
ModeShape

Reference Guide
2.6.0.Beta2

by Randall M. Hauch and Brian Carothers

iii

Target audience .. ix

1. Introduction to ModeShape ... 1

1.1. Use cases for ModeShape .. 1

1.2. What is metadata? .. 2

1.3. What is JCR? ... 3

1.4. Project roadmap ... 5

1.5. ModeShape modules .. 5

1.6. Compiling and building .. 12

1.7. What's new? ... 12

I. ModeShape Core ... 13

2. Execution Context ... 15

2.1. Security .. 17

2.1.1. JAAS ... 19

2.1.2. Web application security ... 20

2.2. Namespace Registry ... 21

2.3. Class Loaders .. 24

2.4. MIME Type Detectors ... 26

2.5. Text Extractors ... 28

2.6. Property factory and value factories ... 31

2.7. Summary .. 32

3. Graph Model .. 33

3.1. Names ... 33

3.2. Paths ... 35

3.3. Properties ... 38

3.4. Values and Value Factories ... 41

3.5. Readable, TextEncoder, and TextDecoder .. 50

3.6. Locations .. 54

3.7. Graph API .. 56

3.7.1. Using Workspaces ... 57

3.7.2. Working with Nodes ... 59

3.8. Requests .. 61

3.8.1. Basic Requests .. 62

3.8.2. Change Requests .. 64

3.8.3. Workspace Read Requests ... 67

3.8.4. Workspace Change Requests ... 67

3.8.5. Search Requests .. 67

3.8.6. Function Requests ... 68

3.9. Request processors .. 68

3.10. Observation .. 69

3.10.1. Observable .. 69

3.10.2. Observers .. 70

3.10.3. Changes .. 70

3.11. Summary .. 72

4. Connector Framework ... 73

ModeShape

iv

4.1. Connectors ... 73

4.2. Out-of-the-box connectors ... 77

4.3. Writing custom connectors ... 77

4.3.1. Creating the Maven 3 project .. 78

4.3.2. Implementing a RepositorySource ... 81

4.3.3. Implementing a RepositoryConnection ... 84

4.3.4. Testing custom connectors ... 89

4.4. Summary .. 89

5. Sequencing framework .. 91

5.1. Sequencers .. 91

5.2. Stream Sequencers .. 91

5.3. Path Expressions .. 94

5.4. Out-of-the-box Sequencers .. 97

5.5. Creating Custom Sequencers .. 97

5.5.1. Creating the Maven 3 project .. 97

5.5.2. Testing custom sequencers ... 103

5.6. Summary .. 104

II. ModeShape JCR ... 105

6. Configuration ... 107

6.1. Configuring ModeShape .. 107

6.1.1. Configuration Files .. 107

6.1.2. Programmatic Configuration .. 109

6.1.3. Loading from a Configuration Repository .. 113

6.2. JCR Repository options ... 115

6.3. Repository system content ... 126

6.4. Query index directory .. 129

6.5. Authentication and Authorization .. 130

6.5.1. Built-in Providers .. 132

6.5.2. Custom Providers ... 134

6.6. Clustering ... 137

6.6.1. Enabling Clustering in ModeShape .. 138

6.6.2. JGroups configuration ... 140

6.7. Using ModeShape in Web Applications .. 143

6.7.1. Deploying ModeShape to JBoss AS .. 143

6.7.2. Deploying ModeShape to Tomcat .. 147

6.8. Setting the Classpath .. 150

6.8.1. Building against ModeShape via Maven ... 150

6.8.2. Add dependencies for logging ... 153

6.8.3. Building against ModeShape via JARs ... 154

6.9. What's next ... 155

7. Using the JCR API with ModeShape .. 157

7.1. What's new in JCR 2.0? .. 157

7.1.1. Connecting ... 157

7.1.2. Identifiers ... 158

v

7.1.3. Binary Values ... 158

7.1.4. Node Type Management ... 159

7.1.5. Queries .. 160

7.1.6. Workspace Management .. 160

7.1.7. Observation .. 160

7.1.8. Locking .. 161

7.1.9. Versioning .. 161

7.1.10. Importing and Exporting .. 162

7.1.11. Shareable Nodes .. 162

7.1.12. Orderable Child Nodes ... 162

7.1.13. Paths ... 162

7.1.14. getItem(String) .. 163

7.2. Obtaining a JCR Repository .. 163

7.2.1. Configuration File URLs .. 164

7.2.2. Using JNDI URLs ... 166

7.2.3. Cleaning Up after JcrRepositoryFactory ... 167

7.3. ModeShape's JcrEngine .. 168

7.4. Creating JCR Sessions ... 170

7.4.1. Using JAAS ... 170

7.4.2. Using HTTP Servlet security ... 173

7.4.3. Guest (Anonymous) User Access .. 173

7.4.4. Using Custom Security ... 175

7.5. JCR Specification Support ... 175

7.5.1. Required features ... 175

7.5.2. Optional features .. 176

7.5.3. TCK Compatibility features .. 176

7.5.4. JCR Security .. 177

7.5.5. Built-In Node Types .. 179

7.5.6. Custom Node Type Registration .. 179

7.6. Summary .. 183

8. Querying and Searching using JCR ... 185

8.1. JCR Query API ... 185

8.2. JCR XPath Query Language .. 187

8.2.1. Column Specifiers .. 187

8.2.2. Type Constraints .. 188

8.2.3. Property Constraints ... 189

8.2.4. Path Constraints ... 190

8.2.5. Ordering Specifiers ... 192

8.2.6. Miscellaneous .. 193

8.3. JCR-SQL Query Language .. 193

8.3.1. Queries .. 195

8.4. JCR-SQL2 Query Language .. 197

8.4.1. Queries .. 199

8.4.2. Sources ... 199

ModeShape

vi

8.4.3. Joins .. 199

8.4.4. Equi-Join Conditions ... 200

8.4.5. Same-Node Join Conditions .. 200

8.4.6. Child-Node Join Conditions ... 200

8.4.7. Descendant-Node Join Conditions ... 201

8.4.8. Constraints ... 201

8.4.9. And Constraints .. 201

8.4.10. Or Constraints .. 201

8.4.11. Not Constraints .. 202

8.4.12. Comparison Constraints .. 202

8.4.13. Between Constraints ... 202

8.4.14. Property Existence Constraints .. 202

8.4.15. Set Constraints ... 203

8.4.16. Full-text Search Constraints .. 203

8.4.17. Same-Node Constraint .. 204

8.4.18. Child-Node Constraints ... 204

8.4.19. Descendant-Node Constraints ... 204

8.4.20. Paths and Names ... 204

8.4.21. Static Operands .. 205

8.4.22. Bind Variables .. 205

8.4.23. Subqueries ... 206

8.4.24. Dynamic Operands ... 206

8.4.25. Ordering ... 207

8.4.26. Columns .. 207

8.4.27. Limit and Offset .. 208

8.4.28. Pseudo-columns ... 208

8.4.29. Example JCR-SQL2 queries .. 210

8.5. Full-Text Search Language .. 214

8.5.1. Full-text Search Language .. 215

8.6. JCR Query Object Model (JCR-QOM) API .. 216

9. Accessing ModeShape Remotely ... 219

9.1. The ModeShape WebDAV Server .. 219

9.1.1. Configuring the ModeShape WebDAV Server 219

9.1.2. Deploying the ModeShape WebDAV Server 227

9.2. The ModeShape REST Server ... 229

9.2.1. Supported Resources and Methods ... 229

9.2.2. Configuring the ModeShape REST Server 238

9.2.3. Deploying the ModeShape REST Server .. 241

9.2.4. ModeShape REST Client API .. 244

9.3. Repository Providers ... 245

9.4. Summary .. 247

III. Connector Library ... 249

10. In-Memory Connector ... 251

11. File System Connector ... 255

vii

12. JPA Connector ... 261

12.1. Simple Model .. 267

13. JCR Connector ... 269

14. Federation Connector .. 273

14.1. Projections .. 273

14.2. Multiple Projections ... 274

14.3. Processing flow ... 279

14.4. Update operations ... 281

14.5. Configuration ... 281

14.6. Repository Source properties ... 282

15. Subversion Connector ... 285

16. JBoss Cache Connector .. 289

17. Infinispan Connector .. 293

17.1. Considerations for Distributed Sources ... 297

18. Disk Connector .. 299

19. JDBC Metadata Connector ... 303

IV. Sequencer Library .. 309

20. Compact Node Type (CND) Sequencer .. 311

20.1. Example ... 311

21. XML Document Sequencer ... 313

21.1. Example ... 313

22. XML Schema Document (XSD) Sequencer ... 317

22.1. Example ... 317

22.2. Node Types .. 324

22.3. Configuration ... 331

23. Web Service Definition Language (WSDL) 1.1 Sequencer 333

23.1. Example ... 333

23.2. Node Types .. 340

23.3. Configuration ... 346

24. ZIP File Sequencer ... 349

24.1. Example ... 349

25. Microsoft Office Document Sequencer .. 351

25.1. Example ... 351

26. Java Source File Sequencer .. 355

27. Java Class File Sequencer ... 361

28. Image Sequencer ... 367

29. MP3 Sequencer .. 369

29.1. Example ... 369

30. DDL File Sequencer ... 371

30.1. Example ... 372

31. Text Sequencers .. 375

31.1. Delimited Text Sequencer .. 376

31.2. Fixed Width Text Sequencer .. 377

32. Teiid Relational Model Sequencer .. 379

ModeShape

viii

32.1. UUIDs ... 380

32.2. Node Types .. 381

32.2.1. XMI Namespace ... 381

32.2.2. Core Namespace .. 382

32.2.3. Relational Namespace .. 383

32.2.4. JDBC Source Namespace ... 387

32.2.5. Transformation Namespace ... 388

32.3. Default values ... 389

32.4. Annotations ... 389

32.5. Tags ... 389

32.6. Transformation .. 390

32.7. Configuration ... 390

32.8. Example ... 391

33. Teiid VDB Sequencer ... 399

33.1. UUIDs and References .. 399

33.2. Node Types .. 399

33.2.1. VDB Namespace .. 400

33.3. Configuration ... 401

33.4. Example ... 402

V. MIME Type Detector Library .. 423

34. Aperture MIME type detector ... 425

35. Writing custom detectors ... 427

VI. Text Extractor Library ... 431

36. Teiid text extractor ... 433

37. Tika text extractor .. 435

38. Writing custom text extractors ... 441

VII. Administration and Monitoring .. 445

39. ModeShape Administration Console .. 447

39.1. What can be managed and/or monitored? ... 447

39.2. Configuration ... 448

39.3. Metrics .. 448

39.4. Control (Operations) .. 448

40. Looking to the future ... 449

ix

Target audience

This reference guide is for application developers that want a better understanding of how

ModeShape works, how to take advantage of its advanced features, and how to extend the

functionality. This document is also very valuable for community developers because it covers the

design and implementation of most of the components that make up ModeShape.

For a higher-level introduction to ModeShape, see the Getting Started [http://docs.jboss.org/

modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html] document.

If you have any questions or comments, please feel free to use ModeShape's user

mailing list [mailto:modeshape-users@lists.jboss.org] or user forums [http://community.jboss.org/

community/modeshape]. We welcome all who want to get involved [http://www.modeshape.org/

community.html]. If there's something in particular you're interested in, talk with the community -

there may be others interested in the same thing.

http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://www.modeshape.org/community.html
http://www.modeshape.org/community.html
http://www.modeshape.org/community.html

x

Chapter 1.

1

Introduction to ModeShape
ModeShape is a JCR [http://www.jcp.org/en/jsr/detail?id=283] implementation that provides

access to content stored in many different kinds of systems. A ModeShape repository isn't yet

another silo of isolated information, but rather it's a JCR view of the information you already have

in your environment: files systems, databases, other repositories, services, applications, etc.

To your applications, ModeShape looks and behaves like a regular JCR repository. Using the

standard JCR 2.0 API (a.k.a. JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]), applications

can search, navigate, version, and listen for changes in the content. But under the covers,

ModeShape gets its content by federating multiple back-end systems (like databases, services,

other repositories, etc.), allowing those systems to continue "owning" the information while

ensuring the unified repository stays up-to-date and in sync.

Of course when you start providing a unified view of all this information, you start recognizing

the need to store more information, including metadata about and relationships between the

existing content. ModeShape lets you do this, too. And ModeShape even tries to help you

discover more about the information you already have, especially the information wrapped up

in the kinds of files often found in enterprise systems: service definitions, policy files, images,

media, documents, presentations, application components, reusable libraries, configuration files,

application installations, databases schemas, management scripts, and so on. As files are loaded

into the repository, you can make ModeShape automatically sequence these files to extract from

their content meaningful information that can be stored in the repository, where it can then be

searched, accessed, and analyzed using the JCR API.

This document goes into detail about how ModeShape works to provide these capabilities. It also

talks in detail about many of the parts within ModeShape - what they do, how they work, and how

you can extend or customize the behavior. In particular, you'll learn about ModeShape connectors

and sequencers, how you can use the implementations included in ModeShape, and how you can

write your own to tailor ModeShape for your needs.

So whether you are a developer on the project, or you're trying to learn the intricate details of how

ModeShape works, this document hopefully serves a good reference for developers on the project.

1.1. Use cases for ModeShape

ModeShape repositories can be used in a variety of applications. One of the more obvious

use cases for a metadata repository is in provisioning and management, where it's critical

to understand and keep track of the metadata for models, database, services, components,

applications, clusters, machines, and other systems used in an enterprise. Governance takes that

a step farther, by also tracking the policies and expectations against which performance of the

systems described by the repository can be verified. In these cases, a repository is an excellent

mechanism for managing this complex and highly-varied information.

But these large and complex use cases aren't the only way to use a ModeShape repository.

You could use an embedded ModeShape repository to manage configuration information for an

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 1. Introduction to Mo...

2

application, or you could use ModeShape just to provide a JCR interface on top of a few non-

JCR systems.

The point is that ModeShape can be used in many different ways, ranging from the very tiny

embedded repository to a large and distributed enterprise-grade repository. The choice is yours.

1.2. What is metadata?

Before we dive into more detail about ModeShape and metadata repositories, it's probably useful

to explain what we mean by the term "metadata." Simply put, metadata is the information you need

to manage something. For example, it's the information needed to configure an operating system,

or the description of the information in an LDAP tree, or the topology of your network. It's the

configuration of an application server or enterprise service bus. It's the steps involved in validating

an application before it can go into production. It's the description of your database schemas, or of

your services, or of the messages going in and coming out of a service. ModeShape is designed

to be a repository for all this (and more).

There are a couple of important things to understand about metadata. First, many systems

manage (and frequently change) their own metadata and information. Databases, applications, file

systems, source code management systems, services, content management systems, and even

other repositories are just a few types of systems that do this. We can't pull the information out and

duplicate it, because then we risk having multiple copies that are out-of-sync. Ideally, we could

access all of this information through a homogenous API that also provides navigation, caching,

versioning, search, and notification of changes. That would make our lives significantly easier.

What we want is federation. We can connect to these back-end systems to dynamically access

the content and project it into a single, unified repository. We can cache it for faster access, as

long as the cache can be invalidated based upon time or event. But we also need to maintain

a clear picture of where all the bits come from, so users can be sure they're looking at the right

information. And we need to make it as easy as possible to write new connectors, since there are

a lot of systems out there that have information we want to federate.

The second important characteristic of the metadata is that a lot of it is represented as files,

and there are a lot of different file formats. These include source code, configuration files, web

pages, database schemas, XML schemas, service definitions, policies, documents, spreadsheets,

presentations, images, audio files, workflow definitions, business rules, and on and on. And

logically if files contain metadata, we want to add those files to our metadata repository. The

problem is, all that metadata is tied up as blobs in the repository. Ideally, our repository would

automatically extract from those files the content that's most useful to us, and place that content

inside the repository where it can be much more easily used, searched, related, and analyzed.

ModeShape does exactly this via a process we call sequencing, and it's an important part of a

metadata repository.

The third important characteristic of metadata is that it rarely stays the same. Different consumers

of the information need to see different views of it. Metadata about two similar systems is not

always the same. The metadata often needs to be tagged or annotated with additional information.

What is JCR?

3

And the things being described often change over time, meaning the metadata has to change,

too. As a result, the way in which we store and manage the metadata has to be flexible and able

to adapt to our ever-changing needs, and the object model we use to interact with the repository

must accommodate these needs. The graph-based nature of the JCR API provides this flexibility

while also giving us the ability to constrain information when it needs to be constrained.

1.3. What is JCR?

There are a lot of choices for how applications can store information persistently so that it can

be accessed at a later time and by other processes. The challenge developers face is how to

use an approach that most closely matches the needs of their application. This choice becomes

more important as developers choose to focus their efforts on application-specific logic, delegating

much of the responsibilities for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The Java language

makes working with files relatively easy, but Java really doesn't provide many bells and whistles.

So using files is an easy choice when the information is either not complicated (for example

property files), or when users may need to read or change the information outside of the application

(for example log files or configuration files). But using files to persist information becomes more

difficult as the information becomes more complex, as the volume of it increases, or if it needs to be

accessed by multiple processes. For these situations, other techniques often have more benefits.

Another technique built into the Java language is Java serialization , which is capable of persisting

the state of an object graph so that it can be read back in at a later time. However, Java serialization

can quickly become tricky if the classes are changed, and so it's beneficial usually when the

information is persisted for a very short period of time. For example, serialization is sometimes

used to send an object graph from one process to another. Using serialization for longer-term

storage of information is far less useful.

One of the more popular and widely-used persistence technologies is the relational database.

Relational database management systems have been around for decades and are very capable.

The Java Database Connectivity (JDBC) API provides a standard interface for connecting to and

interacting with relational databases. However, it is a low-level API that requires a lot of code to use

correctly, and it still doesn't abstract away the DBMS-specific SQL grammar. Also, working with

relational data in an object-oriented language can feel somewhat unnatural, so many developers

map this data to classes that fit much more cleanly into their application. The problem is that

manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC code.

Object-relational mapping libraries automate the creation of this mapping layer and result in

far less code that is much more maintainable with performance that is often as good as (if

not better than) handwritten JDBC code. The Java Persistence API (JPA) [http://java.sun.com/

developer/technicalArticles/J2EE/jpa/] provide a standard mechanism for defining the mappings

(through annotations) and working with these entity objects. Several commercial and open-

source libraries implement JPA, and some even offer additional capabilities and features that go

beyond JPA. For example, Hibernate [http://www.hibernate.org] is one of the most feature-rich

JPA implementations and offers object caching, statement caching, extra association mappings,

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction to Mo...

4

and other features that help to improve performance and usefulness. Plus, Hibernate is open-

source (with support offered by JBoss [http://www.jboss.com]).

While relational databases and JPA are solutions that work well for many applications, they are

more limited in cases when the information structure is highly flexible, the structure is not known a

priori, or that structure is subject to frequent change and customization. In these situations, content

repositories may offer a better choice for persistence. Content repositories offer the storage

capabilities of relational databases with the flexibility offered by other systems, such as using

files. Content repositories also typically provide other capabilities as well, including hierarchical

organization, versioning, indexing, search, access control, transactions, and observation. Content

repositories are often used by content management systems (CMS), document management

systems (DMS), and other applications that manage electronic files (e.g., documents, images,

multi-media, web content, etc.) and metadata associated with them (e.g., author, date, status,

security information, etc.). The Content Repository for Java technology API [http://www.jcp.org/en/

jsr/detail?id=283] provides a standard Java API for working with content repositories. Abbreviated

"JCR", this API was developed through the Java Community Process originally under JSR-170

[http://www.jcp.org/en/jsr/detail?id=170] (as "JCR 1.0"), but has since been revised and improved

as "JCR 2.0" under JSR-283 [http://www.jcp.org/en/jsr/detail?id=283].

The JCR 2.0 API provides a number of information services that are needed by many applications,

including: read and write access to information; the ability to structure information in a hierarchical

and flexible manner that can adapt and evolve over time; ability to work with structured, semi-

structured, and unstructured content; ability to (transparently) handle large strings; notifications of

changes in the information; search and query; versioning of information; access control; integrity

constraints; participation within distributed transactions; explicit locking of content; and of course

persistence.

ModeShape implements the JCR 2.0 API, including many of the optional features.

Figure 1.1. JCR API features

http://www.jboss.com
http://www.jboss.com
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Project roadmap

5

1.4. Project roadmap

The ModeShape open source project uses its JIRA instance [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] to track issues for

tasks, requirements, bugs, and other activities. The roadmap report [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel] shows

how each of these issues are targeted to the upcoming

releases, while the change log report [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel] shows all of the

issues that were fixed in each of the past releases.

By convention, the ModeShape project team periodically review JIRA issues that aren't targeted

to a release, and then schedule them based upon current workload, severity, and the roadmap.

And if we review an issue and don't know how to target it, we target it to the Future Releases

[http://jira.jboss.org/browse/MODE/fixforversion/12314367] bucket.

At the start of a release, the project team reviews the roadmap, identifies the goals for the release,

and targets (or retargets) the issues appropriately.

1.5. ModeShape modules

ModeShape consists of quite a few separate modules. Just a few of these make up the essential

core components of the system:

• modeshape-jcr contains ModeShape's implementation of the JCR 2.0 API. If you're using

ModeShape as a JCR repository, this is the top-level dependency that you'll want to

use. The module defines all required dependencies, except for the repository connector(s)

and any sequencer implementations needed by your configuration. As we'll see later

on, using ModeShape as a JCR repository is as easy as defining a configuration,

obtaining the JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] object for your repository using the RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html], and then using the standard

JCR API. This module also uses the JCR unit tests from the reference implementation to verify

the behavior of the ModeShape implementation.

• modeshape-jcr-api defines a number of interfaces that extend several of the JCR

API interfaces. For example, this module defines a Repositories [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html] interface that defines a

way to look up javax.jcr.Repository instances by name, and that is implemented by the

ModeShape JcrEngine. It also defines several new interfaces that extend the JCR 2.0 API's

Query Object Model with additional behavior, including more criteria options (such as BETWEEN,

the mode:depth and jcr:path pseudo-columns, and the REFERENCE function), formal LIMIT

and OFFSET clauses, and a set query operators for unions, intersects, and difference queries.

This module is very small, only depends upon the JCR API, and was designed so that client

applications can depend only upon this module without having to depend on the modeshape-

jcr interfaces or its dependencies. For example, this module defines a Repositories [http://

http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:changelog-panel
http://jira.jboss.org/browse/MODE/fixforversion/12314367
http://jira.jboss.org/browse/MODE/fixforversion/12314367
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html

Chapter 1. Introduction to Mo...

6

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html] interface

that defines a way to look up javax.jcr.Repository instances by name, and that is

implemented by the ModeShape JcrEngine, allowing client applications to dependency on this

module to look up repositories by name without having to depend on the

Several other modules are also essential, but for the most part are hidden to client applications

as they provide components used within the JCR implementation:

• modeshape-repository provides the core ModeShape graph engine and services for

managing repository connections, sequencers, MIME type detectors, and observation. If you're

using ModeShape repositories via our graph API rather than JCR, then this is where you'd start.

• modeshape-cnd provides a self-contained utility for parsing CND (Compact Node Definition)

files and transforming the node definitions into a graph notation compatible with ModeShape's

JCR implementation.

• modeshape-graph defines the Application Programming Interface (API) for ModeShape's low-

level graph model, including a fluent-style API for working with graph content. This module

also defines the APIs necessary to implement custom connectors, sequencers, and MIME type

detectors.

• modeshape-common is a small low-level library of common utilities and frameworks, including

logging, progress monitoring, internationalization/localization, text translators, component

management, and class loader factories.

Most of the ModeShape modules, however, are optional extensions. Many of these depend

on third party libraries, so you will probably want to include only those modules that provide

functionality you'll use in your repository. These modules are located in the source under the

extensions/ directory.

• modeshape-clustering contains ModeShape's clustering components and are needed only

when two or more ModeShape engines are to be clustered together (so listeners in one session

get notifications made from within any of the engines). ModeShape clustering uses the powerful,

flexible and mature JGroups [http://jgroups.org] reliable multicast communication library. Simply

enable clustering in ModeShape's configuration, include this library, and start your cluster.

Engines can be dynamically added and removed from the cluster.

• modeshape-connector-infinispan is the preferred ModeShape repository connector for

persistently storing content. Infinispan [http://infinispan.org] is an extremely scalable, highly

available data grid platform that distributes the data across the nodes in the grid. This connector

makes it possible for repository content to be stored in a very efficient, fast, highly-concurrent

(essentially lock- and synchronization-free), and reliable manner, even when the content size

grows to massive sizes. This connector is capable of storing any kind of content, and dictates

how the content is stored on the data grid. Therefore, this connector cannot be used to access

the content of existing data grids created by/for other applications.

• modeshape-connector-jbosscache is a ModeShape repository connector that stores content

within a JBoss Cache [http://www.jboss.org/jbosscache/] instance. JBoss Cache is a powerful

cache implementation that can serve as a distributed cache and that can persist information.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/Repositories.html
http://jgroups.org
http://jgroups.org
http://infinispan.org
http://infinispan.org
http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/

ModeShape modules

7

The cache instance can be found via JNDI or created and managed by the connector. This

connector is capable of storing any kind of content, and dictates how the content is stored in

the cache. Therefore, this connector cannot be used to access the content of existing cache

instances created by/for other applications.

• modeshape-connector-jdbc-metadata is a ModeShape repository connector that provides

read-only access to metadata and schema information from relational databases through a

JDBC connection. This connector provides an optional and configurable caching facility to

prevent frequent requests to the database.

• modeshape-connector-store-jpa is a ModeShape repository connector that stores content

in a JDBC database, using the Java Persistence API (JPA) and the very highly-regarded and

widely-used Hibernate [http://www.hibernate.org] implementation. This connector is capable of

storing any kind of content, and dictates the schema in which it stores the content. Therefore,

this connector cannot be used to access the data in existing created by/for other applications.

• modeshape-connector-jcr is a ModeShape repository connector that accesses and stores

content in an external JCR 2.0 repository. This allows ModeShape to integrate with other JCR

implementations and even federate multiple JCR repositories into a single unified repository.

Any differences in namespaces are automatically handled, although node types used by the

content in the external JCR repository must also be registered into the ModeShape repository

using the connector. Note that this connector is currently a technical preview, and we're seeking

feedback and assistance in identifying the required functionality.

• modeshape-connector-filesystem is a ModeShape repository connector that accesses the

files and folders on (a part of) the local file system, providing that content in the form of nt:file

and nt:folder nodes. This connector does support updating the file system when changes are

made to the nt:file and nt:folder nodes. However, this connector does not support storing

other kinds of nodes.

• modeshape-connector-svn is a ModeShape repository connector that accesses the content of

an existing Subversion repository, providing that content in the form of nt:file and nt:folder

nodes. This connector does support updating the SVN repository when changes are made to

the nt:file and nt:folder nodes. However, this connector does not support storing other

kinds of nodes.

• modeshape-sequencer-cnd is a ModeShape sequencer that extracts JCR node definitions

from JCR Compact Node Definition (CND) files.

• modeshape-sequencer-ddl is a ModeShape sequencer that extracts the structure and content

from DDL files. This is still under development and includes support for the basic DDL

statements in in the Oracle, PostgreSQL, Derby, and standard DDL dialects.

• modeshape-sequencer-zip is a ModeShape sequencer that extracts the files (with content)

and directories from ZIP archives.

• modeshape-sequencer-xml is a ModeShape sequencer that extracts the structure and

content from XML files.

http://www.hibernate.org
http://www.hibernate.org

Chapter 1. Introduction to Mo...

8

• modeshape-sequencer-xsd is a ModeShape sequencer that extracts the structure and

content from XML Schema Definition (XSD) files.

• modeshape-sequencer-wsdl is a ModeShape sequencer that extracts the structure and

content from Web Service Definition Language (WSDL) 1.1 files.

• modeshape-sequencer-sramp is a library with reusable node types patterned after the core

model of S-RAMP, and used by other ModeShape sequencers.

• modeshape-sequencer-classfile is a ModeShape sequencer that extracts the package, class/

type, member, documentation, annotations, and other information from Java class files.

• modeshape-sequencer-java is a ModeShape sequencer that extracts the package, class/type,

member, documentation, annotations, and other information from Java source files.

• modeshape-sequencer-jbpm-jpdl is a prototype ModeShape sequencer that extracts process

definition metadata from jBPM process definition language (jPDL) files. This is still under

development.

• modeshape-sequencer-msoffice is a ModeShape sequencer that extracts metadata and

summary information from Microsoft Office [http://office.microsoft.com/en-us/] documents. For

example, the sequencer extracts from a PowerPoint presentation the outline as well as

thumbnails of each slide. Microsoft Word and Excel files are also supported.

• modeshape-sequencer-images is a ModeShape sequencer that extracts the image metadata

(e.g., size, date, etc.) from PNG, JPEG, GIF, BMP, PCS, IFF, RAS, PBM, PGM, and PPM

image files.

• modeshape-sequencer-mp3 is a ModeShape sequencer that extracts metadata (e.g., author,

album name, etc.) from MP3 audio files.

• modeshape-sequencer-teiid contains two sequencers. ModelSequencer extracts the

structured data model contained with a Teiid relational XMI model, including the catalogs,

schemas, tables, views, columns, primary keys, foreign keys, indexes, procedures, procedure

parameters, procedure results, logical relationships, and the JDBC source from which the model

was imported. Teiid VDB files contain several models, so the VdbSequencer extracts the virtual

database metadata and the structured data model from each of the models contained within

the VDB.

• modeshape-sequencer-text is a ModeShape sequencer that extracts data from text streams.

There are separate sequencers for character-delimited sequencing and fixed width sequencing,

but both treat the incoming text stream as a series of rows separated by line-terminators with

each row consisting of one or more columns.

• modeshape-search-lucene is an implementation of the SearchEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/search/SearchEngine.html] interface that

uses the Lucene [http://lucene.apache.org/java/] library. This module is one of the few

extensions that is used directly by the modeshape-jcr module.

http://office.microsoft.com/en-us/
http://office.microsoft.com/en-us/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/search/SearchEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/search/SearchEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/search/SearchEngine.html
http://lucene.apache.org/java/
http://lucene.apache.org/java/

ModeShape modules

9

• modeshape-mimetype-detector-aperture is a MimeTypeDetector [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html]

implementation that uses the Aperture [http://aperture.sourceforge.net/] library to determine the

best MIME type given the name and contents of a file.

• modeshape-extractor-tika is a TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/text/TextExtractor.html] implementation that uses the Apache Tika

[http://aperture.sourceforge.net/] parsing library to extract from binary content text that can be

used for indexing the content.

• modeshape-classloader-maven is a small library that provides

a ClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/component/ClassLoaderFactory.html] implementation that can create ClassLoader

[http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html] instances capable of

loading classes given a Maven Repository and a list of Maven coordinates. The Maven

Repository can be managed within a JCR repository.

The following modules make up the various web application projects (and are located in the source

under the web/ directory). You may be able to use these artifacts "out of the box", but more likely

the configuration defined in the WAR files will not be exactly what you want for your environment.

In this case, you can replicate one of our "-war" modules and customize the configuration settings

to easily assembly a custom WAR.

• modeshape-web-jcr-webdav provides a WebDAV server for Java Content Repositories.

This project provides integration with ModeShape's JCR implementation (of course) but

also contains a service provider interface (SPI) that can be used to integrate other JCR

implementations with these WebDAV services in the future. For ease of packaging, these

classes are provided as a JAR that can be placed in the WEB-INF/lib of a deployed WebDAV

server WAR.

• modeshape-web-jcr-webdav-war wraps the WebDAV services from the modeshape-web-

jcr-webdav JAR into a WAR and provides in-container integration tests. This project can be

consulted as a template for how to deploy the WebDAV services in a custom implementation.

• modeshape-web-jcr-rest provides a set of JSR-311 (JAX-RS) objects that form the basis

of a RESTful server for Java Content Repositories. This project provides integration with

ModeShape's JCR implementation (of course) but also contains a service provider interface

(SPI) that can be used to integrate other JCR implementations with these RESTful services in

the future. For ease of packaging, these classes are provided as a JAR that can be placed in

the WEB-INF/lib of a deployed RESTful server WAR.

• modeshape-web-jcr-rest-war wraps the RESTful services from the modeshape-web-jcr-rest

JAR into a WAR and provides in-container integration tests. This project can be consulted as a

template for how to deploy the RESTful services in a custom implementation.

• modeshape-web-jcr-rest-client is a library that uses POJOs to access the REST web service.

This module eliminates the need for applications to know how to create HTTP request URLs

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://aperture.sourceforge.net/
http://aperture.sourceforge.net/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://aperture.sourceforge.net/
http://aperture.sourceforge.net/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html

Chapter 1. Introduction to Mo...

10

and payloads, and how to parse the JSON responses. It can be used to publish (upload) and

unpublish (delete) files from ModeShape repositories.

• modeshape-web-jcr provides a reusable library for web applications using JCR, and is used

by the modeshape-web-jcr-rest and modeshape-web-jcr-webdav modules.

ModeShape recently added several modules that make it very easy to deploy ModeShape in

JBoss AS or EAP as a full-fledged, central, shared service that can be monitored and administered

using the embedded console and used directly by web applications deployed to the application

server. Our Maven build produces a "kit" ZIP file that can be unzipped into a JBoss AS profile.

When your server restarts, ModeShape will be running with a very simple configuration (although

that can be easily changed).

The modules that make up the JBoss AS deployment kit are located in the source under the

"deploy/jbossas directory":

• modeshape-jbossas-service provides several components that are deployed through the

microcontainer in JBoss AS, registered in JNDI, and exposed through the Profile Service for

monitoring and management. This service leverages the JAAS support within the application

server.

• modeshape-jbossas-console defines the plugin for RHQ [http://support.rhq-project.org/

display/RHQ/Home] that enables administration, monitoring, alerting, operational control and

configuration. All of the major components within a ModeShape engine are exposed as RHQ

resources, and the plugin provides a number of metrics and administrative operations as well

as exposing most configuration properties. (We plan to add more metrics and operations over

the next few releases, as we gain more experience using the ModeShape RHQ plugin.)

• modeshape-jbossas-web-rest-war defines a variant of the more general modeshape-web-

rest-war that is tailored for deployment on JBoss AS, since it reuses the same ModeShape

service deployed into the application server.

• modeshape-jbossas-web-webdav-war defines a variant of the more general modeshape-

web-webdav-war that is tailored for deployment on JBoss AS, since it reuses the same

ModeShape service deployed into the application server.

There are also modules for ModeShape's documentation (located in the source under the docs/

directory):

• docs-getting-started is the project with the DocBook [http://www.docbook.org/] source for the

ModeShape Getting Started document.

• docs-getting-started-examples is the project with the Java source for the example application

used in the ModeShape Getting Started document.

• docs-reference-guide is the project with the DocBook [http://www.docbook.org/] source for this

document, the ModeShape Reference Guide document.

There are several utility modules:

http://support.rhq-project.org/display/RHQ/Home
http://support.rhq-project.org/display/RHQ/Home
http://support.rhq-project.org/display/RHQ/Home
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/

ModeShape modules

11

• modeshape-jpa-ddl-gen provides a standalone utility that can generate the DDL for the

database schema used by the JPA connector. Because it uses Hibernate, it can generate DDL

for any of the databases that the connector can use. This is also useful for users who prefer not

to give DDL privileges to the ModeShape database user.

• modeshape-jdbc-local provides a JDBC driver implementation that allows JDBC clients to

query the contents of a local JCR repository using JCR-SQL2. The driver even supports JDBC

metadata, making it possible to dynamically discover the tables and columns available for

querying (which are determined from the node types). It can be configured as a data source

in JBoss AS, and can even leverage the ModeShape service, allowing JDBC-based access by

clients deployed to that JBoss AS instance to query the repository content. This library is very

lightweight and fast, since it directly accesses the repository using the JCR API.

• modeshape-jdbc provides a JDBC driver implementation that allows JDBC clients to query

the contents of a local or remote JCR repository using JCR-SQL2. The driver even supports

JDBC metadata, making it possible to dynamically discover the tables and columns available

for querying (which are determined from the node types). It can be configured as a data source

in JBoss AS, and can even leverage the ModeShape service, allowing JDBC-based access to

the same repository content available via the JCR API, RESTful service, or WebDAV.

There is another module that runs the full suite of JCR TCK tests, and which at the moment still

contains a few failures. This module is never needed in client applications.

• modeshape-jcr-tck provides a separate testing project that executes all reference

implementation's JCR TCK tests on a nightly basis to track implementation progress against

the JCR 1.0 specification. This module will likely be retired when the ModeShape JCR

implementation is complete, since modeshape-jcr and modeshape-integration-tests will

be running the full suite of JCR TCK unit tests.

Another module provides system- and integration-level tests and is never needed in client

applications:

• modeshape-integration-tests provides a home for all of the integration tests that involve more

components that just unit tests. Integration tests are often more complicated, take longer, and

involve testing the integration and functionality of multiple components (whereas unit tests focus

on testing a single class or component and may use stubs or mock objects to isolate the code

being tested from other related components).

Finally, there is a Maven parent pom.xml file that aggregates all of the other projects, provides

common defaults for Maven plugins and dependency versions used throughout the modules, and

definition of various asset files to help build the necessary Maven artifacts during a build.

Each of these modules is a Maven project with a group ID of org.modeshape . All of

these projects correspond to artifacts [https://repository.jboss.org/nexus/content/repositories/

public/org/modeshape/] in the JBoss Maven 2 Repository [https://repository.jboss.org/nexus/

], the settings for which are described on the JBoss.org wiki [http://community.jboss.org/wiki/

MavenGettingStarted-Users].

https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Chapter 1. Introduction to Mo...

12

1.6. Compiling and building

The ModeShape source code is freely available and easy to build. For

more information about this, please see our documentation that describes the

tools [http://community.jboss.org/wiki/ModeShapeDevelopmentTools], build commands [http://

community.jboss.org/wiki/ModeShapeandMaven], and even how to contribute using Git [http://

community.jboss.org/wiki/ModeShapeDevelopmentWorkflow].

1.7. What's new?

ModeShape 2.6.0.Beta2 includes several improvements and minor features, and numerous fixes

for issues reported against the earlier 2.x releases. For details, see the release notes [http://

docs.jboss.org/modeshape/2.6.0.Beta2/release.html].

ModeShape implements all of the required JCR 2.0 features: repository acquisition,

authentication, reading/navigating, query, export, node type discovery, and permissions

and capability checking. ModeShape also implements most of the optional JCR 2.0

features: writing, import, observation, workspace management, versioning, locking, node type

management, same-name siblings, orderable child nodes, and shareable nodes. The remaining

optional features (access control management, lifecycle management, retention and hold, and

transactions) may be introduced in future versions.

Note

ModeShape 2.6.0.Beta2 currently passes 1372 of the 1391 JCR TCK tests,

where 17 of these 19 failures appear to be bugs in the TCK tests (see

JCR-2648 [https://issues.apache.org/jira/browse/JCR-2648], JCR-2661 [https://

issues.apache.org/jira/browse/JCR-2661], JCR-2662 [https://issues.apache.org/

jira/browse/JCR-2662], and JCR-2663 [https://issues.apache.org/jira/browse/

JCR-2663]). The remaining 2 failures are due to a known issue (see MODE-760

[http://jira.jboss.org/browse/MODE-760]).

http://community.jboss.org/wiki/ModeShapeDevelopmentTools
http://community.jboss.org/wiki/ModeShapeDevelopmentTools
http://community.jboss.org/wiki/ModeShapeandMaven
http://community.jboss.org/wiki/ModeShapeandMaven
http://community.jboss.org/wiki/ModeShapeandMaven
http://community.jboss.org/wiki/ModeShapeDevelopmentWorkflow
http://community.jboss.org/wiki/ModeShapeDevelopmentWorkflow
http://community.jboss.org/wiki/ModeShapeDevelopmentWorkflow
http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760

Part I. ModeShape Core
The ModeShape project organizes the codebase into a number of subprojects. The most

fundamental are those core libraries, including the graph API, connector framework, sequencing

framework, as well as the configuration and engine in which all the components run. These are

all topics covered in this part of the document.

The ModeShape implementation of the JCR API [http://www.jcp.org/en/jsr/detail?id=283] as well

as some other JCR-related components are covered in the next part.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 2.

15

Execution Context
The various components of ModeShape are designed as plain old Java objects, or POJOs (Plain

Old Java Objects). And rather than making assumptions about their environment, each component

instead requires that any external dependencies necessary for it to operate must be supplied to

it. This pattern is known as Dependency Injection, and it allows the components to be simpler and

allows for a great deal of flexibility and customization in how the components are configured.

The approach that ModeShape takes is simple: a simple POJO that

represents everything about the environment in which components operate.

Called ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html], it contains references to most of the essential facilities, including:

security (authentication and authorization); namespace registry; name factories; factories for

properties and property values; logging; and access to class loaders (given a classpath).

Most of the ModeShape components require an ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] and thus have access

to all these facilities.

The ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html] is a concrete class that is instantiated with the no-argument

constructor:

public class ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/ExecutionContext.html] implements ClassLoaderFactory [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/

ClassLoaderFactory.html] {

 /**

 * Create an instance of an execution context, with default implementations for all components.

 */

 public ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html]() { ... }

 /**

 * Get the factories that should be used to create values for {@link Property properties}.

 * @return the property value factory; never null

 */

 public ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] getValueFactories() {...}

 /**

 * Get the namespace registry for this context.

 * @return the namespace registry; never null

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html

Chapter 2. Execution Context

16

 */

 public NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/NamespaceRegistry.html] getNamespaceRegistry() {...}

 /**

 * Get the factory for creating {@link Property} objects.

 * @return the property factory; never null

 */

 public PropertyFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/PropertyFactory.html] getPropertyFactory() {...}

 /**

 * Get the security context for this environment.

 * @return the security context; never null

 */

 public SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/SecurityContext.html] getSecurityContext() {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should

<i>not</i>

 also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param clazz the class that is doing the logging

 * @return the logger, named after clazz; never null

 */

 public Logger [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/

Logger.html] getLogger(Class<?> clazz) {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should

<i>not</i>

 also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param name the name for the logger

 * @return the logger, named after clazz; never null

 */

 public Logger [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/

Logger.html] getLogger(String name) {...}

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/util/Logger.html

Security

17

 ...

}

The fact that so many of the ModeShape components take

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] instances gives us some interesting possibilities. For example, one

execution context instance can be used as the highest-level (or "application-level") context for

all of the services (e.g., RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/repository/RepositoryService.html], SequencingService [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html],

etc.). Then, an execution context could be created for each user that will be performing operations,

and that user's context can be passed around to not only provide security information about the

user but also to allow the activities being performed to be recorded for user feedback, monitoring

and/or auditing purposes.

As mentioned above, the starting point is to create a default execution context, which will have

all the default components:

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] context = new ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html]();

Once you have this top-level context, you can start creating subcontexts with different

components, and different security contexts. (Of course, you can create a subcontext from any

instance.) To create a subcontext, simply use one of the with(...) methods on the parent

context. We'll show examples later on in this chapter.

