accessed at a later time and by other processes. The challenge developers face is how to

use an approach that most closely matches the needs of their application. This choice becomes

more important as developers choose to focus their efforts on application-specific logic, delegating

much of the responsibilities for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The Java language

makes working with files relatively easy, but Java really doesn't provide many bells and whistles.

So using files is an easy choice when the information is either not complicated (for example

property files), or when users may need to read or change the information outside of the application

(for example log files or configuration files). But using files to persist information becomes more

difficult as the information becomes more complex, as the volume of it increases, or if it needs to be

accessed by multiple processes. For these situations, other techniques often have more benefits.

Another technique built into the Java language is Java serialization, which is capable of persisting

the state of an object graph so that it can be read back in at a later time. However, Java serialization

can quickly become tricky if the classes are changed, and so it's beneficial usually when the

information is persisted for a very short period of time. For example, serialization is sometimes

used to send an object graph from one process to another. Using serialization for longer-term

storage of information is more risky.

One of the more popular and widely-used persistence technologies is the relational database.

Relational database management systems have been around for decades and are very capable.

The Java Database Connectivity (JDBC) API provides a standard interface for connecting to and

interacting with relational databases. However, it is a low-level API that requires a lot of code to use

correctly, and it still doesn't abstract away the DBMS-specific SQL grammar. Also, working with

relational data in an object-oriented language can feel somewhat unnatural, so many developers

map this data to classes that fit much more cleanly into their application. The problem is that

manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC code.

Object-relational mapping libraries automate the creation of this mapping layer and result in far

less code that is much more maintainable with performance that is often as good as (if not

better than) handwritten JDBC code. The new Java Persistence API (JPA) [http://java.sun.com/

developer/technicalArticles/J2EE/jpa/] provide a standard mechanism for defining the mappings

(through annotations) and working with these entity objects. Several commercial and open-source

libraries implement JPA, and some even offer additional capabilities and features that go beyond

JPA. For example, Hibernate [http://www.hibernate.org] is one of the most feature-rich JPA

implementations and offers object caching, statement caching, extra association mappings, and

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction to Mo...

4

other features that help to improve performance and usefulness. Plus, Hibernate is open-source

(with support offered by JBoss [http://www.jboss.com]).

While relational databases and JPA are solutions that work well for many applications, they are

more limited in cases when the information structure is highly flexible, the structure is not known a

priori, or that structure is subject to frequent change and customization. In these situations, content

repositories may offer a better choice for persistence. Content repositories are almost a hybrid

with the storage capabilities of relational databases and the flexibility offered by other systems,

such as using files. Content repositories also typically provide other capabilities as well, including

versioning, indexing, search, access control, transactions, and observation. Because of this,

content repositories are used by content management systems (CMS), document management

systems (DMS), and other applications that manage electronic files (e.g., documents, images,

multi-media, web content, etc.) and metadata associated with them (e.g., author, date, status,

security information, etc.). The Content Repository for Java technology API [http://www.jcp.org/en/

jsr/detail?id=283] provides a standard Java API for working with content repositories. Abbreviated

"JCR", this API was developed through the Java Community Process originally under JSR-170

[http://www.jcp.org/en/jsr/detail?id=170] (as "JCR 1.0"), but has since been revised and improved

as "JCR 2.0" under JSR-283 [http://www.jcp.org/en/jsr/detail?id=283].

The JCR 2.0 API provides a number of information services that are needed by many applications,

including: read and write access to information; the ability to structure information in a hierarchical

and flexible manner that can adapt and evolve over time; ability to work with structured, semi-

structured, and unstructured content; ability to (transparently) handle large strings; notifications of

changes in the information; search and query; versioning of information; access control; integrity

constraints; participation within distributed transactions; explicit locking of content; and of course

persistence.

ModeShape implements the JCR 2.0 API, including many of the optional features.

Figure 1.1. JCR API features

http://www.jboss.com
http://www.jboss.com
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Project roadmap

5

1.4. Project roadmap

The ModeShape open source project uses its JIRA instance [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] to track issues for

tasks, requirements, bugs, and other activities. The roadmap report [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel] shows

how each of these issues are targeted to the upcoming

releases, while the change log report [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel] shows all of the

issues that were fixed in each of the past releases.

By convention, the ModeShape project team periodically review JIRA issues that aren't targeted

to a release, and then schedule them based upon current workload, severity, and the roadmap.

And if we review an issue and don't know how to target it, we target it to the Future Releases

[http://jira.jboss.org/browse/MODE/fixforversion/12314367] bucket.

At the start of a release, the project team reviews the roadmap, identifies the goals for the release,

and targets (or retargets) the issues appropriately.

1.5. ModeShape modules

ModeShape consists of quite a few separate modules. Just a few of these make up the essential

core components of the system:

• modeshape-jcr contains ModeShape's implementation of the JCR 2.0 API. If you're using

ModeShape as a JCR repository, this is the top-level dependency that you'll want to

use. The module defines all required dependencies, except for the repository connector(s)

and any sequencer implementations needed by your configuration. As we'll see later

on, using ModeShape as a JCR repository is as easy as defining a configuration,

obtaining the JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] object for your repository using the RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html], and then using the standard

JCR API. This module also uses the JCR unit tests from the reference implementation to verify

the behavior of the ModeShape implementation.

• modeshape-jcr-api defines a number of interfaces that extend several of the JCR API

interfaces. For example, this module defines a interface that defines a way to look up

javax.jcr.Repository instances by name, and that is implemented by the ModeShape

JcrEngine. It also defines several new interfaces that extend the JCR 2.0 API's Query Object

Model with additional behavior, including more criteria options (such as , , ,), a formal clause,

and a for unions, intersects, and difference queries. This module is very small and is only

dependent upon the JCR API, and ModeShape is designed so that client applications can

depend only upon this module without having to depend on the modeshape-jcr interfaces

or its dependencies. For example, this module defines a interface that defines a way to look

up javax.jcr.Repository instances by name, and that is implemented by the ModeShape

http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE/fixforversion/12314367
http://jira.jboss.org/browse/MODE/fixforversion/12314367
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Chapter 1. Introduction to Mo...

6

JcrEngine, allowing client applications to dependency on this module to look up repositories

by name without having to depend on the

Several other modules are also essential, but for the most part are hidden to client applications

as they provide components used within the JCR implementation:

• modeshape-repository provides the core ModeShape graph engine and services for

managing repository connections, sequencers, MIME type detectors, and observation. If you're

using ModeShape repositories via our graph API rather than JCR, then this is where you'd start.

• modeshape-cnd provides a self-contained utility for parsing CND (Compact Node Definition)

files and transforming the node definitions into a graph notation compatible with ModeShape's

JCR implementation.

• modeshape-graph defines the Application Programming Interface (API) for ModeShape's low-

level graph model, including a fluent-style API for working with graph content. This module

also defines the APIs necessary to implement custom connectors, sequencers, and MIME type

detectors.

• modeshape-common is a small low-level library of common utilities and frameworks, including

logging, progress monitoring, internationalization/localization, text translators, component

management, and class loader factories.

Most of the ModeShape modules, however, are optional extensions. Many of these depend

on third party libraries, so you will probably want to include only those modules that provide

functionality you'll use in your repository. These modules are located in the source under the

extensions/ directory.

• modeshape-connector-infinispan is the preferred ModeShape repository connector for

persistently storing content. Infinispan [http://infinispan.org] is an extremely scalable, highly

available data grid platform that distributes the data across the nodes in the grid. This connector

makes it possible for repository content to be stored in a very efficient, fast, highly-concurrent

(essentially lock- and synchronization-free), and reliable manner, even when the content size

grows to massive sizes. This connector is capable of storing any kind of content, and dictates

how the content is stored on the data grid. Therefore, this connector cannot be used to access

the content of existing data grids created by/for other applications.

• modeshape-connector-jbosscache is a ModeShape repository connector that stores content

within a JBoss Cache [http://www.jboss.org/jbosscache/] instance. JBoss Cache is a powerful

cache implementation that can serve as a distributed cache and that can persist information.

The cache instance can be found via JNDI or created and managed by the connector. This

connector is capable of storing any kind of content, and dictates how the content is stored in

the cache. Therefore, this connector cannot be used to access the content of existing cache

instances created by/for other applications.

• modeshape-connector-jdbc-metadata is a ModeShape repository connector that provides

read-only access to metadata and schema information from relational databases through a

http://infinispan.org
http://infinispan.org
http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/

ModeShape modules

7

JDBC connection. This connector provides an optional and configurable caching facility to

prevent frequent requests to the database.

• modeshape-connector-store-jpa is a ModeShape repository connector that stores content

in a JDBC database, using the Java Persistence API (JPA) and the very highly-regarded and

widely-used Hibernate [http://www.hibernate.org] implementation. This connector is capable of

storing any kind of content, and dictates the schema in which it stores the content. Therefore,

this connector cannot be used to access the data in existing created by/for other applications.

• modeshape-connector-jcr is a ModeShape repository connector that accesses and stores

content in an external JCR 2.0 repository. This allows ModeShape to integrate with other JCR

implementations and even federate multiple JCR repositories into a single unified repository.

Any differences in namespaces are automatically handled, although node types used by the

content in the external JCR repository must also be registered into the ModeShape repository

using the connector. Note that this connector is currently a technical preview, and we're seeking

feedback and assistance in identifying the required functionality.

• modeshape-connector-filesystem is a ModeShape repository connector that accesses the

files and folders on (a part of) the local file system, providing that content in the form of nt:file

and nt:folder nodes. This connector does support updating the file system when changes are

made to the nt:file and nt:folder nodes. However, this connector does not support storing

other kinds of nodes.

• modeshape-connector-svn is a ModeShape repository connector that accesses the content of

an existing Subversion repository, providing that content in the form of nt:file and nt:folder

nodes. This connector does support updating the SVN repository when changes are made to

the nt:file and nt:folder nodes. However, this connector does not support storing other

kinds of nodes.

• modeshape-sequencer-cnd is a ModeShape sequencer that extracts JCR node definitions

from JCR Compact Node Definition (CND) files.

• modeshape-sequencer-ddl is a ModeShape sequencer that extracts the structure and content

from DDL files. This is still under development and includes support for the basic DDL

statements in in the Oracle, PostgreSQL, Derby, and standard DDL dialects.

• modeshape-sequencer-zip is a ModeShape sequencer that extracts the files (with content)

and directories from ZIP archives.

• modeshape-sequencer-xml is a ModeShape sequencer that extracts the structure and

content from XML files.

• modeshape-sequencer-classfile is a ModeShape sequencer that extracts the package, class/

type, member, documentation, annotations, and other information from Java class files.

• modeshape-sequencer-java is a ModeShape sequencer that extracts the package, class/type,

member, documentation, annotations, and other information from Java source files.

http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction to Mo...

8

• modeshape-sequencer-jbpm-jpdl is a prototype ModeShape sequencer that extracts process

definition metadata from jBPM process definition language (jPDL) files. This is still under

development.

• modeshape-sequencer-msoffice is a ModeShape sequencer that extracts metadata and

summary information from Microsoft Office [http://office.microsoft.com/en-us/] documents. For

example, the sequencer extracts from a PowerPoint presentation the outline as well as

thumbnails of each slide. Microsoft Word and Excel files are also supported.

• modeshape-sequencer-images is a ModeShape sequencer that extracts the image metadata

(e.g., size, date, etc.) from PNG, JPEG, GIF, BMP, PCS, IFF, RAS, PBM, PGM, and PPM

image files.

• modeshape-sequencer-mp3 is a ModeShape sequencer that extracts metadata (e.g., author,

album name, etc.) from MP3 audio files.

• modeshape-sequencer-text is a ModeShape sequencer that extracts data from text streams.

There are separate sequencers for character-delimited sequencing and fixed width sequencing,

but both treat the incoming text stream as a series of rows separated by line-terminators with

each row consisting of one or more columns.

• modeshape-search-lucene is an implementation of the SearchEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/search/SearchEngine.html] interface that

uses the Lucene [http://lucene.apache.org/java/] library. This module is one of the few

extensions that is used directly by the modeshape-jcr module.

• modeshape-mimetype-detector-aperture is a MimeTypeDetector [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html]

implementation that uses the Aperture [http://aperture.sourceforge.net/] library to determine the

best MIME type given the name and contents of a file.

• modeshape-classloader-maven is a small library that provides

a ClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/component/ClassLoaderFactory.html] implementation that can create ClassLoader

[http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html] instances capable of

loading classes given a Maven Repository and a list of Maven coordinates. The Maven

Repository can be managed within a JCR repository.

The following modules make up the various web application projects (and are located in the source

under the web/ directory). You may be able to use these artifacts "out of the box", but more likely

the configuration defined in the WAR files will not be exactly what you want for your environment.

In this case, you can replicate one of our "-war" modules and customize the configuration settings

to easily assembly a custom WAR.

• modeshape-web-jcr-webdav provides a WebDAV server for Java Content Repositories.

This project provides integration with ModeShape's JCR implementation (of course) but

also contains a service provider interface (SPI) that can be used to integrate other JCR

http://office.microsoft.com/en-us/
http://office.microsoft.com/en-us/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/search/SearchEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/search/SearchEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/search/SearchEngine.html
http://lucene.apache.org/java/
http://lucene.apache.org/java/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://aperture.sourceforge.net/
http://aperture.sourceforge.net/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html

ModeShape modules

9

implementations with these WebDAV services in the future. For ease of packaging, these

classes are provided as a JAR that can be placed in the WEB-INF/lib of a deployed WebDAV

server WAR.

• modeshape-web-jcr-webdav-war wraps the WebDAV services from the modeshape-web-

jcr-webdav JAR into a WAR and provides in-container integration tests. This project can be

consulted as a template for how to deploy the WebDAV services in a custom implementation.

• modeshape-web-jcr-rest provides a set of JSR-311 (JAX-RS) objects that form the basis

of a RESTful server for Java Content Repositories. This project provides integration with

ModeShape's JCR implementation (of course) but also contains a service provider interface

(SPI) that can be used to integrate other JCR implementations with these RESTful services in

the future. For ease of packaging, these classes are provided as a JAR that can be placed in

the WEB-INF/lib of a deployed RESTful server WAR.

• modeshape-web-jcr-rest-war wraps the RESTful services from the modeshape-web-jcr-rest

JAR into a WAR and provides in-container integration tests. This project can be consulted as a

template for how to deploy the RESTful services in a custom implementation.

• modeshape-web-jcr-rest-client is a library that uses POJOs to access the REST web service.

This module eliminates the need for applications to know how to create HTTP request URLs

and payloads, and how to parse the JSON responses. It can be used to publish (upload) and

unpublish (delete) files from ModeShape repositories.

• modeshape-web-jcr provides a reusable library for web applications using JCR, and is used

by the modeshape-web-jcr-rest and modeshape-web-jcr-webdav modules.

There are also modules for ModeShape's documentation (located in the source under the docs/

directory):

• docs-getting-started is the project with the DocBook [http://www.docbook.org/] source for the

ModeShape Getting Started document.

• docs-getting-started-examples is the project with the Java source for the example application

used in the ModeShape Getting Started document.

• docs-reference-guide is the project with the DocBook [http://www.docbook.org/] source for this

document, the ModeShape Reference Guide document.

Another module provides a utility to generate DDL for a variety of database management systems.

This module is likely not used in client applications, but rather used during development to

generate the desired DDL.

• modeshape-jpa-ddl-gen provides a standalone utility that can generate the DDL for the

database schema used by the JPA connector. Because it uses Hibernate, it can generate DDL

for any of the databases that the connector can use.

There is another module that runs the full suite of JCR TCK tests, and which at the moment still

contains a few failures. This module is never needed in client applications.

http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/

Chapter 1. Introduction to Mo...

10

• modeshape-jcr-tck provides a separate testing project that executes all reference

implementation's JCR TCK tests on a nightly basis to track implementation progress against

the JCR 1.0 specification. This module will likely be retired when the ModeShape JCR

implementation is complete, since modeshape-jcr and modeshape-integration-tests will

be running the full suite of JCR TCK unit tests.

Another module provides system- and integration-level tests is never needed in client

applications:

• modeshape-integration-tests provides a home for all of the integration tests that involve more

components that just unit tests. Integration tests are often more complicated, take longer, and

involve testing the integration and functionality of multiple components (whereas unit tests focus

on testing a single class or component and may use stubs or mock objects to isolate the code

being tested from other related components).

Finally, there is a Maven parent pom.xml file that aggregates all of the other projects, provides

common defaults for Maven plugins and dependency versions used throughout the modules, and

definition of various asset files to help build the necessary Maven artifacts during a build.

Each of these modules is a Maven project with a group ID of org.modeshape . All of

these projects correspond to artifacts [https://repository.jboss.org/nexus/content/repositories/

public/org/modeshape/] in the JBoss Maven 2 Repository [https://repository.jboss.org/nexus/

], the settings for which are described on the JBoss.org wiki [http://community.jboss.org/wiki/

MavenGettingStarted-Users].

1.6. What's new?

With version 2.0.0.Final, ModeShape introduces support for the JCR 2.0 API, improvements

to existing connectors, and quite a few bug fixes and improvements [http://docs.jboss.org/

modeshape/2.0.0.Final/release.html].

This means that ModeShape now implements all of the required JCR 2.0 features:

repository acquisition, authentication, reading/navigating, query, export, node type discovery, and

permissions and capability checking. ModeShape also implements most of the optional JCR

2.0 features: writing, import, observation, workspace management, versioning, locking, node type

management, same-name siblings, and orderable child nodes. The remaining optional features

(shareable nodes, access control management, lifecycle management, retention and hold, and

transactions) may be introduced in future versions.

Note

ModeShape 2.0.0.Final currently passes 1371 of the 1391 JCR TCK tests,

where 17 of these 20 failures appear to be bugs in the TCK tests (see

JCR-2648 [https://issues.apache.org/jira/browse/JCR-2648], JCR-2661 [https://

issues.apache.org/jira/browse/JCR-2661], JCR-2662 [https://issues.apache.org/

jira/browse/JCR-2662], and JCR-2663 [https://issues.apache.org/jira/browse/

JCR-2663]). The remaining 3 failures are due to known issues (see MODE-

https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://docs.jboss.org/modeshape/2.0.0.Final/release.html
http://docs.jboss.org/modeshape/2.0.0.Final/release.html
http://docs.jboss.org/modeshape/2.0.0.Final/release.html
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
http://jira.jboss.org/browse/MODE-760

What's new?

11

760 [http://jira.jboss.org/browse/MODE-760] and MODE-786 [http://jira.jboss.org/

browse/MODE-786]).

http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-786
http://jira.jboss.org/browse/MODE-786
http://jira.jboss.org/browse/MODE-786

12

Part I. Developers and Contributors
The ModeShape project uses a number of process, tools, and procedures to assist in the

development of the software. This portion of the document focuses on these aspects and will help

developers and contributors obtain the source code, build locally, and contribute to the project.

If you're not contributing to the project but are still developing custom connectors or sequencers.

this information may be helpful in establishing your own environment.

Chapter 2.

15

Developer tools
The ModeShape project uses Maven as its primary build tool, Subversion for its source code

repository, JIRA for the issue management and bug tracking system, and Hudson for the

continuous integration system. We do not stipulate a specific integrated development environment

(IDE), although most of us use Eclipse and rely upon the code formatting and compile preferences

to ensure no warnings or errors.

The rest of this chapter talks in more detail about these different tools and how to set them up.

But first, we briefly describe our approach to development.

2.1. Development methodology

Rather than use a single formal development methodology, the ModeShape project incorporates

those techniques, activities, and processes that are practical and work for the project. In fact, the

committers are given a lot of freedom for how they develop the components and features they

work on.

Nevertheless, we do encourage familiarity with several major techniques, including:

• Agile software development [http://en.wikipedia.org/wiki/Agile_software_development]

includes those software methodologies (e.g., Scrum) that promote development iterations and

open collaboration. While the ModeShape project doesn't follow these closely, we do emphasize

the importance of always having running software and using running software as a measure of

progress. The ModeShape project also wants to move to more frequent releases (on the order

of 4-6 weeks)

• Test-driven development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development]

techniques encourage first writing test cases for new features and functionality, then changing

the code to add the new features and functionality, and finally the code is refactored to clean-up

and address any duplication or inconsistencies.

• Behavior-driven development (BDD) [http://behaviour-driven.org/] is an evolution of TDD,

where developers specify the desired behaviors first (rather than writing "tests"). In reality, this

BDD adopts the language of the user so that tests are written using words that are meaningful to

users. With recent test frameworks (like JUnit 4.4), we're able to write our unit tests to express

the desired behavior. For example, a test class for sequencer implementation might have a test

method shouldNotThrowAnErrorWhenStreamIsNull(), which is very easy to understand the

intent. The result appears to be a larger number of finer-grained test methods, but which are

more easily understood and easier to write. In fact, many advocates of BDD argue that one of

the biggest challenges of TDD is knowing what tests to write in the beginning, whereas with

BDD the shift in focus and terminology make it easier for more developers to enumerate the

tests they need.

• Lean software development [http://en.wikipedia.org/wiki/Lean_software_development]

is an adaptation of lean manufacturing techniques [http://en.wikipedia.org/wiki/

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://behaviour-driven.org/
http://behaviour-driven.org/
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Lean_manufacturing
http://en.wikipedia.org/wiki/Lean_manufacturing

Chapter 2. Developer tools

16

Lean_manufacturing], where emphasis is placed on eliminating waste (e.g., defects,

unnecessary complexity, unnecessary code/functionality/features), delivering as fast as

possible, deferring irrevocable decisions as much as possible, continuous learning

(continuously adapting and improving the process), empowering the team (or community, in

our case), and several other guidelines. Lean software development can be thought of as an

evolution of agile techniques in the same way that behavior-driven development is an evolution

of test-driven development. Lean techniques help the developer to recognize and understand

how and why features, bugs, and even their processes impact the development of software.

2.2. JDK

Currently, ModeShape is developed and built using JDK 6 [http://java.sun.com/javase/downloads/

widget/jdk6.jsp]. So if you're trying to get ModeShape to compile locally, you should make sure

you have the JDK 6 installed and are using it. If you're a contributor, you should make sure that

you're using JDK 6 before committing any changes.

When installing a JDK, simply follow the procedure for your particular platform. On most platforms,

this should set the JAVA_HOME environment variable. But if you run into any problems, first check

that this environment variable was set to the correct location, and then check that you're running

the version you expect by running the following command:

$ java -version

If you don't see the correct version, double-check your JDK installation.

2.3. JIRA

ModeShape uses JIRA [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] as its bug

tracking, issue tracking, and project management tool. This is a browser-based tool, with very

good functionality for managing the different tasks. It also serves as the community's roadmap,

since we can define new features and manage them alongside of the bugs and other issues.

Although most of the issues have been created by community members, we encourage any users

to suggest new features, log defects, or identify shortcomings in ModeShape.

The ModeShape community also encourages its members to work only issues that are managed

in JIRA, and preferably those that are targeted to the current release effort. If something isn't in

JIRA but needs to get done, then create an issue before you start working on the code changes.

Once you have code changes, you can upload a patch to the JIRA issue if the change is complex,

if you want someone to review it, or if you don't have commit privileges and have fixed a bug.

2.4. Subversion

ModeShape uses Subversion as its source code management system, and specifically

the instance at JBoss.org [http://www.jboss.org]. Although you can view the trunk [http:/

http://en.wikipedia.org/wiki/Lean_manufacturing
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://www.jboss.org
http://www.jboss.org
http://anonsvn.jboss.org/repos/modeshape/trunk/
http://anonsvn.jboss.org/repos/modeshape/trunk/

Subversion

17

/anonsvn.jboss.org/repos/modeshape/trunk/] of the Subversion repository directly (or using

FishEye [http://fisheye.jboss.org/browse/modeshape/trunk]) through your browser, in order to get

more than just a few files of the latest version of the source code, you probably want to have an

SVN client installed. Several IDE's have SVN support included (or available as plugins), but having

the command-line SVN client is recommended. See http://subversion.tigris.org/ for downloads

and instructions for your particular platform.

Here are some useful URLs for the ModeShape Subversion:

Table 2.1. SVN URLs for ModeShape

Repository URL

Anonymous Access URL http://anonsvn.jboss.org/repos/modeshape/

trunk/

Secure Developer Access URL https://svn.jboss.org/repos/modeshape/trunk/

FishEye Code Browser http://fisheye.jboss.org/browse/modeshape/

trunk/

When committing to SVN, be sure to include in a commit comment that includes the JIRA issue that

the commit applies to and a very good and thorough description of what was done. It only takes a

minute or two to be very clear about the change. And including the JIRA issue (e.g., "MODE-123")

in the comment allows the JIRA system to track the changes that have been made for each issue.

Also, any single SVN commit should apply to one and only one JIRA issue. Doing this helps

ensure that each commit is atomic and focused on a single activity. There are exceptions to this

rule, but they are rare.

Sometimes you may have some local changes that you don't want to (or aren't allowed to) commit.

You can make a patch file and upload it to the JIRA issue, allowing other committers to review the

patch. However, to ensure that patches are easily applied, please use SVN to create the patch.

To do this, simply do the following in the top of the codebase (e.g., the trunk directory):

$ svn diff . > ~/MODE-000.patch

where MODE-000 represents the ModeShape issue number. Note that the above command places

the patch file in your home directory, but you can place the patch file anywhere. Then, simply use

JIRA to attach the patch file to the particular issue, also adding a comment that describes the

version number against which the patch was created.

To apply a patch, you usually want to start with a workspace that has no changes. Download the

patch file, then issue the following command (again, from the top-level of the workspace):

$ patch -E -p0 < ~/MODE-000.patch

http://anonsvn.jboss.org/repos/modeshape/trunk/
http://fisheye.jboss.org/browse/modeshape/trunk
http://fisheye.jboss.org/browse/modeshape/trunk
http://subversion.tigris.org/
http://anonsvn.jboss.org/repos/modeshape/trunk/
http://anonsvn.jboss.org/repos/modeshape/trunk/
https://svn.jboss.org/repos/modeshape/trunk/
http://fisheye.jboss.org/browse/modeshape/trunk/
http://fisheye.jboss.org/browse/modeshape/trunk/

Chapter 2. Developer tools

18

The "-E" option specifies to delete any files that were made empty by the application of the patch,

and the "-p0" option instructs the patch tool to not change any of the paths. After you run this

command, your working area should have the changes defined by the patch.

2.5. Git

Several contributors are using Git [http://git-scm.com/] on their local development machines.

This allows the developer to use Git branches, commits, merges, and other Git tools,

but still using the ModeShape Subversion repository. For more information, see our

blog [http://jbossmodeshape.blogspot.com/2009/05/git-and-svn-beginning.html] posts [http://

jbossmodeshape.blogspot.com/2009/05/git-it-together-with-subversion.html] on the topic.

2.6. Maven

ModeShape uses Maven 2 for its build system, as is this example. Using Maven 2 has

several advantages, including the ability to manage dependencies. If a library is needed, Maven

automatically finds and downloads that library, plus everything that library needs. This means

that it's very easy to build the examples - or even create a maven project that depends on the

ModeShape JARs.

To use Maven with ModeShape, you'll need to have JDK 6 and Maven 2.0.9 (or higher).

Maven can be downloaded from http://maven.apache.org/, and is installed by unzipping the

maven-2.0.9-bin.zip or maven-2.0.11-bin.zip file to a convenient location on your local disk.

Then add $MAVEN_HOME/bin to your path.

While you're adding $MAVEN_HOME/bin to your path, you should also set the $MAVEN_OPTS

environment variable to "-Xmx384m". If you don't do this, you will likely see an

java.lang.OutOfMemoryError sometime during a full build.

The JBoss Maven repository provides a central location for not only the artifacts produced by

the JBoss.org projects (well, at least those that use Maven), but also is where those projects

can place the artifacts that they depend on. The new JBoss.org Maven repository [https://

repository.jboss.org/nexus] uses the Nexus [http://nexus.sonatype.org/] repository manager, and

is configured to proxy other Maven repositories and automatically cache the third-party artifacts

used in our builds. This helps ensure that developers have easy access to these artifacts (including

sources) and that the project (and dependencies) can always be rebuilt when needed.

For more information about the JBoss Maven repository, see

the announcement [http://community.jboss.org/en/build/blog/2010/04/20/announcement--

new-maven-repository-infrastructure] and documentation [http://community.jboss.org/wiki/

MavenRepository].

Note

Previous versions of ModeShape made use of the older JBoss.org Maven

repository, and required modifying your local ~/.m2/settings.xml file. This is no

http://git-scm.com/
http://git-scm.com/
http://jbossmodeshape.blogspot.com/2009/05/git-and-svn-beginning.html
http://jbossmodeshape.blogspot.com/2009/05/git-and-svn-beginning.html
http://jbossmodeshape.blogspot.com/2009/05/git-it-together-with-subversion.html
http://jbossmodeshape.blogspot.com/2009/05/git-it-together-with-subversion.html
http://jbossmodeshape.blogspot.com/2009/05/git-it-together-with-subversion.html
http://maven.apache.org/
https://repository.jboss.org/nexus
https://repository.jboss.org/nexus
https://repository.jboss.org/nexus
http://nexus.sonatype.org/
http://nexus.sonatype.org/
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository

Building

19

longer required by users or contributors, since the ModeShape POM file is set up

to reference the new JBoss.org repository.

However, if you are one of the ModeShape contributors that will be making

and publishing ModeShape releases into the JBoss.org repository, you will need

to modify your ~/.m2/settings.xml file to contain your JBoss.org repository

credentials. For details, see the documentation for developers.

2.6.1. Building

There are just a few commands that are useful for building ModeShape (and it's subprojects).

Usually, these are issued while at the top level of the code (usually just below trunk/), although

issuing them inside a subproject just applies to that subproject.

Table 2.2. Useful Maven commands

Command Description

mvn clean Clean up all built artifacts (e.g., the target/

directory in each project)

mvn clean install Called the "quick build". Clean up all

produced artifacts; compile the source code

and test cases; run all of the unit tests;

and install the resulting JAR artifact(s) into

your local Maven repository (e.g, usually

~/.m2/repository). This is often what

developers run prior to checking in changes,

since it generally runs quickly. Note that no

integration tests are performed, and HSQLDB

is used when a database is needed.

mvn clean install -P integration This "integration build" does everything the

"quick" build does plus compiling and running

the integration tests, documentation, and

examples, all of which add several minutes

over the "quick build". Since the integration

tests include running the JCR TCK tests

against a variety of configurations with

different connectors, this build should be

run before committing changes to the JCR

implementation code. Also, HSQLDB is used

when a database is needed.

mvn clean install -

Ddatabase=dbprofile

Same as the "quick build", except that it

specifies the database management system

that is to be used by the tests. Options for

"dbprofile" values are: "hsqldb", "h2",

Chapter 2. Developer tools

20

Command Description

"postgresql_local", "postgresql8",

"mysql5", "oracle9i", "oracle10g",

"oracle11g", "db2v8", "db2v9", "sybase15",

and "mssql2005". The database connection

information for these database profiles are in

the parent "pom.xml" file, and most of these

are configured to use database instances

within the JBoss Quality Assurance lab and

are accessible only to Red Hat employees.

However, feel free to add your own profiles or

even change the settings in the POM file to

suit your needs.

mvn clean install -

Ddatabase=dbprofile -P integration

This does the same as the "integration

build", except that it specifies the database

management system that is to be used by

the unit and integration tests. Options for the

"dbprofile" values are the same as listed

above.

mvn clean install -P assembly Clean up all produced artifacts; compile the

source code and test cases; run all of the

unit tests; install the resulting JAR artifact(s);

compile and run all integration tests; build

the documentation; produce the JavaDoc;

and build the ZIP assemblies for the source,

binary distribution, documentation, JavaDoc,

and examples. HSQLDB is used when a

database is needed.

2.7. Continuous integration with Hudson

ModeShape's continuous integration is done with several Hudson jobs on JBoss.org [http://

www.jboss.org]. These jobs run periodically and basically run the Maven build process. Any build

failures or test failures are reported, as are basic statistics and history for each job.

Table 2.3. Continuous integration jobs

Job Description

Continuous [http://hudson.jboss.org/

hudson/view/ModeShape/job/

ModeShape%20continuous/]

Continuous build that runs an integration build

after changes are committed to SVN. SVN is

polled every 15 minutes.

Nightly [http://hudson.jboss.org/

hudson/view/ModeShape/job/

ModeShape%20nightly%20integration/]

Integration build that runs every night (usually

around 2 a.m. EDT), regardless of whether

http://www.jboss.org
http://www.jboss.org
http://www.jboss.org
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20continuous/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20continuous/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20continuous/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20continuous/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20nightly%20integration/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20nightly%20integration/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20nightly%20integration/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20nightly%20integration/

Eclipse IDE

21

Job Description

changes have been committed to SVN since

the previous night.

JCR 2.0 API Compatibility [http://

hudson.jboss.org/hudson/view/ModeShape/

job/ModeShape%20API%20compatibility/]

Continuous build that runs every night

(usually around 2 a.m. EDT), regardless of

whether changes have been committed to

SVN since the previous night. This job runs a

full integration build with all of the JCR TCK

unit tests, and may have several failures.

2.8. Eclipse IDE

Many of the ModeShape committers use the Eclipse IDE, and all project files required by Eclipse

are committed in SVN, making it pretty easy to get an Eclipse workspace running with all of the

ModeShape projects.

We're using either the Ganymede or Helios (latest) versions of Eclipse, available from Eclipse.org

[http://www.eclipse.org/]. Simply follow the instructions for your platform.

After Eclipse is installed, create a new workspace. Before importing the ModeShape projects,

import (via File->Import->Preferences) the subset of the Eclipse preferences by importing the

eclipse-preferences.epf file (located under trunk). Then, open the Eclipse preferences and

open the Java->Code Style-> Formatter preference page, and press the "Import" button and

choose the eclipse-code-formatter-profile.xml file (also located under trunk). This will

load the code formatting preferences for the ModeShape project.

Then install Eclipse plugins for SVN, Maven, and optionally Git. (Remember, you will have to

restart Eclipse after installing them.) We use the following plugins:

Table 2.4. Eclipse Subversion Plugins

Eclipse Plugins Installation documentation

Subversive SVN Client http://www.polarion.com/products/svn/

subversive/download.php

Maven Integration for Eclipse http://m2eclipse.sonatype.org/installing-

m2eclipse.html

Git Integration for Eclipse http://www.eclipse.org/egit/download/

After you check out the ModeShape codebase, you can import the ModeShape Maven projects

into Eclipse as Eclipse projects. To do this, go to "File->Import->Existing Projects", navigate to

the trunk/ folder in the import wizard, and then check each of the subprojects that you want to

have in your workspace. Don't forget about the projects under extensions/ or docs/.

http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20API%20compatibility/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20API%20compatibility/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20API%20compatibility/
http://hudson.jboss.org/hudson/view/ModeShape/job/ModeShape%20API%20compatibility/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.polarion.com/products/svn/subversive/download.php
http://www.polarion.com/products/svn/subversive/download.php
http://m2eclipse.sonatype.org/installing-m2eclipse.html
http://m2eclipse.sonatype.org/installing-m2eclipse.html
http://www.eclipse.org/egit/download/

Chapter 2. Developer tools

22

2.9. Releasing

This section outlines the basic process of releasing ModeShape. This must be done either by the

project lead or only after communicating with the project lead.

Before continuing, your local workspace should contain no changes and should be a perfect

reflection of Subversion. You can verify this by getting the latest from Subversion

$ svn update

and ensuring that you have no additional changes with

$ svn status

You may also want to note the revision number for use later on in the process. The release number

is returned by the svn update command, but may also be found using

$ svn info

At this point, you're ready to verify that everything builds normally.

2.9.1. Building all artifacts and assemblies

By default, the project's Maven build process does not build the documentation, JavaDocs, or

assemblies. These take extra time, and most of our builds don't require them. So the first step

of releasing ModeShape is to use Maven to build all of regular artifacts (e.g., JARs) and these

extra documents and assemblies.

Note

Before running Maven commands to build the releases, increase the memory

available to Maven with this command: $ export MAVEN_OPTS=-Xmx512m

To perform this complete build, issue the following command while in the trunk/ directory:

$ mvn -P assembly clean install

This command runs the "clean" and "install" goals using the "assembly" profile, which adds the

production of JavaDocs, the Getting Started document, the Reference Guide document, the

Determine the version to be released

23

Getting Started examples, integration tests, and several ZIP archives. The order of the goals is

important.

After this build has completed, verify that the assemblies under target/ have actually been

created and that they contain the correct information. At this point, we know that the actual Maven

build process is building everything we want and will complete without errors. We can now proceed

with preparing for the release.

2.9.2. Determine the version to be released

The version being released should match the JIRA [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] road map. Make

sure that all issues related to the release are closed. The project lead should be notified and

approve that the release is taking place.

2.9.3. Release dry run

The next step is to ensure that all information in the POM is correct and contains all the information

required for the release process. This is called a dry run, and is done with the Maven "release"

plugin:

$ mvn -P assembly release:prepare -DdryRun=true

This may download a lot of Maven plugins if they already haven't been downloaded, but it will

eventually prompt you for the release version of each of the Maven projects, the tag name for the

release, and the next development versions (again for each of the Maven projects). The default

values are probably acceptable; if not, then check that the "<version>" tags in each of the POM

files is correct and end with "-SNAPSHOT".

After the dry run completes you should clean up the files that the release plugin created in the

dry run:

$ mvn -P assembly release:clean

2.9.4. Prepare for the release

Run the prepare step (without the dryRun option):

$ mvn -P assembly release:prepare

http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel

Chapter 2. Developer tools

24

You will again be prompted for the release versions and tag name. These should be the same as

what was used during the dry run. This will run the same steps as the dry run, with the additional

step of tagging the release in SVN.

If there are any problems during this step, you should go back and try the dry run option. But

after this runs successfully, the release will be tagged in SVN, and the pom.xml files in SVN under

/trunk will have the next version in the "<version>" values. However, the artifacts for the release

are not yet published. That's the next step.

2.9.5. Perform the release

At this point, the release's artifacts need to be published to the JBoss Maven repository. This next

command check outs the files from the release tag created earlier (into a trunk/target/checkout

directory), runs a build, and then deploys the generated artifacts. Note that this ensures that the

artifacts are built from the tagged code.

$ mvn release:perform -DuseReleaseProfile=false

Note

If during this process you get an error finding the released artifacts in your local

Maven repository, you may need to go into the trunk/target/checkout folder

and run $ mvn install. This is a simple workaround to make the artifacts available

locally. Another option to try is adding -Dgoals=install,assembly to the $ mvn

release:perform... command above.

The release has been performed, but we still need to build and deploy the real artifacts to the

JBoss Maven repository. To do this, go to a working area and check out the recently-produced

SVN tag (using the correct {release-number}):

$ svn checkout https://anonsvn.jboss.org/repos/modeshape/tags/modeshape-{release-number}/

Then, go into the new directory, and perform a Maven deploy:

$ mvn clean deploy

This will rebuild all the artifacts (from your local copy of the tagged source) and deploy them to

the JBoss.org Maven repository in staging area. Then, using the JBoss.org web interface, close

the staging area and (after validating the artifacts uploaded to the staging area) promote them

Summary

25

into the releases repository (see the repository documentation [http://community.jboss.org/wiki/

MavenDeployingaRelease] for details).

At this point, the software has been tagged, released, and deployed to the JBoss.org Maven

repository. The last tasks are to update the ModeShape.org [http://www.modeshape.org/] website

(using Magnolia) and publish the release onto the project's downloads [http://www.jboss.org/

modeshape/downloads.html] and documentation [http://www.modeshape.org//docs] pages using

sftp and rsync (Red Hat employees only).

2.10. Summary

In this chapter, we described the various aspects of developing code for the ModeShape project.

Next, we must discuss the testing practices for ModeShape project. This is the topic of the next

chapter.

http://community.jboss.org/wiki/MavenDeployingaRelease
http://community.jboss.org/wiki/MavenDeployingaRelease
http://community.jboss.org/wiki/MavenDeployingaRelease
http://www.modeshape.org/
http://www.modeshape.org/
http://www.jboss.org/modeshape/downloads.html
http://www.jboss.org/modeshape/downloads.html
http://www.jboss.org/modeshape/downloads.html
http://www.modeshape.org//docs
http://www.modeshape.org//docs

26

Chapter 3.

27

Testing
The ModeShape project uses automated testing to verify that the software is doing what it's

supposed to and not doing what it shouldn't do. These automated tests are run continuously and

also act as regression tests, ensuring that we know if any problems we find and fix reappear later.

All of our tests are executed as part of our Maven build process, and the entire build process

(including the tests) is automatically run using Hudson continuous integration system.

3.1. Unit tests

Unit tests verify the behavior of a single class (or small set of classes) in isolation from other

classes. We use the JUnit 4.4 testing framework, which has significant improvements over earlier

versions and makes it very easy to quickly write unit tests with little extra code. We also frequently

use the Mockito library to help create mock implementations of other classes that are not under

test but are used in the tests.

Unit tests should generally run quickly and should not require large assemblies of components.

Additionally, they may rely upon the file resources included in the project, but these tests should

require no external resources (like databases or servers). Note that our unit tests are run during

the "test" phase of the standard Maven lifecycle [http://maven.apache.org/guides/introduction/

introduction-to-the-lifecycle.html]. This means that they are executed against the raw .class files

created during compilation.

Developers are expected to run all of the ModeShape unit tests in their local environment before

committing changes to SVN. So, if you're a developer and you've made changes to your local

copy of the source, you can run those tests that are related to your changes using your IDE or

with Maven (or any other mechanism). But before you commit your changes, you are expected

to run a full Maven build using mvn clean install (in the "trunk/" directory). Please do not rely

upon continuous integration to run all of the tests for you - the CI system is there to catch the

occasional mistakes and to also run the integration tests.

3.2. Integration tests

While unit tests test individual classes in (relative) isolation, the purpose of integration tests are

to verify that assemblies of classes and components are behaving correctly. These assemblies are

often the same ones that end users will actually use. In fact, integration tests are executed during

the "integration-test" phase of the standard Maven lifecycle [http://maven.apache.org/guides/

introduction/introduction-to-the-lifecycle.html], meaning they are executed against the packaged

JARs and artifacts of the project.

Integration tests also use the JUnit 4.4 framework, so they are again easy to write and follow

the same pattern as unit tests. However, because they're working with larger assemblies of

components, they often will take longer to set up, longer to run, and longer to tear down. They

also may require initializing "external resources", like databases or servers.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

Chapter 3. Testing

28

Note, that while external resources may be required, care should be taken to minimize

these dependencies and to ensure that most (if not all) integration tests may be run by

anyone who downloads the source code. This means that these external resources should

be available and set up within the tests. For example, use in-memory databases where

possible. Or, if a database is required, use an open-source database (e.g., MySQL or

PostgreSQL). And when these external resources are not available, it should be obvious from

the test class names and/or test method names that it involved an external resource (e.g.,

"MySqlConnectorIntegrationTest.shouldFindNodeStoredInDatabase()").

3.3. Writing tests

As mentioned in the introduction, the ModeShape project doesn't follow any one methodology

or process. Instead, we simply have a goal that as much code as possible is tested to ensure it

behaves as expected. Do we expect 100% of the code is covered by automated tests? No, but

we do want to test as much as we can. Maybe a simple JavaBean class doesn't need many tests,

but any class with non-trivial logic should be tested.

We do encourage writing tests either before or while you write the code. Again, we're not blindly

following a methodology. Instead, there's a very practical reason: writing the tests early on helps

you write classes that are testable. If you wait until after the class (or classes) are done, you'll

probably find that it's not easy to test all of the logic (especially the complicated logic).

Another suggestion is to write tests so that they specify and verify the behavior that is expected

from a class or component. One challenge developers often have is knowing what they should

even test and what the tests should look like. This is where Behavior-driven development

(BDD) [http://behaviour-driven.org/] helps out. If you think about what a class' behaviors are

supposed to be (e.g., requirements), simply capture those requirements as test methods (with

no implementations). For example, a test class for sequencer implementation might have a

test method shouldNotThrowAnErrorWhenTheSuppliedStreamIsNull() { }. Then, after you

enumerate all the requirements you can think of, go back and start implementing the test methods.

If you look at the existing test cases, you'll find that the names of the unit and integration tests

in ModeShape follow a naming style, where the test method names are readable sentences.

Actually, we try to name the test methods and the test classes such that they form a concisely-

worded requirement. For example,

InMemorySequencerTest.shouldNotThrowAnErrorWhenTheSuppliedStreamIsNull()

is easily translated into a readable requirement:

InMemorySequencer should not throw an error when the supplied stream is null.

http://behaviour-driven.org/
http://behaviour-driven.org/
http://behaviour-driven.org/

Technology Compatibility Kit (TCK) tests

29

In fact, at some point in the future, we'd like to process the source to automatically generate a list

of the behavior specifications that are asserted by the tests.

But for now, we write tests - a lot of them. And by following a few simple conventions and practices,

we're able to do it quickly and in a way that makes it easy to understand what the code is supposed

to do (or not do).

3.4. Technology Compatibility Kit (TCK) tests

Many Java specifications provide TCK test suites that can be used to check or verify that an

implementation correctly implements the API or SPI defined by the specification. These TCK tests

vary by technology, but JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] does provide TCK tests

that ensure that a JCR repository implementation exhibits the correct and expected behavior.

ModeShape now implements all of the required JCR 2.0 features:

• repository acquisition

• authentication

• reading/navigating

• query

• export

• node type discovery

• permissions and capability checking

and implements most of the optional JCR 2.0 features:

• writing

• import

• observation

• workspace management

• versioning

• locking

• node type management

• same-name siblings

• orderable child nodes

ModeShape supports the JCR-SQL2 and JCR-QOM query languages defined in JSR-283 [http:/

/www.jcp.org/en/jsr/detail?id=283], plus the XPath and JCR-SQL languages defined in JSR-

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170

Chapter 3. Testing

30

170 [http://www.jcp.org/en/jsr/detail?id=170] but deprecated in JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283].