2.1. Security

ModeShape uses a simple abstraction layer to isolate it from the security infrastructure used

within an application. A SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/SecurityContext.html] represents the context of an authenticated user, and is

defined as an interface:

public interface SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/SecurityContext.html] {

 /**

 * Get the name of the authenticated user.

 * @return the authenticated user's name

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html

Chapter 2. Execution Context

18

 */

 String getUserName();

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName);

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 void logout();

}

Every ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html] has a SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html] instance, though the

top-level (default) execution context does not represent an authenticated user. But you can create

a subcontext for a user authenticated via JAAS:

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] context = ...

String username = ...

char[] password = ...

String jaasRealm = ...

SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] securityContext = new JaasSecurityContext(jaasRealm, username,

 password);

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] userContext = context.with(securityContext);

In the case of JAAS, you might not have the password but would rather prompt the user. In that

case, simply create a subcontext with a different security context:

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] context = ...

String jaasRealm = ...

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

JAAS

19

CallbackHandler [http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/

CallbackHandler.html] callbackHandler = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] userContext = context.with(new JaasSecurityContext(jaasRealm,

 callbackHandler);

Of course if your application has a non-JAAS authentication and authorization system,

you can simply provide your own implementation of SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html]:

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] context = ...

SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] mySecurityContext = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] myAppContext = context.with(mySecurityContext);

These ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html]s then represent the authenticated user in any component that uses

the context.

2.1.1. JAAS

One of the SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/SecurityContext.html] implementations provided by ModeShape is the

JaasSecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

JaasSecurityContext.html], which delegates any authentication or authorization requests to a

Java Authentication and Authorization Service (JAAS) [http://java.sun.com/javase/technologies/

security/] provider. This is the standard approach for authenticating and authorizing in Java.

There are quite a few JAAS providers available, but one of the best and most powerful providers

is JBoss Security [http://www.jboss.org/jbosssecurity/], the open source security framework used

by JBoss. JBoss Security offers a number of JAAS login modules, including:

• User-Roles Login Module is a simple javax.security.auth.login.LoginContext

implementation that uses usernames and passwords stored in a properties file.

• Client Login Module prompts the user for their username and password.

• Database Server Login Module uses a JDBC database to authenticate principals and

associate them with roles.

• LDAP Login Module uses an LDAP directory to authenticate principals. Two implementations

are available.

http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/JaasSecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/JaasSecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/JaasSecurityContext.html
http://java.sun.com/javase/technologies/security/
http://java.sun.com/javase/technologies/security/
http://java.sun.com/javase/technologies/security/
http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/

Chapter 2. Execution Context

20

• Certificate Login Module authenticates using X509 certificates, obtaining roles from either

property files or a JDBC database.

• Operating System Login Module authenticates using the operating system's mechanism.

and many others. Plus, JBoss Security also provides other capabilities, such as using XACML

policies or using federated single sign-on. For more detail, see the JBoss Security [http://

www.jboss.org/jbosssecurity/] project.

2.1.2. Web application security

If ModeShape is being used within a web application, then it is probably desirable to reuse

the security infrastructure of the application server. This can be accomplished by implementing

the SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] interface with an implementation that delegates to the HttpServletRequest.

Then, for each request, create a SecurityContextCredentials [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html] instance

around your SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/SecurityContext.html], and use that credentials to obtain a JCR Session [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html].

Here is an example of the SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/SecurityContext.html] implementation that uses the servlet request:

@Immutable

public class ServletSecurityContext implements SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html] {

 private final String userName;

 private final HttpServletRequest request;

 /**

 * Create a {@link ServletSecurityContext} with the supplied

 * {@link HttpServletRequest servlet information}.

 *

 * @param request the servlet request; may not be null

 */

 public ServletSecurityContext(HttpServletRequest request) {

 this.request = request;

 this.userName = request.getUserPrincipal() != null ? request.getUserPrincipal().getName() :

 null;

 }

 /**

 * Get the name of the authenticated user.

http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/
http://www.jboss.org/jbosssecurity/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html

Namespace Registry

21

 * @return the authenticated user's name

 */

 public String getUserName() {

 return userName;

 }

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName) {

 request.isUserInRole(roleName);

 }

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 public void logout() {

 }

}

Then use this to create a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html]:

HttpServletRequest request = ...

Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html]

 repository = engine.getRepository("my repository");

SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] securityContext = new ServletSecurityContext(httpServletRequest);

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] servletContext = context.with(securityContext);

We'll see later in the JCR chapter how this can be used to obtain a JCR Session [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] for the authenticated user.

2.2. Namespace Registry

As we saw earlier, every ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/ExecutionContext.html] has a registry of namespaces. Namespaces are

used throughout the graph API (as we'll see soon), and the prefix associated with each

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

Chapter 2. Execution Context

22

namespace makes for more readable string representations. The namespace registry tracks all

of these namespaces and prefixes, and allows registrations to be added, modified, or removed.

The interface for the NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/NamespaceRegistry.html] shows how these operations are done:

public interface NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/NamespaceRegistry.html] {

 /**

 * Return the namespace URI that is currently mapped to the empty prefix.

 * @return the namespace URI that represents the default namespace,

 * or null if there is no default namespace

 */

 String getDefaultNamespaceUri();

 /**

 * Get the namespace URI for the supplied prefix.

 * @param prefix the namespace prefix

 * @return the namespace URI for the supplied prefix, or null if there is no

 * namespace currently registered to use that prefix

 * @throws IllegalArgumentException if the prefix is null

 */

 String getNamespaceForPrefix(String prefix);

 /**

 * Return the prefix used for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @param generateIfMissing true if the namespace URI has not already been registered and the

 * method should auto-register the namespace with a generated prefix, or false if the

 * method should never auto-register the namespace

 * @return the prefix currently being used for the namespace, or "null" if the namespace has

 * not been registered and "generateIfMissing" is "false"

 * @throws IllegalArgumentException if the namespace URI is null

 * @see #isRegisteredNamespaceUri(String)

 */

 String getPrefixForNamespaceUri(String namespaceUri, boolean generateIfMissing);

 /**

 * Return whether there is a registered prefix for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @return true if the supplied namespace has been registered with a prefix, or false otherwise

 * @throws IllegalArgumentException if the namespace URI is null

 */

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html

Namespace Registry

23

 boolean isRegisteredNamespaceUri(String namespaceUri);

 /**

 * Register a new namespace using the supplied prefix, returning the namespace URI previously

 * registered under that prefix.

 * @param prefix the prefix for the namespace, or null if a namesapce prefix should be generated

 * automatically

 * @param namespaceUri the namespace URI

 * @return the namespace URI that was previously registered with the supplied prefix, or null

 if the

 * prefix was not previously bound to a namespace URI

 * @throws IllegalArgumentException if the namespace URI is null

 */

 String register(String prefix, String namespaceUri);

 /**

 * Unregister the namespace with the supplied URI.

 * @param namespaceUri the namespace URI

 * @return true if the namespace was removed, or false if the namespace was not registered

 * @throws IllegalArgumentException if the namespace URI is null

 * @throws NamespaceException if there is a problem unregistering the namespace

 */

 boolean unregister(String namespaceUri);

 /**

 * Obtain the set of namespaces that are registered.

 * @return the set of namespace URIs; never null

 */

 Set<String> getRegisteredNamespaceUris();

 /**

 * Obtain a snapshot of all of the {@link Namespace namespaces} registered at the time this

 method

 * is called. The resulting set is immutable, and will not reflect changes made to the registry.

 * @return an immutable set of Namespace [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html] objects reflecting a

 snapshot of the registry; never null

 */

 Set<Namespace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/NamespaceRegistry.Namespaces.html]> getNamespaces();

}

This interfaces exposes Namespace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/NamespaceRegistry.Namespaces.html] objects that are immutable:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html

Chapter 2. Execution Context

24

@Immutable

interface Namespace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/NamespaceRegistry.Namespaces.html] extends Comparable<Namespace [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

NamespaceRegistry.Namespaces.html]> {

 /**

 * Get the prefix for the namespace

 * @return the prefix; never null but possibly the empty string

 */

 String getPrefix();

 /**

 * Get the URI for the namespace

 * @return the namespace URI; never null but possibly the empty string

 */

 String getNamespaceUri();

}

ModeShape actually uses several implementations of NamespaceRegistry [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html], but you

can even implement your own and create ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html]s that use it:

NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/NamespaceRegistry.html] myRegistry = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyRegistry = context.with(myRegistry);

2.3. Class Loaders

ModeShape is designed around extensions: sequencers, connectors, MIME type detectors, and

class loader factories. The core part of ModeShape is relatively small and has few dependencies,

while many of the "interesting" components are extensions that plug into and are used by different

parts of the core or by layers above (such as the JCR implementation). The core doesn't really

care what the extensions do or what external libraries they require, as long as the extension fulfills

its end of the extension contract.

This means that you only need the core modules of ModeShape on the application classpath,

while the extensions do not have to be on the application classpath. And because the core

modules of ModeShape have few dependencies, the risk of ModeShape libraries conflicting

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.Namespaces.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

Class Loaders

25

with the application's are lower. Extensions, on the other hand, will likely have a lot of unique

dependencies. By separating the core of ModeShape from the class loaders used to load the

extensions, your application is isolated from the extensions and their dependencies.

Note

Of course, you can put all the JARs on the application classpath, too. This is what

the examples in the Getting Started [http://docs.jboss.org/modeshape/2.6.0.Beta2/

manuals/gettingstarted/html/index.html] document do.

But in this case, how does ModeShape load all the extension classes?

You may have noticed earlier that ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] implements the

ClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

component/ClassLoaderFactory.html] interface with a single method:

public interface ClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/common/component/ClassLoaderFactory.html] {

 /**

 * Get a class loader given the supplied classpath. The meaning of the classpath

 * is implementation-dependent.

 * @param classpath the classpath to use

 * @return the class loader; may not be null

 */

 ClassLoader [http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html]

 getClassLoader(String [http://java.sun.com/javase/6/docs/api/java/lang/String.html]...

 classpath);

}

This means that any component that has a reference to an ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] has

the ability to create a class loader with a supplied class path. As we'll see later, the connectors

and sequencers are all defined with a class and optional class path. This is where that class path

comes in.

The actual meaning of the class path, however, is a function of the implementation. ModeShape

uses a StandardClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/common/component/StandardClassLoaderFactory.html] that just loads the classes

using the Thread's current context class loader (or, if there is none, delegates to the class loader

that loaded the StandardClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/common/component/StandardClassLoaderFactory.html] class). Of course,

it's possible to implement other ClassLoaderFactory [http://docs.jboss.org/

http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/StandardClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html

Chapter 2. Execution Context

26

modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html] with

other implementations. Then, just create a subcontext with your implementation:

ClassLoaderFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

component/ClassLoaderFactory.html] myClassLoaderFactory = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyClassLoaderFactories =

 context.with(myClassLoaderFactory);

Note

The modeshape-classloader-maven project has a class loader factory

implementation that parses the names into Maven coordinates [http://

maven.apache.org/pom.html#Maven_Coordinates], then uses those coordinates

to look up artifacts in a Maven 2 repository. The artifact's POM file is used to

determine the dependencies, which is done transitively to obtain the complete

dependency graph. The resulting class loader has access to these artifacts in

dependency order.

This class loader is not ready for use, however, since there is no tooling to help

populate the repository.

2.4. MIME Type Detectors

ModeShape often needs the ability to determine the MIME type for some binary content. When

uploading content into a repository, we may want to add the MIME type as metadata. Or, we

may want to make some processing decisions based upon the MIME type. So, ModeShape has

a small pluggable framework for determining the MIME type by using the name of the file (e.g.,

extensions) and/or by reading the actual content.

ModeShape defines a MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] interface that abstracts the implementation

that actually determines the MIME type given the name and content. If the detector is able to

determine the MIME type, it simply returns it as a string. If not, it merely returns null. Note, however,

that a detector must be thread-safe. Here is the interface:

@ThreadSafe

public interface MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] {

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/component/ClassLoaderFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#Maven_Coordinates
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

MIME Type Detectors

27

 /**

 * Returns the MIME-type of a data source, using its supplied content and/or its supplied name,

 * depending upon the implementation. If the MIME-type cannot be determined, either a "default"

 * MIME-type or null may be returned, where the former will prevent earlier

 * registered MIME-type detectors from being consulted.

 *

 * @param name The name of the data source; may be null.

 * @param content The content of the data source; may be null.

 * @return The MIME-type of the data source, or optionally null

 * if the MIME-type could not be determined.

 * @throws IOException [http://java.sun.com/javase/6/docs/api/java/io/IOException.html] If an

 error occurs reading the supplied content.

 */

 String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] mimeTypeOf(String [http://

java.sun.com/javase/6/docs/api/java/lang/String.html] name, InputStream [http://java.sun.com/

javase/6/docs/api/java/io/InputStream.html] content) throws IOException [http://java.sun.com/

javase/6/docs/api/java/io/IOException.html];

}

To use a detector, simply invoke the method and supply the name of the content (e.g., the name

of the file, with the extension) and the InputStream [http://java.sun.com/javase/6/docs/api/java/io/

InputStream.html] to the actual binary content. The result is a String [http://java.sun.com/javase/6/

docs/api/java/lang/String.html] containing the MIME type [http://www.iana.org/assignments/

media-types/] (e.g., "text/plain") or null if the MIME type cannot be determined. Note that the

name or InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] may be

null, making this a very versatile utility.

Once again, you can obtain a MimeTypeDetector [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] from the

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html]. ModeShape provides and uses by default an implementation that uses

only the name (the content is ignored), looking at the name's extension and looking for a match in

a small listing (loaded from the org/modeshape/graph/mime.types loaded from the classpath).

You can add extensions by copying this file, adding or correcting the entries, and then placing

your updated file in the expected location on the classpath.

Of course, you can always use a different MimeTypeDetector [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] by

creating a subcontext and supplying your implementation:

MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] myDetector = ...

http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

Chapter 2. Execution Context

28

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyDetector = context.with(myDetector);

2.5. Text Extractors

ModeShape can store all kinds of content, and ModeShape makes it easy to perform full-text

searches on that content. To support searching, ModeShape extracts the text from the various

properties on each node. They way it does this for most property types (e.g., STRING, LONG,

DATE, PATH, NAME, etc.) is simply to read and use the literal values. But BINARY properties

are another story: there's no way to indexes the binary content directly. Instead, ModeShape has

a small pluggable framework for extracting useful text from the binary content, based upon the

MIME type of the content itself.

The process works like this: when a BINARY property needs to be indexed for search, ModeShape

determines the MIME type of the content, determines if there is a text extractor capable of handling

that MIME type, and if so it passes the content to the text extractor and gets back a string of text,

and it indexes that text.

ModeShape provides two text extractors out-of-the-box. The Teiid VDB text extractor operates

only upon Teiid virtual database (i.e., ".vdb") files and extracts the virtual database's logical name,

description, and version, plus the logical name, description, source name, source translator name,

and JNDI name for each of the virtual database's models.

The second out-of-the-box extractor is capable of extracting text from wider variety of file types,

including Microsoft Office, PDF, HTML, plain text, and XML. This extractor uses the Tika [http://

tika.apache.org/] toolkit from Apache, so a number of other file formats are supported. However,

these other file formats require additional libraries that are not included out of the box. This is

discussed in more detail in a later chapter.

Text extraction can be an intensive process, so it is not enabled by default. But enabling the

text extractors in ModeShape's configuration is actually pretty easy. When using a configuration

file, simply add a "<mode:textExtractors>" fragment under the "<configuration>" root element.

Within the "<mode:textExtractors>" element place one or more "<mode:textExtractor>" fragments

specifying at least the extractor's name and fully-qualified Java class.

For example, here is the fragment that defines the Teiid text extractor and the Tika text extractor.

Note that the Teiid text extractor has no options and is pretty simple, while the Tika extractor

allows much more control over the MIME types that should be processed:

<mode:textExtractors>

 <mode:textExtractor jcr:name="VDB Text Extractors">

 <mode:description>Extract text from Teiid VDB files</mode:description>

 <mode:classname>org.modeshape.extractor.teiid.TeiidVdbTextExtractor</mode:classname>

 </mode:textExtractor>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://tika.apache.org/
http://tika.apache.org/
http://tika.apache.org/

Text Extractors

29

 <mode:textExtractor jcr:name="Tika Text Extractors">

 <mode:description>Text extractors using Tika parsers</mode:description>

 <mode:classname>org.modeshape.extractor.tika.TikaTextExtractor</mode:classname>

 <!--

 A comma- or whitespace-delimited list of MIME types that are to be excluded.

 The following are excluded by default, but the default is completely overridden

 when this property is set. In other words, if you explicitly exclude any MIME types,

 be sure to list all of the MIME types you want to exclude. Exclusions always

 have a higher precedence than inclusions.

 -->

 <mode:excludedMimeTypes>

 application/x-archive,application/x-bzip,application/x-bzip2,

 application/x-cpio,application/x-gtar,application/x-gzip,

 application/x-ta,application/zip,application/vnd.teiid.vdb

 </mode:excludedMimeTypes>

 <!--

 A comma- or whitespace-delimited list of MIME types that are to be included.

 If this is used, then the extractor will include only those MIME types found

 in this list for which there is an available parser (unless the MIME type

 is also excluded). Including explicit MIME types is often easier if text is

 to be extracted for are only a few MIME types.

 -->

 <mode:includedMimeTypes>

 application/msword,application/vnd.oasis.opendocument.text

 </mode:includedMimeTypes>

 </mode:textExtractor>

 ... <!-- other extractors -->

 </mode:textExtractors>

It's also possible to define your own text extractors by implementing

the TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/

TextExtractor.html] interface:

@ThreadSafe

public interface TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/text/TextExtractor.html] {

 /**

 * Determine if this extractor is capable of processing content with the supplied MIME type.

 *

 * @param mimeType the MIME type; never null

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html

Chapter 2. Execution Context

30

 * @return true if this extractor can process content with the supplied MIME type, or false

 otherwise.

 */

 boolean supportsMimeType(String [http://java.sun.com/javase/6/docs/api/java/lang/

String.html] mimeType);

 /**

 * Sequence the data found in the supplied stream, placing the output information into the

 supplied map.

 *

<p>

 * ModeShape's SequencingService determines the sequencers that should be executed by

 monitoring the changes to one or more

 * workspaces that it is monitoring. Changes in those workspaces are aggregated and used

 to determine which sequencers should

 * be called. If the sequencer implements this interface, then this method is called with the

 property that is to be sequenced

 * along with the interface used to register the output. The framework takes care of all the rest.

 * </p>

 *

 * @param stream the stream with the data to be sequenced; never null

 * @param output the output from the sequencing operation; never null

 * @param context the context for the sequencing operation; never null

 * @throws IOException if there is a problem reading the stream

 */

 void extractFrom(InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html]

 stream,

 TextExtractorOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/text/TextExtractorOutput.html] output,

 TextExtractorContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/text/TextExtractorContext.html] context) throws IOException;

}

As mentioned above, the "supportsMimeType" method will be called first, and only if

your implementation returns true for a given MIME type will the "extractFrom" method be

called. The supplied TextExtractorContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/text/TextExtractorContext.html] object provides information about the text

being processed, while the TextExtractorOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/text/TextExtractorOutput.html] is a simple interface that your extractor

uses to record one or more strings containing the extracted text.

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html

Property factory and value factories

31

If you need text extraction in sequencers or connectors, you can

always get a TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/text/TextExtractor.html] instance from the ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html]. That

TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/

TextExtractor.html] implementation is actually a composite of all of the text extractors defined in

the configuration.

Of course, you can always use a different TextExtractor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html] by creating a

subcontext and supplying your implementation:

TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/

TextExtractor.html] myExtractor = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyExtractor = context.with(myExtractor);

2.6. Property factory and value factories

Two other components are made available by the ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html]. The

PropertyFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/PropertyFactory.html] is an interface that can be used to

create Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html] instances, which are used throughout the graph API.

The ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] interface provides access to a number of different factories

for different kinds of property values. These will be discussed in much more detail in

the next chapter. But like the other components that are in an ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html], you

can create subcontexts with different implementations:

PropertyFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/PropertyFactory.html] myPropertyFactory = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyPropertyFactory = context.with(myPropertyFactory);

and

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

Chapter 2. Execution Context

32

ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] myValueFactories = ...

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyValueFactories = context.with(myValueFactories);

Of course, implementing your own factories is a pretty advanced topic, and it will likely be

something you do not need to do in your application.

2.7. Summary

In this chapter, we introduced the ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] as a representation

of the environment in which many of the ModeShape components

operate. ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html] provides a very simple but powerful way to inject commonly-needed

facilities throughout the system.

In the next chapter, we'll dive into Graph API and will introduce the notion of nodes, paths, names,

and properties, that are so essential and used throughout ModeShape.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

Chapter 3.

33

Graph Model
One of the central concepts within ModeShape is that of its graph model. Information is structured

into a hierarchy of nodes with properties, where nodes in the hierarchy are identified by their path

(and/or identifier properties). Properties are identified by a name that incorporates a namespace

and local name, and contain one or more property values consisting of normal Java strings, names,

paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to

other nodes, or any other serializable object.

This graph model is used throughout ModeShape: it forms the basis for the connector framework,

it is used by the sequencing framework for the generated output, and it is what the JCR

implementation uses internally to access and operate on the repository content.

Therefore, this chapter provides essential information that will be essential to really understanding

how the connectors, sequencers, and other ModeShape features work.

3.1. Names

ModeShape uses names to identify quite a few different types of objects. As we'll soon see, each

property of a node is given by a name, and each segment in a path is comprised of a name.

Therefore, names are a very important concept.

ModeShape names consist of a local part that is qualified with a namespace. The

local part can consist of any character, and the namespace is identified by a

URI. Namespaces were introduced in the previous chapter and are managed by

the ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html]'s namespace registry. Namespaces help reduce the risk of clashes in

names that have an equivalent same local part.

All names are immutable, which means that once a Name [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] object is created, it will

never change. This characteristic makes it much easier to write thread-safe code - the objects

never change and therefore require no locks or synchronization to guarantee atomic reads. This

is a technique that is more and more often found in newer languages and frameworks that simplify

concurrent operations.

Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] is also a interface rather than a concrete class:

@Immutable

public interface Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Name.html] extends Comparable<Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Name.html]>, Serializable [http://java.sun.com/javase/6/docs/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html

Chapter 3. Graph Model

34

api/java/io/Serializable.html], Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Readable.html] {

 /**

 * Get the local name part of this qualified name.

 * @return the local name; never null

 */

 String getLocalName();

 /**

 * Get the URI for the namespace used in this qualified name.

 * @return the URI; never null but possibly empty

 */

 String getNamespaceUri();

}

This means that you need to use a factory to create Name [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] instances.

The use of a factory may seem like a disadvantage and unnecessary complexity, but there

actually are several benefits. First, it hides the concrete implementations, which is very appealing

if an optimized implementation can be chosen for particular situations. It also simplifies

the usage, since Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Name.html] only has a few methods. Third, it allows the factory to cache or pool instances

where appropriate to help conserve memory. Finally, the very same factory actually serves as a

conversion mechanism from other forms. We'll actually see more of this later in this chapter, when

we talk about other kinds of property values.

The factory for creating Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html] objects is called NameFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html] and is available

within the ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html], via the getValueFactories() method.

We'll see how names are used later on, but one more point to make: Name

[http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] is

both serializable and comparable, and all implementations should support equals(...)

and hashCode() so that Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html] can be used as a key in a hash-based

map. Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] also extends the Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Readable.html] interface, which we'll learn more about later in this

chapter.

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html

Paths

35

3.2. Paths

Another important concept in ModeShape's graph model is that of a path, which provides

a way of locating a node within a hierarchy. ModeShape's Path [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html] object is an immutable

ordered sequence of Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.Segment.html] objects. A small portion of the interface is shown

here:

@Immutable

public interface Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html] extends Comparable<Path>, Iterable<Path.Segment [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html]>, Serializable

 [http://java.sun.com/javase/6/docs/api/java/io/Serializable.html], Readable [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html] {

 /**

 * Return the number of segments in this path.

 * @return the number of path segments

 */

 public int size();

 /**

 * Return whether this path represents the root path.

 * @return true if this path is the root path, or false otherwise

 */

 public boolean isRoot();

 /**

 * {@inheritDoc}

 */

 public Iterator<Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.Segment.html]> iterator();

 /**

 * Obtain a copy of the segments in this path. None of the segments are encoded.

 * @return the array of segments as a copy

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html][] getSegmentsArray();

 /**

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html

Chapter 3. Graph Model

36

 * Get an unmodifiable list of the path segments.

 * @return the unmodifiable list of path segments; never null

 */

 public List<Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.Segment.html]> getSegmentsList();

 /**

 * Get the last segment in this path.

 * @return the last segment, or null if the path is empty

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] getLastSegment();

 /**

 * Get the segment at the supplied index.

 * @param index the index

 * @return the segment

 * @throws IndexOutOfBoundsException if the index is out of bounds

 */

 public Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] getSegment(int index);

 /**

 * Return an iterator that walks the paths from the root path down to this path. This method

 * always returns at least one path (the root returns an iterator containing itself).

 * @return the path iterator; never null

 */

 public Iterator<Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html]> pathsFromRoot();

 /**

 * Return a new path consisting of the segments starting at beginIndex index (inclusive).

 * This is equivalent to calling path.subpath(beginIndex,path.size()-1).

 * @param beginIndex the beginning index, inclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative or larger

 * than the length of this Path object

 */

 public Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] subpath(int beginIndex);

 /**

 * Return a new path consisting of the segments between the beginIndex index (inclusive)

 * and the endIndex index (exclusive).

 * @param beginIndex the beginning index, inclusive.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html

Paths

37

 * @param endIndex the ending index, exclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative, or

 * endIndex is larger than the length of this Path

 * object, or beginIndex is larger than endIndex.

 */

 public Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] subpath(int beginIndex, int endIndex);

 ...

}

There are actually quite a few methods (not shown above) for obtaining related paths: the path of

the parent, the path of an ancestor, resolving a path relative to this path, normalizing a path (by

removing "." and ".." segments), finding the lowest common ancestor shared with another path,

etc. There are also a number of methods that compare the path with others, including determining

whether a path is above, equal to, or below this path.

Each Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] is an immutable pair of a Name [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] and same-name-sibling

(SNS) index. When two sibling nodes have the same name, then the first sibling will have SNS

index of "1" and the second will be given a SNS index of "2". (This mirrors the same-name-sibling

index behavior of JCR paths [http://www.jcp.org/en/jsr/detail?id=283].)

@Immutable

public static interface Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.Segment.html] extends Cloneable, Comparable<Path.Segment

 [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.Segment.html]>, Serializable [http://java.sun.com/javase/6/docs/api/java/io/

Serializable.html], Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Readable.html]

{

 /**

 * Get the name component of this segment.

 * @return the segment's name

 */

 public Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] getName();

 /**

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html

Chapter 3. Graph Model

38

 * Get the index for this segment, which will be 1 by default.

 * @return the index

 */

 public int getIndex();

 /**

 * Return whether this segment has an index that is not "1"

 * @return true if this segment has an index, or false otherwise.

 */

 public boolean hasIndex();

 /**

 * Return whether this segment is a self-reference (or ".").

 * @return true if the segment is a self-reference, or false otherwise.

 */

 public boolean isSelfReference();

 /**

 * Return whether this segment is a reference to a parent (or "..")

 * @return true if the segment is a parent-reference, or false otherwise.

 */

 public boolean isParentReference();

}

Like Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html], the only way to create a Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.html] or a Path.Segment [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html] is to use the

PathFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

PathFactory.html], which is available within the ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] via

the getValueFactories() method.

3.3. Properties

The ModeShape graph model allows nodes to hold multiple properties, where each property is

identified by a unique Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Name.html] and may have one or more values. Like many of the other classes used

in the graph model, Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html] is an immutable object that, once constructed, can never be

changed and therefore provides a consistent snapshot of the state of a property as it existed at

the time it was read.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html

Properties

39

ModeShape properties can hold a wide range of value objects, including normal Java strings,

names, paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs,

references to other nodes, or any other serializable object. All but three of these are the

standard Java classes: dates are represented by an immutable DateTime [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html] class; binary content

is represented by an immutable Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Binary.html] interface patterned after the interface of the same name in JSR-283 [http://

www.jcp.org/en/jsr/detail?id=283]; and Reference [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Reference] is an immutable interface patterned after the

corresponding interface is JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] and JSR-283 [http://

www.jcp.org/en/jsr/detail?id=283].

The Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] interface defines methods for obtaining the name and property values:

@Immutable

public interface Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html] extends Iterable<Object>, Comparable<Property [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html]>, Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Readable.html] {

 /**

 * Get the name of the property.

 *

 * @return the property name; never null

 */

 Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] getName();

 /**

 * Get the number of actual values in this property.

 * @return the number of actual values in this property; always non-negative

 */

 int size();

 /**

 * Determine whether the property currently has multiple values.

 * @return true if the property has multiple values, or false otherwise.

 */

 boolean isMultiple();

 /**

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html

Chapter 3. Graph Model

40

 * Determine whether the property currently has a single value.

 * @return true if the property has a single value, or false otherwise.

 */

 boolean isSingle();

 /**

 * Determine whether this property has no actual values. This method may return true

 * regardless of whether the property has a single value or multiple values.

 * This method is a convenience method that is equivalent to size() == 0.

 * @return true if this property has no values, or false otherwise

 */

 boolean isEmpty();

 /**

 * Obtain the property's first value in its natural form. This is equivalent to calling

 * isEmpty() ? null : iterator().next()

 * @return the first value, or null if the property is {@link #isEmpty() empty}

 */

 Object getFirstValue();

 /**

 * Obtain the property's values in their natural form. This is equivalent to calling iterator().

 * A valid iterator is returned if the property has single valued or multi-valued.

 * The resulting iterator is immutable, and all property values are immutable.

 * @return an iterator over the values; never null

 */

 Iterator<?> getValues();

 /**

 * Obtain the property's values as an array of objects in their natural form.

 * A valid iterator is returned if the property has single valued or multi-valued, or a

 * null value is returned if the property is {@link #isEmpty() empty}.

 * The resulting array is a copy, guaranteeing immutability for the property.

 * @return the array of values

 */

 Object[] getValuesAsArray();

}

Creating Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html] instances is done by using the PropertyFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html] object owned

by the ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html]. This factory defines methods for creating properties

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

Values and Value Factories

41

with a Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] and various representation of values, including variable-length arguments,

arrays, Iterator [http://java.sun.com/javase/6/docs/api/java/util/Iterator.html], and Iterable [http://

java.sun.com/javase/6/docs/api/java/util/Iterable.html].

When it comes to using the property values, ModeShape takes a non-traditional approach.

Many other graph models (including JCR) mark each property with a data type and then require

all property values adhere to this data type. When the property values are obtained, they are

guaranteed to be of the correct type. However, many times the property's data type may not match

the data type expected by the caller, and so a conversion may be required and thus has to be

coded.

The ModeShape graph model uses a different tact. Because callers almost always have to

convert the values to the types they can handle, ModeShape skips the steps of associating

the Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] with a data type and ensuring the values match. Instead, ModeShape simply

provides a very easy mechanism to convert the property values to the type desired by the caller.

In fact, the conversion mechanism is exactly the same as the factories that create the values in

the first place.

3.4. Values and Value Factories

ModeShape properties can hold a variety of value object types: strings, names, paths, URIs,

booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or

any other serializable object. To assist in the creation of these values and conversion into other

types, ModeShape defines a ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/ValueFactory.html] interface. This interface is parameterized with the

type of value that is being created, but defines methods for creating those values from all of the

other known value types:

public interface ValueFactory<T> {

 /**

 * Get the PropertyType [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/PropertyType.html] of values created by this factory.

 * @return the value type; never null

 */

 PropertyType [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/PropertyType.html] getPropertyType();

 /*

 * Methods to create a value by converting from another value type.

 * If the supplied value is the same type as returned by this factory,

 * these methods simply return the supplied value.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html

Chapter 3. Graph Model

42

 * All of these methods throw a ValueFormatException [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html] if the

 supplied value

 * could not be converted to this type.

 */

 T create(String value) throws ValueFormatException;

 T create(String value, TextDecoder decoder) throws ValueFormatException;

 T create(int value) throws ValueFormatException;

 T create(long value) throws ValueFormatException;

 T create(boolean value) throws ValueFormatException;

 T create(float value) throws ValueFormatException;

 T create(double value) throws ValueFormatException;

 T create(BigDecimal [http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html]

 value) throws ValueFormatException;

 T create(Calendar [http://java.sun.com/javase/6/docs/api/java/util/Calendar.html] value)

 throws ValueFormatException;

 T create(Date [http://java.sun.com/javase/6/docs/api/java/util/Date.html] value) throws

 ValueFormatException;

 T create(DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/DateTime.html] value) throws ValueFormatException;

 T create(Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Name.html] value) throws ValueFormatException;

 T create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html] value) throws ValueFormatException;

 T create(Reference [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Reference] value) throws ValueFormatException;

 T create(URI [http://java.sun.com/javase/6/docs/api/java/net/URL.html] value) throws

 ValueFormatException;

 T create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] value) throws

 ValueFormatException;

 T create(byte[] value) throws ValueFormatException;

 T create(Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]

 value) throws ValueFormatException, IoException;

 T create(InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream,

 long approximateLength) throws ValueFormatException, IoException;

 T create(Reader [http://java.sun.com/javase/6/docs/api/java/io/Reader.html] reader, long

 approximateLength) throws ValueFormatException, IoException;

 T create(Object value) throws ValueFormatException, IoException;

 /*

 * Methods to create an array of values by converting from another array of values.

 * If the supplied values are the same type as returned by this factory,

 * these methods simply return the supplied array.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html

Values and Value Factories

43

 * All of these methods throw a ValueFormatException [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html] if the

 supplied values

 * could not be converted to this type.

 */

 T[] create(String[] values) throws ValueFormatException;

 T[] create(String[] values, TextDecoder decoder) throws ValueFormatException;

 T[] create(int[] values) throws ValueFormatException;

 T[] create(long[] values) throws ValueFormatException;

 T[] create(boolean[] values) throws ValueFormatException;

 T[] create(float[] values) throws ValueFormatException;

 T[] create(double[] values) throws ValueFormatException;

 T[] create(BigDecimal [http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html][]

 values) throws ValueFormatException;

 T[] create(Calendar [http://java.sun.com/javase/6/docs/api/java/util/Calendar.html][] values)

 throws ValueFormatException;

 T[] create(Date [http://java.sun.com/javase/6/docs/api/java/util/Date.html][] values) throws

 ValueFormatException;

 T[] create(DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/DateTime.html][] values) throws ValueFormatException;

 T[] create(Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Name.html][] values) throws ValueFormatException;

 T[] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html][] values) throws ValueFormatException;

 T[] create(Reference [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Reference][] values) throws ValueFormatException;

 T[] create(URI [http://java.sun.com/javase/6/docs/api/java/net/URL.html][] values) throws

 ValueFormatException;

 T[] create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html][] values) throws

 ValueFormatException;

 T[] create(byte[][] values) throws ValueFormatException;

 T[] create(Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html][]

 values) throws ValueFormatException, IoException;

 T[] create(Object[] values) throws ValueFormatException, IoException;

 /**

 * Create an iterator over the values (of an unknown type). The factory converts any

 * values as required. This is useful when wanting to iterate over the values of a property,

 * where the resulting iterator exposes the desired type.

 * @param values the values

 * @return the iterator of type T over the values, or null if the supplied parameter is null

 * @throws ValueFormatException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/ValueFormatException.html] if the conversion from an iterator of

 objects could not be performed

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFormatException.html

Chapter 3. Graph Model

44

 * @throws IoException If an unexpected problem occurs during the conversion.

 */

 Iterator<T> create(Iterator [http://java.sun.com/javase/6/docs/api/java/util/Iterator.html]<?>

 values) throws ValueFormatException, IoException;

 Iterable<T> create(Iterable [http://java.sun.com/javase/6/docs/api/java/util/Iterable.html]<?>

 valueIterable) throws ValueFormatException, IoException;

}

This makes it very easy to convert one or more values (of any type, including mixtures) into

corresponding value(s) that are of the desired type. For example, converting the first value of a

property (regardless of type) to a String is simple:

ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] property = ...

String value = stringFactory.create(property.getFirstValue());

Likewise, iterating over the values in a property and converting them is just as easy:

ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

What we've glossed over so far, however, is how to obtain the correct

ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

ValueFactory.html] for the desired type. If you remember back in the

previous chapter, ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/ExecutionContext.html] has a getValueFactories() method that

return a ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] interface:

http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html

Values and Value Factories

45

This interface exposes a ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/ValueFactory.html] for each of the types, and even has

methods to obtain a ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/ValueFactory.html] given the PropertyType [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html] enumeration.

So, the previous examples could be expanded a bit:

ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = context.getValueFactories().getStringFactory();

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] property = ...

String value = stringFactory.create(property.getFirstValue());

and

ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

ValueFactory.html]<String> stringFactory = context.getValueFactories().getStringFactory();

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

You might have noticed that several of the ValueFactories [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html] methods return

subinterfaces of ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/ValueFactory.html]. These add type-specific methods that are more commonly

needed in certain cases. For example, here is the NameFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html] interface:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PropertyType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html

Chapter 3. Graph Model

46

public interface NameFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/NameFactory.html] extends ValueFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html]<Name [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html]> {

 Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] create(String namespaceUri, String localName);

 Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html] create(String namespaceUri, String localName, TextDecoder decoder);

 NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/NamespaceRegistry.html] getNamespaceRegistry();

}

and here is the DateTimeFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/DateTimeFactory.html] interface, which adds methods for

creating DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/DateTime.html] values for the current time as well as for specific instants in time:

public interface DateTimeFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/DateTimeFactory.html] extends ValueFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html]<DateTime

 [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html]> {

 /**

 * Create a date-time instance for the current time in the local time zone.

 */

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html] create();

 /**

 * Create a date-time instance for the current time in UTC.

 */

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html] createUtc();

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/DateTime.html] create(DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/DateTime.html] original, long offsetInMillis);

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NameFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTimeFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html

Values and Value Factories

47

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond);

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours);

 DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

DateTime.html] create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours, String timeZoneId);

}

The PathFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/PathFactory.html] interface defines methods for creating relative

and absolute Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.html] objects using combinations of other Path [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html] objects

and Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html]s and Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.Segment.html]s, and introduces methods for

creating Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] objects:

public interface PathFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/PathFactory.html] extends ValueFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html]<Path [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html]> {

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createRootPath();

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createAbsolutePath(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html

Chapter 3. Graph Model

48

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createRelativePath();

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createRelativePath(Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] createRelativePath(Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html] createRelativePath(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.html] childPath);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html] segmentName, int index);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, String segmentName, int index);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Name.html]... segmentNames);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.Segment.html]... segments);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.Segment.html]> segments);

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] create(Path parentPath, String subpath);

 Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] createSegment(String segmentName);

 Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] createSegment(String segmentName, TextDecoder [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html]

 decoder);

 Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.Segment.html] createSegment(String segmentName, int index);

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html

Values and Value Factories

49

 Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.Segment.html] createSegment(Name [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] segmentName);

 Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.Segment.html] createSegment(Name [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html] segmentName, int

 index);

}

And finally, the BinaryFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/BinaryFactory.html] defines methods for creating Binary [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] objects from a variety of binary formats, as

well as a method that looks for a cached Binary [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Binary.html] instance given the supplied secure hash:

public interface BinaryFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/BinaryFactory.html] extends ValueFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html]<Binary [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]> {

 /**

 * Create a value from the binary content given by the supplied input, the approximate length,

 * and the SHA-1 secure hash of the content. If the secure hash is null, then a secure hash is

 * computed from the content. If the secure hash is not null, it is assumed to be the hash for

 * the content and may not be checked.

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]

 create(InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream,

 long approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html]

 create(Reader [http://java.sun.com/javase/6/docs/api/java/io/Reader.html] reader, long

 approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 /**

 * Create a binary value from the given file.

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] create(File

 [http://java.sun.com/javase/6/docs/api/java/io/File.html] file) throws ValueFormatException,

 IoException;

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/BinaryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://java.sun.com/javase/6/docs/api/java/io/Reader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html

Chapter 3. Graph Model

50

 /**

 * Find an existing binary value given the supplied secure hash. If no such binary value exists,

 * null is returned. This method can be used when the caller knows the secure hash (e.g., from

 * a previously-held Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Binary.html] object), and would like to reuse an existing binary value

 * (if possible) rather than recreate the binary value by processing the stream contents. This is

 * especially true when the size of the binary is quite large.

 *

 * @param secureHash the secure hash of the binary content, which was probably obtained

 from a

 * previously-held Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Binary.html] object; a null or empty value is allowed, but will always

 * result in returning null

 * @return the existing Binary value that has the same secure hash, or null if there is no

 * such value available at this time

 */

 Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] find(byte[]

 secureHash);

}

ModeShape provides efficient implementations of all of these

interfaces: the ValueFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/ValueFactory.html] interfaces and subinterfaces;

the Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html], Path.Segment [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.Segment.html], Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Name.html], Binary [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Binary.html], DateTime [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/DateTime.html], and Reference [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference] interfaces; and

the ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] interface returned by the ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html]. In fact, some of these

interfaces have multiple implementations that are optimized for specific but frequently-occurring

conditions.

3.5. Readable, TextEncoder, and TextDecoder

As shown above, the Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Name.html], Path.Segment [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html], Path [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html], and

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/DateTime.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Reference
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.Segment.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html

Readable, TextEncoder, and TextDecoder

51

Property.html] interfaces all extend the Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Readable.html] interface, which defines a number of

getString(...) methods that can produce a (readable) string representation of of that

object. Recall that all of these objects contain names with namespace URIs and local

names (consisting of any characters), and so obtaining a readable string representation

will require converting the URIs to prefixes, escaping certain characters in the local

names, and formatting the prefix and escaped local name appropriately. The different

getString(...) methods of the Readable [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Readable.html] interface accept various combinations

of NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/NamespaceRegistry.html] and TextEncoder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html] parameters:

@Immutable

public interface Readable {

 /**

 * Get the string form of the object. A default encoder is used to encode characters.

 * @return the encoded string

 */

 public String getString();

 /**

 * Get the encoded string form of the object, using the supplied encoder to encode characters.

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 */

 public String getString(TextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/common/text/TextEncoder.html] encoder);

 /**

 * Get the string form of the object, using the supplied namespace registry to convert any

 * namespace URIs to prefixes. A default encoder is used to encode characters.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for any namespace URIs

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Readable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html

Chapter 3. Graph Model

52

 * the any namespace URIs to prefixes.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 for

 * the namespace URIs

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry,

 TextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/text/TextEncoder.html] encoder);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

 * the names' namespace URIs to prefixes and the supplied encoder to encode characters,

 and using

 * the second delimiter to encode (or convert) the delimiter used between the namespace prefix

 * and the local part of any names.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for the namespace URIs in the names

 * @param encoder the encoder to use for encoding the local part and namespace prefix of

 any names,

 * or null if the default encoder should be used

 * @param delimiterEncoder the encoder to use for encoding the delimiter between the local part

 * and namespace prefix of any names, or null if the standard delimiter should be used

 * @return the encoded string

 */

 public String getString(NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/NamespaceRegistry.html] namespaceRegistry,

 TextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/common/text/TextEncoder.html] encoder, TextEncoder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html] delimiterEncoder);

}

We've seen the NamespaceRegistry [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/NamespaceRegistry.html] in the previous chapter, but we've

haven't yet talked about the TextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/common/text/TextEncoder.html] interface. A TextEncoder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html] merely does what

you'd expect: it encodes the characters in a string using some implementation-specific algorithm.

ModeShape provides a number of TextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/common/text/TextEncoder.html] implementations, including:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/NamespaceRegistry.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextEncoder.html

Readable, TextEncoder, and TextDecoder

53

• The Jsr283Encoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/text/Jsr283Encoder.html] escapes characters that are not allowed in JCR names,

per the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification. Specifically, these are

the '*', '/', ':', '[', ']', and '|' characters, which are escaped by replacing them with the Unicode

characters U+F02A, U+F02F, U+F03A, U+F05B, U+F05D, and U+F07C, respectively.

• The NoOpEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

text/Jsr283Encoder.html] does no conversion.

• The UrlEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

text/Jsr283Encoder.html] converts text to be used within the different parts of a URL, as defined

by Section 2.3 of RFC 2396 [http://www.ietf.org/rfc/rfc2396.txt]. Note that this class does not

encode a complete URL (since java.net.URLEncoder and java.net.URLDecoder should be

used for such purposes).

• The XmlNameEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/text/Jsr283Encoder.html] converts any UTF-16 unicode character that is not a valid

XML name character according to the World Wide Web Consortium (W3C) Extensible Markup

Language (XML) 1.0 (Fourth Edition) Recommendation [http://www.w3.org/TR/REC-xml/#sec-

common-syn], escaping such characters as _xHHHH_, where HHHH stands for the four-digit

hexadecimal UTF-16 unicode value for the character in the most significant bit first order. For

example, the name "Customer_ID" is encoded as "Customer_x0020_ID".

• The XmlValueEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/text/XmlValueEncoder.html] escapes characters that are not allowed in XML values.

Specifically, these are the '&', '<', '>', '"', and ''', which are all escaped to "&", '<', '>',

'"', and '''.

• The FileNameEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

common/text/FileNameEncoder.html] escapes characters that are not allowed in file names

on Linux, OS X, or Windows XP. Unsafe characters are escaped as described in

the UrlEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

text/Jsr283Encoder.html].

• The SecureHashTextEncoder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/common/text/SecureHashTextEncoder.html] performs a secure hash of the input

text and returns that hash as the encoded text. This encoder can be configured to use different

secure hash algorithms and to return a fixed number of characters from the hash.

All of these classes also implement the TextDecoder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html] interface, which

defines a method that decodes an encoded string using the opposite transformation.

Of course, you can provide alternative implementations, and supply them to the appropriate

getString(...) methods as required.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/XmlValueEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/FileNameEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/Jsr283Encoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/SecureHashTextEncoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/text/TextDecoder.html

Chapter 3. Graph Model

54

3.6. Locations

In addition to Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Path.html] objects, nodes can be identified by one or more identification properties.

These really are just Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html] instances with names that have a special meaning (usually to

connectors). ModeShape also defines a Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/Location.html] class that encapsulates:

• the Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] to the node; or

• one or more identification properties that are likely source-specific and that are

represented with Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html] objects; or

• a combination of both.

So, when a client knows the path and/or the identification properties, they can

create a Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] object and then use that to identify the node. Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html] is a class that can be

instantiated through factory methods on the class:

public abstract class Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/Location.html] implements Iterable [http://java.sun.com/javase/6/

docs/api/java/util/Iterable.html]<Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Property.html]>, Comparable<Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html]> {

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.html] path) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Location.html] create(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html]

 uuid) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.html] path, UUID [http://java.sun.com/javase/6/docs/api/java/

util/UUID.html] uuid) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.html] path, Property [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html] idProperty) { ... }

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html

Locations

55

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.html] path, Property [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html] firstIdProperty,

 Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html]... remainingIdProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.html] path, Iterable [http://java.sun.com/javase/6/

docs/api/java/util/Iterable.html]<Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Property.html] idProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Location.html] create(Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Property.html] idProperty) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Location.html] create(Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Property.html] firstIdProperty,

 Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html]... remainingIdProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(Iterable [http://java.sun.com/javase/6/docs/api/java/util/

Iterable.html]<Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html]> idProperties) { ... }

 public static Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] create(List [http://java.sun.com/javase/6/docs/api/java/

util/List.html]<Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html]> idProperties) { ... }

 ...

}

Like many of the other classes and interfaces, Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html] is immutable and cannot

be changed once created. However, there are methods on the class to create a

copy of the Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] object with a different Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/Path.html], a different UUID [http://java.sun.com/javase/6/docs/api/

java/util/UUID.html], or different identification properties:

public abstract class Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/Location.html] implements Iterable [http://java.sun.com/javase/6/

docs/api/java/util/Iterable.html]<Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://java.sun.com/javase/6/docs/api/java/util/List.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://java.sun.com/javase/6/docs/api/java/util/Iterable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html

Chapter 3. Graph Model

56

modeshape/graph/property/Property.html]>, Comparable<Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html]> {

 ...

 public Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] with(Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Property.html] newIdProperty);

 public Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] with(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.html] newPath);

 public Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] with(UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid);

 ...

}

One more thing about locations: we'll see later in the next chapter how they are used

to make requests to the connectors. When creating the requests, clients usually have an

incomplete location (e.g., a path but no identification properties). When processing the

requests, connectors provide an actual location that contains the path and all identification

properties. If actual Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Location.html] objects are then reused in subsequent requests by the client, the connectors

will have the benefit of having both the path and identification properties and may be able to more

efficiently locate the identified node.

3.7. Graph API

ModeShape's Graph API was designed as a lightweight public API for working with graph

information. The Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Graph.html] class is the primary class in API, and each instance represents a single, independent

view of a single graph. Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Graph.html] instances don't maintain state, so every request (or batch of requests) operates

against the underlying graph and then returns immutable snapshots of the requested state at the

time the request was made.

There are several ways to obtain a Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Graph.html] instance, as we'll see in later chapters. For the time being, the

important thing to understand is what a Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/Graph.html] instance represents and how it interacts with the underlying

content to return representations of portions of that underlying graph content.

The Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html]

class basically represents an internal domain specific language (DSL) [http://

www.martinfowler.com/bliki/DomainSpecificLanguage.html], designed to be easy to use in an

application. The Graph API makes extensive use of interfaces and method chaining, so that

methods return a concise interface that has only those methods that make sense at that

point. In fact, this should be really easy if your IDE has code completion. Just remember

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

Using Workspaces

57

that under the covers, a Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/Graph.html] is just building Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/Request.html] objects, submitting them to the connector, and then

exposing the results.

The next few subsections describe how to use a Graph [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html] instance.

3.7.1. Using Workspaces

ModeShape graphs have the notion of workspaces that provide different views of the content.

Some graphs may have one workspace, while others may have multiple workspaces. Some

graphs will allow a client to create new workspaces or destroy existing workspaces, while other

graphs will not allow adding or removing workspaces. Some graphs may have workspaces that

may show the same (or very similar) content, while other graphs may have workspaces that

contain completely independent content.

The Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html]

object is always bound to a workspace, which initially is the default workspace. To find out what

the name of the default workspace is, simply ask for the current workspace after creating the

Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html]:

Workspace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Workspace.html] current = graph.getCurrentWorkspace();

To obtain the list of workspaces available in a graph, simply ask for them:

Set [http://java.sun.com/javase/6/docs/api/java/util/Set.html]<String [http://java.sun.com/

javase/6/docs/api/java/lang/String.html]> workspaceNames = graph.getWorkspaces();

Once you know the name of a particular workspace, you can specify that the graph should use it:

graph.useWorkspace("myWorkspace");

From this point forward, all requests will apply to the workspace named "myWorkspace". At any

time, you can use a different workspace, which will affect all subsequent requests made using the

graph. To go back to the default workspace, simply supply a null name:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://java.sun.com/javase/6/docs/api/java/util/Set.html
http://java.sun.com/javase/6/docs/api/java/util/Set.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Chapter 3. Graph Model

58

graph.useWorkspace(null);

Of course, creating a new workspace is just as easy:

graph.createWorkspace().named("newWorkspace");

This will attempt to create a workspace named "newWorkspace", which will fail if that workspace

already exists. You may want to create a new workspace with a name that should be altered if the

name you supply is already used. The following code shows how you can do this:

graph.createWorkspace().namedSomethingLike("newWorkspace");

If there is no existing workspace named "newWorkspace", a new one will be created with this

name. However, if "newWorkspace" already exists, this call will create a workspace with a name

that is some alteration of the supplied name.

You can also clone workspaces, too:

graph.createWorkspace().clonedFrom("original").named("something");

or

graph.createWorkspace().clonedFrom("original").namedSomethingLike("something");

As you can see, it's very easy to specify which workspace you want to use or to create new

workspaces. You can also find out which workspace the graph is currently using:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] current =

 graph.getCurrentWorkspaceName();

or, if you want, you can get more information about the workspace:

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Working with Nodes

59

Workspace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Workspace.html] current = graph.getCurrentWorkspace();

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] name = current.getName();

Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] rootLocation = current.getRoot();

3.7.2. Working with Nodes

Now let's switch to working with nodes. This first example returns a map of properties (keyed by

property name) for a node at a specific Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Path.html]:

Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] path = ...

Map<Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Name.html],Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html]> propertiesByName = graph.getPropertiesByName().on(path);

This next example shows how the graph can be used to obtain and loop over the properties of

a node:

Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] path = ...

for (Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] property : graph.getProperties().on(path)) {

 ...

}

Likewise, the next example shows how the graph can be used to obtain and loop over the children

of a node:

Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] path = ...

for (Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] child : graph.getChildren().of(path)) {

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html

Chapter 3. Graph Model

60

 Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] childPath = child.getPath();

 ...

}

Notice that the examples pass a Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/Path.html] instance to the on(...) and of(...)

methods. Many of the Graph API methods take a variety of parameter

types, including String, Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.html]s, Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/Location.html]s, UUID [http://java.sun.com/javase/6/docs/api/java/util/

UUID.html], or Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/Property.html] parameters. This should make it easy to use in many different situations.

Of course, changing content is more interesting and offers more interesting possibilities. Here are

a few examples:

Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] path = ...

Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] location = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] idProp1 = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] idProp2 = ...

UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid = ...

graph.move(path).into(idProp1, idProp2);

graph.copy(path).into(location);

graph.delete(uuid);

graph.delete(idProp1,idProp2);

The methods shown above work immediately, as soon as each request is built.

However, there is another way to use the Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/Graph.html] object, and that is in a batch mode. Simply

create a Graph.Batch [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Graph.Batch.html] object using the batch() method, create the requests on that batch object,

and then execute all of the commands on the batch by calling its execute() method.

That execute() method returns a Results [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Results.html] interface that can be used to read the node information retrieved

by the batched requests.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.Batch.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html

Requests

61

Method chaining works really well with the batch mode, since multiple commands can be

assembled together very easily:

Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Path.html] path = ...

String path2 = ...

Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] location = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] idProp1 = ...

Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html] idProp2 = ...

UUID [http://java.sun.com/javase/6/docs/api/java/util/UUID.html] uuid = ...

graph.batch().move(path).into(idProp1, idProp2)

 .and().copy(path2).into(location)

 .and().delete(uuid)

 .execute();

Results [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html]

 results = graph.batch().read(path2)

 .and().readChildren().of(idProp1,idProp2)

 .and().readSugraphOfDepth(3).at(uuid2)

 .execute();

for (Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Location.html] child : results.getNode(path2)) {

 ...

}

Of course, this section provided just a hint of the Graph API. The Graph

[http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html] interface is

actually quite complete and offers a full-featured approach for reading and updating a graph.

For more information, see the Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Graph.html] JavaDocs.

3.8. Requests

ModeShape Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Graph.html] objects operate upon the underlying graph content, but we haven't really talked about

how that works. Recall that the Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Graph.html] objects don't maintain any stateful representation of the content,

but instead submit requests to the underlying graph and return representations of the requested

portions of the content. This section focuses on what those requests look like, since they'll actually

become very important when working with connectors in the next chapter.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://java.sun.com/javase/6/docs/api/java/util/UUID.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Results.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html

Chapter 3. Graph Model

62

A graph Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/Request.html] is an encapsulation of a command that is to be executed by the underlying

graph owner (typically a connector). Request objects can take many different forms, as there

are different classes for each kind of request. Each request contains the information needed to

complete the processing, and it also is the place where the results (or error) are recorded.

The Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html]

object creates the Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/Request.html] objects using Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html] objects to identify the node

(or nodes) that are the subject of the request. The Graph [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html] can either submit the request

immediately, or it can batch multiple requests together into "units of work". The submitted

requests are then processed by the underlying system (e.g., connector) and returned back to

the Graph [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html]

object, which then extracts and returns the results.

3.8.1. Basic Requests

There are actually quite a few different types of Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] classes:

ReadNodeRequest

A request to read a node's properties and children from the named workspace

in the source. The node may be specified by path and/or by identification

properties. The connector returns all properties and the locations for all children,

or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/PathNotFoundException.html] error on the request if the node

did not exist in the workspace. If the node is found, the connector sets on the request the

actual location of the node (including the path and identification properties). The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

VerifyNodeExistsRequest

A request to verify the existence of a node at the specified location in the named

workspace of the source. The connector returns all the actual location for the node if

it exists, or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the node does not exist in the workspace. The connector sets

a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadAllPropertiesRequest

A request to read all of the properties of a node from the named workspace

in the source. The node may be specified by path and/or by identification

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Graph.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Basic Requests

63

properties. The connector returns all properties that were found on the node,

or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/PathNotFoundException.html] error on the request if the node

did not exist in the workspace. If the node is found, the connector sets on the request the

actual location of the node (including the path and identification properties). The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadPropertyRequest

A request to read a single property of a node from the named workspace in the

source. The node may be specified by path and/or by identification properties, and the

property is specified by name. The connector returns the property if found on the node,

or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/PathNotFoundException.html] error on the request if the node or

property did not exist in the workspace. If the node is found, the connector sets on the request

the actual location of the node (including the path and identification properties). The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadAllChildrenRequest

A request to read all of the children of a node from the named workspace

in the source. The node may be specified by path and/or by identification

properties. The connector returns an ordered list of locations for each child

found on the node, an empty list if the node had no children, or

sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/property/PathNotFoundException.html] error on the request if the node did

not exist in the workspace. If the node is found, the connector sets on the request the actual

location of the parent node (including the path and identification properties). The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadBlockOfChildrenRequest

A request to read a block of children of a node, starting with the nth child from the named

workspace in the source. This is designed to allow paging through the children, which is much

more efficient for large numbers of children. The node may be specified by path and/or by

identification properties, and the block is defined by a starting index and a count (i.e., the block

size). The connector returns an ordered list of locations for each of the node's children found in

the block, or an empty list if there are no children in that range. The connector also sets on the

request the actual location of the parent node (including the path and identification properties)

or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the parent node did not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 3. Graph Model

64

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadNextBlockOfChildrenRequest

A request to read a block of children of a node, starting with the children that immediately

follow a previously-returned child from the named workspace in the source. This is designed to

allow paging through the children, which is much more efficient for large numbers of children.

The node may be specified by path and/or by identification properties, and the block is defined

by the location of the node immediately preceding the block and a count (i.e., the block size).

The connector returns an ordered list of locations for each of the node's children found in the

block, or an empty list if there are no children in that range. The connector also sets on the

request the actual location of the parent node (including the path and identification properties)

or sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the parent node did not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

ReadBranchRequest

A request to read a portion of a subgraph that has as its root a particular node, up

to a maximum depth. This request is an efficient mechanism when a branch (or part

of a branch) is to be navigated and processed, and replaces some non-trivial code

to read the branch iteratively using multiple ReadNodeRequests. The connector reads

the branch to the specified maximum depth, returning the properties and children for

all nodes found in the branch. The connector also sets on the request the actual

location of the branch's root node (including the path and identification properties). The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request if

the node at the top of the branch does not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

CompositeRequest

A request that actually comprises multiple requests (none of which will be a composite). The

connector simply processes all of the requests in the composite request, but should set on

the composite request any error (usually the first error) that occurs during processing of the

contained requests.

3.8.2. Change Requests

ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html] is a subclass of Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] that provides a base

class for all the requests that request a change be made to the content. As we'll see later,

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html

Change Requests

65

these ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html] objects also get reused by the observation system.

There specific subclasses of ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/request/ChangeRequest.html] are:

CreateNodeRequest

A request to create a node at the specified location and setting on the new node

the properties included in the request. The connector creates the node at the desired

location, adjusting any same-name-sibling indexes as required. (If an SNS index is

provided in the new node's location, existing children with the same name after that

SNS index will have their SNS indexes adjusted. However, if the requested location

does not include a SNS index, the new node is added after all existing children,

and it's SNS index is set accordingly.) The connector also sets on the request the

actual location of the new node (including the path and identification properties).. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the parent node does not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

RemovePropertiesRequest

A request to remove a set of properties on an existing node. The request

contains the location of the node as well as the names of the properties to

be removed. The connector performs these changes and sets on the request the

actual location (including the path and identification properties) of the node. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the node does not exist in the workspace. The connector sets

a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

UpdatePropertiesRequest

A request to set or update properties on an existing node. The request contains

the location of the node as well as the properties to be set and those to

be deleted. The connector performs these changes and sets on the request the

actual location (including the path and identification properties) of the node. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the node does not exist in the workspace. The connector sets

a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 3. Graph Model

66

RenameNodeRequest

A request to change the name of a node. The connector changes the node's name,

adjusts all SNS indexes accordingly, and returns the actual locations (including the path

and identification properties) of both the original location and the new location. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the node does not exist in the workspace. The connector sets

a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

CopyBranchRequest

A request to copy a portion of a subgraph that has as its root a particular node, up to a

maximum depth. The request includes the name of the workspace where the original node is

located as well as the name of the workspace where the copy is to be placed (these may be

the same, but may be different). The connector copies the branch from the original location,

up to the specified maximum depth, and places a copy of the node as a child of the new

location. The connector also sets on the request the actual location (including the path and

identification properties) of the original location as well as the location of the new copy. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request if

the node at the top of the branch does not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if one of the

named workspaces does not exist.

MoveBranchRequest

A request to move a subgraph that has a particular node as its root. The

connector moves the branch from the original location and places it as child

of the specified new location. The connector also sets on the request the

actual location (including the path and identification properties) of the original

and new locations. The connector will adjust SNS indexes accordingly. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request if the

node that is to be moved or the new location do not exist in the workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

DeleteBranchRequest

A request to delete an entire branch specified by a single node's location. The connector

deletes the specified node and all nodes below it, and sets the actual location,

including the path and identification properties, of the node that was deleted. The

connector sets a PathNotFoundException [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/property/PathNotFoundException.html] error on the request

if the node being deleted does not exist in the workspace. The connector

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/PathNotFoundException.html

Workspace Read Requests

67

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

3.8.3. Workspace Read Requests

There are also requests that read information about workspaces:

GetWorkspacesRequest

A request to obtain the names of the existing workspaces that are accessible to the caller.

VerifyWorkspaceRequest

A request to verify that a workspace with a particular name exists. The connector returns the

actual location for the root node if the workspace exists, as well as the actual name of the

workspace (e.g., the default workspace name if a null name is supplied).

3.8.4. Workspace Change Requests

And there are also requests that deal with changing workspaces (and thus

extend ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html]):

CreateWorkspaceRequest

A request to create a workspace with a particular name. The connector returns the actual

location for the root node if the workspace exists, as well as the actual name of the

workspace (e.g., the default workspace name if a null name is supplied). The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace already exists.

DestroyWorkspaceRequest

A request to destroy a workspace with a particular name. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

named workspace does not exist.

CloneWorkspaceRequest

A request to clone one named workspace as another new named workspace. The connector

sets a InvalidWorkspaceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/InvalidWorkspaceException.html] error on the request if the

original workspace does not exist, or if the new workspace already exists.

3.8.5. Search Requests

Several requests are designed to push searches and queries down to the connector, if connectors

support such operations:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/InvalidWorkspaceException.html

Chapter 3. Graph Model

68

SearchRequest

A request to query a named workspace using a supplied query. The connector returns tuples

containing the columns and resulting values, plus statistics about the execution of the query.

FullTextSearchRequest

A request to search a named workspace using a supplied full-text search string and optional

offset and limit values. The connector returns tuples containing the columns and resulting

values, plus statistics about the execution of the query.

3.8.6. Function Requests

One type of request allows a function to be passed to the connector:

FunctionRequest

A request that executes a supplied function at a particular location within a named workspace.

The inputs to the function can be set on the request (as a series of name-value pairs), and

when executed the function will set the outputs as name-value pairs on the request. This

request is extremely useful for (complex) operations that must first read information from the

workspace and then perform other actions.

This section covered the different kinds of Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/Request.html] classes. The next section provides a easy way

to encapsulate how a component should responds to these requests, and after that we'll see how

these Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/

Request.html] objects are also used in the observation framework.

3.9. Request processors

ModeShape connectors are typically the components that receive

these Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/

Request.html] objects. We'll dive deep into connectors in the next chapter, but before we do there

is one more component related to Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/Request.html]s that should be discussed.

The RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/processor/RequestProcessor.html] class is an abstract class that

defines a process(...) method for each concrete Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] subclass. In other

words, there is a process(CompositeRequest) method, a process(ReadNodeRequest)

method, and so on. This makes it easy to implement behavior

that responds to the different kinds of Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] classes: simply

subclass the RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/processor/RequestProcessor.html], override all of the abstract

methods, and optionally overriding any of the other methods that have a default implementation.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html

Observation

69

Note

The RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/processor/RequestProcessor.html] abstract class

contains default implementations for quite a few of the process(...) methods,

and these will be sufficient but probably not efficient or optimum. If you can provide

a more efficient implementation given your source, feel free to do so. However,

if performance is not a big issue, all of the concrete methods will provide the

correct behavior. Keep things simple to start out - you can always provide better

implementations later.

3.10. Observation

The ModeShape graph model also incorporates an observation framework that allows

components to register and be notified when changes occur within the content owned by a graph.

Many event frameworks define the listeners and sources as interfaces. While

this is often useful, it requires that the implementations properly address the

thread-safe semantics of managing and calling the listeners. The ModeShape

observation framework uses abstract or concrete classes to minimize the effort

required for implementing ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/observe/ChangeObserver.html] or Observable [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html]. These abstract

classes provide implementations for a number of utility methods (such as the unregister()

method on ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/ChangeObserver.html]) that also save effort and code.

However, one of the more important reasons for providing classes

is that ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/ChangeObserver.html] uses weak references to track the

Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observable.html] instances, and the ChangeObservers [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html] class uses

weak references for the listeners. This means that an observer does not

prevent Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

observe/Observable.html] instances from being garbage collected, nor do observers

prevent Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

observe/Observable.html] instances from being garbage collected. These abstract class provide

all this functionality for free.

3.10.1. Observable

Any component that can have changes and be observed can implement the

Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html

Chapter 3. Graph Model

70

Observable.html] interface. This interface allows Observer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html]s to register (or be

registered) to receive notifications of the changes. However, a concrete and thread-

safe implementation of this interface, called ChangeObservers [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html], is available

and should be used where possible, since it automatically manages the

registered ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/ChangeObserver.html] instances and properly implements the register and

unregister mechanisms.

3.10.2. Observers

Components that are to recieve notifications of changes are called observers. To create

an observer, simply extend the ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/observe/ChangeObserver.html] abstract class and provide

an implementation of the notify(Changes [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html]) method.

Then, register the observer with an Observable [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html] using its

register(ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/observe/ChangeObserver.html]) method. The observer's

notify(Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/Changes.html]) method will then be called with the changes that have

been made to the Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/Observable.html].

When an observer is no longer needed, it should be

unregistered from all Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/observe/Observable.html] instances with which it was

registered. The ChangeObserver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/observe/ChangeObserver.html] class automatically tracks which

Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observable.html] instances it is registered with, and calling the observer's unregister()

will unregister the observer from all of these Observable [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html]s. Alternatively, an

observer can be unregistered from a single Observable [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html] using the

Observable [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observable.html]'s unregister(ChangeObserver [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html])

method.

3.10.3. Changes

The Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Changes.html] class represents the set of individual changes that have been made during a

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObservers.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observable.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/ChangeObserver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html

Changes

71

single, atomic operation. Each Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/observe/Changes.html] instance has information about the source of the

changes, the timestamp at which the changes occurred, and the individual changes that

were made. These individual changes take the form of ChangeRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html] objects, which

we'll see more of in the next chapter. Each request is frozen, meaning it is immutable and will not

change. Also none of the change requests will be marked as cancelled.

Using the actual ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/ChangeRequest.html] objects as the "events" has a number of

advantages. First, the existing ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/request/ChangeRequest.html] subclasses already contain the information

to accurately and completely describe the operation. Reusing these classes means we don't need

a duplicate class structure or come up with a generic event class.

Second, the requests have all the state required for an event, plus they often will have

more. For example, the DeleteBranchRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/DeleteBranchRequest.html] has the actual location of the

branch that was deleted (and in this way is not much different than a more generic event),

but the CreateNodeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/CreateNodeRequest.html] has the actual location of the created node along with

the properties of that node. Additionally, the RemovePropertyRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/RemovePropertyRequest.html] has

the actual location of the node along with the name of the property that was removed. In many

cases, these requests have all the information a more general event class might have but then

hopefully enough information for many observers to use directly without having to read the graph

to decide what actually changed.

Third, the requests that make up a Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/observe/Changes.html] instance can actually be replayed. Consider

the case of a cache that is backed by a RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html], which

might use an observer to keep the cache in sync. As the cache is notified

of Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Changes.html], the cache can simply replay the changes against its source.

As we'll see in the next chapter, each connector is responsible for propagating

the ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html] objects to the connector's Observer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html]. But that's not the

only use of Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/Observer.html]s. We'll also see later how the sequencing system

uses Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observer.html]s to monitor for changes in the graph content to determine which, if any, sequencers

should be run. And, the JCR implementation also uses the observation framework to propagate

those changes to JCR clients.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CreateNodeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/RemovePropertyRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html

Chapter 3. Graph Model

72

3.11. Summary

In this chapter, we introduced ModeShape's graph model and showed the different kinds of objects

used to represent nodes, paths, names, and properties. We saw how all of these objects are

actually immutable, and how the low-level Graph API uses this characteristic to provide a stateless

and thread-safe interface for working with repository content using the request model used to

read, update, and change content.

Next, we'll dive into the connector framework, which builds on top of the graph model and request

model, allowing ModeShape to access the graph content stored in many different kinds of systems.

Chapter 4.

73

Connector Framework

There is a lot of information stored in many of different places: databases, repositories, SCM

systems, registries, file systems, services, etc. The purpose of the federation engine is to allow

applications to use the JCR API to access that information as if it were all stored in a single JCR

repository, but to really leave the information where it is.

Why not just copy or move the information into a JCR repository? Moving it is probably pretty

difficult, since most likely there are existing applications that rely upon that information being where

it is. All of those applications would break or have to change. And copying the information means

that we'd have to continually synchronize the changes. This not only is a lot of work, but it often

makes it difficult to know whether information is accurate and "the master" data.

ModeShape lets us leave information where it is, yet access it through the JCR API as if it were

in one big repository. One major benefit is that existing applications that use the information in

the original locations don't break, since they can keep using the information. But now our JCR

clients can also access all the information, too. And if our federating ModeShape repository is

configured to allow updates, JCR client applications can change the information in the repository

and ModeShape will propagate those changes down to the original source, making those changes

visible to all the other applications.

In short, all clients see the correct information, even when it changes in the underlying systems.

But the JCR clients can get to all of the information in one spot, using one powerful standard API.

4.1. Connectors

With ModeShape, your applications use the JCR 2.0 API [http://www.jcp.org/en/jsr/detail?id=283]

to work with the repository, but the ModeShape repository transparently fetches the information

from different kinds of repositories and storage systems, not just a single purpose-built store. This

is fundamentally what makes ModeShape different.

How does ModeShape do this? At the heart of ModeShape and it's JCR implementation is a

simple graph-based connector system. Essentially, ModeShape's JCR implementation uses a

single connector to access all content:

Figure 4.1. ModeShape's JCR implementation delegates to a connector

That single repository connector could access:

• a transient, in-memory repository

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 4. Connector Framework

74

• an Infinispan data grid that acts as an extremely scalable, highly-available store for repository

content

• a JBoss Cache instance that acts as a clustered and replicated store for repository content

• a JDBC database used as a store for repository content

• a repository that accesses existing JDBC databases to project the schema structure as read-

only repository content

• a repository that accesses a file system to present its files and directory structure as (updatable)

repository content

• a repository that accesses the content in another JCR repository

• a repository that accesses an SVN repository to present the files and directory structure as

(updatable) repository content

• a federated repository that presents a unified, updatable view of the content in multiple other

systems (which are accessed via connectors)

Figure 4.2. ModeShape can put JCR on top of multiple kinds of systems

Really, the federated connector gives us all kinds of possibilities, since we can use that connector

on top of lots of connectors to other individual sources. This simple connector architecture is

fundamentally what makes ModeShape so powerful and flexible. Along with a good library of

connectors, which is what we're planning to create.

For instance, we want to build a connector to access existing relational databases [http://

jira.jboss.org/browse/MODE-282] so that some or all of the existing data (in whatever structure)

can be accessed through JCR. For more information, check out our roadmap [http://jira.jboss.org/

browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel]. Of course, if we

don't have a connector to suit your needs, you can write your own.

Figure 4.3. Future ModeShape connectors

http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE-282
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE?report=com.atlassian.jira.plugin.system.project:roadmap-panel

Connectors

75

It's even possible to put a different API layer on top of the connectors. For example, the new New

I/O (JSR-203) [http://www.jcp.org/en/jsr/detail?id=203] API offers the opportunity to build new file

system providers. This would be very straightforward to put on top of a JCR implementation, but

it could be made even simpler by putting it on top of a ModeShape connector. In both cases, it'd

be a trivial mapping from nodes that represent files and folders into JSR-203 files and directories,

and events on those nodes could easily be translated into JSR-203 watch events. Then, simply

choose a ModeShape connector and configure it to use the source you want to use.

Figure 4.4. Virtual File System with ModeShape

Before we go further, let's define some terminology regarding connectors.

• A connector is the runnable code packaged in one or more JAR files that contains

implementations of several interfaces (described below). A Java developer writes a connector

to a type of source, such as a particular database management system, LDAP directory, source

code management system, etc. It is then packaged into one or more JAR files (including

dependent JARs) and deployed for use in applications that use ModeShape repositories.

• The description of a particular source system (e.g., the "Customer" database, or

the company LDAP system) is called a repository source. ModeShape defines

a RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] interface that defines methods describing the behavior

and supported features and a method for establishing connections. A connector will have

a class that implements this interface and that has JavaBean properties for all of the

connector-specific properties required to fully describe an instance of the system. Use of

JavaBean properties is not required, but it is highly recommended, as it enables reflective

configuration and administration. Applications that use ModeShape create an instance

of the connector's RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySource.html] implementation and set the properties for

the external source that the application wants to access with that connector.

• A repository source instance is then used to establish connections

to that source. A connector provides an implementation of

the RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] interface, which defines methods for

interacting with the external system. In particular, the execute(...)

method takes an ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/ExecutionContext.html] instance and a Request [http://docs.jboss.org/

http://www.jcp.org/en/jsr/detail?id=203
http://www.jcp.org/en/jsr/detail?id=203
http://www.jcp.org/en/jsr/detail?id=203
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html

Chapter 4. Connector Framework

76

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] object. The

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] object defines the environment in which the processing is occurring,

while the Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/Request.html] object describes the requested operations on the content, with different

concrete subclasses representing each type of activity. Examples of commands include (but

not limited to) getting a node, moving a node, creating a node, changing a node, and deleting a

node. And, if the repository source is able to participate in JTA/JTS distributed transactions, then

the RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] must implement the getXaResource() method

by returning a valid javax.transaction.xa.XAResource object that can be used by the

transaction monitor.

As an example, consider if we wanted ModeShape to give us access through JCR to the

information contained in a relational database. We first have to develop a connector that

allows us to interact with relational databases using JDBC. That connector would contain

a JdbcAccessSource Java class that implements RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html], and that

has all of the various JavaBean properties for setting the name of the driver class, URL, username,

password, and other properties. If we add a JavaBean property defining the JNDI name, our

connector could look in JNDI to find a JDBC DataSource instance, perhaps already configured

to use connection pools.

Note

Of course, before you develop a connector, you should probably check the list of

connectors [http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/

provided-connectors-part.html] ModeShape already provides out of the box. And

we've been adding new connectors with almost every release.

Our new connector might also have a JdbcAccessConnection Java class that implements the

RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositoryConnection.html] interface. This class would probably wrap a JDBC

database connection, and would implement the execute(...) method such that the nodes

exposed by the connector describe the database tables and their contents. For example, the

connector might represent each database table as a node with the table's name, with properties

that describe the table (e.g., the description, whether it's a temporary table), and with child nodes

that represent rows in the table.

To use our connector in an application that uses ModeShape, we would need to create an instance

of the JdbcAccessSource for each database instance that we want to access. If we have 3

MySQL databases, 9 Oracle databases, and 4 PostgreSQL databases, then we'd need to create

a total of 16 JdbcAccessSource instances, each with the properties describing a single database

instance. Those sources are then available for use by ModeShape components, including the

JCR implementation.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/jbossmodeshape/latest/manuals/reference/html/provided-connectors-part.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Out-of-the-box connectors

77

So, we've so far learned what a connector is and how they're used to establish connections to

the underlying sources and access the content in those sources. Next we'll show how connectors

expose the notion of workspaces, and describe how to create your own connectors.

4.2. Out-of-the-box connectors

A number of connectors are already available in ModeShape, and

are outlined in detail later in the document. Note that we do

want to build more connectors [https://jira.jboss.org/jira/secure/IssueNavigator.jspa?

reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/

field=priority&resolution=-1&component=12311441] in the upcoming releases.

4.3. Writing custom connectors

There may come a time when you want to tackle creating your own connector. Maybe the

connectors we provide out-of-the-box don't work with your source. Maybe you want to use a

different cache system. Maybe you have a system that you want to make available through

a ModeShape repository. Or, maybe you're a contributor and want to help us round out our

library with a new connector. No matter what the reason, creating a new connector is pretty

straightforward, as we'll see in this section.

Creating a custom connector involves the following steps:

1. Create a Maven 3 project for your connector;

2. Implement the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/connector/RepositorySource.html] interface, using JavaBean

properties for each bit of information the implementation will

need to establish a connection to the source system. Then,

implement the RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/connector/RepositoryConnection.html] interface with a

class that represents a connection to the source. The

execute(ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/ExecutionContext.html], Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html]) method

should process any and all requests that may come down the pike, and the results of each

request can be put directly on that request. This approach is pretty straightforward, and gives

you ultimate freedom in terms of your class structure.

Alternatively, an easier way to get a complete read-write connector would be to extend

one of our two abstract RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/connector/RepositorySource.html] implementations. If the

content your connector exposes has unique keys (such as

a unique string, UUID or other identifier), consider implementing

MapRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/map/MapRepositorySource.html], subclassing MapRepository [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/

https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html

Chapter 4. Connector Framework

78

PathRepository.html], and using the existing MapRepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/

MapRepositoryConnection.html] implementation. This MapRepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/

MapRepositoryConnection.html] does most of the work already, relying upon

your MapRepository [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/map/PathRepository.html] subclass for anything that might be

source-specific. (See the JavaDoc [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/connector/map/package-summary.html] for details.) Or, if the

content your connector exposes is simply path-based, consider implementing

PathRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/path/PathRepositorySource.html], subclassing PathRepository [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/

PathRepository.html], and using the existing PathRepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/

PathRepositoryConnection.html] implementation. Again, PathRepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/

PathRepositoryConnection.html] class does almost all of the work and delegates

to your PathRepository [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/path/PathRepository.html] subclass for anything that might be source-specific.

(See the JavaDoc [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/path/package-summary.html] for details.)

Don't forget unit tests that verify that the connector is doing what it's expected to do. (If you'll be

committing the connector code to the ModeShape project, please ensure that the unit tests can

be run by others that may not have access to the source system. In this case, consider writing

integration tests that can be easily configured to use different sources in different environments,

and try to make the failure messages clear when the tests can't connect to the underlying

source.)

3. Configure ModeShape to use your connector. This may involve just registering the

source with the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/repository/RepositoryService.html], or it may involve adding a source to a

configuration repository used by the federated repository.

4. Deploy the JAR file with your connector (as well as any dependencies), and make them

available to ModeShape in your application.

Let's go through each one of these steps in more detail.

4.3.1. Creating the Maven 3 project

The first step is to create the Maven 3 project that you can use to compile your code and build

the JARs. Maven 3 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 3, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/MapRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/PathRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/path/package-summary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html

Creating the Maven 3 project

79

Note

ModeShape may provide in the future a Maven archetype for creating connector

projects. If you'd find this useful and would like to help create it, please join the

community.

In lieu of a Maven archetype, you may find it easier to start with

a small existing connector project. The modeshape-connector-filesystem

project is small and provides good example of implementing a path-based

repository. See the Git repository: http://github.com/ModeShape/modeshape//tree/

modeshape-2.6.0.Beta2/extensions/modeshape-connector-filesystem/

You can create your Maven project any way you'd like. For examples,

see the Maven 3 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.4.0.Final</version>

</dependency>

This is the only dependency required for compiling a connector - Maven pulls in all of the

dependencies needed by the 'modeshape-graph' artifact. Of course, you'll still have to add

dependencies for any library your connector needs to talk to its underlying system.

As for testing, you probably will want to add more dependencies, such as those listed here:

<!-- ModeShape-related unit testing utilities and classes -->

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.4.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-connector-filesystem/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-connector-filesystem/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 4. Connector Framework

80

 <artifactId>modeshape-common</artifactId>

 <version>2.4.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<!-- Unit testing -->

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

Testing ModeShape connectors does not require a JCR repository or the ModeShape services.

(For more detail, see the testing section.) However, if you want to do integration testing with a JCR

repository and the ModeShape services, you'll need additional dependencies (e.g., modeshape-

repository and any other extensions).

Implementing a RepositorySource

81

At this point, your project should be set up correctly, and you're ready to move on to writing the

Java implementation for your connector.

4.3.2. Implementing a RepositorySource

As mentioned earlier, a connector consists of the Java code that is used to access content from

a system. Perhaps the most important class that makes up a connector is the implementation of

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html]. This class is analogous to JDBC's DataSource in that it is

instantiated to represent a single instance of a system that will be accessed, and it contains enough

information (in the form of JavaBean properties) so that it can create connections to the source.

Why is the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositorySource.html] implementation a JavaBean? Well, this is the class that

is instantiated, usually reflectively, and so a no-arg constructor is required. Using JavaBean

properties makes it possible to reflect upon the object's class to determine the properties that can

be set (using setters) and read (using getters). This means that an administrative application can

instantiate, configure, and manage the objects that represent the actual sources, without having

to know anything about the actual implementation.

So, your connector will need a public class that implements

RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] and provides JavaBean properties for any kind

of inputs or options required to establish a connection to and interact with

the underlying source. Most of the semantics of the class are defined by

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] and inherited interface. However, there are a few

characteristics that are worth mentioning here.

4.3.2.1. Workspaces

The previous chapter talked about how connector expose their information through the graph

language of ModeShape. This is true, except that we didn't dive into too much of the detail.

ModeShape graphs have the notion of workspaces in which the content appears, and its very

easy for clients using the graph to switch between workspaces. In fact, workspaces differ from

each other in that they provide different views of the same information.

Consider a source control system, like SVN or CVS. These systems provide different views of

the source code: a mainline development branch as well as other branches (or tags) commonly

used for releases. So, just like one source file might appear in the mainline branch as well as the

previous two release branches, a node in a repository source might appear in multiple workspaces.

However, each connector can kind of decide how (or whether) it uses workspaces. For example,

there may be no overlap in the content between workspaces. Or a connector might only expose

a single workspace (in other words, there's only one "default" workspace).

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 4. Connector Framework

82

4.3.2.2. Broadcasting events

When your RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositorySource.html] instance is put into the library within a running

ModeShape system, the initialize(RepositoryContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryContext.html]) method will be called on the instance. The

supplied RepositoryContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryContext.html] object represents the context in which

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositorySource.html] is running, and provides access to

an ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/ExecutionContext.html], a RepositoryConnectionFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnectionFactory.html] that can be used to obtain connections to other

sources, and an Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/Observer.html] of your source that should be called with events

describing the Changes [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/observe/Changes.html] being made within the source, either as a result

of ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html] operations being performed on this source, or as a result of

operations being performed on the content from outside the source.

4.3.2.3. Cache policy

Each connector is responsible for determining whether and how long ModeShape is to cache the

content made available by the connector. This is referred to as the caching policy, and consists of

a time to live value representing the number of milliseconds that a piece of data may be cached.

After the TTL has passed, the information is no longer used.

ModeShape allows a connector to use a flexible and powerful caching policy.

First, each connection returns the default caching policy for all information returned

by that connection. Often this policy can be configured via properties on

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] implementation. This is optional, meaning the connector can

return null if it does not wish to have a default caching policy.

Second, the connector is able to override its default caching policy on individual requests (which

we'll cover in the next section). Again, this is optional, meaning that a null caching policy on a

request implies that the request has no overridden caching policy.

Third, if the connector has no default caching policy and none is set on the individual requests,

ModeShape uses whatever caching policy is set up for that component using the connector. For

example, the federating connector allows a default caching policy to be specified, and this policy

is used should the sources being federated not define their own caching policy.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnectionFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html

Implementing a RepositorySource

83

In summary, a connector has total control over whether and for how long the information it provides

is cached.

Note

At this time, not every connector takes advantage of cache policies. However, it is

anticipated that this will change.

4.3.2.4. Leveraging JNDI

Sometimes it is necessary (or easier) for a RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html]

implementation to look up an object in JNDI. One example of this is the JBoss

Cache connector: while the connector can instantiate a new JBoss Cache instance,

more interesting use cases involve JBoss Cache instances that are set up for

clustering and replication, something that is generally difficult to configure in a single

JavaBean. Therefore the JBossCacheSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/connector/jbosscache/JBossCacheSource.html] has optional JavaBean

properties that define how it is to look up a JBoss Cache instance in JNDI.

This is a simple pattern that you may find useful in your connector. Basically, if your source

implementation can look up an object in JNDI, simply use a single JavaBean String property that

defines the full name that should be used to locate that object in JNDI. Usually it's best to include

"Jndi" in the JavaBean property name so that administrative users understand the purpose of the

property. (And some may suggest that any optional property also use the word "optional" in the

property name.)

4.3.2.5. Capabilities

Another characteristic of a RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/connector/RepositorySource.html] implementation is that it provides some

hint as to whether it supports several features. This is defined on the interface as a method that

returns a RepositorySourceCapabilities [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/connector/RepositorySourceCapabilities.html] object. This class currently

provides methods that say whether the connector supports updates, whether it supports same-

name-siblings (SNS), and whether the connector supports listeners and events.