The ModeShape project also frequently runs the JCR TCK unit tests from the reference

implementation. (These tests are not the official TCK, but are used within the official TCK.) Most

of these unit tests are run in the modeshape-jcr module against the in-memory repository to

ensure our JCR implementation behaves correctly, and the same tests are run in the modeshape-

integration-tests module against a variety of connectors to ensure they're implemented

correctly. The modeshape-jcr-tck module runs all of these TCK unit tests, and currently there

are only a handful of failures due to known issues (see the JCR specification support section for

details).

The ModeShape project has not yet been certified to be fully-compliant with the JCR 2.0

specification, but does plan on attaining this certification in the very near future.

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Part II. ModeShape Core
The ModeShape project organizes the codebase into a number of subprojects. The most

fundamental are those core libraries, including the graph API, connector framework, sequencing

framework, as well as the configuration and engine in which all the components run. These are

all topics covered in this part of the document.

The ModeShape implementation of the JCR API [http://www.jcp.org/en/jsr/detail?id=283] as well

as some other JCR-related components are covered in the next part.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 4.

33

Execution Context
The various components of ModeShape are designed as plain old Java objects, or POJOs (Plain

Old Java Objects). And rather than making assumptions about their environment, each component

instead requires that any external dependencies necessary for it to operate must be supplied to

it. This pattern is known as Dependency Injection, and it allows the components to be simpler and

allows for a great deal of flexibility and customization in how the components are configured.

The approach that ModeShape takes is simple: a simple POJO that represents everything about

the environment in which components operate. Called ExecutionContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html], it contains references

to most of the essential facilities, including: security (authentication and authorization);

namespace registry; name factories; factories for properties and property values; logging; and

access to class loaders (given a classpath). Most of the ModeShape components require

an ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] and thus have access to all these facilities.

The ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] is a concrete class that is instantiated with the no-argument constructor:

public class ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/ExecutionContext.html] implements ClassLoaderFactory [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/

ClassLoaderFactory.html] {

 /**

 * Create an instance of an execution context, with default implementations for all components.

 */

 public ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/ExecutionContext.html]() { ... }

 /**

 * Get the factories that should be used to create values for {@link Property properties}.

 * @return the property value factory; never null

 */

 public ValueFactories [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/ValueFactories.html] getValueFactories() {...}

 /**

 * Get the namespace registry for this context.

 * @return the namespace registry; never null

 */

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html

Chapter 4. Execution Context

34

 public NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/NamespaceRegistry.html] getNamespaceRegistry() {...}

 /**

 * Get the factory for creating {@link Property} objects.

 * @return the property factory; never null

 */

 public PropertyFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PropertyFactory.html] getPropertyFactory() {...}

 /**

 * Get the security context for this environment.

 * @return the security context; never null

 */

 public SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] getSecurityContext() {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should

<i>not</i>

 also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param clazz the class that is doing the logging

 * @return the logger, named after clazz; never null

 */

 public Logger [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/

Logger.html] getLogger(Class<?> clazz) {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should

<i>not</i>

 also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param name the name for the logger

 * @return the logger, named after clazz; never null

 */

 public Logger [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/

Logger.html] getLogger(String name) {...}

 ...

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/util/Logger.html

Security

35

}

The fact that so many of the ModeShape components take

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] instances gives us some interesting possibilities. For

example, one execution context instance can be used as the

highest-level (or "application-level") context for all of the services

(e.g., RepositoryService [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

repository/RepositoryService.html], SequencingService [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html], etc.). Then, an

execution context could be created for each user that will be performing operations, and that user's

context can be passed around to not only provide security information about the user but also to

allow the activities being performed to be recorded for user feedback, monitoring and/or auditing

purposes.

As mentioned above, the starting point is to create a default execution context, which will have

all the default components:

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] context = new ExecutionContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html]();

Once you have this top-level context, you can start creating subcontexts with different

components, and different security contexts. (Of course, you can create a subcontext from any

instance.) To create a subcontext, simply use one of the with(...) methods on the parent

context. We'll show examples later on in this chapter.

4.1. Security

ModeShape uses a simple abstraction layer to isolate it from the security infrastructure used

within an application. A SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/SecurityContext.html] represents the context of an authenticated user, and is

defined as an interface:

public interface SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/SecurityContext.html] {

 /**

 * Get the name of the authenticated user.

 * @return the authenticated user's name

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html

Chapter 4. Execution Context

36

 */

 String getUserName();

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName);

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 void logout();

}

Every ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/ExecutionContext.html] has a SecurityContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/SecurityContext.html] instance, though the top-level

(default) execution context does not represent an authenticated user. But you can create a

subcontext for a user authenticated via JAAS:

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] context = ...

String username = ...

char[] password = ...

String jaasRealm = ...

SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] securityContext = new JaasSecurityContext(jaasRealm, username,

 password);

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] userContext = context.with(securityContext);

In the case of JAAS, you might not have the password but would rather prompt the user. In that

case, simply create a subcontext with a different security context:

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] context = ...

String jaasRealm = ...

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

JAAS

37

CallbackHandler [http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/

CallbackHandler.html] callbackHandler = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] userContext = context.with(new JaasSecurityContext(jaasRealm,

 callbackHandler);

Of course if your application has a non-JAAS authentication and authorization system, you can

simply provide your own implementation of SecurityContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/SecurityContext.html]:

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] context = ...

SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] mySecurityContext = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] myAppContext = context.with(mySecurityContext);

These ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/ExecutionContext.html]s then represent the authenticated user in any component that uses

the context.

4.1.1. JAAS

One of the SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/SecurityContext.html] implementations provided by ModeShape is the

JaasSecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

JaasSecurityContext.html], which delegates any authentication or authorization requests to a

Java Authentication and Authorization Service (JAAS) [http://java.sun.com/javase/technologies/

security/] provider. This is the standard approach for authenticating and authorizing in Java.

There are quite a few JAAS providers available, but one of the best and most powerful providers

is JBoss Security [http://www.jboss.org/jbosssecurity/], the open source security framework used

by JBoss. JBoss Security offers a number of JAAS login modules, including:

• User-Roles Login Module is a simple javax.security.auth.login.LoginContext

implementation that uses usernames and passwords stored in a properties file.

• Client Login Module prompts the user for their username and password.

• Database Server Login Module uses a JDBC database to authenticate principals and

associate them with roles.

• LDAP Login Module uses an LDAP directory to authenticate principals. Two implementations

are available.

http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/JaasSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/JaasSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/JaasSecurityContext.html
http://java.sun.com/javase/technologies/security/
http://java.sun.com/javase/technologies/security/
http://java.sun.com/javase/technologies/security/
http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/

Chapter 4. Execution Context

38

• Certificate Login Module authenticates using X509 certificates, obtaining roles from either

property files or a JDBC database.

• Operating System Login Module authenticates using the operating system's mechanism.

and many others. Plus, JBoss Security also provides other capabilities, such as using XACML

policies or using federated single sign-on. For more detail, see the JBoss Security [http://

www.jboss.org/jbosssecurity/] project.

4.1.2. Web application security

If ModeShape is being used within a web application, then it is probably desirable to reuse

the security infrastructure of the application server. This can be accomplished by implementing

the SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] interface with an implementation that delegates to the HttpServletRequest.

Then, for each request, create a SecurityContextCredentials [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html] instance around

your SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html], and use that credentials to obtain a JCR Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html].

Here is an example of the SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/SecurityContext.html] implementation that uses the servlet request:

@Immutable

public class ServletSecurityContext implements SecurityContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html] {

 private final String userName;

 private final HttpServletRequest request;

 /**

 * Create a {@link ServletSecurityContext} with the supplied

 * {@link HttpServletRequest servlet information}.

 *

 * @param request the servlet request; may not be null

 */

 public ServletSecurityContext(HttpServletRequest request) {

 this.request = request;

 this.userName = request.getUserPrincipal() != null ? request.getUserPrincipal().getName()

 : null;

 }

 /**

 * Get the name of the authenticated user.

http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html

Namespace Registry

39

 * @return the authenticated user's name

 */

 public String getUserName() {

 return userName;

 }

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName) {

 request.isUserInRole(roleName);

 }

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 public void logout() {

 }

}

Then use this to create a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html]:

HttpServletRequest request = ...

Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html]

 repository = engine.getRepository("my repository");

SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] securityContext = new ServletSecurityContext(httpServletRequest);

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] servletContext = context.with(securityContext);

We'll see later in the JCR chapter how this can be used to obtain a JCR Session [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] for the authenticated user.

4.2. Namespace Registry

As we saw earlier, every ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/ExecutionContext.html] has a registry of namespaces. Namespaces are

used throughout the graph API (as we'll see soon), and the prefix associated with each

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

Chapter 4. Execution Context

40

namespace makes for more readable string representations. The namespace registry tracks all

of these namespaces and prefixes, and allows registrations to be added, modified, or removed.

The interface for the NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/NamespaceRegistry.html] shows how these operations are done:

public interface NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/NamespaceRegistry.html] {

 /**

 * Return the namespace URI that is currently mapped to the empty prefix.

 * @return the namespace URI that represents the default namespace,

 * or null if there is no default namespace

 */

 String getDefaultNamespaceUri();

 /**

 * Get the namespace URI for the supplied prefix.

 * @param prefix the namespace prefix

 * @return the namespace URI for the supplied prefix, or null if there is no

 * namespace currently registered to use that prefix

 * @throws IllegalArgumentException if the prefix is null

 */

 String getNamespaceForPrefix(String prefix);

 /**

 * Return the prefix used for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @param generateIfMissing true if the namespace URI has not already been registered and the

 * method should auto-register the namespace with a generated prefix, or false if the

 * method should never auto-register the namespace

 * @return the prefix currently being used for the namespace, or "null" if the namespace has

 * not been registered and "generateIfMissing" is "false"

 * @throws IllegalArgumentException if the namespace URI is null

 * @see #isRegisteredNamespaceUri(String)

 */

 String getPrefixForNamespaceUri(String namespaceUri, boolean generateIfMissing);

 /**

 * Return whether there is a registered prefix for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @return true if the supplied namespace has been registered with a prefix, or false otherwise

 * @throws IllegalArgumentException if the namespace URI is null

 */

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html

Namespace Registry

41

 boolean isRegisteredNamespaceUri(String namespaceUri);

 /**

 * Register a new namespace using the supplied prefix, returning the namespace URI previously

 * registered under that prefix.

 * @param prefix the prefix for the namespace, or null if a namesapce prefix should be generated

 * automatically

 * @param namespaceUri the namespace URI

 * @return the namespace URI that was previously registered with the supplied prefix, or null

 if the

 * prefix was not previously bound to a namespace URI

 * @throws IllegalArgumentException if the namespace URI is null

 */

 String register(String prefix, String namespaceUri);

 /**

 * Unregister the namespace with the supplied URI.

 * @param namespaceUri the namespace URI

 * @return true if the namespace was removed, or false if the namespace was not registered

 * @throws IllegalArgumentException if the namespace URI is null

 * @throws NamespaceException if there is a problem unregistering the namespace

 */

 boolean unregister(String namespaceUri);

 /**

 * Obtain the set of namespaces that are registered.

 * @return the set of namespace URIs; never null

 */

 Set<String> getRegisteredNamespaceUris();

 /**

 * Obtain a snapshot of all of the {@link Namespace namespaces} registered at the time this

 method

 * is called. The resulting set is immutable, and will not reflect changes made to the registry.

 * @return an immutable set of Namespace [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html] objects reflecting a

 snapshot of the registry; never null

 */

 Set<Namespace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/NamespaceRegistry.Namespaces.html]> getNamespaces();

}

This interfaces exposes Namespace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/NamespaceRegistry.Namespaces.html] objects that are immutable:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html

Chapter 4. Execution Context

42

@Immutable

interface Namespace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/NamespaceRegistry.Namespaces.html] extends Comparable<Namespace [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

NamespaceRegistry.Namespaces.html]> {

 /**

 * Get the prefix for the namespace

 * @return the prefix; never null but possibly the empty string

 */

 String getPrefix();

 /**

 * Get the URI for the namespace

 * @return the namespace URI; never null but possibly the empty string

 */

 String getNamespaceUri();

}

ModeShape actually uses several implementations of NamespaceRegistry [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html], but you

can even implement your own and create ExecutionContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html]s that use it:

NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/NamespaceRegistry.html] myRegistry = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyRegistry = context.with(myRegistry);

4.3. Class Loaders

ModeShape is designed around extensions: sequencers, connectors, MIME type detectors, and

class loader factories. The core part of ModeShape is relatively small and has few dependencies,

while many of the "interesting" components are extensions that plug into and are used by different

parts of the core or by layers above (such as the JCR implementation). The core doesn't really

care what the extensions do or what external libraries they require, as long as the extension fulfills

its end of the extension contract.

This means that you only need the core modules of ModeShape on the application classpath,

while the extensions do not have to be on the application classpath. And because the core

modules of ModeShape have few dependencies, the risk of ModeShape libraries conflicting

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

Class Loaders

43

with the application's are lower. Extensions, on the other hand, will likely have a lot of unique

dependencies. By separating the core of ModeShape from the class loaders used to load the

extensions, your application is isolated from the extensions and their dependencies.

Note

Of course, you can put all the JARs on the application classpath, too. This is what

the examples in the Getting Started [http://docs.jboss.org/modeshape/2.0.0.Final/

manuals/gettingstarted/html/index.html] document do.

But in this case, how does ModeShape load all the extension classes?

You may have noticed earlier that ExecutionContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] implements the

ClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

component/ClassLoaderFactory.html] interface with a single method:

public interface ClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/common/component/ClassLoaderFactory.html] {

 /**

 * Get a class loader given the supplied classpath. The meaning of the classpath

 * is implementation-dependent.

 * @param classpath the classpath to use

 * @return the class loader; may not be null

 */

 ClassLoader [http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html]

 getClassLoader(String [http://java.sun.com/javase/6/docs/api/java/lang/String.html]... classpath

);

}

This means that any component that has a reference to an ExecutionContext [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] has the

ability to create a class loader with a supplied class path. As we'll see later, the connectors and

sequencers are all defined with a class and optional class path. This is where that class path

comes in.

The actual meaning of the class path, however, is a function of the implementation. ModeShape

uses a StandardClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/common/component/StandardClassLoaderFactory.html] that just loads the classes

using the Thread's current context class loader (or, if there is none, delegates to the class loader

that loaded the StandardClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/common/component/StandardClassLoaderFactory.html] class). Of course, it's

possible to implement other ClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/

http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html

Chapter 4. Execution Context

44

api/org/modeshape/common/component/ClassLoaderFactory.html] with other implementations.

Then, just create a subcontext with your implementation:

ClassLoaderFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

component/ClassLoaderFactory.html] myClassLoaderFactory = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyClassLoaderFactories =

 context.with(myClassLoaderFactory);

Note

The modeshape-classloader-maven project has a class loader factory

implementation that parses the names into Maven coordinates [http://

maven.apache.org/pom.html#Maven_Coordinates], then uses those coordinates

to look up artifacts in a Maven 2 repository. The artifact's POM file is used to

determine the dependencies, which is done transitively to obtain the complete

dependency graph. The resulting class loader has access to these artifacts in

dependency order.

This class loader is not ready for use, however, since there is no tooling to help

populate the repository.

4.4. MIME Type Detectors

ModeShape often needs the ability to determine the MIME type for some binary content. When

uploading content into a repository, we may want to add the MIME type as metadata. Or, we may

want to make some processing decisions based upon the MIME type. So, ModeShape created

a small pluggable framework for determining the MIME type by using the name of the file (e.g.,

extensions) and/or by reading the actual content.

ModeShape defines a MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] interface that abstracts the implementation

that actually determines the MIME type given the name and content. If the detector is able to

determine the MIME type, it simply returns it as a string. If not, it merely returns null. Note, however,

that a detector must be thread-safe. Here is the interface:

@ThreadSafe

public interface MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] {

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#Maven_Coordinates
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

MIME Type Detectors

45

 /**

 * Returns the MIME-type of a data source, using its supplied content and/or its supplied name,

 * depending upon the implementation. If the MIME-type cannot be determined, either a "default"

 * MIME-type or null may be returned, where the former will prevent earlier

 * registered MIME-type detectors from being consulted.

 *

 * @param name The name of the data source; may be null.

 * @param content The content of the data source; may be null.

 * @return The MIME-type of the data source, or optionally null

 * if the MIME-type could not be determined.

 * @throws IOException [http://java.sun.com/javase/6/docs/api/java/io/IOException.html] If an

 error occurs reading the supplied content.

 */

 String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] mimeTypeOf(String [http:/

/java.sun.com/javase/6/docs/api/java/lang/String.html] name, InputStream [http://java.sun.com/

javase/6/docs/api/java/io/InputStream.html] content) throws IOException [http://java.sun.com/

javase/6/docs/api/java/io/IOException.html];

}

To use a detector, simply invoke the method and supply the name of the content (e.g., the name

of the file, with the extension) and the InputStream [http://java.sun.com/javase/6/docs/api/java/io/

InputStream.html] to the actual binary content. The result is a String [http://java.sun.com/javase/

6/docs/api/java/lang/String.html] containing the MIME type [http://www.iana.org/assignments/

media-types/] (e.g., "text/plain") or null if the MIME type cannot be determined. Note that the

name or InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] may be

null, making this a very versatile utility.

Once again, you can obtain a MimeTypeDetector [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] from the

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html]. ModeShape provides and uses by default an implementation that uses

only the name (the content is ignored), looking at the name's extension and looking for a match in

a small listing (loaded from the org/modeshape/graph/mime.types loaded from the classpath).

You can add extensions by copying this file, adding or correcting the entries, and then placing

your updated file in the expected location on the classpath.

Of course, you can always use a different MimeTypeDetector [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] by creating a

subcontext and supplying your implementation:

MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] myDetector = ...

http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

Chapter 4. Execution Context

46

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyDetector = context.with(myDetector);

4.5. Property factory and value factories

Two other components are made available by the ExecutionContext [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html]. The

PropertyFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PropertyFactory.html] is an interface that can be used to

create Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] instances, which are used throughout the graph API. The

ValueFactories [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactories.html] interface provides access to a number of different factories for different

kinds of property values. These will be discussed in much more detail in the next chapter. But

like the other components that are in an ExecutionContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html], you can create subcontexts with

different implementations:

PropertyFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PropertyFactory.html] myPropertyFactory = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyPropertyFactory = context.with(myPropertyFactory);

and

ValueFactories [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactories.html] myValueFactories = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyValueFactories = context.with(myValueFactories);

Of course, implementing your own factories is a pretty advanced topic, and it will likely be

something you do not need to do in your application.

4.6. Summary

In this chapter, we introduced the ExecutionContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] as a representation

of the environment in which many of the ModeShape components

operate. ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

Summary

47

graph/ExecutionContext.html] provides a very simple but powerful way to inject commonly-needed

facilities throughout the system.

In the next chapter, we'll dive into Graph API and will introduce the notion of nodes, paths, names,

and properties, that are so essential and used throughout ModeShape.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

48

Chapter 5.

49

Graph Model
One of the central concepts within ModeShape is that of its graph model. Information is structured

into a hierarchy of nodes with properties, where nodes in the hierarchy are identified by their path

(and/or identifier properties). Properties are identified by a name that incorporates a namespace

and local name, and contain one or more property values consisting of normal Java strings, names,

paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to

other nodes, or any other serializable object.

This graph model is used throughout ModeShape: it forms the basis for the connector framework,

it is used by the sequencing framework for the generated output, and it is what the JCR

implementation uses internally to access and operate on the repository content.

Therefore, this chapter provides essential information that will be essential to really understanding

how the connectors, sequencers, and other ModeShape features work.

5.1. Names

ModeShape uses names to identify quite a few different types of objects. As we'll soon see, each

property of a node is given by a name, and each segment in a path is comprised of a name.

Therefore, names are a very important concept.

ModeShape names consist of a local part that is qualified with a namespace. The local part can

consist of any character, and the namespace is identified by a URI. Namespaces were introduced

in the previous chapter and are managed by the ExecutionContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html]'s namespace registry.

Namespaces help reduce the risk of clashes in names that have an equivalent same local part.

All names are immutable, which means that once a Name [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Name.html] object is created, it will never change.

This characteristic makes it much easier to write thread-safe code - the objects never change

and therefore require no locks or synchronization to guarantee atomic reads. This is a technique

that is more and more often found in newer languages and frameworks that simplify concurrent

operations.

Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] is also a interface rather than a concrete class:

@Immutable

public interface Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Name.html] extends Comparable<Name [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Name.html]>, Serializable [http://java.sun.com/javase/6/docs/

api/java/io/Serializable.html], Readable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Readable.html] {

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html

Chapter 5. Graph Model

50

 /**

 * Get the local name part of this qualified name.

 * @return the local name; never null

 */

 String getLocalName();

 /**

 * Get the URI for the namespace used in this qualified name.

 * @return the URI; never null but possibly empty

 */

 String getNamespaceUri();

}

This means that you need to use a factory to create Name [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Name.html] instances.

The use of a factory may seem like a disadvantage and unnecessary complexity, but there

actually are several benefits. First, it hides the concrete implementations, which is very appealing

if an optimized implementation can be chosen for particular situations. It also simplifies

the usage, since Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Name.html] only has a few methods. Third, it allows the factory to cache or pool instances

where appropriate to help conserve memory. Finally, the very same factory actually serves as a

conversion mechanism from other forms. We'll actually see more of this later in this chapter, when

we talk about other kinds of property values.

The factory for creating Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Name.html] objects is called NameFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html] and is available within

the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html], via the getValueFactories() method.

We'll see how names are used later on, but one more point to make: Name [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html] is both serializable and

comparable, and all implementations should support equals(...) and hashCode() so that Name

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html] can

be used as a key in a hash-based map. Name [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Name.html] also extends the Readable [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html] interface, which we'll

learn more about later in this chapter.

5.2. Paths

Another important concept in ModeShape's graph model is that of a path, which

provides a way of locating a node within a hierarchy. ModeShape's Path [http://

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html

Paths

51

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html] object is an

immutable ordered sequence of Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/Path.Segment.html] objects. A small portion of the interface is

shown here:

@Immutable

public interface Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.html] extends Comparable<Path>, Iterable<Path.Segment [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html]>, Serializable

 [http://java.sun.com/javase/6/docs/api/java/io/Serializable.html], Readable [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html] {

 /**

 * Return the number of segments in this path.

 * @return the number of path segments

 */

 public int size();

 /**

 * Return whether this path represents the root path.

 * @return true if this path is the root path, or false otherwise

 */

 public boolean isRoot();

 /**

 * {@inheritDoc}

 */

 public Iterator<Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Path.Segment.html]> iterator();

 /**

 * Obtain a copy of the segments in this path. None of the segments are encoded.

 * @return the array of segments as a copy

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html][] getSegmentsArray();

 /**

 * Get an unmodifiable list of the path segments.

 * @return the unmodifiable list of path segments; never null

 */

 public List<Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html]> getSegmentsList();

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html

Chapter 5. Graph Model

52

 /**

 * Get the last segment in this path.

 * @return the last segment, or null if the path is empty

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html] getLastSegment();

 /**

 * Get the segment at the supplied index.

 * @param index the index

 * @return the segment

 * @throws IndexOutOfBoundsException if the index is out of bounds

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html] getSegment(int index);

 /**

 * Return an iterator that walks the paths from the root path down to this path. This method

 * always returns at least one path (the root returns an iterator containing itself).

 * @return the path iterator; never null

 */

 public Iterator<Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.html]> pathsFromRoot();

 /**

 * Return a new path consisting of the segments starting at beginIndex index (inclusive).

 * This is equivalent to calling path.subpath(beginIndex,path.size()-1).

 * @param beginIndex the beginning index, inclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative or larger

 * than the length of this Path object

 */

 public Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] subpath(int beginIndex);

 /**

 * Return a new path consisting of the segments between the beginIndex index (inclusive)

 * and the endIndex index (exclusive).

 * @param beginIndex the beginning index, inclusive.

 * @param endIndex the ending index, exclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative, or

 * endIndex is larger than the length of this Path

 * object, or beginIndex is larger than endIndex.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html

Paths

53

 */

 public Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] subpath(int beginIndex, int endIndex);

 ...

}

There are actually quite a few methods (not shown above) for obtaining related paths: the path of

the parent, the path of an ancestor, resolving a path relative to this path, normalizing a path (by

removing "." and ".." segments), finding the lowest common ancestor shared with another path,

etc. There are also a number of methods that compare the path with others, including determining

whether a path is above, equal to, or below this path.

Each Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html] is an immutable pair of a Name [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Name.html] and same-name-sibling (SNS) index.

When two sibling nodes have the same name, then the first sibling will have SNS index of "1" and

the second will be given a SNS index of "2". (This mirrors the same-name-sibling index behavior

of JCR paths [http://www.jcp.org/en/jsr/detail?id=283].)

@Immutable

public static interface Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Path.Segment.html] extends Cloneable, Comparable<Path.Segment

 [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.Segment.html]>, Serializable [http://java.sun.com/javase/6/docs/api/java/io/

Serializable.html], Readable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Readable.html]

{

 /**

 * Get the name component of this segment.

 * @return the segment's name

 */

 public Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] getName();

 /**

 * Get the index for this segment, which will be 1 by default.

 * @return the index

 */

 public int getIndex();

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html

Chapter 5. Graph Model

54

 /**

 * Return whether this segment has an index that is not "1"

 * @return true if this segment has an index, or false otherwise.

 */

 public boolean hasIndex();

 /**

 * Return whether this segment is a self-reference (or ".").

 * @return true if the segment is a self-reference, or false otherwise.

 */

 public boolean isSelfReference();

 /**

 * Return whether this segment is a reference to a parent (or "..")

 * @return true if the segment is a parent-reference, or false otherwise.

 */

 public boolean isParentReference();

}

Like Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html], the only way to create a Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html] or a Path.Segment [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html] is

to use the PathFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PathFactory.html], which is available within the ExecutionContext [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] via the

getValueFactories() method.

5.3. Properties

The ModeShape graph model allows nodes to hold multiple properties, where each property

is identified by a unique Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Name.html] and may have one or more values. Like many of the other classes used

in the graph model, Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html] is an immutable object that, once constructed, can never be

changed and therefore provides a consistent snapshot of the state of a property as it existed at

the time it was read.

ModeShape properties can hold a wide range of value objects, including normal Java strings,

names, paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs,

references to other nodes, or any other serializable object. All but three of these are the

standard Java classes: dates are represented by an immutable DateTime [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html] class; binary content

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html

Properties

55

is represented by an immutable Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Binary.html] interface patterned after the interface of the same name in JSR-283 [http:/

/www.jcp.org/en/jsr/detail?id=283]; and Reference [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Reference] is an immutable interface patterned after the

corresponding interface is JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] and JSR-283 [http://

www.jcp.org/en/jsr/detail?id=283].

The Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] interface defines methods for obtaining the name and property values:

@Immutable

public interface Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html] extends Iterable<Object>, Comparable<Property [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html]>, Readable [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html] {

 /**

 * Get the name of the property.

 *

 * @return the property name; never null

 */

 Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] getName();

 /**

 * Get the number of actual values in this property.

 * @return the number of actual values in this property; always non-negative

 */

 int size();

 /**

 * Determine whether the property currently has multiple values.

 * @return true if the property has multiple values, or false otherwise.

 */

 boolean isMultiple();

 /**

 * Determine whether the property currently has a single value.

 * @return true if the property has a single value, or false otherwise.

 */

 boolean isSingle();

 /**

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html

Chapter 5. Graph Model

56

 * Determine whether this property has no actual values. This method may return true

 * regardless of whether the property has a single value or multiple values.

 * This method is a convenience method that is equivalent to size() == 0.

 * @return true if this property has no values, or false otherwise

 */

 boolean isEmpty();

 /**

 * Obtain the property's first value in its natural form. This is equivalent to calling

 * isEmpty() ? null : iterator().next()

 * @return the first value, or null if the property is {@link #isEmpty() empty}

 */

 Object getFirstValue();

 /**

 * Obtain the property's values in their natural form. This is equivalent to calling iterator().

 * A valid iterator is returned if the property has single valued or multi-valued.

 * The resulting iterator is immutable, and all property values are immutable.

 * @return an iterator over the values; never null

 */

 Iterator<?> getValues();

 /**

 * Obtain the property's values as an array of objects in their natural form.

 * A valid iterator is returned if the property has single valued or multi-valued, or a

 * null value is returned if the property is {@link #isEmpty() empty}.

 * The resulting array is a copy, guaranteeing immutability for the property.

 * @return the array of values

 */

 Object[] getValuesAsArray();

}

Creating Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html] instances is done by using the PropertyFactory [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html] object owned

by the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/ExecutionContext.html]. This factory defines methods for creating properties

with a Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] and various representation of values, including variable-length arguments,

arrays, Iterator [http://java.sun.com/javase/6/docs/api/java/util/Iterator.html], and Iterable [http://

java.sun.com/javase/6/docs/api/java/util/Iterable.html].

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html

Values and Value Factories

57

When it comes to using the property values, ModeShape takes a non-traditional approach.

Many other graph models (including JCR) mark each property with a data type and then require

all property values adhere to this data type. When the property values are obtained, they are

guaranteed to be of the correct type. However, many times the property's data type may not match

the data type expected by the caller, and so a conversion may be required and thus has to be

coded.

The ModeShape graph model uses a different tact. Because callers almost always have

to convert the values to the types they can handle, ModeShape skips the steps of

associating the Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html] with a data type and ensuring the values match. Instead, ModeShape

simply provides a very easy mechanism to convert the property values to the type desired by

the caller. In fact, the conversion mechanism is exactly the same as the factories that create the

values in the first place.

5.4. Values and Value Factories

ModeShape properties can hold a variety of value object types: strings, names, paths, URIs,

booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or

any other serializable object. To assist in the creation of these values and conversion into other

types, ModeShape defines a ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/ValueFactory.html] interface. This interface is parameterized with the

type of value that is being created, but defines methods for creating those values from all of the

other known value types:

public interface ValueFactory<T> {

 /**

 * Get the PropertyType [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/PropertyType.html] of values created by this factory.

 * @return the value type; never null

 */

 PropertyType [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PropertyType.html] getPropertyType();

 /*

 * Methods to create a value by converting from another value type.

 * If the supplied value is the same type as returned by this factory,

 * these methods simply return the supplied value.

 * All of these methods throw a ValueFormatException [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html] if the supplied value

 * could not be converted to this type.

 */

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html

Chapter 5. Graph Model

58

 T create(String value) throws ValueFormatException;

 T create(String value, TextDecoder decoder) throws ValueFormatException;

 T create(int value) throws ValueFormatException;

 T create(long value) throws ValueFormatException;

 T create(boolean value) throws ValueFormatException;

 T create(float value) throws ValueFormatException;

 T create(double value) throws ValueFormatException;

 T create(BigDecimal [http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html] value

) throws ValueFormatException;

 T create(Calendar [http://java.sun.com/javase/6/docs/api/java/util/Calendar.html] value)

 throws ValueFormatException;

 T create(Date [http://java.sun.com/javase/6/docs/api/java/util/Date.html] value) throws

 ValueFormatException;

 T create(DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/DateTime.html] value) throws ValueFormatException;

 T create(Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Name.html] value) throws ValueFormatException;

 T create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.html] value) throws ValueFormatException;

 T create(Reference [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Reference] value) throws ValueFormatException;

 T create(URI [http://java.sun.com/javase/6/docs/api/java/net/URL.html] value) throws

 ValueFormatException;

 T create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] value) throws

 ValueFormatException;

 T create(byte[] value) throws ValueFormatException;

 T create(Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]

 value) throws ValueFormatException, IoException;

 T create(InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream,

 long approximateLength) throws ValueFormatException, IoException;

 T create(Reader [http://java.sun.com/javase/6/docs/api/java/io/Reader.html] reader, long

 approximateLength) throws ValueFormatException, IoException;

 T create(Object value) throws ValueFormatException, IoException;

 /*

 * Methods to create an array of values by converting from another array of values.

 * If the supplied values are the same type as returned by this factory,

 * these methods simply return the supplied array.

 * All of these methods throw a ValueFormatException [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html] if the supplied values

 * could not be converted to this type.

 */

 T[] create(String[] values) throws ValueFormatException;

 T[] create(String[] values, TextDecoder decoder) throws ValueFormatException;

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html

Values and Value Factories

59

 T[] create(int[] values) throws ValueFormatException;

 T[] create(long[] values) throws ValueFormatException;

 T[] create(boolean[] values) throws ValueFormatException;

 T[] create(float[] values) throws ValueFormatException;

 T[] create(double[] values) throws ValueFormatException;

 T[] create(BigDecimal [http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html][]

 values) throws ValueFormatException;

 T[] create(Calendar [http://java.sun.com/javase/6/docs/api/java/util/Calendar.html][] values)

 throws ValueFormatException;

 T[] create(Date [http://java.sun.com/javase/6/docs/api/java/util/Date.html][] values) throws

 ValueFormatException;

 T[] create(DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/DateTime.html][] values) throws ValueFormatException;

 T[] create(Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Name.html][] values) throws ValueFormatException;

 T[] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.html][] values) throws ValueFormatException;

 T[] create(Reference [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Reference][] values) throws ValueFormatException;

 T[] create(URI [http://java.sun.com/javase/6/docs/api/java/net/URL.html][] values) throws

 ValueFormatException;

 T[] create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html][] values) throws

 ValueFormatException;

 T[] create(byte[][] values) throws ValueFormatException;

 T[] create(Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html][]

 values) throws ValueFormatException, IoException;

 T[] create(Object[] values) throws ValueFormatException, IoException;

 /**

 * Create an iterator over the values (of an unknown type). The factory converts any

 * values as required. This is useful when wanting to iterate over the values of a property,

 * where the resulting iterator exposes the desired type.

 * @param values the values

 * @return the iterator of type T over the values, or null if the supplied parameter is null

 * @throws ValueFormatException [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/ValueFormatException.html] if the conversion from an iterator of

 objects could not be performed

 * @throws IoException If an unexpected problem occurs during the conversion.

 */

 Iterator<T> create(Iterator [http://java.sun.com/javase/6/docs/api/java/util/Iterator.html]<?>

 values) throws ValueFormatException, IoException;

 Iterable<T> create(Iterable [http://java.sun.com/javase/6/docs/api/java/util/Iterable.html]<?>

 valueIterable) throws ValueFormatException, IoException;

}

http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFormatException.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html

Chapter 5. Graph Model

60

This makes it very easy to convert one or more values (of any type, including mixtures) into

corresponding value(s) that are of the desired type. For example, converting the first value of a

property (regardless of type) to a String is simple:

ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] property = ...

String value = stringFactory.create(property.getFirstValue());

Likewise, iterating over the values in a property and converting them is just as easy:

ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

What we've glossed over so far, however, is how to obtain the correct ValueFactory [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html] for

the desired type. If you remember back in the previous chapter, ExecutionContext [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] has a

getValueFactories() method that return a ValueFactories [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html] interface:

This interface exposes a ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/ValueFactory.html] for each of the types, and even has methods

to obtain a ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/ValueFactory.html] given the PropertyType [http://docs.jboss.org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html

Values and Value Factories

61

2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html] enumeration. So, the previous

examples could be expanded a bit:

ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = context.getValueFactories().getStringFactory();

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] property = ...

String value = stringFactory.create(property.getFirstValue());

and

ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = context.getValueFactories().getStringFactory();

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

You might have noticed that several of the ValueFactories [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html] methods return

subinterfaces of ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/ValueFactory.html]. These add type-specific methods that are more commonly

needed in certain cases. For example, here is the NameFactory [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html] interface:

public interface NameFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/NameFactory.html] extends ValueFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html]<Name [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html]> {

 Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] create(String namespaceUri, String localName);

 Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html] create(String namespaceUri, String localName, TextDecoder decoder);

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html

Chapter 5. Graph Model

62

 NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/NamespaceRegistry.html] getNamespaceRegistry();

}

and here is the DateTimeFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/DateTimeFactory.html] interface, which adds methods for

creating DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/DateTime.html] values for the current time as well as for specific instants in time:

public interface DateTimeFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/DateTimeFactory.html] extends ValueFactory [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html]<DateTime [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html]> {

 /**

 * Create a date-time instance for the current time in the local time zone.

 */

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

DateTime.html] create();

 /**

 * Create a date-time instance for the current time in UTC.

 */

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

DateTime.html] createUtc();

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/DateTime.html] create(DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/DateTime.html] original, long offsetInMillis);

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond);

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours);

 DateTime [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours, String timeZoneId);

}

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html

Values and Value Factories

63

The PathFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/PathFactory.html] interface defines methods for creating relative and

absolute Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] objects using combinations of other Path [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html] objects and Name [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html]s and

Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.Segment.html]s, and introduces methods for creating Path.Segment [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html] objects:

public interface PathFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/PathFactory.html] extends ValueFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html]<Path [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]> {

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createRootPath();

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createRelativePath();

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createRelativePath(Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createRelativePath(Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] createRelativePath(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html

Chapter 5. Graph Model

64

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Path.html] childPath);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Name.html] segmentName, int index);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, String segmentName, int index);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, String subpath);

 Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html] createSegment(String segmentName);

 Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Path.Segment.html] createSegment(String segmentName,

 TextDecoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/

TextDecoder.html] decoder);

 Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.Segment.html] createSegment(String segmentName, int index);

 Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html] createSegment(Name [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Name.html] segmentName);

 Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.Segment.html] createSegment(Name [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Name.html] segmentName, int index);

}

And finally, the BinaryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/BinaryFactory.html] defines methods for creating Binary [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] objects from a variety of binary formats, as

well as a method that looks for a cached Binary [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Binary.html] instance given the supplied secure hash:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Values and Value Factories

65

public interface BinaryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/BinaryFactory.html] extends ValueFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html]<Binary [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]> {

 /**

 * Create a value from the binary content given by the supplied input, the approximate length,

 * and the SHA-1 secure hash of the content. If the secure hash is null, then a secure hash is

 * computed from the content. If the secure hash is not null, it is assumed to be the hash for

 * the content and may not be checked.

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] create(

 InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream, long

 approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]

 create(Reader [http://java.sun.com/javase/6/docs/api/java/io/Reader.html] reader, long

 approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 /**

 * Create a binary value from the given file.

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] create(

 File [http://java.sun.com/javase/6/docs/api/java/io/File.html] file) throws ValueFormatException,

 IoException;

 /**

 * Find an existing binary value given the supplied secure hash. If no such binary value exists,

 * null is returned. This method can be used when the caller knows the secure hash (e.g., from

 * a previously-held Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Binary.html] object), and would like to reuse an existing binary value

 * (if possible) rather than recreate the binary value by processing the stream contents. This is

 * especially true when the size of the binary is quite large.

 *

 * @param secureHash the secure hash of the binary content, which was probably obtained

 from a

 * previously-held Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Binary.html] object; a null or empty value is allowed, but will always

 * result in returning null

 * @return the existing Binary value that has the same secure hash, or null if there is no

 * such value available at this time

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Chapter 5. Graph Model

66

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] find(byte[]

 secureHash);

}

ModeShape provides efficient implementations of all of these interfaces: the

ValueFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactory.html] interfaces and subinterfaces; the Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html], Path.Segment [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html], Name [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html], Binary

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html], DateTime [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html], and

Reference [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Reference] interfaces; and the ValueFactories [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html] interface returned by

the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html]. In fact, some of these interfaces have multiple implementations that are

optimized for specific but frequently-occurring conditions.

5.5. Readable, TextEncoder, and TextDecoder

As shown above, the Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Name.html], Path.Segment [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/Path.Segment.html], Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html], and Property [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html] interfaces all extend

the Readable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Readable.html] interface, which defines a number of getString(...) methods that can produce

a (readable) string representation of of that object. Recall that all of these objects contain names

with namespace URIs and local names (consisting of any characters), and so obtaining a readable

string representation will require converting the URIs to prefixes, escaping certain characters in

the local names, and formatting the prefix and escaped local name appropriately. The different

getString(...) methods of the Readable [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Readable.html] interface accept various combinations

of NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/NamespaceRegistry.html] and TextEncoder [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html] parameters:

@Immutable

public interface Readable {

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html

Readable, TextEncoder, and TextDecoder

67

 /**

 * Get the string form of the object. A default encoder is used to encode characters.

 * @return the encoded string

 */

 public String getString();

 /**

 * Get the encoded string form of the object, using the supplied encoder to encode characters.

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 */

 public String getString(TextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/common/text/TextEncoder.html] encoder);

 /**

 * Get the string form of the object, using the supplied namespace registry to convert any

 * namespace URIs to prefixes. A default encoder is used to encode characters.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for any namespace URIs

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

 * the any namespace URIs to prefixes.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 for

 * the namespace URIs

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry,

 TextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/text/TextEncoder.html] encoder);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html

Chapter 5. Graph Model

68

 * the names' namespace URIs to prefixes and the supplied encoder to encode characters,

 and using

 * the second delimiter to encode (or convert) the delimiter used between the namespace prefix

 * and the local part of any names.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for the namespace URIs in the names

 * @param encoder the encoder to use for encoding the local part and namespace prefix of

 any names,

 * or null if the default encoder should be used

 * @param delimiterEncoder the encoder to use for encoding the delimiter between the local part

 * and namespace prefix of any names, or null if the standard delimiter should be used

 * @return the encoded string

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry,

 TextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/common/text/TextEncoder.html] encoder, TextEncoder [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html] delimiterEncoder);

}

We've seen the NamespaceRegistry [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/NamespaceRegistry.html] in the previous chapter, but we've

haven't yet talked about the TextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/common/text/TextEncoder.html] interface. A TextEncoder [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html] merely does what

you'd expect: it encodes the characters in a string using some implementation-specific algorithm.

ModeShape provides a number of TextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/common/text/TextEncoder.html] implementations, including:

• The Jsr283Encoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/text/Jsr283Encoder.html] escapes characters that are not allowed in JCR names,

per the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification. Specifically, these are

the '*', '/', ':', '[', ']', and '|' characters, which are escaped by replacing them with the Unicode

characters U+F02A, U+F02F, U+F03A, U+F05B, U+F05D, and U+F07C, respectively.

• The NoOpEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

text/Jsr283Encoder.html] does no conversion.

• The UrlEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

text/Jsr283Encoder.html] converts text to be used within the different parts of a URL, as defined

by Section 2.3 of RFC 2396 [http://www.ietf.org/rfc/rfc2396.txt]. Note that this class does not

encode a complete URL (since java.net.URLEncoder and java.net.URLDecoder should be

used for such purposes).

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Locations

69

• The XmlNameEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/text/Jsr283Encoder.html] converts any UTF-16 unicode character that is not a valid

XML name character according to the World Wide Web Consortium (W3C) Extensible Markup

Language (XML) 1.0 (Fourth Edition) Recommendation [http://www.w3.org/TR/REC-xml/#sec-

common-syn], escaping such characters as _xHHHH_, where HHHH stands for the four-digit

hexadecimal UTF-16 unicode value for the character in the most significant bit first order. For

example, the name "Customer_ID" is encoded as "Customer_x0020_ID".

• The XmlValueEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/text/XmlValueEncoder.html] escapes characters that are not allowed in XML values.

Specifically, these are the '&', '<', '>', '"', and ''', which are all escaped to "&", '<', '>',

'"', and '''.

• The FileNameEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

common/text/FileNameEncoder.html] escapes characters that are not allowed in file

names on Linux, OS X, or Windows XP. Unsafe characters are escaped as described

in the UrlEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

text/Jsr283Encoder.html].

• The SecureHashTextEncoder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/common/text/SecureHashTextEncoder.html] performs a secure hash of the input

text and returns that hash as the encoded text. This encoder can be configured to use different

secure hash algorithms and to return a fixed number of characters from the hash.

All of these classes also implement the TextDecoder [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html] interface, which defines a

method that decodes an encoded string using the opposite transformation.

Of course, you can provide alternative implementations, and supply them to the appropriate

getString(...) methods as required.

5.6. Locations

In addition to Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Path.html] objects, nodes can be identified by one or more identification properties.

These really are just Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html] instances with names that have a special meaning (usually to

connectors). ModeShape also defines a Location [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/Location.html] class that encapsulates:

• the Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] to the node; or

• one or more identification properties that are likely source-specific and that are represented

with Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] objects; or

• a combination of both.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html

Chapter 5. Graph Model

70

So, when a client knows the path and/or the identification properties, they can create a

Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]

object and then use that to identify the node. Location [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/Location.html] is a class that can be instantiated through

factory methods on the class:

public abstract class Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/Location.html] implements Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html]>, Comparable<Location [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/Location.html]> {

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] path) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] path, UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html]

 uuid) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] path, Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Property.html] idProperty) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] path, Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Property.html] firstIdProperty,

 Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html]... remainingIdProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/Path.html] path, Iterable [http://java.sun.com/javase/6/

docs/api/java/util/Iterable.html]<Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Property.html] idProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html] idProperty) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] create(Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html] firstIdProperty,

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html

Locations

71

 Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html]... remainingIdProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/Location.html] create(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html]> idProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/Location.html] create(List [http://java.sun.com/javase/6/docs/api/java/

util/List.html]<Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html]> idProperties) { ... }

 ...

}

Like many of the other classes and interfaces, Location [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/Location.html] is immutable and cannot be changed once

created. However, there are methods on the class to create a copy of the Location [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html] object with a

different Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html], a different UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html], or different

identification properties:

public abstract class Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/Location.html] implements Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html]>, Comparable<Location [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/Location.html]> {

 ...

 public Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] with(Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Property.html] newIdProperty);

 public Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] with(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] newPath);

 public Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] with(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid);

 ...

}

One more thing about locations: we'll see later in the next chapter how they are used to make

requests to the connectors. When creating the requests, clients usually have an incomplete

location (e.g., a path but no identification properties). When processing the requests, connectors

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html

Chapter 5. Graph Model

72

provide an actual location that contains the path and all identification properties. If actual

Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]

objects are then reused in subsequent requests by the client, the connectors will have the benefit

of having both the path and identification properties and may be able to more efficiently locate

the identified node.

5.7. Graph API

ModeShape's Graph API was designed as a lightweight public API for working with graph

information. The Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Graph.html] class is the primary class in API, and each instance represents a single, independent

view of a single graph. Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/Graph.html] instances don't maintain state, so every request (or batch of requests) operates

against the underlying graph and then returns immutable snapshots of the requested state at the

time the request was made.

There are several ways to obtain a Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/Graph.html] instance, as we'll see in later chapters. For the time being, the

important thing to understand is what a Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/Graph.html] instance represents and how it interacts with the underlying

content to return representations of portions of that underlying graph content.

The Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html]

class basically represents an internal domain specific language (DSL) [http://

www.martinfowler.com/bliki/DomainSpecificLanguage.html], designed to be easy to use in an

application. The Graph API makes extensive use of interfaces and method chaining, so that

methods return a concise interface that has only those methods that make sense at that

point. In fact, this should be really easy if your IDE has code completion. Just remember

that under the covers, a Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/Graph.html] is just building Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/Request.html] objects, submitting them to the connector, and then

exposing the results.

The next few subsections describe how to use a Graph [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/Graph.html] instance.

5.7.1. Using Workspaces

ModeShape graphs have the notion of workspaces that provide different views of the content.

Some graphs may have one workspace, while others may have multiple workspaces. Some

graphs will allow a client to create new workspaces or destroy existing workspaces, while other

graphs will not allow adding or removing workspaces. Some graphs may have workspaces that

may show the same (or very similar) content, while other graphs may have workspaces that

contain completely independent content.

The Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html]

object is always bound to a workspace, which initially is the default workspace. To find out what

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html

Using Workspaces

73

the name of the default workspace is, simply ask for the current workspace after creating the

Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html]:

Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html] current = graph.getCurrentWorkspace();

To obtain the list of workspaces available in a graph, simply ask for them:

Set [http://java.sun.com/javase/6/docs/api/java/util/Set.html]<String [http://java.sun.com/javase/

6/docs/api/java/lang/String.html]> workspaceNames = graph.getWorkspaces();

Once you know the name of a particular workspace, you can specify that the graph should use it:

graph.useWorkspace("myWorkspace");

From this point forward, all requests will apply to the workspace named "myWorkspace". At any

time, you can use a different workspace, which will affect all subsequent requests made using the

graph. To go back to the default workspace, simply supply a null name:

graph.useWorkspace(null);

Of course, creating a new workspace is just as easy:

graph.createWorkspace().named("newWorkspace");

This will attempt to create a workspace named "newWorkspace", which will fail if that workspace

already exists. You may want to create a new workspace with a name that should be altered if the

name you supply is already used. The following code shows how you can do this:

graph.createWorkspace().namedSomethingLike("newWorkspace");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://java.sun.com/javase/6/docs/api/java/util/Set.html
http://java.sun.com/javase/6/docs/api/java/util/Set.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Chapter 5. Graph Model

74

If there is no existing workspace named "newWorkspace", a new one will be created with this

name. However, if "newWorkspace" already exists, this call will create a workspace with a name

that is some alteration of the supplied name.

You can also clone workspaces, too:

graph.createWorkspace().clonedFrom("original").named("something");

or

graph.createWorkspace().clonedFrom("original").namedSomethingLike("something");

As you can see, it's very easy to specify which workspace you want to use or to create new

workspaces. You can also find out which workspace the graph is currently using:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] current =

 graph.getCurrentWorkspaceName();

or, if you want, you can get more information about the workspace:

Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html] current = graph.getCurrentWorkspace();

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] name = current.getName();

Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]

 rootLocation = current.getRoot();

5.7.2. Working with Nodes

Now let's switch to working with nodes. This first example returns a map of properties (keyed

by property name) for a node at a specific Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/property/Path.html]:

Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]

 path = ...

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html

Working with Nodes

75

Map<Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Name.html],Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html]> propertiesByName = graph.getPropertiesByName().on(path);

This next example shows how the graph can be used to obtain and loop over the properties of

a node:

Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]

 path = ...

for (Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] property : graph.getProperties().on(path)) {

 ...

}

Likewise, the next example shows how the graph can be used to obtain and loop over the children

of a node:

Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]

 path = ...

for (Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] child : graph.getChildren().of(path)) {

 Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Path.html] childPath = child.getPath();

 ...

}

Notice that the examples pass a Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html] instance to the on(...) and

of(...) methods. Many of the Graph API methods take a variety of

parameter types, including String, Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Path.html]s, Location [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/Location.html]s, UUID [http://java.sun.com/javase/6/docs/api/java/util/

UUID.html], or Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

property/Property.html] parameters. This should make it easy to use in many different situations.

Of course, changing content is more interesting and offers more interesting possibilities. Here are

a few examples:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html

Chapter 5. Graph Model

76

Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]

 path = ...

Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]

 location = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] idProp1 = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] idProp2 = ...

UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid = ...

graph.move(path).into(idProp1, idProp2);

graph.copy(path).into(location);

graph.delete(uuid);

graph.delete(idProp1,idProp2);

The methods shown above work immediately, as soon as each request is built. However, there is

another way to use the Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/Graph.html] object, and that is in a batch mode. Simply create a Graph.Batch [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.Batch.html] object using

the batch() method, create the requests on that batch object, and then execute all of the

commands on the batch by calling its execute() method. That execute() method returns

a Results [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html]

interface that can be used to read the node information retrieved by the batched requests.

Method chaining works really well with the batch mode, since multiple commands can be

assembled together very easily:

Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html]

 path = ...

String path2 = ...

Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]

 location = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] idProp1 = ...

Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

Property.html] idProp2 = ...

UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid = ...

graph.batch().move(path).into(idProp1, idProp2)

 .and().copy(path2).into(location)

 .and().delete(uuid)

 .execute();

Results [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html]

 results = graph.batch().read(path2)

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Results.html

Requests

77

 .and().readChildren().of(idProp1,idProp2)

 .and().readSugraphOfDepth(3).at(uuid2)

 .execute();

for (Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Location.html] child : results.getNode(path2)) {

 ...

}

Of course, this section provided just a hint of the Graph API. The Graph [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html] interface is actually quite complete

and offers a full-featured approach for reading and updating a graph. For more information, see

the Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html]

JavaDocs.

5.8. Requests

ModeShape Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Graph.html] objects operate upon the underlying graph content, but we haven't really talked

about how that works. Recall that the Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/Graph.html] objects don't maintain any stateful representation of the content,

but instead submit requests to the underlying graph and return representations of the requested

portions of the content. This section focuses on what those requests look like, since they'll actually

become very important when working with connectors in the next chapter.

A graph Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/Request.html] is an encapsulation of a command that is to be executed by the underlying

graph owner (typically a connector). Request objects can take many different forms, as there

are different classes for each kind of request. Each request contains the information needed to

complete the processing, and it also is the place where the results (or error) are recorded.

The Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html]

object creates the Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/Request.html] objects using Location [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/Location.html] objects to identify the node (or nodes) that

are the subject of the request. The Graph [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/Graph.html] can either submit the request immediately, or it can batch

multiple requests together into "units of work". The submitted requests are then processed by

the underlying system (e.g., connector) and returned back to the Graph [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html] object, which then extracts and

returns the results.

There are actually quite a few different types of Request [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/request/Request.html] classes:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html

Chapter 5. Graph Model

78

Table 5.1. Types of Read Requests

Name Description

ReadNodeRequest A request to read a node's properties and

children from the named workspace in the

source. The node may be specified by

path and/or by identification properties.

The connector returns all properties

and the locations for all children, or

sets a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node did not exist in

the workspace. If the node is found, the

connector sets on the request the actual

location of the node (including the path and

identification properties). The connector

sets a InvalidWorkspaceException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

VerifyNodeExistsRequest A request to verify the existence of a node at

the specified location in the named workspace

of the source. The connector returns all

the actual location for the node if it exists,

or sets a PathNotFoundException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node does not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadAllPropertiesRequest A request to read all of the properties of

a node from the named workspace in the

source. The node may be specified by

path and/or by identification properties.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Requests

79

Name Description

The connector returns all properties

that were found on the node, or sets

a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node did not exist in

the workspace. If the node is found, the

connector sets on the request the actual

location of the node (including the path and

identification properties). The connector

sets a InvalidWorkspaceException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadPropertyRequest A request to read a single property of a

node from the named workspace in the

source. The node may be specified by path

and/or by identification properties, and the

property is specified by name. The connector

returns the property if found on the node,

or sets a PathNotFoundException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on the

request if the node or property did not exist

in the workspace. If the node is found, the

connector sets on the request the actual

location of the node (including the path and

identification properties). The connector

sets a InvalidWorkspaceException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadAllChildrenRequest A request to read all of the children of a

node from the named workspace in the

source. The node may be specified by

path and/or by identification properties.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 5. Graph Model

80

Name Description

The connector returns an ordered list of

locations for each child found on the node,

an empty list if the node had no children,

or sets a PathNotFoundException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node did not exist in the

workspace. If the node is found, the connector

sets on the request the actual location of

the parent node (including the path and

identification properties). The connector

sets a InvalidWorkspaceException [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadBlockOfChildrenRequest A request to read a block of children of

a node, starting with the nth child from

the named workspace in the source. This

is designed to allow paging through the

children, which is much more efficient for

large numbers of children. The node may

be specified by path and/or by identification

properties, and the block is defined by a

starting index and a count (i.e., the block

size). The connector returns an ordered

list of locations for each of the node's

children found in the block, or an empty

list if there are no children in that range.

The connector also sets on the request the

actual location of the parent node (including

the path and identification properties) or

sets a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the parent node did not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Requests

81

Name Description

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadNextBlockOfChildrenRequest A request to read a block of children of

a node, starting with the children that

immediately follow a previously-returned

child from the named workspace in the

source. This is designed to allow paging

through the children, which is much more

efficient for large numbers of children.

The node may be specified by path and/

or by identification properties, and the

block is defined by the location of the node

immediately preceding the block and a count

(i.e., the block size). The connector returns an

ordered list of locations for each of the node's

children found in the block, or an empty

list if there are no children in that range.

The connector also sets on the request the

actual location of the parent node (including

the path and identification properties) or

sets a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the parent node did not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ReadBranchRequest A request to read a portion of a subgraph

that has as its root a particular node, up to a

maximum depth. This request is an efficient

mechanism when a branch (or part of a

branch) is to be navigated and processed,

and replaces some non-trivial code to

read the branch iteratively using multiple

ReadNodeRequests. The connector reads

the branch to the specified maximum depth,

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 5. Graph Model

82

Name Description

returning the properties and children for all

nodes found in the branch. The connector

also sets on the request the actual location

of the branch's root node (including the

path and identification properties). The

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/

property/PathNotFoundException.html]

error on the request if the node at the

top of the branch does not exist in

the workspace. The connector sets a

InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html] is a subclass of Request [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/Request.html] that provides a base class for all the

requests that request a change be made to the content. As we'll see later, these

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html] objects also get reused by the observation system.

Table 5.2. Types of Change Requests

Name Description

CreateNodeRequest A request to create a node at the specified

location and setting on the new node the

properties included in the request. The

connector creates the node at the desired

location, adjusting any same-name-sibling

indexes as required. (If an SNS index is

provided in the new node's location, existing

children with the same name after that SNS

index will have their SNS indexes adjusted.

However, if the requested location does

not include a SNS index, the new node is

added after all existing children, and it's SNS

index is set accordingly.) The connector

also sets on the request the actual location

of the new node (including the path and

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html

Requests

83

Name Description

identification properties).. The connector

sets a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the parent node does not

exist in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

RemovePropertiesRequest A request to remove a set of properties on

an existing node. The request contains the

location of the node as well as the names of

the properties to be removed. The connector

performs these changes and sets on the

request the actual location (including the path

and identification properties) of the node. The

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node does not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

UpdatePropertiesRequest A request to set or update properties on

an existing node. The request contains

the location of the node as well as the

properties to be set and those to be deleted.

The connector performs these changes

and sets on the request the actual location

(including the path and identification

properties) of the node. The connector

sets a PathNotFoundException [http://

docs.jboss.org/modeshape/2.0.0.Final/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html

Chapter 5. Graph Model

84

Name Description

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node does not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

RenameNodeRequest A request to change the name of a node.

The connector changes the node's name,

adjusts all SNS indexes accordingly, and

returns the actual locations (including the

path and identification properties) of both the

original location and the new location. The

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on

the request if the node does not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

CopyBranchRequest A request to copy a portion of a subgraph

that has as its root a particular node, up to

a maximum depth. The request includes

the name of the workspace where the

original node is located as well as the name

of the workspace where the copy is to be

placed (these may be the same, but may be

different). The connector copies the branch

from the original location, up to the specified

maximum depth, and places a copy of the

node as a child of the new location. The

connector also sets on the request the actual

location (including the path and identification

properties) of the original location as

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Requests

85

Name Description

well as the location of the new copy. The

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/

property/PathNotFoundException.html]

error on the request if the node at the

top of the branch does not exist in

the workspace. The connector sets a

InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on the

request if one of the named workspaces does

not exist.

MoveBranchRequest A request to move a subgraph that has a

particular node as its root. The connector

moves the branch from the original location

and places it as child of the specified new

location. The connector also sets on the

request the actual location (including the

path and identification properties) of the

original and new locations. The connector

will adjust SNS indexes accordingly. The

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error

on the request if the node that is to be

moved or the new location do not exist

in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

DeleteBranchRequest A request to delete an entire branch

specified by a single node's location. The

connector deletes the specified node and

all nodes below it, and sets the actual

location, including the path and identification

properties, of the node that was deleted. The

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 5. Graph Model

86

Name Description

connector sets a PathNotFoundException

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/property/

PathNotFoundException.html] error on the

request if the node being deleted does not

exist in the workspace. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

CompositeRequest A request that actually comprises multiple

requests (none of which will be a composite).

The connector simply processes all of the

requests in the composite request, but should

set on the composite request any error

(usually the first error) that occurs during

processing of the contained requests.

There are also requests that deal with workspaces:

Table 5.3. Types of Workspace Read Requests

Name Description

GetWorkspacesRequest A request to obtain the names of the existing

workspaces that are accessible to the caller.

VerifyWorkspaceRequest A request to verify that a workspace with a

particular name exists. The connector returns

the actual location for the root node if the

workspace exists, as well as the actual name

of the workspace (e.g., the default workspace

name if a null name is supplied).

And there are also requests that deal with changing workspaces (and thus extend

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html]):

Table 5.4. Types of Workspace Change Requests

Name Description

CreateWorkspaceRequest A request to create a workspace with a

particular name. The connector returns

the actual location for the root node if

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html

Request processors

87

Name Description

the workspace exists, as well as the

actual name of the workspace (e.g.,

the default workspace name if a null

name is supplied). The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace already

exists.

DestroyWorkspaceRequest A request to destroy a workspace with

a particular name. The connector sets

a InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the named workspace does not

exist.

CloneWorkspaceRequest A request to clone one named

workspace as another new named

workspace. The connector sets a

InvalidWorkspaceException [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/

InvalidWorkspaceException.html] error on

the request if the original workspace does not

exist, or if the new workspace already exists.

Although there are over a dozen different kinds of requests, we do anticipate adding more in future

releases. For example, ModeShape has recently added support for searching repository content in

sources through an additional subclass of Request [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/Request.html]. Getting the version history for a node will likely

be another kind of request added in an upcoming release.

This section covered the different kinds of Request [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/Request.html] classes. The next section provides a easy way

to encapsulate how a component should responds to these requests, and after that we'll see how

these Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

Request.html] objects are also used in the observation framework.

5.9. Request processors

ModeShape connectors are typically the components that receive these Request [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html] objects.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html

Chapter 5. Graph Model

88

We'll dive deep into connectors in the next chapter, but before we do there is one more

component related to Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/Request.html]s that should be discussed.

The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/processor/RequestProcessor.html] class is an abstract class that defines a

process(...) method for each concrete Request [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/Request.html] subclass. In other words, there is a

process(CompositeRequest) method, a process(ReadNodeRequest) method, and so on. This

makes it easy to implement behavior that responds to the different kinds of Request [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html] classes:

simply subclass the RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/processor/RequestProcessor.html], override all of the abstract

methods, and optionally overriding any of the other methods that have a default implementation.

Note

The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/processor/RequestProcessor.html] abstract class

contains default implementations for quite a few of the process(...) methods,

and these will be sufficient but probably not efficient or optimum. If you can provide

a more efficient implementation given your source, feel free to do so. However,

if performance is not a big issue, all of the concrete methods will provide the

correct behavior. Keep things simple to start out - you can always provide better

implementations later.

5.10. Observation

The ModeShape graph model also incorporates an observation framework that allows

components to register and be notified when changes occur within the content owned by a graph.

Many event frameworks define the listeners and sources as interfaces. While

this is often useful, it requires that the implementations properly address the

thread-safe semantics of managing and calling the listeners. The ModeShape

observation framework uses abstract or concrete classes to minimize the effort

required for implementing ChangeObserver [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/observe/ChangeObserver.html] or Observable [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html]. These abstract

classes provide implementations for a number of utility methods (such as the unregister()

method on ChangeObserver [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/observe/ChangeObserver.html]) that also save effort and code.

However, one of the more important reasons for providing classes

is that ChangeObserver [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/observe/ChangeObserver.html] uses weak references to track the

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html

Observable

89

Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observable.html] instances, and the ChangeObservers [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html] class uses weak

references for the listeners. This means that an observer does not

prevent Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

observe/Observable.html] instances from being garbage collected, nor do observers

prevent Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

observe/Observable.html] instances from being garbage collected. These abstract class provide

all this functionality for free.

5.10.1. Observable

Any component that can have changes and be observed can implement

the Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observable.html] interface. This interface allows Observer [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/Observer.html]s to register (or be registered) to

receive notifications of the changes. However, a concrete and thread-safe implementation

of this interface, called ChangeObservers [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/ChangeObservers.html], is available and should be used where

possible, since it automatically manages the registered ChangeObserver [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html] instances and

properly implements the register and unregister mechanisms.

5.10.2. Observers

Components that are to recieve notifications of changes are called observers. To create

an observer, simply extend the ChangeObserver [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/observe/ChangeObserver.html] abstract class and provide an

implementation of the notify(Changes [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/observe/Changes.html]) method. Then, register the observer with

an Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observable.html] using its register(ChangeObserver [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html]) method. The

observer's notify(Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Changes.html]) method will then be called with the changes

that have been made to the Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Observable.html].

When an observer is no longer needed, it should be

unregistered from all Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/observe/Observable.html] instances with which it was

registered. The ChangeObserver [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/ChangeObserver.html] class automatically tracks which

Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observable.html] instances it is registered with, and calling the observer's unregister()

will unregister the observer from all of these Observable [http://docs.jboss.org/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html

Chapter 5. Graph Model

90

modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html]s. Alternatively, an

observer can be unregistered from a single Observable [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html] using the

Observable [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observable.html]'s unregister(ChangeObserver [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html]) method.

5.10.3. Changes

The Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Changes.html] class represents the set of individual changes that have been made during

a single, atomic operation. Each Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Changes.html] instance has information about the source of the

changes, the timestamp at which the changes occurred, and the individual changes that

were made. These individual changes take the form of ChangeRequest [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html] objects, which

we'll see more of in the next chapter. Each request is frozen, meaning it is immutable and will not

change. Also none of the change requests will be marked as cancelled.

Using the actual ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/ChangeRequest.html] objects as the "events" has a number of

advantages. First, the existing ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/ChangeRequest.html] subclasses already contain the information

to accurately and completely describe the operation. Reusing these classes means we don't need

a duplicate class structure or come up with a generic event class.

Second, the requests have all the state required for an event, plus they

often will have more. For example, the DeleteBranchRequest [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html] has the

actual location of the branch that was deleted (and in this way is not much

different than a more generic event), but the CreateNodeRequest [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/CreateNodeRequest.html] has the

actual location of the created node along with the properties of that node. Additionally,

the RemovePropertyRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/RemovePropertyRequest.html] has the actual location of the node along with the

name of the property that was removed. In many cases, these requests have all the information a

more general event class might have but then hopefully enough information for many observers

to use directly without having to read the graph to decide what actually changed.

Third, the requests that make up a Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Changes.html] instance can actually be replayed. Consider the case

of a cache that is backed by a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/connector/RepositorySource.html], which might use an observer to

keep the cache in sync. As the cache is notified of Changes [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/Changes.html], the cache can simply replay the

changes against its source.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html

Summary

91

As we'll see in the next chapter, each connector is responsible for propagating

the ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/ChangeRequest.html] objects to the connector's Observer [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html]. But that's not the

only use of Observer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/observe/Observer.html]s. We'll also see later how the sequencing system

uses Observer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observer.html]s to monitor for changes in the graph content to determine which, if any, sequencers

should be run. And, the JCR implementation also uses the observation framework to propagate

those changes to JCR clients.

5.11. Summary

In this chapter, we introduced ModeShape's graph model and showed the different kinds of objects

used to represent nodes, paths, names, and properties. We saw how all of these objects are

actually immutable, and how the low-level Graph API uses this characteristic to provide a stateless

and thread-safe interface for working with repository content using the request model used to

read, update, and change content.

Next, we'll dive into the connector framework, which builds on top of the graph model and request

model, allowing ModeShape to access the graph content stored in many different kinds of systems.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html

92

Chapter 6.

93

Connector Framework

There is a lot of information stored in many of different places: databases, repositories, SCM

systems, registries, file systems, services, etc. The purpose of the federation engine is to allow

applications to use the JCR API to access that information as if it were all stored in a single JCR

repository, but to really leave the information where it is.

Why not just copy or move the information into a JCR repository? Moving it is probably pretty

difficult, since most likely there are existing applications that rely upon that information being where

it is. All of those applications would break or have to change. And copying the information means

that we'd have to continually synchronize the changes. This not only is a lot of work, but it often

makes it difficult to know whether information is accurate and "the master" data.

ModeShape lets us leave information where it is, yet access it through the JCR API as if it were

in one big repository. One major benefit is that existing applications that use the information in

the original locations don't break, since they can keep using the information. But now our JCR

clients can also access all the information, too. And if our federating ModeShape repository is

configured to allow updates, JCR client applications can change the information in the repository

and ModeShape will propagate those changes down to the original source, making those changes

visible to all the other applications.

In short, all clients see the correct information, even when it changes in the underlying systems.

But the JCR clients can get to all of the information in one spot, using one powerful standard API.

6.1. Connectors

With ModeShape, your applications use the JCR 2.0 API [http://www.jcp.org/en/jsr/detail?id=283]

to work with the repository, but the ModeShape repository transparently fetches the information

from different kinds of repositories and storage systems, not just a single purpose-built store. This

is fundamentally what makes ModeShape different.

How does ModeShape do this? At the heart of ModeShape and it's JCR implementation is a

simple graph-based connector system. Essentially, ModeShape's JCR implementation uses a

single connector to access all content:

Figure 6.1. ModeShape's JCR implementation delegates to a connector

That single repository connector could access:

• a transient, in-memory repository

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 6. Connector Framework

94

• an Infinispan data grid that acts as an extremely scalable, highly-available store for repository

content

• a JBoss Cache instance that acts as a clustered and replicated store for repository content

• a JDBC database used as a store for repository content

• a repository that accesses existing JDBC databases to project the schema structure as read-

only repository content

• a repository that accesses a file system to present its files and directory structure as (updatable)

repository content

• a repository that accesses the content in another JCR repository

• a repository that accesses an SVN repository to present the files and directory structure as

(updatable) repository content

• a federated repository that presents a unified, updatable view of the content in multiple other

systems (which are accessed via connectors)

Figure 6.2. ModeShape can put JCR on top of multiple kinds of systems

Really, the federated connector gives us all kinds of possibilities, since we can use that connector

on top of lots of connectors to other individual sources. This simple connector architecture is

fundamentally what makes ModeShape so powerful and flexible. Along with a good library of

connectors, which is what we're planning to create.

For instance, we want to build a connector to access existing relational databases [http://

jira.jboss.org/browse/MODE-282] so that some or all of the existing data (in whatever structure)

can be accessed through JCR. For more information, check out our roadmap [http://jira.jboss.org/

browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel]. Of course, if we

don't have a connector to suit your needs, you can write your own.

Figure 6.3. Future ModeShape connectors

http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel

Connectors

95

It's even possible to put a different API layer on top of the connectors. For example, the new New

I/O (JSR-203) [http://www.jcp.org/en/jsr/detail?id=203] API offers the opportunity to build new file

system providers. This would be very straightforward to put on top of a JCR implementation, but

it could be made even simpler by putting it on top of a ModeShape connector. In both cases, it'd

be a trivial mapping from nodes that represent files and folders into JSR-203 files and directories,

and events on those nodes could easily be translated into JSR-203 watch events. Then, simply

choose a ModeShape connector and configure it to use the source you want to use.

Figure 6.4. Virtual File System with ModeShape

Before we go further, let's define some terminology regarding connectors.

• A connector is the runnable code packaged in one or more JAR files that contains

implementations of several interfaces (described below). A Java developer writes a connector

to a type of source, such as a particular database management system, LDAP directory, source

code management system, etc. It is then packaged into one or more JAR files (including

dependent JARs) and deployed for use in applications that use ModeShape repositories.

• The description of a particular source system (e.g., the "Customer" database, or

the company LDAP system) is called a repository source. ModeShape defines

a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] interface that defines methods describing the behavior

and supported features and a method for establishing connections. A connector will have

a class that implements this interface and that has JavaBean properties for all of the

connector-specific properties required to fully describe an instance of the system. Use of

JavaBean properties is not required, but it is highly recommended, as it enables reflective

configuration and administration. Applications that use ModeShape create an instance

of the connector's RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] implementation and set the properties for

the external source that the application wants to access with that connector.

• A repository source instance is then used to establish connections to that source. A connector

provides an implementation of the RepositoryConnection [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html] interface, which

defines methods for interacting with the external system. In particular,

the execute(...) method takes an ExecutionContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] instance and

http://www.jcp.org/en/jsr/detail?id=203
http://www.jcp.org/en/jsr/detail?id=203
http://www.jcp.org/en/jsr/detail?id=203
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

Chapter 6. Connector Framework

96

a Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

Request.html] object. The ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/ExecutionContext.html] object defines the environment in which the

processing is occurring, while the Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/Request.html] object describes the requested operations on the

content, with different concrete subclasses representing each type of activity. Examples of

commands include (but not limited to) getting a node, moving a node, creating a node, changing

a node, and deleting a node. And, if the repository source is able to participate in JTA/

JTS distributed transactions, then the RepositoryConnection [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html] must implement

the getXaResource() method by returning a valid javax.transaction.xa.XAResource object

that can be used by the transaction monitor.

As an example, consider if we wanted ModeShape to give us access through JCR to the

information contained in a relational database. We first have to develop a connector that

allows us to interact with relational databases using JDBC. That connector would contain

a JdbcAccessSource Java class that implements RepositorySource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html], and that

has all of the various JavaBean properties for setting the name of the driver class, URL, username,

password, and other properties. If we add a JavaBean property defining the JNDI name, our

connector could look in JNDI to find a JDBC DataSource instance, perhaps already configured

to use connection pools.

Note

Of course, before you develop a connector, you should probably check the list of

connectors [http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/

provided-connectors-part.html] ModeShape already provides out of the box. And

we've been adding new connectors with almost every release.

Our new connector might also have a JdbcAccessConnection Java class that implements the

RepositoryConnection [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositoryConnection.html] interface. This class would probably wrap a JDBC

database connection, and would implement the execute(...) method such that the nodes

exposed by the connector describe the database tables and their contents. For example, the

connector might represent each database table as a node with the table's name, with properties

that describe the table (e.g., the description, whether it's a temporary table), and with child nodes

that represent rows in the table.

To use our connector in an application that uses ModeShape, we would need to create an instance

of the JdbcAccessSource for each database instance that we want to access. If we have 3

MySQL databases, 9 Oracle databases, and 4 PostgreSQL databases, then we'd need to create

a total of 16 JdbcAccessSource instances, each with the properties describing a single database

instance. Those sources are then available for use by ModeShape components, including the

JCR implementation.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Out-of-the-box connectors

97

So, we've so far learned what a connector is and how they're used to establish connections to

the underlying sources and access the content in those sources. Next we'll show how connectors

expose the notion of workspaces, and describe how to create your own connectors.

6.2. Out-of-the-box connectors

A number of connectors are already available in ModeShape, and

are outlined in detail later in the document. Note that we do

want to build more connectors [https://jira.jboss.org/jira/secure/

IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/

field=priority&resolution=-1&component=12311441] in the upcoming releases.

6.3. Writing custom connectors

There may come a time when you want to tackle creating your own connector. Maybe the

connectors we provide out-of-the-box don't work with your source. Maybe you want to use a

different cache system. Maybe you have a system that you want to make available through

a ModeShape repository. Or, maybe you're a contributor and want to help us round out our

library with a new connector. No matter what the reason, creating a new connector is pretty

straightforward, as we'll see in this section.

Creating a custom connector involves the following steps:

1. Create a Maven 2 project for your connector;

2. Implement the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] interface, using JavaBean properties for

each bit of information the implementation will need to establish a connection to the

source system. Then, implement the RepositoryConnection [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html] interface with

a class that represents a connection to the source. The

execute(ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/ExecutionContext.html], Request [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html]) method

should process any and all requests that may come down the pike, and the results of each

request can be put directly on that request. This approach is pretty straightforward, and gives

you ultimate freedom in terms of your class structure.

Alternatively, an easier way to get a complete read-write connector would be to extend

one of our two abstract RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/connector/RepositorySource.html] implementations. If the content your

connector exposes has unique keys (such as a unique string, UUID or other identifier), consider

implementing MapRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/map/MapRepositorySource.html], subclassing MapRepository

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/

PathRepository.html], and using the existing MapRepositoryConnection [http://

https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html

Chapter 6. Connector Framework

98

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/

MapRepositoryConnection.html] implementation. This MapRepositoryConnection [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/

MapRepositoryConnection.html] does most of the work already, relying

upon your MapRepository [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/map/PathRepository.html] subclass for anything that might be

source-specific. (See the JavaDoc [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/connector/map/package-summary.html] for details.) Or, if the

content your connector exposes is simply path-based, consider implementing

PathRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/path/PathRepositorySource.html], subclassing PathRepository [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/

PathRepository.html], and using the existing PathRepositoryConnection [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/

PathRepositoryConnection.html] implementation. Again, PathRepositoryConnection [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/

PathRepositoryConnection.html] class does almost all of the work and delegates

to your PathRepository [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/path/PathRepository.html] subclass for anything that might be source-

specific. (See the JavaDoc [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/path/package-summary.html] for details.)

Don't forget unit tests that verify that the connector is doing what it's expected to do. (If you'll be

committing the connector code to the ModeShape project, please ensure that the unit tests can

be run by others that may not have access to the source system. In this case, consider writing

integration tests that can be easily configured to use different sources in different environments,

and try to make the failure messages clear when the tests can't connect to the underlying

source.)

3. Configure ModeShape to use your connector. This may involve just registering the

source with the RepositoryService [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/repository/RepositoryService.html], or it may involve adding a source to a

configuration repository used by the federated repository.

4. Deploy the JAR file with your connector (as well as any dependencies), and make them

available to ModeShape in your application.

Let's go through each one of these steps in more detail.

6.3.1. Creating the Maven 2 project

The first step is to create the Maven 2 project that you can use to compile your code and build

the JARs. Maven 2 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 2, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html

Creating the Maven 2 project

99

Note

ModeShape may provide in the future a Maven archetype for creating connector

projects. If you'd find this useful and would like to help create it, please join the

community.

In lieu of a Maven archetype, you may find it easier to start with a small

existing connector project. The modeshape-connector-filesystem project is

small and provides good example of implementing a path-based repository.

See the subversion repository: http://anonsvn.jboss.org/repos/modeshape/trunk/

extensions/modeshape-connector-filesystem/

You can create your Maven project any way you'd like. For examples,

see the Maven 2 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.0.0.Final</version>

</dependency>

This is the only dependency required for compiling a connector - Maven pulls in all of the

dependencies needed by the 'modeshape-graph' artifact. Of course, you'll still have to add

dependencies for any library your connector needs to talk to its underlying system.

As for testing, you probably will want to add more dependencies, such as those listed here:

<!-- ModeShape-related unit testing utilities and classes -->

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.0.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-connector-filesystem/
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-connector-filesystem/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 6. Connector Framework

100

 <artifactId>modeshape-common</artifactId>

 <version>2.0.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<!-- Unit testing -->

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

Testing ModeShape connectors does not require a JCR repository or the ModeShape services.

(For more detail, see the testing section.) However, if you want to do integration testing with a JCR

repository and the ModeShape services, you'll need additional dependencies (e.g., modeshape-

repository and any other extensions).

Implementing a RepositorySource

101

At this point, your project should be set up correctly, and you're ready to move on to writing the

Java implementation for your connector.

6.3.2. Implementing a RepositorySource

As mentioned earlier, a connector consists of the Java code that is used to access content from

a system. Perhaps the most important class that makes up a connector is the implementation

of the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html]. This class is analogous to JDBC's DataSource in that it is

instantiated to represent a single instance of a system that will be accessed, and it contains enough

information (in the form of JavaBean properties) so that it can create connections to the source.

Why is the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositorySource.html] implementation a JavaBean? Well, this is the class that

is instantiated, usually reflectively, and so a no-arg constructor is required. Using JavaBean

properties makes it possible to reflect upon the object's class to determine the properties that can

be set (using setters) and read (using getters). This means that an administrative application can

instantiate, configure, and manage the objects that represent the actual sources, without having

to know anything about the actual implementation.

So, your connector will need a public class that implements

RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] and provides JavaBean properties for any kind of inputs or

options required to establish a connection to and interact with the underlying source. Most of the

semantics of the class are defined by the RepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] and inherited interface.

However, there are a few characteristics that are worth mentioning here.

6.3.2.1. Workspaces

The previous chapter talked about how connector expose their information through the graph

language of ModeShape. This is true, except that we didn't dive into too much of the detail.

ModeShape graphs have the notion of workspaces in which the content appears, and its very

easy for clients using the graph to switch between workspaces. In fact, workspaces differ from

each other in that they provide different views of the same information.

Consider a source control system, like SVN or CVS. These systems provide different views of

the source code: a mainline development branch as well as other branches (or tags) commonly

used for releases. So, just like one source file might appear in the mainline branch as well as the

previous two release branches, a node in a repository source might appear in multiple workspaces.

However, each connector can kind of decide how (or whether) it uses workspaces. For example,

there may be no overlap in the content between workspaces. Or a connector might only expose

a single workspace (in other words, there's only one "default" workspace).

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 6. Connector Framework

102

6.3.2.2. Broadcasting events

When your RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositorySource.html] instance is put into the library within a running

ModeShape system, the initialize(RepositoryContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/

RepositoryContext.html]) method will be called on the instance.

The supplied RepositoryContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositoryContext.html] object represents the context in

which the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositorySource.html] is running, and provides access to

an ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html], a RepositoryConnectionFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html] that can be

used to obtain connections to other sources, and an Observer [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/Observer.html] of your source that should be

called with events describing the Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Changes.html] being made within the source, either as a result of

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html] operations being performed on this source, or as a result of operations

being performed on the content from outside the source.

6.3.2.3. Cache policy

Each connector is responsible for determining whether and how long ModeShape is to cache the

content made available by the connector. This is referred to as the caching policy, and consists of

a time to live value representing the number of milliseconds that a piece of data may be cached.

After the TTL has passed, the information is no longer used.

ModeShape allows a connector to use a flexible and powerful caching policy.

First, each connection returns the default caching policy for all information returned

by that connection. Often this policy can be configured via properties on

the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] implementation. This is optional, meaning the connector can

return null if it does not wish to have a default caching policy.

Second, the connector is able to override its default caching policy on individual requests (which

we'll cover in the next section). Again, this is optional, meaning that a null caching policy on a

request implies that the request has no overridden caching policy.

Third, if the connector has no default caching policy and none is set on the individual requests,

ModeShape uses whatever caching policy is set up for that component using the connector. For

example, the federating connector allows a default caching policy to be specified, and this policy

is used should the sources being federated not define their own caching policy.

In summary, a connector has total control over whether and for how long the information it provides

is cached.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Implementing a RepositorySource

103

Note

At this time, not every connector takes advantage of cache policies. However, it is

anticipated that this will change.

6.3.2.4. Leveraging JNDI

Sometimes it is necessary (or easier) for a RepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] implementation to look

up an object in JNDI. One example of this is the JBoss Cache connector: while the connector

can instantiate a new JBoss Cache instance, more interesting use cases involve JBoss Cache

instances that are set up for clustering and replication, something that is generally difficult

to configure in a single JavaBean. Therefore the JBossCacheSource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html] has

optional JavaBean properties that define how it is to look up a JBoss Cache instance in JNDI.

This is a simple pattern that you may find useful in your connector. Basically, if your source

implementation can look up an object in JNDI, simply use a single JavaBean String property that

defines the full name that should be used to locate that object in JNDI. Usually it's best to include

"Jndi" in the JavaBean property name so that administrative users understand the purpose of the

property. (And some may suggest that any optional property also use the word "optional" in the

property name.)

6.3.2.5. Capabilities

Another characteristic of a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/connector/RepositorySource.html] implementation is that it provides some

hint as to whether it supports several features. This is defined on the interface as a method that

returns a RepositorySourceCapabilities [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/connector/RepositorySourceCapabilities.html] object. This class currently

provides methods that say whether the connector supports updates, whether it supports same-

name-siblings (SNS), and whether the connector supports listeners and events.

Note that these may be hard-coded values, or the connector's response may be determined at

runtime by various factors. For example, a connector may interrogate the underlying system to

decide whether it can support updates.

The RepositorySourceCapabilities [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySourceCapabilities.html] can be used as is (the

class is immutable), or it can be subclassed to provide more complex behavior. It

is important, however, that the capabilities remain constant throughout the lifetime of

the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] instance.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 6. Connector Framework

104

Note

Why a concrete class and not an interface? By using a concrete class, connectors

inherit the default behavior. If additional capabilities need to be added to the class

in future releases, connectors may not have to override the defaults. This provides

some insulation against future enhancements to the connector framework.

6.3.2.6. Security and authentication

As we'll see in the next section, the main method connectors have to process requests takes

an ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html], which contains the JAAS security information of the subject performing

the request. This means that the connector can use this to determine authentication and

authorization information for each request.

Sometimes that is not sufficient. For example, it may be that the connector needs

its own authorization information so that it can establish a connection (even if user-

level privileges still use the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/ExecutionContext.html] provided with each request). In this case,

the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] implementation will probably need JavaBean properties that

represent the connector's authentication information. This may take the form of a username and

password, or it may be properties that are used to delegate authentication to JAAS. Either way,

just realize that it's perfectly acceptable for the connector to require its own security properties.

6.3.3. Implementing a RepositoryConnection

One job of the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] implementation is to create connections

to the underlying sources. Connections are represented by classes that implement the

RepositoryConnection [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositoryConnection.html] interface, and creating this class is the next step in writing

a connector. This is what we'll cover in this section.

The RepositoryConnection [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html] interface is pretty straightforward:

/**

 * A connection to a repository source.

 *

 * These connections need not support concurrent operations by multiple threads.

 */

@NotThreadSafe

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Implementing a RepositoryConnection

105

public interface RepositoryConnection [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositoryConnection.html] {

 /**

 * Get the name for this repository source. This value should be the same as that returned

 * by the same RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] that created this connection.

 *

 * @return the identifier; never null or empty

 */

 String getSourceName();

 /**

 * Return the transactional resource associated with this connection. The transaction manager

 * will use this resource to manage the participation of this connection in a distributed transaction.

 *

 * @return the XA resource, or null if this connection is not aware of distributed transactions

 */

 XAResource getXAResource();

 /**

 * Ping the underlying system to determine if the connection is still valid and alive.

 *

 * @param time the length of time to wait before timing out

 * @param unit the time unit to use; may not be null

 * @return true if this connection is still valid and can still be used, or false otherwise

 * @throws InterruptedException if the thread has been interrupted during the operation

 */

 boolean ping(long time, TimeUnit [http://java.sun.com/javase/6/docs/api/java/util/concurrent/

TimeUnit.html] unit) throws InterruptedException;

 /**

 * Get the default cache policy for this repository. If none is provided, a global cache policy

 * will be used.

 *

 * @return the default cache policy

 */

 CachePolicy [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/cache/

CachePolicy.html] getDefaultCachePolicy();

 /**

 * Execute the supplied commands against this repository source.

 *

 * @param context the environment in which the commands are being executed; never null

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/cache/CachePolicy.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/cache/CachePolicy.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/cache/CachePolicy.html

Chapter 6. Connector Framework

106

 * @param request the request to be executed; never null

 * @throws RepositorySourceException if there is a problem loading the node data

 */

 void execute(ExecutionContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html] context, Request [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html] request

) throws RepositorySourceException [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySourceException.html];

 /**

 * Close this connection to signal that it is no longer needed and that any accumulated

 * resources are to be released.

 */

 void close();

}

While most of these methods are straightforward, a few warrant additional information.

The ping(...) method allows ModeShape to check the connection to see if it is

alive. This method can be used in a variety of situations, ranging from verifying

that a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html]'s JavaBean properties are correct to ensuring that a

connection is still alive before returning the connection from a connection pool.

The most important method on this interface, though, is the execute(...) method, which

serves as the mechanism by which the component using the connector access and

manipulates the content exposed by the connector. The first parameter to this method is

the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html], which contains the information about environment as well as the subject

performing the request. This was discussed earlier.

The second parameter, however, represents a Request [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/request/Request.html] that is to be processed by the

connector. Request objects can take many different forms, as there are different classes for each

kind of request (see the previous chapter for details). Each request contains the information a

connector needs to do the processing, and it also is the place where the connector places the

results (or the error, if one occurs).

A connector is technically free to implement the execute(...) method in any way, as long

as the semantics are maintained. But as discussed in the previous chapter, ModeShape

provides a RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/processor/RequestProcessor.html] class that can simplify writing your own

connector and at the same time help insulate your connector from new kinds of requests that may

be added in the future. The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/processor/RequestProcessor.html] is an abstract class that

defines a process(...) method for each concrete Request [http://docs.jboss.org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html

Implementing a RepositoryConnection

107

2.0.0.Final/api/org/modeshape/graph/request/Request.html] subclass. In other words, there is a

process(CompositeRequest) method, a process(ReadNodeRequest) method, and so on.

To use this in your connector, simply create a subclass

of RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/processor/RequestProcessor.html], overriding all of the abstract methods and optionally

overriding any of the other methods that have a default implementation.

Note

The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/processor/RequestProcessor.html] abstract class

contains default implementations for quite a few of the process(...) methods,

and these will be sufficient but probably not efficient or optimum. If you can provide

a more efficient implementation given your source, feel free to do so. However,

if performance is not a big issue, all of the concrete methods will provide the

correct behavior. Keep things simple to start out - you can always provide better

implementations later.

Also, make sure your RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/processor/RequestProcessor.html] is properly broadcasting the

changes made during execution. The RequestProcessor [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html] class has

a recordChange(ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/ChangeRequest.html]) that can be called

from each of the process(...) methods that take a

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html]. The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/processor/RequestProcessor.html] enqueues these requests, and

when the RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/processor/RequestProcessor.html] is closed, the default implementation is

to send a Changes [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

observe/Changes.html] to the Observer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/observe/Observer.html] supplied into the constructor.

Then, in your connector's execute(ExecutionContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html], Request [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

Request.html]) method, instantiate your RequestProcessor [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html] subclass and

call its process(Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/Request.html]) method, passing in

the execute(...) method's Request [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html] parameter.

The RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html

Chapter 6. Connector Framework

108

request/processor/RequestProcessor.html] will determine the appropriate method given the

actual Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

Request.html] object and will then invoke that method:

public void execute(final ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/ExecutionContext.html] context,

 final Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/Request.html] request) throws RepositorySourceException {

 String sourceName = // from the RepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html]

 Observer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/

Observer.html] observer = // from the RepositoryContext [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html]

 RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/request/processor/RequestProcessor.html] processor = new

 CustomRequestProcessor(sourceName,context,observer);

 try {

 processor.process(request);

 } finally {

 processor.close(); // sends the

 accumulated ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/ChangeRequest.html]s as a Changes [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/observe/Changes.html] to the Observer [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html]

 }

}

If you do this, the bulk of your connector implementation may be in

the RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/processor/RequestProcessor.html] implementation methods. This not only is pretty

maintainable, it also lends itself to easier testing. And should any new request types be

added in the future, your connector may work just fine without any changes. In fact, if

the RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/processor/RequestProcessor.html] class can implement meaningful methods for those

new request types, your connector may "just work". Or, at least your connector will still be binary

compatible, even if your connector won't support any of the new features.

Finally, how should the connector handle exceptions? As mentioned above,

each Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

Request.html] object has a slot where the connector can set any exception

encountered during processing. This not only handles the exception, but in the case

of CompositeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CompositeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CompositeRequest.html

Testing custom connectors

109

request/CompositeRequest.html]s it also correctly associates the problem with the request.

However, it is perfectly acceptable to throw an exception if the connection becomes invalid (e.g.,

there is a communication failure) or if a fatal error would prevent subsequent requests from being

processed.

6.3.4. Testing custom connectors

Testing connectors is not really that much different than testing other classes. Using mocks may

help to isolate your instances so you can create more unit tests that don't require the underlying

source system.

However, there may be times when you have to use the underlying source system in your tests.

If this is the case, we recommend using Maven integration tests, which run at a different point in

the Maven lifecycle. The benefit of using integration tests is that by convention they're able to rely

upon external systems. Plus, your unit tests don't become polluted with slow-running tests that

break if the external system is not available.

6.4. Summary

In this chapter, we covered all the aspects of ModeShape connectors, including the connector API,

how ModeShape's JCR implementation works with connectors, what connectors are available

(and how to use them), and how to write your own connector. So now that you know how to set

up and use ModeShape repositories, the next chapter describes the sequencing framework and

how to build your own custom sequencers. After that, we'll get into how to configure ModeShape

and use JCR.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/CompositeRequest.html

110

Chapter 7.

111

Sequencing framework
Many repositories are used (at least in part) to manage files and other artifacts, including service

definitions, policy files, images, media, documents, presentations, application components,

reusable libraries, configuration files, application installations, databases schemas, management

scripts, and so on. Unlocking the information buried within all of those files is what ModeShape

sequencing is all about. As files are loaded into the repository, you ModeShape instance can

automatically sequence these files to extract from their content meaningful information that can

be stored in the repository, where it can then be searched, accessed, and analyzed using the

JCR API.

7.1. Sequencers

Sequencers are just POJOs that implement a specific interface, and their job is to process a

stream of data (supplied by ModeShape) to extract meaningful content that usually takes the form

of a structured graph. Exactly what content is up to each sequencer implementation. For example,

ModeShape comes with an image sequencer that extracts the simple metadata from different

kinds of image files (e.g., JPEG, GIF, PNG, etc.). Another example is the Compact Node Definition

(CND) sequencer that processes the CND files to extract and produce a structured representation

of the node type definitions, property definitions, and child node definitions contained within the file.

Sequencers are configured to identify the kinds of nodes that the sequencers can work against.

When content in the repository changes, ModeShape looks to see which (if any) sequencers

might be able to run on the changed content. If any sequencer configurations do match, those

sequencers are run against the content, and the structured graph output of the sequencers is then

written back into the repository (at a location dictated by the sequencer configuration). And once

that information is in the repository, it can be easily found and accessed via the standard JCR API.

In other words, ModeShape uses sequencers to help you extract more meaning from the artifacts

you already are managing, and makes it much easier for applications to find and use all that

valuable information. All without your applications doing anything extra.

7.2. Stream Sequencers

The StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] interface defines the single method that must be implemented

by a sequencer:

public interface StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/sequencer/StreamSequencer.html] {

 /**

 * Sequence the data found in the supplied stream, placing the output

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html

Chapter 7. Sequencing framework

112

 * information into the supplied map.

 *

 * @param stream the stream with the data to be sequenced; never null

 * @param output the output from the sequencing operation; never null

 * @param context the context for the sequencing operation; never null

 */

 void sequence(InputStream [http://java.sun.com/javase/6/

docs/api/java/io/InputStream.html] stream, SequencerOutput [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html] output,

 StreamSequencerContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/sequencer/StreamSequencerContext.html] context);

}

A new instance is created for each sequencing operation, so there is no need for the

class to be synchronized or thread-safe. Additionally, when a sequencer configuration

includes properties (see configuring a sequencer), ModeShape will set those properties on

the StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] implementation using JavaBean-style setter methods. This

makes it easy to define sequencer-specific properties on the sequencer configurations, while

making it easy to implement with JavaBean-style setter methods.

Implementations are responsible for processing the content in the supplied

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] content and

generating structured content using the supplied SequencerOutput [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html] interface.

The StreamSequencerContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/sequencer/StreamSequencerContext.html] provides additional details about the

information that is being sequenced, including the location and properties of the node being

sequenced, the MIME type of the node being sequenced, and a Problems [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problems.html] object where the

sequencer can record problems that aren't severe enough to warrant throwing an

exception. The StreamSequencerContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/sequencer/StreamSequencerContext.html] also provides access to the

ValueFactories [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/

ValueFactories.html] that can be used to create Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html], Name [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html], and any other value

objects.

The SequencerOutput [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/SequencerOutput.html] interface is fairly easy to use, and its job is to hide from the

sequencer all the specifics about where the output is being written. Therefore, the interface has

only a few methods for implementations to call. Two methods set the property values on a node,

while the other sets references to other nodes in the repository. Use these methods to describe

the properties of the nodes you want to create, using relative paths for the nodes and valid JCR

http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html

Stream Sequencers

113

property names for properties and references. ModeShape will ensure that nodes are created or

updated whenever they're needed.

public interface SequencerOutput [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/sequencer/SequencerOutput.html] {

 /**

 * Set the supplied property on the supplied node. The allowable

 * values are any of the following:

 * - primitives (which will be autoboxed)

 * - String instances

 * - String arrays

 * - byte arrays

 * - InputStream instances

 * - Calendar instances

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param values the value(s) for the property; may be empty if

 * any existing property is to be removed

 */

 void setProperty(String nodePath, String property, Object... values);

 void setProperty(Path [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/property/Path.html] nodePath, Name [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Name.html] property, Object... values);

 /**

 * Set the supplied reference on the supplied node.

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param paths the paths to the referenced property, which may be

 * absolute paths or relative to the sequencer output node;

 * may be empty if any existing property is to be removed

 */

 void setReference(String nodePath, String property, String... paths);

}

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html

Chapter 7. Sequencing framework

114

Note

ModeShape will create nodes of type nt:unstructured unless you specify the

value for the jcr:primaryType property. You can also specify the values for the

jcr:mixinTypes property if you want to add mixins to any node.

7.3. Path Expressions

Each sequencer must be configured to describe the areas or types of content that the sequencer is

capable of handling. This is done by specifying these patterns using path expressions that identify

the nodes (or node patterns) that should be sequenced and where to store the output generated

by the sequencer. We'll see how to fully configure a sequencer in the next chapter, but before

then let's dive into path expressions in more detail.

A path expression consist of two parts: a selection criteria (or an input path) and an output path:

 inputPath => outputPath

The inputPath part defines an expression for the path of a node that is to be sequenced. Input

paths consist of '/' separated segments, where each segment represents a pattern for a single

node's name (including the same-name-sibling indexes) and '@' signifies a property name.

Let's first look at some simple examples:

Table 7.1. Simple Input Path Examples

Input Path Description

/a/b Match node "b" that is a child of the top level

node "a". Neither node may have any same-

name-sibilings.

/a/* Match any child node of the top level node

"a".

/a/*.txt Match any child node of the top level node "a"

that also has a name ending in ".txt".

/a/*.txt Match any child node of the top level node "a"

that also has a name ending in ".txt".

/a/b@c Match the property "c" of node "/a/b".

/a/b[2] The second child named "b" below the top

level node "a".

/a/b[2,3,4] The second, third or fourth child named "b"

below the top level node "a".

Path Expressions

115

Input Path Description

/a/b[*] Any (and every) child named "b" below the

top level node "a".

//a/b Any node named "b" that exists below a node

named "a", regardless of where node "a"

occurs. Again, neither node may have any

same-name-sibilings.

With these simple examples, you can probably discern the most important rules. First, the '*' is

a wildcard character that matches any character or sequence of characters in a node's name

(or index if appearing in between square brackets), and can be used in conjunction with other

characters (e.g., "*.txt").

Second, square brackets (i.e., '[' and ']') are used to match a node's same-name-sibiling index.

You can put a single non-negative number or a comma-separated list of non-negative numbers.

Use '0' to match a node that has no same-name-sibilings, or any positive number to match the

specific same-name-sibling.

Third, combining two delimiters (e.g., "//") matches any sequence of nodes, regardless of what

their names are or how many nodes. Often used with other patterns to identify nodes at any level

matching other patterns. Three or more sequential slash characters are treated as two.

Many input paths can be created using just these simple rules. However, input paths can be more

complicated. Here are some more examples:

Table 7.2. More Complex Input Path Examples

Input Path Description

/a/(b|c|d) Match children of the top level node "a" that

are named "b", "c" or "d". None of the nodes

may have same-name-sibling indexes.

/a/b[c/d] Match node "b" child of the top level node "a",

when node "b" has a child named "c", and

"c" has a child named "d". Node "b" is the

selected node, while nodes "c" and "d" are

used as criteria but are not selected.

/a(/(b|c|d|)/e)[f/g/@something] Match node "/a/b/e", "/a/c/e", "/a/d/

e", or "/a/e" when they also have a child

"f" that itself has a child "g" with property

"something". None of the nodes may have

same-name-sibling indexes.

These examples show a few more advanced rules. Parentheses (i.e., '(' and ')') can be used

to define a set of options for names, as shown in the first and third rules. Whatever part of the

selected node's path appears between the parentheses is captured for use within the output path.

Chapter 7. Sequencing framework

116

Thus, the first input path in the previous table would match node "/a/b", and "b" would be captured

and could be used within the output path using "$1", where the number used in the output path

identifies the parentheses.

Square brackets can also be used to specify criteria on a node's properties or children. Whatever

appears in between the square brackets does not appear in the selected node.

Let's go back to the previous code fragment and look at the first path expression:

 //(*.(jpg|jpeg|gif|bmp|pcx|png)[*])/jcr:content[@jcr:data] => /images/$1

This matches a node named "jcr:content" with property "jcr:data" but no siblings with the

same name, and that is a child of a node whose name ends with ".jpg", ".jpeg", ".gif", ".bmp",

".pcx", or ".png" that may have any same-name-sibling index. These nodes can appear at any

level in the repository. Note how the input path capture the filename (the segment containing the

file extension), including any same-name-sibling index. This filename is then used in the output

path, which is where the sequenced content is placed.

7.4. Out-of-the-box Sequencers

A number of sequencers are already available in ModeShape, and

are outlined in detail later in the document. Note that we do

want to build more sequencers [https://jira.jboss.org/jira/secure/

IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/

field=priority&resolution=-1&component=12311441] in the upcoming releases.

7.5. Creating Custom Sequencers

The current release of ModeShape comes with eleven sequencers. However, it's very easy

to create your own sequencers and to then configure ModeShape to use them in your own

application.

Creating a custom sequencer involves the following steps:

1. Create a Maven 2 project for your sequencer;

2. Implement the StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/sequencer/StreamSequencer.html] interface with your own implementation,

and create unit tests to verify the functionality and expected behavior;

3. Add the sequencer configuration to the ModeShape SequencingService [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/

SequencingService.html] in your application as described in the previous chapter; and

4. Deploy the JAR file with your implementation (as well as any dependencies), and make them

available to ModeShape in your application.

It's that simple.

https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/SequencingService.html

Creating the Maven 2 project

117

7.5.1. Creating the Maven 2 project

The first step is to create the Maven 2 project that you can use to compile your code and build

the JARs. Maven 2 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 2, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

Note

ModeShape may provide in the future a Maven archetype for creating sequencer

projects. If you'd find this useful and would like to help create it, please join the

community.

In lieu of a Maven archetype, you may find it easier to start with a small existing

sequencer project. The modeshape-sequencer-images project is a small, self-

contained sequencer implementation that has only the minimal dependencies.

See the subversion repository: http://anonsvn.jboss.org/repos/modeshape/trunk/

extensions/modeshape-sequencer-images/

You can create your Maven project any way you'd like. For examples,

see the Maven 2 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.0.0.Final</version>

</dependency>

These are minimum dependencies required for compiling a sequencer. Of course, you'll have to

add other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed here:

<!-- ModeShape-related unit testing utilities and classes -->

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-sequencer-images/
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-sequencer-images/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 7. Sequencing framework

118

 <version>2.0.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-common</artifactId>

 <version>2.0.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<!-- Unit testing -->

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

Creating the Maven 2 project

119

Testing ModeShape sequencers does not require a JCR repository or the ModeShape services.

(For more detail, see the testing section.) However, if you want to do integration testing with a JCR

repository and the ModeShape services, you'll need additional dependencies for these libraries.

<!-- ModeShape JCR Repository -->

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>2.0.0.Final</version>

 <scope>test</scope>

</dependency>

<!-- Java Content Repository API -->

<dependency>

 <groupId>javax.jcr</groupId>

 <artifactId>jcr</artifactId>

 <version>2.0</version>

 <scope>test</scope>

</dependency>

At this point, your project should be set up correctly, and you're ready to move on to write your

custom implementation of the StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/sequencer/StreamSequencer.html] interface. As stated earlier, this

should be fairly straightforward: process the stream and generate the output that's appropriate for

the kind of file being sequenced.

Let's look at an example. Here is the complete code for the

ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/image/ImageMetadataSequencer.html] implementation:

public class ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/image/ImageMetadataSequencer.html] implements StreamSequencer

 [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/

StreamSequencer.html] {

 /**

 * {@inheritDoc}

 *

 * @see StreamSequencer#sequence(InputStream, SequencerOutput,

 StreamSequencerContext)

 */

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html

Chapter 7. Sequencing framework

120

 public void sequence(InputStream stream,

 SequencerOutput output,

 StreamSequencerContext context) {

 ImageMetadata metadata = new ImageMetadata();

 metadata.setInput(stream);

 metadata.setDetermineImageNumber(true);

 metadata.setCollectComments(true);

 // Process the image stream and extract the metadata ...

 if (!metadata.check()) {

 metadata = null;

 }

 // Generate the output graph if we found useful metadata ...

 if (metadata != null) {

 PathFactory pathFactory = context.getValueFactories().getPathFactory();

 Path metadataNode =

 pathFactory.createRelativePath(ImageMetadataLexicon.METADATA_NODE);

 // Place the image metadata into the output map ...

 output.setProperty(metadataNode, JcrLexicon.PRIMARY_TYPE, "image:metadata");

 // output.psetProperty(metadataNode, nameFactory.create(IMAGE_MIXINS), "");

 output.setProperty(metadataNode, JcrLexicon.MIMETYPE, metadata.getMimeType());

 // output.setProperty(metadataNode, nameFactory.create(IMAGE_ENCODING), "");

 output.setProperty(metadataNode, ImageMetadataLexicon.FORMAT_NAME,

 metadata.getFormatName());

 output.setProperty(metadataNode, ImageMetadataLexicon.WIDTH, metadata.getWidth());

 output.setProperty(metadataNode, ImageMetadataLexicon.HEIGHT, metadata.getHeight());

 output.setProperty(metadataNode, ImageMetadataLexicon.BITS_PER_PIXEL,

 metadata.getBitsPerPixel());

 output.setProperty(metadataNode, ImageMetadataLexicon.PROGRESSIVE,

 metadata.isProgressive());

 output.setProperty(metadataNode, ImageMetadataLexicon.NUMBER_OF_IMAGES,

 metadata.getNumberOfImages());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_WIDTH_DPI,

 metadata.getPhysicalWidthDpi());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_HEIGHT_DPI,

 metadata.getPhysicalHeightDpi());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_WIDTH_INCHES,

 metadata.getPhysicalWidthInch());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_HEIGHT_INCHES,

 metadata.getPhysicalHeightInch());

 }

Creating the Maven 2 project

121

 }

}

where the ImageMetadataLexicon [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/image/ImageMetadataLexicon.html] class contains the Name [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html] constants

and is defined as:

 /**

 * A lexicon of names used within the image sequencer.

 */

 @Immutable

 public class ImageMetadataLexicon [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/image/ImageMetadataLexicon.html] {

 public static class Namespace {

 public static final String URI = "http://www.modeshape.org/images/1.0";

 public static final String PREFIX = "image";

 }

 public static final Name METADATA_NODE = new BasicName(Namespace.URI, "metadata");

 public static final Name FORMAT_NAME = new BasicName(Namespace.URI, "formatName");

 public static final Name WIDTH = new BasicName(Namespace.URI, "width");

 public static final Name HEIGHT = new BasicName(Namespace.URI, "height");

 public static final Name BITS_PER_PIXEL = new BasicName(Namespace.URI, "bitsPerPixel");

 public static final Name PROGRESSIVE = new BasicName(Namespace.URI, "progressive");

 public static final Name NUMBER_OF_IMAGES = new BasicName(Namespace.URI,

 "numberOfImages");

 public static final Name PHYSICAL_WIDTH_DPI = new BasicName(Namespace.URI,

 "physicalWidthDpi");

 public static final Name PHYSICAL_HEIGHT_DPI = new BasicName(Namespace.URI,

 "physicalHeightDpi");

 public static final Name PHYSICAL_WIDTH_INCHES = new BasicName(Namespace.URI,

 "physicalWidthInches");

 public static final Name PHYSICAL_HEIGHT_INCHES = new BasicName(Namespace.URI,

 "physicalHeightInches");

 }

Notice how the image metadata is extracted and the output graph is generated. A single node

is created with the name image:metadata and with the image:metadata node type. No mixins

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html

Chapter 7. Sequencing framework

122

are defined for the node, but several properties are set on the node using the values obtained

from the image metadata. After this method returns, the constructed graph will be saved to the

repository in all of the places defined by its configuration. (This is why only relative paths are used

in the sequencer.)

7.5.2. Testing custom sequencers

The sequencing framework was designed to make testing sequencers much easier. In particular,

the StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] interface does not make use of the JCR API. So instead of

requiring a fully-configured JCR repository and ModeShape system, unit tests for a sequencer can

focus on testing that the content is processed correctly and the desired output graph is generated.

Note

For a complete example of a sequencer unit test,

see the ImageMetadataSequencerTest unit test in the

org.modeshape.sequencer.images package of the modeshape-sequencers-

image project.

The following code fragment shows one way of testing a sequencer, using JUnit 4.4 assertions

and some of the classes made available by ModeShape. Of course, this example code does not

do any error handling and does not make all the assertions a real test would.

StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] sequencer = new ImageMetadataSequencer [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/

ImageMetadataSequencer.html]();

MockSequencerOutput [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/MockSequencerOutput.html] output = new MockSequencerOutput [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/

MockSequencerOutput.html]();

MockSequencerContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/MockSequencerContext.html] context = new MockSequencerContext [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/

MockSequencerContext.html]();

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream = null;

try {

 stream = this.getClass().getClassLoader().getResource("caution.gif").openStream();

 sequencer.sequence(stream,output,context); // writes to 'output'

 assertThat(output.getPropertyValues("image:metadata", "jcr:primaryType"),

 is(new Object[] {"image:metadata"}));

 assertThat(output.getPropertyValues("image:metadata", "jcr:mimeType"),

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html

Testing custom sequencers

123

 is(new Object[] {"image/gif"}));

 // ... make more assertions here

 assertThat(output.hasReferences(), is(false));

} finally {

 stream.close();

}

It's also useful to test that a sequencer produces no output for something it should not understand:

Sequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/

sequencer/Sequencer.html] sequencer = new ImageMetadataSequencer [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html]();

MockSequencerOutput [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/MockSequencerOutput.html] output = new MockSequencerOutput [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/

MockSequencerOutput.html]();

MockSequencerContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/MockSequencerContext.html] context = new MockSequencerContext [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/

MockSequencerContext.html]();

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream = null;

try {

 stream = this.getClass().getClassLoader().getResource("caution.pict").openStream();

 sequencer.sequence(stream,output,context); // writes to 'output'

 assertThat(output.hasProperties(), is(false));

 assertThat(output.hasReferences(), is(false));

} finally {

 stream.close();

}

These are just two simple tests that show ways of testing a sequencer. Some tests may get quite

involved, especially if a lot of output data is produced.

It may also be useful to create some integration tests that configure ModeShape to use a custom

sequencer, and to then upload content using the JCR API, verifying that the custom sequencer did

run. However, remember that ModeShape runs sequencers asynchronously in the background,

and you must synchronize your tests to ensure that the sequencers have a chance to run before

checking the results.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html

Chapter 7. Sequencing framework

124

7.6. Summary

In this chapter, we described how ModeShape sequences files as they're uploaded into a

repository. We've also learned in previous chapters about the ModeShape execution contexts,

graph model, and connectors. In the next part we'll put all these pieces together to learn how to

set up a ModeShape repository and access it using the JCR API.

Part III. ModeShape JCR
The ModeShape project provides an implementation of the JCR 2.0 API [http://www.jcp.org/en/

jsr/detail?id=283], which is built on top of the core libraries discussed earlier. This implementation

as well as a number of JCR-related components are described in this part of the document. But

before talking about how to use the JCR API with a ModeShape repository, first we need to show

how to set up a ModeShape engine.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 8.

127

Configuration
Using ModeShape within your application is actually quite straightforward, and with JCR 2.0 it is

possible for your application to do everything using only the JCR 2.0 API. Your application will

first obtain a javax.jcr.Repository instance, and will use that object to create sessions through

which your application will read, modify, search, or monitor content in the repository.

However, before you can use ModeShape, you need to configure it, and that's what this chapter

covers.

8.1. Configuring ModeShape

There really are three options:

• Load from a file is conceptually the most straightforward and requires the least amount of

Java code, but it does requires having a configuration file. This is easy, allows one to manage

configurations in version control, and will likely be the approach most applications use.

• Programmatic configuration allows an application to define and edit a configuration using

Java code. This is useful when you cannot pre-define your configuration, or when you want to

start with a baseline configuration, make programmatic changes based upon some inputs or

preferences, and then save the configuration to a file.

• Load from a configuration repository is an advanced technique that

allows multiple JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/JcrEngine.html] instances (usually in different processes perhaps on different machines) to

easily access a (shared) configuration.

Each of these approaches has their obvious advantages, so the choice of which one to use is

entirely up to you.

8.1.1. Loading from a Configuration File

Loading the ModeShape configuration from a file is actually very simple:

JcrConfiguration config = new JcrConfiguration();

configuration.loadFrom(file);

where the file parameter can actually be a File [http://java.sun.com/javase/6/docs/api/java/

io/File.html] instance, a URL [http://java.sun.com/javase/6/docs/api/java/net/URL.html] to the file,

an InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] containing the

contents of the file, or even a String [http://java.sun.com/javase/6/docs/api/java/lang/String.html]

containing the contents of the file.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Chapter 8. Configuration

128

Note

The loadFrom(...) method can be called any number of times, but each time it is

called it completely wipes out any current notion of the configuration and replaces

it with the configuration found in the file.

There is an optional second parameter that defines the Path [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/property/Path.html] within the configuration file identifying

the parent node of the various configuration nodes. If not specified, it assumes "/". This makes

it possible for the configuration content to be located at a different location in the hierarchical

structure. (This is not often required, but when it is required this second parameter is very useful.)

Here is the configuration file that is used in the repository example, though it has been simplified

a bit and most comments have been removed for clarity):

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the JCR repositories

 -->

 <mode:repositories>

 <!--

 Define a JCR repository that accesses the 'Cars' source directly.

 This of course is optional, since we could access the same content through 'vehicles'.

 -->

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <jaasLoginConfigName jcr:primaryType="mode:option" mode:value="modeshape-jcr"/>

 </mode:options>

 <mode:descriptors>

 <!--

 This adds a JCR Repository descriptor named "myDescriptor" with a value of "foo".

 So this code:

 Repository repo = ...;

 System.out.println(repo.getDescriptor("myDescriptor");

 Will now print out "foo".

 -->

 <myDescriptor mode:value="foo" />

 </mode:descriptors>

 <!--

 Import the custom node types defined in the named resource (a file at a

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html

Loading from a Configuration File

129

 classpath-relative path). If there was more than one file with custom node

 types, we could either add successive <jcr:nodeTypes ... /> elements or just

 add all of the files as a comma-delimited string in the mode:resource property.

 -->

 <jcr:nodeTypes mode:resource="/tck/tck_test_types.cnd" />

 </mode:repository>

 </mode:repositories>

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <mode:source jcr:name="Cars"

 mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySource"

 mode:retryLimit="3" mode:defaultWorkspaceName="workspace1">

 <mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!--

 Define the sequencers. This is an optional section. For this example, we're not using any

 sequencers.

 -->

 <mode:sequencers>

 <!--mode:sequencer jcr:name="Image Sequencer">

 <mode:classname>

 org.modeshape.sequencer.image.ImageMetadataSequencer

 </mode:classname>

 <mode:description>Image metadata sequencer</mode:description>

 <mode:pathExpression>/foo/source => /foo/target</mode:pathExpression>

 <mode:pathExpression>/bar/source => /bar/target</mode:pathExpression>

 </mode:sequencer-->

 </mode:sequencers>

 <mode:mimeTypeDetectors>

 <mode:mimeTypeDetector jcr:name="Detector"

 mode:description="Standard extension-based MIME type detector"/>

 </mode:mimeTypeDetectors>

</configuration>

Chapter 8. Configuration

130

8.1.2. Programmatic Configuration

Defining the configuration programmatically is not terribly complicated, and it for obvious reasons

results in more verbose Java code. But this approach is very useful and often the easiest approach

when the configuration must change or is a reflection of other dynamic information.

The JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrConfiguration.html] class was designed to have an easy-to-use API that makes it easy to

configure each of the different kinds of components, especially when using an IDE with code

completion. Here are several examples:

8.1.2.1. Repository Sources

Each repository source definition must include the name of

the RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] class as well as each bean property that should be set on the

object:

JcrConfiguration config = ...

config.repositorySource("source A")

 .usingClass(InMemoryRepositorySource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", workspaceName);

This example defines an in-memory source with the name "source

A", a description, and a single "defaultWorkspaceName" bean property.

Different RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositorySource.html] implementations will the bean properties that are

required and optional. Of course, the class can be specified as Class reference or a string (followed

by whether the class should be loaded from the classpath or from a specific classpath).

Note

Each time repositorySource(String) is called, it will either load the existing

definition with the supplied name or will create a new definition if one does

not already exist. To remove a definition, simply call remove() on the result of

repositorySource(String). The set of existing definitions can be accessed with

the repositorySources() method.

8.1.2.2. Repositories

Each repository must be defined to use a named repository source, but all other aspects (e.g.,

namespaces, node types, options) are optional.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Programmatic Configuration

131

JcrConfiguration config = ...

config.repository("repository A")

 .addNodeTypes("myCustomNodeTypes.cnd")

 .setSource("source 1")

 .registerNamespace("acme","http://www.example.com/acme")

 .setOption(JcrRepository.Option.JAAS_LOGIN_CONFIG_NAME, "modeshape-jcr");

This example defines a repository that uses the "source 1" repository source (which could be a

federated source, an in-memory source, a database store, or any other source). Additionally, this

example adds the node types in the "myCustomNodeTypes.cnd" file as those that will be made

available when the repository is accessed. It also defines the "http://www.example.com/acme"

namespace, and finally sets the "JAAS_LOGIN_CONFIG_NAME" option to define the name of

the JAAS login configuration that should be used by the ModeShape repository.

Note

Each time repository(String) is called, it will either load the existing definition

with the supplied name or will create a new definition if one does not already exist.

To remove a definition, simply call remove() on the result of repository(String).

The set of existing definitions can be accessed with the repositories() method.

8.1.2.3. Sequencers

Each defined sequencer must specify the name of the

StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] implementation class as well as the path expressions defining

which nodes should be sequenced and the output paths defining where the sequencer output

should be placed (often as a function of the input path expression).

JcrConfiguration config = ...

config.sequencer("Image Sequencer")

 .usingClass("org.modeshape.sequencer.image.ImageMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences image files to extract the characteristics of the image")

 .sequencingFrom("//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd)[*])/

jcr:content[@jcr:data]")

 .andOutputtingTo("/images/$1");

This shows an example of a sequencer definition named "Image Sequencer" that uses

the ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/image/ImageMetadataSequencer.html] class (loaded from the classpath), that is to

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html

Chapter 8. Configuration

132

sequence the "jcr:data" property on any new or changed nodes that are named "jcr:content" below

a parent node with a name ending in ".jpg", ".jpeg", ".gif", ".bmp", ".pcx", ".iff", ".ras", ".pbm", ".pgm",

".ppm" or ".psd". The output of the sequencing operation should be placed at the "/images/$1"

node, where the "$1" value is captured as the name of the parent node. (The capture groups work

the same way as regular expressions.) Of course, the class can be specified as Class reference

or a string (followed by whether the class should be loaded from the classpath or from a specific

classpath).

Note

Each time sequencer(String) is called, it will either load the existing definition

with the supplied name or will create a new definition if one does not already exist.

To remove a definition, simply call remove() on the result of sequencer(String).

The set of existing definitions can be accessed with the sequencers() method.

Note that in addition to including a description for the configuration, it is also possible to

set sequencer-specific properties using the setProperty(String,String[]) method. When

ModeShape uses this configuration to set up a sequencing operation, it will instantiate

the StreamSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

sequencer/StreamSequencer.html] class and will call a JavaBean-style setter method for each

property. For example, calling setProperty("foo","val1") on the sequencer configuration

will mean that ModeShape will instantiate the sequencer implementation and will look for a

setFoo(String) method on the sequencer implementation class, and use that method (if found)

to pass the "val1" value to the instance.

8.1.2.4. MIME Type Detectors

Each defined MIME type detector must specify the name of

the MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] implementation class as well as any other bean properties

required by the implementation.

JcrConfiguration config = ...

config.mimeTypeDetector("Extension Detector")

 .usingClass(org.modeshape.graph.mimetype.ExtensionBasedMimeTypeDetector.class);

Of course, the class can be specified as Class reference or a string (followed by whether the class

should be loaded from the classpath or from a specific classpath).

Note

Each time mimeTypeDetector(String) is called, it will either load the existing

definition with the supplied name or will create a new definition if one does

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

Loading from a Configuration Repository

133

not already exist. To remove a definition, simply call remove() on the result of

mimeTypeDetector(String). The set of existing definitions can be accessed with

the mimeTypeDetectors() method.

8.1.2.5. Storing Configuration

Regardless of how the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrConfiguration.html] is loaded, it can also be stored to a file or stream in an XML

format that can then be reloaded in the future to recreate the configuration. This makes it very

easy to programmatically generate a configuration file once while being able to load that same

configuration at a later time (or on a different instance).

JcrConfiguration config = ...

String pathToFile = ...

// Save any changes before this point in the configuration repository ...

configuration.save();

// And now write out the configuration repository to a file ...

configuration.storeTo(pathToFile);

This will create a file at pathToFile that contains the current configuration in XML format. Any

changes made after the most recent call to the save() method on the JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] object will

not be saved in the configuration repository, and thus will not be in the generated file. The

generated XML will not be formatted to maximize human readability.

8.1.3. Loading from a Configuration Repository

Loading the ModeShape configuration from an existing repository is also pretty

straightforward. Simply create and configure the RepositorySource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] instance

to point to the desired repository, and then call the

loadFrom(RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] source) method:

RepositorySource configSource = ...

JcrConfiguration config = new JcrConfiguration();

configuration.loadFrom(configSource);

This really is a more advanced way to define your configuration, so we won't go into how you

configure a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositorySource.html].

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 8. Configuration

134

Note

The loadFrom(...) method can be called any number of times, but each time it is

called it completely wipes out any current notion of the configuration and replaces

it with the configuration found in the file.

There is an optional second parameter that defines the name of the workspace in the supplied

source where the configuration content can be found. It is not needed if the workspace is the

source's default workspace. There is an optional third parameter that defines the Path [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html] within the

configuration repository identifying the parent node of the various configuration nodes. If not

specified, it assumes "/". This makes it possible for the configuration content to be located at a

different location in the hierarchical structure. (This is not often required, but when it is required

this second parameter is very useful.)

8.2. Deploying ModeShape via JNDI

Sometimes your applications can simply define a JcrConfiguration [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] and instantiate the

JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html]

instance directly. This is very straightforward, and this is what the examples in the Getting Started

[http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html] guide do.

Web applications are a different story. Often, you may not want your web application to

contain the code that initializes a ModeShape engine. Or, you may want the same JcrEngine

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] instance to

be reused in multiple web applications deployed to the same web/application server. In

these cases, it is possible to configure the web/app server's JNDI instance to instantiate the

JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html],

meaning the web applications need only use the standard JNDI and JCR APIs.

8.2.1. Example application using JCR and JNDI

Here's an example of how such a web application would obtain a JCR Repository

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance, use it

to create a JcrSession [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrSession.html], and then close the session when completed.

Session session = null;

try {

 // Look up the JCR Repository object ...

 InitialContext initCtx = new InitialContext();

 Context envCtx = (Context) initCtx.lookup("java:comp/env");

 // name in JNDI is defined by configuration

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrSession.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrSession.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrSession.html

Configuring JCR and JNDI

135

 Repository repo = (Repository) envCtx.lookup("jcr/local");

 // Obtain a JCR Session using simple authentication

 // (or use anonymous authentication if desired)

 session = repo.login(new SimpleCredentials("username", "password".toCharArray()));

 // Use the JCR Session to do something interesting

} catch (Exception ex) {

 ex.printStackTrace();

} finally {

 if (session != null) session.logout();

}

Note that the location of the Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance in JNDI depends upon the configuration. In this example, we

used "jcr/local", but the only requirement is that it match the location where it was placed in

JNDI.

We showed how web applications can use an existing Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance. In the next section, we describe how

to configure the web server so that the Repository [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html] instance is available in JNDI.

8.2.2. Configuring JCR and JNDI

Each kind of web server or application server is different, but all servlet containers do

provide a way of configuring objects and placing them into JNDI. ModeShape provides

a JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrRepository.html] class that implements and that can be used in the server's configuration.

The JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/JcrRepository.html] requires two properties:

• configFile is the path to the configuration file. ModeShape will first treat the value of this

property as a resource name and attempt to load it from the classpath. If no resource can be

found with that name, ModeShape will assume that it is supposed to be a filename (with or

without a path) and load it from the filesystem.

• repositoryName is the name of a JCR repository that exists in the JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] and that

will be made available by this JNDI entry

Here's an example of a fragment of the conf/context.xml for Tomcat:

<Resource name="jcr/local"

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 8. Configuration

136

 auth="Container"

 type="javax.jcr.Repository"

 factory="org.modeshape.jcr.JndiRepositoryFactory"

 configFile="/resource/path/to/configuration.xml"

 repositoryName="Test Repository Source" />

Note that it is possible to have multiple Resource entries. The JndiRepositoryFactory

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html] ensures

that only one JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrEngine.html] is instantiated, but that a Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] instance is registered for each entry.

Before the server can start, however, all of the ModeShape jars need to be placed on the classpath

for the server. JAAS also needs to be configured, and this can be done using the application

server's configuration or in your web application if you're using a simple servlet container.

Note

The ModeShape community has solicited input on how we can make it easier to

consume and use ModeShape in applications that do not use Maven. Check out

the discussion thread [http://community.jboss.org/thread/146589], and please add

any suggestions or opinions!

Then, your web application needs to reference the Resource and state its requirements in its

web.xml:

<resource-env-ref>

 <description>Repository</description>

 <resource-env-ref-name>jcr/local</resource-env-ref-name>

 <resource-env-ref-type>javax.jcr.Repository</resource-env-ref-type>

</resource-env-ref>

Note that the value of resource-env-ref-name matches the value of the name attribute on the

<Resource> tag in the context.xml described above. This is a must.

At this point, your web application can perform the lookup of the Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] object, create and use a Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html], and then close the

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. Here's an

example of a JSP page that does this:

<%@ page import="

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://community.jboss.org/thread/146589
http://community.jboss.org/thread/146589
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Configuring JCR and JNDI

137

 javax.naming.*,

 javax.jcr.*,

 org.jboss.security.config.IDTrustConfiguration

 " %>

<%!

static {

 // Initialize IDTrust

 String configFile = "security/jaas.conf.xml";

 IDTrustConfiguration idtrustConfig = new IDTrustConfiguration();

 try {

 idtrustConfig.config(configFile);

 } catch (Exception ex) {

 throw new IllegalStateException(ex);

 }

}

%>

<%

Session sess = null;

try {

 InitialContext initCtx = new InitialContext();

 Context envCtx = (Context) initCtx.lookup("java:comp/env");

 Repository repo = (Repository) envCtx.lookup("jcr/local");

 sess = repo.login(new SimpleCredentials("readwrite", "readwrite".toCharArray()));

 // Do something interesting with the Session ...

 out.println(sess.getRootNode().getPrimaryNodeType().getName());

} catch (Exception ex) {

 ex.printStackTrace();

} finally {

 if (sess != null) sess.logout();

}

%>

Since this uses a servlet container, there is no JAAS implementation configured, so note the

loading of IDTrust to create the JAAS realm. (To make this work in Tomcat, the security folder that

contains the jaas.conf.xml, users.properties, and roles.properties needs to be moved

into the %CATALINA_HOME% directory. Moving the security folder into the conf directory does not

allow those files to be visible to the JSP page.)

Chapter 8. Configuration

138

Note

If you use an application server such as JBoss EAP [http://www.jboss.com/

products/platforms/application/], you could just configure the JAAS realm as part

of the server configuration and be done with it.

8.3. Setting the Classpath

Before you deploy ModeShape into your application or its environment, you need to make sure

that all of the ModeShape JARs are on the appropriate classpath. Two different scenarios are

covered in this section: Maven-based, and using JARs with the traditional classpath.

8.3.1. Building against ModeShape via Maven

By far the easiest way to use ModeShape is to use Maven, because with just a few lines of code,

Maven will automatically pull all the JARs and source for all of the ModeShape libraries as well

as everything those libraries need. All of ModeShape's artifacts for each release are published in

the new JBoss Maven repository [https://repository.jboss.org/nexus/] under the "org.modeshape

[https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/]" group ID.

8.3.1.1. Using the JBoss Maven repository

The JBoss Maven repository not only contains all of the artifacts for ModeShape and other

open source projects hosted at JBoss.org [http://www.jboss.org], but it also proxies quite a

few other repositories [http://community.jboss.org/wiki/MavenRepository] that contain many other

third-party libraries.

So if you're using Maven (or Ivy), first make sure your project knows about this new JBoss Maven

repository. One way to do this is to add the following to your project POM (you'll still likely want

to use other Maven repositories for third-party artifacts):

<repositories>

 <repository>

 <id>jboss</id>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 </repository>

</repositories>

Or, you can add this information to your ~/.m2/settings.xml file. For more information, see the

JBoss wiki page [http://community.jboss.org/wiki/MavenGettingStarted-Developers].

8.3.1.2. Add dependency to ModeShape

Then, simply modify your project's POM by adding dependencies on the ModeShape JCR library:

http://www.jboss.com/products/platforms/application/
http://www.jboss.com/products/platforms/application/
http://www.jboss.com/products/platforms/application/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
http://www.jboss.org
http://www.jboss.org
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenGettingStarted-Developers
http://community.jboss.org/wiki/MavenGettingStarted-Developers

Building against ModeShape via Maven

139

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>2.0.0.Final</version>

</dependency>

This adds only the minimal libraries required to use ModeShape, so you need to add dependencies

for each of the connectors and sequencers you want to use. Here is the list of available

sequencers:

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-cnd</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-ddl</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshapce</groupid>

 <artifactid>modeshape-sequencer-images</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-classfile</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-java</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-mp3</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

Chapter 8. Configuration

140

 <artifactid>modeshape-sequencer-msoffice</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-xml</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-text</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-sequencer-zip</artifactid>

 <version>2.0.0.Final</version>

</dependency>

Here is the list of available connectors:

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-filesystem</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-infinispan</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-jcr</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-jbosscache</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

Add dependencies for logging

141

 <artifactid>modeshape-connector-jdbc-metadata</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-store-jpa</artifactid>

 <version>2.0.0.Final</version>

</dependency>

<dependency>

 <groupid>org.modeshape</groupid>

 <artifactid>modeshape-connector-svn</artifactid>

 <version>2.0.0.Final</version>

</dependency>

The sequencer and connector libraries you choose, plus every third-party library they need, will

be pulled in automatically by Maven into your project.

8.3.2. Add dependencies for logging

ModeShape is designed to use the same logging framework as your application, and it uses SLF4J

to accomplish this. In other words, ModeShape depends upon the SLF4J API library, but requires

you to provide provide a logging implementation as well as the appropriate SLF4J binding JAR.

For example, if your application is using Log4J [http://logging.apache.org/log4j/], your application

will already have a dependency for it, and so ModeShape log messages will be sent to the same

logging system used in your application, you need to add a dependency to the SLF4J-to-Log4J

binding JAR:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

</dependency>

Of course, SLF4J works with other logging frameworks, too. Some logging implementations (such

as LogBack [http://logback.qos.ch/]) implement the SLF4J API natively, meaning they require no

binding JAR. For details on the options and how to configure them, see the SLF4J manual [http:/

/www.slf4j.org/manual.html].

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://logback.qos.ch/
http://logback.qos.ch/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Chapter 8. Configuration

142

8.3.3. Building against ModeShape via JARs

If your application doesn't use Maven, you'll need to obtain the ModeShape JARs

and place them onto your application's classpath. ModeShape provides a single

download [http://www.jboss.org/modeshape/downloads.html/2.0.0.Final/modeshape-2.0.0.Final-

all-with-dependencies.jar] with all of the JARs for all ModeShape components and all

dependencies. This file contains the following:

• modeshape-jcr-2.0.0.Final-with-dependencies.jar contains the JARs necessary to run

the core ModeShape JCR repository engine, the in-memory connector, and the federating

connector;

• one modeshape-connector-<type>-2.0.0.Final-with-dependencies.jar for each type of

connector, each containing the JARs necessary for that connector;

• one modeshape-sequencer-<type>-2.0.0.Final-with-dependencies.jar for each type of

sequencer, each containing the JARs necessary for that sequencer;

• modeshape-mimetype-detector-aperture-2.0.0.Final-with-dependencies.jar

contains all of the JARs required for the component that detects the MIME type of files based

upon names and/or content; and

• modeshape-jpa-ddl-gen-2.0.0.Final-jar-with-dependencies.jar contains all of the

JARs required to run the DDL generation utility.

Note that the core engine is required in all configurations. The jcr-2.0.jar file is not included

and must be provided by you. And, as mentioned in the previous section, ModeShape uses SLF4J

for logging and you must provide a logging implementation as well as the appropriate SLF4J

binding JAR.

8.4. What's next

This chapter outlines how you configure ModeShape, how to deploy ModeShape into your

application, and how to set up your application's environment with the required ModeShape JARs.

The next chapter talks about how your application can use the JCR API to access ModeShape

repositories.

http://www.jboss.org/modeshape/downloads.html/2.0.0.Final/modeshape-2.0.0.Final-all-with-dependencies.jar
http://www.jboss.org/modeshape/downloads.html/2.0.0.Final/modeshape-2.0.0.Final-all-with-dependencies.jar
http://www.jboss.org/modeshape/downloads.html/2.0.0.Final/modeshape-2.0.0.Final-all-with-dependencies.jar
http://www.jboss.org/modeshape/downloads.html/2.0.0.Final/modeshape-2.0.0.Final-all-with-dependencies.jar

Chapter 9.

143

Using the JCR API with ModeShape
The Content Repository for Java Technology API 2.0 [http://www.jcp.org/en/jsr/detail?id=283]

provides a standard Java API for working with content repositories. Abbreviated "JCR", this API

was developed as part of the Java Community Process under JSR-170 [http://www.jcp.org/en/jsr/

detail?id=170] (JCR 1.0) and has been revised and improved as JCR 2.0 under JSR-283 [http://

www.jcp.org/en/jsr/detail?id=283]. Some of the improvements make it possible for your application

to be written entirely against the JCR 2.0 API.

Note

In the interests of brevity, this chapter does not attempt to reproduce the JSR-283

specification nor provide an exhaustive definition of ModeShape JCR capabilities.

Rather, this chapter will describe any deviations from the specification as well

as any ModeShape-specific public APIs and configuration. So, for a detailed

explanation of the JCR API and its many interfaces and methods, see the JSR-283

[http://www.jcp.org/en/jsr/detail?id=283] specification.

Using ModeShape within your application is actually quite straightforward, and with JCR 2.0 it

is possible for your application to do everything using only the JCR 2.0 API. Your application

will first obtain a javax.jcr.Repository instance, and will use that object to create sessions

through which your application will read, modify, search, or monitor content in the repository. JCR

sessions are designed to be lightweight, so it is perfectly fine (and actually recommended) for your

application to create many short-lived sessions while generally avoiding longer-lived sessions. In

fact, javax.jcr.Session objects are not required to be thread-safe (and are not in ModeShape),

so your application should avoid using a single Session instance in multiple threads.

9.1. What's new in JCR 2.0?

Before we get started talking about how to use ModeShape via the standard JCR 2.0 API, it's

worth spending a little time talking about the changes in JCR 2.0 compared with JCR 1.0.

Although an application written against the JCR 1.0 API will for the most part work very well against

a JCR 2.0 repository, there are a few improvements to the JCR 2.0 API that your application will

likely want to leverage.

Let's look at some of the more important changes in the JCR 2.0 API. However, this is certainly

not definitive nor a complete comparison, so please consult the JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283] specification.

9.1.1. Connecting

JCR 1.0 did not specify a way for client applications to obtain the Repository [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance, though the

JCR 1.0 specification did state this is typically done through JNDI. Consequently, JCR clients

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Chapter 9. Using the JCR API ...

144

either used the JNDI approach or were required to use implementation-specific code. Often,

client applications abstracted this process to minimize their reliance upon implementation-specific

interfaces.

While the JNDI approach still works, JCR 2.0 introduces a new mechanism that makes

it possible to find a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance using only the JCR API. Details of this are covered more in later, but

suffice to say that ModeShape does support this new RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] approach.

How this affects your application: If your application used an implementation-specific approach

to obtaining a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance, you might consider changing it to use the new RepositoryFactory [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] mechanism.

9.1.2. Identifiers

JCR 1.0 used the notion of UUIDs on referenceable nodes - in other words those nodes with

the "mix:referenceable" mixin. However, there were several disadvantages to this design. First,

non-referenceable nodes had no such identifier in the JCR API, leading to difficulties in easily

identifying nodes using an immutable and invariant identifier (unlike the path, which can change

at any time) and requiring a fair amount of code to check whether a node is referenceable before

its UUID could safely be obtained. Second and perhaps more importantly, only valid UUIDs could

be used to identify nodes. This can cause difficulty when JCR is used as an API to another system

that does not use UUIDs.

JCR 2.0 introduces the notion of an identifier on all nodes, and the format of this identifier is

designed to be opaque to the client applications. This dramatically reduces the code to access a

node's identifier down to a simple method call. And it makes it possible for an implementation to

use any identifiers format. This is good for ModeShape federation, as connectors no longer need

to force UUIDs for all nodes.

How this affects your application: The Node.getUUID() method is now deprecated, and instead

your code should call Node.getIdentifier(), which works on any node. However, be aware

that the resulting identifier is no longer required to be a valid UUID. ModeShape does support

these methods and behavior.

9.1.3. Binary Values

JCR 1.0 has always supported storing binary values in properties, but clients could do little more

than just stream the bytes for each value. JCR 2.0 introduces a Binary [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] interface that defines a way to get the size

of the binary value, an InputStream to the value, a method for random access to the value's bytes,

and a way to dispose of the binary value when completed (allowing the implementation to better

clean up memory and other resources).

How this affects your application: The way your existing JCR application accesses and

sets binary values will still work, but the methods are now deprecated. Therefore, you

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Node Type Management

145

will very likely want to change to use the new Binary [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Binary.html] interface. For example, code that previously accessed

the input stream directly from the Property [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/property/Property.html]:

Property property = ...

InputStream stream = property.getInputStream();

try {

 // Read stream

} finally {

 stream.close();

}

can be minimally changed to first get the Binary [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Binary.html] value and then get the stream from this Binary value:

Property property = ...

InputStream stream = property.getBinary().getInputStream();

try {

 // Read stream

} finally {

 stream.close();

}

This second example is not using any deprecated methods, but does not actually dispose

of the Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] object.

This actually works just fine in ModeShape, as closing the InputStream will automatically dispose

of the Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] object.