Note that these may be hard-coded values, or the connector's response may be determined at

runtime by various factors. For example, a connector may interrogate the underlying system to

decide whether it can support updates.

The RepositorySourceCapabilities [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySourceCapabilities.html] can be used as is (the

class is immutable), or it can be subclassed to provide more complex behavior. It

is important, however, that the capabilities remain constant throughout the lifetime of

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceCapabilities.html

Chapter 4. Connector Framework

84

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] instance.

Note

Why a concrete class and not an interface? By using a concrete class, connectors

inherit the default behavior. If additional capabilities need to be added to the class

in future releases, connectors may not have to override the defaults. This provides

some insulation against future enhancements to the connector framework.

4.3.2.6. Security and authentication

As we'll see in the next section, the main method connectors have to process requests takes

an ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html], which contains the JAAS security information of the subject performing

the request. This means that the connector can use this to determine authentication and

authorization information for each request.

Sometimes that is not sufficient. For example, it may be that the connector needs

its own authorization information so that it can establish a connection (even if user-

level privileges still use the ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/ExecutionContext.html] provided with each request). In this case,

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] implementation will probably need JavaBean properties that

represent the connector's authentication information. This may take the form of a username and

password, or it may be properties that are used to delegate authentication to JAAS. Either way,

just realize that it's perfectly acceptable for the connector to require its own security properties.

4.3.3. Implementing a RepositoryConnection

One job of the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySource.html] implementation is to create connections

to the underlying sources. Connections are represented by classes that implement the

RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositoryConnection.html] interface, and creating this class is the next step in writing

a connector. This is what we'll cover in this section.

The RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] interface is pretty straightforward:

/**

 * A connection to a repository source.

 *

 * These connections need not support concurrent operations by multiple threads.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Implementing a RepositoryConnection

85

 */

@NotThreadSafe

public interface RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositoryConnection.html] {

 /**

 * Get the name for this repository source. This value should be the same as that returned

 * by the same RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySource.html] that created this connection.

 *

 * @return the identifier; never null or empty

 */

 String getSourceName();

 /**

 * Return the transactional resource associated with this connection. The transaction manager

 * will use this resource to manage the participation of this connection in a distributed transaction.

 *

 * @return the XA resource, or null if this connection is not aware of distributed transactions

 */

 XAResource getXAResource();

 /**

 * Ping the underlying system to determine if the connection is still valid and alive.

 *

 * @param time the length of time to wait before timing out

 * @param unit the time unit to use; may not be null

 * @return true if this connection is still valid and can still be used, or false otherwise

 * @throws InterruptedException if the thread has been interrupted during the operation

 */

 boolean ping(long time, TimeUnit [http://java.sun.com/javase/6/docs/api/java/util/concurrent/

TimeUnit.html] unit) throws InterruptedException;

 /**

 * Get the default cache policy for this repository. If none is provided, a global cache policy

 * will be used.

 *

 * @return the default cache policy

 */

 CachePolicy [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/cache/

CachePolicy.html] getDefaultCachePolicy();

 /**

 * Execute the supplied commands against this repository source.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/cache/CachePolicy.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/cache/CachePolicy.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/cache/CachePolicy.html

Chapter 4. Connector Framework

86

 *

 * @param context the environment in which the commands are being executed; never null

 * @param request the request to be executed; never null

 * @throws RepositorySourceException if there is a problem loading the node data

 */

 void execute(ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/ExecutionContext.html] context, Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] request)

 throws RepositorySourceException [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySourceException.html];

 /**

 * Close this connection to signal that it is no longer needed and that any accumulated

 * resources are to be released.

 */

 void close();

}

While most of these methods are straightforward, a few warrant additional information.

The ping(...) method allows ModeShape to check the connection to see if it is

alive. This method can be used in a variety of situations, ranging from verifying that

a RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html]'s JavaBean properties are correct to ensuring that a

connection is still alive before returning the connection from a connection pool.

The most important method on this interface, though, is the execute(...) method, which

serves as the mechanism by which the component using the connector access and

manipulates the content exposed by the connector. The first parameter to this method is

the ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html], which contains the information about environment as well as the subject

performing the request. This was discussed earlier.

The second parameter, however, represents a Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] that is to be processed

by the connector. Request objects can take many different forms, as there are different classes for

each kind of request (see the previous chapter for details). Each request contains the information

a connector needs to do the processing, and it also is the place where the connector places the

results (or the error, if one occurs).

A connector is technically free to implement the execute(...) method in any way, as long as

the semantics are maintained. But as discussed in the previous chapter, ModeShape provides

a RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/processor/RequestProcessor.html] class that can simplify writing your own connector and

at the same time help insulate your connector from new kinds of requests that may be added

in the future. The RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySourceException.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html

Implementing a RepositoryConnection

87

modeshape/graph/request/processor/RequestProcessor.html] is an abstract class that defines a

process(...) method for each concrete Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/Request.html] subclass. In other words, there is a

process(CompositeRequest) method, a process(ReadNodeRequest) method, and so on.

To use this in your connector, simply create a subclass of

RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/processor/RequestProcessor.html], overriding all of the abstract methods and optionally

overriding any of the other methods that have a default implementation.

Note

The RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/processor/RequestProcessor.html] abstract class

contains default implementations for quite a few of the process(...) methods,

and these will be sufficient but probably not efficient or optimum. If you can provide

a more efficient implementation given your source, feel free to do so. However,

if performance is not a big issue, all of the concrete methods will provide the

correct behavior. Keep things simple to start out - you can always provide better

implementations later.

Also, make sure your RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/processor/RequestProcessor.html] is properly broadcasting

the changes made during execution. The RequestProcessor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html]

class has a recordChange(ChangeRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html]) that

can be called from each of the process(...) methods that

take a ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/ChangeRequest.html]. The RequestProcessor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html]

enqueues these requests, and when the RequestProcessor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html] is

closed, the default implementation is to send a Changes [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html] to

the Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observer.html] supplied into the constructor.

Then, in your connector's execute(ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html], Request

[http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/

Request.html]) method, instantiate your RequestProcessor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html]

subclass and call its process(Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/Request.html]) method, passing in

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html

Chapter 4. Connector Framework

88

the execute(...) method's Request [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] parameter.

The RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/processor/RequestProcessor.html] will determine the appropriate method given the

actual Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/

Request.html] object and will then invoke that method:

public void execute(final ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/ExecutionContext.html] context,

 final Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/Request.html] request) throws RepositorySourceException {

 String sourceName = // from the RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html]

 Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

observe/Observer.html] observer = // from the RepositoryContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html]

 RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/request/processor/RequestProcessor.html] processor = new

 CustomRequestProcessor(sourceName,context,observer);

 try {

 processor.process(request);

 } finally {

 processor.close(); // sends the

 accumulated ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/ChangeRequest.html]s as a Changes [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html] to

 the Observer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/

Observer.html]

 }

}

If you do this, the bulk of your connector implementation may be in

the RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/processor/RequestProcessor.html] implementation methods. This not only is pretty

maintainable, it also lends itself to easier testing. And should any new request types be

added in the future, your connector may work just fine without any changes. In fact, if

the RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/processor/RequestProcessor.html] class can implement meaningful methods for those

new request types, your connector may "just work". Or, at least your connector will still be binary

compatible, even if your connector won't support any of the new features.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Changes.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/observe/Observer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html

Testing custom connectors

89

Finally, how should the connector handle exceptions? As mentioned above, each Request [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html] object

has a slot where the connector can set any exception encountered during processing. This

not only handles the exception, but in the case of CompositeRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CompositeRequest.html]s it also

correctly associates the problem with the request. However, it is perfectly acceptable to throw an

exception if the connection becomes invalid (e.g., there is a communication failure) or if a fatal

error would prevent subsequent requests from being processed.

4.3.4. Testing custom connectors

Testing connectors is not really that much different than testing other classes. Using mocks may

help to isolate your instances so you can create more unit tests that don't require the underlying

source system.

However, there may be times when you have to use the underlying source system in your tests.

If this is the case, we recommend using Maven integration tests, which run at a different point in

the Maven lifecycle. The benefit of using integration tests is that by convention they're able to rely

upon external systems. Plus, your unit tests don't become polluted with slow-running tests that

break if the external system is not available.

4.4. Summary

In this chapter, we covered all the aspects of ModeShape connectors, including the connector API,

how ModeShape's JCR implementation works with connectors, what connectors are available

(and how to use them), and how to write your own connector. So now that you know how to set

up and use ModeShape repositories, the next chapter describes the sequencing framework and

how to build your own custom sequencers. After that, we'll get into how to configure ModeShape

and use JCR.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CompositeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CompositeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/CompositeRequest.html

90

Chapter 5.

91

Sequencing framework
Many repositories are used (at least in part) to manage files and other artifacts, including service

definitions, policy files, images, media, documents, presentations, application components,

reusable libraries, configuration files, application installations, databases schemas, management

scripts, and so on. Unlocking the information buried within all of those files is what ModeShape

sequencing is all about. As files are loaded into the repository, you ModeShape instance can

automatically sequence these files to extract from their content meaningful information that can

be stored in the repository, where it can then be searched, accessed, and analyzed using the

JCR API.

5.1. Sequencers

Sequencers are just POJOs that implement a specific interface, and their job is to process a

stream of data (supplied by ModeShape) to extract meaningful content that usually takes the form

of a structured graph. Exactly what content is up to each sequencer implementation. For example,

ModeShape comes with an image sequencer that extracts the simple metadata from different

kinds of image files (e.g., JPEG, GIF, PNG, etc.). Another example is the Compact Node Definition

(CND) sequencer that processes the CND files to extract and produce a structured representation

of the node type definitions, property definitions, and child node definitions contained within the file.

Sequencers are configured to identify the kinds of nodes that the sequencers can work against.

When content in the repository changes, ModeShape looks to see which (if any) sequencers

might be able to run on the changed content. If any sequencer configurations do match, those

sequencers are run against the content, and the structured graph output of the sequencers is then

written back into the repository (at a location dictated by the sequencer configuration). And once

that information is in the repository, it can be easily found and accessed via the standard JCR API.

In other words, ModeShape uses sequencers to help you extract more meaning from the artifacts

you already are managing, and makes it much easier for applications to find and use all that

valuable information. All without your applications doing anything extra.

5.2. Stream Sequencers

The StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] interface defines the single method that must be implemented

by a sequencer:

public interface StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/sequencer/StreamSequencer.html] {

 /**

 * Sequence the data found in the supplied stream, placing the output

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html

Chapter 5. Sequencing framework

92

 * information into the supplied map.

 *

 * @param stream the stream with the data to be sequenced; never null

 * @param output the output from the sequencing operation; never null

 * @param context the context for the sequencing operation; never null

 */

 void sequence(InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html]

 stream, SequencerOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/sequencer/SequencerOutput.html] output, StreamSequencerContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

StreamSequencerContext.html] context);

}

A new instance is created for each sequencing operation, so there is no need for the

class to be synchronized or thread-safe. Additionally, when a sequencer configuration

includes properties (see configuring a sequencer), ModeShape will set those properties on

the StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] implementation using JavaBean-style setter methods. This

makes it easy to define sequencer-specific properties on the sequencer configurations, while

making it easy to implement with JavaBean-style setter methods.

Implementations are responsible for processing the content in the supplied

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] content and

generating structured content using the supplied SequencerOutput [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html] interface.

The StreamSequencerContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/sequencer/StreamSequencerContext.html] provides additional details about

the information that is being sequenced, including the location and properties of the node being

sequenced, the MIME type of the node being sequenced, and a Problems [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problems.html] object where the

sequencer can record problems that aren't severe enough to warrant throwing

an exception. The StreamSequencerContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/sequencer/StreamSequencerContext.html] also provides access

to the ValueFactories [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

property/ValueFactories.html] that can be used to create Path [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html], Name [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html], and any

other value objects.

The SequencerOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/SequencerOutput.html] interface is fairly easy to use, and its job is to hide from the

sequencer all the specifics about where the output is being written. Therefore, the interface has

only a few methods for implementations to call. Two methods set the property values on a node,

while the other sets references to other nodes in the repository. Use these methods to describe

the properties of the nodes you want to create, using relative paths for the nodes and valid JCR

http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problems.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/ValueFactories.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html

Stream Sequencers

93

property names for properties and references. ModeShape will ensure that nodes are created or

updated whenever they're needed.

public interface SequencerOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/sequencer/SequencerOutput.html] {

 /**

 * Set the supplied property on the supplied node. The allowable

 * values are any of the following:

 * - primitives (which will be autoboxed)

 * - String instances

 * - String arrays

 * - byte arrays

 * - InputStream instances

 * - Calendar instances

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param values the value(s) for the property; may be empty if

 * any existing property is to be removed

 */

 void setProperty(String nodePath, String property, Object... values);

 void setProperty(Path [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/property/Path.html] nodePath, Name [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/property/Name.html] property, Object... values);

 /**

 * Set the supplied reference on the supplied node.

 *

 * @param nodePath the path to the node containing the property;

 * may not be null

 * @param property the name of the property to be set

 * @param paths the paths to the referenced property, which may be

 * absolute paths or relative to the sequencer output node;

 * may be empty if any existing property is to be removed

 */

 void setReference(String nodePath, String property, String... paths);

}

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/SequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html

Chapter 5. Sequencing framework

94

Note

ModeShape will create nodes of type nt:unstructured unless you specify the

value for the jcr:primaryType property. You can also specify the values for the

jcr:mixinTypes property if you want to add mixins to any node.

5.3. Path Expressions

Each sequencer must be configured to describe the areas or types of content that the sequencer is

capable of handling. This is done by specifying these patterns using path expressions that identify

the nodes (or node patterns) that should be sequenced and where to store the output generated

by the sequencer. We'll see how to fully configure a sequencer in the next chapter, but before

then let's dive into path expressions in more detail.

A path expression consist of two parts: a selection criteria (or an input path) and an output path:

 inputPath => outputPath

The inputPath part defines an expression for the path of a node that is to be sequenced. Input

paths consist of '/' separated segments, where each segment represents a pattern for a single

node's name (including the same-name-sibling indexes) and '@' signifies a property name.

Let's first look at some simple examples:

Table 5.1. Simple Input Path Examples

Input Path Description

/a/b Match node "b" that is a child of the top level

node "a". Neither node may have any same-

name-sibilings.

/a/* Match any child node of the top level node

"a".

/a/*.txt Match any child node of the top level node "a"

that also has a name ending in ".txt".

/a/*.txt Match any child node of the top level node "a"

that also has a name ending in ".txt".

/a/b@c Match the property "c" of node "/a/b".

/a/b[2] The second child named "b" below the top

level node "a".

/a/b[2,3,4] The second, third or fourth child named "b"

below the top level node "a".

Path Expressions

95

Input Path Description

/a/b[*] Any (and every) child named "b" below the

top level node "a".

//a/b Any node named "b" that exists below a node

named "a", regardless of where node "a"

occurs. Again, neither node may have any

same-name-sibilings.

With these simple examples, you can probably discern the most important rules. First, the '*' is

a wildcard character that matches any character or sequence of characters in a node's name

(or index if appearing in between square brackets), and can be used in conjunction with other

characters (e.g., "*.txt").

Second, square brackets (i.e., '[' and ']') are used to match a node's same-name-sibiling index.

You can put a single non-negative number or a comma-separated list of non-negative numbers.

Use '0' to match a node that has no same-name-sibilings, or any positive number to match the

specific same-name-sibling.

Third, combining two delimiters (e.g., "//") matches any sequence of nodes, regardless of what

their names are or how many nodes. Often used with other patterns to identify nodes at any level

matching other patterns. Three or more sequential slash characters are treated as two.

Many input paths can be created using just these simple rules. However, input paths can be more

complicated. Here are some more examples:

Table 5.2. More Complex Input Path Examples

Input Path Description

/a/(b|c|d) Match children of the top level node "a" that

are named "b", "c" or "d". None of the nodes

may have same-name-sibling indexes.

/a/b[c/d] Match node "b" child of the top level node "a",

when node "b" has a child named "c", and

"c" has a child named "d". Node "b" is the

selected node, while nodes "c" and "d" are

used as criteria but are not selected.

/a(/(b|c|d|)/e)[f/g/@something] Match node "/a/b/e", "/a/c/e", "/a/d/

e", or "/a/e" when they also have a child

"f" that itself has a child "g" with property

"something". None of the nodes may have

same-name-sibling indexes.

These examples show a few more advanced rules. Parentheses (i.e., '(' and ')') can be used

to define a set of options for names, as shown in the first and third rules. Whatever part of the

selected node's path appears between the parentheses is captured for use within the output path.

Chapter 5. Sequencing framework

96

Thus, the first input path in the previous table would match node "/a/b", and "b" would be captured

and could be used within the output path using "$1", where the number used in the output path

identifies the parentheses.

Square brackets can also be used to specify criteria on a node's properties or children. Whatever

appears in between the square brackets does not appear in the selected node.

So far, we've talked about how input paths and output paths are independent of the repository and

workspace. However, there are times when it's desirable to configure sequencers to only work

against content in a specific source and/or specific workspace. In these cases, it is possible to

specify the repository name and workspace names before the path. For example:

Table 5.3. Input Paths with Source and Workspace Names

Input Path Description

source:default:/a/(b|c|d) Match nodes in the "default" workspace

within the "source" source that are children

of the top level node "a" and named "b", "c"

or "d". None of the nodes may have same-

name-sibling indexes.

:default:/a/(b|c|d) Match nodes in the "default" workspace

within any source source that are children

of the top level node "a" and named "b", "c"

or "d". None of the nodes may have same-

name-sibling indexes.

source::/a/(b|c|d) Match nodes in any workspace in the

"source" source that are children of the top

level node "a" and named "b", "c" or "d". None

of the nodes may have same-name-sibling

indexes.

::/a/(b|c|d) Match nodes in any within any source source

that are children of the top level node "a" and

named "b", "c" or "d". None of the nodes may

have same-name-sibling indexes. (This is

equivalent to the path "/a/(b|c|d)".)

Again, the rules are pretty straightforward. You can leave off the repository name and workspace

name, or you can prepend the path with "{sourceNamePattern}:{workspaceNamePattern}:",

where "{sourceNamePattern} is a regular-expression pattern used to match the applicable

source names, and "{workspaceNamePattern} is a regular-expression pattern used to match the

applicable workspace names. A blank pattern implies any match, and is a shorthand notation for

".*". Note that the repository names may not include forward slashes (e.g., '/') or colons (e.g., ':').

Let's go back to the previous code fragment and look at the first path expression:

Out-of-the-box Sequencers

97

 //(*.(jpg|jpeg|gif|bmp|pcx|png)[*])/jcr:content[@jcr:data] => /images/$1

This matches a node named "jcr:content" with property "jcr:data" but no siblings with the

same name, and that is a child of a node whose name ends with ".jpg", ".jpeg", ".gif", ".bmp",

".pcx", or ".png" that may have any same-name-sibling index. These nodes can appear at any

level in the repository. Note how the input path capture the filename (the segment containing the

file extension), including any same-name-sibling index. This filename is then used in the output

path, which is where the sequenced content is placed.

5.4. Out-of-the-box Sequencers

A number of sequencers are already available in ModeShape, and

are outlined in detail later in the document. Note that we do

want to build more sequencers [https://jira.jboss.org/jira/secure/IssueNavigator.jspa?

reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/

field=priority&resolution=-1&component=12311441] in the upcoming releases.

5.5. Creating Custom Sequencers

The current release of ModeShape comes with eleven sequencers. However, it's very easy

to create your own sequencers and to then configure ModeShape to use them in your own

application.

Creating a custom sequencer involves the following steps:

1. Create a Maven 3 project for your sequencer;

2. Implement the StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/sequencer/StreamSequencer.html] interface with your own implementation,

and create unit tests to verify the functionality and expected behavior;

3. Add the sequencer configuration to the ModeShape SequencingService [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/

SequencingService.html] in your application as described in the previous chapter; and

4. Deploy the JAR file with your implementation (as well as any dependencies), and make them

available to ModeShape in your application.

It's that simple.

5.5.1. Creating the Maven 3 project

The first step is to create the Maven 3 project that you can use to compile your code and build

the JARs. Maven 3 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 3, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
https://jira.jboss.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310520&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311441
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/SequencingService.html

Chapter 5. Sequencing framework

98

Note

ModeShape may provide in the future a Maven archetype for creating sequencer

projects. If you'd find this useful and would like to help create it, please join the

community.

In lieu of a Maven archetype, you may find it easier to start with a small

existing sequencer project. The modeshape-sequencer-images project is a

small, self-contained sequencer implementation that has only the minimal

dependencies. See the Git repository: http://github.com/ModeShape/modeshape//

tree/modeshape-2.6.0.Beta2/extensions/modeshape-sequencer-images/

You can create your Maven project any way you'd like. For examples,

see the Maven 3 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.4.0.Final</version>

</dependency>

These are minimum dependencies required for compiling a sequencer. Of course, you'll have to

add other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed here:

<!-- ModeShape-related unit testing utilities and classes -->

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.4.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-common</artifactId>

http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-sequencer-images/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-sequencer-images/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Creating the Maven 3 project

99

 <version>2.4.0.Final</version>

 <type>test-jar</type>

 <scope>test</scope>

</dependency>

<!-- Unit testing -->

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

Testing ModeShape sequencers does not require a JCR repository or the ModeShape services.

(For more detail, see the testing section.) However, if you want to do integration testing with a JCR

repository and the ModeShape services, you'll need additional dependencies for these libraries.

<!-- ModeShape JCR Repository -->

Chapter 5. Sequencing framework

100

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>2.4.0.Final</version>

 <scope>test</scope>

</dependency>

<!-- Java Content Repository API -->

<dependency>

 <groupId>javax.jcr</groupId>

 <artifactId>jcr</artifactId>

 <version>2.0</version>

 <scope>test</scope>

</dependency>

At this point, your project should be set up correctly, and you're ready to move on to write your

custom implementation of the StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/sequencer/StreamSequencer.html] interface. As stated earlier, this

should be fairly straightforward: process the stream and generate the output that's appropriate for

the kind of file being sequenced.

Let's look at an example. Here is the complete code for the

ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

sequencer/image/ImageMetadataSequencer.html] implementation:

public class ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/image/ImageMetadataSequencer.html] implements StreamSequencer

 [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

StreamSequencer.html] {

 /**

 * {@inheritDoc}

 *

 * @see StreamSequencer#sequence(InputStream, SequencerOutput,

 StreamSequencerContext)

 */

 public void sequence(InputStream stream,

 SequencerOutput output,

 StreamSequencerContext context) {

 ImageMetadata metadata = new ImageMetadata();

 metadata.setInput(stream);

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html

Creating the Maven 3 project

101

 metadata.setDetermineImageNumber(true);

 metadata.setCollectComments(true);

 // Process the image stream and extract the metadata ...

 if (!metadata.check()) {

 metadata = null;

 }

 // Generate the output graph if we found useful metadata ...

 if (metadata != null) {

 PathFactory pathFactory = context.getValueFactories().getPathFactory();

 Path metadataNode =

 pathFactory.createRelativePath(ImageMetadataLexicon.METADATA_NODE);

 // Place the image metadata into the output map ...

 output.setProperty(metadataNode, JcrLexicon.PRIMARY_TYPE, "image:metadata");

 // output.psetProperty(metadataNode, nameFactory.create(IMAGE_MIXINS), "");

 output.setProperty(metadataNode, JcrLexicon.MIMETYPE, metadata.getMimeType());

 // output.setProperty(metadataNode, nameFactory.create(IMAGE_ENCODING), "");

 output.setProperty(metadataNode, ImageMetadataLexicon.FORMAT_NAME,

 metadata.getFormatName());

 output.setProperty(metadataNode, ImageMetadataLexicon.WIDTH, metadata.getWidth());

 output.setProperty(metadataNode, ImageMetadataLexicon.HEIGHT, metadata.getHeight());

 output.setProperty(metadataNode, ImageMetadataLexicon.BITS_PER_PIXEL,

 metadata.getBitsPerPixel());

 output.setProperty(metadataNode, ImageMetadataLexicon.PROGRESSIVE,

 metadata.isProgressive());

 output.setProperty(metadataNode, ImageMetadataLexicon.NUMBER_OF_IMAGES,

 metadata.getNumberOfImages());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_WIDTH_DPI,

 metadata.getPhysicalWidthDpi());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_HEIGHT_DPI,

 metadata.getPhysicalHeightDpi());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_WIDTH_INCHES,

 metadata.getPhysicalWidthInch());

 output.setProperty(metadataNode, ImageMetadataLexicon.PHYSICAL_HEIGHT_INCHES,

 metadata.getPhysicalHeightInch());

 }

 }

}

where the ImageMetadataLexicon [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/image/ImageMetadataLexicon.html] class contains the Name [http://

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html

Chapter 5. Sequencing framework

102

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html]

constants and is defined as:

 /**

 * A lexicon of names used within the image sequencer.

 */

 @Immutable

 public class ImageMetadataLexicon [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/image/ImageMetadataLexicon.html] {

 public static class Namespace {

 public static final String URI = "http://www.modeshape.org/images/1.0";

 public static final String PREFIX = "image";

 }

 public static final Name METADATA_NODE = new BasicName(Namespace.URI, "metadata");

 public static final Name FORMAT_NAME = new BasicName(Namespace.URI, "formatName");

 public static final Name WIDTH = new BasicName(Namespace.URI, "width");

 public static final Name HEIGHT = new BasicName(Namespace.URI, "height");

 public static final Name BITS_PER_PIXEL = new BasicName(Namespace.URI, "bitsPerPixel");

 public static final Name PROGRESSIVE = new BasicName(Namespace.URI, "progressive");

 public static final Name NUMBER_OF_IMAGES = new BasicName(Namespace.URI,

 "numberOfImages");

 public static final Name PHYSICAL_WIDTH_DPI = new BasicName(Namespace.URI,

 "physicalWidthDpi");

 public static final Name PHYSICAL_HEIGHT_DPI = new BasicName(Namespace.URI,

 "physicalHeightDpi");

 public static final Name PHYSICAL_WIDTH_INCHES = new BasicName(Namespace.URI,

 "physicalWidthInches");

 public static final Name PHYSICAL_HEIGHT_INCHES = new BasicName(Namespace.URI,

 "physicalHeightInches");

 }

Notice how the image metadata is extracted and the output graph is generated. A single node

is created with the name image:metadata and with the image:metadata node type. No mixins

are defined for the node, but several properties are set on the node using the values obtained

from the image metadata. After this method returns, the constructed graph will be saved to the

repository in all of the places defined by its configuration. (This is why only relative paths are used

in the sequencer.)

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Name.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataLexicon.html

Testing custom sequencers

103

5.5.2. Testing custom sequencers

The sequencing framework was designed to make testing sequencers much easier. In particular,

the StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] interface does not make use of the JCR API. So instead of

requiring a fully-configured JCR repository and ModeShape system, unit tests for a sequencer can

focus on testing that the content is processed correctly and the desired output graph is generated.

Note

For a complete example of a sequencer unit test,

see the ImageMetadataSequencerTest unit test in the

org.modeshape.sequencer.images package of the modeshape-sequencers-

image project.

The following code fragment shows one way of testing a sequencer, using JUnit 4.4 assertions

and some of the classes made available by ModeShape. Of course, this example code does not

do any error handling and does not make all the assertions a real test would.

StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] sequencer = new ImageMetadataSequencer [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/

ImageMetadataSequencer.html]();

MockSequencerOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/MockSequencerOutput.html] output = new MockSequencerOutput [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

MockSequencerOutput.html]();

MockSequencerContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/sequencer/MockSequencerContext.html] context = new MockSequencerContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

MockSequencerContext.html]();

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream = null;

try {

 stream = this.getClass().getClassLoader().getResource("caution.gif").openStream();

 sequencer.sequence(stream,output,context); // writes to 'output'

 assertThat(output.getPropertyValues("image:metadata", "jcr:primaryType"),

 is(new Object[] {"image:metadata"}));

 assertThat(output.getPropertyValues("image:metadata", "jcr:mimeType"),

 is(new Object[] {"image/gif"}));

 // ... make more assertions here

 assertThat(output.hasReferences(), is(false));

} finally {

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html

Chapter 5. Sequencing framework

104

 stream.close();

}

It's also useful to test that a sequencer produces no output for something it should not understand:

Sequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/

sequencer/Sequencer.html] sequencer = new ImageMetadataSequencer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/

ImageMetadataSequencer.html]();

MockSequencerOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/MockSequencerOutput.html] output = new MockSequencerOutput [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

MockSequencerOutput.html]();

MockSequencerContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/sequencer/MockSequencerContext.html] context = new MockSequencerContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/

MockSequencerContext.html]();

InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] stream = null;

try {

 stream = this.getClass().getClassLoader().getResource("caution.pict").openStream();

 sequencer.sequence(stream,output,context); // writes to 'output'

 assertThat(output.hasProperties(), is(false));

 assertThat(output.hasReferences(), is(false));

} finally {

 stream.close();

}

These are just two simple tests that show ways of testing a sequencer. Some tests may get quite

involved, especially if a lot of output data is produced.

It may also be useful to create some integration tests that configure ModeShape to use a custom

sequencer, and to then upload content using the JCR API, verifying that the custom sequencer did

run. However, remember that ModeShape runs sequencers asynchronously in the background,

and you must synchronize your tests to ensure that the sequencers have a chance to run before

checking the results.

5.6. Summary

In this chapter, we described how ModeShape sequences files as they're uploaded into a

repository. We've also learned in previous chapters about the ModeShape execution contexts,

graph model, and connectors. In the next part we'll put all these pieces together to learn how to

set up a ModeShape repository and access it using the JCR API.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/sequencer/Sequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/MockSequencerContext.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html

Part II. ModeShape JCR
The ModeShape project provides an implementation of the JCR 2.0 API [http://www.jcp.org/en/

jsr/detail?id=283], which is built on top of the core libraries discussed earlier. This implementation

as well as a number of JCR-related components are described in this part of the document. But

before talking about how to use the JCR API with a ModeShape repository, first we need to show

how to set up a ModeShape engine.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 6.

107

Configuration
Using ModeShape within your application is actually quite straightforward, and with JCR 2.0 it is

possible for your application to do everything using only the JCR 2.0 API. Your application will

first obtain a javax.jcr.Repository instance, and will use that object to create sessions through

which your application will read, modify, search, or monitor content in the repository.

However, before you can use ModeShape, you need to configure it, and that's what this chapter

covers.

6.1. Configuring ModeShape

There really are three options:

• Load from a file is conceptually the most straightforward and requires the least amount of

Java code, but it does requires having a configuration file. This is easy, allows one to manage

configurations in version control, enables your application to use only the standard JCR API,

and will likely be the best approach for most applications. If you're not sure, use this approach.

• Programmatic configuration allows an application to define and edit a configuration using

Java code. This is useful when you cannot pre-define your configuration, or when you want to

start with a baseline configuration, make programmatic changes based upon some inputs or

preferences, and then save the configuration to a file. However, this requires that you write your

application directly against ModeShape-specific interfaces and class.

• Load from a configuration repository is an advanced technique that

allows multiple JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrEngine.html] instances (usually in different processes perhaps on different machines) to

easily access a (shared) configuration.

Each of these approaches has their obvious advantages, so the choice of which one to use is

entirely up to you.

6.1.1. Configuration Files

By far the easiest approach to defining your ModeShape configuration is to use a configuration

file. As mentioned above, you'll want to do this if your application uses the standard and

implementation-independent RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] mechanism to obtain the JCR Repository [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] reference.

Here is an example configuration file used in the repository example covered in

the Getting Started [http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/

index.html] document, though it has been slightly simplified for clarity):

<?xml version="1.0" encoding="UTF-8"?>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html

Chapter 6. Configuration

108

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the JCR repositories

 -->

 <mode:repositories>

 <!--

 Define a JCR repository that accesses the 'Cars' source directly.

 This of course is optional, since we could access the same content through 'vehicles'.

 -->

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <mode:option jcr:name="jaasLoginConfigName" mode:value="modeshape-jcr"/>

 </mode:options>

 <mode:descriptors>

 <!--

 This adds a JCR Repository descriptor named "myDescriptor" with a value of "foo".

 So this code:

 Repository repo = ...;

 System.out.println(repo.getDescriptor("myDescriptor");

 Will now print out "foo".

 -->

 <myDescriptor mode:value="foo" />

 </mode:descriptors>

 <!--

 Import the custom node types defined in the named files. The values

 can be an absolute path to a classpath resource, an absolute file system

 path, a relative path on the file system (relative to where the process was

 started from), or a resolvable URL. If more than one node type definition

 file is needed, the files can be listed as a single comma-delimited string

 in the 'mode:resource' attribute of the 'jcr:nodeTypes' element, or listed

 individually using multiple mode:resource child elements (as shown below).

 -->

 <jcr:nodeTypes>

 <mode:resource>/org/example/my-node-types.cnd</mode:resource>

 <mode:resource>/org/example/additional-node-types.cnd</mode:resource>

 </jcr:nodeTypes>

 </mode:repository>

 </mode:repositories>

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API.

 -->

Programmatic Configuration

109

 <mode:sources jcr:primaryType="nt:unstructured">

 <mode:source jcr:name="Cars"

 mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySource"

 mode:retryLimit="3" mode:defaultWorkspaceName="workspace1">

 <mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!--

 Define the sequencers. This is an optional section. For this example, we're not using any

 sequencers.

 -->

 <mode:sequencers>

 <!--mode:sequencer jcr:name="Image Sequencer">

 <mode:classname>

 org.modeshape.sequencer.image.ImageMetadataSequencer

 </mode:classname>

 <mode:description>Image metadata sequencer</mode:description>

 <mode:pathExpression>/foo/source => /foo/target</mode:pathExpression>

 <mode:pathExpression>/bar/source => /bar/target</mode:pathExpression>

 </mode:sequencer-->

 </mode:sequencers>

 <mode:mimeTypeDetectors>

 <mode:mimeTypeDetector jcr:name="Detector"

 mode:description="Standard extension-based MIME type detector"/>

 </mode:mimeTypeDetectors>

</configuration>

6.1.2. Programmatic Configuration

Most likely you'll define your configuration in a file. But there are some situations where it's far

easier - even necessary - to programmatically configure ModeShape. For example, you may not

be able to predefine a configuration, because it needs parameters and information known only

at runtime.

One obvious approach is to write code that takes this new information and generates a

ModeShape configuration file. The challenge here is that a sizable amount of code may be

required just to write out the XML file in the correct format.

Perhaps an easier approach is to use the ModeShape JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] class to programmatically

construct the configuration, and then have it write the configuration out to a file. You can

even load a starting configuration, programmatically modify it, and write it out to a file.

From there, your application can use the standard and implementation-independent JCR API

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 6. Configuration

110

to find and use the Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instances.

The JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrConfiguration.html] class is used by ModeShape to read in the configuration files, but it was

also designed to have an easy-to-use API that makes it easy to configure each of the different

kinds of components, especially when using an IDE with code completion. The next few sections

describe how to configure the various parts of a ModeShape configuration.

6.1.2.1. Repository Sources

Each repository source definition must include the name of

the RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html] class as well as each bean property that should be set on the

object:

JcrConfiguration config = ...

config.repositorySource("source A")

 .usingClass(InMemoryRepositorySource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", workspaceName);

This example defines an in-memory source with the name "source

A", a description, and a single "defaultWorkspaceName" bean property.

Different RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositorySource.html] implementations will the bean properties that are

required and optional. Of course, the class can be specified as Class reference or a string (followed

by whether the class should be loaded from the classpath or from a specific classpath).

Note

Each time repositorySource(String) is called, it will either load the existing

definition with the supplied name or will create a new definition if one does

not already exist. To remove a definition, simply call remove() on the result of

repositorySource(String). The set of existing definitions can be accessed with

the repositorySources() method.

6.1.2.2. Repositories

Each repository must be defined to use a named repository source, but all other aspects (e.g.,

namespaces, node types, options) are optional.

JcrConfiguration config = ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html

Programmatic Configuration

111

config.repository("repository A")

 .addNodeTypes("myCustomNodeTypes.cnd") // can be called multiple times

 .setSource("source 1")

 .registerNamespace("acme","http://www.example.com/acme")

 .setOption(JcrRepository.Option.JAAS_LOGIN_CONFIG_NAME, "modeshape-jcr");

This example defines a repository that uses the "source 1" repository source (which could be a

federated source, an in-memory source, a database store, or any other source). Additionally, this

example adds the node types in the "myCustomNodeTypes.cnd" file as those that will be made

available when the repository is accessed. It also defines the "http://www.example.com/acme"

namespace, and finally sets the "JAAS_LOGIN_CONFIG_NAME" option to define the name of

the JAAS login configuration that should be used by the ModeShape repository.

Note

Each time repository(String) is called, it will either load the existing definition

with the supplied name or will create a new definition if one does not already exist.

To remove a definition, simply call remove() on the result of repository(String).

The set of existing definitions can be accessed with the repositories() method.

6.1.2.3. Sequencers

Each defined sequencer must specify the name of the

StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] implementation class as well as the path expressions defining

which nodes should be sequenced and the output paths defining where the sequencer output

should be placed (often as a function of the input path expression).

JcrConfiguration config = ...

config.sequencer("Image Sequencer")

 .usingClass("org.modeshape.sequencer.image.ImageMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences image files to extract the characteristics of the image")

 .sequencingFrom("//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd)[*])/

jcr:content[@jcr:data]")

 .andOutputtingTo("/images/$1");

This shows an example of a sequencer definition named "Image Sequencer"

that uses the ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/image/ImageMetadataSequencer.html] class (loaded from the classpath),

that is to sequence the "jcr:data" property on any new or changed nodes that are named

"jcr:content" below a parent node with a name ending in ".jpg", ".jpeg", ".gif", ".bmp", ".pcx", ".iff",

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html

Chapter 6. Configuration

112

".ras", ".pbm", ".pgm", ".ppm" or ".psd". The output of the sequencing operation should be placed

at the "/images/$1" node, where the "$1" value is captured as the name of the parent node. (The

capture groups work the same way as regular expressions.) Of course, the class can be specified

as Class reference or a string (followed by whether the class should be loaded from the classpath

or from a specific classpath).

Note

Each time sequencer(String) is called, it will either load the existing definition

with the supplied name or will create a new definition if one does not already exist.

To remove a definition, simply call remove() on the result of sequencer(String).

The set of existing definitions can be accessed with the sequencers() method.

Note that in addition to including a description for the configuration, it is also possible to

set sequencer-specific properties using the setProperty(String,String[]) method. When

ModeShape uses this configuration to set up a sequencing operation, it will instantiate

the StreamSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

sequencer/StreamSequencer.html] class and will call a JavaBean-style setter method for each

property. For example, calling setProperty("foo","val1") on the sequencer configuration

will mean that ModeShape will instantiate the sequencer implementation and will look for a

setFoo(String) method on the sequencer implementation class, and use that method (if found)

to pass the "val1" value to the instance.

6.1.2.4. MIME Type Detectors

Each defined MIME type detector must specify the name of

the MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] implementation class as well as any other bean properties

required by the implementation.

JcrConfiguration config = ...

config.mimeTypeDetector("Extension Detector")

 .usingClass(org.modeshape.graph.mimetype.ExtensionBasedMimeTypeDetector.class);

Of course, the class can be specified as Class reference or a string (followed by whether the class

should be loaded from the classpath or from a specific classpath).

Note

Each time mimeTypeDetector(String) is called, it will either load the existing

definition with the supplied name or will create a new definition if one does

not already exist. To remove a definition, simply call remove() on the result of

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/sequencer/StreamSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html

Loading from a Configuration Repository

113

mimeTypeDetector(String). The set of existing definitions can be accessed with

the mimeTypeDetectors() method.

6.1.2.5. Storing Configuration

Regardless of how the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html] is loaded, it can also be stored to a file or stream in an XML

format that can then be reloaded in the future to recreate the configuration. This makes it very

easy to programmatically generate a configuration file once while being able to load that same

configuration at a later time (or on a different instance).

JcrConfiguration config = ...

String pathToFile = ...

// Save any changes before this point in the configuration repository ...

configuration.save();

// And now write out the configuration repository to a file ...

configuration.storeTo(pathToFile);

This will create a file at pathToFile that contains the current configuration in XML format. Any

changes made after the most recent call to the save() method on the JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] object will

not be saved in the configuration repository, and thus will not be in the generated file. The

generated XML will not be formatted, so it may be a bit hard to read. (Any good XML editor will

be able to format it for readability.)

6.1.3. Loading from a Configuration Repository

So far, we've seen how to load a configuration from a file, how to programmatically define a

configuration and write it out to a file. In this section, we'll see how ModeShape can load its

configuration from another repository.

Note

This really is a very advanced way to define your configuration, so this is

recommended only for those that are already very comfortable with ModeShape

and its lower-level graph API and connector API.

The first step is to create and configure the RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html] instance

that we'll use to access the repository where the configuration is stored. Then,

create a JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrConfiguration.html] instance and load from this source:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 6. Configuration

114

RepositorySource configSource = ...

JcrConfiguration config = new JcrConfiguration();

configuration.loadFrom(configSource);

The loadFrom(...) method can be called any number of times, but each time it is called it

completely wipes out any current notion of the configuration and replaces it with the configuration

found in the file.

There is an optional second parameter that defines the name of the workspace in the supplied

source where the configuration content can be found. It is not needed if the workspace is the

source's default workspace. There is an optional third parameter that defines the Path [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html] within the

configuration repository identifying the parent node of the various configuration nodes. If not

specified, it assumes "/". This makes it possible for the configuration content to be located at a

different location in the hierarchical structure. (This is not often required, but it is very useful if you

ModeShape configuration file is embedded within another XML file.)

Once the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/JcrConfiguration.html] has been loaded from a

RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

connector/RepositorySource.html], the JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance can be used to

modify the configuration and then save those changes back to the repository. This technique can

be used to place a configuration into a repository (such as a database) for the first time:

RepositorySource configSource = ... // a RepositorySource to an empty source

JcrConfiguration config = new JcrConfiguration();

// Bind the configuration to the repository source (which is initially empty)...

configuration.loadFrom(configSource);

// Now load a configuration from a file (or construct one programmatically) ...

String pathToFile = ...

configuration.loadFrom(pathToFile);

// Now save the configuration into the source ...

configuration.save();

Now you can load this configuration in multiple processes, using the approach mentioned above.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

JCR Repository options

115

6.2. JCR Repository options

ModeShape JCR repositories have a number of behaviors that can be controlled from within the

configuration. These are known as repository options, and all have sensible defaults. However,

they do allow you to better configure the JCR repository instances to best suit your needs.

As mentioned earlier, these options can be set programmatically or within the configuration file.

When setting up the configuration programmatically, the actual enum literal values must be used,

and all values are String literals:

JcrConfiguration config = ...

config.repository("repository A")

 .setOption(JcrRepository.Option.JAAS_LOGIN_CONFIG_NAME, "modeshape-jcr");

When using a configuration file, you set the option within the "mode:options" fragment under the

"mode:repository" section. Each option fragment typically looks something like this:

<mode:option jcr:name="jaasLoginConfigName" mode:value="modeshape-jcr"/>

where the "jcr:name" XML attribute value contains the lower-camel-case form of the option literal,

and the "mode:value" XML attribute value contains the repository option value. In the example

above, the "jaasLoginConfigName" is the option name, and "modeshape-jcr" is the option value.

An alternative representation is to set the name using the XML element name and set the primary

type with an XML attribute. Thus, this fragment is equivalent to the previous listing:

<jaasLoginConfigName jcr:primaryType="mode:option" mode:value="modeshape-jcr"/>

The following table describes all of the current repository options.

Table 6.1. JCR Repository Options

Option Description

jaasLoginConfigName The JAAS JAAS application configuration

name [http://java.sun.com/javase/6/

docs/api/javax/security/auth/login/

Configuration.html] that specifies which

login module should be used to validate

credentials. By default, "modeshape-jcr" is

used. Set the option with an empty (zero-

length) value to completely turn off JAAS

authentication (see the Built-In Providers

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html

Chapter 6. Configuration

116

Option Description

section for details). The enumeration literal

is Option.JAAS_LOGIN_CONFIG_NAME

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#JAAS_LOGIN_CONFIG_NAME]

systemSourceName The name of the source (and optionally

the workspace in the source) where the "/

jcr:system" branch should be stored. The

format is "name of workspace@name of

source", or simply "name of source" if the

default workspace is to be used. If this option

is not used, a transient in-memory source

will be used. Note that all leading and trailing

whitespaces is removed for both the source

name and workspace name. Thus, a value of

"@" implies a zero-length workspace name

and zero-length source name. Also, any use

of the '@' character in source and workspace

names must be escaped with a preceding

backslash.

The enumeration literal is

Option.SYSTEM_SOURCE_NAME [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#SYSTEM_SOURCE_NAME]

anonymousUserRoles A comma-delimited list of default roles

provided for anonymous access. A

null or empty value for this option

means that anonymous access is

disabled. The enumeration literal is

Option.ANONYMOUS_USER_ROLES [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#ANONYMOUS_USER_ROLES]

exposeWorksapceNamesInDescription A boolean flag that indicates whether a

complete list of workspace names should be

exposed in the custom repository descriptor

"org.modeshape.jcr.api.Repository.REPOSITORY_WORKSPACES".

If this option is set to true, then any code

that can access the repository can retrieve

a complete list of workspace names through

the javax.jcr.Repository.getDescriptor(String)

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#JAAS_LOGIN_CONFIG_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#JAAS_LOGIN_CONFIG_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#JAAS_LOGIN_CONFIG_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#JAAS_LOGIN_CONFIG_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#SYSTEM_SOURCE_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#SYSTEM_SOURCE_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#SYSTEM_SOURCE_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#SYSTEM_SOURCE_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#SYSTEM_SOURCE_NAME
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#ANONYMOUS_USER_ROLES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#ANONYMOUS_USER_ROLES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#ANONYMOUS_USER_ROLES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#ANONYMOUS_USER_ROLES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#ANONYMOUS_USER_ROLES

JCR Repository options

117

Option Description

method without logging in. The default

value is 'true', meaning that the descriptor is

populated.

Since some ModeShape installations

may consider the list of workspace names

to be restricted information and limit

the ability of some or all users to see a

complete list of workspace names, this

option can be set to "false" to disable this

capability. If this option is set to "false", the

"org.modeshape.jcr.api.Repository.REPOSITORY_WORKSPACES"

descriptor will not be set.

The enumeration literal is

Option.EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR]

repositoryJndiLocation A string property that when specified tells

the JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrEngine.html] where to put the

Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] in JNDI. Assumes that

you have write access to the JNDI tree. If

no value set, then the Repository [http://

www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html] will not be

bound to JNDI. The enumeration literal is

Option.REPOSITORY_JNDI_LOCATION

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#REPOSITORY_JNDI_LOCATION]

queryExecutionEnabled A boolean flag that specifies whether

this repository is expected to execute

searches and queries. If client applications

will never perform searches or queries,

then maintaining the query indexes is an

unnecessary overhead, and can be disabled.

Note that this is merely a hint, and that

searches and queries might still work when

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REPOSITORY_JNDI_LOCATION
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REPOSITORY_JNDI_LOCATION
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REPOSITORY_JNDI_LOCATION
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REPOSITORY_JNDI_LOCATION

Chapter 6. Configuration

118

Option Description

this is set to 'false'. The default is 'true',

meaning that clients can execute searches

and queries. The enumeration literal is

Option.QUERY_EXECUTION_ENABLED

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#QUERY_EXECUTION_ENABLED]

queryIndexDirectory The system may maintain a set of indexes

that improve the performance of searching

and querying the content. These size of

these indexes depend upon the size of the

content being stored, and thus may consume

a significant amount of space. This option

defines a location on the file system where

this repository may (if needed) store indexes

so they don't consume large amounts of

memory.

If specified, the value must be a valid path

to a writable directory on the file system. If

the path specifies a non-existant location,

the repository may attempt to create the

missing directories. The path may be absolute

or relative to the location where this VM

was started. If the specified location is not a

readable and writable directory (or cannot be

created as such), then this will generate an

exception when the repository is created.

The default value is null, meaning the search

indexes may not be stored on the local file

system and, if needed, will be stored within

memory.

The enumeration literal is

Option.QUERY_INDEX_DIRECTORY [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#QUERY_INDEX_DIRECTORY]

queryIndexesUpdatedSynchronously An advanced boolean flag that specifies

whether updates to the indexes (if used)

should be made synchronously, meaning that

a call to Session.save() will not return until

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_EXECUTION_ENABLED
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_EXECUTION_ENABLED
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_EXECUTION_ENABLED
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_EXECUTION_ENABLED
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEX_DIRECTORY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEX_DIRECTORY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEX_DIRECTORY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEX_DIRECTORY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEX_DIRECTORY

JCR Repository options

119

Option Description

the search indexes have been completely

updated. The benefit of synchronous

updates is that a search or query performed

immediately after a save() will operate upon

content that was just changed. The downside

is that the save() operation will take longer.

With asynchronous updates, however, the

only work done during a save() invocation

is that required to persist the changes in the

underlying repository source, while changes

to the search indexes are made in a different

thread that may not run immediately. In this

case, there may be an indeterminate lag

before searching or querying after a save()

will operate upon the changed content.

The default is value 'false', meaning the

updates are performed asynchronously.

The enumeration literal is

Option.QUERY_INDEXES_UPDATED_SYNCHRONOUSLY

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#QUERY_INDEXES_UPDATED_SYNCHRONOUSLY]

queryIndexesRebuiltSynchronously An advanced boolean flag that specifies

whether the indexes should be rebuilt

synchronously when the repository restarts. If

this flag is set to 'true', query indexes for each

workspace in the repository will be rebuilt

synchronously the first time that the repository

is accessed (e.g., at the first login). If this flag

is set to 'false', the query indexes for each

workspace in the repository will be rebuilt

asynchronously.

Rebuilding the indexes synchronously

can cause very significant latency in the

initial repository access if the repository

contains a significant amount of content that

must be reindexed. Updating the indexes

asynchronously eliminates this latency, but

repository queries may generate inconsistent

results while the indexes are being updated.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_UPDATED_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_UPDATED_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_UPDATED_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_UPDATED_SYNCHRONOUSLY

Chapter 6. Configuration

120

Option Description

That is, query results may refer to content that

is no longer in the repository or may fail to

include appropriate results for nodes that had

been added to the repository.

The default is value 'true', meaning the

rebuilds are performed synchronously.

The enumeration literal is

Option.QUERY_INDEXES_REBUILT_SYNCHRONOUSLY

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY]

rebuildQueryIndexOnStartup An advanced setting that specifies the

strategy used to determine which query

indexes need to be rebuilt when the

repository restarts. ModeShape currently

supports two strategies:

• A value of "always" dictates that the query

index for every workspace in the repository

will be rebuilt each time that the repository

restarts. This can sharply increase the

startup time for the repository, particularly if

the queryIndexesRebuiltSynchronously

option is set to 'true' (the default).

However, this strategy ensures that any

repository content that was modified

outside of the repository (e.g., files in a

FileSystemSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/

modeshape/connector/filesystem/

FileSystemSource.html] that were directly

modified on the file system) are properly

indexed.

• A value of "ifMissing" indicates that

indexes should only be rebuilt if they

do not currently exist or are obviously

invalid. This strategy is always the most

appropriate strategy for non-clustered

repositories with repository sources that

provide exclusive control over content

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html

JCR Repository options

121

Option Description

(e.g., the InfinispanSource [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/connector/

infinispan/InfinispanSource.html],

the JpaSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/

modeshape/connector/store/jpa/

JpaSource.html]) as it greatly reduces

repository startup time for repositories with

significant amounts of content.

Note that repositories that do not configure

the queryIndexDirectory option will always

use an in-memory index. This type of index

will not be persisted across repository restarts

and will require ModeShape to rebuild the

indexes each time the repository starts up

even if the "ifMissing" strategy is specified.

The "always" strategy is used by default

and in cases where the option's value does

not case-independently match the one of

these two values. This was the only strategy

available prior to ModeShape 2.5.0.Beta3.

The enumeration literal is

Option.QUERY_INDEXES_REBUILT_SYNCHRONOUSLY

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY],

and the values are

RebuildQueryIndexOnStartupOption.ALWAYS

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.RebuildQueryIndexOnStartupOption.html#ALWAYS]

and

RebuildQueryIndexOnStartupOption.IF_MISSING

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.RebuildQueryIndexOnStartupOption.html#IF_MISSING]

projectNodeTypes An advanced boolean flag that defines

whether or not the node types should be

exposed as content under the "/jcr:system/

jcr:nodeTypes" node. Value is either "true"

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#QUERY_INDEXES_REBUILT_SYNCHRONOUSLY
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#ALWAYS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#ALWAYS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#ALWAYS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#ALWAYS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#IF_MISSING
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#IF_MISSING
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#IF_MISSING
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.RebuildQueryIndexOnStartupOption.html#IF_MISSING

Chapter 6. Configuration

122

Option Description

or "false" (default). The enumeration literal

is Option.PROJECT_NODE_TYPES [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#PROJECT_NODE_TYPES]

readDepth An advanced integer flag that specifies

the depth of the subgraphs that should

be loaded from the connectors during

normal read operations. The default

value is 1. The enumeration literal is

Option.READ_DEPTH [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrRepository.Option.html#READ_DEPTH]

indexReadDepth An advanced integer flag that specifies

the depth of the subgraphs that should

be loaded from the connectors during

indexing operations. The default

value is 4. The enumeration literal is

Option.INDEX_READ_DEPTH [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#INDEX_READ_DEPTH]

tablesIncludeColumnsForInheritedProperties An advanced boolean flag that dictates

whether the property definitions inherited

from supertypes should be represented in the

corresponding queryable table with columns.

The JCR specification gives implementations

some flexibility, so ModeShape allows this to

be controlled.

When this option is set to "false", then each

table has only those columns representing the

(single-valued) property definitions explicitly

defined by the node type. When this option

is set to "true" (the default), each table will

contain columns for each of the (single-

valued) property definitions explicitly defined

on the node type and inherited by the node

type from all of the supertypes.

The enumeration literal is

Option.TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PROJECT_NODE_TYPES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PROJECT_NODE_TYPES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PROJECT_NODE_TYPES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PROJECT_NODE_TYPES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PROJECT_NODE_TYPES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#INDEX_READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#INDEX_READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#INDEX_READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#INDEX_READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#INDEX_READ_DEPTH
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES

JCR Repository options

123

Option Description

api/org/modeshape/jcr/

JcrRepository.Option.html#TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES]

performReferentialIntegrityChecks An advanced boolean flag that specifies

whether referential integrity checks should

be performed upon Session.save(). If set

to "true" (the default), referential integrity

checks are performed to ensure that nodes

referenced by other nodes cannot be

removed. If the value is set to "false", then

these referential integrity checks will not be

performed when removing nodes.

Many people generally discourage the use

of REFERENCE properties because of

the overhead and the need for referential

integrity. These concerns are somewhat

mitigated by the introduction in JCR 2.0 of the

WEAKREFERENCE property type, which are

excluded from referential integrity checks.

This option is available for those cases

where REFERENCE properties are not used

within your content, and thus the referential

integrity checks will never find violations. In

these cases, you may disable these checks

to slightly improve performance of delete

operations.

The enumeration literal is

Option.PERFORM_REFERENTIAL_INTEGRITY_CHECKS

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#PERFORM_REFERENTIAL_INTEGRITY_CHECKS]

versionHistoryStructure An advanced flag that specifies the structure

used to store version histories under the "/

jcr:system/jcr:versionStorage" branch.

The JCR 2.0 specification does not predefine

any particular structure, but ModeShape

supports two types:

• A value of "flat" dictates that all

"nt:versionHistory" nodes are stored

with a name matching the UUID of the

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PROPERTIES
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PERFORM_REFERENTIAL_INTEGRITY_CHECKS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PERFORM_REFERENTIAL_INTEGRITY_CHECKS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PERFORM_REFERENTIAL_INTEGRITY_CHECKS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#PERFORM_REFERENTIAL_INTEGRITY_CHECKS

Chapter 6. Configuration

124

Option Description

versioned node and directly under the "/

jcr:system/jcr:versionStorage" node.

For example, given a "mix:versionable"

node with the UUID fae2b929-

c5ef-4ce5-9fa1-514779ca0ae3, the

corresponding " nt:versionHistory"

node will be at "/jcr:system/

jcr:versionStorage/fae2b929-

c5ef-4ce5-9fa1-514779ca0ae3".

• A value of "hierarchical" dictates that all

"nt:versionHistory" nodes are stored

under a hierarchical structure created by

the first 8 characters of the UUID string.

For example, given a "mix:versionable"

node with the UUID fae2b929-

c5ef-4ce5-9fa1-514779ca0ae3, the

corresponding "nt:versionHistory"

node will be at "/jcr:system/

jcr:versionStorage/fa/e2/b9/29/

c5ef-4ce5-9fa1-514779ca0ae3.

The "hierarchical" structure is used by default

and in cases where the option's value does

not case-independently match the one of

these two values.

The enumeration literal is

Option.VERSION_HISTORY_STRUCTURE

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#VERSION_HISTORY_STRUCTURE],

and the values are

VersionHistoryOption.FLAT [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.VersionHistoryOption.html#FLAT]

and VersionHistoryOption.HIERARCHICAL

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.VersionHistoryOption.html#HIERARCHICAL]

removeDerivedContentWithOriginal An advanced boolean flag that dictates

whether content derived from other content

(e.g., that output by sequencers) should be

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#VERSION_HISTORY_STRUCTURE
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#VERSION_HISTORY_STRUCTURE
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#VERSION_HISTORY_STRUCTURE
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#VERSION_HISTORY_STRUCTURE
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#FLAT
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#FLAT
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#FLAT
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#FLAT
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#FLAT
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#HIERARCHICAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#HIERARCHICAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#HIERARCHICAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.VersionHistoryOption.html#HIERARCHICAL

JCR Repository options

125

Option Description

automatically (re)moved when the content

from which it was derived is (re)moved from

the repository. For example, consider that a

file is uploaded and sequenced, and that the

content derived from the file is stored in the

repository. When that file is (re)moved, this

option dictates whether the derived content

should also be (re)moved automatically.

By default this option has a value of "true",

ensuring that all derived content is deleted

whenever the original content is deleted. A

value of "false" will leave the derived content.

The enumeration literal is

Option.REMOVE_DERIVED_CONTENT_WITH_ORIGINAL

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#REMOVE_DERIVED_CONTENT_WITH_ORIGINAL]

useAnonymousAccessOnFailedLogin A boolean flag that indicates whether any

failed, non-anonymous login attempts

will automatically cause the Session

[http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Session.html] to

be created using the anonymous context. If

anonymous logins are not enabled (with the

anonymousUserRoles option), then the login

will still fail.

By default this option has a value of "false",

ensuring that non-anonymous login attempts

either succeed as the requested user or fail.

The enumeration literal is

Option.USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN]

useSecurityContextCredentials Older versions of ModeShape

allowed client applications to pass in

Credentials [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/

Credentials.html] implementations that had a

getSecurityContext() method that returned

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REMOVE_DERIVED_CONTENT_WITH_ORIGINAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REMOVE_DERIVED_CONTENT_WITH_ORIGINAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REMOVE_DERIVED_CONTENT_WITH_ORIGINAL
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#REMOVE_DERIVED_CONTENT_WITH_ORIGINAL
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html

Chapter 6. Configuration

126

Option Description

a SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/

graph/SecurityContext.html] object, which

ModeShape would then use for authorization.

However, since ModeShape now provides

support for customized authentication and

authorization modules, this is no longer

needed and has been deprecated. If,

however, your applications were written to

use this SecurityContextCredentials

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/api/

SecurityContextCredentials.html]

implementation, then you can enable this

option to turn the old behavior back on. Note,

however, that this option will be removed in

the next major release. Value is either "true"

or "false" (default). The enumeration literal is

Option.USE_SECURITY_CONTEXT_CREDENTIALS

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/

JcrRepository.Option.html#USE_SECURITY_CONTEXT_CREDENTIALS]

Warning

Setting the useAnonymousAccessOnFailedLogin option to "true" and setting the

anonymousUserRoles to a valid value means that all login attempts will succeed,

but named login attempts may actually succeed in an anonymous context. You

can programattically determine which context is being used by checking the

value of Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html].getUserID().

6.3. Repository system content

Each JCR repository contains information about the system in the "/jcr:system" area of the

repository content. All of this system content applies to the whole repository (e.g., namespaces,

node types, locks, versions, etc.) and therefore every session for each workspace sees the exact

same "/jcr:system" content.

ModeShape implements this behavior by storing all "/jcr:system" content in a separate

workspace, and then using federation to project that content into each workspace. This ensures

that all workspaces see the same content, without having to duplicate the "/jcr:system" content

in each workspace and ensure those copies stay in sync. Federation is better than duplication.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_SECURITY_CONTEXT_CREDENTIALS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_SECURITY_CONTEXT_CREDENTIALS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_SECURITY_CONTEXT_CREDENTIALS
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html#USE_SECURITY_CONTEXT_CREDENTIALS
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Repository system content

127

By default, ModeShape creates this separate system workspace in a transient, in-memory store.

This works great for some simplistic cases, but this doesn't work when using clustering, versioning,

or dynamically registering namespaces or adding or changing node types. This is because these

features all rely upon changing or adding content in the "/jcr:system" area. For example,

version histories are stored under "/jcr:system/jcr:versionStorage", node types under "/

jcr:system/jcr:versionStorage", and namespaces under "/jcr:system/mode:namespaces".

In these situations, it is necessary to persist the system content in a repository source, and if

clustering is enabled this source needs to be accessible to all members of the cluster. Many times,

the easiest approach is to simply define an extra workspace in your repository source where the

system content can be stored. It's also possible to define a separate repository source with a

separate workspace for each repository's system content. (Using a separate source is required

when the repository is using a single repository source that can only store limited kinds of nodes,

like the file system connector or Subversion connector that can only store nt:file and nt:folder

nodes.)

You should always configure each ModeShape repository with a source for its system workspace

by using the SYSTEM_SOURCE_NAME repository option with a value that defines the name of source

and name of the workspace in that source where the system content should be stored, in the

format:

 workspaceName@sourceName

This specifies the system content should be stored in the workspace named "workspaceName" in

the "sourceName" repository source.

The system content can be stored in any repository source capable of storing any content and,

in the case of clustering, that is accessible across multiple processes. For most people, this will

mean a relational database. Here is an abbreviated example of an XML configuration that defines

a source for the system storage (in a MySQL database) and a repository that uses it:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0"

 xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <mode:repositories>

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <!-- Explicitly specify the "system" workspace in the "SystemStore" source. -->

 <systemSourceName jcr:primaryType="mode:option"

 mode:value="system@SystemStore"/>

 ...

 </mode:options>

 ...

 </mode:repository>

Chapter 6. Configuration

128

 ...

 </mode:repositories>

 <mode:sources jcr:primaryType="nt:unstructured">

 <!-- One source for the "/jcr:system" content ... -->

 <mode:source jcr:name="SystemStore"

 mode:classname="org.modeshape.connector.store.jpa.JpaSource"

 mode:description="The database store for our system content"

 mode:dialect="org.hibernate.dialect.MySQLDialect"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultWorkspaceName="system"

 mode:autoGenerateSchema="validate"/>

 </mode:sources>

 <!-- An another source for the regular content ... -->

 <mode:source jcr:name="Cars"

 mode:classname="org.modeshape.connector.store.jpa.JpaSource"

 mode:description="The database store for our system content"

 mode:dialect="org.hibernate.dialect.MySQLDialect"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultWorkspaceName="workspace1"

 mode:autoGenerateSchema="validate">

 <mode:predefinedWorkspaceNames>workspace1</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>

 </mode:sources>

 ...

 </mode:sources>

 ...

</configuration>

Of course, you can always use a separate workspace in your primary source, too:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <mode:repositories>

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <!-- Explicitly specify the "system" workspace in the "Cars" source. -->

 <systemSourceName jcr:primaryType="mode:option" mode:value="system@Cars"/>

 ...

 </mode:options>

 ...

 </mode:repository>

Query index directory

129

 ...

 </mode:repositories>

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 Define one source for the regular content with a special workspace for the system content.

 -->

 <mode:source jcr:name="Cars"

 mode:classname="org.modeshape.connector.store.jpa.JpaSource"

 mode:description="The database store for our system content"

 mode:dialect="org.hibernate.dialect.MySQLDialect"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultWorkspaceName="workspace1"

 mode:autoGenerateSchema="validate">

 <mode:predefinedWorkspaceNames>workspace1</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>system</mode:predefinedWorkspaceNames>

 </mode:sources>

 ...

 </mode:sources>

 ...

</configuration>

6.4. Query index directory

ModeShape maintains a set of index files that are used to process queries and searches, using the

Lucene search engine. By default, these indexes are kept in memory (primarily because it's easy

to configure). But most production configurations should not store them in-memory but should

instead store these index files on the local file system.

Each ModeShape repository can be configured where the indexes should be stored, using

the "QUERY_INDEX_DIRECTORY" repository option (see JcrRepository.Option [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html]) when

using the programmatic API or the "queryIndexDirectory" repository option in a ModeShape

configuration file. The value of this setting should be the absolute or relative path to the folder

where the indexes should be stored. In this directory, ModeShape will store the index files for each

workspace in a folder named similarly to the workspace. Note that ModeShape will dynamically

create these workspace folders as required.

For example, here is part of a ModeShape configuration file that specifies these index files should

be stored in the "data/car_repository/indexes" folder, relative to the folder where the JVM

process was started:

<?xml version="1.0" encoding="UTF-8"?>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.Option.html

Chapter 6. Configuration

130

<configuration xmlns:mode="http://www.modeshape.org/1.0"

 xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <mode:repositories>

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <!-- Explicitly specify the directory where the index files should be stored. -->

 <queryIndexDirectory jcr:primaryType="mode:option"

 mode:value="data/car_repository/indexes"/>

 ...

 </mode:options>

 ...

 </mode:repository>

 ...

 </mode:repositories>

 ...

</configuration>

6.5. Authentication and Authorization

ModeShape 2.6 introduced pluggable authentication and authorization modules. Several modules

are included and configured out-of-the-box, but it is now possible to implement and configure

customized authentication and authorization logic. This section describes how these modules

work, what's there out-of-the-box, and how to implement and add your own modules.

The AuthenticationProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/security/AuthenticationProvider.html] interface defines a single method:

public interface AuthenticationProvider {

 /**

 * Authenticate the user that is using the supplied credentials. If the supplied

 * credentials are authenticated, this method should construct an ExecutionContext

 * that reflects the authenticated environment, including the context's valid

 * SecurityContext that will be used for authorization throughout the Session.

 * <p>

 * Note that each provider is handed a map into which it can place name-value

 * pairs that will be used in the Session attributes of the Session that results

 * from this authentication attempt. ModeShape will ignore any attributes if

 * this provider does not authenticate the credentials.

 * </p>

 *

 * @param credentials the user's JCR credentials, which may be an

 * AnonymousCredentials if authenticating as an anonymous user

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html

Authentication and Authorization

131

 * @param repositoryName the name of the JCR repository; never null

 * @param workspaceName the name of the JCR workspace; never null

 * @param repositoryContext the execution context of the repository, which

 * may be wrapped by this method

 * @param sessionAttributes the map of name-value pairs that will be placed

 * into the Session's attributes; never null

 * @return the execution context for the authenticated user, or null if

 * this provider could not authenticate the user

 */

 ExecutionContext authenticate(Credentials credentials,

 String repositoryName,

 String workspaceName,

 ExecutionContext repositoryContext,

 Map<String,Object> sessionAttributes);

}

When a client calls one of the Repository [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html]'s login methods, ModeShape calls the authenticate method

on each of the AuthenticationProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/security/AuthenticationProvider.html] implementations registered with the

Repository. As soon as one provider returns a non-null ExecutionContext [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html], the

caller is authenticated and ModeShape uses that ExecutionContext within the resulting Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html].

When the client uses the Session [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Session.html] and attempts to perform actions on the content,

ModeShape uses the ExecutionContext's SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html] to determine whether

the user has the necessary privileges. If the SecurityContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html] object implements the

AuthorizationProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

security/AuthorizationProvider.html] interface, then ModeShape will call the hasPermission(...)

method, passing in the ExecutionContext, the repository name, the name of the source used

for the repository, the workspace name, the path of the node upon which the actions are

being applied, and the array of actions (see ModeShapePermissions [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/ModeShapePermissions.html] for the possible

values):

public interface AuthorizationProvider {

 /**

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/ModeShapePermissions.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/ModeShapePermissions.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/ModeShapePermissions.html

Chapter 6. Configuration

132

 * Determine if the supplied execution context has permission for all of the

 * named actions in the named workspace. If not all actions are allowed, the

 * method returns false.

 *

 * @param context the context in which the subject is performing the

 * actions on the supplied workspace

 * @param repositoryName the name of the repository containing the

 * workspace content

 * @param repositorySourceName the name of the repository's source

 * @param workspaceName the name of the workspace in which the path exists

 * @param path the path on which the actions are occurring

 * @param actions the list of ModeShapePermissions actions to check

 * @return true if the subject has privilege to perform all of the named

 * actions on the content at the supplied path in the

 * given workspace within the repository, or false otherwise

 */

 boolean hasPermission(ExecutionContext context,

 String repositoryName,

 String repositorySourceName,

 String workspaceName,

 Path path,

 String... actions);

}

If the SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] does not implement AuthorizationProvider [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html], then

ModeShape uses role-based authorization by mapping the actions into roles and then for each role

calling the hasRole(...) method on SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/SecurityContext.html]. Only if all of these invocations returns true will

the operation be allowed to continue.

6.5.1. Built-in Providers

ModeShape comes with several AuthorizationProvider [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html]

implementations that are automatically configured with every Repository, depending upon other

settings and options. These providers are as follows:

• JaasProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/

JaasProvider.html] uses JAAS for all authentication and role-based authorization. This

provider authenticates clients that login to the Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] with a SimpleCredentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html] object, where the username

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/JaasProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/JaasProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/JaasProvider.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html

Built-in Providers

133

and password match that in the JAAS policy, or a JaasCredentials [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html] constructed with a

specific and already-authenticated JAAS LoginContext [http://java.sun.com/javase/6/docs/

api/javax/security/auth/login/LoginContext.html]. This provider can be disabled by setting the

jaasLoginConfigName configuration option to an empty (i.e., zero-length) value; otherwise, the

option defines the name of the JAAS login configuration and will default to "modeshape-jcr" if

not explicitly set.

• ServletProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

security/ServletProvider.html] delegates all authentication and role-based authorization

to the servlet framework. This provider authenticates clients that

login to the Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] with a ServletCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/api/ServletCredentials.html] object, which can be constructed

with the HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html]. Note this does require obtaining a session for each servlet request,

which is actually how the JCR API was intended to be used within web applications.

• AnonymousProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

security/AnonymousProvider.html] will allow clients without Credentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] to operate upon the repository,

and will use role-based authorization based upon the roles defined by the

anonymousUserRoles configuration option. This provider authenticates clients that

provide an AnonymousCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/api/AnonymousCredentials.html] to the Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html]'s login(...) methods or use one

of the login(...) methods that does not take a Credentials [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] object.

Note

The SecurityContextProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/security/SecurityContextProvider.html] is also configured

only when the useSecurityContextCredentials configuration option is

set to 'true'. This provider authenticates clients that pass a

SecurityContextCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/api/SecurityContextCredentials.html] object, and delegates

all authentication to the embedded SecurityContext. This deprecated approach not

enabled by default, and will be removed in the next major release of ModeShape.

It remains in place to enable applications that use this approach to upgrade to

ModeShape 2.6 (or later) without breaking their authentication mechanism.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AnonymousProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AnonymousProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AnonymousProvider.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/SecurityContextProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/SecurityContextProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/SecurityContextProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html

Chapter 6. Configuration

134

6.5.2. Custom Providers

It is possible to provide your own authentication and authorization logic by providing

one (or more) classes that implements the AuthorizationProvider [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html] interface,

specifying the names of these classes in the configuration (see below), and making the classes

available on the correct classpath.

Implementing the AuthorizationProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/security/AuthorizationProvider.html] interface is pretty straightforward. Your

class needs a no-arg constructor, and the authenticate method must simply authenticate the

credentials for the named repository and workspace. If the credentials are not authenticated,

simply return null. Otherwise, simply create an ExecutionContext [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html] instance (from the

ExecutionContext supplied in the repositoryContext parameter) to contain an

appropriate SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/SecurityContext.html] instance for the authenticated user. As mentioned above,

the SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] should also implement the AuthorizationProvider [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html] interface for

non-role-based authorization.

For example, let's imagine that our JCR application has its own authentication and

authorization system. We can integrate with that by create a new Credentials [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] implementation called

MyAppCredentials to encapsulate any information needed by the authentication/authorization

system, which we'll assume is accessed by a singleton class SecurityService. We can

then implement AuthenticationProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/security/AuthenticationProvider.html] as follows:

public class MyAppAuthorizationProvider implements AuthorizationProvider {

 private String appName;

 /**

 * Any public JavaBean properties can be set in the configuration

 */

 public void setApplicationName(String appName) {

 this.appName = appName;

 }

 /**

 * Authenticate the user that is using the supplied credentials. If the supplied

 * credentials are authenticated, this method should construct an ExecutionContext

 * that reflects the authenticated environment, including the context's valid

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthorizationProvider.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/AuthenticationProvider.html

Custom Providers

135

 * SecurityContext that will be used for authorization throughout the Session.

 * <p>

 * Note that each provider is handed a map into which it can place name-value

 * pairs that will be used in the Session attributes of the Session that results

 * from this authentication attempt. ModeShape will ignore any attributes if

 * this provider does not authenticate the credentials.

 * </p>

 *

 * @param credentials the user's JCR credentials, which may be an

 * AnonymousCredentials if authenticating as an anonymous user

 * @param repositoryName the name of the JCR repository; never null

 * @param workspaceName the name of the JCR workspace; never null

 * @param repositoryContext the execution context of the repository, which

 * may be wrapped by this method

 * @param sessionAttributes the map of name-value pairs that will be placed

 * into the Session's attributes; never null

 * @return the execution context for the authenticated user, or null if

 * this provider could not authenticate the user

 */

 public ExecutionContext authenticate(Credentials credentials,

 String repositoryName,

 String workspaceName,

 ExecutionContext repositoryContext,

 Map<String,Object> sessionAttributes);

 if (credentials instanceof MyAppCredentials) {

 // Try to authenticate ...

 MyAppCredentials appCreds = (MyAppCredentials)credentials;

 String user = appCreds.getUser();

 Object token = appCreds.getToken();

 AppCreds creds = SecurityService.login(appName,user,token);

 if (creds != null) {

 // We're in ...

 SecurityContext securityContext = new MyAppSecurityContext(creds);

 return repositoryContext.with(securityContext);

 }

 }

 return null;

 }

}

where the MyAppSecurityContext is as follows:

public class MyAppSecurityContext

Chapter 6. Configuration

136

 implements SecurityContext, AuthorizationProvider {

 private final AppCreds creds;

 public MyAppSecurityContext(AppCreds creds) {

 this.creds = creds;

 }

 /**

 * {@inheritDoc SecurityContext#getUserName()}

 *

 * @see SecurityContext#getUserName()

 */

 public final String getUserName() {

 return creds.getUser();

 }

 /**

 * {@inheritDoc SecurityContext#hasRole(String)}

 *

 * @see SecurityContext#hasRole(String)

 */

 public final boolean hasRole(String roleName) {

 // shouldn't be called since we've implemented AuthorizationProvider

 return false;

 }

 /**

 * {@inheritDoc}

 *

 * @see org.modeshape.graph.SecurityContext#logout()

 */

 public void logout() {

 creds.logout();

 }

 /**

 * {@inheritDoc}

 *

 * @see org.modeshape.jcr.security.AuthorizationProvider.hasPermission

 */

 public boolean hasPermission(ExecutionContext context,

 String repositoryName,

 String repositorySourceName,

 String workspaceName,

 Path path,

Clustering

137

 String... actions) {

 // This is imaginary and simplistic, but you'd implement any authorization logic here ...

 return this.creds.isAuthorized(repositoryName,workspaceName,path);

 }

}

Then we just need to configure the Repository to use this provider. In the ModeShape

configuration files, there is an optional "mode:authenticationProviders" child element of

"mode:repository", and within this fragment you can define zero or more authentication providers

by specifying a name, the class, an optional description, and optionally any bean properties

that should be called upon instantiation. (Note that the class will be instantiated only once per

Repository instance). Here's an example configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0"

 xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <mode:repositories>

 <mode:repository jcr:name="MyApp Repository" mode:source="Store">

 ...

 <mode:authenticationProviders>

 <!-- Specify the providers in a manner similar to sequencer

 definitions are defined -->

 <mode:authenticationProvider jcr:name="CustomProviderA"

 mode:classname="org.example.MyAppAuthorizationProvider">

 <mode:description>My authentication provider</mode:description>

 <!-- Set JavaBean properties on provider if needed -->

 <mode:appName>MyAppName</mode:appName>

 </mode:authenticationProvider>

 ...

 </mode:authenticationProviders>

 ...

 </mode:repository>

 ...

 </mode:repositories>

 ...

</configuration>

6.6. Clustering

ModeShape 2.1 introduced the ability to have a cluster of JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] instances distributed across

multiple processes while behaving as though everything was happening in a single process. With

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html

Chapter 6. Configuration

138

clusters, the workload can be distributed across multiple machines, increasing tolerance against

failure while allowing ModeShape to scale out to handle more workload.

ModeShape clustering uses the powerful, flexible and mature JGroups [http://jgroups.org] library

to handle all network communication within the cluster. JGroups provides a wealth of capabilities,

including automatically detecting new engines in the cluster (called discovery), reliable multicast

communication, and automatic determination of the master node in the cluster. JGroups has a

flexible protocol stack, works across firewalls, WANs and LANs, and supports multiple transport

protocols, failure detection, reliable unicast and multicast message transmission, and encryption.

By default, clustering is not enabled. This means that each JcrEngine [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] instance is self-

contained and will not be aware of changes made in other JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] instances. This is perfect in many

lightweight or embedded scenarios, because it does not introduce any overhead associated with

network communication.

However, clustering ModeShape is very easy and requires only a few simple steps:

1. Enable clustering in the ModeShape configuration (more on this in a bit).

2. Include the modeshape-clustering module in your application, either by JAR file or Maven

dependency.

3. Start (or deploy) multiple JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrEngine.html] instances using the same configuration. For

embedded scenarios, this means simply instantiating multiple JcrEngine [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] instances in

multiple processes. In other cases, this means deploying ModeShape to multiple servers (either

using the WebDAV server, REST server, or into JNDI and using with your own applications).

Your JCR-based application doesn't need to change in any other ways. Any

implementations registered in Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]s on any of the engines will be notified of all events, regardless of whether

those events were due to changes in the local or remote engines.

It also doesn't matter how many Repository [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html] instances are defined in the configuration and managed by each

JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html]

instance: each engine in the cluster can manage multiple named repositories.

ModeShape ensures that all Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/Session.html]s for a named repository see the changes made to that repository, regardless of

where those sessions are located in the cluster. Likewise, those same changes will not be visible

to the sessions for any other named repository.

6.6.1. Enabling Clustering in ModeShape

A ModeShape configuration can have a "clustering" fragment that defines the name of the

cluster and the JGroups configuration:

http://jgroups.org
http://jgroups.org
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Enabling Clustering in ModeShape

139

<mode:clustering clusterName="modeshape-cluster" configuration="jgroups-

modeshape.xml" />

The "clusterName" is a string that is a logical name of the cluster; all engines connecting to the

same name form a cluster. Any messages multicast from one engine in the cluster will be received

by all other members of the cluster. Again, the cluster name is independent of the repositories

managed by th

The "configuration" value is a string that is one of:

• the absolute file system path to the file containing the JGroups XML configuration;

• the relative file system path to the file containing the JGroups XML configuration, relative to the

current working directory of the Java process;

• the name of a resource on the classpath containing the JGroups XML configuration;

• the URL that can be resolved to the JGroups XML configuration; or

• the string representation of JGroups configuration, either in XML format or the older string

format.

The format of this JGroups configuration will be described in the next section. If the

"configuration" property is not given, ModeShape will use the default JGroups configuration (as

defined by the specific JGroups version).

Note

Note that all engines in the cluster must have the same JGroups configuration. In

fact, all engines in the cluster will almost always have exactly the same ModeShape

configuration.

Here is an example of a "clustering" fragment defining a cluster named "modeshape-cluster"

using the JGroups configuration defined in the "jgroups-modeshape.xml" file at the supplied URL:

<clustering clusterName="modeshape-cluster"

 configuration="file://some/path/jgroups-modeshape.xml" />

This next example uses the JGroups configuration defined in the "jgroups-modeshape.xml"

resource file on the classpath (or as an absolute path on a *nix system):

<clustering clusterName="modeshape-cluster"

 configuration="/some/path/jgroups-modeshape.xml" />

Chapter 6. Configuration

140

Next is an example that specifies the JGroups configuration using the older string representation

of the form:

<clustering clusterName="modeshape-cluster"

 configuration="PROTOCOL(param=value;param=value):PROTOCOL:PROTOCOL" />

Of course, the "configuration" property can be specified as a child element, too (line breaks

added for readability):

<clustering clusterName="modeshape-cluster">

 <configuration>UDP(max_bundle_size="60000":max_bundle_timeout="30"):

 PING(timeout="2000"):...</configuration>

</clustering>

And finally an example that specifies the JGroups configuration using the newer XML

representation (line breaks added for readability):

<clustering clusterName="modeshape-cluster">

 <configuration><![CDATA[<config><UDP max_bundle_size="60000"

 max_bundle_timeout="30".../><PING timeout="2000"/>...</config>]]>

 </configuration>

</clustering>

Note that the this example uses a child XML element for the "configuration", along with a

CDATA section, so that the XML configuration can be nested within the ModeShape configuration.

Warning

Remember to specify the system workspace name for each repository that is

clustered.

6.6.2. JGroups configuration

The JGroups configuration defines a protocol stack that is used for messaging, starting with the

bottom-most protocol and ending with the top-most protocol.

An example of the newer-style JGroups XML format is:

<config>

 <UDP

JGroups configuration

141

 mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"

 mcast_port="${jgroups.udp.mcast_port:45588}"

 discard_incompatible_packets="true"

 max_bundle_size="60000"

 max_bundle_timeout="30"

 ip_ttl="${jgroups.udp.ip_ttl:2}"

 enable_bundling="true"

 thread_pool.enabled="true"

 thread_pool.min_threads="1"

 thread_pool.max_threads="25"

 thread_pool.keep_alive_time="5000"

 thread_pool.queue_enabled="false"

 thread_pool.queue_max_size="100"

 thread_pool.rejection_policy="Run"

 oob_thread_pool.enabled="true"

 oob_thread_pool.min_threads="1"

 oob_thread_pool.max_threads="8"

 oob_thread_pool.keep_alive_time="5000"

 oob_thread_pool.queue_enabled="false"

 oob_thread_pool.queue_max_size="100"

 oob_thread_pool.rejection_policy="Run"/>

 <PING timeout="2000"

 num_initial_members="3"/>

 <MERGE2 max_interval="30000"

 min_interval="10000"/>

 <FD_SOCK/>

 <FD timeout="10000" max_tries="5" />

 <VERIFY_SUSPECT timeout="1500" />

 <BARRIER />

 <pbcast.NAKACK

 use_mcast_xmit="false" gc_lag="0"

 retransmit_timeout="300,600,1200,2400,4800"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200,2400,3600"/>

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="400000"/>

 <VIEW_SYNC avg_send_interval="60000" />

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

 <FC max_credits="20000000"

 min_threshold="0.10"/>

 <FRAG2 frag_size="60000" />

 <pbcast.STATE_TRANSFER />

Chapter 6. Configuration

142

</config>

The older-style JGroups string format is of the form:

PROTOCOL(param1=value1:param2=value2):PROTOCOL:PROTOCOL

This format is generally harder to read and generally discouraged. Nevertheless, here's an

example of the older string format defining the same stack as the previous XML example (line

breaks have been added for readability):

UDP(

 mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}":

 mcast_port="${jgroups.udp.mcast_port:45588}":

 discard_incompatible_packets="true":

 max_bundle_size="60000":

 max_bundle_timeout="30":

 ip_ttl="${jgroups.udp.ip_ttl:2}":

 enable_bundling="true":

 thread_pool.enabled="true":

 thread_pool.min_threads="1":

 thread_pool.max_threads="25":

 thread_pool.keep_alive_time="5000":

 thread_pool.queue_enabled="false":

 thread_pool.queue_max_size="100":

 thread_pool.rejection_policy="Run":

 oob_thread_pool.enabled="true":

 oob_thread_pool.min_threads="1":

 oob_thread_pool.max_threads="8":

 oob_thread_pool.keep_alive_time="5000":

 oob_thread_pool.queue_enabled="false":

 oob_thread_pool.queue_max_size="100":

 oob_thread_pool.rejection_policy="Run"):

 PING(timeout="2000":

 num_initial_members="3"):

 MERGE2(max_interval="30000":

 min_interval="10000"):

 FD_SOCK:

 FD(timeout="10000":max_tries="5"):

 VERIFY_SUSPECT(timeout="1500"):

 BARRIER:

 pbcast.NAKACK(use_mcast_xmit="false":gc_lag="0":

 retransmit_timeout="300,600,1200,2400,4800":

Using ModeShape in Web Applications

143

 discard_delivered_msgs="true"):

 UNICAST(timeout="300,600,1200,2400,3600"):

 pbcast.STABLE(stability_delay="1000":desired_avg_gossip="50000":

 max_bytes="400000"):

 VIEW_SYNC(avg_send_interval="60000"):

 pbcast.GMS(print_local_addr="true":join_timeout="3000"

 view_bundling="true"):

 FC(max_credits="20000000":

 min_threshold="0.10"):

 FRAG2(frag_size="60000"):

 pbcast.STATE_TRANSFER

For more details on how to configure the JGroups stack, see the JGroups Manual [http://

jgroups.org/ug.html].