You may also consider whether your application may benefit from the new Binary.getSize() or

Binary.read(byte[],long) methods.

9.1.4. Node Type Management

In JCR 1.0, client applications could discover node types, property definitions, and child node

definitions, but the API did not provide a way for client applications to modify or create new node

types. This has been rectified in the JCR 2.0 API, and is these methods are now supported by

ModeShape.

Additionally, the JCR 2.0 specification formalized the Compact Node Definition grammar, and

made a few minor improvements to the CND formats used in some JCR 1.0 implementations.

Earlier ModeShape releases supported the older CND format, and ModeShape 2.0.0.Final now

supports the grammar as defined in the specification.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Property.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Chapter 9. Using the JCR API ...

146

How this affects your application: Your application can now define its node types using the

standard CND format and/or using the new programmatic mechanism. If you already used the

older CND format, be aware of the few new options available when defining property definitions

(e.g., searchable, queryable, etc.). Note that node type discovery is largely unchanged.

9.1.5. Queries

JCR 1.0 made it possible for applications to query the repository using XPath and JCR-SQL query

languages. JCR 2.0 maintains the (mostly) similar Java interfaces for executing queries, but it

deprecates the XPath and JCR-SQL query languages and introduces a new declarative language

called "JCR-SQL2" that is a very good improvement over JCR-SQL. JCR 2.0 also introduces a

new query object model (called "JCR-QOM") for defining queries using a programmatic API.

ModeShape supports all of these languages (XPath, JCR-SQL, JCR-SQL2, JCR-QOM), and also

supports a full-text query language that is defined by the full-text search expression in the JCR-

SQL2 language. Additionally, ModeShape extends most of these languages to support richer and

more capable queries.

How this affects your application: Your application can continue to use XPath and JCR-SQL

queries. However, your application may benefit from switching from JCR-SQL to JCR-SQL2 and

its greater capabilities and expressive power. Leverage some of the ModeShape extensions to

make your JCR-SQL2 queries even more powerful.

9.1.6. Workspace Management

Applications could not use the JCR 1.0 API to create or destroy workspaces, meaning such

operations could only be done through a non-standard and implementation-specific API. The JCR

2.0 API now standardizes these operations, and although not all implementations are required to

support them, ModeShape does support these (though not all connectors do support them).

How this affects your application: Your application can now create and remove workspaces using

the standard JCR 2.0 API.

9.1.7. Observation

Applications could use the JCR 1.0 API to be notified of changes to the content, using the optional

observation feature. However, the JCR 1.0 API required multiple events to be created when a

subtree was moved or deleted. This requirement has been relaxed in JCR 2.0 and ModeShape

now fully supports the optional observation feature.

How this affects your application: Your application can now use specification-compliant JCR 2.0

observation with ModeShape.

9.1.8. Locking

JCR 1.0 API had the notion of locking nodes, useful in situations that required synchronization

around reading and modifying content. This optional API is simple and clean, and worked quite

Versioning

147

well. The JCR 2.0 API preserved all of the JCR 1.0 locking semantics, but added a few (optional)

methods. ModeShape implements this optional locking feature.

How this affects your application: If your application is already using the JCR 1.0 locking

feature, be aware that many of the locking-related methods on Node [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html] were deprecated in JCR 2.0 and moved

to the new LockManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/

LockManager.html] interface. However, locking semantics remain unchanged.

9.1.9. Versioning

Versioning of nodes was defined as an optional feature of the JCR 1.0 API.

The JCR 2.0 API expanded upon locking by defining a simple versioning model,

introducing the VersionManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

version/VersionManager.html] interface, and making some semantic changes as well. For

example, restoring a version that contained a versioned child in its subgraph no longer

automatically restores the versioned child. This behavior was ambiguous in the JCR 1.0

specification, and ModeShape 1.x performed the restore operation recursively down the graph.

The JCR 2.0 specification more clearly requires a non-recursive restore. Therefore, ModeShape

2.0.0.Final now supports the "full versioning" model.

How this affects your application: If your application is already using JCR 1.0 versioning

feature, be aware that many of the version-related methods on Node [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html] were deprecated in JCR 2.0 and moved to

the new VersionManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/

VersionManager.html] interface. Also, any reliance upon ModeShape's recursive restore

operation must be changed, per the JCR 2.0 specification.

9.1.10. Importing and Exporting

Importing and exporting content is largely unchanged in JCR 2.0, with the exception of specific

requirements on handling node identifiers.

How this affects your application: Exporting from a JCR 1.0 or 2.0 repository and importing into a

JCR 2.0 repository should work as before. ModeShape does support importing and exporting.

9.1.11. Orderable Child Nodes

Orderable child nodes was an optional feature in JCR 1.0, and has been carried over to JCR 2.0

unchanged. Node ordering has been supported by ModeShape since the initial release.

How this affects your application: No changes are required if your application relies upon node

ordering.

9.1.12. Paths

As defined in JCR 1.0, paths only consisted of segments with node names. JCR 2.0 adds a new

form of path called "identifier paths" that are of the form '[' identifier ']', where identifier is an

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html

Chapter 9. Using the JCR API ...

148

opaque identifier. (Note that the JCR 2.0 specification might appear to allow identifier segments

and name segments to be used together, but Section 3.4.1.1 requires that an identifier segment

must be the first and only segment in a path.)

How this affects your application: Any application written to JCR 1.0 paths will likely work as

expected (this is certainly true when using ModeShape repositories). However, with JCR 2.0 it

is now possible for your application to start making us of identifier paths. For example, PATH

properties can now store identifier paths, and it is possible to resolve an identifier path to the actual

node. And while the specification does not preclude an implementation returning an identifier path

as the node's absolute path, ModeShape never does this and will always return the name-oriented

path.

9.1.13. getItem(String)

The JCR 1.0 specification was slightly ambiguous in defining how the getItem(String) method

behaved if the relative path could resolve to a node or a property. ModeShape always implemented

this by first attempting to resolve to a node, and only if no such node could be found would it

attempt to resolve to a property. The JCR 2.0 specification now explicitly specifies this behavior

(see Section 3.4.2.2).

How this affects your application: Your application will need to change if it uses getItem(String)

and expects relative paths to be resolved against properties before nodes, as this is clearly

different from the JCR 2.0 specified behavior. Otherwise, your application needs no changes with

respect to getItem(String).

9.2. Obtaining a JCR Repository

Before your application can use a JCR repository, it has to find it. As mentioned above,

the JCR 2.0 API defines a new RepositoryFactory [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] interface that can be used with the Java

Standard Edition Service Loader mechanism [http://java.sun.com/javase/6/docs/api/java/util/

ServiceLoader.html] to obtain a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance, all using the JCR API alone:

Map<String,String> parameters = ...

Repository repository = null;

for (RepositoryFactory factory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = factory.getRepository(parameters);

 if (repository != null) break;

}

This code looks for all RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] implementations on the classpath (assuming those

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Obtaining a JCR Repository

149

implementations properly defined the service provider within their JARs), and will ask each to

create a repository given the supplied parameters. Thus, the parameters are specific to the

implementation you want to use.

Note

With JCR 1.0, applications could only find a Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance using

implementation-specific code. This new JCR 2.0 approach is a bit more

complicated, but should work with most JCR 2.0 implementations and does not

require using any implementation classes. And your application can even load the

parameters from a configuration resource, meaning nothing in your application

depends on a particular JCR implementation.

ModeShape uses a single property named "org.modeshape.jcr.URL" with a value that is a URL

that either resolves to a ModeShape configuration file, such as

 file://path/to/configFile.xml?repositoryName=MyRepository

or points to a JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrEngine.html] instance in JNDI:

 jndi://name/in/jndi?repositoryName=MyRepository

Pointing directly to a configuration file often works well in stand-alone applications, while using

JNDI works great for applications deployed to server platforms (e.g., an application server

or servlet container) where multiple applications might want to use the same JCR repository.

We'll see in the next section how to configure ModeShape's JcrEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] explicitly and register it in JNDI.

So, here's the ServiceLoader example again, but with ModeShape-specific parameters:

String configUrl = ... ; // URL that points to your configuration file

Map<String,String> parameters = Collections.singletonMap("org.modeshape.jcr.URL",

 configUrl);

Repository repository = null;

for (RepositoryFactory factory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = factory.getRepository(parameters);

 if (repository != null) break;

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html

Chapter 9. Using the JCR API ...

150

}

Once you've gotten hold of a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance, you can use it to create Session [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s, using code similar to:

Credentials credentials = ...; // JCR credentials

String workspaceName = ...; // Name of repository workspace

Session session = repository.login(credentials,workspaceName);

We'll talk about the various ways of creating sessions in a later chapter.

9.2.1. URL formats

The value of configUrl in the code snippets above would be something like

file:relativePathToConfigFile?repositoryName=yourRepositoryName. In this example,

the configuration file that specifies the repository setup will be loaded from the file path

relativePathToConfigFile and the repository named yourRepositoryName will be returned.

If there is no repository with that name or the configuration file does not exist at that path,

getRepository(Map) will return null. The format for the configuration file is the same as used

above when loading a JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrConfiguration.html] object from a configuration file.

If an absolute path to the configuration file works better, a value for configUrl like file://

/absolutePathToConfigFile?repositoryName=yourRepositoryName could have been used

instead. Note the addition of the three forward slashes after the protocol portion of the URL (i.e.,

file:). this indicates that the following path is an absolute path.

This method can be used to load files from the file system or from the classpath. If there is no

file found at the given path, the same path will be used to try to load the configuration file as a

resource through the classloader.

Behind the scenes, the JcrRepositoryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrRepositoryFactory.html] is checking to see if it has already

configured and started a JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrEngine.html] for the named configuration file. If it has already created a

JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html]

for this configuration, then that JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrEngine.html] is reused. Otherwise, a new JcrEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] is created and configured based

on the given configuration file. Either way, the JcrEngine [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] is used to get the reference to the returned

Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html].

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Accessing Repositories from JNDI

151

9.2.2. Accessing Repositories from JNDI

Given a slightly different URL, the same code used above can be reused to get a Repository [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] from a JcrEngine

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] that has

been previously deployed through JNDI. JNDI URLs take the form jndi:///

nameOfJndiResource?repositoryName=yourRepositoryName. The nameOfJndiResource is

passed directly to a JNDI lookup. If no JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrEngine.html] exists at the given name, the getRepository(Map)

method will return null. Also, any additional parameters besides JcrRepositoryFactory.URL

that are provided in the parameters map in the getRepository(Map) method will be used in the

constructor for the InitialContext used to look up the JNDI reference.

Accessing a repository through JNDI differs slightly from accessing a repository from

a configuration file in that the JcrRepositoryFactory [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html] will never create a new JcrEngine

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] instance in

response to a getRepository invocation with a JNDI URL.

9.2.3. Cleaning Up after JcrRepositoryFactory

As a preceding section notes, it is possible for the JcrRepositoryFactory [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html] to create one or more

JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html]

instances. Although the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification does

not specify a way to shutdown engines or repositories created as a side effect

of JcrRepositoryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrRepositoryFactory.html] use, ModeShape has an extension to the JSR-283 [http://www.jcp.org/

en/jsr/detail?id=283] API that provides this capability.

org.modeshape.jcr.api.RepositoryFactory repoFactory = JcrRepositoryFactory();

// Create any number of JcrEngines by calling repoFactory.getRepository(params);

// Do some stuff with the repository

// Now clean up the repository when finished

repoFactory.shutdown(30, TimeUnit.SECONDS);

The code listed above will instantiate a new JcrRepositoryFactory [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html] and

use a ModeShape-specific method to shutdown any JcrEngine [http:/

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html

Chapter 9. Using the JCR API ...

152

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html]s created by

JcrRepositoryFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrRepositoryFactory.html] and wait for up to 30 seconds for each of them to shutdown gracefully.

Behind the scenes, the shutdown(long, TimeUnit) method is iterating over an internal

collection of JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrEngine.html]s and calling shutdown and awaitTermination(long, TimeUnit) on each

engine.

9.3. ModeShape's JcrEngine

Although the preferred mechanism to obtain a Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] object is through the RepositoryFactory

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] interface

described above, there are times when an application wants or needs to have more control over

an actual ModeShape engine, which encapsulates everything necessary to run one or more JCR

repositories and managing the underlying repository sources, the pools of connections to the

sources, the sequencers, the MIME type detector(s), and the Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] implementations.

Creating a new JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrEngine.html] instance is very easy if you already have a valid JcrConfiguration [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance as

described in the previous chapter. Once you have a valid JcrConfiguration [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance, all

you have to do is build and start the engine:

JcrConfiguration config = ...

JcrEngine engine = config.build();

engine.start();

Obtaining a JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance is a matter of simply asking the engine for it by the name defined in

the configuration:

javax.jcr.Repository repository = engine.getRepository("Name of repository");

At this point, your application can proceed by working with the JCR API.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrRepositoryFactory.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Creating JCR Sessions

153

And, once you're finished with the JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/jcr/JcrEngine.html], you should shut it down:

engine.shutdown();

engine.awaitTermination(3,TimeUnit.SECONDS); // optional

When the shutdown() method is called, the Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] instances managed by the engine are marked as

being shut down, and they will not be able to create new Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s. However, any existing Session [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s or ongoing operations

(e.g., event notifications) present at the time of the shutdown() call will be allowed to finish. In

essence, shutdown() is a graceful request, and since it may take some time to complete, you

can wait until the shutdown has completed by simply calling awaitTermination(...) as shown

above. This method will block until the engine has indeed shutdown or until the supplied time

duration has passed (whichever comes first). And, yes, you can call the awaitTermination(...)

method repeatedly if needed.

9.4. Creating JCR Sessions

Once you have obtained a reference to the JCR Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html], you can create a JCR session using one

of its login(...) methods. The JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification

provides four login methods, but the behavior of these methods depends on the kind of

authentication system your application is using.

9.4.1. Using JAAS

The login() method allows the implementation to choose its own security

context to create a session in the default workspace for the repository.

The ModeShape JCR implementation uses the security context from the

current JAAS AccessControlContext [http://java.sun.com/javase/6/docs/api/java/security/

AccessController.html]. This implies that this method will throw a LoginException

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html] if it is

not executed as a PrivilegedAction [http://java.sun.com/javase/6/docs/api/java/security/

PrivilegedAction.html] (AND the JcrRepository.Options.ANONYMOUS_USER_ROLES option does

not allow access; see below for an example of how to configure guest user access). Here is one

example of how this might work:

Subject subject = ...;

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html
http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html
http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html
http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html

Chapter 9. Using the JCR API ...

154

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 Subject.doAsPrivileged(subject, new PrivilegedExceptionAction<Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]>() {

 public Session run() throws Exception {

 return repository.login();

 }

}, AccessController.getContext());

Another variant of this is to use the AccessControlContext directly, which then operates against

the current Subject:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 AccessController.doPrivileged(new PrivilegedExceptionAction<Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]>() {

 public Session run() throws Exception {

 return repository.login();

 }

});

Either of these approaches will yield a session with the same user name and roles as subject.

The login(String workspaceName) method is comparable and allows the workspace to be

specified by name:

Subject subject = ...;

final String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = (Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html])

 Subject.doAsPrivileged(subject, new PrivilegedExceptionAction<Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]>() {

 public Session run() throws Exception {

 return repository.login(workspaceName);

 }}, AccessController.getContext());

The JCR API also allows supplying a JCR Credentials [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Credentials.html] object directly as part of the login process, although

ModeShape imposes some requirements on what types of Credentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] may be supplied. The simplest way

is to provide a JCR SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/SimpleCredentials.html] object. These credentials will be validated against the JAAS

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html

Using JAAS

155

realm named "modeshape-jcr", unless another realm name is provided as an option during the

JCR repository configuration. For example:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] userName = ...;

char[] password = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = repository.login(new SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-

2.0/javax/jcr/SimpleCredentials.html](userName, password));

Similarly, the login(Credentials credentials, String workspaceName) method enables

passing the credentials and a workspace name:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] userName = ...;

char[] password = ...;

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = repository.login(new SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-

2.0/javax/jcr/SimpleCredentials.html](userName, password), workspaceName);

If a LoginContext [http://java.sun.com/javase/6/docs/api/javax/security/auth/login/

LoginContext.html] is available for the user, that can be used as part of the credentials to

authenticate the user with ModeShape instead. This snippet uses an anonymous class to provide

the login context, but any class with a LoginContext [http://java.sun.com/javase/6/docs/

api/javax/security/auth/login/LoginContext.html] getLoginContext() method can be

used as well.

final LoginContext [http://java.sun.com/javase/6/docs/api/javax/security/auth/login/

LoginContext.html] loginContext = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(new Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Credentials.html]() {

 LoginContext [http://java.sun.com/javase/6/docs/api/javax/security/auth/login/

LoginContext.html] loginContext getLoginContext() {

 return loginContext;

 }

}, workspaceName);

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html

Chapter 9. Using the JCR API ...

156

9.4.2. Using Custom Security

Not all applications can or want to use JAAS for their authentication system, so ModeShape

provides a way to integrate your own custom security provider. The first step is to provide a

custom implementation of SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/SecurityContext.html] that integrates with your application security, allowing

ModeShape to discover the authenticated user's name, determine whether the authenticated user

has been assigned particular roles (see the JCR Security section), and to notify your application

security system that the authenticated session (for JCR) has ended.

The next step is to wrap your SecurityContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html] instance within an

instance of SecurityContextCredentials [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/SecurityContextCredentials.html], and pass it as the Credentials parameter in one

of the two login(...) methods:

SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] securityContext = new CustomSecurityContext(...);

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = repository.login(new SecurityContextCredentials [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html](securityContext));

Once the Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]

is obtained, the repository content can be accessed and modified like any other JCR repository.

9.4.3. Using HTTP Servlet security

Servlet-based applications can make use of the servlet's existing authentication

mechanism from HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html]. Please note that the example below assumes that the servlet has a

security constraint that prevents unauthenticated access.

HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html] request = ...;

SecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

SecurityContext.html] securityContext = new ServletSecurityContext [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html](request);

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = repository.login(new SecurityContextCredentials [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html](securityContext));

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/SecurityContextCredentials.html

Guest (Anonymous) User Access

157

You'll note that this is just a specialization of the custom security context

approach, since the ServletSecurityContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/graph/ServletSecurityContext.html] just implements the SecurityContext [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html] interface

and delegates to the HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/

http/HttpServletRequest.html]. Feel free to use this class in your servlet-based applications.

9.4.4. Guest (Anonymous) User Access

By default, ModeShape allows guest users full administrative access. This is done to make it

easier to get started with ModeShape. Of course, this is clearly not an appropriate security model

for a production system.

To modify the roles granted to guest users, change the

JcrRepository.Options.ANONYMOUS_USER_ROLES option for your repository to have a different

value, like "" (to disable guest access entirely) or "readonly" (to give guests read-only access to

all repositories). The value of this option can be any pattern that matches those described in the

table below.

Note

The Using ModeShape chapter of the Getting Started Guide provides examples

of modifying this option through programmatic configuration or in an XML

configuration file.

9.5. JCR Specification Support

We believe that ModeShape JCR implementation is JCR-compliant, but we are

awaiting final certification of compliance. Additionally, the JCR specification allows

some latitude to implementors for some implementation details. The sections

below clarify ModeShape's current and planned behavior. As always, please

consult the current list of known issues and bugs [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel].

9.5.1. Required features

ModeShape 2.0.0.Final implements all of the JCR 2.0 required features:

• repository acquisition

• authentication

• reading/navigating

• query

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ServletSecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/SecurityContext.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel

Chapter 9. Using the JCR API ...

158

• export

• node type discovery

• permissions and capability checking

ModeShape supports several query languages, including the JCR-SQL2 and JCR-QOM query

languages defined in JSR-283 [http://www.jcp.org/en/jsr/detail?id=283], and the XPath and JCR-

SQL languages defined in JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] but deprecated in

JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]. ModeShape also supports a fulltext search

language that is defined by the full-text search expression grammar used in the second parameter

of the CONTAINS(...) function of the JCR-SQL2 language. We just pulled it out and made it

available as a first-class query language.

9.5.2. Optional features

ModeShape 2.0.0.Final implements most of the JCR 2.0 optional features:

• writing

• import

• observation

• workspace management

• versioning

• locking

• node type management

• same-name siblings

• orderable child nodes

The remaining optional features (shareable nodes, access control management, lifecycle

management, retention and hold, and transactions) may be introduced in future versions.

9.5.3. TCK Compatibility features

The ModeShape project has not yet been certified to be fully-compliant with the JCR 2.0

specification, but does plan on attaining this certification in the very near future.

However, the ModeShape project also runs the JCR TCK unit tests from the reference

implementation every night. These tests technically do not represent the official TCK, but are

used within the TCK. Most of these unit tests are run in the modeshape-jcr module against the

in-memory repository to ensure our JCR implementation behaves correctly, and the same tests

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

JCR Security

159

are run in the modeshape-integration-tests module against a variety of connectors to ensure

they're implemented correctly. The modeshape-jcr-tck module runs all of these TCK unit tests,

and currently there are only a handful of failures due to known issues (see the JCR specification

support section for details).

ModeShape 2.0.0.Final currently passes 1371 of the 1391 JCR TCK tests, where 17 of these

20 failures appear to be bugs in the TCK tests (see JCR-2648 [https://issues.apache.org/

jira/browse/JCR-2648], JCR-2661 [https://issues.apache.org/jira/browse/JCR-2661], JCR-2662

[https://issues.apache.org/jira/browse/JCR-2662], and JCR-2663 [https://issues.apache.org/jira/

browse/JCR-2663]). The remaining 3 failures are due to known issues (see MODE-760 [http://

jira.jboss.org/browse/MODE-760] and MODE-786 [http://jira.jboss.org/browse/MODE-786]).

9.5.4. JCR Security

Although the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification requires

implementation of the Session.checkPermission(String, String) method, it allows

implementors to choose the granularity of their access controls. ModeShape supports coarse-

grained, role-based access control at the repository and workspace level.

ModeShape has extended the set of JCR-defined actions ("add_node", "set_property", "remove",

and "read") with additional actions ("register_type", "register_namespace", "unlock_any",

"create_workspace" and "delete_workspace"). The "register_type" and "register_namespace"

permissions control the ability to register (and unregister) node types and namespaces,

respectively. The "unlock_any"" permission grants the user the ability to unlock any locked

node or branch (as opposed to users without that permission who can only unlock nodes

or branches that they have locked themselves or for which they hold the lock token).

Finally, the "create_workspace" and "delete_workspace" permissions grant the user the

ability to create workspaces and delete workspaces, respectively, using the corresponding

methods on Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html]. Permissions to perform these actions are aggregated in roles that can be

assigned to users.

ModeShape currently defines three roles: readonly, readwrite, and admin. If

the Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html]

passed into Repository.login(...) (or the Subject [http://java.sun.com/javase/6/docs/api/

javax/security/auth/Subject.html] from the AccessControlContext [http://java.sun.com/javase/6/

docs/api/java/security/AccessController.html], if one of the no-credential login methods were

used) have any of these roles, the session will have the corresponding access to all workspaces

within the repository. The mapping from the roles to the actions that they allow is provided below,

for any values of path.

Table 9.1. Role / Action Mapping

Action Name readonly readwrite admin

read Allows Allows Allows

add_node Allows Allows

https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-786
http://jira.jboss.org/browse/MODE-786
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html

Chapter 9. Using the JCR API ...

160

Action Name readonly readwrite admin

set_property Allows Allows

remove Allows Allows

register_namespace Allows

register_type Allows

unlock_any Allows

create_workspace Allows

delete_workspace Allows

Note

In this release, ModeShape does not check that the actions parameter passed

into Session.checkPermission(...) contains only valid actions. This check may

be added in a future release.

It is also possible to grant access only to one or more repositories on a single ModeShape server or

to one or more named workspaces within a repository. The format for role names is defined below:

Table 9.2. Role Formats

Role Pattern Examples Description

ROLE_NAME readonly, admin Grants the named role to

the assigned user on every

workspace in any repository

on the ModeShape server.

ROLE_NAME.REPOSITORY_NAMEreadonly.modeshape_repo,

admin.localRepository

Grants the named role to

the assigned user on every

workspace in the named

repository on the ModeShape

server.

ROLE_NAME.REPOSITORY_NAME.WORKSPACE_NAMEreadonly.modeshape_repo.jsmith,

admin.localRepository.default

Grants the named role to the

assigned user on the named

workspace in the named

repository on the ModeShape

server.

It is also possible to grant more than one role to the same user. For example, the user "jsmith"

could be granted the roles "readonly.production", "readwrite.production.jsmith", and

"readwrite.staging" to allow read-only access to any workspace on a production repository,

read/write access to a personal workspace on the same production repository, and read/write

access to any workspace in a staging repository.

Built-In Node Types

161

As a final note, the ModeShape JCR implementation may have additional security roles added

in the future. A CONNECT role is already being used by the ModeShape REST Server to control

whether users have access to the repository through that means.

9.5.5. Built-In Node Types

ModeShape supports all of the built-in node types described in the JSR-283 [http://www.jcp.org/

en/jsr/detail?id=283] specification. ModeShape also defines some custom node types in the mode

namespace, but none of these node types (other than mode:resource) are intended to be used

by developers integrating with ModeShape and may be changed or removed at any time.

9.5.6. Custom Node Type Registration

Although the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification does not require

support for registration and unregistration of custom types, ModeShape supports this extremely

useful feature. Custom node types can be added at startup, as noted above, at runtime through a

ModeShape-specific interface that accepts CND files, or through the JSR-283 node type template

methods. All three of these node type registration mechanisms are supported equally within

ModeShape, although the CND approach for defining node types is recommended.

Note

ModeShape also supports defining custom node types to load at startup. This is

discussed in more detail in the previous chapter.

Node types can be defined like so:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 ... ;

Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html] workspace = session.getWorkspace();

// Obtain the ModeShape-specific node type manager ...

JcrNodeTypeManager [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrNodeTypeManager.html] nodeTypeManager = (JcrNodeTypeManager)

 workspace.getNodeTypeManager();

// Declare a mixin node type named "searchable" (with no namespace)

NodeTypeTemplate [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

nodetype/NodeTypeTemplate.html] nodeType = nodeTypeManager.createNodeTypeTemplate();

nodeType.setName("searchable");

nodeType.setMixin(true);

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeTypeTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeTypeTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeTypeTemplate.html

Chapter 9. Using the JCR API ...

162

// Add a mandatory child named "source" with a required primary type of "nt:file"

NodeDefinitionTemplate [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/nodetype/NodeDefinitionTemplate.html] childNode =

 nodeTypeManager.createNodeDefinitionTemplate();

childNode.setName("source");

childNode.setMandatory(true);

childNode.setRequiredPrimaryTypesNames(new String[] { "nt:file" });

childNode.setDefaultPrimaryTypeName("nt:file");

nodeType.getNodeDefinitionTemplates().add(childNode);

// Add a multi-valued STRING property named "keywords"

PropertyDefinitionTemplate [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/nodetype/PropertyDefinitionTemplate.html] property =

 nodeTypeManager.createPropertyDefinitionTemplate();

property.setName("keywords");

property.setMultiple(true);

property.setRequiredType(PropertyType.STRING);

nodeType.getPropertyDefinitionTemplates().add(property);

// Register the custom node type

nodeTypeManager.registerNodeType(nodeType,false);

Residual properties and child node definitions can also be defined simply by not calling setName

on the template.

Custom node types can be defined more succinctly through the CND file format defined by the

JCR 2.0 specification. In fact, this is how JBoss ModeShape defines its built-in node types. An

example CND file that declares the same node type as above would be:

[searchable] mixin

- keywords (string) multiple

+ source (nt:file) = nt:file mandatory

This definition could then be registered as part of the repository configuration,

using the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/JcrConfiguration.html] class (see the previous chapter). Or, you can also use a Session to

declare the node types in a CND file, but this also requires ModeShape-specific interfaces and

classes:

String pathToCndFileInClassLoader = ...;

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/NodeDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/PropertyDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/PropertyDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/nodetype/PropertyDefinitionTemplate.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Custom Node Type Registration

163

CndNodeTypeSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

CndNodeTypeSource.html] nodeTypeSource = new CndNodeTypeSource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/

CndNodeTypeSource.html](pathToCndFileInClassLoader);

for (Problem [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/

collection/Problem.html] problem : nodeTypeSource.getProblems()) {

 System.err.println(problem);

}

if (!nodeTypeSource.isValid()) {

 throw new IllegalStateException("Problems loading node types");

}

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 ... ;

// Obtain the ModeShape-specific node type manager ...

Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html] workspace = session.getWorkspace();

JcrNodeTypeManager [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrNodeTypeManager.html] nodeTypeManager = (JcrNodeTypeManager)

 workspace.getNodeTypeManager();

nodeTypeManager.registerNodeTypes(nodeTypeSource);

The CndNodeTypeSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

CndNodeTypeSource.html] class actually implements the JcrNodeTypeSource [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html]

interface, so other implementations can actually be defined. For more information,

see the JavaDoc for JcrNodeTypeSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrNodeTypeSource.html].

ModeShape also supports a simple means of unregistering types, although it is not possible to

unregister types that are currently being used by nodes or as required primary types or supertypes

of other types. Unused node types can be unregistered with the following code:

String unusedNodeTypeName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 ... ;

// Obtain the ModeShape-specific node type manager ...

Workspace [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

Workspace.html] workspace = session.getWorkspace();

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/common/collection/Problem.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/CndNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeSource.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Workspace.html

Chapter 9. Using the JCR API ...

164

JcrNodeTypeManager [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrNodeTypeManager.html] nodeTypeManager = (JcrNodeTypeManager)

 workspace.getNodeTypeManager();

nodeTypeManager.unregisterNodeType(Collections.singleton(unusedNodeTypeName));

9.6. Summary

In this chapter, we covered how to use JCR with ModeShape and learned about how it implements

the JCR specification. Now that you know how ModeShape repositories work and how to use JCR

to work with ModeShape repositories, we'll move on in the next chapter to show how you can use

ModeShape to query and search your JCR data.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrNodeTypeManager.html

Chapter 10.

165

Querying and Searching using JCR
The JCR API defines a way to query a repository for content that meets user-defined criteria. The

JCR 2.0 API actually makes it possible for implementations to support multiple query languages,

and the specification requires support for two languages: JCR-SQL2 and JCR-QOM. JCR 1.0

[http://www.jcp.org/en/jsr/detail?id=170] defined two other languages (XPath and JCR-SQL),

though these languages were deprecated in JCR 2.0 [http://www.jcp.org/en/jsr/detail?id=283].

At this time, ModeShape supports all of these query languages, plus one search-engine-like

language called "search" that is actually just the full-text search expression grammar used in the

second parameter of the CONTAINS(...) function of the JCR-SQL2 language.

ModeShape handles all of these languages in nearly the same manner, the only difference

being whether the query is represented as a string or build programmatically using the

javax.jcr.query.qom part of the JCR API.

1. A language-independent representation, called the query model, is constructed by parsing the

string representation of the query (using a language-specific parser) or the JCR-QOM objects

created by the client.

2. The language-independent query model is used to create a canonical (relational) query plan.

3. The canonical query plan is then validated to ensure that all identifiers in the query are

resolvable.

4. The canonical query plan is then optimized using a flexible rule-based optimizer. Optimizations

include (but are not limited to): replace view references; unify handling of aliases; convert right

outer joins into left outer joins; choose algorithms for each join; raise and lower criteria; push

projection of columns as low in the plan as possible; duplicate criteria across identity joins;

rewrite identity joins involving only columns that form keys; remove parts of the plan that (based

upon the criteria) will return no rows; determination of the low-level "access" queries that will

be submitted to the connector layer.

5. The optimized query plan is then executed, whereby each access query is pushed down to the

connector and the results are then processed and combined to produce the desired result set.

Note that only the parsing step is dependent upon the query language. This means that all of the

query languages are processed using the same, unified engine.

The rest of this chapter describes how your applications can use queries to search your

repositories, and outlines the specifics of each of the four query languages available in

ModeShape.

10.1. JCR Query API

With ModeShape, all query operations can be performed using only the JCR API

interfaces. The first step is to obtain the QueryManager [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/query/QueryManager.html] from your Session [http://www.day.com/

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 10. Querying and Sear...

166

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] instance. The QueryManager interface

defines methods for creating Query [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/query/Query.html] objects, executing queries, storing queries (not results) as Node

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html]s in the repository, and

reconstituting queries that were stored on Node [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Node.html]s. Thus, querying a repository generally follows this pattern:

// Obtain the query manager for the session ...

javax.jcr.query.QueryManager queryManager = session.getWorkspace().getQueryManager();

// Create a query object ...

String language = ...

String expression = ...

javax.jcr.Query query = queryManager.createQuery(expression,language);

// Execute the query and get the results ...

javax.jcr.QueryResult result = query.execute();

// Iterate over the nodes in the results ...

javax.jcr.NodeIterator nodeIter = result.getNodes();

while (nodeIter.hasNext()) {

 javax.jcr.Node node = nodeIter.nextNode();

 ...

}

// Or iterate over the rows in the results ...

String[] columnNames = result.getColumnNames();

javax.jcr.query.RowIterator rowIter = result.getRows();

while (rowIter.hasNext()) {

 javax.jcr.query.Row row = rowIter.nextRow();

 // Iterate over the column values in each row ...

 javax.jcr.Value[] values = row.getValues();

 for (javax.jcr.Value value : values) {

 ...

 }

 // Or access the column values by name ...

 for (String columnName : columnNames) {

 javax.jcr.Value value = row.getValue(columnName);

 ...

 }

}

// When finished, close the session ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html

JCR XPath Query Language

167

session.logout();

For more detail about these methods or about how to use other facets of the JCR query API,

please consult Section 6.7 of the JCR 1.0 specification [http://www.jcp.org/en/jsr/detail?id=170].

10.2. JCR XPath Query Language

The JCR 1.0 specification [http://www.jcp.org/en/jsr/detail?id=170] uses the XPath query

language because node structures in JCR are very analogous to the structure of an XML

document. Thus, XPath provides a useful language for selecting and searching workspace

content. And since JCR 1.0 defines a mapping between XML and a workspace view called the

"document view", adapting XPath to workspace content is quite natural.

A JCR XPath query specifies the subset of nodes in a workspace that satisfy the constraints

defined in the query. Constraints can limit the nodes in the results to be those nodes with a specific

(primary or mixin) node type, with properties having particular values, or to be within a specific

subtree of the workspace. The query also defines how the nodes are to be returned in the result

sets using column specifiers and ordering specifiers.

Note

As an aside, ModeShape actually implements XPath queries by transforming

them into the equivalent JCR-SQL2 representation. And the JCR-SQL2 language,

although often more verbose, is much more capable of representing complex

queries with multiple combinations of type, property, and path constraints.

10.2.1. Column Specifiers

JCR 1.0 specifies that support is required only for returning column values based upon single-

valued, non-residual properties that are declared on or inherited by the node types specified in the

type constraint. ModeShape follows this requirement, and does not specifying residual properties.

However, ModeShape does allow multi-valued properties to be specified as result columns. And

as per the specification, ModeShape always returns the "jcr:path" and "jcr:score" pseudo-

columns.

ModeShape uses the last location step with an attribute axis to specify the properties that are to

be returned as result columns. Multiple properties are specified with a union. For example, the

following table shows several XPath queries and how they map to JCR-SQL2 queries.

Table 10.1. Specifying result set columns

XPath JCR-SQL2

//*

SELECT * FROM [nt:base]

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

Chapter 10. Querying and Sear...

168

XPath JCR-SQL2

//element(*,my:type)

SELECT * FROM [my:type]

//element(*,my:type)/@my:title

SELECT [my:title] FROM [my:type]

//element(*,my:type)/(@my:title |

@my:text) SELECT [my:title], [my:text] FROM [my:type]

//element(*,my:type)/(@my:title union

@my:text) SELECT [my:title], [my:text] FROM [my:type]

10.2.2. Type Constraints

JCR 1.0 specifies that support is required only for specifying constraints of one primary type, and

it is optional to support specifying constraints on one (or more) mixin types. The specification also

defines that the XPath element test be used to test against node types, and that it is optional to

support element tests on location steps other than the last one. Type constraints are inherently

inheritance-sensitive, in that a constraint against a particular node type 'X' will be satisfied by

nodes explicitly declared to be of type 'X' or of subtypes of 'X'.

ModeShape does support using the element test to test against primary or mixin type. ModeShape

also only supports using an element test on the last location step. For example, the following table

shows several XPath queries and how they map to JCR-SQL2 queries.

Table 10.2. Specifying type constraints

XPath JCR-SQL2

//*

SELECT * FROM [nt:base]

//element(*,my:type)

SELECT * FROM [my:type]

/jcr:root/nodes/element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type])> LIKE '/nodes/%'

 AND DEPTH([my:type]) = CAST(2 AS

 LONG)

/jcr:root/nodes//element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type]) LIKE '/nodes/%'

Property Constraints

169

XPath JCR-SQL2

/jcr:root/nodes//

element(ex:nodeName,my:type) SELECT * FROM [my:type]

WHERE PATH([my:type]) LIKE '/nodes/%'

 AND NAME([my:type]) = 'ex:nodeName'

Note that the JCR-SQL2 language supported by ModeShape is far more capable of joining multiple

sets of nodes with different type, property and path constraints.

10.2.3. Property Constraints

JCR 1.0 specifies that attribute tests on the last location step is required, but that predicate tests

on any other location steps are optional.

ModeShape does support using attribute tests on the last location step to specify property

constraints, as well as supporting axis and filter predicates on other location steps. For example,

the following table shows several XPath queries and how they map to JCR-SQL2 queries.

Table 10.3. Specifying property constraints

XPath JCR-SQL2

//*[@prop1]

SELECT * FROM [nt:base]

WHERE [nt:base].prop1 IS NOT NULL

//element(*,my:type)[@prop1]

SELECT * FROM [my:type]

WHERE [my:type].prop1 IS NOT NULL

//element(*,my:type)[@prop1=xs:boolean('true')]

SELECT * FROM [my:type]

WHERE [my:type].prop1 = CAST('true' AS

 BOOLEAN)

//element(*,my:type)[@id<1 and

@name='john'] SELECT * FROM [my:type]

WHERE id < 1 AND name = 'john'

//element(*,my:type)[a/b/@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON ISCHILDNODE(nodeSet1,[my:type])

JOIN [nt:base] as nodeSet2

 ON ISCHILDNODE(nodeSet2,nodeSet1)

WHERE (NAME(nodeSet1) = 'a'

Chapter 10. Querying and Sear...

170

XPath JCR-SQL2

 AND NAME(nodeSet2) = 'b')

 AND nodeSet2.id IS NOT NULL

//element(*,my:type)[./*/*/@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON ISCHILDNODE(nodeSet1,[my:type])

JOIN [nt:base] as nodeSet2

 ON ISCHILDNODE(nodeSet2,nodeSet1)

WHERE nodeSet2.id IS NOT NULLL

//element(*,my:type)[.//@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON

 ISDESCENDANTNODE(nodeSet1,[my:type])

WHERE nodeSet2.id IS NOT NULLL

Section 6.6.3.3 of the JCR 1.0 specification contains an in-depth description of property value

constraints using various comparison operators.

10.2.4. Path Constraints

JCR 1.0 specifies that exact, child node, and descendants-or-self path constraints be supported

on the location steps in an XPath query.

ModeShape does support the four kinds of path constraints. For example, the following table

shows several XPath queries and how they map to JCR-SQL2 queries.

Table 10.4. Specifying path constraints

XPath JCR-SQL2

/jcr:root/a/b[*]

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a/b'

/jcr:root/a[1]/b[*]

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a/b'

/jcr:root/a[2]/b

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a[2]/b'

Ordering Specifiers

171

XPath JCR-SQL2

/jcr:root/a/b[2]//c[4]

SELECT * FROM [my:type]

WHERE PATH([nt:base]) = '/a/b[2]/c[4]'

 OR PATH(nodeSet1) LIKE '/a/b[2]/%/c[4]'

/jcr:root/a/b//c//d

SELECT * FROM [my:type]

WHERE PATH([nt:base]) = '/a/b/c/d'

 OR PATH([nt:base]) LIKE '/a/b/%/c/d'

 OR PATH([nt:base]) LIKE '/a/b/c/%/d'

 OR PATH([nt:base]) LIKE '/a/b/%/c/%/d'

//element(*,my:type)[@id<1 and

@name='john'] SELECT * FROM [my:type]

WHERE id < 1 AND name = 'john'

/jcr:root/a/b//element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type]) = '/a/b/%'

Note that the JCR-SQL2 language supported by ModeShape is capable of representing a wider

combination of path constraints.

10.2.5. Ordering Specifiers

JCR 1.0 extends the XPath grammar to add support for ordering the results according to the

natural ordering of the values of one or more properties on the nodes.

ModeShape does support zero or more ordering specifiers, including whether each specifier is

ascending or descending. If no ordering specifiers are defined, the ordering of the results is not

predefined and may vary (though ordering by score is often the approach). For example, the

following table shows several XPath queries and how they map to JCR-SQL2 queries.

Table 10.5. Specifying result ordering

XPath JCR-SQL2

//element(*,*) order by @title

SELECT nodeSet1.title

FROM [nt:base] AS nodeSet1

ORDER BY nodeSet1.title

//element(*,*) order by @title,

@jcr:score SELECT nodeSet1.title

FROM [nt:base] AS nodeSet1

Chapter 10. Querying and Sear...

172

XPath JCR-SQL2

ORDER BY nodeSet1.title,

 SCORE([nt:base])

Note that the JCR-SQL2 language supported by ModeShape has a far richer ORDER BY clause,

allowing the use of any kind of dynamic operand, including ordering upon arithmetic operations

of multiple dynamic operands.

10.2.6. Miscellaneous

JCR 1.0 defines a number of other optional and required features, and these are summarized in

this section.

• Only abbreviated XPath syntax is supported.

• Only the child axis (the default axis, represented by '/' in abbreviated syntax), descendant-or-

self axis (represented by '//' in abbreviated syntax), self axis (represented by '.' in abbreviated

syntax), and attribute axis (represent by '@' in abbreviated syntax) are supported.

• The text() node test is not supported.

• The element() node test is supported.

• The jcr:like() function is supported.

• The jcr:contains() function is supported.

• The jcr:score() function is supported.

• The jcr:deref() function is not supported.

10.3. JCR-SQL Query Language

The JCR-SQL query language is defined by the JCR 1.0 specification [http://www.jcp.org/en/jsr/

detail?id=170] as a way to express queries using strings that are similar to SQL. Support for the

language is optional, and in fact this language was deprecated in the JCR 2.0 specification [http://

www.jcp.org/en/jsr/detail?id=283] in favor of the improved and more powerful (and more SQL-like)

JCR-SQL2 language, which is covered in the next section.

ModeShape includes support for the JCR-SQL language, and adds several extensions to make

it even more powerful and useful:

• Support for the UNION, INTERSECT, and EXCEPT set operations on multiple result sets to form

a single result set. As with standard SQL, the result sets being combined must have the same

columns. The UNION operator combines the rows from two result sets, the INTERSECT operator

returns the difference between two result sets, and the EXCEPT operator returns the rows that

are common to two result sets. Duplicate rows are removed unless the operator is followed by

the ALL keyword. For detail, see the grammar for set queries.

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Queries

173

• Removal of duplicate rows in the results, using "SELECT DISTINCT ...".

• Limiting the number of rows in the result set with the "LIMIT count" clause, where count is the

maximum number of rows that should be returned. This clause may optionally be followed by

the "OFFSET number" clause to specify the number of initial rows that should be skipped.

• Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete

static operands. For example, "WHERE ... [my:type].[prop1] IN (3,5,7,10,11,50) ...".

• Support for the BETWEEN clause to more easily and concisely supply a range of discrete

operands. For example, "WHERE ... [my:type].[prop1] BETWEEN 3 EXCLUSIVE AND 10 ...".

The grammar for the JCR-SQL query language is actually a superset of that defined by the JCR

1.0 specification [http://www.jcp.org/en/jsr/detail?id=170], and as such the complete grammar is

included here.

Note

The grammar is presented using the same EBNF nomenclature as used in the JCR

1.0 specification. Terms are surrounded by '[' and ']' denote optional terms that

appear zero or one times. Terms surrounded by '{' and '}' denote terms that appear

zero or more times. Parentheses are used to identify groups, and are often used

to surround possible values. Literals (or keywords) are denoted by single-quotes.

10.3.1. Queries

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query

 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

Query ::= Select From [Where] [OrderBy] [Limit]

Select ::= 'SELECT' ('*' | Proplist)

From ::= 'FROM' NtList

Where ::= 'WHERE' WhereExp

OrderBy ::= 'ORDER BY' propname [Order] {',' propname [Order]}

Order ::= 'DESC' | 'ASC'

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

Chapter 10. Querying and Sear...

174

Proplist ::= propname {',' propname}

NtList ::= ntname {',' ntname}

WhereExp ::= propname Op value |

 propname 'IS' ['NOT'] 'NULL' |

 like |

 contains |

 whereexp ('AND'|'OR') whereexp |

 'NOT' whereexp |

 '(' whereexp ')' |

 joinpropname '=' joinpropname |

 between |

 propname ['NOT'] 'IN' '(' value {',' value } ')'

Op ::= '='|'>'|'<'|'>='|'<='|'<>'

joinpropname ::= quotedjoinpropname | unquotedjoinpropname

quotedjoinpropname ::= ''' unquotedjoinpropname '''

unquotedjoinpropname ::= ntname '.jcr:path'

propname ::= quotedpropname | unquotedpropname

quotedpropname ::= ''' unquotedpropname '''

unquotedpropname ::= /* A property name, possible a pseudo-property: jcr:score or jcr:path */

ntname ::= quotedntname | unquotedntname

quotedntname ::= ''' unquotedntname '''

unquotedntname ::= /* A node type name */

value ::= ''' literalvalue ''' | literalvalue

literalvalue ::= /* A property value (in standard string form) */

like ::= propname 'LIKE' likepattern [escape]

likepattern ::= ''' likechar { likepattern } '''

likechar ::= char | '%' | '_'

escape ::= 'ESCAPE' ''' likechar '''

char ::= /* Any character valid within the string representation of a value

 except for the characters % and _ themselves. These must be escaped */

contains ::= 'CONTAINS(' scope ',' searchexp ')'

scope ::= unquotedpropname | '.'

searchexp ::= ''' exp '''

JCR-SQL2 Query Language

175

exp ::= ['-']term {whitespace ['OR'] whitespace ['-']term}

term ::= word | '"' word {whitespace word} '"'

word ::= /* A string containing no whitespace */

whitespace ::= /* A string of only whitespace*/

between ::= propname ['NOT'] 'BETWEEN' lowerBound ['EXCLUSIVE']

 'AND' upperBound ['EXCLUSIVE']

lowerBound ::= value

upperBound ::= value

Limit ::= 'LIMIT' count ['OFFSET' offset]

count ::= /* Positive integer value */

offset ::= /* Non-negative integer value */

10.4. JCR-SQL2 Query Language

The JCR-SQL2 query language is defined by the JCR 2.0 specification [http://www.jcp.org/en/

jsr/detail?id=283] as a way to express queries using strings that are similar to SQL. This query

language is an improvement over the JCR-SQL language, providing among other things far richer

specifications of joins and criteria.