Note

JGroups is also used in Infinispan, JBoss AS, and other open source

projects, and many of the JGroups configurations will work with ModeShape

deployed in those same environments. For example, this blog post [http://

infinispan.blogspot.com/2010/05/infinispan-ec2-demo.html] describes how to

configure JGroups with three autodiscovery options available on Amazon EC2.

6.7. Using ModeShape in Web Applications

Sometimes your applications can simply define a configuration file and

use the RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

RepositoryFactory.html] to access its repositories. This is very straightforward, and this is useful

for many simple applications because the application will then own the ModeShape instance(s).

Web applications are a different story. Often, you would rather your web application not contain

the code that initializes the JCR repository, but instead configure ModeShape as a central, shared

service that all of your web applications can simply reference and use.

Unfortunately, there's not single way to deploy ModeShape into any web or application server,

since they all have slightly different deployment and configuration techniques. The remainder of

this section will talk about how to deploy ModeShape to two popular open source servers.

6.7.1. Deploying ModeShape to JBoss AS

The JBoss Application Server [http://jboss.org/jbossas] (or JBoss AS) is a very popular open

source Java application server, with an extremely healthy and active community. ModeShape

offers a way to deploy ModeShape into JBoss AS as as a central, shared service that can be

monitored and administered using the embedded console.

http://jgroups.org/ug.html
http://jgroups.org/ug.html
http://jgroups.org/ug.html
http://infinispan.blogspot.com/2010/05/infinispan-ec2-demo.html
http://infinispan.blogspot.com/2010/05/infinispan-ec2-demo.html
http://infinispan.blogspot.com/2010/05/infinispan-ec2-demo.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://jboss.org/jbossas
http://jboss.org/jbossas

Chapter 6. Configuration

144

ModeShape provides a downloadable ZIP file that can be unzipped into any JBoss AS profile.

When you do this, that profile will contain all the files necessary for ModeShape to run when the

server is started. The default configuration is for a single, in-memory repository with two users.

However, other than basic playing, you will want to edit the configuration files to define a more

robust, persistent and secure configuration.

This JBoss AS distribution ZIP file contains several components:

• JAR files for the JCR 2.0 API and ModeShape's small extensions to the JCR API on the global

classpath (that is, in the "lib/" directory). These APIs are available to all deployed applications,

services and components. The JCR API contains the "javax.jcr" packages and has no other

dependencies. ModeShape's extensions define interfaces in the "org.modeshape.jcr.api"

packages; these extend a few of the standard JCR API interfaces and add several methods to

make them more useful.

• The ModeShape Service, represented as an exploded JAR file in the "deploy" directory. This

is where the JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrEngine.html] is running, though any application (or other JBoss service) can access

its JCR Repository instances using the standard RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] approach (covered in the

next chapter) with JNDI URLs:

 jndi:jcr/local?repositoryName=repository

By default, there is a single in-memory repository named "repository", but this can be changed

by simply editing the "deploy/modeshape-services.jar/managedConfigRepository.xml"

configuration file. All of ModeShape's standard sequencers and connectors (and JARs for their

dependencies) are included, meaning they can be configured for use without worrying about

adding JARs to the classpath. Feel free to remove any of the JARs are not needed for your

custom configuration.

• A pair of JAAS properties files, located in the "conf/props/" directory, that come out of the

box with an "admin" user (with password "admin") that has full read, write, and administration

privileges, and a "guest" user (with password "guest") that has only read and write privileges.

Simply edit these files to change users, passwords, and roles, or to configure JAAS differently.

• The ModeShape RESTful API, represented as an exploded WAR file in the "deploy" directory.

This allows remote applications to interact with ModeShape to access and manipulate repository

content using a RESTful API that uses JSON in the requests and responses. All ModeShape

repositories can be accessed, and authentication is done using the ModeShape JAAS

configuration.

• The ModeShape WebDAV API, represented as an exploded WAR file in the "deploy"

directory. This web application allows external clients to access and manipulate the content

in the ModeShape repositories using the standard WebDAV protocol. For example, you can

mount a repository (or parts of it) as a network drive on most operating systems, and then

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Deploying ModeShape to JBoss AS

145

upload or download files and folders using standard OS operations and graphical tools. All

ModeShape repositories can be accessed, and authentication is done using the ModeShape

JAAS configuration.

• A plugin for the embedded JBoss AS console, represented as a WAR file in the "deploy"

directory. This plugin also works with RHQ [http://support.rhq-project.org/display/RHQ/Home]

administration, monitoring, alerting, operational control and configuration system. (We plan to

add more metrics and operations over the next few releases, as we gain more experience using

the ModeShape RHQ plugin.)

• A JDBC driver that allows applications also deployed on the same JBoss AS instance to query

the repositories through JDBC. This driver is on the global classpath so it can be used in any

deployed component. A single JDBC DataSource is also configured in the "deploy/modeshape-

services.jar/modeshape-jdbc-ds.xml" file to use the single default in-memory repository

available out of the box. Simply edit this file to add or change the DataSource definitions. The

driver can also be used in a separate JVM to issue queries and access database metadata.

• A remote client JAR that can be used by Java applications to use JDBC or the RESTful

API to remotely access a ModeShape repository deployed on JBoss AS. This JAR includes

ModeShape's full JDBC driver.

Here are the contents of this file:

conf/

conf/props/

conf/props/modeshape-roles.properties

conf/props/modeshape-users.properties

lib/

lib/jcr-2.0.jar

lib/modeshape-jcr-api-2.6.0.Beta2.jar

lib/modeshape-jdbc-local-2.6.0.Beta2.jar

deploy/

deploy/modeshape-jboss-beans.xml

deploy/modeshape-services.jar/

deploy/modeshape-services.jar/META-INF/

deploy/modeshape-services.jar/aperture-1.1.0.Beta1.jar

deploy/modeshape-services.jar/joda-time-1.6.jar

deploy/modeshape-services.jar/lucene-analyzers-3.0.2.jar

deploy/modeshape-services.jar/lucene-core-3.0.2.jar

deploy/modeshape-services.jar/lucene-regex-3.0.2.jar

deploy/modeshape-services.jar/lucene-snowball-3.0.2.jar

deploy/modeshape-services.jar/lucene-misc-3.0.2.jar

deploy/modeshape-services.jar/poi-3.6.jar

deploy/modeshape-services.jar/poi-scratchpad-3.6.jar

deploy/modeshape-services.jar/managedConfigRepository.xml

http://support.rhq-project.org/display/RHQ/Home
http://support.rhq-project.org/display/RHQ/Home

Chapter 6. Configuration

146

deploy/modeshape-services.jar/rdf2go.api-4.6.2.jar

deploy/modeshape-services.jar/META-INF/jboss-beans.xml

deploy/modeshape-services.jar/modeshape-cnd-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-common-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-filesystem-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-infinispan-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-jbosscache-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-jcr-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-jdbc-metadata-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-store-jpa-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-connector-svn-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-graph-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-jbossas-service-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-jcr-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-jdbc-ds.xml

deploy/modeshape-services.jar/modeshape-mimetype-detector-aperture-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-repository-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-search-lucene-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-classfile-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-cnd-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-ddl-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-java-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-jbpm-jpdl-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-msoffice-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-teiid-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-text-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-xml-2.6.0.Beta2.jar

deploy/modeshape-services.jar/modeshape-sequencer-zip-2.6.0.Beta2.jar

deploy/modeshape-rest.war/

deploy/modeshape-rest.war/META-INF/

deploy/modeshape-rest.war/WEB-INF/

deploy/modeshape-rest.war/WEB-INF/lib/

deploy/modeshape-rest.war/META-INF/MANIFEST.MF

deploy/modeshape-rest.war/WEB-INF/jboss-web.xml

deploy/modeshape-rest.war/WEB-INF/lib/jaxrs-api-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/jettison-1.1.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-jcr-2.6.0.Beta2.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-web-jcr-2.6.0.Beta2.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-web-jcr-rest-2.6.0.Beta2.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jaxb-provider-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jaxrs-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jettison-provider-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/scannotation-1.0.2.jar

deploy/modeshape-rest.war/WEB-INF/web.xml

Deploying ModeShape to Tomcat

147

deploy/modeshape-webdav.war/

deploy/modeshape-webdav.war/WEB-INF/

deploy/modeshape-webdav.war/WEB-INF/lib/

deploy/modeshape-webdav.war/WEB-INF/jboss-web.xml

deploy/modeshape-webdav.war/WEB-INF/lib/aperture-1.1.0.Beta1.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-jcr-2.6.0.Beta2.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-mimetype-detector-

aperture-2.6.0.Beta2.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-web-jcr-2.6.0.Beta2.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-web-jcr-webdav-2.6.0.Beta2.jar

deploy/modeshape-webdav.war/WEB-INF/lib/webdav-servlet-2.0.jar

deploy/modeshape-webdav.war/WEB-INF/web.xml

deploy/admin-console.war/

deploy/admin-console.war/plugins/

deploy/admin-console.war/plugins/modeshape-jbossas-console-2.6.0.Beta2.jar

Your web application or JBoss service can use one of the JCR Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instances running inside the

ModeShape service by simply using the RepositoryFactory [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] technique described earlier, with a URL such

as:

 jndi:jcr/local?repositoryName=repository

Be sure to use the correct repository name.

Since the JCR API JAR is on the global classpath, your web application can use the JCR API

without having to include the JAR file in your application's WAR file. In fact, your application will

likely get ClassCastExceptions if it does include the JCR API in its WAR file. Plus, if needed,

your application can use ModeShape's "org.modeshape.jcr.api" extensions to the JCR API

(again, on the global classpath), and should not need or use any of the classes or interfaces in

the ModeShape implementation.

6.7.2. Deploying ModeShape to Tomcat

Each kind of web server or application server is different, but all servlet containers do

provide a way of configuring objects and placing them into JNDI. ModeShape provides a

JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrRepository.html] class that implements and that can be used in the server's configuration. The

JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrRepository.html] requires two properties:

• configFile is the path to the configuration file resource, which must be available on the

classpath

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html

Chapter 6. Configuration

148

• repositoryName is the name of a JCR repository that exists in the JCR configuration and that

will be made available by this JNDI entry

Here's an example of a fragment of the conf/context.xml for Tomcat:

<Resource name="jcr/local"

 auth="Container"

 type="javax.jcr.Repository"

 factory="org.modeshape.jcr.JndiRepositoryFactory"

 configFile="/resource/path/to/configuration.xml"

 repositoryName="Test Repository Source" />

Note that it is possible to have multiple Resource entries. The JndiRepositoryFactory [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html] ensures that

only one JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrEngine.html] is instantiated, but that a Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] instance is registered for each entry.

Before the server can start, however, all of the ModeShape jars need to be placed on the classpath

for the server. JAAS also needs to be configured, and this can be done using the application

server's configuration or in your web application if you're using a simple servlet container. For

more details, see the Reference Guide [http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/

reference/html/index.html].

Note

The ModeShape community has solicited input on how we can make it easier to

consume and use ModeShape in applications that do not use Maven. Check out

the discussion thread [http://community.jboss.org/thread/146589], and please add

any suggestions or opinions!

Then, your web application needs to reference the Resource and state its requirements in its

web.xml:

<resource-env-ref>

 <description>Repository</description>

 <resource-env-ref-name>jcr/local</resource-env-ref-name>

 <resource-env-ref-type>javax.jcr.Repository</resource-env-ref-type>

</resource-env-ref>

Note that the value of resource-env-ref-name matches the value of the name attribute on the

<Resource> tag in the context.xml described above. This is a must.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/reference/html/index.html
http://community.jboss.org/thread/146589
http://community.jboss.org/thread/146589

Deploying ModeShape to Tomcat

149

At this point, your web application can perform the lookup of the Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] object by using JNDI directly (or the

more standard RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/RepositoryFactory.html] technique shown in the next chapter), create and use a Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html], and then close the

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. Here's an

example of a JSP page that does this:

<%@ page import="javax.naming.*, javax.jcr.*,

 org.jboss.security.config.IDTrustConfiguration" %>

<%!

static {

 // Initialize IDTrust

 IDTrustConfiguration idtrustConfig = new IDTrustConfiguration();

 try {

 idtrustConfig.config("security/jaas.conf.xml");

 } catch (Exception ex) {

 throw new IllegalStateException(ex);

 }

}

%>

<%

Session sess = null;

try {

 InitialContext initCtx = new InitialContext();

 Context envCtx = (Context) initCtx.lookup("java:comp/env");

 Repository repo = (Repository) envCtx.lookup("jcr/local");

 sess = repo.login(new SimpleCredentials("readwrite", "readwrite".toCharArray()));

 // Do something interesting with the Session ...

 out.println(sess.getRootNode().getPrimaryNodeType().getName());

} catch (Exception ex) {

 ex.printStackTrace();

} finally {

 if (sess != null) sess.logout();

}

%>

Since this uses a servlet container, there is no JAAS implementation configured, so note the

loading of IDTrust to create the JAAS realm. (To make this work in Tomcat, the security folder that

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 6. Configuration

150

contains the jaas.conf.xml, users.properties, and roles.properties needs to be moved

into the %CATALINA_HOME% directory.)

Note

If you deploy your application to JBoss AS or EAP and deploy ModeShape as

a service, your application doesn't have to do anything with JAAS, since that's

provided by the platform.

6.8. Setting the Classpath

Before you deploy ModeShape into your application or its environment, you need to make sure

that all of the ModeShape JARs are on the appropriate classpath. Two different scenarios are

covered in this section: Maven-based, and using JARs with the traditional classpath.

6.8.1. Building against ModeShape via Maven

By far the easiest way to use ModeShape is to use Maven, because with just a few lines of code,

Maven will automatically pull all the JARs and source for all of the ModeShape libraries as well

as everything those libraries need. All of ModeShape's artifacts for each release are published in

the new JBoss Maven repository [https://repository.jboss.org/nexus/] under the "org.modeshape

[https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/]" group ID.

6.8.1.1. Using the JBoss Maven repository

The JBoss Maven repository not only contains all of the artifacts for ModeShape and other

open source projects hosted at JBoss.org [http://www.jboss.org], but it also proxies quite a

few other repositories [http://community.jboss.org/wiki/MavenRepository] that contain many other

third-party libraries.

So if you're using Maven (or Ivy), first make sure your project knows about this new JBoss Maven

repository. One way to do this is to add the following to your project POM (you'll still likely want

to use other Maven repositories for third-party artifacts):

<repositories>

 <repository>

 <id>jboss</id>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 </repository>

</repositories>

Or, you can add this information to your ~/.m2/settings.xml file. For more information, see the

JBoss wiki page [http://community.jboss.org/wiki/MavenGettingStarted-Developers].

https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
http://www.jboss.org
http://www.jboss.org
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenGettingStarted-Developers
http://community.jboss.org/wiki/MavenGettingStarted-Developers

Building against ModeShape via Maven

151

6.8.1.2. Add dependency to ModeShape

Then, simply modify your project's POM by adding dependencies on the ModeShape JCR library:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>2.4.0.Final</version>

</dependency>

This adds only the minimal libraries required to use ModeShape. If your application is going to

use clustering, you'll need to also depend upon the clustering module:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-clustering</artifactId>

 <version>2.4.0.Final</version>

</dependency>

You also need to add dependencies for each of the connectors and sequencers you want to use.

Here is the list of available sequencers:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-cnd</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-ddl</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshapce</groupId>

 <artifactId>modeshape-sequencer-images</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-classfile</artifactId>

 <version>2.4.0.Final</version>

Chapter 6. Configuration

152

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-java</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-mp3</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-msoffice</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-xml</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-teiid</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-text</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-zip</artifactId>

 <version>2.4.0.Final</version>

</dependency>

Here is the list of available connectors:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-filesystem</artifactId>

 <version>2.4.0.Final</version>

Add dependencies for logging

153

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-infinispan</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jcr</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jbosscache</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jdbc-metadata</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-store-jpa</artifactId>

 <version>2.4.0.Final</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-svn</artifactId>

 <version>2.4.0.Final</version>

</dependency>

The sequencer and connector libraries you choose, plus every third-party library they need, will

be pulled in automatically by Maven into your project.

6.8.2. Add dependencies for logging

ModeShape is designed to use the same logging framework as your application, and it uses SLF4J

to accomplish this. In other words, ModeShape depends upon the SLF4J API library, but requires

you to provide provide a logging implementation as well as the appropriate SLF4J binding JAR.

For example, if your application is using Log4J [http://logging.apache.org/log4j/], your application

will already have a dependency for it, and so ModeShape log messages will be sent to the same

logging system used in your application, you need to add a dependency to the SLF4J-to-Log4J

binding JAR:

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Chapter 6. Configuration

154

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.11</version>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

</dependency>

Of course, SLF4J works with other logging frameworks, too. Some logging implementations (such

as LogBack [http://logback.qos.ch/]) implement the SLF4J API natively, meaning they require no

binding JAR. For details on the options and how to configure them, see the SLF4J manual [http://

www.slf4j.org/manual.html].

6.8.3. Building against ModeShape via JARs

If your application doesn't use Maven, you'll need to obtain the ModeShape JARs

and place them onto your application's classpath. ModeShape provides a single

download [http://downloads.jboss.org/modeshape/2.6.0.Beta2/modeshape-2.6.0.Beta2-all-with-

dependencies.jar] with all of the JARs for all ModeShape components and all dependencies. This

file contains the following:

• modeshape-jcr-2.6.0.Beta2-jar-with-dependencies.jar contains all of the classes

(except those under javax.jcr) necessary to run the core ModeShape JCR repository engine

using the in-memory connector and the federating connector;

• one modeshape-connector-<type>-2.6.0.Beta2-jar-with-dependencies.jar for each

type of connector, each containing all of the classes necessary for that connector,

designed to be added to the classpath after the modeshape-jcr-2.6.0.Beta2-jar-with-

dependencies.jar file;

• one modeshape-sequencer-<type>-2.6.0.Beta2-jar-with-dependencies.jar for each

type of connector, each containing all of the classes necessary for that sequencer,

designed to be added to the classpath after the modeshape-jcr-2.6.0.Beta2-jar-with-

dependencies.jar file;

• modeshape-mimetype-detector-aperture-2.6.0.Beta2-jar-with-dependencies.jar

containing all of the classes necessary for detecting the MIME type of files based upon

their name and/or content, designed to be added to the classpath after the modeshape-

jcr-2.6.0.Beta2-jar-with-dependencies.jar file;

Note that the core engine is required in all configurations. The jcr-2.0.jar file is not included and

must be provided by you. And, as mentioned in the previous section, ModeShape uses SLF4J for

http://logback.qos.ch/
http://logback.qos.ch/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://downloads.jboss.org/modeshape/2.6.0.Beta2/modeshape-2.6.0.Beta2-all-with-dependencies.jar
http://downloads.jboss.org/modeshape/2.6.0.Beta2/modeshape-2.6.0.Beta2-all-with-dependencies.jar
http://downloads.jboss.org/modeshape/2.6.0.Beta2/modeshape-2.6.0.Beta2-all-with-dependencies.jar
http://downloads.jboss.org/modeshape/2.6.0.Beta2/modeshape-2.6.0.Beta2-all-with-dependencies.jar

What's next

155

logging and you must provide a logging implementation as well as the appropriate SLF4J binding

JAR.

6.9. What's next

This chapter outlines how you configure ModeShape, how to deploy ModeShape into your

application, and how to set up your application's environment with the required ModeShape JARs.

The next chapter talks about how your application can use the JCR API to access ModeShape

repositories.

156

Chapter 7.

157

Using the JCR API with ModeShape
The Content Repository for Java Technology API 2.0 [http://www.jcp.org/en/jsr/detail?id=283]

provides a standard Java API for working with content repositories. Abbreviated "JCR", this API

was developed as part of the Java Community Process under JSR-170 [http://www.jcp.org/en/jsr/

detail?id=170] (JCR 1.0) and has been revised and improved as JCR 2.0 under JSR-283 [http://

www.jcp.org/en/jsr/detail?id=283]. Some of the improvements make it possible for your application

to be written entirely against the JCR 2.0 API.

Note

In the interests of brevity, this chapter does not attempt to reproduce the JSR-283

specification nor provide an exhaustive definition of ModeShape JCR capabilities.

Rather, this chapter will describe any deviations from the specification as well

as any ModeShape-specific public APIs and configuration. So, for a detailed

explanation of the JCR API and its many interfaces and methods, see the JSR-283

[http://www.jcp.org/en/jsr/detail?id=283] specification.

Using ModeShape within your application is actually quite straightforward, and with JCR 2.0 it

is possible for your application to do everything using only the JCR 2.0 API. Your application

will first obtain a javax.jcr.Repository instance, and will use that object to create sessions

through which your application will read, modify, search, or monitor content in the repository. JCR

sessions are designed to be lightweight, so it is perfectly fine (and actually recommended) for your

application to create many short-lived sessions while generally avoiding longer-lived sessions. In

fact, javax.jcr.Session objects are not required to be thread-safe (and are not in ModeShape),

so your application should avoid using a single Session instance in multiple threads.

7.1. What's new in JCR 2.0?

Before we get started talking about how to use ModeShape via the standard JCR 2.0 API, it's

worth spending a little time talking about the changes in JCR 2.0 compared with JCR 1.0.

Although an application written against the JCR 1.0 API will for the most part work very well against

a JCR 2.0 repository, there are a few improvements to the JCR 2.0 API that your application will

likely want to leverage.

Let's look at some of the more important changes in the JCR 2.0 API. However, this is certainly

not definitive nor a complete comparison, so please consult the JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283] specification.

7.1.1. Connecting

JCR 1.0 did not specify a way for client applications to obtain the Repository [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance, though the

JCR 1.0 specification did state this is typically done through JNDI. Consequently, JCR clients

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Chapter 7. Using the JCR API ...

158

either used the JNDI approach or were required to use implementation-specific code. Often,

client applications abstracted this process to minimize their reliance upon implementation-specific

interfaces.

While the JNDI approach still works, JCR 2.0 introduces a new mechanism that makes

it possible to find a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance using only the JCR API. Details of this are covered more in later, but

suffice to say that ModeShape does support this new RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] approach.

How this affects your application: If your application used an implementation-specific approach

to obtaining a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance, you might consider changing it to use the new RepositoryFactory [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] mechanism.

7.1.2. Identifiers

JCR 1.0 used the notion of UUIDs on referenceable nodes - in other words those nodes with

the "mix:referenceable" mixin. However, there were several disadvantages to this design. First,

non-referenceable nodes had no such identifier in the JCR API, leading to difficulties in easily

identifying nodes using an immutable and invariant identifier (unlike the path, which can change

at any time) and requiring a fair amount of code to check whether a node is referenceable before

its UUID could safely be obtained. Second and perhaps more importantly, only valid UUIDs could

be used to identify nodes. This can cause difficulty when JCR is used as an API to another system

that does not use UUIDs.

JCR 2.0 introduces the notion of an identifier on all nodes, and the format of this identifier is

designed to be opaque to the client applications. This dramatically reduces the code to access a

node's identifier down to a simple method call. And it makes it possible for an implementation to

use any identifiers format. This is good for ModeShape federation, as connectors no longer need

to force UUIDs for all nodes.

How this affects your application: The Node.getUUID() method is now deprecated, and instead

your code should call Node.getIdentifier(), which works on any node. However, be aware

that the resulting identifier is no longer required to be a valid UUID. ModeShape does support

these methods and behavior.

7.1.3. Binary Values

JCR 1.0 has always supported storing binary values in properties, but clients could do little more

than just stream the bytes for each value. JCR 2.0 introduces a Binary [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] interface that defines a way to get the size

of the binary value, an InputStream to the value, a method for random access to the value's bytes,

and a way to dispose of the binary value when completed (allowing the implementation to better

clean up memory and other resources).

How this affects your application: The way your existing JCR application accesses and sets binary

values will still work, but the methods are now deprecated. Therefore, you will very likely want

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Node Type Management

159

to change to use the new Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Binary.html] interface. For example, code that previously accessed the input stream directly from

the Property [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/

Property.html]:

Property property = ...

InputStream stream = property.getInputStream();

try {

 // Read stream

} finally {

 stream.close();

}

can be minimally changed to first get the Binary [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Binary.html] value and then get the stream from this Binary value:

Property property = ...

InputStream stream = property.getBinary().getInputStream();

try {

 // Read stream

} finally {

 stream.close();

}

This second example is not using any deprecated methods, but does not actually dispose

of the Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] object.

This actually works just fine in ModeShape, as closing the InputStream will automatically dispose

of the Binary [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html] object.

You may also consider whether your application may benefit from the new Binary.getSize() or

Binary.read(byte[],long) methods.

7.1.4. Node Type Management

In JCR 1.0, client applications could discover node types, property definitions, and child node

definitions, but the API did not provide a way for client applications to modify or create new node

types. This has been rectified in the JCR 2.0 API, and is these methods are now supported by

ModeShape.

Additionally, the JCR 2.0 specification formalized the Compact Node Definition grammar, and

made a few minor improvements to the CND formats used in some JCR 1.0 implementations.

Earlier ModeShape releases supported the older CND format, and ModeShape 2.6.0.Beta2 now

supports the grammar as defined in the specification.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Property.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Binary.html

Chapter 7. Using the JCR API ...

160

How this affects your application: Your application can now define its node types using the

standard CND format and/or using the new programmatic mechanism. If you already used the

older CND format, be aware of the few new options available when defining property definitions

(e.g., searchable, queryable, etc.). Note that node type discovery is largely unchanged.

Note

Remember to specify the system workspace name for your repositories if

dynamically adding or modifying node types. Otherwise, ModeShape will not

persist your node type changes.

7.1.5. Queries

JCR 1.0 made it possible for applications to query the repository using XPath and JCR-SQL query

languages. JCR 2.0 maintains the (mostly) similar Java interfaces for executing queries, but it

deprecates the XPath and JCR-SQL query languages and introduces a new declarative language

called "JCR-SQL2" that is a very good improvement over JCR-SQL. JCR 2.0 also introduces a

new query object model (called "JCR-QOM") for defining queries using a programmatic API.

ModeShape supports all of these languages (XPath, JCR-SQL, JCR-SQL2, JCR-QOM), and also

supports a full-text query language that is defined by the full-text search expression in the JCR-

SQL2 language. Additionally, ModeShape extends most of these languages to support richer and

more capable queries.

How this affects your application: Your application can continue to use XPath and JCR-SQL

queries. However, your application may benefit from switching from JCR-SQL to JCR-SQL2 and

its greater capabilities and expressive power. Leverage some of the ModeShape extensions to

make your JCR-SQL2 queries even more powerful.

7.1.6. Workspace Management

Applications could not use the JCR 1.0 API to create or destroy workspaces, meaning such

operations could only be done through a non-standard and implementation-specific API. The JCR

2.0 API now standardizes these operations, and although not all implementations are required to

support them, ModeShape does support these (though not all connectors do support them).

How this affects your application: Your application can now create and remove workspaces using

the standard JCR 2.0 API.

7.1.7. Observation

Applications could use the JCR 1.0 API to be notified of changes to the content, using the optional

observation feature. However, the JCR 1.0 API required multiple events to be created when a

subtree was moved or deleted. This requirement has been relaxed in JCR 2.0 and ModeShape

now fully supports the optional observation feature.

Locking

161

How this affects your application: Your application can now use specification-compliant JCR 2.0

observation with ModeShape.

7.1.8. Locking

JCR 1.0 API had the notion of locking nodes, useful in situations that required synchronization

around reading and modifying content. This optional API is simple and clean, and worked quite

well. The JCR 2.0 API preserved all of the JCR 1.0 locking semantics, but added a few (optional)

methods. ModeShape implements this optional locking feature.

How this affects your application: If your application is already using the JCR 1.0 locking

feature, be aware that many of the locking-related methods on Node [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html] were deprecated in JCR 2.0 and moved

to the new LockManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/

LockManager.html] interface. However, locking semantics remain unchanged.

Note

Remember to specify the system workspace name for your repositories if clustering

or if the lock information is to be persisted beyond the lifetime of the ModeShape

engine.

7.1.9. Versioning

Versioning of nodes was defined as an optional feature of the JCR 1.0 API.

The JCR 2.0 API expanded upon locking by defining a simple versioning model,

introducing the VersionManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

version/VersionManager.html] interface, and making some semantic changes as well. For

example, restoring a version that contained a versioned child in its subgraph no longer

automatically restores the versioned child. This behavior was ambiguous in the JCR 1.0

specification, and ModeShape 1.x performed the restore operation recursively down the graph.

The JCR 2.0 specification more clearly requires a non-recursive restore. Therefore, ModeShape

2.6.0.Beta2 now supports the "full versioning" model.

How this affects your application: If your application is already using JCR 1.0 versioning

feature, be aware that many of the version-related methods on Node [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html] were deprecated in JCR 2.0 and moved to

the new VersionManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/

VersionManager.html] interface. Also, any reliance upon ModeShape's recursive restore

operation must be changed, per the JCR 2.0 specification.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/lock/LockManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/version/VersionManager.html

Chapter 7. Using the JCR API ...

162

Note

Remember to specify the system workspace name for your repositories if using

versioning. Otherwise, ModeShape will not persist your versioning information.

7.1.10. Importing and Exporting

Importing and exporting content is largely unchanged in JCR 2.0, with the exception of specific

requirements on handling node identifiers.

How this affects your application: Exporting from a JCR 1.0 or 2.0 repository and importing into a

JCR 2.0 repository should work as before. ModeShape does support importing and exporting.

7.1.11. Shareable Nodes

JCR 2.0 introduced the notion of shareable nodes, which allows a node that exists under one

parent to be shared under multiple other nodes. These are similar to symbolic links in a *nix file

system. For more details about how to create and use shareable nodes, please see the JCR 2.0

specification [http://www.jcp.org/en/jsr/detail?id=283].

How this affects your application: Your application can now use specification-compliant JCR 2.0

shareable nodes with ModeShape.

7.1.12. Orderable Child Nodes

Orderable child nodes was an optional feature in JCR 1.0, and has been carried over to JCR 2.0

unchanged. Node ordering has been supported by ModeShape since the initial release.

How this affects your application: No changes are required if your application relies upon node

ordering.

7.1.13. Paths

As defined in JCR 1.0, paths only consisted of segments with node names. JCR 2.0 adds a new

form of path called "identifier paths" that are of the form '[' identifier ']', where identifier is an

opaque identifier. (Note that the JCR 2.0 specification might appear to allow identifier segments

and name segments to be used together, but Section 3.4.1.1 requires that an identifier segment

must be the first and only segment in a path.)

How this affects your application: Any application written to JCR 1.0 paths will likely work as

expected (this is certainly true when using ModeShape repositories). However, with JCR 2.0 it

is now possible for your application to start making us of identifier paths. For example, PATH

properties can now store identifier paths, and it is possible to resolve an identifier path to the actual

node. And while the specification does not preclude an implementation returning an identifier path

as the node's absolute path, ModeShape never does this and will always return the name-oriented

path.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

getItem(String)

163

7.1.14. getItem(String)

The JCR 1.0 specification was slightly ambiguous in defining how the getItem(String) method

behaved if the relative path could resolve to a node or a property. ModeShape always implemented

this by first attempting to resolve to a node, and only if no such node could be found would it

attempt to resolve to a property. The JCR 2.0 specification now explicitly specifies this behavior

(see Section 3.4.2.2).

How this affects your application: Your application will need to change if it uses getItem(String)

and expects relative paths to be resolved against properties before nodes, as this is clearly

different from the JCR 2.0 specified behavior. Otherwise, your application needs no changes with

respect to getItem(String).

7.2. Obtaining a JCR Repository

Before your application can use a JCR repository, it has to find it. As mentioned above,

the JCR 2.0 API defines a new RepositoryFactory [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] interface that can be used with the Java

Standard Edition Service Loader mechanism [http://java.sun.com/javase/6/docs/api/java/util/

ServiceLoader.html] to obtain a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance, all using the JCR API alone:

Map<String,String> parameters = ...

Repository repository = null;

for (RepositoryFactory factory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = factory.getRepository(parameters);

 if (repository != null) break;

}

This code looks for all RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] implementations on the classpath (assuming those

implementations properly defined the service provider within their JARs), and will ask each to

create a repository given the supplied parameters. Thus, the parameters are specific to the

implementation you want to use.

Note

With JCR 1.0, applications could only find a Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instance using

implementation-specific code. This new JCR 2.0 approach is a bit more

complicated, but should work with most JCR 2.0 implementations and does not

require using any implementation classes. And your application can even load the

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Chapter 7. Using the JCR API ...

164

parameters from a configuration resource, meaning nothing in your application

depends on a particular JCR implementation.

ModeShape uses a single property named "org.modeshape.jcr.URL" with a value that is a URL

that either resolves to a ModeShape configuration file. Pointing directly to a configuration file

often works well in stand-alone applications or where the configuration is managed in a central

system. JNDI works great for applications deployed to server platforms (e.g., an application server

or servlet container) where multiple applications might want to use the same JCR repository

(or same ModeShape engine). We'll see in the next section how to configure ModeShape's

JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html]

explicitly and register it in JNDI.

So, here's the ServiceLoader example again, but with ModeShape-specific parameters:

String configUrl = ... ; // URL that points to your configuration file

Map<String,String> parameters = Collections.singletonMap("org.modeshape.jcr.URL", configUrl);

Repository repository = null;

for (RepositoryFactory factory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = factory.getRepository(parameters);

 if (repository != null) break;

}

Once you've gotten hold of a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance, you can use it to create Session [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s, using code similar to:

Credentials credentials = ...; // JCR credentials

String workspaceName = ...; // Name of repository workspace

Session session = repository.login(credentials,workspaceName);

We'll talk about the various ways of creating sessions in a later chapter. First, let's look at the

various kinds of URLs that you can use.

7.2.1. Configuration File URLs

The value of configUrl in the code snippets can be any URL that is resolvable on your system.

For example:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Configuration File URLs

165

 file://path/to/configFile.xml?repositoryName=MyRepository

In this example, the configuration file that specifies the repository setup will be loaded from the

file path relativePathToConfigFile and the repository named yourRepositoryName will be

returned. If ModeShape cannot find a file at the given path, it will try to load a configuration file

as a resource through the classloader.

You might have noticed that this URL contains a query parameter (the "?

repositoryName=MyRepository" part). ModeShape strips all query parameters when attempting

to resolve file: URLs to the underlying file.

Here's another example of a file URL that uses an absolute path to the file:

 file://path/to/configFile.xml?repositoryName=MyRepository

Note the addition of the three forward slashes after the protocol portion of the URL (i.e., file:).

These indicate the path is absolute.

Other URLs are possible, too. Here is a URL that points to a configuration file stored in a web-

enabled service, such as a web server, WebDAV file share, or version control system:

 http://www.example.com/path/to/configFile.xml?repositoryName=MyRepository

Unlike with "file:" URLs, ModeShape does not strip the URL's query parameters when resolving

to the configuration file, since most web servers ignore any query parameters not needed. This

allows you to include additional query parameters in the URL if they're needed to retrieve the file

from the server.

If your platform supports URLs with the "classpath:" scheme, you can point to a resource file

on the classpath:

 classpath:path/to/configFile.xml?repositoryName=MyRepository

Not all environments have such support, however. Many application servers, including JBoss

AS [http://jboss.org/jbossas] and EAP [http://www.jboss.com/products/platforms/application/], do

include support by default. However, the Java Standard Edition (SE) does not come with a

"classpath:" URL handler, though it is easy to add [http://stackoverflow.com/questions/861500/

url-to-load-resources-from-the-classpath-in-java].

ModeShape does the same thing with all of these URLs: it looks to see whether it already

has started a JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

http://jboss.org/jbossas
http://jboss.org/jbossas
http://jboss.org/jbossas
http://www.jboss.com/products/platforms/application/
http://www.jboss.com/products/platforms/application/
http://stackoverflow.com/questions/861500/url-to-load-resources-from-the-classpath-in-java
http://stackoverflow.com/questions/861500/url-to-load-resources-from-the-classpath-in-java
http://stackoverflow.com/questions/861500/url-to-load-resources-from-the-classpath-in-java
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html

Chapter 7. Using the JCR API ...

166

JcrEngine.html] with a configuration file at the given URL. If so, it uses the value of the

"repositoryName" query parameter and passes it to the getRepository(String) method. The

result of this method call will be a Repository [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html] object that is then returned from the factory.

However, if the RepositoryFactory has not yet seen this URL, it will download the

configuration file at the URL, load it using a new JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] object, and start a new

JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html]

instance. It then uses the "repositoryName" query parameter to obtain the Repository [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] as mentioned above.

7.2.2. Using JNDI URLs

The previous section showed how to use a URL to a configuration file to start a new

ModeShape instance. However, ModeShape can be deployed and managed as a central, shared

service in a variety of environments, including JBoss AS [http://jboss.org/jbossas] and EAP

[http://www.jboss.com/products/platforms/application/]. Since a single ModeShape instance can

manage multiple repositories, using a single shared instance will have a smaller footprint than

multiple ModeShape instances each running a single repository. Plus, the central ModeShape

instance can be configured, monitored, administered, and managed without requiring each

application to perform these functions.

The easiest and most common way for applications to find and reuse this central,

shared ModeShape service is to use JNDI. ModeShape's RepositoryFactory [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] implementation

accepts "jndi:" URLs instead of the file-based URL described in the previous chapter. The format

of these JNDI URLs is:

 jndi:name/in/jndi?repositoryName=MyRepository

The RepositoryFactory will look for a ModeShape engine registered in JNDI at "name/in/jndi",

and will ask that engine for the Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance with the name "MyRepository". Note that when a JNDI URL

is used, RepositoryFactory is will never create its own ModeShape engine instance: if none can

be found in JNDI, the RepositoryFactory will simply return null.

Sometimes a JNDI implementation will require creating a new InitialContext [http://

java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html] instance with a hashtable of

environment parameters. If this is the case for your environment, simply include those extra

parameters in the Map passed into the getRepository(Map) method. ModeShape will forward

these extra parameters into the InitialContext [http://java.sun.com/javase/6/docs/api/javax/

naming/InitialContext.html] constructor it uses look up the JNDI reference.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://jboss.org/jbossas
http://jboss.org/jbossas
http://www.jboss.com/products/platforms/application/
http://www.jboss.com/products/platforms/application/
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html
http://java.sun.com/javase/6/docs/api/javax/naming/InitialContext.html

Cleaning Up after JcrRepositoryFactory

167

7.2.3. Cleaning Up after JcrRepositoryFactory

If your application uses RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] with a ModeShape URL pointing to a configuration

file, the RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

RepositoryFactory.html] creates an embedded ModeShape engine (or several, if multiple

configuration files are used) that maintains a serious of connections, thread pools, and other

resources. In these cases, your application should shutdown ModeShape so that it can properly

release all accumulated resources.

The JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification does not specify

a standard way to shutdown engines or repositories created as a side

effect of RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

RepositoryFactory.html], so ModeShape has an extension to the JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283] API that provides this capability.

When you obtain your Repository instance using the ServiceLoader mechanism described earlier,

keep a reference to the RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/RepositoryFactory.html] that returns a non-null Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html]:

Map<String,String> parameters = ...

Repository repository = null;

RepositoryFactory factory = null;

for (RepositoryFactory aFactory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = aFactory.getRepository(parameters);

 if (repository != null) {

 factory = aFactory;

 break;

 }

}

Save this reference where your application's shutdown code can access it, then when your

application is terminating, check the type of the factory, cast to the ModeShape extension, and

call the "shutdown()" method:

if (factory instanceof org.modeshape.jcr.api.RepositoryFactory) {

 ((org.modeshape.jcr.api.RepositoryFactory)factory).shutdown();

}

This call to shutdown(...) instructs each of the JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] instances created by the factory

to shutdown gracefully and return immediately (without waiting for any of them to complete the

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html

Chapter 7. Using the JCR API ...

168

shutdown process). If you'd rather block while the engines perform their shutdown, simply supply

a timeout:

if (factory instanceof org.modeshape.jcr.api.RepositoryFactory) {

 ((org.modeshape.jcr.api.RepositoryFactory)factory).shutdown(30,TimeUnit.SECONDS);

}

This call will wait up to 30 seconds for each JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] to shut down.

7.3. ModeShape's JcrEngine

Although the preferred mechanism to obtain a Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] object is through the RepositoryFactory

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] interface

described above, there are times when an application wants or needs to have more control over

an actual ModeShape engine, which encapsulates everything necessary to run one or more JCR

repositories and managing the underlying repository sources, the pools of connections to the

sources, the sequencers, the MIME type detector(s), and the Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] implementations.

Note

If your application uses the RepositoryFactory [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html], then you can proceed

to the next section.

The first step to programmatically instantiating a ModeShape JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] is to define a configuration file as

described in the previous chapter. Then, load that configuration file and check for problems:

JcrConfiguration config = new JcrConfiguration();

configuration.loadFrom(file);

if (!configuration.getProblems().isEmpty()) {

 for (Problem problem : configuration.getProblems()) {

 // Report these problems!

 }

}

where the file parameter can actually be a File [http://java.sun.com/javase/6/docs/api/java/

io/File.html] instance, a URL [http://java.sun.com/javase/6/docs/api/java/net/URL.html] to the

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html
http://java.sun.com/javase/6/docs/api/java/net/URL.html

ModeShape's JcrEngine

169

file, an InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html] containing

the contents of the file, or a String [http://java.sun.com/javase/6/docs/api/java/lang/String.html]

containing the path to the configuration file.

Note

The loadFrom(...) method can be called any number of times, but each time it is

called it completely wipes out any current notion of the configuration and replaces

it with the configuration found in the file.

There is an optional second parameter that defines the Path [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html] within the configuration

file identifying the parent node of the various configuration nodes. If not specified, it assumes

"/". This makes it possible for the configuration content to be located at a different location in

the hierarchical structure. (This is not often required, but it is very useful if you ModeShape

configuration file is embedded within another XML file.)

Note

If your application is coding against the ModeShape classes, you may also

consider programmatically creating the configuration. This is useful when you

cannot predefine a configuration, but instead have to build one based upon

some parameters known only at runtime. Of course, you can always create the

configuration programmatically, write that configuration out to a file, and then

load the configuration using the standard RepositoryFactory [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] mechanism.

Once you have a valid JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrConfiguration.html] instance with no errors, you can build

and start the JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrEngine.html]:

JcrConfiguration config = ...

JcrEngine engine = config.build();

engine.start();

Obtaining a JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Repository.html] instance is a matter of simply asking the engine for it by the name defined in

the configuration:

http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Chapter 7. Using the JCR API ...

170

javax.jcr.Repository repository = engine.getRepository("Name of repository");

At this point, your application can proceed by working with the JCR API.