ModeShape includes full support for the complete JCR-SQL2 query language. However,

ModeShape adds several extensions to make it even more powerful:

• Support for the "FULL OUTER JOIN" and "CROSS JOIN" join types, in addition to the "LEFT OUTER

JOIN", "RIGHT OUTER JOIN" and "INNER JOIN" types defined by JCR-SQL2. Note that "JOIN"

is a shorthand for "INNER JOIN". For detail, see the grammar for joins.

• Support for the UNION, INTERSECT, and EXCEPT set operations on multiple result sets to form

a single result set. As with standard SQL, the result sets being combined must have the same

columns. The UNION operator combines the rows from two result sets, the INTERSECT operator

returns the difference between two result sets, and the EXCEPT operator returns the rows that

are common to two result sets. Duplicate rows are removed unless the operator is followed by

the ALL keyword. For detail, see the grammar for set queries.

• Removal of duplicate rows in the results, using "SELECT DISTINCT ...". For detail, see the

grammar for queries.

• Limiting the number of rows in the result set with the "LIMIT count" clause, where count is the

maximum number of rows that should be returned. This clause may optionally be followed by

the "OFFSET number" clause to specify the number of initial rows that should be skipped. For

detail, see the grammar for limits and offsets.

• Additional dynamic operands "DEPTH([<selectorName>])" and "PATH([<selectorName>])"

that enable placing constraints on the node depth and path, respectively. These

dynamic operands can be used in a manner similar to "NAME([<selectorName>])" and

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 10. Querying and Sear...

176

"LOCALNAME([<selectorName>])" that are defined by JCR-SQL2. Note in each of these cases,

the selector name is optional if there is only one selector in the query. For detail, see the

grammar for dynamic operands.

• Additional dynamic operand "REFERENCE([<selectorName>.]<propertyName>)" and

"REFERENCE([<selectorName>])" that enables placing constraints on one or any of the

reference properties, respectively, and which can be used in a manner similar to "

PropertyValue([<selectorName>.]<propertyName>)". Note in each of these cases, the

selector name is optional if there is only one selector in the query, and that the property name

can be excluded if the constraint should apply to all reference properties. For detail, see the

grammar for dynamic operands.

• Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete

static operands. For example, "WHERE ... [my:type].[prop1] IN (3,5,7,10,11,50) ...".

For detail, see the grammar for set constraints.

• Support for the BETWEEN clause to more easily and concisely supply a range of discrete

operands. For example, "WHERE ... [my:type].[prop1] BETWEEN 3 EXCLUSIVE AND 10

...". For detail, see the grammar for between constraints.

• Support for simple arithmetic in numeric-based criteria and order-by clauses. For example,

"... WHERE SCORE(type1) + SCORE(type2) > 1.0" or "... ORDER BY (SCORE(type1)

* SCORE(type2)) ASC, LENGTH(type2.property1) DESC". For detail, see the grammar for

order-by clauses.

The grammar for the JCR-SQL2 query language is actually a superset of that defined by the JCR

2.0 specification [http://www.jcp.org/en/jsr/detail?id=283], and as such the complete grammar is

included here.

Note

The grammar is presented using the same EBNF nomenclature as used in the JCR

2.0 specification. Terms are surrounded by '[' and ']' denote optional terms that

appear zero or one times. Terms surrounded by '{' and '}' denote terms that appear

zero or more times. Parentheses are used to identify groups, and are often used

to surround possible values. Literals (or keywords) are denoted by single-quotes.

10.4.1. Queries

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query

 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Sources

177

Query ::= 'SELECT' ['DISTINCT'] columns

 'FROM' Source

 ['WHERE' Constraint]

 ['ORDER BY' orderings]

 [Limit]

10.4.2. Sources

Source ::= Selector | Join

Selector ::= nodeTypeName ['AS' selectorName]

nodeTypeName ::= Name

10.4.3. Joins

Join ::= left [JoinType] 'JOIN' right 'ON' JoinCondition

 // If JoinType is omitted INNER is assumed.

left ::= Source

right ::= Source

JoinType ::= Inner | LeftOuter | RightOuter | FullOuter | Cross

Inner ::= 'INNER' ['JOIN']

LeftOuter ::= 'LEFT JOIN' | 'OUTER JOIN' | 'LEFT OUTER JOIN'

RightOuter ::= 'RIGHT OUTER' ['JOIN']

RightOuter ::= 'FULL OUTER' ['JOIN']

RightOuter ::= 'CROSS' ['JOIN']

JoinCondition ::= EquiJoinCondition | SameNodeJoinCondition |

 ChildNodeJoinCondition | DescendantNodeJoinCondition

Chapter 10. Querying and Sear...

178

10.4.4. Equi-Join Conditions

EquiJoinCondition ::= selector1Name'.'property1Name '=' selector2Name'.'property2Name

selector1Name ::= selectorName

selector2Name ::= selectorName

property1Name ::= propertyName

property2Name ::= propertyName

10.4.5. Same-Node Join Conditions

SameNodeJoinCondition ::= 'ISSAMENODE(' selector1Name ',' selector2Name [',' selector2Path]

 ')'

selector2Path ::= Path

10.4.6. Child-Node Join Conditions

ChildNodeJoinCondition ::= 'ISCHILDNODE(' childSelectorName ',' parentSelectorName ')'

childSelectorName ::= selectorName

parentSelectorName ::= selectorName

10.4.7. Descendant-Node Join Conditions

Constraints

179

DescendantNodeJoinCondition ::= 'ISDESCENDANTNODE(' descendantSelectorName

 ',' ancestorSelectorName ')'

descendantSelectorName ::= selectorName

ancestorSelectorName ::= selectorName

10.4.8. Constraints

Constraint ::= ConstraintItem | '(' ConstraintItem ')'

ConstraintItem ::= And | Or | Not | Comparison | Between | PropertyExistence |

 SetConstraint | FullTextSearch | SameNode | ChildNode | DescendantNode

10.4.9. And Constraints

And ::= constraint1 'AND' constraint2

constraint1 ::= Constraint

constraint2 ::= Constraint

10.4.10. Or Constraints

Or ::= constraint1 'OR' constraint2

10.4.11. Not Constraints

Chapter 10. Querying and Sear...

180

Not ::= 'NOT' Constraint

10.4.12. Comparison Constraints

Comparison ::= DynamicOperand Operator StaticOperand

Operator ::= '=' | '!=' | '<' | '<=' | '>' | '>=' | 'LIKE'

10.4.13. Between Constraints

Between ::= DynamicOperand ['NOT'] 'BETWEEN' lowerBound ['EXCLUSIVE']

 'AND' upperBound ['EXCLUSIVE']

lowerBound ::= StaticOperand

upperBound ::= StaticOperand

10.4.14. Property Existence Constraints

PropertyExistence ::= selectorName'.'propertyName 'IS' ['NOT'] 'NULL' |

 propertyName 'IS' ['NOT'] 'NULL' /* If only one selector exists in this query */

10.4.15. Set Constraints

SetConstraint ::= selectorName'.'propertyName ['NOT'] 'IN' |

Full-text Search Constraints

181

 propertyName ['NOT'] 'IN' /* If only one selector exists in this query */

 '(' firstStaticOperand {',' additionalStaticOperand } ')'

firstStaticOperand ::= StaticOperand

additionalStaticOperand ::= StaticOperand

10.4.16. Full-text Search Constraints

FullTextSearch ::= 'CONTAINS(' ([selectorName'.']propertyName | selectorName'.*')

 ',' ''' fullTextSearchExpression''' ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

fullTextSearchExpression ::= FulltextSearch

where FulltextSearch is defined by the following, and is the same as the full-text search

language supported by ModeShape:

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

Chapter 10. Querying and Sear...

182

10.4.17. Same-Node Constraint

SameNode ::= 'ISSAMENODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the path is optional */

10.4.18. Child-Node Constraints

ChildNode ::= 'ISCHILDNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the path is optional */

10.4.19. Descendant-Node Constraints

DescendantNode ::= 'ISDESCENDANTNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

10.4.20. Paths and Names

Name ::= '[' quotedName ']' | '[' simpleName ']' | simpleName

quotedName ::= /* A JCR Name (see the JCR specification) */

simpleName ::= /* A JCR Name that contains only SQL-legal

Static Operands

183

 characters (namely letters, digits, and underscore) */

Path ::= '[' quotedPath ']' | '[' simplePath ']' | simplePath

quotedPath ::= /* A JCR Path that contains non-SQL-legal characters */

simplePath ::= /* A JCR Path (rather Name) that contains only SQL-legal

 characters (namely letters, digits, and underscore) */

10.4.21. Static Operands

StaticOperand ::= Literal | BindVariableValue

Literal

Literal ::= CastLiteral | UncastLiteral

CastLiteral ::= 'CAST(' UncastLiteral ' AS ' PropertyType ')'

PropertyType ::= 'STRING' | 'BINARY' | 'DATE' | 'LONG' | 'DOUBLE' | 'DECIMAL' |

 'BOOLEAN' | 'NAME' | 'PATH' | 'REFERENCE' | 'WEAKREFERENCE' | 'URI'

 /* 'WEAKREFERENCE' is not currently supported in JCR 1.0 */

UncastLiteral ::= UnquotedLiteral | ''' UnquotedLiteral ''' | '"' UnquotedLiteral '"'

UnquotedLiteral ::= /* String form of a JCR Value, as defined in the JCR specification */

10.4.22. Bind Variables

BindVariableValue ::= '$'bindVariableName

bindVariableName ::= /* A string that conforms to the JCR Name syntax, though the prefix

 does not need to be a registered namespace prefix. */

Chapter 10. Querying and Sear...

184

10.4.23. Dynamic Operands

DynamicOperand ::= PropertyValue | ReferenceValue | Length | NodeName | NodeLocalName |

 NodePath | NodeDepth |

 FullTextSearchScore | LowerCase | UpperCase | Arithmetic |

 '(' DynamicOperand ')'

PropertyValue ::= [selectorName'.'] propertyName

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

ReferenceValue ::= 'REFERENCE(' selectorName '.' propertyName ')' |

 'REFERENCE(' selectorName ')' |

 'REFERENCE()' |

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional. Also, the property name may be excluded

 if the constraint should apply to any reference property. */

Length ::= 'LENGTH(' PropertyValue ')'

NodeName ::= 'NAME(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

NodeLocalName ::= 'LOCALNAME(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

NodePath ::= 'PATH(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

NodeDepth ::= 'DEPTH(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

FullTextSearchScore ::= 'SCORE(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

LowerCase ::= 'LOWER(' DynamicOperand ')'

Ordering

185

UpperCase ::= 'UPPER(' DynamicOperand ')'

Arithmetic ::= DynamicOperand ('+'|'-'|'*'|'/') DynamicOperand

10.4.24. Ordering

orderings ::= Ordering {',' Ordering}

Ordering ::= DynamicOperand [Order]

Order ::= 'ASC' | 'DESC'

10.4.25. Columns

columns ::= (Column ',' {Column}) | '*'

Column ::= ([selectorName'.']propertyName ['AS' columnName]) | (selectorName'.*')

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

selectorName ::= Name

propertyName ::= Name

columnName ::= Name

10.4.26. Limit and Offset

Limit ::= 'LIMIT' count ['OFFSET' offset]

count ::= /* Positive integer value */

offset ::= /* Non-negative integer value */

Chapter 10. Querying and Sear...

186

10.5. Full-Text Search Language

There are times when a formal structured query language is overkill, and the easiest way to find

the right content is to perform a search, like you would with a search engine such as Google or

Yahoo! This is where ModeShape's full-text search language comes in, because it allows you

to use the JCR query API but with a far simpler, Google-style search grammar.

This query language is actually defined by the JCR 2.0 specification [http://www.jcp.org/en/jsr/

detail?id=283] as the full-text search expression grammar used in the second parameter of the

CONTAINS(...) function of the JCR-SQL2 language. We just pulled it out and made it available as

a first-class query language, such that a full-text search query supplied by the user, full-text-query,

is equivalent to executing this JCR-SQL2:

SELECT * FROM [nt:base] WHERE CONTAINS([nt:base],'full-text-query')

 SELECT * FROM [nt:base] WHERE CONTAINS([nt:base],'full-text-query')

This language allows a JCR client to construct a query to find nodes with property values that

match the supplied terms. Nodes that "best" match the terms are returned before nodes that have a

lesser match. Of course, ModeShape uses a complex system to analyze the node content and the

query terms, and may perform a number of optimizations, such as (but not limited to) eliminating

stop words (e.g., "the", "a", "and", etc.), treating terms independent of case, and converting

words to base forms using a process called stemming (e.g., "running" into "run", "customers" into

"customer").

Search terms can also include phrases by simply wrapping the phrase with double-quotes. For

example, the search term 'table "customer invoice"' would rank higher those nodes with

properties containing the phrase "customer invoice" than nodes with properties containing just

"customer" or "invoice".

Term in the query are implicitly AND-ed together, meaning that the matches occur when a node

has property values that match all of the terms. However, it is also possible to put an "OR" in

between two terms where either of those terms may occur.

It is also possible to specify that terms should not appear in the results. This is called a negative

term, and it reduces the rank of any node whose property values contain the the value. To specify

a negative term, simply prefix the term with a hyphen ('-').

The grammar for this full-text search language is specified in Section 6.7.19 of the JCR

2.0 specification [http://www.jcp.org/en/jsr/detail?id=283], but it is also included here as a

convenience.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Full-text Search Language

187

Note

The grammar is presented using the same EBNF nomenclature as used in the

JCR 2.0 specification. Terms are surrounded by '[' and ']' denote optional terms

that appear zero or one times. Terms surrounded by '{' and '}' denote terms that

appear zero or more times. Parentheses are used to identify groups, and are often

used to surround possible values.

10.5.1. Full-text Search Language

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

As you can see, this is a pretty simple and straightforward query language. But this language

makes it extremely easy to find all the nodes in the repository that match a set of terms.

When using this query language, the QueryResult [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/query/QueryResult.html] always contains the "jcr:path" and "jcr:score" columns.

10.6. JCR Query Object Model (JCR-QOM) API

JCR 2.0 introduces a new API for programmatically constructing a query. This API allows the client

to construct the lower-level objects for each part of the query, and is a great fit for applications

that would otherwise generate fairly complicated query expressions. Using this API is a matter

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html

Chapter 10. Querying and Sear...

188

of getting the QueryObjectModelFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/query/qom/QueryObjectModelFactory.html] from the session's QueryManager [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html], and using

the factory to create the various components, starting with the lowest-level components.

Then, these lower-level components can be passed to other factory methods to create the

higher-level components, and so on, until finally the createQuery(...) method is called

to return the QueryObjectModel [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

query/qom/QueryObjectModel.html].

Here is a simple example that shows how this is done for the simple query "SELECT * FROM

[nt:unstructured] AS unstructNodes":

// Obtain the query manager for the session ...

javax.jcr.query.QueryManager queryManager = session.getWorkspace().getQueryManager();

// Create a query object model factory ...

QueryObjectModelFactory factory = queryManager.getQOMFactory();

// Create the FROM clause: a selector for the [nt:unstructured] nodes ...

Selector source = factory.selector("nt:unstructured","unstructNodes");

// Create the SELECT clause (we want all columns defined on the node type) ...

Column[] columns = null;

// Create the WHERE clause (we have none for this query) ...

Constraint constraint = null;

// Define the orderings (we have none for this query)...

Ordering[] orderings = null;

// Create the query ...

QueryObjectModel query = factory.createQuery(source,constraint,orderings,columns);

// Execute the query and get the results ...

// (This is the same as before.)

javax.jcr.QueryResult result = query.execute();

From this point on, processing the results is the same as when using the JCR Query API:

// Iterate over the nodes in the results ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html

JCR Query Object Model (JCR-QOM) API

189

javax.jcr.NodeIterator nodeIter = result.getNodes();

while (nodeIter.hasNext()) {

 javax.jcr.Node node = nodeIter.nextNode();

 ...

}

// Or iterate over the rows in the results ...

String[] columnNames = result.getColumnNames();

javax.jcr.query.RowIterator rowIter = result.getRows();

while (rowIter.hasNext()) {

 javax.jcr.query.Row row = rowIter.nextRow();

 // Iterate over the column values in each row ...

 javax.jcr.Value[] values = row.getValues();

 for (javax.jcr.Value value : values) {

 ...

 }

 // Or access the column values by name ...

 for (String columnName : columnNames) {

 javax.jcr.Value value = row.getValue(columnName);

 ...

 }

}

// When finished, close the session ...

session.logout();

Of course, most queries will create the columns, orderings, and constraints using the

QueryObjectModelFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/

qom/QueryObjectModelFactory.html], whereas the example above just assumes all of the

columns, no orderings, and no constraints.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html

190

Chapter 11.

191

Accessing ModeShape Remotely
ModeShape provides a pair of ways to connect from remote clients: a WebDAV interface and a

RESTful interface. This chapter details the capabilities of both as well as the configuration required

to use each.

Note

Although the WebDAV and REST servers are treated separately here, many of the

configuration parameters are the same. This is because both share a fair amount of

common code and have been designed to be able to be deployed simultaneously

on the same server or even within the same web archive.

11.1. The ModeShape WebDAV Server

ModeShape provides a WebDAV server interface to its JCR implementation to ease integration

with client applications. The WebDAV server maps some of the content nodes (by default, nodes

with a primary type of nt:file) to WebDAV resources and the other nodes to WebDAV folders.

This allows any WebDAV client to navigate through the content repository to store files in a given

location, as well as to create or delete nodes in the repository. The remainder of this section

describes how to configure and deploy the WebDAV server.

11.1.1. Configuring the ModeShape WebDAV Server

The ModeShape WebDAV server is deployed as a WAR and configured mostly through its web

configuration file (web.xml). Here is an example web configuration that is used for integration

testing of the ModeShape WebDAV server along with an explanation of its parts.

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>ModeShape JCR RESTful Interface</display-name>

This first section is largely boilerplate and should look familiar to anyone who has deployed a

servlet-based application before. The display-name can be customized, of course.

The next stanza configures the repository provider.

 <!--

Chapter 11. Accessing ModeSha...

192

 This parameter provides the fully-qualified name of a class that implements

 the o.m.web.jcr.spi.RepositoryProvider interface. It is required

 by the ModeShapeJcrDeployer that controls the lifecycle for the ModeShape WebDAV server.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.REPOSITORY_PROVIDER</param-name>

 <param-value>org.modeshape.web.jcr.spi.ModeShapeJcrRepositoryProvider</param-value>

 </context-param>

As noted above, this parameter informs the ModeShapeJcrDeployer [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html] of the specific

repository provider in use. Unless you are using the ModeShape WebDAV server to

connect to a different JCR implementation, this should never change. The ModeShape REST

server also uses the ModeShapeJcrDeployer [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/web/jcr/ModeShapeJcrDeployer.html] to get access to the JCR repository, so the

two servlets can be deployed in the same WAR.

Next we configure the ModeShape JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/jcr/JcrEngine.html] itself.

 <!--

 This parameter, specific to the ModeShapeJcrRepositoryProvider implementation, specifies

 the name of the configuration file to initialize the repository or repositories.

 This configuration file must be on the classpath and is given as a classpath-relative

 directory.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.CONFIG_FILE</param-name>

 <param-value>/configRepository.xml</param-value>

 </context-param>

If you are not familiar with the file format for a JcrEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] configuration file, you can build

one programatically with the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] class and call save(...) instead of build() to

output the configuration file that equates to the configuration.

This is followed by some additional WebDAV configuration that controls the mapping between

JCR node types and WebDAV files and resources. You can omit this section entirely to use the

default values.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Configuring the ModeShape WebDAV Server

193

<!--

 Nodes with any of the primary node types in this comma-delimited list will be treated by the

 WebDAV implementation as content nodes. The value below is the default value for this

 parameter. That is, if this init parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.CONTENT_PRIMARY_TYPE_NAMES</

param-name>

 <param-value>nt:resource, mode:resource</param-value>

</context-param>

<!--

 Nodes with any of the primary node types in this comma-delimited list will be treated by the

 WebDAV implementation as resource (file) nodes. The value below is the default value for this

 parameter. That is, if this init parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.RESOURCE_PRIMARY_TYPE_NAMES</

param-name>

 <param-value>nt:file</param-value>

</context-param>

<!--

 Each folder created through the WebDAV servlet will be created as a node with the primary node

 type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.NEW_FOLDER_PRIMARY_TYPE_NAME</

param-name>

 <param-value>nt:folder</param-value>

</context-param>

<!--

 Each resource (file created through the WebDAV servlet will be created as a node with the

 primary

 node type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.NEW_RESOURCE_PRIMARY_TYPE_NAME

 </param-name>

 <param-value>nt:file</param-value>

Chapter 11. Accessing ModeSha...

194

</context-param>

<!--

 Content created through the WebDAV servlet will be created as a node with the primary node

 type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.NEW_CONTENT_PRIMARY_TYPE_NAME

 </param-name>

 <param-value>mode:resource</param-value>

</context-param>

In general, this part of the web configuration file should not be modified.

Next, the RequestResolver [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/web/jcr/webdav/RequestResolver.html] must be configured. The

RequestResolver [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/

webdav/RequestResolver.html] converts the incoming URI into a repository name, workspace

name, and path within the repository. It is possible (and easy) to develop a custom implementation

of this interface, but a default resolver is provided that maps all URIs directly into a repository

and workspace.

<!--

 This optional parameter provides the name of the o.m.w.j.webdav.RequestResolver

 implementation class. The provided value must be the name of a class that

 implements the RequestResolver interface and has a public, no-arg constructor.

 If no value is provided, o.m.w.j.webdav.DefaultRequestResolver will be used.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.REQUEST_RESOLVER_CLASS_NAME</

param-name>

 <param-value>org.modeshape.web.jcr.webdav.DefaultRequestResolver</param-value>

</context-param>

<!--

 This parameter is required if (and only if) the DefaultRequestResolver is used.

 It provides the name of the JCR repository that will be accessed. An exception

 will be thrown if no value is provided for this parameter.

-->

<context-param>

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/webdav/RequestResolver.html

Configuring the ModeShape WebDAV Server

195

 <param-name>

 org.modeshape.web.jcr.webdav.DEFAULT_RESOLVER_REPOSITORY_NAME

 </param-name>

 <param-value>mode:repository</param-value>

</context-param>

<!--

 This parameter is required if (and only if) the DefaultRequestResolver is used.

 It provides the name of the JCR workspace that will be accessed. An exception

 will be thrown if no value is provided for this parameter.

-->

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.DEFAULT_RESOLVER_WORKSPACE_NAME

 </param-name>

 <param-value>default</param-value>

</context-param>

Another brief section of boilerplate ensues.

<!-- Required parameter for ModeShape WebDAV - should not be modified -->

<listener>

 <listener-class>org.modeshape.web.jcr.ModeShapeJcrDeployer</listener-class>

</listener>

<!-- Required WebDAV servlet - should not be modified -->

<servlet>

 <servlet-name>WebDAV</servlet-name>

 <servlet-class>org.modeshape.web.jcr.webdav.ModeShapeWebdavServlet</servlet-class>

 <!--

 The webdav library requires this parameter to be present, but does not use it.

 -->

 <init-param>

 <param-name>rootpath</param-name>

 <param-value>.</param-value>

 </init-param>

</servlet>

<!-- Required parameter for ModeShape WebDAV - should not be modified -->

<servlet-mapping>

 <servlet-name>WebDAV</servlet-name>

Chapter 11. Accessing ModeSha...

196

 <url-pattern>/*</url-pattern>

</servlet-mapping>

Finally, security must be configured for the WebDAV server.

 <!--

 The ModeShape WebDAV implementation leverages the HTTP credentials to for

 authentication

 and authorization within the JCR repository. Unless the repository provides for anonymous

 access, it makes no sense to try to log into the JCR repository without credentials, so

 this constraint helps lock down the repository.

 This should generally not be modified.

 -->

 <security-constraint>

 <display-name>ModeShape WebDAV</display-name>

 <web-resource-collection>

 <web-resource-name>WebDAV</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!--

 A user must be assigned this role to connect to any JCR repository, in addition to

 needing the READONLY or READWRITE roles to actually read or modify the data. This

 is not used internally, so another role could be substituted here.

 -->

 <role-name>connect</role-name>

 </auth-constraint>

 </security-constraint>

 <!--

 Any auth-method will work for ModeShape. BASIC is used this example for simplicity.

 -->

 <login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

 <!--

 This must match the role-name in the auth-constraint above.

 -->

 <security-role>

 <role-name>connect</role-name>

Deploying the ModeShape WebDAV Server

197

 </security-role>

</web-app>

As noted above, the WebDAV server will not function properly unless security is configured. All

authorization methods supported by the Servlet specification are supported by ModeShape and

can be used interchangeable, as long as authenticated users have the connect role listed above.

11.1.2. Deploying the ModeShape WebDAV Server

Deploying the ModeShape WebDAV server only requires three steps: preparing the web

configuration, configuring the users and their roles in your web container (outside the scope of this

document), and assembling the WAR. This section describes the requirements for assembling

the WAR.

If you are using Maven to build your projects, the WAR can be built from a POM. Here is a portion

of the POM used to build the ModeShape WebDAV Server integration subproject.

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <artifactId>modeshape</artifactId>

 <groupId>org.modeshape</groupId>

 <version>2.0</version>

 <relativePath>../..</relativePath>

 </parent>

 <artifactId>modeshape-web-jcr-webdav-war</artifactId>

 <packaging>war</packaging>

 <name>ModeShape JCR WebDAV Servlet</name>

 <description>ModeShape servlet that provides WebDAV access to JCR items</description>

 <url>http://www.modeshape.org</url>

 <dependencies>

 <dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-web-jcr-webdav</artifactId>

 <version>${project.version}</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

Chapter 11. Accessing ModeSha...

198

 <version>1.5.8</version>

 <scope>runtime</scope>

 </dependency>

 </dependencies>

</project>

If you use this approach, make sure that web configuration file is in the /src/main/webapp/WEB-

INF directory.

Of course, the JBoss WebDAV Server WAR can still be built if you are not using Maven. Simply

construct a WAR with the following contents:

+ /WEB-INF

 + /classes

 | + configRepository.xml

 | + log4j.properties (Optional)

 + /lib

 | + aperture-1.1.0.Beta1.jar

 | + google-collections-1.0.jar

 | + hamcrest-core-1.1.jar

 | + jakarta-regexp-1.4.jar

 | + jcip-annotations-1.0.jar

 | + jcr-2.0.jar

 | + joda-time-1.6.jar

 | + junit-dep-4.4.jar

 | + lucene-analyzers-3.0.0.jar

 | + lucene-core-3.0.0.jar

 | + lucene-regex-3.0.0.jar

 | + lucene-snowball-3.0.0.jar

 | + modeshape-cnd-2.0.0.Final.jar

 | + modeshape-common-2.0.0.Final.jar

 | + modeshape-graph-2.0.0.Final.jar

 | + modeshape-jcr-2.0.0.Final.jar

 | + modeshape-jcr-api-2.0.0.Final.jar

 | + modeshape-mimetype-detector-aperture-2.0.0.Final.jar

 | + modeshape-repository-2.0.0.Final.jar

 | + modeshape-search-lucene-2.0.0.Final.jar

 | + modeshape-web-jcr-2.0.0.Final.jar

 | + modeshape-web-jcr-webdav-2.0.0.Final.jar

 | + rdf2go.api-4.6.2.jar

 | + slf4j-api-1.5.11.jar

 | + slf4j-log4j12-1.5.8.jar

The ModeShape REST Server

199

 | + stax-api-1.0-2.jar

 | + webdav-servlet-2.0.jar

 + web.xml

If you are using sequencers or any connectors other than the in-memory or federated connector,

you will also have to add the JARs for those dependencies into the WEB-INF/lib directory as

well. You will also have to change the version numbers on the JARs to reflect the current version

of ModeShape.

<node>

Your servlet container may already provide a logging system, and you may need to remove

the "slf4j-log4j12-1.5.8.jar" and replace with the appropriate SLF4J binding [http://www.slf4j.org/

manual.html] jar. Or, if your servlet container already uses SLF4J globally, you may want to remove

all of the "slf4j*.jar" files.

</node>

This WAR can be deployed into your servlet container.

11.2. The ModeShape REST Server

ModeShape provides a RESTful interface to its JCR implementation that allows HTTP-based

access and updating of content. Although the initial version of this REST server only supports

the ModeShape JCR implementation, it has been designed to make integration with other JCR

implementors easy. This section describes how to configure and deploy the REST server.

11.2.1. Supported Resources and Methods

The REST Server currently supports the URIs and HTTP methods described below. The URI

patterns assume that the REST server is deployed at its conventional location of "/resources".

These URI patterns would change if the REST server were deployed under a different web context

and URI patterns below would change accordingly. Currently, only JSON-encoded responses are

provided.

Table 11.1. Supported URIs for the ModeShape REST Server

URI Pattern HTTP Method(s) HTTP

Description

/resources Returns a list

of accessible

repositories

GET

/resources/{repositoryName} Returns a list

of accessible

workspaces

GET

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Chapter 11. Accessing ModeSha...

200

URI Pattern HTTP Method(s) HTTP

Description

within that

repository

/resources/{repositoryName}/{workspaceName} Returns a list

of available

operations within

the workspace

GET

/resources/{repositoryName}/{workspaceName}/item/

{path}

Accesses the

item (node or

property) at the

path

ALL

Note that this approach supports dynamic discovery of the available repositories on the server. A

typical conversation might start with a request to the server to check the available repositories.

GET http://www.example.com/resources

This request would generate a response that mapped the names of the available repositories to

metadata information about the repositories like so:

{

 "modeshape%3arepository" : {

 "repository" : {

 "name" : "modeshape%3arepository",

 "resources" : { "workspaces":"/resources/modeshape%3arepository" }

 }

 }

}

The actual response wouldn't be pretty-printed like the example, but the format would be the

same. The name of the repository ("mode:repository" URL-encoded) is mapped to a repository

object that contains a name (the redundant "mode:repository") and a list of available resources

within the repository and their respective URIs. Note that ModeShape supports deploying multiple

JCR repositories side-by-side on the same server, so this response could easily contain multiple

repositories in a real deployment.

The only thing that you can do with a repository through the REST interface at this time is to get

a list of its workspaces. A request to do so can be built up from the previous response like this:

Supported Resources and Methods

201

GET http://www.example.com/resources/modeshape%3arepository

This request (and all of the following requests) actually create a JCR Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] to service the request and require that

security be configured. This process is described in more detail in a later section. Assuming that

security has been properly configured, the response would look something like this:

{

 "default" : {

 "workspace" : {

 "name" : "default",

 "resources" : { "items":"/resources/modeshape%3arepository/default/items" }

 }

 }

}

Like the first response, this response consists of a list of workspace names mapped to metadata

about the workspaces. The example above only lists one workspace for simplicity, but there could

be many different workspaces returned in a real deployment. Note that the "items" resource builds

the full URI to the root of the items hierarchy, including the encoding of the repository name and

the workspace name.

Now a request can be built to retrieve the root item of the repository.

GET http://www.example.com/resources/modeshape%3arepository/default/items

Any other item in the repository could be accessed by appending its path to the URI above. In a

default repository with no content, this would return the following response:

{

 "properties": {

 "jcr:primaryType": "mode:root",

 "jcr:uuid": "97d7e2ef-996e-4d99-8ec2-dc623e6c2239"

 },

 "children": ["jcr:system"]

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 11. Accessing ModeSha...

202

The response contains a mapping of property names to their values and an array of child names.

Had one of the properties been multi-valued, the values for that property would have been provided

as an array as well, as will shortly be shown.

The items resource also contains an option query parameter: mode:depth. This parameter, which

defaults to 1, controls how deep the hierarchy of returned nodes should be. Had the request had

the parameter:

GET http://www.example.com/resources/modeshape%3arepository/default/

items?mode:depth=2

Then the response would have contained details for the children of the root node as well.

{

 "properties": {

 "jcr:primaryType": "mode:root",

 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"

 },

 "children": {

 "jcr:system": {

 "properties": {"jcr:primaryType": "mode:system"},

 "children": ["mode:namespaces"]

 }

 }

}

It is also possible to use the RESTful API to add, modify and remove repository content. Removes

are simple - a DELETE request with no body returns a response with no body.

DELETE http://www.example.com/resources/modeshape%3arepository/default/items/path/to/

deletedNode

Adding content simply requires a POST to the name of the relative root node of the content that

you wish to add and a request body in the same format as the response from a GET. Adding

multiple nodes at once is supported, as shown below.

Supported Resources and Methods

203

POST http://www.example.com/resources/modeshape%3arepository/default/items/newNode

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:mixinTypes": "mix:referenceable",

 "someProperty": "foo"

 },

 "children": {

 "newChildNode": {

 "properties": {"jcr:primaryType": "nt:unstructured"}

 }

 }

}

Note that protected properties like jcr:uuid are not provided but that the primary type and mixin

types are provided as properties. The REST server will translate these into the appropriate calls

behind the scenes. The response from the request will be empty by convention.

The PUT method allows for updates of nodes and properties. If the URI points to a property,

the body of the request should be the new JSON-encoded value for the property, which includes

the property name (allowing proper determination of whether the values are binary; see the next

section"").

PUT http://www.example.com/resources/modeshape%3arepository/default/items/newNode/

someProperty

{

 "someProperty" : "bar"

}

Setting multiple properties at once can be performed by providing a URI to a node instead of a

property. The body of the request should then be a JSON object that maps property names to

their new values.

PUT http://www.example.com/resources/modeshape%3arepository/default/items/newNode

{

 "someProperty": "foobar",

 "someOtherProperty": "newValue"

Chapter 11. Accessing ModeSha...

204

}

Note

The PUT method doesn't currently support adding or removing mixin types. This

will be corrected in the future. A JIRA issue [https://jira.jboss.org/jira/browse/

ModeShape-447] has been created to help track this issue.

11.2.1.1. Binary properties

Binary property values are included in any of the the responses or requests, but are represented

string values containing the Base 64 encoding [http://en.wikipedia.org/wiki/Base64] of the binary

content. Any such property is explicitly annotated such that "/base64/" is appended to the property

name. First of all, this makes it very clear to the client and service which properties are encoded,

allowing them to properly decode the values before use. Secondly, the "/base64/" suffix was

carefully chosen because it cannot be used in a real property name (without escaping). Here's an

example of a node containing a "jcr:primaryType" property with a single string value, a "jcr:uuid"

property with another single UUID value, another "options" property that has two integer values,

and a fourth "content" property that has a single binary value:

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"

 "options": ["1", "2"]

 "content/base64/":

 "TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlz

IHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg

dGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu

dWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo

ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4="

 },

}

All values of a property will always be Base 64 encoded if at least one of the values is binary. If

there are multiple values, then they will be separated by commas and will appear within '[' and ']'

characters (just like other properties).

https://jira.jboss.org/jira/browse/ModeShape-447
https://jira.jboss.org/jira/browse/ModeShape-447
https://jira.jboss.org/jira/browse/ModeShape-447
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Base64

Configuring the ModeShape REST Server

205

11.2.2. Configuring the ModeShape REST Server

The ModeShape REST server is deployed as a WAR and configured mostly through its web

configuration file (web.xml). Here is an example web configuration that is used for integration

testing of the ModeShape REST server along with an explanation of its parts.

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>ModeShape JCR RESTful Interface</display-name>

This first section is largely boilerplate and should look familiar to anyone who has deployed a

servlet-based application before. The display-name can be customized, of course.

The next stanza configures the repository provider.

 <!--

 This parameter provides the fully-qualified name of a class that implements

 the o.m.web.jcr.spi.RepositoryProvider interface. It is required

 by the ModeShapeJcrDeployer that controls the lifecycle for the ModeShape REST server.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.REPOSITORY_PROVIDER</param-name>

 <param-value>org.modeshape.web.jcr.spi.ModeShapeJcrRepositoryProvider</param-value>

 </context-param>

As noted above, this parameter informs the ModeShapeJcrDeployer [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html] of the specific

repository provider in use. Unless you are using the ModeShape REST server to connect to a

different JCR implementation, this should never change.

Next we configure the ModeShape JcrEngine [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/jcr/JcrEngine.html] itself.

 <!--

 This parameter, specific to the ModeShapeJcrRepositoryProvider implementation, specifies

 the name of the configuration file to initialize the repository or repositories.

 This configuration file must be on the classpath and is given as a classpath-relative

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html

Chapter 11. Accessing ModeSha...

206

 directory.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.CONFIG_FILE</param-name>

 <param-value>/configRepository.xml</param-value>

 </context-param>

If you are not familiar with the file format for a JcrEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] configuration file, you can build

one programatically with the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] class and call save(...) instead of build() to

output the configuration file that equates to the configuration.

This is followed by a bit of RESTEasy and JAX-RS boilerplate.

 <!--

 This parameter defines the JAX-RS application class, which is really just a metadata class

 that lets the JAX-RS engine (RESTEasy in this case) know which classes implement pieces

 of the JAX-RS specification like exception handling and resource serving.

 This should not be modified.

 -->

 <context-param>

 <param-name>javax.ws.rs.Application</param-name>

 <param-value>org.modeshape.web.jcr.rest.JcrApplication</param-value>

 </context-param>

 <!-- Required parameter for RESTEasy - should not be modified -->

 <listener>

 <listener-class>org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-class>

 </listener>

 <!-- Required parameter for ModeShape REST - should not be modified -->

 <listener>

 <listener-class>org.modeshape.web.jcr.ModeShapeJcrDeployer</listener-class>

 </listener>

 <!-- Required parameter for RESTEasy - should not be modified -->

 <servlet>

 <servlet-name>Resteasy</servlet-name>

 <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-class>

 </servlet>

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Configuring the ModeShape REST Server

207

 <!-- Required parameter for ModeShape REST - should not be modified -->

 <servlet-mapping>

 <servlet-name>Resteasy</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

In general, this part of the web configuration file should not be modified.

Finally, security must be configured for the REST server.

 <!--

 The ModeShape REST implementation leverages the HTTP credentials to for authentication

 and

 authorization within the JCR repository. It makes no sense to try to log into the JCR

 repository without credentials, so this constraint helps lock down the repository.

 This should generally not be modified.

 -->

 <security-constraint>

 <display-name>ModeShape REST</display-name>

 <web-resource-collection>

 <web-resource-name>RestEasy</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!--

 A user must be assigned this role to connect to any JCR repository, in addition to needing the

 READONLY or READWRITE roles to actually read or modify the data. This is not used

 internally,

 so another role could be substituted here.

 -->

 <role-name>connect</role-name>

 </auth-constraint>

 </security-constraint>

 <!--

 Any auth-method will work for ModeShape. BASIC is used this example for simplicity.

 -->

 <login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

Chapter 11. Accessing ModeSha...

208

 <!--

 This must match the role-name in the auth-constraint above.

 -->

 <security-role>

 <role-name>connect</role-name>

 </security-role>

</web-app>

As noted above, the REST server will not function properly unless security is configured. All

authorization methods supported by the Servlet specification are supported by ModeShape and

can be used interchangeable, as long as authenticated users have the connect role listed above.

11.2.3. Deploying the ModeShape REST Server

Just as with the ModeShape WebDAV server, deploying the ModeShape REST server only

requires three steps: preparing the web configuration, configuring the users and their roles in

your web container (outside the scope of this document), and assembling the WAR. This section

describes the requirements for assembling the WAR.

If you are using Maven to build your projects, the WAR can be built from a POM. Here is a portion

of the POM used to build the ModeShape REST Server integration subproject.

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <artifactId>modeshape</artifactId>

 <groupId>org.modeshape</groupId>

 <version>2.0</version>

 <relativePath>../..</relativePath>

 </parent>

 <artifactId>modeshape-web-jcr-rest-war</artifactId>

 <packaging>war</packaging>

 <name>ModeShape JCR REST Servlet</name>

 <description>ModeShape servlet that provides RESTful access to JCR items</description>

 <url>http://www.modeshape.org</url>

 <dependencies>

 <dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-web-jcr-rest</artifactId>

Deploying the ModeShape REST Server

209

 <version>2.0</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.8</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-client</artifactId>

 <version>1.2.1.GA</version>

 </dependency>

 </dependencies>

</project>

If you use this approach, make sure that web configuration file is in the /src/main/webapp/WEB-

INF directory.

The JBoss REST Server WAR is still easy enough to build if you are not using Maven. Simply

construct a WAR with the following contents:

+ /WEB-INF

 + /classes

 | + configRepository.xml

 | + log4j.properties (Optional)

 + /lib

 | + activation-1.1.jar

 | + commons-codec-1.2.jar

 | + commons-httpclient-3.1.jar

 | + google-collections-1.0.jar

 | + hamcrest-core-1.1.jar

 | + httpclient-4.0.jar

 | + httpcore-4.0.1.jar

 | + jakarta-regexp-1.4.jar

 | + javassist-3.6.0.GA.jar

 | + jaxb-api-2.1.jar

 | + jaxb-impl-2.1.12.jar

 | + jaxrs-api-1.2.1.GA.jar

 | + jcip-annotations-1.0.jar

Chapter 11. Accessing ModeSha...

210

 | + jcl-over-slf4j-1.5.8.jar

 | + jcr-2.0.jar

 | + jettison-1.1.jar

 | + joda-time-1.6.jar

 | + jsr250-api-1.0.jar

 | + junit-dep-4.4.jar

 | + lucene-analyzers-3.0.0.jar

 | + lucene-core-3.0.0.jar

 | + lucene-regex-3.0.0.jar

 | + lucene-snowball-3.0.0.jar

 | + modeshape-cnd-2.0.0.Final.jar

 | + modeshape-common-2.0.0.Final.jar

 | + modeshape-graph-2.0.0.Final.jar

 | + modeshape-jcr-2.0.0.Final.jar

 | + modeshape-jcr-api-2.0.0.Final.jar

 | + modeshape-repository-2.0.0.Final.jar

 | + modeshape-search-lucene-2.0.0.Final.jar

 | + modeshape-web-jcr-2.0.0.Final.jar

 | + modeshape-web-jcr-rest-2.0.0.Final.jar

 | + resteasy-jaxb-provider-1.2.1.GA.jar

 | + resteasy-jaxrs-1.2.1.GA.jar

 | + resteasy-jettison-provider-1.2.1.GA.jar

 | + scannotation-1.0.2.jar

 | + sjsxp-1.0.1.jar

 | + slf4j-api-1.5.11.jar

 | + slf4j-log4j12-1.5.8.jar

 | + slf4j-simple-1.5.8.jar

 | + stax-api-1.0-2.jar

 + web.xml

If you are using sequencers or any connectors other than the in-memory or federated connector,

you will also have to add the JARs for those dependencies into the WEB-INF/lib directory as

well. You will also have to change the version numbers on the JARs to reflect the current version

of ModeShape.

<node>

Your servlet container may already provide a logging system, and you may need to remove

the "slf4j-log4j12-1.5.8.jar" and replace with the appropriate SLF4J binding [http://www.slf4j.org/

manual.html] jar. Or, if your servlet container already uses SLF4J globally, you may want to remove

all of the "slf4j*.jar" files.

</node>

This WAR can be deployed into your servlet container.

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

ModeShape REST Client API

211

11.2.4. ModeShape REST Client API

The ModeShape REST Client API provides a POJO way of using the ModeShape REST web

service to publish (upload) and unpublish (delete) files from ModeShape repositories. Java objects

open the HTTP connection, create the HTTP request URLs, attach the payload associated with

PUT and POST requests, parse the HTTP JSON response back into Java objects, and close the

HTTP connection.

Here are the Java business objects you will need (all found in the

org.modeshape.web.jcr.rest.client.domain package):

• Server - hosts one or more ModeShape JCR repositories,

• Repository - a ModeShape JCR repository containing one or more workspaces, and

• Workspace - a ModeShape JCR repository workspace.

Along with the POJOs above, an org.modeshape.web.jcr.rest.client.IRestClient is

needed. The IRestClient is responsible for executing the publishing and unpublishing

operations. You can also use the IRestClient to find out what repositories and workspaces are

available on a ModeShape server.

Note

The only implementation of IRestClient is JsonRestClient as JSON-encoded

responses are all that are currently available.

Here's a code snippet that publishes (uploads) a file:

// Setup POJOs

Server server = new Server("http://localhost:8080", "username", "password");

Repository repository = new Repository("repositoryName", server);

Workspace workspace = new Workspace("workspaceName", repository);

// Publish

File file = new File("/path/to/file");

IRestClient restClient = new JsonRestClient();

Status status = restClient.publish(workspace, "/workspace/path/", file);

if (status.isError() {

 // Handle error here

}

Chapter 11. Accessing ModeSha...

212

Successfully executing the above code results in the creation a JCR folder node (nt:folder) for

each segment of the workspace path (if the folder didn't already exist). Also, a JCR file node (a

node with primary type nt:file) is created or updated under the last folder node and the file

contents are encoded and uploaded into a child node of that file node.

11.3. Repository Providers

Both the ModeShape REST server and the ModeShape WebDAV server can also be

used as an interface to to other JCR repositories by creating an implementation of the

RepositoryProvider [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/

spi/RepositoryProvider.html] interface that connects to the other repository.

The RepositoryProvider [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

web/jcr/spi/RepositoryProvider.html] only has a few methods that must be

implemented. When the ModeShapeJcrDeployer [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html] starts up, it will dynamically

load the RepositoryProvider [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

web/jcr/spi/RepositoryProvider.html] implementation (as noted above) and call the

startup(ServletContext) method on the provider. The provider can use this method to load

any required configuration parameters from the web configuration (web.xml) and initialize the

repository.

As an example, here's the ModeShape JCR provider implementation of this method with exception

handling omitted for brevity.

public void startup(ServletContext context) {

 String configFile = context.getInitParameter(CONFIG_FILE);

 InputStream configFileInputStream = getClass().getResourceAsStream(configFile);

 jcrEngine = new JcrConfiguration().loadFrom(configFileInputStream).build();

 jcrEngine.start();

}

As you can see, the name of configuration file for the JcrEngine [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html] is read from the servlet context

and used to initialize the engine. Once the repository has been started, it is now ready to accept

the main methods that provide the interface to the repository.

The first method returns the set of repository names supported by this repository.

public Set<String> getJcrRepositoryNames() {

 return new HashSet<String>(jcrEngine.getRepositoryNames());

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrEngine.html

Summary

213

}

The ModeShape JCR repository does support multiple repositories on the same server. Other

JCR implementations that don't support multiple repositories are free to return a singleton set

containing any string from this method.

The other required method returns an open JCR Session [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Session.html] for the user from the current request in a given repository

and workspace. The provider can use the HttpServletRequest [http://java.sun.com/javaee/6/

docs/api/javax/servlet/http/HttpServletRequest.html] to get the authentication credentials for the

HTTP user.

public Session getSession(HttpServletRequest request,

 String repositoryName,

 String workspaceName) throws RepositoryException {

 Repository repository = getRepository(repositoryName);

 SecurityContext context = new ServletSecurityContext(request);

 Credentials credentials = new SecurityContextCredentials(context);

 return repository.login(credentials, workspaceName);

}

The getSession(...) method is used by most of the REST server methods to access the JCR

repository and return results as needed.

Finally, the shutdown() method signals that the web context is being undeployed and the JCR

repository should shutdown and clean up any resources that are in use.

11.4. Summary

This chapter has described two ways to access a ModeShape JCR repository remotely through

HTTP-based protocols. In the next chapter, the different repository connectors will be described

so that you can start to use ModeShape to store new data, connect to existing data through JCR,

or both.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html

214

Part IV. Connector Library
The ModeShape project provides a number of connectors out-of-the-box. These are ready to be

used by simply including them in the classpath and configuring them as a repository source.

Chapter 12.

217

In-Memory Connector
The in-memory repository connector is a simple connector that creates a transient, in-memory

repository. This repository is used as a very simple in-memory cache or as a standalone transient

repository. This connector works well for a readable and writable repository source with small to

moderate sized content that need not be permanently saved.

The InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/inmemory/InMemoryRepositorySource.html] class provides a

number of JavaBean properties that control its behavior:

Table 12.1. InMemoryRepositorySource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html]

properties

Property Description

defaultCachePolicy Optional property that, if used, defines the

default for how long this information provided

by this source may to be cached by other,

higher-level components. The default value of

null implies that this source does not define

a specific duration for caching information

provided by this repository source.

defaultWorkspaceName Optional property that is initialized to an

empty string and which defines the name for

the workspace that will be used by default if

none is specified.

jndiName Optional property that, if used, specifies the

name in JNDI where an InMemoryRepository

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/connector/

inmemory/InMemoryRepository.html] instance

can be found. This is an advanced property

that is infrequently used.

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 12. In-Memory Connector

218

Property Description

rootNodeUuid Optional property that, if used, defines the

UUID of the root node in the in-memory

repository. If not used, then a new UUID is

generated.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

One way to configure the in-memory connector is to

create JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

jcr/JcrConfiguration.html] instance with a repository source that uses the

InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/inmemory/InMemoryRepositorySource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("IMR Store")

 .usingClass(InMemoryRepositorySource.class)

 .setDescription("The repository for our content")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"})

 .setProperty("defaultWorkspaceName", workspaceName);

Another way to configure the in-memory connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses the

InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/inmemory/InMemoryRepositorySource.html] class. For example a file named

configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html

219

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'IMR Store' repository is an in-memory source with a single default workspace (though

 others could be created, too).

 -->

 <mode:source jcr:name="IMR Store"

 mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySource"

 mode:description="The repository for our content"

 mode:defaultWorkspaceName="default">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

220

Chapter 13.

221

File System Connector
This connector exposes an area of the local file system as a graph of "nt:file" and "nt:folder"

nodes. The connector can be configured so that the workspace name is either a path to the

directory on the file system that represents the root of that workspace or the name of subdirectory

within a root directory (see the workspaceRootPath property below). Each connector can define

whether it allows new workspaces to be created. If the directory for a workspace does not exist,

this connector will attempt to create the directory (and any missing parent directories).

Note

The file nodes returned by this connector will have a primary type of nt:file

and a child node named jcr:content. The jcr:content node will have a

primary type of mode:resource. The mode:resource node type is equivalent

to the built-in nt:resource node type in all ways except one: it does not

extend mix:referenceable. This is because ModeShape cannot assign a

persistent UUID to the files in the file system or guarantee that no other process

will move or delete the files outside of ModeShape. The mix:referenceable

node type cannot be implemented if either of these conditions cannot be

met. Additional properties (including mixin types) can be added by setting

the customPropertiesFactory property to point to an implementation of the

CustomPropertiesFactory [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/connector/filesystem/CustomPropertiesFactory] interface.

The FileSystemSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/filesystem/FileSystemSource.html] class provides a number of JavaBean properties

that control its behavior:

Table 13.1. FileSystemSource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html]

properties

Property Description

cachePolicy Optional property that, if used, defines the

cache policy for this repository source. When

not used, this source will not define a specific

duration for caching information.

creatingWorkspaceAllowed Optional property that defines whether clients

can create additional workspaces. The default

value is "true".

customPropertiesFactory Specifies the CustomPropertiesFactory

[http://docs.jboss.org/modeshape/2.0.0.Final/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory

Chapter 13. File System Connector

222

Property Description

api/org/modeshape/connector/filesystem/

CustomPropertiesFactory] implementation

that should be used to augment the default

properties available on each node. This

property can be set either from an object that

implements the CustomPropertiesFactory

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/connector/filesystem/

CustomPropertiesFactory] interface or

from the name of a class with a public,

no-argument constructor that implements

the CustomPropertiesFactory [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/connector/filesystem/

CustomPropertiesFactory] interface. In

the latter case, a the named class will

be instantiated and used as the custom

properties factory implementation.

defaultWorkspaceName Optional property that is initialized to

"default" and which defines the name for

the workspace that will be used by default if

none is specified.

exclusionPattern Specifies a regular expression that is used

to determine which files and folders in the

underlying file system should be exposed

through this connector. Files and folders with

a name that matches the provided regular

expression will not be exposed by this source.

Setting this property to null has the effect of

removing the exclusion pattern.

This property is mutually incompatible with

the filenameFilter property. Setting this

property to a non-null value will automatically

set the filenameFilter property to null.

filenameFilter Specifies the FilenameFilter [http://

java.sun.com/javase/6/docs/api/java/io/

FilenameFilter.html] that is used to determine

which files and folders in the underlying

file system should be exposed through this

connector. Only files and folders that the

filter accepts will be accessible through this

source.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html

223

Property Description

This property can be set either from an

object that implements the FilenameFilter

[http://java.sun.com/javase/6/docs/api/

java/io/FilenameFilter.html] interface or

from the name of a class with a public,

no-argument constructor that implements

the FilenameFilter [http://java.sun.com/

javase/6/docs/api/java/io/FilenameFilter.html]

interface. In the latter case, a the named class

will be instantiated and used as the filename

filter implementation. Setting this property to

null has the effect of clearing the filter.

This property is mutually incompatible with

the exclusionPattern property. Setting this

property to a non-null value will automatically

set the exclusionPattern property to null.

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

predefinedWorkspaceNames Optional property that, if used, defines names

of the workspaces that are predefined and

need not be created before being used. This

can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow

only the use of only predefined workspaces.

rootNodeUuid Optional property that, if used, specifies the

UUID that should be used for the root node

of each workspace. If no value is specified, a

default UUID is used.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 13. File System Connector

224

Property Description

to this source should be retried following a

communication failure. The default value is '0'.

updatesAllowed Determines whether the content in the file

system can be updated ("true"), or if the

content may only be read ("false"). The

default value is "false" to avoid unintentional

security vulnerabilities.

workspaceRootPath Optional property that, if used, specifies a

path on the local file system to the root of

all workspaces. The source will will use the

name of the workspace as a relative path

from the workspaceRootPath to determine

the path for a particular workspace. If no

value (or a null value) is specified, the

source will use the name of the workspace

as a relative path from the current working

directory of this virtual machine (as defined by

new File(".").

As an example for a workspace named

"default/foo", the source will use new

File(workspaceRootPath, "default/

foo") as the source directory for the

connector if workspaceRootPath is set

to a non-null value, or new File(".",

"default/foo") as the source directory for

the connector if workspaceRootPath is set to

null.

One way to configure the file system connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the FileSystemSource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("FS Store")

 .usingClass(FileSystemSource.class)

 .setDescription("The repository for our content")

 .setProperty("workspaceRootPath", "/home/content/someApp")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"})

 .setProperty("rootNodeUuid", UUID.fromString("fd129c12-81a8-42ed-aa4b-820dba49e6f0")

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html

225

 .setProperty("updatesAllowed", "true")

 .setProperty("creatingWorkspaceAllowed", "false");

Another way to configure the file system connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses the

FileSystemSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/

filesystem/FileSystemSource.html] class. For example a file named configRepository.xml can be

created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You can

 think of these as being similar to JDBC DataSource objects, except that they expose graph

 content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'FS Store' repository is a file system source with a three predefined workspaces

 ("prod", "staging", and "dev").

 -->

 <mode:source jcr:name="FS Store"

 mode:classname="org.modeshape.connector.filesystem.FileSystemSource"

 mode:description="The repository for our content"

 mode:workspaceRootPath="/home/content/someApp"

 mode:defaultWorkspaceName="prod"

 mode:creatingWorkspacesAllowed="false"

 mode:rootNodeUuid="fd129c12-81a8-42ed-aa4b-820dba49e6f0"

 mode:updatesAllowed="true" >

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300000 ms).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="cachePolicy"

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/filesystem/FileSystemSource.html

Chapter 13. File System Connector

226

 mode:classname="org.modeshape.graph.connector.path.cache.InMemoryWorkspaceCache$InMemoryCachePolicy"

 mode:timeToLiveInMilliseconds="300000" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 14.

227

JPA Connector
This connector stores a graph of any structure or size in a relational database, using a JPA provider

on top of a JDBC driver. Currently this connector relies upon some Hibernate-specific capabilities.

The schema of the database is dictated by this connector and is optimized for storing a graph

structure. (In other words, this connector does not expose as a graph the data in an existing

database with an arbitrary schema.)

The JpaSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/

store/jpa/JpaSource.html] class provides a number of JavaBean properties that control its

behavior:

Table 14.1. JpaSource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html]

properties

Property Description

autoGenerateSchema Sets the Hibernate setting dictating what

it does with the database schema upon

first connection. Valid values are as follows

(though the value is not checked):

• "create" - Create the database schema

objects when the EntityManagerFactory

[http://java.sun.com/javase/

6/docs/api/javax/persistence/

EntityManagerFactory.html] is created

(actually when Hibernate's SessionFactory

is created by the entity manager factory). If

a file named "import.sql" exists in the root of

the class path (e.g., '/import.sql') Hibernate

will read and execute the SQL statements

in this file after it has created the database

objects. Note that Hibernate first delete all

tables, constraints, or any other database

object that is going to be created in the

process of building the schema.

• "create-drop" - Same as "create",

except that the schema will be dropped

after the EntityManagerFactory [http:/

/java.sun.com/javase/6/docs/api/javax/

persistence/EntityManagerFactory.html] is

closed.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html

Chapter 14. JPA Connector

228

Property Description

• "update" - Attempt to update the database

structure to the current mapping (but does

not read and invoke the SQL statements

from "import.sql"). Use with caution.

• "validate" - Validates the existing schema

with the current entities configuration, but

does not make any changes to the schema

(and does not read and invoke the SQL

statements from "import.sql"). This is often

the proper setting to use in production, and

thus this is the default value.

cacheTimeToLiveInMilliseconds Optional property that, if used, defines the

maximum time in milliseconds that any

information returned by this connector is

allowed to be cached before being considered

invalid. When not used, this source will

not define a specific duration for caching

information. The default value is "600000"

milliseconds, or 10 minutes.

compressData An advanced boolean property that dictates

whether large binary and string values should

be stored in a compressed form. This is

enabled by default. Setting this value only

affects how new records are stored; records

can always be read regardless of the value of

this setting. The default value is "true".

creatingWorkspaceAllowed Optional property that defines whether clients

can create additional workspaces. The default

value is "true".

dialect Required property that defines the dialect

of the database. This must match one of

the Hibernate dialect names, and must

correspond to the type of driver being used.

dataSourceJndiName The JNDI name of the JDBC DataSource

instance that should be used. If not specified,

the other driver properties must be set.

driverClassloaderName The name of the class loader or classpath

that should be used to load the JDBC driver

class. This is not required if the DataSource is

found in JNDI.

229

Property Description

driverClassName The name of the JDBC driver class. This is

not required if the DataSource is found in

JNDI, but is required otherwise.

idleTimeInSecondsBeforeTestingConnections The number of seconds after a connection

remains in the pool that the connection should

be tested to ensure it is still valid. The default

is 180 seconds (or 3 minutes).

largeValueSizeInBytes An advanced boolean property that controls

the size of property values at which they are

considered to be "large values". Depending

upon the model, large property values may

be stored in a centralized area and keyed

by a secure hash of the value. This is an

space and performance optimization that

stores each unique large value only once. The

default value is "1024" bytes, or 1 kilobyte.

maximumConnectionsInPool The maximum number of connections that

may be in the connection pool. The default is

"5".

maximumConnectionIdleTimeInSeconds The maximum number of seconds that a

connection should remain in the pool before

being closed. The default is "600" seconds (or

10 minutes).

maximumSizeOfStatementCache The maximum number of statements that

should be cached. Statement caching can be

disabled by setting to "0". The default is "100".

minimumConnectionsInPool The minimum number of connections that will

be kept in the connection pool. The default is

"0".

model An advanced property that dictates the type

of storage schema that is used. Currently, the

only supported value is "Simple".

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 14. JPA Connector

230

Property Description

nameOfDefaultWorkspace Optional property that is initialized to an

empty string and which defines the name for

the workspace that will be used by default if

none is specified.

numberOfConnectionsToAcquireAsNeeded The number of connections that should be

added to the pool when there are not enough

to be used. The default is "1".

password The password that should be used when

creating JDBC connections using the JDBC

driver class. This is not required if the

DataSource is found in JNDI.

predefinedWorkspaceNames Optional property that, if used, defines names

of the workspaces that are predefined and

need not be created before being used. This

can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow

only the use of only predefined workspaces.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid Optional property that, if used, defines the

UUID of the root node in the repository. If not

used, then a new UUID is generated.

updatesAllowed Determines whether the content in the

database is can be updated ("true"), or if

the content may only be read ("false"). The

default value is "true".

url The URL that should be used when creating

JDBC connections using the JDBC driver

class. This is not required if the DataSource is

found in JNDI.

username The username that should be used when

creating JDBC connections using the JDBC

driver class. This is not required if the

DataSource is found in JNDI.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

231

One way to configure the JPA connector is to create JcrConfiguration [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance with a repository

source that uses the JpaSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/connector/store/jpa/JpaSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("JPA Store")

 .usingClass(JpaSource.class)

 .setDescription("The database store for our content")

 .setProperty("dialect", "org.hibernate.dialect.MySQLDialect")

 .setProperty("dataSourceJndiName", "java:/MyDataSource")

 .setProperty("defaultWorkspaceName", "My Default Workspace")

 .setProperty("autoGenerateSchema", "validate");

Of course, setting other more advanced properties would entail calling setProperty(...) for

each. Since almost all of the properties have acceptable default values, however, we don't need

to set very many of them.

Another way to configure the JPA connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that

uses the JpaSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/

store/jpa/JpaSource.html] class. For example a file named configRepository.xml can be created

with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'JPA Store' repository is an JPA source with a single default workspace (though

 others could be created, too).

 -->

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/store/jpa/JpaSource.html

Chapter 14. JPA Connector

232

 <mode:source jcr:name="JPA Store"

 mode:classname="org.modeshape.connector.store.jpa.JpaSource"

 mode:description="The database store for our content"

 mode:dialect="org.hibernate.dialect.MySQLDialect"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultWorkspaceName="default"

 mode:autoGenerateSchema="validate"/>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

ModeShape users who prefer not to give DDL privileges to the ModeShape database user for this

connector can use the ModeShape JPA DDL generation tool to create the proper DDL files for their

database dialect. This tool is packaged as an executable jar in the utils/modeshape-jpa-ddl-gen

subproject and can be executed with the following syntax:

java -jar <jar_name> -dialect <dialect name> -model <model_name> [-out <path to output

 directory>]

The dialect and model parameters should match the value of the dialect and model properties

specified for the JPA connector.

Running this executable will create two files in the output directory (or the current directory if no

output directory was specified): create.modeshape-jpa-connector.ddl and drop.modeshape-jpa-

connector.ddl. The former contains the DDL to create or replace the tables, foreign keys, indices,

and sequences needed by the JPA connector and the latter contains the DDL to drop any tables,

foreign keys, indices, and sequences needed by the JPA connector.

14.1. Simple Model

This database schema model stores node properties as opaque records in the same row as

transparent values like the node's namespace, local name, and same-name-sibling index. Large

property values are stored separately.

Simple Model

233

The set of tables used in this model includes:

• Workspaces - the set of workspaces and their names.

• Namespaces - the set of namespace URIs used in paths, property names, and property values.

• Nodes - the nodes in the repository, where each node and its properties are represented

by a single record. This approach makes it possible to efficiently work with nodes containing

large numbers of children, where adding and removing child nodes is largely independent of

the number of children. Since the primary consumer of ModeShape graph information is the

JCR layer, and the JCR layer always retrieves the nodes' properties for retrieved nodes, the

properties have been moved in-row with the nodes. Properties are still store in an opaque,

serialized (and optionally compressed) form.

• Large values - property values larger than a certain size will be broken out into this table, where

they are tracked by their SHA-1 has and shared by all properties that have that same value.

The values are stored in a binary (and optionally compressed) form.

• Subgraph - a working area for efficiently computing the space of a subgraph; see below

• Options - the parameters for this store's configuration (common to all models)

This database model contains two tables that are used in an efficient mechanism to find all of

the nodes in the subgraph below a certain node. This process starts by creating a record for the

subgraph query, and then proceeds by executing a join to find all the children of the top-level node,

and inserting them into the database (in a working area associated with the subgraph query). Then,

another join finds all the children of those children and inserts them into the same working area.

This continues until the maximum depth has been reached, or until there are no more children

(whichever comes first). All of the nodes in the subgraph are then represented by records in the

working area, and can be used to quickly and efficient work with the subgraph nodes. When

finished, the mechanism deletes the records in the working area associated with the subgraph

query.

This subgraph query mechanism is extremely efficient, performing one join/insert statement per

level of the subgraph, and is completely independent of the number of nodes in the subgraph. For

example, consider a subgraph of node A, where A has 10 children, and each child contains 10

children, and each grandchild contains 10 children. This subgraph has a total of 1111 nodes (1

root + 10 children + 10*10 grandchildren + 10*10*10 great-grandchildren). Finding the nodes in

this subgraph would normally require 1 query per node (in other words, 1111 queries). But with

this subgraph query mechanism, all of the nodes in the subgraph can be found with 1 insert plus

4 additional join/inserts.

This mechanism has the added benefit that the set of nodes in the subgraph are kept in a working

area in the database, meaning they don't have to be pulled into memory.

In the Simple model, subgraph queries are used to

efficiently process a number of different requests, including

Chapter 14. JPA Connector

234

ReadBranchRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/ReadBranchRequest.html] and DeleteBranchRequest [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html].

Processing each of these kinds of requests requires knowledge of the subgraph, and in fact

all but the ReadBranchRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/ReadBranchRequest.html] need to know the complete subgraph.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ReadBranchRequest.html

Chapter 15.

235

JCR Connector
This connector enables ModeShape to access and store content in another separate JCR

repository instance. With it, ModeShape can integrate with other JCR implementations and even

federate multiple JCR repositories into a single unified repository.

Note

This connector is currently a technical preview, and we're seeking feedback and

assistance in identifying bugs and specifying the required functionality.

The connector is designed to find the external JCR Repository instance in JNDI, though the

location in JNDI can be easily configured with the "repositoryJndiName" property.

The connector also has several ways to authenticate and obtain a Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. First of all, if a fixed Credentials

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] are set via the

properties, then the Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html] will always be obtained using these credentials. If a username and password are

set via the properties (and no Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Credentials.html] is set), then the connector will create a SimpleCredentials [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html] and use it to

obtain a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. In

all other cases, the connector will use the login methods on Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] that do not require a Credentials [http:/

/www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html].

This means that when JAAS is used by both the ModeShape repository using the JCR connector

and a ModeShape repository accessed by the connector, the connector will obtain a Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] to the underlying

repository using the same Subject [http://java.sun.com/javase/6/docs/api/javax/security/auth/

Subject.html] used in the incoming request.

The connector automatically handles any differences in namespaces between the underlying JCR

repository and the ModeShape system. However, at this time it is a requirement that node types

used by the content in the underlying JCR repository must also be registered into the ModeShape

repository (or repositories) using the connector.

The JcrRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/jcr/JcrRepositorySource.html] class provides a number of JavaBean properties that

control its behavior:

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html

Chapter 15. JCR Connector

236

Table 15.1. JcrRepositorySource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html]

properties

Property Description

defaultCachePolicy Optional property that, if used, defines the

default cache policy for this repository source.

When not used, this source will not define a

specific duration for caching information.

repositoryJndiName Property that defines where in

JNDI the connector can find the

javax.jcr.Repository instance.

username Optional property that defines the username

that should be used when logging into

the Repository to obtain a Session

[http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Session.html].

When used, the connector creates a

SimpleCredentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

SimpleCredentials.html] instance. Should not

be used if the "credentials" properties is to be

used.

password Optional property that defines the password

that should be used when logging into

the Repository to obtain a Session

[http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Session.html].

When used, the connector creates a

SimpleCredentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

SimpleCredentials.html] instance. Should not

be used if the "credentials" properties is to be

used.

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

237

Property Description

credentials Optional property that, if used, defines

Credentials [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/

Credentials.html] instance that should be

used when logging into the Repository

to obtain a Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html]. Should be used only if the

"username" and "password" properties are

not set.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

One way to configure the JCR connector is to create JcrConfiguration [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance with a repository

source that uses the JcrRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/connector/jcr/JcrRepositorySource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Repository Source")

 .usingClass(FileSystemSource.class)

 .setDescription("The repository for our content")

 .setProperty("repositoryJndiName", "java:/myRepository")

 .setProperty("username", "jsmith")

 .setProperty("password", "secret");

Another way to configure the JCR connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the JcrRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/jcr/JcrRepositorySource.html] class. For example, here's a file named

configRepository.xml that represents the same configuration as above:

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jcr/JcrRepositorySource.html

Chapter 15. JCR Connector

238

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You can

 think of these as being similar to JDBC DataSource objects, except that they expose graph

 content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Repository Source' repository is a JCR source.

 -->

 <mode:source jcr:name="Repository Source"

 mode:classname="org.modeshape.connector.jcr.JcrRepositorySource"

 mode:description="The repository for our content"

 mode:repositoryJndiName="java:/myRepository"

 mode:username="jsmith"

 mode:password="secret">

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300000 ms).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="cachePolicy"

 mode:classname="org.modeshape.graph.connector.path.cache.InMemoryWorkspaceCache$InMemoryCachePolicy"

 mode:timeToLiveInMilliseconds="300000" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 16.

239

Federation Connector
The federated repository source provides a unified repository consisting of information

that is dynamically federated from multiple other RepositorySource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] instances.

This is a very powerful repository source that appears to be a single

repository, when in fact the content is stored and managed in multiple

other systems. Each FederatedRepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html] is

typically configured with the name of another RepositorySource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] that should

be used as the local, unified cache of the federated content. The

FederatedRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/federation/FederatedRepositorySource.html] then looks in the configuration

repository to determine the various workspaces and how other sources are projected into each

workspace.

Figure 16.1. Federating multiple sources using the Federated Repository

Connector

16.1. Projections

Each federated repository source provides a unified repository consisting of information

that is dynamically federated from multiple other RepositorySource [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html] instances.

The connector is configured with a number of projections that each describe where in the unified

repository the federated connector should place the content from another source. Projections

consist of the name of the source containing the content and a number of rules that define the

path mappings, where each rule is defined as a string with this format:

pathInFederatedRepository => pathInSourceRepository

Here, the pathInFederatedRepository is the string representation of the path in the unified (or

federated) repository, and pathInSourceRepository is the string representation of the path of

the actual content in the underlying source. For example:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 16. Federation Connector

240

/ => /

is a trivial rule that states that all of the content in the underlying source should be mapped into

the unified repository such that the locations are the same. Therefore, a node at /a/b/c in the

source would appear in the unified repository at /a/b/c. This is called a mirror projection, since

the unified repository mirrors the underlying source repository.

Another example is an offset projection, which is similar to the mirror projection except that the

federated path includes an offset not found in the source:

/alpha/beta => /

Here, a node at /a/b/c in the source would actually appear in the unified repository at /alpha/

beta/a/b/c. The offset path (/alpha/beta in this example) can have 1 or more segments. (If

there are no segments, then it reduces to a mirror projection.)

Often a rule will map a path in one source into another path in the unified source:

/alpha/beta => /foo/bar

Here, the content at /foo/bar is projected in the unified repository under /alpha/beta, meaning

that the /foo/bar prefix never even appears in the unified repository. So the node at /foo/bar/

baz/raz would appear in the unified repository at /alpha/beta/baz/raz. Again, the size of the

two paths in the rule don't matter.

16.2. Multiple Projections

Federated repositories that use a single projection are useful, but they aren't as interesting or

powerful as those that use multiple projections. Consider a federated repository that is defined

by two projections:

/ => / for source "S1"

/alpha => /foo/bar for source "S2"

And consider that S1 contains the following structure:

+- a

Multiple Projections

241

| +- i

| +- j

+- b

 +- k

 +- m

 +- n

and S2 contains the following:

+- foo

 +- bar

 | +- baz

 | | +- taz

 | | +- zaz

 | +- raz

 +- bum

 +- bot

The unified repository would then have this structure:

+- a

| +- i

| +- j

+- b

| +- k

| +- m

| +- n

+- alpha

 +- baz

 +- taz

 | +- zaz

 +- raz

Note how the /foo/bum branch does not even appear in the unified repository, since it is outside

of the branch being projected. Also, the /alpha node doesn't exist in S1 or S2; it's what is called a

placeholder node that exists purely so that the nodes below it have a place to exist. Placeholders

are somewhat special: they allow any structure below them (including other placeholder nodes or

real projected nodes), but they cannot be modified.

Chapter 16. Federation Connector

242

Even more interesting are cases that involve more projections. Consider a federated repository

that contains information about different kinds of automobiles, aircraft, and spacecraft, except that

the information about each kind of vehicle exists in a different source (and possibly a different kind

of source, such as a database, or file, or web service).

First, the sources. The "Cars" source contains the following structure:

+- Cars

 +- Hybrid

 | +- Toyota Prius

 | +- Toyota Highlander

 | +- Nissan Altima

 +- Sports

 | +- Aston Martin DB9

 | +- Infinity G37

 +- Luxury

 | +- Cadillac DTS

 | +- Bentley Continental

 | +- Lexus IS350

 +- Utility

 +- Land Rover LR2

 +- Land Rover LR3

 +- Hummer H3

 +- Ford F-150

The "Aircraft" source contains the following structure:

+- Aviation

 +- Business

 | +- Gulfstream V

 | +- Learjet 45

 +- Commercial

 | +- Boeing 777

 | +- Boeing 767

 | +- Boeing 787

 | +- Boeing 757

 | +- Airbus A380

 | +- Airbus A340

 | +- Airbus A310

 | +- Embraer RJ-175

 +- Vintage

Multiple Projections

243

 | +- Fokker Trimotor

 | +- P-38 Lightning

 | +- A6M Zero

 | +- Bf 109

 | +- Wright Flyer

 +- Homebuilt

 +- Long-EZ

 +- Cirrus VK-30

 +- Van's RV-4

Finally, our "Spacecraft" source contains the following structure:

+- Space Vehicles

 +- Manned

 | +- Space Shuttle

 | +- Soyuz

 | +- Skylab

 | +- ISS

 +- Unmanned

 | +- Sputnik

 | +- Explorer

 | +- Vanguard

 | +- Pioneer

 | +- Marsnik

 | +- Mariner

 | +- Mars Pathfinder

 | +- Mars Observer

 | +- Mars Polar Lander

 +- Launch Vehicles

 | +- Saturn V

 | +- Aries

 | +- Delta

 | +- Delta II

 | +- Orion

 +- X-Prize

 +- SpaceShipOne

 +- WildFire

 +- Spirit of Liberty

So, we can define our unified "Vehicles" source with the following projections:

Chapter 16. Federation Connector

244

/Vehicles => / for source "Cars"

/Vehicles/Aircraft => /Aviation for source "Aircraft"

/Vehicles/Spacecraft => /Space Vehicles for source "Spacecraft"

The result is a unified repository with the following structure:

+- Vehicles

 +- Cars

 | +- Hybrid

 | | +- Toyota Prius

 | | +- Toyota Highlander

 | | +- Nissan Altima

 | +- Sports

 | | +- Aston Martin DB9

 | | +- Infinity G37

 | +- Luxury

 | | +- Cadillac DTS

 | | +- Bentley Continental

 | +- Lexus IS350

 | +- Utility

 | +- Land Rover LR2

 | +- Land Rover LR3

 | +- Hummer H3

 | +- Ford F-150

 +- Aircraft

 | +- Business

 | | +- Gulfstream V

 | | +- Learjet 45

 | +- Commercial

 | | +- Boeing 777

 | | +- Boeing 767

 | | +- Boeing 787

 | | +- Boeing 757

 | | +- Airbus A380

 | | +- Airbus A340

 | | +- Airbus A310

 | | +- Embraer RJ-175

 | +- Vintage

 | | +- Fokker Trimotor

 | | +- P-38 Lightning

Processing flow

245

 | | +- A6M Zero

 | | +- Bf 109

 | | +- Wright Flyer

 | +- Homebuilt

 | +- Long-EZ

 | +- Cirrus VK-30

 | +- Van's RV-4

 +- Spacecraft

 +- Manned

 | +- Space Shuttle

 | +- Soyuz

 | +- Skylab

 | +- ISS

 +- Unmanned

 | +- Sputnik

 | +- Explorer

 | +- Vanguard

 | +- Pioneer

 | +- Marsnik

 | +- Mariner

 | +- Mars Pathfinder

 | +- Mars Observer

 | +- Mars Polar Lander

 +- Launch Vehicles

 | +- Saturn V

 | +- Aries

 | +- Delta

 | +- Delta II

 | +- Orion

 +- X-Prize

 +- SpaceShipOne

 +- WildFire

 +- Spirit of Liberty

Other combinations are of course possible.

16.3. Processing flow

This connector executes Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/request/Request.html]s against the federated repository by projecting them

into requests against the underlying sources that are being federated.

One important design of the connector framework is that requests can be submitted in a batch,

which may be processed more efficiently than if each request was submitted one at a time.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html

Chapter 16. Federation Connector

246

This connector design accomplishes this by projecting the incoming requests into requests

against each source, then submitting the batch of projected requests to each source, and then

transforming the results of the projected requests back into original requests.

This is accomplished using a three-step process:

1. Process the incoming requests and for each generate the appropriate request(s) against

the sources (dictated by the workspace's projections). These "projected requests" are then

enqueued for each source.

2. Submit each batch of projected requests to the appropriate source, in parallel where possible.

Note that the requests are still ordered correctly for each source.

3. Accumulate the results for the incoming requests by post-processing the projected requests

and transforming the source-specific results back into the federated workspace (again, using

the workspace's projections).

This process is a form of the fork-join divide-and-conquer algorithm, which

involves splitting a problem into smaller parts, forking new subtasks to execute

each smaller part, joining on the subtasks (waiting until all have finished), and

then composing the results. Technically, Step 2 performs the fork and join

operations, but this class uses RequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/processor/RequestProcessor.html] implementations to do

Step 1 and 3 (called ForkRequestProcessor [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html] and

JoinRequestProcessor [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/federation/JoinRequestProcessor.html], respectively).

Such fork-join style techniques are well-suited to parallel processing. This

connector uses an ExecutorService [http://java.sun.com/javase/6/docs/api/java/util/concurrent/

ExecutorService.html] to allow these different processors to operate concurrently. This can greatly

improve the performance as perceived by the clients, since indeed much of the operations on the

different sources are occurring at the same time.

It is also possible that not every incoming Request [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/graph/request/Request.html] get projected to all sources. Indeed, many

operations can effectively be mapped to a single projection. In such cases, the overhead of the

federated connector is quite minimal.

Note

Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

request/Request.html]s that include the Path [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html] within the

request's Location [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html

Update operations

247

modeshape/graph/Location.html] can be very quickly mapped to the correct

projection, and thus such federated requests can be processed with very

little overhead. However, when requests contain Location [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html]s that only

contain identification properties (e.g., UUIDs), the connector may not be able to

determine the correct projection(s), and may have to simply forward the request to

all of the projections. This is obviously less desirable, so when possible ensure that

the Request [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

graph/request/Request.html] objects include the Path [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html].

16.4. Update operations

The federated connector behavior for read-only requests is fairly obvious. In the best case,

the connector determines the appropriate projections, forwards the request into the appropriate

sources, and then combines the results. But what happens with change requests?

Currently, the federated connector requires that each ChangeRequest [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html] be mapped to

one and only one projection. However, when a single projection cannot be determined for a

ChangeRequest [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/

ChangeRequest.html], the connector throws an error.

This is thought to be a minimal problem that will not actually be an issue

in most uses of the federated connector. If you find that your usage does

indeed fall into this category, please let us know via the mailing lists [http://

www.modeshape.org/lists.html] or log an enhancement request in JIRA [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel]. Be sure

to include as much detail as possible about the scenario, the problem condition, and the desired

behavior.

16.5. Configuration

The federated repository uses other RepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html]s that are to be federated

and a RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

connector/RepositorySource.html] that is to be used as the cache of the unified contents. These

are configured in another RepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/RepositorySource.html] that is treated as a configuration repository,

which should contain information about the workspaces and how other sources are projected:

<!-- Define the federation configuration. -->

<mode:workspaces>

 <mode:workspace jcr:name="default">

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/request/ChangeRequest.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 16. Federation Connector

248

 <!-- Define how the content in the two sources maps to the federated/unified repository.

 This example puts the 'Cars' and 'Aircraft' content underneath '/vehicles', but the

 'Configuration' content (which is defined by this file) will appear under '/'. -->

 <mode:projections>

 <!-- Project the 'Cars' content, starting with the '/Cars' node. -->

 <mode:projection jcr:name="Cars projection"

 mode:source="Cars"

 mode:workspaceName="workspace1">

 <mode:projectionRules>/Vehicles/Cars => /Cars</mode:projectionRules>

 </mode:projection>

 <!-- Project the 'Aicraft' content, starting with the '/Aircraft' node. -->

 <mode:projection jcr:name="Aircarft projection"

 mode:source="Aircraft"

 mode:workspaceName="workspace2">

 <mode:projectionRules>/Vehicles/Aircraft => /Aircraft</mode:projectionRules>

 </mode:projection>

 <!-- Project the 'System' content. Only needed when this source is accessed through JCR. -->

 <mode:projection jcr:name="System projection" mode:source="System"

 mode:workspaceName="default">

 <mode:projectionRules>/jcr:system => /</mode:projectionRules>

 </mode:projection>

 </mode:projections>

 </mode:workspace>

</mode:workspaces>

Note

We're using XML to represent a graph structure, since the two map pretty well.

Each XML element represents a node and XML attributes represent properties on

a node. The name of the node is defined by either the jcr:name attribute (if it

exists) or the name of the XML element. And we use XML namespaces to define

the namespaces used in the node and property names. As an aside, this is exactly

how the XML graph importer works.

16.6. Repository Source properties

While the majority of the configuration is defined using the configuration source (as discussed

above), the FederatedRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/connector/federation/FederatedRepositorySource.html] class have have a few

JavaBean properties:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html

Repository Source properties

249

Table 16.1. FederatedRepositorySource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html]

properties

Property Description

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

250

Chapter 17.

251

Subversion Connector
This connector provides read and write access to the directories and folders within a Subversion

repository, providing that content in the form of nt:file and nt:folder nodes. This source

considers a workspace name to be the path to the directory on the repository's root directory

location that represents the root of that workspace (e.g., "trunk" or "branches"). New workspaces

can be created, as long as the names represent valid existing directories within the SVN repository.

The SvnRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/svn/SvnRepositorySource.html] class provides a number of JavaBean properties that

control its behavior:

Table 17.1. SvnRepositorySource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html]

properties

Property Description

cachePolicy Optional property that, if used, defines the

cache policy to use for caching information

in the repository. When not used, this source

will not define a specific duration for caching

information.

creatingWorkspaceAllowed Optional property that defines whether clients

can create additional workspaces. The default

value is "true".

defaultWorkspaceName Optional property that, if used, specifies

the name of the workspace to use when no

workspace name is specified in an operation.

Each workspace name is treated as a path

relative to the SVN repository being exposed

(e.g., a workspace name of "trunk" will map

to the URL "http://acme.com/repo/trunk" if the

repository root URL is "http://acme.com/repo/

").

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 17. Subversion Connector

252

Property Description

password The password that should be used to

establish a connection to the repository.

This is not required if the URL represents an

anonymous SVN repository address.

predefinedWorkspaceNames Optional property that, if used, defines names

of the workspaces that are predefined and

need not be created before being used. Each

workspace name is treated as a path relative

to the SVN repository being exposed (e.g.,

a workspace name of "trunk" will map to

the URL "http://acme.com/repo/trunk" if the

repository root URL is "http://acme.com/repo/

"). This can be coupled with a "false" value for

the "creatingWorkspaceAllowed" property to

allow only the use of predefined workspaces.

repositoryRootURL Required property that should be set with the

URL to the Subversion repository.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

username The username that should be used to

establish a connection to the repository.

One way to configure the Subversion connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the SvnRepositorySource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("SVN Store")

 .usingClass(SVNRepositorySource.class)

 .setDescription("The ModeShape SVN repository (anonymous access)")

 .setProperty("repositoryRootUrl", "http://anonsvn.jboss.org/repos/modeshape");

 .setProperty("defaultWorkspaceName", "trunk");

 .setProperty("predefinedWorkspaceNames", new String[] {"trunk","tags" });

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html

253

Another way to configure the Subversion connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the SvnRepositorySource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/svn/SvnRepositorySource.html] class. For example a file named configRepository.xml

can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'SVN Store' repository is an Subversion source with one workspace (although others

 could

 be defined).

 -->

 <mode:source jcr:name="SVN Store"

 mode:classname="org.modeshape.connector.svn.SVNRepositorySource"

 mode:description="The ModeShape SVN repository (anonymous access)"

 mode:repositoryRootUrl="http://anonsvn.jboss.org/repos/modeshape"

 mode:defaultWorkspaceName="trunk"

 mode:defaultWorkspaceName="default" >

 <mode:predefinedWorkspaceNames>tags</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>trunk</mode:predefinedWorkspaceNames>

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300000 ms).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="cachePolicy"

 mode:classname="org.modeshape.graph.connector.path.cache.InMemoryWorkspaceCache$InMemoryCachePolicy"

 mode:timeToLiveInMilliseconds="300000" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/svn/SvnRepositorySource.html

Chapter 17. Subversion Connector

254

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 18.

255

JBoss Cache Connector
The JBoss Cache repository connector allows a JBoss Cache [http://www.jboss.org/jbosscache/]

instance to be used as a ModeShape (and thus JCR) repository. This provides a repository that is

an effective, scalable, and distributed cache, and can be federated with other repository sources

to provide a distributed repository.

The JBossCacheSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/jbosscache/JBossCacheSource.html] class provides a number of JavaBean properties

that control its behavior:

Table 18.1. JBossCacheSource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html]

properties

Property Description

cacheConfigurationName Optional property that, if used, specifies the

name of the configuration that is supplied to

the cache factory when creating a new JBoss

Cache instance.

cacheFactoryJndiName Optional property that, if used, specifies the

name in JNDI where an existing JBoss Cache

Factory instance can be found. That factory

would then be used if needed to create a

JBoss Cache instance. If no value is provided,

then the JBoss Cache DefaultCacheFactory

class is used.

cacheJndiName Optional property that, if used, specifies the

name in JNDI where an existing JBoss Cache

instance can be found. This should be used

if your application already has a cache that is

used, or if you need to configure the cache in

a special way.

creatingWorkspacesAllowed Optional property that is by default 'true'

that defines whether clients can create new

workspaces.

defaultCachePolicy Optional property that, if used, defines the

default for how long this information provided

by this source may to be cached by other,

higher-level components. The default value of

null implies that this source does not define

a specific duration for caching information

provided by this repository source.

http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html

Chapter 18. JBoss Cache Connector

256

Property Description

defaultWorkspaceName Optional property that is initialized to an

empty string and which defines the name for

the workspace that will be used by default if

none is specified.

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

predefinedWorkspaceNames Optional property that defines the names

of the workspaces that exist and that are

available for use without having to create

them.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid Optional property that, if used, specifies the

UUID that should be used for the root node

of each workspace. If no value is specified, a

random UUID is generated each time that the

repository is started.

updatesAllowed Determines whether the content in the

connector is can be updated ("true"), or if

the content may only be read ("false"). The

default value is "true".

uuidPropertyName Optional property that, if used, defines the

property that should be used to find the

UUID value for each node in the cache.

"mode:uuid" is the default.

One way to configure the JBoss Cache connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the JBossCacheSource [http://docs.jboss.org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html

257

2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html] class. For

example:

JcrConfiguration config = ...

config.repositorySource("Store")

 .usingClass(JBossCacheSource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("rootNodeUuid", UUID.fromString("12083e7e-2b55-4c8d-954d-627a9f5c45c2"))

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"});

Another way to configure the JBoss Cache connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses the

JBossCacheSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/

jbosscache/JBossCacheSource.html] class. For example a file named configRepository.xml can

be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Store' repository is a JBoss Cache repository with a single default workspace (though

 others could be created, too).

 -->

 <mode:source jcr:name="Store"

 mode:classname="org.modeshape.graph.connector.jbosscache.JBossCacheSource"

 mode:description="The repository for our content"

 mode:defaultworkspaceName="prod"

 mode:rootNodeUuid="12083e7e-2b55-4c8d-954d-627a9f5c45c2">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/jbosscache/JBossCacheSource.html

Chapter 18. JBoss Cache Connector

258

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 19.

259

Infinispan Connector
The Infinispan repository connector allows a Infinispan [http://www.jboss.org/infinispan/] instance

to be used as a ModeShape (and thus JCR) repository. This provides a way for the content in a

repository to be stored in an effective, scalable, and distributed data grid, and can be federated

with other repository sources to provide a distributed repository.

The InfinispanSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/infinispan/InfinispanSource.html] class provides a number of JavaBean properties that

control its behavior:

Table 19.1. InfinispanSource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html]

properties

Property Description

cacheManagerJndiName Optional property that, if used, specifies the

name in JNDI where an existing Infinispan

Cache Manager instance can be found.

That factory would then be used if needed

to create an Infinispan Cache instance. If

no value is provided, then the Infinispan

DefaultCacheManager class is used.

cacheConfigurationName Optional property that, if used, specifies

the name of the configuration resource

or file that is supplied to the cache

manager when creating a new Infinispan

DefaultCacheManager instance. The

configuration name is first treated as a

resource name and will be attempted to

be loaded from the ClassLoader [http://

java.sun.com/javase/6/docs/api/java/lang/

ClassLoader.html]. If that is unsuccessful, the

configuration name is assumed to be a file

name and will be loaded from the file system.

This initialization happens the first time that

the source is used.

Note that the cacheManagerJndiName

property is checked first as a pointer to

the Infinispan CacheManager. If the JNDI

name points to a CacheManager, the

cacheConfigurationName property will not

be considered.

http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html

Chapter 19. Infinispan Connector

260

Property Description

defaultCachePolicy Optional property that, if used, defines the

default for how long this information provided

by this source may to be cached by other,

higher-level components. The default value of

null implies that this source does not define

a specific duration for caching information

provided by this repository source.

defaultWorkspaceName Optional property that is initialized to an

empty string and which defines the name for

the workspace that will be used by default if

none is specified.

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

by name.

predefinedWorkspaceNames Optional property that defines the names

of the workspaces that exist and that are

available for use without having to create

them.

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid Optional property that, if used, specifies the

UUID that should be used for the root node

of each workspace. If no value is specified, a

pre-defined UUID constant is used. A custom

value need only be supplied for Infinispan

sources created prior to ModeShape 2.0, or if

a specific UUID is desired or needed.

updatesAllowed Determines whether the content in the

connector is can be updated ("true"), or if

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

261

Property Description

the content may only be read ("false"). The

default value is "true".

One way to configure the Infinispan connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the InfinispanSource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Infinispan Store")

 .usingClass(InfinispanSource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"});

Another way to configure the Infinispan connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses the

InfinispanSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/

infinispan/InfinispanSource.html] class. For example a file named configRepository.xml can be

created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Infinispan Store' repository is a Infinispan repository with a single default

 workspace (though others could be created, too).

 -->

 <mode:source jcr:name="Infinispan Store"

 mode:classname="org.modeshape.connector.infinispan.InfinispanSource"

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html

Chapter 19. Infinispan Connector

262

 mode:description="The repository for our content"

 mode:defaultworkspaceName="prod">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

19.1. Considerations for Distributed Sources

The InfinispanSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/infinispan/InfinispanSource.html] can be used to provide access to an Infinispan cluster,

but be sure to use the DIST_SYNC cache mode. Using other modes will likely lead to data

inconsistency.