And, once you're finished with the JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/JcrEngine.html], you should shut it down:

engine.shutdown();

engine.awaitTermination(3,TimeUnit.SECONDS); // optional

When the shutdown() method is called, the Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] instances managed by the engine are marked as

being shut down, and they will not be able to create new Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s. However, any existing Session [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s or ongoing operations

(e.g., event notifications) present at the time of the shutdown() call will be allowed to finish. In

essence, shutdown() is a graceful request, and since it may take some time to complete, you

can wait until the shutdown has completed by simply calling awaitTermination(...) as shown

above. This method will block until the engine has indeed shutdown or until the supplied time

duration has passed (whichever comes first). And, yes, you can call the awaitTermination(...)

method repeatedly if needed.

7.4. Creating JCR Sessions

Once you have obtained a reference to the JCR Repository [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html], you can create a JCR session using one

of its login(...) methods. The JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification

provides four login methods, but the behavior of these methods depends on the kind of

authentication system your application is using.

7.4.1. Using JAAS

The login() method allows the implementation to choose its own security

context to create a session in the default workspace for the repository.

The ModeShape JCR implementation uses the security context from the

current JAAS AccessControlContext [http://java.sun.com/javase/6/docs/api/java/security/

AccessController.html]. This implies that this method will throw a LoginException

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html] if it is

not executed as a PrivilegedAction [http://java.sun.com/javase/6/docs/api/java/security/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/LoginException.html
http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html
http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html

Using JAAS

171

PrivilegedAction.html] (AND the JcrRepository.Options.ANONYMOUS_USER_ROLES option does

not allow access; see below for an example of how to configure guest user access). Here is one

example of how this might work:

Subject subject = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 Subject.doAsPrivileged(subject,

 new PrivilegedExceptionAction<Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]>() {

 public Session run() throws Exception {

 return repository.login();

 }

 }, AccessController.getContext());

Another variant of this is to use the AccessControlContext directly, which then operates against

the current Subject:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 AccessController.doPrivileged(

 new PrivilegedExceptionAction<Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]>() {

 public Session run() throws Exception {

 return repository.login();

 }

 });

Either of these approaches will yield a session with the same user name and roles as subject.

The login(String workspaceName) method is comparable and allows the workspace to be

specified by name:

Subject subject = ...;

final String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = (Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html])

 Subject.doAsPrivileged(subject,

 new PrivilegedExceptionAction<Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]>() {

 public Session run() throws Exception {

http://java.sun.com/javase/6/docs/api/java/security/PrivilegedAction.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 7. Using the JCR API ...

172

 return repository.login(workspaceName);

 }

 }, AccessController.getContext());

The JCR API also allows supplying a JCR Credentials [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Credentials.html] object directly as part of the login process, although

ModeShape imposes some requirements on what types of Credentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] may be supplied. The simplest way

is to provide a JCR SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/SimpleCredentials.html] object. These credentials will be validated against the JAAS

realm named "modeshape-jcr", unless another realm name is provided as an option during the

JCR repository configuration. For example:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] userName = ...;

char[] password = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = repository.login(new SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/SimpleCredentials.html](userName, password));

Similarly, the login(Credentials credentials, String workspaceName) method enables

passing the credentials and a workspace name:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] userName = ...;

char[] password = ...;

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html]

 credentials = new SimpleCredentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/SimpleCredentials.html](userName, password);

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(credentials, workspaceName);

If you'd want to use a different JAAS realm that what ModeShape is configured to

use, you can use a JaasCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/api/JaasCredentials.html] instance to pass the actual JAAS LoginContext [http://

java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html] that should be used

for authentication and authorization:

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html

Using HTTP Servlet security

173

LoginContext [http://java.sun.com/javase/6/docs/api/javax/security/auth/login/

LoginContext.html] loginContext = ...;

Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html]

 credentials = new JaasCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/api/JaasCredentials.html](loginContext);

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(credentials,workspaceName);

Note that even in this case, ModeShape will still use the same roles for authorization.

7.4.2. Using HTTP Servlet security

Servlet-based applications can make use of the servlet's existing authentication

mechanism from HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html]. Please note that the example below assumes that the servlet has a

security constraint that prevents unauthenticated access.

HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html] request = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(new ServletCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/api/ServletCredentials.html](request));

The ServletCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/api/ServletCredentials.html] is just a JCR Credentials [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] implementation that is used

by ModeShape's ServletProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/security/ServletProvider.html] to delegate the authorization

requests to HttpServletRequest [http://java.sun.com/javaee/6/docs/api/javax/servlet/http/

HttpServletRequest.html]'s "hasRole" method. The ServletCredentials [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html] class is in the small

"modeshape-jcr-api" module, so feel free to use this class in your servlet-based applications.

7.4.3. Guest (Anonymous) User Access

By default, ModeShape allows guest users full administrative access. This is done to make it

easier to get started with ModeShape. Of course, this is clearly not an appropriate security model

for a production system.

To modify the roles granted to guest users, change the

JcrRepository.Options.ANONYMOUS_USER_ROLES option for your repository to have a different

value, like "" (to disable guest access entirely) or "readonly" (to give guests read-only access to

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/JaasCredentials.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/security/ServletProvider.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/ServletCredentials.html

Chapter 7. Using the JCR API ...

174

all repositories). The value of this option can be any pattern that matches those described in the

table below.

Note

The Using ModeShape chapter of the Getting Started Guide provides examples

of modifying this option through programmatic configuration or in an XML

configuration file.

Once ModeShape is configured properly, getting anonymous JCR sessions requires

no authentication. The easiest way to do this is to use the JCR API methods

that do not have Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Credentials.html] parameters. For example, this gets an anonymous session to the default

workspace:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login();

while the following gets an anonymous session to the workspace with the supplied name:

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(workspaceName);

Per the JCR API, these are equivalent to passing a null Credentials [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] reference to "login"

methods, so you can choose that approach as well. ModeShape provides the

AnonymousCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

api/AnonymousCredentials.html] implementation that can be used if your application expects a to

use non-null Credentials object:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(new AnonymousCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/api/AnonymousCredentials.html]());

or

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html

Using Custom Security

175

String [http://java.sun.com/javase/6/docs/api/java/lang/String.html] workspaceName = ...;

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session =

 repository.login(new AnonymousCredentials [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/api/AnonymousCredentials.html](),workspaceName);

If you supply any other Credentials [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Credentials.html] implementation to the "login" methods, ModeShape

will not treat it as an anonymous login and will authenticate using JAAS

or, if the credentials is a SecurityContextCredentials [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html] instance,

its SecurityContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

SecurityContext.html] instance. In other words, there's no way to turn off authentication, but you

can use anonymous sessions.

7.4.4. Using Custom Security

Not all applications can or want to use JAAS for their authentication system, so ModeShape

provides a way to integrate your own custom security provider. Most of the steps are outlined in

the previous chapter, but when logging in your application needs to use a compatible Credentials

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] implementation,

similar to the examples shown above.

7.5. JCR Specification Support

We believe that ModeShape JCR implementation is JCR-compliant, but we are

awaiting final certification of compliance. Additionally, the JCR specification allows

some latitude to implementors for some implementation details. The sections

below clarify ModeShape's current and planned behavior. As always, please

consult the current list of known issues and bugs [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel].

7.5.1. Required features

ModeShape 2.6.0.Beta2 implements all of the JCR 2.0 required features:

• repository acquisition

• authentication

• reading/navigating

• query

• export

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/AnonymousCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/api/SecurityContextCredentials.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/SecurityContext.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel

Chapter 7. Using the JCR API ...

176

• node type discovery

• permissions and capability checking

ModeShape supports several query languages, including the JCR-SQL2 and JCR-QOM query

languages defined in JSR-283 [http://www.jcp.org/en/jsr/detail?id=283], and the XPath and JCR-

SQL languages defined in JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] but deprecated in

JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]. ModeShape also supports a fulltext search

language that is defined by the full-text search expression grammar used in the second parameter

of the CONTAINS(...) function of the JCR-SQL2 language. We just pulled it out and made it

available as a first-class query language.

7.5.2. Optional features

ModeShape 2.6.0.Beta2 implements most of the JCR 2.0 optional features:

• writing

• import

• observation

• workspace management

• versioning

• locking

• node type management

• same-name siblings

• orderable child nodes

• shareable nodes

The remaining optional features (access control management, lifecycle management, retention

and hold, and transactions) may be introduced in future versions.

7.5.3. TCK Compatibility features

The ModeShape project has not yet been certified to be fully-compliant with the JCR 2.0

specification, but does plan on attaining this certification in the very near future.

However, the ModeShape project also runs the JCR TCK unit tests from the reference

implementation every night. These tests technically do not represent the official TCK, but are

used within the TCK. Most of these unit tests are run in the modeshape-jcr module against the

in-memory repository to ensure our JCR implementation behaves correctly, and the same tests

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

JCR Security

177

are run in the modeshape-integration-tests module against a variety of connectors to ensure

they're implemented correctly. The modeshape-jcr-tck module runs all of these TCK unit tests,

and currently there are only a handful of failures due to known issues (see the JCR specification

support section for details).

ModeShape 2.6.0.Beta2 currently passes 1372 of the 1391 JCR TCK tests, where 17 of these

19 failures appear to be bugs in the TCK tests (see JCR-2648 [https://issues.apache.org/

jira/browse/JCR-2648], JCR-2661 [https://issues.apache.org/jira/browse/JCR-2661], JCR-2662

[https://issues.apache.org/jira/browse/JCR-2662], and JCR-2663 [https://issues.apache.org/jira/

browse/JCR-2663]). The remaining 2 failures are due to a known issue (see MODE-760 [http://

jira.jboss.org/browse/MODE-760]).

7.5.4. JCR Security

Although the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification requires

implementation of the Session.checkPermission(String, String) method, it allows

implementors to choose the granularity of their access controls. ModeShape supports coarse-

grained, role-based access control at the repository and workspace level.

ModeShape has extended the set of JCR-defined actions ("add_node", "set_property", "remove",

and "read") with additional actions ("register_type", "register_namespace", "unlock_any",

"create_workspace" and "delete_workspace"). The "register_type" and "register_namespace"

permissions control the ability to register (and unregister) node types and namespaces,

respectively. The "unlock_any"" permission grants the user the ability to unlock any

locked node or branch (as opposed to users without that permission who can only

unlock nodes or branches that they have locked themselves or for which they hold

the lock token). Finally, the "create_workspace" and "delete_workspace" permissions grant

the user the ability to create workspaces and delete workspaces, respectively, using the

corresponding methods on Workspace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Workspace.html]. Permissions to perform these actions are aggregated in roles

that can be assigned to users.

ModeShape currently defines three roles: readonly, readwrite, and admin. If

the Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html]

passed into Repository.login(...) (or the Subject [http://java.sun.com/javase/6/docs/api/

javax/security/auth/Subject.html] from the AccessControlContext [http://java.sun.com/javase/6/

docs/api/java/security/AccessController.html], if one of the no-credential login methods were

used) have any of these roles, the session will have the corresponding access to all workspaces

within the repository. The mapping from the roles to the actions that they allow is provided below,

for any values of path.

Table 7.1. Role / Action Mapping

Action Name readonly readwrite admin

read Allows Allows Allows

add_node Allows Allows

https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2648
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2661
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2662
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
https://issues.apache.org/jira/browse/JCR-2663
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760
http://jira.jboss.org/browse/MODE-760
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html
http://java.sun.com/javase/6/docs/api/java/security/AccessController.html

Chapter 7. Using the JCR API ...

178

Action Name readonly readwrite admin

set_property Allows Allows

remove Allows Allows

register_namespace Allows

register_type Allows

unlock_any Allows

create_workspace Allows

delete_workspace Allows

Note

In this release, ModeShape does not check that the actions parameter passed

into Session.checkPermission(...) contains only valid actions. This check may

be added in a future release.

It is also possible to grant access only to one or more repositories on a single ModeShape server or

to one or more named workspaces within a repository. The format for role names is defined below:

Table 7.2. Role Formats

Role Pattern Examples Description

ROLE_NAME readonly, admin Grants the named role to

the assigned user on every

workspace in any repository

on the ModeShape server.

ROLE_NAME.REPOSITORY_NAMEreadonly.modeshape_repo,

admin.localRepository

Grants the named role to

the assigned user on every

workspace in the named

repository on the ModeShape

server.

ROLE_NAME.REPOSITORY_NAME.WORKSPACE_NAMEreadonly.modeshape_repo.jsmith,

admin.localRepository.default

Grants the named role to the

assigned user on the named

workspace in the named

repository on the ModeShape

server.

It is also possible to grant more than one role to the same user. For example, the user "jsmith"

could be granted the roles "readonly.production", "readwrite.production.jsmith", and

"readwrite.staging" to allow read-only access to any workspace on a production repository,

read/write access to a personal workspace on the same production repository, and read/write

access to any workspace in a staging repository.

Built-In Node Types

179

As a final note, the ModeShape JCR implementation may have additional security roles added

in the future. A CONNECT role is already being used by the ModeShape REST Server to control

whether users have access to the repository through that means.

7.5.5. Built-In Node Types

ModeShape supports all of the built-in node types described in the JSR-283 [http://www.jcp.org/

en/jsr/detail?id=283] specification. ModeShape also defines some custom node types in the mode

namespace, but none of these node types (other than mode:resource) are intended to be used

by developers integrating with ModeShape and may be changed or removed at any time.

7.5.6. Custom Node Type Registration

Although the JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] specification does not require

support for registration and unregistration of custom types, ModeShape supports this extremely

useful feature. Custom node types can be added at startup, as noted above, at runtime using

the standard JCR API for managing node types, or at runtime by reading CND files or Jackrabbit

XML files. These node type registration mechanisms are supported equally within ModeShape,

although defining node types in standard CND files is recommended for portability.

Note

ModeShape also supports defining custom node types to load at startup. This is

discussed in more detail in the previous chapter.

7.5.6.1. Managing Node Types Using the JCR API

The JCR 2.0 API provides a mechanism for registering

and unregistering node types. Registration is done by creating

NodeTypeTemplate [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeTemplate.html] objects, NodeDefinitionTemplate [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html] objects (for child node

definitions), and PropertyDefinitionTemplate [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html] objects (for property definitions). Use

the setter methods to set the various attributes, and then register the node type definition with

the NodeTypeManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeManager.html]:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = ... ;

Workspace [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

Workspace.html] workspace = session.getWorkspace();

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Workspace.html

Chapter 7. Using the JCR API ...

180

// Obtain the ModeShape-specific node type manager ...

NodeTypeManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeManager.html] nodeTypeManager = workspace.getNodeTypeManager();

// Declare a mixin node type named "searchable" (with no namespace)

NodeTypeTemplate [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeTemplate.html] nodeType = nodeTypeManager.createNodeTypeTemplate();

nodeType.setName("searchable");

nodeType.setMixin(true);

// Add a mandatory child named "source" with a required primary type of "nt:file"

NodeDefinitionTemplate [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

nodetype/NodeDefinitionTemplate.html] childNode =

 nodeTypeManager.createNodeDefinitionTemplate();

childNode.setName("source");

childNode.setMandatory(true);

childNode.setRequiredPrimaryTypesNames(new String[] { "nt:file" });

childNode.setDefaultPrimaryTypeName("nt:file");

nodeType.getNodeDefinitionTemplates().add(childNode);

// Add a multi-valued STRING property named "keywords"

PropertyDefinitionTemplate [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

nodetype/PropertyDefinitionTemplate.html] property =

 nodeTypeManager.createPropertyDefinitionTemplate();

property.setName("keywords");

property.setMultiple(true);

property.setRequiredType(PropertyType.STRING);

nodeType.getPropertyDefinitionTemplates().add(property);

// Register the custom node type

nodeTypeManager.registerNodeType(nodeType,false);

Residual properties and child node definitions can also be defined simply by not calling setName

on the template.

ModeShape also supports a simple means of unregistering types, although it is not possible to

unregister types that are currently being used by nodes or as required primary types or supertypes

of other types. Unused node types can be unregistered with the following code, using the standard

JCR 2.0 API:

String[] unusedNodeTypeNames = ...;

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/PropertyDefinitionTemplate.html

Custom Node Type Registration

181

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = ... ;

NodeTypeManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeManager.html] nodeTypeManager = session.getWorkspace().getNodeTypeManager();

nodeTypeManager.unregisterNodeTypes(unusedNodeTypeNames);

This approach is often used to register custom node types within an application, when the

application knows the node type definitions or retrieves these definitions from some persisted

format (e.g., file, database, etc.). However, ModeShape provides some utilities if you want to

programmatically register node types defined in certain file formats. We'll see in the next section

how to use these.

7.5.6.2. Reading JCR CND files

Custom node types can be defined more succinctly through the CND file format defined by the

JCR 2.0 specification. In fact, this is how JBoss ModeShape defines its built-in node types. An

example CND file that declares the same node type as above would be:

[searchable] mixin

- keywords (string) multiple

+ source (nt:file) = nt:file mandatory

This definition could then be registered as part of the repository configuration (see the previous

chapter). Or, you can also use a Session to programmatically register the node types in a CND

file, but this requires ModeShape-specific class to read this file:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = ...

CndNodeTypeReader [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

CndNodeTypeReader.html] reader = new CndNodeTypeReader [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html](session);

reader.read(cndFile); // from file, file system path, classpath resource, URL, etc.

if (!reader.getProblems().isEmpty()) {

 for (Problem [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

collection/Problem.html] problem : nodeTypeSource.getProblems()) {

 // report or record problem

 }

} else {

 boolean allowUpdate = ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html

Chapter 7. Using the JCR API ...

182

 NodeTypeManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeManager.html] nodeTypeManager = session.getWorkspace().getNodeTypeManager();

 nodeTypeManager.registerNodeTypes(reader.getNodeTypeDefinitions(), allowUpdate);

}

The CndNodeTypeReader [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

CndNodeTypeReader.html] class provides a number of read(...) methods that accept

File [http://java.sun.com/javase/6/docs/api/java/io/File.html]s, paths to files on the file

system, the names of resources on the classpath, , and InputStream [http://java.sun.com/

javase/6/docs/api/java/io/InputStream.html]s. And CndNodeTypeReader [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html] will also register any

namespace mappings defined in the CND file but not yet registered in the session or

workspace. For details, see the JavaDoc for CndNodeTypeReader [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html]. If you have multiple

CND files, you can either call read(...) multiple times before registering (as long as the CND

files don't contain duplicate node type definitions), or you can simply create and use a new reader

for each CND file. The choice is yours.

7.5.6.3. Reading Jackrabbit XML Node Type Files

ModeShape also provides a class that reads the node types defined in a Jackrabbit XML format.

This is useful if you've been using Jackrabbit, have defined your custom node types in the

Jackrabbit-specific format, but want to switch to ModeShape and don't want to have to manually

convert your node types in the standard CND format. This class is used almost identically

to the CndNodeTypeReader [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/CndNodeTypeReader.html] class described above:

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] session

 = ...

JackrabbitXmlNodeTypeReader [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JackrabbitXmlNodeTypeReader.html] reader =

 new JackrabbitXmlNodeTypeReader [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JackrabbitXmlNodeTypeReader.html](session);

reader.read(cndFile); // from file, file system path, classpath resource, URL, etc.

if (!reader.getProblems().isEmpty()) {

 for (Problem [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/

collection/Problem.html] problem : nodeTypeSource.getProblems()) {

 // report or record problem

 }

} else {

 boolean allowUpdate = ...

 NodeTypeManager [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/

NodeTypeManager.html] nodeTypeManager = session.getWorkspace().getNodeTypeManager();

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/File.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/CndNodeTypeReader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JackrabbitXmlNodeTypeReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/common/collection/Problem.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/nodetype/NodeTypeManager.html

Summary

183

 nodeTypeManager.registerNodeTypes(reader.getNodeTypeDefinitions(), allowUpdate);

}

7.6. Summary

In this chapter, we covered how to use JCR with ModeShape and learned about how it implements

the JCR specification. Now that you know how ModeShape repositories work and how to use JCR

to work with ModeShape repositories, we'll move on in the next chapter to show how you can use

ModeShape to query and search your JCR data.

184

Chapter 8.

185

Querying and Searching using JCR
The JCR API defines a way to query a repository for content that meets user-defined criteria. The

JCR 2.0 API actually makes it possible for implementations to support multiple query languages,

and the specification requires support for two languages: JCR-SQL2 and JCR-QOM. JCR 1.0

[http://www.jcp.org/en/jsr/detail?id=170] defined two other languages (XPath and JCR-SQL),

though these languages were deprecated in JCR 2.0 [http://www.jcp.org/en/jsr/detail?id=283].

At this time, ModeShape supports all of these query languages, plus one search-engine-like

language called "search" that is actually just the full-text search expression grammar used in the

second parameter of the CONTAINS(...) function of the JCR-SQL2 language.

ModeShape handles all of these languages in nearly the same manner, the only difference

being whether the query is represented as a string or build programmatically using the

javax.jcr.query.qom part of the JCR API.

1. A language-independent representation, called the query model, is constructed by parsing the

string representation of the query (using a language-specific parser) or the JCR-QOM objects

created by the client.

2. The language-independent query model is used to create a canonical (relational) query plan.

3. The canonical query plan is then validated to ensure that all identifiers in the query are

resolvable.

4. The canonical query plan is then optimized using a flexible rule-based optimizer. Optimizations

include (but are not limited to): replace view references; unify handling of aliases; convert right

outer joins into left outer joins; choose algorithms for each join; raise and lower criteria; push

projection of columns as low in the plan as possible; duplicate criteria across identity joins;

rewrite identity joins involving only columns that form keys; remove parts of the plan that (based

upon the criteria) will return no rows; determination of the low-level "access" queries that will

be submitted to the connector layer.

5. The optimized query plan is then executed, whereby each access query is pushed down to the

connector and the results are then processed and combined to produce the desired result set.

Note that only the parsing step is dependent upon the query language. This means that all of the

query languages are processed using the same, unified engine.

The rest of this chapter describes how your applications can use queries to search your

repositories, and outlines the specifics of each of the four query languages available in

ModeShape.

8.1. JCR Query API

With ModeShape, all query operations can be performed using only the JCR API

interfaces. The first step is to obtain the QueryManager [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/query/QueryManager.html] from your Session [http://www.day.com/

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 8. Querying and Searc...

186

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] instance. The QueryManager interface

defines methods for creating Query [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/query/Query.html] objects, executing queries, storing queries (not results) as Node

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html]s in the repository, and

reconstituting queries that were stored on Node [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Node.html]s. Thus, querying a repository generally follows this pattern:

// Obtain the query manager for the session ...

javax.jcr.query.QueryManager queryManager = session.getWorkspace().getQueryManager();

// Create a query object ...

String language = ...

String expression = ...

javax.jcr.Query query = queryManager.createQuery(expression,language);

// Execute the query and get the results ...

javax.jcr.QueryResult result = query.execute();

// Iterate over the nodes in the results ...

javax.jcr.NodeIterator nodeIter = result.getNodes();

while (nodeIter.hasNext()) {

 javax.jcr.Node node = nodeIter.nextNode();

 ...

}

// Or iterate over the rows in the results ...

String[] columnNames = result.getColumnNames();

javax.jcr.query.RowIterator rowIter = result.getRows();

while (rowIter.hasNext()) {

 javax.jcr.query.Row row = rowIter.nextRow();

 // Iterate over the column values in each row ...

 javax.jcr.Value[] values = row.getValues();

 for (javax.jcr.Value value : values) {

 ...

 }

 // Or access the column values by name ...

 for (String columnName : columnNames) {

 javax.jcr.Value value = row.getValue(columnName);

 ...

 }

}

// When finished, close the session ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/Query.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html

JCR XPath Query Language

187

session.logout();

For more detail about these methods or about how to use other facets of the JCR query API,

please consult chapter 6 of the JCR 2.0 specification [http://www.jcp.org/en/jsr/detail?id=283].

8.2. JCR XPath Query Language

The JCR 1.0 specification [http://www.jcp.org/en/jsr/detail?id=170] uses the XPath query

language because node structures in JCR are very analogous to the structure of an XML

document. Thus, XPath provides a useful language for selecting and searching workspace

content. And since JCR 1.0 defines a mapping between XML and a workspace view called the

"document view", adapting XPath to workspace content is quite natural.

A JCR XPath query specifies the subset of nodes in a workspace that satisfy the constraints

defined in the query. Constraints can limit the nodes in the results to be those nodes with a specific

(primary or mixin) node type, with properties having particular values, or to be within a specific

subtree of the workspace. The query also defines how the nodes are to be returned in the result

sets using column specifiers and ordering specifiers.

ModeShape offers a bit more functionality in the "jcr:contains(...)" clauses than required by

the specification. In particular, the second parameter specifies the search expression, and for

these ModeShape accepts full-text search language expressions, including wildcard support.

Note

As an aside, ModeShape actually implements XPath queries by transforming

them into the equivalent JCR-SQL2 representation. And the JCR-SQL2 language,

although often more verbose, is much more capable of representing complex

queries with multiple combinations of type, property, and path constraints.

8.2.1. Column Specifiers

JCR 1.0 specifies that support is required only for returning column values based upon single-

valued, non-residual properties that are declared on or inherited by the node types specified in the

type constraint. ModeShape follows this requirement, and does not specifying residual properties.

However, ModeShape does allow multi-valued properties to be specified as result columns. And

as per the specification, ModeShape always returns the "jcr:path" and "jcr:score" pseudo-

columns.

ModeShape uses the last location step with an attribute axis to specify the properties that are to

be returned as result columns. Multiple properties are specified with a union. For example, the

following table shows several XPath queries and how they map to JCR-SQL2 queries.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

Chapter 8. Querying and Searc...

188

Table 8.1. Specifying result set columns

XPath JCR-SQL2

//*

SELECT * FROM [nt:base]

//element(*,my:type)

SELECT * FROM [my:type]

//element(*,my:type)/@my:title

SELECT [my:title] FROM [my:type]

//element(*,my:type)/(@my:title |

@my:text) SELECT [my:title], [my:text] FROM [my:type]

//element(*,my:type)/(@my:title union

@my:text) SELECT [my:title], [my:text] FROM [my:type]

8.2.2. Type Constraints

JCR 1.0 specifies that support is required only for specifying constraints of one primary type, and

it is optional to support specifying constraints on one (or more) mixin types. The specification also

defines that the XPath element test be used to test against node types, and that it is optional to

support element tests on location steps other than the last one. Type constraints are inherently

inheritance-sensitive, in that a constraint against a particular node type 'X' will be satisfied by

nodes explicitly declared to be of type 'X' or of subtypes of 'X'.

ModeShape does support using the element test to test against primary or mixin type. ModeShape

also only supports using an element test on the last location step. For example, the following table

shows several XPath queries and how they map to JCR-SQL2 queries.

Table 8.2. Specifying type constraints

XPath JCR-SQL2

//*

SELECT * FROM [nt:base]

//element(*,my:type)

SELECT * FROM [my:type]

/jcr:root/nodes/element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type])> LIKE '/nodes/%'

Property Constraints

189

XPath JCR-SQL2

 AND DEPTH([my:type]) = CAST(2 AS

 LONG)

/jcr:root/nodes//element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type]) LIKE '/nodes/%'

/jcr:root/nodes//

element(ex:nodeName,my:type) SELECT * FROM [my:type]

WHERE PATH([my:type]) LIKE '/nodes/%'

 AND NAME([my:type]) = 'ex:nodeName'

Note that the JCR-SQL2 language supported by ModeShape is far more capable of joining multiple

sets of nodes with different type, property and path constraints.

8.2.3. Property Constraints

JCR 1.0 specifies that attribute tests on the last location step is required, but that predicate tests

on any other location steps are optional.

ModeShape does support using attribute tests on the last location step to specify property

constraints, as well as supporting axis and filter predicates on other location steps. For example,

the following table shows several XPath queries and how they map to JCR-SQL2 queries.

Table 8.3. Specifying property constraints

XPath JCR-SQL2

//*[@prop1]

SELECT * FROM [nt:base]

WHERE [nt:base].prop1 IS NOT NULL

//element(*,my:type)[@prop1]

SELECT * FROM [my:type]

WHERE [my:type].prop1 IS NOT NULL

//element(*,my:type)

[@prop1=xs:boolean('true')] SELECT * FROM [my:type]

WHERE [my:type].prop1 = CAST('true' AS

 BOOLEAN)

//element(*,my:type)[@id<1 and

@name='john'] SELECT * FROM [my:type]

WHERE id < 1 AND name = 'john'

Chapter 8. Querying and Searc...

190

XPath JCR-SQL2

//element(*,my:type)[a/b/@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON ISCHILDNODE(nodeSet1,[my:type])

JOIN [nt:base] as nodeSet2

 ON ISCHILDNODE(nodeSet2,nodeSet1)

WHERE (NAME(nodeSet1) = 'a'

 AND NAME(nodeSet2) = 'b')

 AND nodeSet2.id IS NOT NULL

//element(*,my:type)[./*/*/@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON ISCHILDNODE(nodeSet1,[my:type])

JOIN [nt:base] as nodeSet2

 ON ISCHILDNODE(nodeSet2,nodeSet1)

WHERE nodeSet2.id IS NOT NULLL

//element(*,my:type)[.//@id]

SELECT * FROM [my:type]

JOIN [nt:base] as nodeSet1

 ON ISDESCENDANTNODE(nodeSet1,

[my:type])

WHERE nodeSet2.id IS NOT NULLL

Section 6.6.3.3 of the JCR 1.0 specification contains an in-depth description of property value

constraints using various comparison operators.

8.2.4. Path Constraints

JCR 1.0 specifies that exact, child node, and descendants-or-self path constraints be supported

on the location steps in an XPath query.

ModeShape does support the four kinds of path constraints. For example, the following table

shows several XPath queries and how they map to JCR-SQL2 queries.

Table 8.4. Specifying path constraints

XPath JCR-SQL2

/jcr:root/a[1]/b[2]

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a[1]/b[2]'

Path Constraints

191

XPath JCR-SQL2

/jcr:root/a/b[*]

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a[%]/b[%]'

/jcr:root/a[1]/b[*]

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a[%]/b[%]'

/jcr:root/a[2]/b

SELECT * FROM [nt:base]

WHERE PATH([nt:base]) = '/a[2]/b[%]'

/jcr:root/a/b[2]//c[4]

SELECT * FROM [my:type]

WHERE PATH([nt:base]) = '/a[%]/b[2]/c[4]'

 OR PATH(nodeSet1) LIKE '/a[%]/b[2]/%/

c[4]'

/jcr:root/a/b//c//d

SELECT * FROM [my:type]

WHERE PATH([nt:base]) = '/a[%]/b[%]/c[%]/

d[%]'

 OR PATH([nt:base]) LIKE '/a[%]/b[%]/%/

c[%]/d[%]'

 OR PATH([nt:base]) LIKE '/a[%]/b[%]/c[%]/

%/d[%]'

 OR PATH([nt:base]) LIKE '/a[%]/b[%]/%/

c[%]/%/d[%]'

//element(*,my:type)[@id<1 and

@name='john'] SELECT * FROM [my:type]

WHERE id < 1 AND name = 'john'

/jcr:root/a/b//element(*,my:type)

SELECT * FROM [my:type]

WHERE PATH([my:type]) = '/a[%]/b[%]/%'

Note that the JCR-SQL2 language supported by ModeShape is capable of representing a wider

combination of path constraints, although the XPath expressions are easier to understand and

significantly shorter.

Also, path constraints in XPath do not need to specify wildcards for the same-name-sibling (SNS)

indexes, as XPath should naturally find all nodes regardless of the SNS index, unless the SNS

Chapter 8. Querying and Searc...

192

index is explicitly specified. In other words, any path segment that does not have an explicit SNS

index (or an SNS index of '[%]' or '[_]') will match all SNS index values. However, any segments

in the path expression that have an explicit numeric SNS index will require an exact match. Thus

this path constraint:

/a/b/c[2]/d[%]/%/e[_]

will effectively be converted into

/a[%]/b[%]/c[2]/d[%]/%/e[_]

This behavior is very different than how JCR-SQL and JCR-SQL2 path constraints are handled,

since these languages interpret a lack of a SNS index as equating to '[1]'. To achieve the XPath-

like matching, a query written in JCR-SQL or JCR-SQL2 would need to explicitly include '[%]' in

each path segment where an SNS index literal is not already specified.

8.2.5. Ordering Specifiers

JCR 1.0 extends the XPath grammar to add support for ordering the results according to the

natural ordering of the values of one or more properties on the nodes.

ModeShape does support zero or more ordering specifiers, including whether each specifier is

ascending or descending. If no ordering specifiers are defined, the ordering of the results is not

predefined and may vary (though ordering by score may be used by default). For example, the

following table shows several XPath queries and how they map to JCR-SQL2 queries.

Table 8.5. Specifying result ordering

XPath JCR-SQL2

//element(*,*) order by @title

SELECT nodeSet1.title

FROM [nt:base] AS nodeSet1

ORDER BY nodeSet1.title

//element(*,*) order by jcr:score()

SELECT *

FROM [nt:base] AS nodeSet1

ORDER BY SCORE(nodeSet1)

//element(*,my:type) order by

jcr:score(my:type) SELECT *

FROM [my:type] AS nodeSet1

Miscellaneous

193

XPath JCR-SQL2

ORDER BY SCORE(nodeSet1)

//element(*,*) order by @jcr:path

SELECT jcr:path

FROM [nt:base] AS nodeSet1

ORDER BY PATH(nodeSet1)

//element(*,*) order by @title,

@jcr:score SELECT nodeSet1.title

FROM [nt:base] AS nodeSet1

ORDER BY nodeSet1.title,

 SCORE(nodeSet1)

Note that the JCR-SQL2 language supported by ModeShape has a far richer ORDER BY clause,

allowing the use of any kind of dynamic operand, including ordering upon arithmetic operations

of multiple dynamic operands.

8.2.6. Miscellaneous

JCR 1.0 defines a number of other optional and required features, and these are summarized in

this section.

• Only abbreviated XPath syntax is supported.

• Only the child axis (the default axis, represented by '/' in abbreviated syntax), descendant-or-

self axis (represented by '//' in abbreviated syntax), self axis (represented by '.' in abbreviated

syntax), and attribute axis (represent by '@' in abbreviated syntax) are supported.

• The text() node test is not supported.

• The element() node test is supported.

• The jcr:like() function is supported.

• The jcr:contains() function is supported.

• The jcr:score() function is supported.

• The jcr:deref() function is not supported.

8.3. JCR-SQL Query Language

The JCR-SQL query language is defined by the JCR 1.0 specification [http://www.jcp.org/en/jsr/

detail?id=170] as a way to express queries using strings that are similar to SQL. Support for the

language is optional, and in fact this language was deprecated in the JCR 2.0 specification [http://

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 8. Querying and Searc...

194

www.jcp.org/en/jsr/detail?id=283] in favor of the improved and more powerful (and more SQL-

like) JCR-SQL2 language, which is covered in the next section.

The JCR 2.0 specification defines how nodes in a repository are mapped onto relational

tables queryable through a SQL-like language, including JCR-SQL and JCR-SQL2. Basically,

each node type is mapped as a relational view with a single column for each of the

node type's (residual and non-residual) property definitions. Conceptually, each node in the

repository then appears as a record inside the view corresponding to the node type for which

"Node.isNodeType(nodeTypeName)" would return true.

Since each node likely returns true from this method for multiple node type (e.g., the primary

node type, the mixin types, and all supertypes of the primary and mixin node types), all nodes

will likely appear as records in multiple views. And since each view only exposes those properties

defined by (or inherited by) the corresponding node type, a full picture of a node will likely require

joining the views for multiple node types. This special kind of join, where the nodes have the same

identity on each side of the join, is referred to as an identity join, and is handled very efficiently

by ModeShape.

ModeShape includes support for the JCR-SQL language, and adds several extensions to make

it even more powerful and useful:

• Support for the UNION, INTERSECT, and EXCEPT set operations on multiple result sets to form

a single result set. As with standard SQL, the result sets being combined must have the same

columns. The UNION operator combines the rows from two result sets, the INTERSECT operator

returns the difference between two result sets, and the EXCEPT operator returns the rows that

are common to two result sets. Duplicate rows are removed unless the operator is followed by

the ALL keyword. For detail, see the grammar for set queries.

• Removal of duplicate rows in the results, using "SELECT DISTINCT ...".

• Limiting the number of rows in the result set with the "LIMIT count" clause, where count is the

maximum number of rows that should be returned. This clause may optionally be followed by

the "OFFSET number" clause to specify the number of initial rows that should be skipped.

• Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete

static operands. For example, "WHERE ... prop1 IN (3,5,7,10,11,50) ...".

• Support for the BETWEEN clause to more easily and concisely supply a range of discrete

operands. For example, "WHERE ... prop1 BETWEEN 3 EXCLUSIVE AND 10 ...".

• Support for (non-correlated) subqueries in the WHERE clause, wherever a static operand can

be used. Subqueries can even be used within another subquery. All subqueries must return a

single column, and each row's single value will be treated as a literal value. If the subquery is

used in a clause that expects a single value (e.g., in a comparison), only the subquery's first

row will be used. If the subquery is used in a clause that allows multiple values (e.g., IN (...)),

then all of the subquery's rows will be used. For example, this query "WHERE ... prop1 IN

(SELECT my:prop2 FROM my:type2 WHERE my:prop3 < '1000') AND ..." will use the

results of the subquery as the literal values in the IN clause.

http://www.jcp.org/en/jsr/detail?id=283

Queries

195

The grammar for the JCR-SQL query language is actually a superset of that defined by the JCR

1.0 specification [http://www.jcp.org/en/jsr/detail?id=170], and as such the complete grammar is

included here.

Note

The grammar is presented using the same EBNF nomenclature as used in the JCR

1.0 specification. Terms are surrounded by '[' and ']' denote optional terms that

appear zero or one times. Terms surrounded by '{' and '}' denote terms that appear

zero or more times. Parentheses are used to identify groups, and are often used

to surround possible values. Literals (or keywords) are denoted by single-quotes.

8.3.1. Queries

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query

 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

Query ::= Select From [Where] [OrderBy] [Limit]

Select ::= 'SELECT' ('*' | Proplist)

From ::= 'FROM' NtList

Where ::= 'WHERE' WhereExp

OrderBy ::= 'ORDER BY' propname [Order] {',' propname [Order]}

Order ::= 'DESC' | 'ASC'

Proplist ::= propname {',' propname}

NtList ::= ntname {',' ntname}

WhereExp ::= propname Op value |

 propname 'IS' ['NOT'] 'NULL' |

 like |

 contains |

 whereexp ('AND'|'OR') whereexp |

 'NOT' whereexp |

 '(' whereexp ')' |

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

Chapter 8. Querying and Searc...

196

 joinpropname '=' joinpropname |

 between |

 propname ['NOT'] 'IN' '(' value {',' value } ')'

Op ::= '='|'>'|'<'|'>='|'<='|'<>'

joinpropname ::= quotedjoinpropname | unquotedjoinpropname

quotedjoinpropname ::= ''' unquotedjoinpropname '''

unquotedjoinpropname ::= ntname '.jcr:path'

propname ::= quotedpropname | unquotedpropname

quotedpropname ::= ''' unquotedpropname '''

unquotedpropname ::= /* A property name, possible a pseudo-property: jcr:score or jcr:path */

ntname ::= quotedntname | unquotedntname

quotedntname ::= ''' unquotedntname '''

unquotedntname ::= /* A node type name */

value ::= literal | subquery

literal ::= ''' literalvalue ''' | literalvalue

literalvalue ::= /* A property value (in standard string form) */

subquery ::= '(' QueryCommand ')' | QueryCommand

like ::= propname 'LIKE' likepattern [escape]

likepattern ::= ''' likechar { likepattern } '''

likechar ::= char | '%' | '_'

escape ::= 'ESCAPE' ''' likechar '''

char ::= /* Any character valid within the string representation of a value

 except for the characters % and _ themselves. These must be escaped */

contains ::= 'CONTAINS(' scope ',' searchexp ')'

scope ::= unquotedpropname | '.'

searchexp ::= ''' exp '''

exp ::= ['-']term {whitespace ['OR'] whitespace ['-']term}

term ::= word | '"' word {whitespace word} '"'

word ::= /* A string containing no whitespace */

whitespace ::= /* A string of only whitespace*/

between ::= propname ['NOT'] 'BETWEEN' lowerBound ['EXCLUSIVE']

 'AND' upperBound ['EXCLUSIVE']

JCR-SQL2 Query Language

197

lowerBound ::= value

upperBound ::= value

Limit ::= 'LIMIT' count ['OFFSET' offset]

count ::= /* Positive integer value */

offset ::= /* Non-negative integer value */

8.4. JCR-SQL2 Query Language

The JCR-SQL2 query language is defined by the JCR 2.0 specification [http://www.jcp.org/en/

jsr/detail?id=283] as a way to express queries using strings that are similar to SQL. This query

language is an improvement over the JCR-SQL language, providing among other things far richer

specifications of joins and criteria.

ModeShape includes full support for the complete JCR-SQL2 query language. However,

ModeShape adds several extensions to make it even more powerful:

• Support for the "FULL OUTER JOIN" and "CROSS JOIN" join types, in addition to the "LEFT OUTER

JOIN", "RIGHT OUTER JOIN" and "INNER JOIN" types defined by JCR-SQL2. Note that "JOIN"

is a shorthand for "INNER JOIN". For detail, see the grammar for joins.

• Support for the UNION, INTERSECT, and EXCEPT set operations on multiple result sets to form

a single result set. As with standard SQL, the result sets being combined must have the same

columns. The UNION operator combines the rows from two result sets, the INTERSECT operator

returns the difference between two result sets, and the EXCEPT operator returns the rows that

are common to two result sets. Duplicate rows are removed unless the operator is followed by

the ALL keyword. For detail, see the grammar for set queries.

• Removal of duplicate rows in the results, using "SELECT DISTINCT ...". For detail, see the

grammar for queries.

• Limiting the number of rows in the result set with the "LIMIT count" clause, where count is the

maximum number of rows that should be returned. This clause may optionally be followed by

the "OFFSET number" clause to specify the number of initial rows that should be skipped. For

detail, see the grammar for limits and offsets.

• Additional dynamic operands "DEPTH([<selectorName>])" and "PATH([<selectorName>])"

that enable placing constraints on the node depth and path, respectively. These

dynamic operands can be used in a manner similar to "NAME([<selectorName>])" and

"LOCALNAME([<selectorName>])" that are defined by JCR-SQL2. Note in each of these cases,

the selector name is optional if there is only one selector in the query. For detail, see the

grammar for dynamic operands.

• Additional dynamic operand "REFERENCE([<selectorName>.]<propertyName>)" and

"REFERENCE([<selectorName>])" that enables placing constraints on one or any of the

reference properties, respectively, and which can be used in a manner similar to "

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 8. Querying and Searc...

198

PropertyValue([<selectorName>.]<propertyName>)". Note in each of these cases, the

selector name is optional if there is only one selector in the query, and that the property name

can be excluded if the constraint should apply to all reference properties. For detail, see the

grammar for dynamic operands.

• Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete

static operands. For example, "WHERE ... [my:type].[prop1] IN (3,5,7,10,11,50) ...".

For detail, see the grammar for set constraints.