Additionally, some operating systems (e.g., OS X) require you to set either the

java.net.preferIPv4Stack or the java.net.preferIPv6Addresses system property to true.

These properties are used by JGroups, the communications library that underlies Infinispan, to

help determine which address type to use.

Note

The rootNodeUuid property must be set to the same value for all Infinispan sources

in the cluster.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/infinispan/InfinispanSource.html

Chapter 20.

263

JDBC Metadata Connector
This connector provides read-only access to the metadata (e.g., catalogs, schemas, table

structures) of a relational database. The connector yields a content graph that looks like this:

/ (root node)

 + <catalog name> - one node for each accessible catalog in the database.

 + <schema name> - one node for each accessible schema in the catalog.

 + tables - a single node that is the parent of all tables in the schema.

 | + <table name> - one node for each table in the schema.

 | + <column name> - one node for each column in the table.

 + procedures - a single node that is the parent of all procedures in the schema.

 + <procedure name> - one node for each procedure in the schema.

The root, table, column, and procedure nodes contain additional properties that correspond to

the metadata provide by the DatabaseMetaData [http://java.sun.com/javase/6/docs/api/java/sql/

DatabaseMetaData.html] class. In databases that do not support catalogs or schemas (or allow

the empty string as a valid catalog or schema name, the value of the defaultCatalogName and/or

defaultSchemaName properties will be used instead when determining the graph name.

Note

This connector has currently been tested successfully against Oracle 10g,

Oracle 11g, Microsoft SQL Server 2008 (with the Microsoft JDBC driver), IBM

DB2 v9, Sybase ASE 15, MySQL 5 (with the InnoDB engine), PostgreSQL

8, and HSQLDB. As JDBC driver implementations of the DatabaseMetaData

[http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html] interface

tend to vary widely, other databases may or may not work with

the default MetadataCollector [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/connector/meta/jdbc/MetadataCollector] implementation. As

one example, the metadataCollectorClassName property must be set to

org.modeshape.connector.meta.jdbc.SqlServerMetadataConnector if the

Microsoft JDBC driver is used. This is to work around a known bug where that

driver returns a list of users from a call to DatabaseMetaData [http://java.sun.com/

javase/6/docs/api/java/sql/DatabaseMetaData.html].getSchemas() instead of a list

of schemas.

To use this connector with the ModeShape JCR layer, you must import the JCR node types that

this connector uses. These are bundled in the JAR for this connector at the path /org/modeshape/

connector/meta/jdbc/nodeTypes.cnd. Please see the Getting Started [http://docs.jboss.org/

http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html

Chapter 20. JDBC Metadata Con...

264

modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html] Guide for detailed examples of

how to import custom JCR node types.

The JdbcMetadataSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/meta/jdbc/JdbcMetadataSource.html] class provides a number of JavaBean properties

that control its behavior:

Table 20.1. JdbcMetadataSource

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html]

properties

Property Description

cachePolicy Optional property that, if used, defines the

cache policy to use for this repository source.

When not used, this source will not define a

specific duration for caching information.

dataSourceJndiName The JNDI name of the JDBC DataSource

instance that should be used. If not specified,

the other driver properties must be set.

defaultCatalogName The name to use for the catalog name if the

database does not support catalogs or the

database has a catalog with the empty string

as a name. The default value is "default".

defaultSchemaName The name to use for the schema name if the

database does not support schemas or the

database has a schema with the empty string

as a name. The default value is "default".

driverClassloaderName The name of the class loader or classpath

that should be used to load the JDBC driver

class. This is not required if the DataSource is

found in JNDI.

driverClassName The name of the JDBC driver class. This is

not required if the DataSource is found in

JNDI, but is required otherwise.

idleTimeInSecondsBeforeTestingConnections The number of seconds after a connection

remains in the pool that the connection should

be tested to ensure it is still valid. The default

is 180 seconds (or 3 minutes).

maximumConnectionsInPool The maximum number of connections that

may be in the connection pool. The default is

"5".

maximumConnectionIdleTimeInSeconds

http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html

265

Property Description

The maximum number of seconds that a

connection should remain in the pool before

being closed. The default is "600" seconds (or

10 minutes).

maximumSizeOfStatementCache The maximum number of statements that

should be cached. Statement caching can be

disabled by setting to "0". The default is "100".

metadataCollectorClassName The name of a custom class to use for

metadata collection. The class must

implement the MetadataCollector [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/connector/meta/

jdbc/MetadataCollector] interface. If a

null value is specified for this property,

a default MetadataCollector [http://

docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/connector/meta/jdbc/

MetadataCollector] implementation will be

used that relies on the DatabaseMetaData

[http://java.sun.com/javase/6/docs/api/java/

sql/DatabaseMetaData.html] provided by the

JDBC driver for the connection. This property

is provided as a means for connecting

to databases with a JDBC driver that

provides a non-standard DatabaseMetaData

[http://java.sun.com/javase/6/docs/

api/java/sql/DatabaseMetaData.html]

implementation or no DatabaseMetaData

[http://java.sun.com/javase/6/docs/api/java/

sql/DatabaseMetaData.html] implementation

at all.

minimumConnectionsInPool The minimum number of connections that will

be kept in the connection pool. The default is

"0".

name The name of the repository source, which

is used by the RepositoryService

[http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/

RepositoryService.html] when obtaining a

RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 20. JDBC Metadata Con...

266

Property Description

graph/connector/RepositoryConnection.html]

by name.

nameOfDefaultWorkspace Optional property that is initialized to an

empty string and which defines the name for

the workspace that will be used by default if

none is specified.

numberOfConnectionsToAcquireAsNeeded The number of connections that should be

added to the pool when there are not enough

to be used. The default is "1".

retryLimit Optional property that, if used, defines the

number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html]

to this source should be retried following a

communication failure. The default value is '0'.

password The password that should be used when

creating JDBC connections using the JDBC

driver class. This is not required if the

DataSource is found in JNDI.

rootNodeUuid Optional property that, if used, defines the

UUID of the root node in the repository. If not

used, then a new UUID is generated.

url The URL that should be used when creating

JDBC connections using the JDBC driver

class. This is not required if the DataSource is

found in JNDI.

username The username that should be used when

creating JDBC connections using the JDBC

driver class. This is not required if the

DataSource is found in JNDI.

One way to configure the JDBC metadata connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the JdbcMetadataSource [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html] class. For

example:

JcrConfiguration config = ...

config.repositorySource("Meta Store")

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html

267

 .usingClass(JdbcMetadataSource.class)

 .setDescription("The database source for our content")

 .setProperty("dataSourceJndiName", "java:/MyDataSource")

 .setProperty("nameOfDefaultWorkspace", "default");

Of course, setting other more advanced properties would entail calling setProperty(...) for

each. Since almost all of the properties have acceptable default values, however, we don't need

to set very many of them.

Another way to configure the JDBC metadata connector is to create JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the JdbcMetadataSource [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

connector/meta/jdbc/JdbcMetadataSource.html] class. For example a file named

configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/jcr/

1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Meta Store' repository is a JDBC metadata repository with a single default

 workspace (though others could be created, too).

 -->

 <mode:source jcr:name="Meta Store"

 mode:classname="org.modeshape.connector.meta.jdbc.JdbcMetadataSource"

 mode:description="The database source for our content"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultworkspaceName="default" >

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300000 ms).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="cachePolicy"

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html

Chapter 20. JDBC Metadata Con...

268

 mode:classname="org.modeshape.graph.connector.path.cache.InMemoryWorkspaceCache$InMemoryCachePolicy"

 mode:timeToLiveInMilliseconds="300000" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Part V. Sequencer Library
The ModeShape project provides a number of sequencers out-of-the-box. These are ready to be

used by simply including them in the classpath and configuring them appropriately.

Chapter 21.

271

Compact Node Type (CND)

Sequencer
This sequencer processes JCR Compact Node Definition (CND) files to extract the node

definitions with their property definitions, and inserts these into the repository using JCR built-in

types. The node structure generated by this sequencer is equivalent to the node structure used

in /jcr:system/jcr:nodeTypes.

This sequencer can be added to the repository configuration like so:

JcrConfiguration config = ...

config.sequencer("CND Sequencer")

 .usingClass("org.modeshape.sequencer.cnd.CndSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences CND files to extract the node type definitions")

 .sequencingFrom("//(*.cnd[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/nodeTypes/$1");

272

Chapter 22.

273

XML Document Sequencer
This sequencer stores the structure and data of an XML file into the repository. DTD, entity,

comments, and other content are maintained by the sequencer in the output structure.

JcrConfiguration config = ...

config.sequencer("XML Sequencer")

 .usingClass("org.modeshape.sequencer.xml.XmlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences XML documents and maps their data into the repository")

 .sequencingFrom("//(*.xml[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/xml/$1");

274

Chapter 23.

275

ZIP File Sequencer
The ZIP file sequencer is included in ModeShape and extracts the files and folders contained in

the ZIP archive file, extracting the files and folders into the repository using JCR's nt:file and

nt:folder built-in node types. The structure of the output thus matches the logical structure of

the contents of the ZIP file.

To use this sequencer, simply include the modeshape-sequencer-zip JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("ZIP Sequencer")

 .usingClass("org.modeshape.sequencer.zip.ZipSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences compressed files to extract the internal file and folder structure")

 .sequencingFrom("//(*.(zip|gz|jar|war|ear)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/zips/$1");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

276

Chapter 24.

277

Microsoft Office Document

Sequencer
This sequencer is included in ModeShape and processes Microsoft Office documents, including

Word documents, Excel spreadsheets, and PowerPoint presentations. With documents, the

sequencer attempts to infer the internal structure from the heading styles. With presentations, the

sequencer extracts the slides, titles, text and slide thumbnails. With spreadsheets, the sequencer

extracts the names of the sheets. And, the sequencer extracts for all the files the general file

information, including the name of the author, title, keywords, subject, comments, and various

dates.

To use this sequencer, simply include the modeshape-sequencer-msoffice JAR and all of the

POI [http://poi.apache.org/] JARs in your application and configure the JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] to use this

sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Microsoft Office Document Sequencer")

 .usingClass("org.modeshape.sequencer.msoffice.MSOfficeMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences MS Office documents, including spreadsheets and presentations")

 .sequencingFrom("//(*.(*.(doc|docx|ppt|pps|xls)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/msoffice/$1");

http://poi.apache.org/
http://poi.apache.org/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

278

Chapter 25.

279

Java Source File Sequencer
One of the sequencers that included in ModeShape is the modeshape-sequencer-java

subproject. This sequencer parses Java source code added to the repository and extracts the

basic structure of the classes and enumerations defined in the code. This structure includes:

the package structures, class declarations, class and member attribute declarations, class and

member method declarations with signature (but not implementation logic), enumerations with

each enumeration literal value, annotations, and JavaDoc information for all of the above. After

extracting this information from the source code, the sequencer then writes this structure into the

repository, where it can be further processed, analyzed, searched, navigated, or referenced.

As noted previously, the JavaMetadataSequencer [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html] class provides

a pair of JavaBean properties that can be used to specify a

custom SourceFileRecorder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/java/SourceFileRecorder.html] implementation to use to map the extracted metadata

to an output location:

Table 25.1. JavaMetadataSequencer

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html]

properties

Property Description

sourceFileRecorder Optional property that, if set, provides an

instance of the SourceFileRecorder [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/sequencer/java/

SourceFileRecorder.html] interface that will be

used for all subsequent sequencing activity

for this sequencer. If this property is set to

null, a default implementation will be used.

The default value of this property is null.

sourceFileRecorderClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the SourceFileRecorder

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/sequencer/java/

SourceFileRecorder.html] interface. This

class must have a no-argument, public

constructor. If set, an instance of this class

will be created immediately and reused for

all subsequent sequencing activity for this

sequencer. If this property is set to null, a

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/SourceFileRecorder.html

Chapter 25. Java Source File ...

280

Property Description

default implementation will be used. The

default value of this property is null.

The default class file recorder (called ClassSourceFileRecorder [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html]) is

used when these properties are not set, and creates a subgraph rooted at the output location that

takes the following form:

<nt:unstructured jcr:name="packageName1">

 ...

 <nt:unstructured jcr:name="packageNameN">

 <class:class jcr:name="ClassName">

 <class:annotations jcr:name="class:annotations">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:annotations>

 <class:constructors jcr:name="class:constructors">

 <class:constructor jcr:name="constructor parameters">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:constructor>

 </class:constructors>

 <class:methods jcr:name="class:methods">

 <class:method jcr:name="methodName(parameters)">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:method>

 </class:methods>

 <class:fields jcr:name="class:fields">

 <class:field jcr:name="fieldName">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:field>

 </class:fields>

 </class:class>

 </nt:unstructured>

 ...

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html

281

</nt:unstructured>

This is the same structure that is produced by the Java class file sequencer, meaning that by

default the same structure will be produced when sequencing Java source or class files.

The compact node definitions for the class:* types is provided below:

[class:annotationMember]

- class:name (string) mandatory

- class:value (string)

[class:annotation]

- class:name (string) mandatory

+ * (class:annotationMember) = class:annotationMember

[class:annotations]

+ * (class:annotation) = class:annotation

[class:field]

- class:name (string) mandatory

- class:typeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:transient (boolean) mandatory

- class:volatile (boolean) mandatory

+ class:annotations (class:annotations) = class:annotations

[class:fields]

+ * (class:field) = class:field

[class:interfaces]

- * (string)

[class:parameters]

- * (string)

[class:method]

- class:name (string) mandatory

- class:returnTypeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

Chapter 25. Java Source File ...

282

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:abstract (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:native (boolean) mandatory

- class:synchronized (boolean) mandatory

- class:parameters (string) multiple

+ class:annotations (class:annotations) = class:annotations

[class:methods]

+ * (class:method) = class:method

[class:constructors]

+ * (class:method) = class:method

[class:class]

- class:name (string) mandatory

- class:superClassName (string)

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:abstract (boolean) mandatory

- class:interface (boolean) mandatory

- class:final (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:interfaces (string) multiple

+ class:annotations (class:annotations) = class:annotations

+ class:constructors (class:constructors) = class:constructors

+ class:methods (class:methods) = class:methods

+ class:fields (class:fields) = class:fields

[class:enum] > class:class

- class:enumValues (string) mandatory multiple

Note

This sequencer defaulted to using a different recorder implementation

in ModeShape 1.x, but this earlier structure did not match that

produced by the ClassFileSequencer [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html] and

a different default recorder is used in ModeShape

2.0 (or later). The sequencer can be configured

to use the original structure by using the

OriginalFormatSourceFileRecorder [http://docs.jboss.org/modeshape/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html

283

2.0.0.Final/api/org/modeshape/sequencer/java/

OriginalFormatSourceFileRecorder.html] class.

To use this sequencer, simply include the modeshape-sequencer-java JAR (plus all of the

JARs that it is dependent upon) in your application and configure the JcrConfiguration [http:/

/docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html] to use this

sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Java Sequencer")

 .usingClass("org.modeshape.sequencer.java.JavaMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences java files to extract the characteristics of the Java source")

 .sequencingFrom("//(*.(java)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/java/$1");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

284

Chapter 26.

285

Java Class File Sequencer
The Java class file sequencer parses Java class file to extract metadata for the class, its

methods, its fields, and its annotations. The output of the sequencer can be customized by

using the classFileRecorder or classFileRecorderClassName properties to provide a custom

implementation of the ClassFileRecorder [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/sequencer/classfile/ClassFileRecorder.html] interface. A default implementation

(DefaultClassFileRecorder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/classfile/DefaultClassFileRecorder.html]) is provided that records all extracted

metadata to the output location.

As noted previously, the ClassFileSequencer [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html] class provides

a pair of JavaBean properties that can be used to specify a

custom ClassFileRecorder [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/classfile/ClassFileRecorder.html] implementation to use to map the extracted

metadata to an output location:

Table 26.1. ClassFileSequencer

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html]

properties

Property Description

classFileRecorder Optional property that, if set, provides an

instance of the ClassFileRecorder [http:/

/docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/sequencer/classfile/

ClassFileRecorder.html] interface that will be

used for all subsequent sequencing activity

for this sequencer. If this property is set to

null, a default implementation will be used.

The default value of this property is null.

classFileRecorderClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the ClassFileRecorder

[http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/sequencer/classfile/

ClassFileRecorder.html] interface. This

class must have a no-argument, public

constructor. If set, an instance of this class

will be created immediately and reused for

all subsequent sequencing activity for this

sequencer. If this property is set to null, a

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html

Chapter 26. Java Class File S...

286

Property Description

default implementation will be used. The

default value of this property is null.

The default class file recorder creates a subgraph rooted at the output location that takes the

following form:

<nt:unstructured jcr:name="packageName1">

 ...

 <nt:unstructured jcr:name="packageNameN">

 <class:class jcr:name="ClassName">

 <class:annotations jcr:name="class:annotations">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:annotations>

 <class:constructors jcr:name="class:constructors">

 <class:constructor jcr:name="constructor parameters">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:constructor>

 </class:constructors>

 <class:methods jcr:name="class:methods">

 <class:method jcr:name="methodName(parameters)">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:method>

 </class:methods>

 <class:fields jcr:name="class:fields">

 <class:field jcr:name="fieldName">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:field>

 </class:fields>

 </class:class>

 </nt:unstructured>

 ...

</nt:unstructured>

287

The compact node definitions for the class:* types is provided below. Please note that these

definitions may change in a future release.

[class:annotationMember]

- class:name (string) mandatory

- class:value (string)

[class:annotation]

- class:name (string) mandatory

+ * (class:annotationMember) = class:annotationMember

[class:annotations]

+ * (class:annotation) = class:annotation

[class:field]

- class:name (string) mandatory

- class:typeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:transient (boolean) mandatory

- class:volatile (boolean) mandatory

+ class:annotations (class:annotations) = class:annotations

[class:fields]

+ * (class:field) = class:field

[class:interfaces]

- * (string)

[class:parameters]

- * (string)

[class:method]

- class:name (string) mandatory

- class:returnTypeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:abstract (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:native (boolean) mandatory

Chapter 26. Java Class File S...

288

- class:synchronized (boolean) mandatory

- class:parameters (string) multiple

+ class:annotations (class:annotations) = class:annotations

[class:methods]

+ * (class:method) = class:method

[class:constructors]

+ * (class:method) = class:method

[class:class]

- class:name (string) mandatory

- class:superClassName (string)

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:abstract (boolean) mandatory

- class:interface (boolean) mandatory

- class:final (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:interfaces (string) multiple

+ class:annotations (class:annotations) = class:annotations

+ class:constructors (class:constructors) = class:constructors

+ class:methods (class:methods) = class:methods

+ class:fields (class:fields) = class:fields

[class:enum] > class:class

- class:enumValues (string) mandatory multiple

To use this sequencer, simply include the modeshape-sequencer-classfile JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Java Class Sequencer")

 .usingClass(ClassFileSequencer.class)

 .setDescription("Sequences Java class files to extract the structure of the classes")

 .sequencingFrom("//*.class[*]/jcr:content[@jcr:data]")

 .andOutputtingTo("/classes");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 27.

289

Image Sequencer
The ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/image/ImageMetadataSequencer.html] sequencer extracts metadata

from JPEG, GIF, BMP, PCX, PNG, IFF, RAS, PBM, PGM, PPM and PSD image files. This

sequencer extracts the file format, image resolution, number of bits per pixel and optionally number

of images, comments and physical resolution, and then writes this information into the repository

using the following structure:

• image:metadata node of type image:metadata

• • jcr:mimeType - optional string property for the mime type of the image

• jcr:encoding - optional string property for the encoding of the image

• image:formatName - string property for the name of the format

• image:width - optional integer property for the image's width in pixels

• image:height - optional integer property for the image's height in pixles

• image:bitsPerPixel - optional integer property for the number of bits per pixel

• image:progressive - optional boolean property specifying whether the image is stored in a

progressive (i.e., interlaced) form

• image:numberOfImages - optional integer property for the number of images stored in the

file; defaults to 1

• image:physicalWidthDpi - optional integer property for the physical width of the image in

dots per inch

• image:physicalHeightDpi - optional integer property for the physical height of the image in

dots per inch

• image:physicalWidthInches - optional double property for the physical width of the image

in inches

• image:physicalHeightInches - optional double property for the physical height of the image

in inches

This structure could be extended in the future to add EXIF and IPTC metadata as child nodes. For

example, EXIF metadata is structured as tags in directories, where the directories form something

like namespaces, and which are used by different camera vendors to store custom metadata. This

structure could be mapped with each directory (e.g. "EXIF" or "Nikon Makernote" or "IPTC") as

the name of a child node, with the EXIF tags values stored as either properties or child nodes.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html

Chapter 27. Image Sequencer

290

To use this sequencer, simply include the modeshape-sequencer-images JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Image Sequencer")

 .usingClass("org.modeshape.sequencer.image.ImageMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences image files to extract the characteristics of the image")

 .sequencingFrom("//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd)[*])/

jcr:content[@jcr:data]")

 .andOutputtingTo("/images/$1");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 28.

291

MP3 Sequencer
Another sequencer that is included in ModeShape is the modeshape-sequencer-mp3 sequencer

project. This sequencer processes MP3 audio files added to a repository and extracts the ID3

[http://www.id3.org/] metadata for the file, including the track's title, author, album name, year,

and comment. After extracting this information from the audio files, the sequencer then writes this

structure into the repository, where it can be further processed, analyzed, searched, navigated,

or referenced.

To use this sequencer, simply include the modeshape-sequencer-mp3 JAR and the

JAudioTagger [http://www.jthink.net/jaudiotagger/] library in your application and configure

the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/

JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("MP3 Sequencer")

 .usingClass("org.modeshape.sequencer.mp3.Mp3MetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences MP3 files to extract the ID3 tags of the audio file")

 .sequencingFrom("//(*.mp3[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/mp3s/$1");

http://www.id3.org/
http://www.id3.org/
http://www.jthink.net/jaudiotagger/
http://www.jthink.net/jaudiotagger/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

292

Chapter 29.

293

DDL File Sequencer
The DDL file sequencer included in ModeShape is capable of parsing the more important DDL

statements from SQL-92, Oracle, Derby, and PostgreSQL, and constructing a graph structure

containing a structured representation of these statements. The resulting graph structure is largely

the same for all dialects, though some dialects have non-standard additions to their grammar, and

thus require dialect-specific additions to the graph structure.

The sequencer is designed to behave as intelligently as possible with as little configuration. Thus,

the sequencer automatically determines the dialect used by a given DDL stream. This can be

tricky, of course, since most dialects are very similar and the distinguishing features of a dialect

may only be apparent in some of the statements.

To get around this, the sequencer uses a "best fit" algorithm: run the DDL stream through the

parser for each of the dialects, and determine which parser was able to successfully read the

greatest number of statements and tokens.

Note

It is possible to define which DDL dialects (or grammars) should be considered

during sequencing using the "grammars" property in the sequencer configuration.

Set the values of this property to the names of the grammars (e.g., "oracle",

"postgres", "standard", or "derby"), specified in the order they should be used.

To use a custom DDL parser not provided by ModeShape, simply provide

the fully-qualified class name of the DdlParser [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser] implementation class.

One very interesting capability of this sequencer is that, although only a subset of the (more

common) DDL statements are supported, the sequencer is still extremely functional since it does

still add all statements into the output graph, just without much detail other than just the statement

text and the position in the DDL file. Thus, if a DDL file contains statements the sequencer

understands and statements the sequencer does not understand, the graph will still contain all

statements, where those statements understood by the sequencer will have full detail. Since the

underlying parsers are able to operate upon a single statement, it is possible to go back later (after

the parsers have been enhanced to support additional DDL statements) and re-parse only those

incomplete statements in the graph.

At this time, the sequencer supports SQL-92 standard DDL as well as dialects from Oracle, Derby,

and PostgreSQL. It supports:

• Detailed parsing of CREATE SCHEMA, CREATE TABLE and ALTER TABLE.

• Partial parsing of DROP statements

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser

Chapter 29. DDL File Sequencer

294

• General parsing of remaining schema definition statements (i.e. CREATE VIEW, CREATE

DOMAIN, etc.

Note that the sequencer does not perform detailed parsing of SQL (i.e. SELECT, INSERT,

UPDATE, etc....) statements.

Caution

The DDL sequencer is being included as a Technology Preview. It is fully functional

for the dialects listed above, and may indeed work on certain DDL files that

use other dialects. But we would like to have feedback from users, test against

more DDL examples, support additional dialects, and support more kinds of

DDL statements. As such, the output format and node types associated with the

DefaultClassFileRecorder [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html] may change

in future versions.

29.1. Example

Sequencing results in graph nodes basically representing the BNF structure of each DDL

statement. Below is an example DDL schema definition statement containing table and view

definition statements.

CREATE SCHEMA hollywood

 CREATE TABLE films (title varchar(255), release date, producerName varchar(255))

 CREATE VIEW winners AS SELECT title, release FROM films WHERE producerName IS NOT

 NULL;

The resulting graph structure contains the raw statement expression, pertinent table, column and

key reference information and position of the statement in the text stream (e.g., line number,

column number and character index) so the statement can be tied back to the original DDL:

<nt:unstructured jcr:name="statements" ddl:parserId="POSTGRES">

 <nt:unstructured jcr:name="hollywood" jcr:mixinTypes="ddl:createSchemaStatement"

 ddl:startLineNumber="1"

 ddl:startColumnNumber="1"

 ddl:expression="CREATE SCHEMA hollywood"

 ddl:startCharIndex="0">

 <nt:unstructured jcr:name="films" jcr:mixinTypes="ddl:createTableStatement"

 ddl:startLineNumber="2"

 ddl:startColumnNumber="5"

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html

Example

295

 ddl:expression="CREATE TABLE films (title varchar(255), release date, producerName

 varchar(255))"

 ddl:startCharIndex="28"/>

 <nt:unstructured jcr:name="title" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="VARCHAR"

 ddl:datatypeLength="255"/>

 <nt:unstructured jcr:name="release" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="DATE"/>

 <nt:unstructured jcr:name="producerName" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="VARCHAR"

 ddl:datatypeLength="255"/>

 <nt:unstructured jcr:name="winners" jcr:mixinTypes="ddl:createViewStatement"

 ddl:startLineNumber="3"

 ddl:startColumnNumber="5"

 ddl:expression="CREATE VIEW winners AS SELECT title, release FROM films

 WHERE producerName IS NOT NULL;"

 ddl:queryExpression="SELECT title, release FROM films WHERE producerName

 IS NOT NULL"

 ddl:startCharIndex="113"/>

</nt:unstructured>

Note that all nodes are of type nt:unstructured while the type of statement is identified using

mixins. Also, each of the nodes representing a statement contain: a ddl:expression property

with the exact statement as it appeared in the original DDL stream; a ddl:startLineNumber

and ddl:startColumnNumber property defining the position in the original DDL stream of the first

character in the expression; and a ddl:startCharIndex property that defines the integral index

of the first character in the expression as found in the DDL stream. All of these properties make

sure the statement can be traced back to its location in the original DDL.

To use this sequencer, simply include the modeshape-sequencer-ddl JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 29. DDL File Sequencer

296

 .andOutputtingTo("/ddls/$1");

This will use all of the built-in grammars (e.g., "standard", "oracle", "postgres", and "derby"). To

specify a different order or subset of the grammars, use the setProperty(...) method. Here's

an example that just uses the standard grammar followed by the PostgreSQL grammar:

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .setProperty("grammar","standard","postgres")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/ddls/$1");

And, to use a custom implementation of DdlParser [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/sequencer/ddl/DdlParser], simply use the fully-qualified name of the

implementation class (which must have a no-arg constructor) as the name of the grammar:

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .setProperty("grammar","standard","postgres","org.example.ddl.MyCustomDdlParser")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/ddls/$1");

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/ddl/DdlParser

Chapter 30.

297

Text Sequencers
The text sequencers extract data from text streams. There are separate sequencers for character-

delimited sequencing and fixed width sequencing, but both treat the incoming text stream as a

series of rows (separated by line-terminators, as defined in BufferedReader [http://java.sun.com/

javase/6/docs/api/java/io/BufferedReader.html].readLine() with each row consisting of one or

more columns. As noted above, each text sequencer provides its own mechanism for splitting the

row into columns.

The AbstractTextSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/

sequencer/text/AbstractTextSequencer.html] class provides a number of JavaBean properties

that are common to both of the concrete text sequencer classes:

Table 30.1. AbstractTextSequencer

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html]

properties

Property Description

commentMarker Optional property that, if set, indicates that

any line beginning with exactly this string

should be treated as a comment and should

not be processed further. If this value is null,

then all lines will be sequenced. The default

value for this property is null.

maximumLinesToRead Optional property that, if set, limits the number

of lines that will be read during sequencing.

Additional lines will be ignored. If this value

is non-positive, all lines will be read and

sequenced. Comment lines are not counted

towards this total. The default value of this

property is -1 (indicating that all lines should

be read and sequenced).

rowFactoryClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the RowFactory [http://

docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/sequencer/text/RowFactory]

interface. This class must have a no-

argument, public constructor. If set, an

instance of this class will be created each

time that the sequencer sequences an input

stream and will be used to provide the output

structure of the graph. If this property is set

http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/RowFactory

Chapter 30. Text Sequencers

298

Property Description

to null, a default implementation will be used.

The default value of this property is null.

The default row factory creates one node in the output location for each row sequenced from the

source and adds each column with the row as a child node of the row node. The output graph

takes the following form (all nodes have primary type nt:unstructured:

 <graph root>

 + text:row[1]

 | + text:column[1] (jcr:mixinTypes = text:column, text:data = <column1 data>)

 | + ...

 | + text:column[n] (jcr:mixinTypes = text:column, text:data = <columnN data>)

 + ...

 + text:row[m]

 + text:column[1] (jcr:mixinTypes = text:column, text:data = <column1 data>)

 + ...

 + text:column[n] (jcr:mixinTypes = text:column, text:data = <columnN data>)

30.1. Delimited Text Sequencer

The DelimitedTextSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/text/DelimitedTextSequencer] splits rows into columns based on a regular

expression pattern. Although the default pattern is a comma, any regular expression can be

provided allowing for more sophisticated splitting patterns.

The DelimitedTextSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/text/DelimitedTextSequencer] class provides an additional JavaBean

property to override the default regular expression pattern:

Table 30.2. DelimitedTextSequencer

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer]

properties

Property Description

splitPattern Optional property that, if set, sets the regular

expression pattern that is used to split each

row into columns. This property may not be

set to null and defaults to ",".

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/DelimitedTextSequencer

Fixed Width Text Sequencer

299

To use this sequencer, simply include the modeshape-sequencer-text JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Delimited Text Sequencer")

 .usingClass("org.modeshape.sequencer.text.DelimitedTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences delimited files to extract values")

 .sequencingFrom("//(*.(txt)[*])/jcr:content[@jcr:data]")

 .setProperty("splitPattern", "|")

 .andOutputtingTo("/txt/$1");

30.2. Fixed Width Text Sequencer

The FixedWidthTextSequencer [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/sequencer/text/FixedWidthTextSequencer] splits rows into columns based on

predefined positions. The default setting is to have a single column per row. It also provides an

additional JavaBean property to override the default start positions for each column.

Table 30.3. FixedWidthTextSequencer

[http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer]

properties

Property Description

columnStartPositions Optional property that, if set, provides the

start position of each column after the first.

The start positions are concatenated into a

single, comma-delimited string. The default

value is the empty string (implying that each

row should be treated as a single column).

This property may not be set to null. There

is an implicit column start position of 0 that

never needs to be specified.

To use this sequencer, simply include the modeshape-sequencer-text JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.0.0.Final/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 30. Text Sequencers

300

JcrConfiguration config = ...

config.sequencer("Fixed Width Text Sequencer")

 .usingClass("org.modeshape.sequencer.text.FixedWidthTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences fixed width files to extract values")

 .sequencingFrom("//(*.(txt)[*])/jcr:content[@jcr:data]")

 .setProperty("columnStartPositions", "3,6,15")

 .andOutputtingTo("/txt/$1");

Part VI. MIME Type Detector Library
The ModeShape project provides a number of MIME type detectors out-of-the-box.

These are ready to be used by simply including them in the classpath and setting up

the ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] appropriately.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

Chapter 31.

303

Aperture MIME type detector
The ApertureMimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/mimetype/aperture/ApertureMimeTypeDetector.html] class is an implementation

of MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] that uses the Aperture [http://aperture.sourceforge.net/] open-

source library, which is a very capable utility for determining the MIME type for a wide range of

file types, using both the file name and the actual content.

To use, simply include the modeshape-mime-type-detector-aperture.jar file on the classpath

and create a new ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/ExecutionContext.html] subcontext with it:

MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] myDetector = new ApertureMimeTypeDetector();

ExecutionContext [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyDetector = context.with(myDetector);

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://aperture.sourceforge.net/
http://aperture.sourceforge.net/
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/ExecutionContext.html

304

Chapter 32.

305

Writing custom detectors
Creating a custom detector involves the following steps:

• Create a Maven 2 project for your detector;

• Implement the MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] interface with your own implementation,

and create unit tests to verify the functionality and expected behavior;

• Add a MimeTypeDetectorConfig [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/

modeshape/repository/mimetype/MimeTypeDetectorConfig.html] to the MimeType [http://

docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/

MimeType.html] class in your application as described earlier; and

• Deploy the JAR file with your implementation (as well as any dependencies), and make them

available to ModeShape in your application.

It's that simple.

The first step is to create the Maven 2 project that you can use to compile your code and build

the JARs. Maven 2 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 2, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

Note

ModeShape may provide in the future a Maven archetype for creating detector

projects. If you'd find this useful and would like to help create it, please join the

community.

Note

The modeshape-mimetype-detector-aperture project is a small, self-

contained detector implementation that that you can use to help

you get going. Starting with this project's source and modifying it

to suit your needs may be the easiest way to get started. See

the subversion repository: http://anonsvn.jboss.org/repos/modeshape/trunk/

sequencers/modeshape-mimetype-detector-aperture/ [http://anonsvn.jboss.org/

repos/modeshape/trunk/extensions/modeshape-mimetype-detector-aperture/]

You can create your Maven project any way you'd like. For examples,

see the Maven 2 documentation [http://maven.apache.org/guides/getting-started/

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-mimetype-detector-aperture/
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-mimetype-detector-aperture/
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-mimetype-detector-aperture/
http://anonsvn.jboss.org/repos/modeshape/trunk/extensions/modeshape-mimetype-detector-aperture/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 32. Writing custom de...

306

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-common</artifactId>

 <version>0.1</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>0.1</version>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

</dependency>

These are minimum dependencies required for compiling a detector. Of course, you'll have to add

other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed here:

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.4.3</version>

 <scope>test</scope>

</dependency>

<dependency>

http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

307

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.14</version>

 <scope>test</scope>

</dependency>

After you've created the project, simply implement the MimeTypeDetector [http://docs.jboss.org/

modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] interface.

And testing should be quite straightforward, MIME type detectors

don't require any other components. In your tests, simply instantiate

your MimeTypeDetector [http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] implementation, supply various combinations of names and/

or InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html]s, and verify the

output is what you expect.

To use in your application, create a MimeTypeDetectorConfig [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html] object with

the name, description, and class information for your

detector, and add to the MimeType [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html] class using the

addDetector(MimeTypeDetectorConfig [http://docs.jboss.org/modeshape/

2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html]

config) method. Then, just use the MimeType [http://docs.jboss.org/modeshape/2.0.0.Final/api/

org/modeshape/repository/mimetype/MimeType.html] class.

http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.0.0.Final/api/org/modeshape/repository/mimetype/MimeType.html

308

Chapter 33.

309

Looking to the future
ModeShape 2.0.0.Final provides a very capable JCR implementation with powerful and unique

features not matched by other implementations. This release moves ModeShape to the JCR 2.0

API, implements several new features, and includes fixes and improvements.

ModeShape now implements all of the required JCR 2.0 features:

• repository acquisition

• authentication

• reading/navigating

• query

• export

• node type discovery

• permissions and capability checking

and implements most of the optional JCR 2.0 features:

• writing

• import

• observation

• workspace management

• versioning

• locking

• node type management

• same-name siblings

• orderable child nodes

ModeShape supports the JCR-SQL2 and JQOM query languages defined in JSR-283 [http:/

/www.jcp.org/en/jsr/detail?id=283], plus the XPath and JCR-SQL languages defined in JSR-

170 [http://www.jcp.org/en/jsr/detail?id=170] but deprecated in JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283].

At this point, ModeShape passes virtually all of the JCR Technology Compatibility Kit (TCK) tests,

except for a few known issues with ModeShape as well as bugs in the TCK tests. As soon as

these are fixed, we'll start the process of attaining JCR 2.0 certification for ModeShape.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 33. Looking to the future

310

What's next for ModeShape? We also plan to add support for clustering multiple ModeShape

engines spread across multiple JVM processes. And each expect to introduce more connectors

and sequencers to our library. Other items on our roadmap [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel] include a JDBC

driver for ModeShape, a web user interface, Seam integration, and integration with even more

kinds of information systems and repositories.

We're always looking for suggestions and contributors. If you'd like to get involved on ModeShape,

the first step is joining the mailing lists [http://www.modeshape.org/lists.html] or hopping into

our chat room on IRC (at irc.freenode.net#jbossmodeshape). You can also download the

code [http://www.modeshape.org/subversion.html] and get it building, and start looking for

simple issues or bugs in our JIRA issue management system [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel].

But if nothing else, please contact us and let us know how you're using ModeShape and what we

can do to make it even better.

And, if you haven't already, check out our Getting Started [http://docs.jboss.org/modeshape/

2.0.0.Final/manuals/gettingstarted/html/index.html] guide, which has examples that you can build

and run to see ModeShape in action.

http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/subversion.html
http://www.modeshape.org/subversion.html
http://www.modeshape.org/subversion.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.0.0.Final/manuals/gettingstarted/html/index.html

	ModeShape
	Table of Contents
	Target audience
	Chapter 1. Introduction to ModeShape
	1.1. Use cases for ModeShape
	1.2. What is metadata?
	1.3. What is JCR?
	1.4. Project roadmap
	1.5. ModeShape modules
	1.6. What's new?

	Part I. Developers and Contributors
	Chapter 2. Developer tools
	2.1. Development methodology
	2.2. JDK
	2.3. JIRA
	2.4. Subversion
	2.5. Git
	2.6. Maven
	2.6.1. Building

	2.7. Continuous integration with Hudson
	2.8. Eclipse IDE
	2.9. Releasing
	2.9.1. Building all artifacts and assemblies
	2.9.2. Determine the version to be released
	2.9.3. Release dry run
	2.9.4. Prepare for the release
	2.9.5. Perform the release

	2.10. Summary

	Chapter 3. Testing
	3.1. Unit tests
	3.2. Integration tests
	3.3. Writing tests
	3.4. Technology Compatibility Kit (TCK) tests

	Part II. ModeShape Core
	Chapter 4. Execution Context
	4.1. Security
	4.1.1. JAAS
	4.1.2. Web application security

	4.2. Namespace Registry
	4.3. Class Loaders
	4.4. MIME Type Detectors
	4.5. Property factory and value factories
	4.6. Summary

	Chapter 5. Graph Model
	5.1. Names
	5.2. Paths
	5.3. Properties
	5.4. Values and Value Factories
	5.5. Readable, TextEncoder, and TextDecoder
	5.6. Locations
	5.7. Graph API
	5.7.1. Using Workspaces
	5.7.2. Working with Nodes

	5.8. Requests
	5.9. Request processors
	5.10. Observation
	5.10.1. Observable
	5.10.2. Observers
	5.10.3. Changes

	5.11. Summary

	Chapter 6. Connector Framework
	6.1. Connectors
	6.2. Out-of-the-box connectors
	6.3. Writing custom connectors
	6.3.1. Creating the Maven 2 project
	6.3.2. Implementing a RepositorySource
	6.3.2.1. Workspaces
	6.3.2.2. Broadcasting events
	6.3.2.3. Cache policy
	6.3.2.4. Leveraging JNDI
	6.3.2.5. Capabilities
	6.3.2.6. Security and authentication

	6.3.3. Implementing a RepositoryConnection
	6.3.4. Testing custom connectors

	6.4. Summary

	Chapter 7. Sequencing framework
	7.1. Sequencers
	7.2. Stream Sequencers
	7.3. Path Expressions
	7.4. Out-of-the-box Sequencers
	7.5. Creating Custom Sequencers
	7.5.1. Creating the Maven 2 project
	7.5.2. Testing custom sequencers

	7.6. Summary

	Part III. ModeShape JCR
	Chapter 8. Configuration
	8.1. Configuring ModeShape
	8.1.1. Loading from a Configuration File
	8.1.2. Programmatic Configuration
	8.1.2.1. Repository Sources
	8.1.2.2. Repositories
	8.1.2.3. Sequencers
	8.1.2.4. MIME Type Detectors
	8.1.2.5. Storing Configuration

	8.1.3. Loading from a Configuration Repository

	8.2. Deploying ModeShape via JNDI
	8.2.1. Example application using JCR and JNDI
	8.2.2. Configuring JCR and JNDI

	8.3. Setting the Classpath
	8.3.1. Building against ModeShape via Maven
	8.3.1.1. Using the JBoss Maven repository
	8.3.1.2. Add dependency to ModeShape

	8.3.2. Add dependencies for logging
	8.3.3. Building against ModeShape via JARs

	8.4. What's next

	Chapter 9. Using the JCR API with ModeShape
	9.1. What's new in JCR 2.0?
	9.1.1. Connecting
	9.1.2. Identifiers
	9.1.3. Binary Values
	9.1.4. Node Type Management
	9.1.5. Queries
	9.1.6. Workspace Management
	9.1.7. Observation
	9.1.8. Locking
	9.1.9. Versioning
	9.1.10. Importing and Exporting
	9.1.11. Orderable Child Nodes
	9.1.12. Paths
	9.1.13. getItem(String)

	9.2. Obtaining a JCR Repository
	9.2.1. URL formats
	9.2.2. Accessing Repositories from JNDI
	9.2.3. Cleaning Up after JcrRepositoryFactory

	9.3. ModeShape's JcrEngine
	9.4. Creating JCR Sessions
	9.4.1. Using JAAS
	9.4.2. Using Custom Security
	9.4.3. Using HTTP Servlet security
	9.4.4. Guest (Anonymous) User Access

	9.5. JCR Specification Support
	9.5.1. Required features
	9.5.2. Optional features
	9.5.3. TCK Compatibility features
	9.5.4. JCR Security
	9.5.5. Built-In Node Types
	9.5.6. Custom Node Type Registration

	9.6. Summary

	Chapter 10. Querying and Searching using JCR
	10.1. JCR Query API
	10.2. JCR XPath Query Language
	10.2.1. Column Specifiers
	10.2.2. Type Constraints
	10.2.3. Property Constraints
	10.2.4. Path Constraints
	10.2.5. Ordering Specifiers
	10.2.6. Miscellaneous

	10.3. JCR-SQL Query Language
	10.3.1. Queries

	10.4. JCR-SQL2 Query Language
	10.4.1. Queries
	10.4.2. Sources
	10.4.3. Joins
	10.4.4. Equi-Join Conditions
	10.4.5. Same-Node Join Conditions
	10.4.6. Child-Node Join Conditions
	10.4.7. Descendant-Node Join Conditions
	10.4.8. Constraints
	10.4.9. And Constraints
	10.4.10. Or Constraints
	10.4.11. Not Constraints
	10.4.12. Comparison Constraints
	10.4.13. Between Constraints
	10.4.14. Property Existence Constraints
	10.4.15. Set Constraints
	10.4.16. Full-text Search Constraints
	10.4.17. Same-Node Constraint
	10.4.18. Child-Node Constraints
	10.4.19. Descendant-Node Constraints
	10.4.20. Paths and Names
	10.4.21. Static Operands
	10.4.22. Bind Variables
	10.4.23. Dynamic Operands
	10.4.24. Ordering
	10.4.25. Columns
	10.4.26. Limit and Offset

	10.5. Full-Text Search Language
	10.5.1. Full-text Search Language

	10.6. JCR Query Object Model (JCR-QOM) API

	Chapter 11. Accessing ModeShape Remotely
	11.1. The ModeShape WebDAV Server
	11.1.1. Configuring the ModeShape WebDAV Server
	11.1.2. Deploying the ModeShape WebDAV Server

	11.2. The ModeShape REST Server
	11.2.1. Supported Resources and Methods
	11.2.1.1. Binary properties

	11.2.2. Configuring the ModeShape REST Server
	11.2.3. Deploying the ModeShape REST Server
	11.2.4. ModeShape REST Client API

	11.3. Repository Providers
	11.4. Summary

	Part IV. Connector Library
	Chapter 12. In-Memory Connector
	Chapter 13. File System Connector
	Chapter 14. JPA Connector
	14.1. Simple Model

	Chapter 15. JCR Connector
	Chapter 16. Federation Connector
	16.1. Projections
	16.2. Multiple Projections
	16.3. Processing flow
	16.4. Update operations
	16.5. Configuration
	16.6. Repository Source properties

	Chapter 17. Subversion Connector
	Chapter 18. JBoss Cache Connector
	Chapter 19. Infinispan Connector
	19.1. Considerations for Distributed Sources

	Chapter 20. JDBC Metadata Connector

	Part V. Sequencer Library
	Chapter 21. Compact Node Type (CND) Sequencer
	Chapter 22. XML Document Sequencer
	Chapter 23. ZIP File Sequencer
	Chapter 24. Microsoft Office Document Sequencer
	Chapter 25. Java Source File Sequencer
	Chapter 26. Java Class File Sequencer
	Chapter 27. Image Sequencer
	Chapter 28. MP3 Sequencer
	Chapter 29. DDL File Sequencer
	29.1. Example

	Chapter 30. Text Sequencers
	30.1. Delimited Text Sequencer
	30.2. Fixed Width Text Sequencer

	Part VI. MIME Type Detector Library
	Chapter 31. Aperture MIME type detector
	Chapter 32. Writing custom detectors

	Chapter 33. Looking to the future