• Support for the BETWEEN clause to more easily and concisely supply a range of discrete

operands. For example, "WHERE ... [my:type].[prop1] BETWEEN 3 EXCLUSIVE AND 10 ...".

For detail, see the grammar for between constraints.

• Support for simple arithmetic in numeric-based criteria and order-by clauses. For example,

"... WHERE SCORE(type1) + SCORE(type2) > 1.0" or "... ORDER BY (SCORE(type1)

* SCORE(type2)) ASC, LENGTH(type2.property1) DESC". For detail, see the grammar for

order-by clauses.

• Support for (non-correlated) subqueries in the WHERE clause, wherever a static operand can

be used. Subqueries can even be used within another subquery. All subqueries must return a

single column, and each row's single value will be treated as a literal value. If the subquery is

used in a clause that expects a single value (e.g., in a comparison), only the subquery's first

row will be used. If the subquery is used in a clause that allows multiple values (e.g., IN (...)),

then all of the subquery's rows will be used. For example, this query "WHERE ... [my:type].

[prop1] IN (SELECT [my:prop2] FROM [my:type2] WHERE [my:prop3] < '1000')

AND ..." will use the results of the subquery as the literal values in the IN clause.

• Support for several pseudo-columns ("jcr:path", "jcr:score", "jcr:name",

"mode:localName", and "mode:depth") that can be used in the SELECT, equijoin, and

WHERE clauses. These pseudo-columns make it possible to return location-related and

score information within the QueryResult [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/query/QueryResult.html]'s rows. They also make queries look more like SQL,

and thus may be more friendly and easier to use in existing SQL-aware client applications. See

the detailed description for more information.

The grammar for the JCR-SQL2 query language is actually a superset of that defined by the JCR

2.0 specification [http://www.jcp.org/en/jsr/detail?id=283], and as such the complete grammar is

included here.

Note

The grammar is presented using the same EBNF nomenclature as used in the JCR

2.0 specification. Terms are surrounded by '[' and ']' denote optional terms that

appear zero or one times. Terms surrounded by '{' and '}' denote terms that appear

zero or more times. Parentheses are used to identify groups, and are often used

to surround possible values. Literals (or keywords) are denoted by single-quotes.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Queries

199

8.4.1. Queries

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query

 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

Query ::= 'SELECT' ['DISTINCT'] columns

 'FROM' Source

 ['WHERE' Constraint]

 ['ORDER BY' orderings]

 [Limit]

8.4.2. Sources

Source ::= Selector | Join

Selector ::= nodeTypeName ['AS' selectorName]

nodeTypeName ::= Name

8.4.3. Joins

Join ::= left [JoinType] 'JOIN' right 'ON' JoinCondition

 // If JoinType is omitted INNER is assumed.

left ::= Source

right ::= Source

JoinType ::= Inner | LeftOuter | RightOuter | FullOuter | Cross

Inner ::= 'INNER' ['JOIN']

LeftOuter ::= 'LEFT JOIN' | 'OUTER JOIN' | 'LEFT OUTER JOIN'

Chapter 8. Querying and Searc...

200

RightOuter ::= 'RIGHT OUTER' ['JOIN']

RightOuter ::= 'FULL OUTER' ['JOIN']

RightOuter ::= 'CROSS' ['JOIN']

JoinCondition ::= EquiJoinCondition | SameNodeJoinCondition |

 ChildNodeJoinCondition | DescendantNodeJoinCondition

8.4.4. Equi-Join Conditions

EquiJoinCondition ::= selector1Name'.'property1Name '=' selector2Name'.'property2Name

selector1Name ::= selectorName

selector2Name ::= selectorName

property1Name ::= propertyName

property2Name ::= propertyName

8.4.5. Same-Node Join Conditions

SameNodeJoinCondition ::= 'ISSAMENODE(' selector1Name ',' selector2Name [',' selector2Path]

 ')'

selector2Path ::= Path

8.4.6. Child-Node Join Conditions

ChildNodeJoinCondition ::= 'ISCHILDNODE(' childSelectorName ',' parentSelectorName ')'

childSelectorName ::= selectorName

Descendant-Node Join Conditions

201

parentSelectorName ::= selectorName

8.4.7. Descendant-Node Join Conditions

DescendantNodeJoinCondition ::= 'ISDESCENDANTNODE(' descendantSelectorName

 ',' ancestorSelectorName ')'

descendantSelectorName ::= selectorName

ancestorSelectorName ::= selectorName

8.4.8. Constraints

Constraint ::= ConstraintItem | '(' ConstraintItem ')'

ConstraintItem ::= And | Or | Not | Comparison | Between | PropertyExistence |

 SetConstraint | FullTextSearch | SameNode | ChildNode | DescendantNode

8.4.9. And Constraints

And ::= constraint1 'AND' constraint2

constraint1 ::= Constraint

constraint2 ::= Constraint

8.4.10. Or Constraints

Chapter 8. Querying and Searc...

202

Or ::= constraint1 'OR' constraint2

8.4.11. Not Constraints

Not ::= 'NOT' Constraint

8.4.12. Comparison Constraints

Comparison ::= DynamicOperand Operator StaticOperand

Operator ::= '=' | '!=' | '<' | '<=' | '>' | '>=' | 'LIKE'

8.4.13. Between Constraints

Between ::= DynamicOperand ['NOT'] 'BETWEEN' lowerBound ['EXCLUSIVE']

 'AND' upperBound ['EXCLUSIVE']

lowerBound ::= StaticOperand

upperBound ::= StaticOperand

8.4.14. Property Existence Constraints

PropertyExistence ::= selectorName'.'propertyName 'IS' ['NOT'] 'NULL' |

 propertyName 'IS' ['NOT'] 'NULL' /* If only one selector exists in this query */

Set Constraints

203

8.4.15. Set Constraints

SetConstraint ::= selectorName'.'propertyName ['NOT'] 'IN' |

 propertyName ['NOT'] 'IN' /* If only one selector exists in this query */

 '(' firstStaticOperand {',' additionalStaticOperand } ')'

firstStaticOperand ::= StaticOperand

additionalStaticOperand ::= StaticOperand

8.4.16. Full-text Search Constraints

FullTextSearch ::= 'CONTAINS(' ([selectorName'.']propertyName | selectorName'.*')

 ',' ''' fullTextSearchExpression''' ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

fullTextSearchExpression ::= FulltextSearch

where FulltextSearch is defined by the following, and is the same as the full-text search

language supported by ModeShape:

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

Chapter 8. Querying and Searc...

204

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

8.4.17. Same-Node Constraint

SameNode ::= 'ISSAMENODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the path is optional */

8.4.18. Child-Node Constraints

ChildNode ::= 'ISCHILDNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the path is optional */

8.4.19. Descendant-Node Constraints

DescendantNode ::= 'ISDESCENDANTNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

8.4.20. Paths and Names

Static Operands

205

Name ::= '[' quotedName ']' | '[' simpleName ']' | simpleName

quotedName ::= /* A JCR Name (see the JCR specification) */

simpleName ::= /* A JCR Name that contains only SQL-legal

 characters (namely letters, digits, and underscore) */

Path ::= '[' quotedPath ']' | '[' simplePath ']' | simplePath

quotedPath ::= /* A JCR Path that contains non-SQL-legal characters */

simplePath ::= /* A JCR Path (rather Name) that contains only SQL-legal

 characters (namely letters, digits, and underscore) */

8.4.21. Static Operands

StaticOperand ::= Literal | BindVariableValue | Subquery

Literal

Literal ::= CastLiteral | UncastLiteral

CastLiteral ::= 'CAST(' UncastLiteral ' AS ' PropertyType ')'

PropertyType ::= 'STRING' | 'BINARY' | 'DATE' | 'LONG' | 'DOUBLE' | 'DECIMAL' |

 'BOOLEAN' | 'NAME' | 'PATH' | 'REFERENCE' | 'WEAKREFERENCE' | 'URI'

 /* 'WEAKREFERENCE' is not currently supported in JCR 1.0 */

UncastLiteral ::= UnquotedLiteral | ''' UnquotedLiteral ''' | '"' UnquotedLiteral '"'

UnquotedLiteral ::= /* String form of a JCR Value, as defined in the JCR specification */

8.4.22. Bind Variables

BindVariableValue ::= '$'bindVariableName

bindVariableName ::= /* A string that conforms to the JCR Name syntax, though the prefix

Chapter 8. Querying and Searc...

206

 does not need to be a registered namespace prefix. */

8.4.23. Subqueries

Subquery ::= '(' QueryCommand ')' |

 QueryCommand

8.4.24. Dynamic Operands

DynamicOperand ::= PropertyValue | ReferenceValue | Length | NodeName | NodeLocalName

 | NodePath |

 NodeDepth | FullTextSearchScore | LowerCase | UpperCase | Arithmetic |

 '(' DynamicOperand ')'

PropertyValue ::= [selectorName'.'] propertyName

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

ReferenceValue ::= 'REFERENCE(' selectorName '.' propertyName ')' |

 'REFERENCE(' selectorName ')' |

 'REFERENCE()' |

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional. Also, the property name may be excluded

 if the constraint should apply to any reference property. */

Length ::= 'LENGTH(' PropertyValue ')'

NodeName ::= 'NAME(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

NodeLocalName ::= 'LOCALNAME(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

Ordering

207

NodePath ::= 'PATH(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

NodeDepth ::= 'DEPTH(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

FullTextSearchScore ::= 'SCORE(' [selectorName] ')'

 /* If only one selector exists in this query, explicit specification of the selectorName

 is optional */

LowerCase ::= 'LOWER(' DynamicOperand ')'

UpperCase ::= 'UPPER(' DynamicOperand ')'

Arithmetic ::= DynamicOperand ('+'|'-'|'*'|'/') DynamicOperand

8.4.25. Ordering

orderings ::= Ordering {',' Ordering}

Ordering ::= DynamicOperand [Order]

Order ::= 'ASC' | 'DESC'

8.4.26. Columns

columns ::= (Column ',' {Column}) | '*'

Column ::= ([selectorName'.']propertyName ['AS' columnName]) | (selectorName'.*')

 /* If only one selector exists in this query, explicit specification of the selectorName

 preceding the propertyName is optional */

selectorName ::= Name

propertyName ::= Name

Chapter 8. Querying and Searc...

208

columnName ::= Name

8.4.27. Limit and Offset

Limit ::= 'LIMIT' count ['OFFSET' offset]

count ::= /* Positive integer value */

offset ::= /* Non-negative integer value */

8.4.28. Pseudo-columns

The design of the JCR-SQL2 query language makes fairly heavy use of functions, including

SCORE(), NAME(), and LOCALNAME(). ModeShape adds several more useful functions, including

PATH() and DEPTH(), that follow the same patterns.

However, there are several disadvantages of these functions. First, they make the JCR-SQL2

language less "SQL-like", since SQL-92 and -99 don't define these kinds of functions. (There are

aggregate functions, like COUNT, SUM, etc., but they are not terribly analogous.) This means that

applications that use SQL and SQL-like query languages are less likely to be able to build and

issue JCR-SQL2 queries.

A second disadvantage of these functions is that JCR-SQL2 does not allow them to be used

within the SELECT clause. As a result, the location-related and score information cannot be

included as columns of values in the QueryResult [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/query/QueryResult.html] rows. Instead, a client can only access this information

by obtaining the Node [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html]

object(s) for each row. Relying upon both the result set and additional Java objects makes it

difficult to use.

For example, ModeShape's JDBC driver is designed to enable JDBC-aware applications to

query repository content using JCR-SQL2 queries. The standard JDBC API cannot expose the

Node [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html] objects, so the

only way to return the path-related and score information is through additional columns in the

result. While such columns could "magically" appear in the result set, doing this is not compatible

with JDBC applications that dynamically build queries based upon database metadata. Such

applications require the columns to be properly described in database metadata, and the columns

need to be used within queries.

ModeShape attempts to solve these issues by directly supporting a number of "pseudo-columns"

within JCR-SQL2 queries, wherever columns can be used. These "pseudo-columns" include:

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html

Pseudo-columns

209

• jcr:score is a column of type DOUBLE that represents the full-text search score of the node,

which is a measure of the node's relevance to the full-text search expression. ModeShape does

compute the scores for all queries, though the score for rows in queries that do not include a

full-text search criteria may not be reliable.

• jcr:path is a column of type PATH that represents the normalized path of a node, including

same-name siblings. This is the same as what would be returned by the getPath() method of

Node [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html]. Examples of

paths include "/jcr:system" and "/foo/bar[3]".

• jcr:name is a column of type NAME that represents the node name in its namespace-qualified

form using namespace prefixes and excluding same-name-sibling indexes. Examples of node

names include "jcr:system", "jcr:content", "ex:UserData", and "bar".

• mode:localName is a column of type STRING that represents the local name of the node,

which excludes the namespace prefix and same-name-sibling index. As an example, the local

name of the "jcr:system" node is "system", while the local name of the "ex:UserData[3]" node

is "UserData".

• mode:depth is a column of type LONG that represents the depth of a node, which corresponds

exactly to the number of path segments within the path. For example, the depth of the root node

is 0, whereas the depth of the "/jcr:system/jcr:nodeTypes" node is 2.

All of these pseudo-columns can be used in the SELECT clause of any JCR-SQL2 query, and

their use defines whether such columns appear in the result set. In fact, all of these pseudo-

columns will be included when "SELECT *" clauses in JCR-SQL2 queries are expanded by the

query engine. This means that every node type (even mixin node types that have no properties

and are essentially markers) are represented by a queryable table.

Like any other column, all of these pseudo-columns can be also be used in the WHERE clause

of any JCR-SQL2 query, even if they are not included in the SELECT clause. They can be used

anywhere that a regular column can be used, including within constraints and dynamic operands.

ModeShape will automatically rewrite queries that use pseudo-columns in the dynamic operands

to use the corresponding function, such as SCORE(), PATH(), NAME(), LOCALNAME(), and DEPTH().

Additionally, any property existence constraint using these pseudo-columns will always evaluate

to 'true' (and will thus be removed by the optimizer).

The jcr:path pseudo-column may also be used on both sides of an equijoin constraint clause.

For example:

 ... selector1.[jcr:path] = selector2.[jcr:path] ...

Equijoins of this form will be automatically rewritten by the optimizer to the following form:

 ... ISSAMENODE(selector1,selector2) ...

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.html

Chapter 8. Querying and Searc...

210

As with regular columns, the pseudo-columns must be qualified with the selector name if the query

contains more than one selector.

Note

Note that the jcr:path and jcr:score pseudo-columns are consistent with the

pseudo-columns of the same names used in JCR-SQL query language. However,

unlike in JCR-SQL, in JCR-SQL2 these columns are not automatically included in

the results unless explicitly included in the SELECT clause or implicitly included via

"SELECT *"

8.4.29. Example JCR-SQL2 queries

One of the simplest JCR-SQL2 queries finds all nodes in the current workspace of the repository:

 SELECT * FROM [nt:base]

This query will return a result set containing a single "jcr:primaryType" column, since

the nt:base defines only one single-valued property called "jcr:primaryType". (The

jcr:mixinTypes property is multi-valued, and as such the JCR 2.0 specification does not require

returning these in query results.)

Queries can explicitly specify the columns that are to be returned in the results. The following

query is semantically equivalent to the previous query, and produces identical results:

 SELECT [jcr:primaryType] FROM [nt:base]

The following query will return the same rows as in the previous queries, but the SELECT clause

includes two pseudo-columns containing the values computed from the nodes' locations:

 SELECT [jcr:primaryType], [jcr:path], [mode:depth] FROM [nt:base]

In JCR-SQL2, a table representing a particular node type will have a column for each of the node

type's property definitions, including those inherited from supertypes. For example, the nt:file

node type, its nt:hierarchyNode supertype, and the mix:created mixin type are defined using

the CND notation as follows:

[mix:created] mixin

 - jcr:created (date) protected

Example JCR-SQL2 queries

211

 - jcr:createdBy (string) protected

[nt:hierarchyNode] > mix:created abstract

[nt:file] > nt:hierarchyNode

 + jcr:content (nt:base) primary mandatory

Therefore, the table representing the nt:file node type will have two three columns: the

jcr:created and jcr:createdBy columns inherited from the mix:created mixin node type (via

the nt:hierarchyNode node type), and the jcr:primaryType column inherited from the nt:base

node type, which is the implicit supertype of the nt:hierarchyNode. Thus, this query:

 SELECT * FROM [nt:file]

is equivalent to this query:

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy],

 [jcr:path], [jcr:name], [jcr:score], [mode:localName], [mode:depth]

FROM [nt:file]

Here is an example query that selects some of the available columns from the nt:file table and

uses a constraint to ensure the resulting file nodes have names that end in '.txt':

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM [nt:file]

WHERE LOCALNAME() LIKE '%.txt'

Of course, we could instead using mode:localName pseudo-column instead of the LOCALNAME()

function. Such a query is equivalent to the previous query and will produce the exact same results:

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM [nt:file]

WHERE [mode:localName] LIKE '%.txt'

Although this query looks much more like SQL, the use of the '[' and ']' characters to quote

the identifiers is not typical of a SQL dialect. ModeShape actually supports the using double-

quote characters and square braces interchangeably around identifiers (although they must match

Chapter 8. Querying and Searc...

212

around any single identifier). Again, this next query, which looks remarkably like any SQL-92 or

-99 dialect, is functionally identical to the previous two queries:

SELECT "jcr:primaryType", "jcr:created", "jcr:createdBy", "jcr:path" FROM "nt:file"

WHERE "mode:localName" LIKE '%.txt'

In JCR-SQL2, a node will appear as a row in each table that corresponds to the node types defined

by that node's primary type or mixin types, or any supertypes of these node types. In other words,

a node will appear in the table corresponding to each node type for which Node.isNodeType(...)

returns true.

For example, consider a node that has a primary type of nt:file but has a mixin of

mix:referenceable. This node will appear as a result in the nt:file, mix:referenceable,

nt:hierarchy, mix:created, and nt:base. The table for nt:file contains all of the columns in

the nt:hierarchyNode, mix:referenceable, and nt:base. However, the nt:file table does not

contain the jcr:uuid column, since the nt:file node type does not extend mix:referenceable.

Thus, to obtain the UUID for our node, we need to perform an identity join. The next query shows

how this is done to return all properties for nt:file nodes that are also mix:referenceable:

SELECT file.*, ref.* FROM [nt:file] AS file JOIN [mix:referenceable] AS ref

JOIN ON ISSAMENODE(file,ref)

The select clause would be expanded to the following query:

SELECT file.[jcr:primaryType], file.[jcr:created], file.[jcr:createdBy], ref.[jcr:uuid]

 file.[jcr:path], file.[jcr:name], file.[jcr:score], file.[mode:localName], file.[mode:depth]

FROM [nt:file] AS file JOIN [mix:referenceable] AS ref

JOIN ON ISSAMENODE(file,ref)

Of course, would could return even more information and make the query look very SQL-like by

using pseudo-columns:

SELECT file."jcr:primaryType", file."jcr:created", file."jcr:createdBy", ref."jcr:uuid",

 file."jcr:path", file."jcr:name", file."mode:localName", file."mode:depth", file."jcr:score"

FROM "nt:file" AS file JOIN "mix:referenceable" AS ref

Example JCR-SQL2 queries

213

JOIN ON file."jcr:path" = ref."jcr:path"

These are examples of two-way inner joins, but ModeShape supports joining multiple tables

together in a single query. ModeShape also supports a variety of joins, including INNER JOIN (or

just JOIN), LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN, and CROSS JOIN.

ModeShape supports several other query features beyond JCR-SQL2. One of these is support

for UNION, INTERSECT and EXCEPT. Here is an example of a union:

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM [nt:file]

UNION

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM [nt:folder]

ModeShape also supports using (non-correlated) subqueries within the WHERE clause, wherever a

static operand can be used. Subqueries can even be used within another subquery. All subqueries,

though, must return a single column, and each row's single value will be treated as a literal value.

If the subquery is used in a clause that expects a single value (e.g., in a comparison), only the

subquery's first row will be used.

Subqueries in ModeShape are a powerful and easy way to use more complex criteria that is a

function of the content in the repository, without having to resort to multiple queries (take the

results of one query and dynamically generate the criteria of another query).

Here's an example of a query that finds all nt:file nodes in the repository whose paths are

referenced in the vdb:originalFile property of the vdb:virtualDatabase nodes. (This query

also uses bind variables in the subquery.)

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM [nt:file]

WHERE PATH() IN (

 SELECT [vdb:originalFile] FROM [vdb:virtualDatabase]

 WHERE [vdb:version] <= $maxVersion AND CONTAINS([vdb:description],'xml OR xml maybe')

)

Without subqueries, this query would need to be broken into two separate queries: the first would

find all of the paths referenced by the vdb:virtualDatabase nodes matching the version and

description criteria, followed by one (or more) subsequent queries to find the nt:file nodes with

the paths expressed as literal values (or bind variables).

The examples shown in this section hopefully begin to show the power and flexibility of JCR-SQL2

and the ModeShape extensions.

Chapter 8. Querying and Searc...

214

8.5. Full-Text Search Language

There are times when a formal structured query language is overkill, and the easiest way to find

the right content is to perform a search, like you would with a search engine such as Google or

Yahoo! This is where ModeShape's full-text search language comes in, because it allows you

to use the JCR query API but with a far simpler, Google-style search grammar.

This query language is actually defined by the JCR 2.0 specification [http://www.jcp.org/en/jsr/

detail?id=283] as the full-text search expression grammar used in the second parameter of the

CONTAINS(...) function of the JCR-SQL2 language. We just pulled it out and made it available

as a first-class query language, such that a full-text search query supplied by the user, full-text-

query, is equivalent to executing this JCR-SQL2:

 SELECT * FROM [nt:base] WHERE CONTAINS([nt:base],'full-text-query')

This language allows a JCR client to construct a query to find nodes with property values that

match the supplied terms. Nodes that "best" match the terms are returned before nodes that have a

lesser match. Of course, ModeShape uses a complex system to analyze the node content and the

query terms, and may perform a number of optimizations, such as (but not limited to) eliminating

stop words (e.g., "the", "a", "and", etc.), treating terms independent of case, and converting

words to base forms using a process called stemming (e.g., "running" into "run", "customers" into

"customer").

Search terms can also include phrases by simply wrapping the phrase with double-quotes. For

example, the search term 'table "customer invoice"' would rank higher those nodes with

properties containing the phrase "customer invoice" than nodes with properties containing just

"customer" or "invoice".

Term in the query are implicitly AND-ed together, meaning that the matches occur when a node

has property values that match all of the terms. However, it is also possible to put an "OR" in

between two terms where either of those terms may occur.

By default, all terms are assumed to be positive terms, in the sense that the occurrence of the

term will increase the rank of any nodes containing the value. However, it is possible to specify

that terms should not appear in the results. This is called a negative term, and it reduces the rank

of any node whose property values contain the the value. To specify a negative term, simply prefix

the term with a hyphen ('-').

Each term may also contain wildcards to specify the pattern to be matched (or negated).

ModeShape supports two different sets of wildcards:

• '*' matches zero or more characters, and '?' matches any single character; and

• '%' matches zero or more characters, and '_' matches any single character.

The former are wildcards that are more commonly used in various systems (including older JCR

repository implementations), while the latter are the wildcards used in LIKE expressions in both

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Full-text Search Language

215

JCR-SQL and JCR-SQL2. Both families are supported for convenience, and you can also mix

and match and combine the various wildcards, such as 'ta**bl_' and 'ta__ble%*'. (Of course,

placing multiple '*' or '%' characters next to each other offers no real benefit, as it is equivalent

to a single '*' or '%'.)

If you want to use these characters literally in a term and do not want them to be treated as

wildcards, they must be escaped by prefixing them with a '\' character. For example, this full text

search expression:

 table* 'customer invoice\?'

will would rank higher those nodes with properties containing 'table*' (including the asterisk) and

those containing the phrase "customer invoice?" (including the question mark). To use a literal

backslash character, simply escape it as well.

The grammar for this full-text search language is specified in Section 6.7.19 of the JCR

2.0 specification [http://www.jcp.org/en/jsr/detail?id=283], but it is also included here as a

convenience.

Note

The grammar is presented using the same EBNF nomenclature as used in the

JCR 2.0 specification. Terms are surrounded by '[' and ']' denote optional terms

that appear zero or one times. Terms surrounded by '{' and '}' denote terms that

appear zero or more times. Parentheses are used to identify groups, and are often

used to surround possible values.

8.5.1. Full-text Search Language

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

Chapter 8. Querying and Searc...

216

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

As you can see, this is a pretty simple and straightforward query language. But this language

makes it extremely easy to find all the nodes in the repository that match a set of terms.

When using this query language, the QueryResult [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/query/QueryResult.html] always contains the "jcr:path" and "jcr:score" columns.

8.6. JCR Query Object Model (JCR-QOM) API

JCR 2.0 introduces a new API for programmatically constructing a query. This API allows the client

to construct the lower-level objects for each part of the query, and is a great fit for applications

that would otherwise generate fairly complicated query expressions. Using this API is a matter

of getting the QueryObjectModelFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/query/qom/QueryObjectModelFactory.html] from the session's QueryManager [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html], and using

the factory to create the various components, starting with the lowest-level components.

Then, these lower-level components can be passed to other factory methods to create the

higher-level components, and so on, until finally the createQuery(...) method is called

to return the QueryObjectModel [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

query/qom/QueryObjectModel.html].

Here is a simple example that shows how this is done for the simple query "SELECT * FROM

[nt:unstructured] AS unstructNodes":

// Obtain the query manager for the session ...

javax.jcr.query.QueryManager queryManager = session.getWorkspace().getQueryManager();

// Create a query object model factory ...

QueryObjectModelFactory factory = queryManager.getQOMFactory();

// Create the FROM clause: a selector for the [nt:unstructured] nodes ...

Selector source = factory.selector("nt:unstructured","unstructNodes");

// Create the SELECT clause (we want all columns defined on the node type) ...

Column[] columns = null;

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html

JCR Query Object Model (JCR-QOM) API

217

// Create the WHERE clause (we have none for this query) ...

Constraint constraint = null;

// Define the orderings (we have none for this query)...

Ordering[] orderings = null;

// Create the query ...

QueryObjectModel query = factory.createQuery(source,constraint,orderings,columns);

// Execute the query and get the results ...

// (This is the same as before.)

javax.jcr.QueryResult result = query.execute();

From this point on, processing the results is the same as when using the JCR Query API:

// Iterate over the nodes in the results ...

javax.jcr.NodeIterator nodeIter = result.getNodes();

while (nodeIter.hasNext()) {

 javax.jcr.Node node = nodeIter.nextNode();

 ...

}

// Or iterate over the rows in the results ...

String[] columnNames = result.getColumnNames();

javax.jcr.query.RowIterator rowIter = result.getRows();

while (rowIter.hasNext()) {

 javax.jcr.query.Row row = rowIter.nextRow();

 // Iterate over the column values in each row ...

 javax.jcr.Value[] values = row.getValues();

 for (javax.jcr.Value value : values) {

 ...

 }

 // Or access the column values by name ...

 for (String columnName : columnNames) {

 javax.jcr.Value value = row.getValue(columnName);

 ...

 }

}

// When finished, close the session ...

Chapter 8. Querying and Searc...

218

session.logout();

Of course, most queries will create the columns, orderings, and constraints using the

QueryObjectModelFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/

qom/QueryObjectModelFactory.html], whereas the example above just assumes all of the

columns, no orderings, and no constraints.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html

Chapter 9.

219

Accessing ModeShape Remotely
ModeShape provides a pair of ways to connect from remote clients: a WebDAV interface and a

RESTful interface. This chapter details the capabilities of both as well as the configuration required

to use each.

Note

Although the WebDAV and REST servers are treated separately here, many of the

configuration parameters are the same. This is because both share a fair amount of

common code and have been designed to be able to be deployed simultaneously

on the same server or even within the same web archive.

Note

The WebDAV and REST servers described here exist for easy use, though they

may need to be customized and WAR files reassembled to fit your particular

application server and configuration. ModeShape's JBoss AS kit is one such

customization, with a number of additional components built specifically for the

JBoss Application Server environment.

9.1. The ModeShape WebDAV Server

ModeShape provides a WebDAV server interface to its JCR implementation to ease integration

with client applications. The WebDAV server maps some of the content nodes (by default, nodes

with a primary type of nt:file) to WebDAV resources and the other nodes to WebDAV folders.

This allows any WebDAV client to navigate through the content repository to store files in a given

location, as well as to create or delete nodes in the repository. The remainder of this section

describes how to configure and deploy the WebDAV server.

9.1.1. Configuring the ModeShape WebDAV Server

The ModeShape WebDAV server is deployed as a WAR and configured mostly through its web

configuration file (web.xml). Here is an example web configuration that is used for integration

testing of the ModeShape WebDAV server along with an explanation of its parts.

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

Chapter 9. Accessing ModeShap...

220

 <display-name>ModeShape JCR RESTful Interface</display-name>

This first section is largely boilerplate and should look familiar to anyone who has deployed a

servlet-based application before. The display-name can be customized, of course.

The next stanza configures the repository provider.

 <!--

 This parameter provides the fully-qualified name of a class that implements

 the o.m.web.jcr.spi.RepositoryProvider interface. It is required

 by the ModeShapeJcrDeployer that controls the lifecycle for the ModeShape WebDAV server.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.REPOSITORY_PROVIDER</param-name>

 <param-value>org.modeshape.web.jcr.spi.FactoryRepositoryProvider</param-value>

 </context-param>

As noted above, this parameter informs the ModeShapeJcrDeployer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html] of the specific

repository provider in use. Unless you are using the ModeShape WebDAV server to connect to a

different JCR implementation, this should never change. The ModeShape REST server also uses

the ModeShapeJcrDeployer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

web/jcr/ModeShapeJcrDeployer.html] to get access to the JCR repository, so the two servlets can

be deployed in the same WAR.

Next we configure the ModeShape JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/JcrEngine.html] itself.

 <!--

 This parameter, specific to the FactoryRepositoryProvider implementation, specifies

 the name of the configuration file to initialize the repository or repositories.

 This configuration file must be on the classpath and is given as a classpath-relative

 directory.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.JCR_URL</param-name>

 <param-value>file:/configRepository.xml</param-value>

 </context-param>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html

Configuring the ModeShape WebDAV Server

221

If you are not familiar with the file format for a JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] configuration file, you can build

one programatically with the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrConfiguration.html] class and call save(...) instead of build() to

output the configuration file that equates to the configuration.

The ContentMapper [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/

webdav/ContentMapper.html] implementation can also be configured, but this is optional.

 <!--

 This parameter provides the fully-qualified name of a class that implements

 the o.m.w.jcr.webdav.ContentMapper interface. If no value is provided for this

 parameter, o.m.w.jcr.webdav.DefaultContentMapper will be used.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.webdav.CONTENT_MAPPER_CLASS_NAME</

param-name>

 <param-value>org.modeshape.web.jcr.webdav.DefaultContentMapper</param-value>

 </context-param>

This class is used to prepare WebDAV responses from content nodes. The

DefaultContentMapper [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/

jcr/webdav/DefaultContentMapper.html] implementation creates nodes with type nt:folder and

nt:file for WebDAV requests to create WebDAV folders and files, respectively. Users can

provide their own implementation that maps WebDAV content to other node content or structures.

This is followed by some additional WebDAV configuration that controls the mapping between

JCR node types and WebDAV files and resources. These parameters are all specific to the

DefaultContentMapper [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/

jcr/webdav/DefaultContentMapper.html] implementation. You can omit this section entirely to use

the default values or if a custom ContentMapper [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/web/jcr/webdav/ContentMapper.html] is used.

<!--

 Nodes with any of the primary node types in this comma-delimited list will be treated by the

 WebDAV implementation as content nodes. The value below is the default value for this

 parameter. That is, if this init parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.CONTENT_PRIMARY_TYPE_NAMES</

param-name>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/ContentMapper.html

Chapter 9. Accessing ModeShap...

222

 <param-value>nt:resource, mode:resource</param-value>

</context-param>

<!--

 Nodes with any of the primary node types in this comma-delimited list will be treated by the

 WebDAV implementation as resource (file) nodes. The value below is the default value for this

 parameter. That is, if this init parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.RESOURCE_PRIMARY_TYPE_NAMES</

param-name>

 <param-value>nt:file</param-value>

</context-param>

<!--

 Each folder created through the WebDAV servlet will be created as a node with the primary node

 type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.NEW_FOLDER_PRIMARY_TYPE_NAME</

param-name>

 <param-value>nt:folder</param-value>

</context-param>

<!--

 Each resource (file created through the WebDAV servlet will be created as a node with the

 primary

 node type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.NEW_RESOURCE_PRIMARY_TYPE_NAME

 </param-name>

 <param-value>nt:file</param-value>

</context-param>

<!--

 Content created through the WebDAV servlet will be created as a node with the primary node

 type below. The value below is the default value for this parameter. That is, if this init

 parameter is omitted, the value below will be used by default.

-->

<context-param>

Configuring the ModeShape WebDAV Server

223

 <param-name>

 org.modeshape.web.jcr.webdav.NEW_CONTENT_PRIMARY_TYPE_NAME

 </param-name>

 <param-value>nt:resource</param-value>

</context-param>

In general, this part of the web configuration file should not be modified.

Next, the RequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/webdav/RequestResolver.html] must be configured. The

RequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/

webdav/RequestResolver.html] converts the incoming URI into a repository name, workspace

name, and path within the repository. ModeShape provides several implementations:

• MultiRepositoryRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html] -

supports multiple repositories and workspaces, by using a URI format with repository name and

workspace name as the first two levels of the URI. This was added in ModeShape 2.3.0.Final,

and is now the resolver that is configured by default.

• SingleRepositoryRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html] - maps

URIs onto a single repository and workspace that are configured in the web.xml. This is useful

if you want to limit which repository and workspace is exposed via WebDAV.

• DefaultRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/webdav/DefaultRequestResolver.html] - maps URIs onto a single

repository and workspace that are configured in the web.xml. This used to be the default

resolver, and is identical to SingleRepositoryRequestResolver. However, it is now

deprecated and will be removed in a future version.

If none of these fit your needs, it is easy to develop a custom implementation of this interface.

To specify the resolver, set the

org.modeshape.web.jcr.webdav.REQUEST_RESOLVER_CLASS_NAME property to the

name of the implementation class. For example, here is how

the MultiRepositoryRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html] class is specified:

<!--

 This optional parameter provides the name of the o.m.w.j.webdav.RequestResolver

 implementation class. The provided value must be the name of a class that

 implements the RequestResolver interface and has a public, no-arg constructor.

 If no value is provided, o.m.w.j.webdav.MultiRepositoryRequestResolver will be used.

-->

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html

Chapter 9. Accessing ModeShap...

224

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.REQUEST_RESOLVER_CLASS_NAME</

param-name>

 <param-value>org.modeshape.web.jcr.webdav.MultiRepositoryRequestResolver</param-

value>

</context-param>

Alternatively, if the SingleRepositoryRequestResolver [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/

SingleRepositoryRequestResolver.html] class is to be used, then two additional properties must

define the repository name and workspace name:

<!--

 This optional parameter provides the name of the o.m.w.j.webdav.RequestResolver

 implementation class. The provided value must be the name of a class that

 implements the RequestResolver interface and has a public, no-arg constructor.

-->

<context-param>

 <param-name>org.modeshape.web.jcr.webdav.REQUEST_RESOLVER_CLASS_NAME</

param-name>

 <param-value>org.modeshape.web.jcr.webdav.SingleRepositoryRequestResolver</param-

value>

</context-param>

<!--

 This parameter is required if (and only if) the SingleRequestResolver is used.

 It provides the name of the JCR repository that will be accessed. An exception

 will be thrown if no value is provided for this parameter.

-->

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.SINGLE_REPOSITORY_RESOLVER_REPOSITORY_NAME

 </param-name>

 <param-value>repository</param-value>

</context-param>

<!--

 This parameter is required if (and only if) the SingleRequestResolver is used.

 It provides the name of the JCR workspace that will be accessed. An exception

 will be thrown if no value is provided for this parameter.

-->

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html

Configuring the ModeShape WebDAV Server

225

<context-param>

 <param-name>

 org.modeshape.web.jcr.webdav.SINGLE_REPOSITORY_RESOLVER_WORKSPACE_NAME

 </param-name>

 <param-value>default</param-value>

</context-param>

ModeShape also provides the older DefaultRequestResolver [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html]

class is to be used, which is now deprecated. Please switch use

the SingleRepositoryRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html] or

MultiRepositoryRequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html] classes. This class is

provided for backward compatibility.

Once the RequestResolver [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

web/jcr/webdav/RequestResolver.html] has been specified, then more brief boilerplate ensues

defines additional configuration information:

<!-- Required parameter for ModeShape WebDAV - should not be modified -->

<listener>

 <listener-class>org.modeshape.web.jcr.ModeShapeJcrDeployer</listener-class>

</listener>

<!-- Required WebDAV servlet - should not be modified -->

<servlet>

 <servlet-name>WebDAV</servlet-name>

 <servlet-class>org.modeshape.web.jcr.webdav.ModeShapeWebdavServlet</servlet-class>

 <!--

 The webdav library requires this parameter to be present, but does not use it.

 -->

 <init-param>

 <param-name>rootpath</param-name>

 <param-value>.</param-value>

 </init-param>

</servlet>

<!-- Required parameter for ModeShape WebDAV - should not be modified -->

<servlet-mapping>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/DefaultRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/SingleRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/MultiRepositoryRequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/webdav/RequestResolver.html

Chapter 9. Accessing ModeShap...

226

 <servlet-name>WebDAV</servlet-name>

 <url-pattern>/*</url-pattern>

</servlet-mapping>

Finally, security must be configured for the WebDAV server.

 <!--

 The ModeShape WebDAV implementation leverages the HTTP credentials to for

 authentication

 and authorization within the JCR repository. Unless the repository provides for anonymous

 access, it makes no sense to try to log into the JCR repository without credentials, so

 this constraint helps lock down the repository.

 This should generally not be modified.

 -->

 <security-constraint>

 <display-name>ModeShape WebDAV</display-name>

 <web-resource-collection>

 <web-resource-name>WebDAV</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!--

 A user must be assigned this role to connect to any JCR repository, in addition to

 needing the READONLY or READWRITE roles to actually read or modify the data. This

 is not used internally, so another role could be substituted here.

 -->

 <role-name>connect</role-name>

 </auth-constraint>

 </security-constraint>

 <!--

 Any auth-method will work for ModeShape. BASIC is used this example for simplicity.

 -->

 <login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

 <!--

 This must match the role-name in the auth-constraint above.

 -->

 <security-role>

Deploying the ModeShape WebDAV Server

227

 <role-name>connect</role-name>

 </security-role>

</web-app>

As noted above, the WebDAV server will not function properly unless security is configured. All

authorization methods supported by the Servlet specification are supported by ModeShape and

can be used interchangeable, as long as authenticated users have the connect role listed above.

9.1.2. Deploying the ModeShape WebDAV Server

Deploying the ModeShape WebDAV server only requires three steps: preparing the web

configuration, configuring the users and their roles in your web container (outside the scope of this

document), and assembling the WAR. This section describes the requirements for assembling

the WAR.

If you are using Maven to build your projects, the WAR can be built from a POM. Here is a portion

of the POM used to build the ModeShape WebDAV Server integration subproject.

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <artifactId>modeshape</artifactId>

 <groupId>org.modeshape</groupId>

 <version>2.0</version>

 <relativePath>../..</relativePath>

 </parent>

 <artifactId>modeshape-web-jcr-webdav-war</artifactId>

 <packaging>war</packaging>

 <name>ModeShape JCR WebDAV Servlet</name>

 <description>ModeShape servlet that provides WebDAV access to JCR items</description>

 <url>http://www.modeshape.org</url>

 <dependencies>

 <dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-web-jcr-webdav</artifactId>

 <version>${project.version}</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

Chapter 9. Accessing ModeShap...

228

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.8</version>

 <scope>runtime</scope>

 </dependency>

 </dependencies>

</project>

If you use this approach, make sure that web configuration file is in the /src/main/webapp/WEB-

INF directory.

Of course, the JBoss WebDAV Server WAR can still be built if you are not using Maven. Simply

construct a WAR with the following contents:

+ /WEB-INF

 + /classes

 | + configRepository.xml

 | + log4j.properties (Optional)

 + /lib

 | + aperture-1.1.0.Beta1.jar

 | + hamcrest-core-1.1.jar

 | + jakarta-regexp-1.4.jar

 | + jcr-2.0.jar

 | + joda-time-1.6.jar

 | + junit-dep-4.4.jar

 | + lucene-analyzers-3.0.2.jar

 | + lucene-core-3.0.2.jar

 | + lucene-regex-3.0.2.jar

 | + lucene-snowball-3.0.2.jar

 | + lucene-misc-3.0.2.jar

 | + modeshape-cnd-2.6.0.Beta2.jar

 | + modeshape-common-2.6.0.Beta2.jar

 | + modeshape-graph-2.6.0.Beta2.jar

 | + modeshape-jcr-2.6.0.Beta2.jar

 | + modeshape-jcr-api-2.6.0.Beta2.jar

 | + modeshape-mimetype-detector-aperture-2.6.0.Beta2.jar

 | + modeshape-repository-2.6.0.Beta2.jar

 | + modeshape-search-lucene-2.6.0.Beta2.jar

 | + modeshape-web-jcr-2.6.0.Beta2.jar

 | + modeshape-web-jcr-webdav-2.6.0.Beta2.jar

 | + rdf2go.api-4.6.2.jar

 | + slf4j-api-1.5.11.jar

The ModeShape REST Server

229

 | + slf4j-log4j12-1.5.8.jar

 | + stax-api-1.0-2.jar

 | + webdav-servlet-2.0.jar

 + web.xml

If you are using sequencers or any connectors other than the in-memory or federated connector,

you will also have to add the JARs for those dependencies into the WEB-INF/lib directory as

well. You will also have to change the version numbers on the JARs to reflect the current version

of ModeShape.

Note

Your servlet container may already provide a logging system, and you may need to

remove the "slf4j-log4j12-1.5.8.jar" and replace with the appropriate SLF4J binding

[http://www.slf4j.org/manual.html] jar. Or, if your servlet container already uses

SLF4J globally, you may want to remove all of the "slf4j*.jar" files.

This WAR can be deployed into your servlet container.

9.2. The ModeShape REST Server

ModeShape provides a RESTful interface to its JCR implementation that allows HTTP-based

access and updating of content. Although the initial version of this REST server only supports

the ModeShape JCR implementation, it has been designed to make integration with other JCR

implementors easy. This section describes how to configure and deploy the REST server.

9.2.1. Supported Resources and Methods

The REST Server currently supports the URIs and HTTP methods described below. The URI

patterns assume that the REST server is deployed at its conventional location of "/resources".

These URI patterns would change if the REST server were deployed under a different web context

and URI patterns below would change accordingly.

Note

The JBoss AS kit by default will deploy the RESTful service at the "/modeshape-

rest" location, which is more descriptive and better fits with the other deployed

applications and services. To use these examples against this RESTful service,

simply replace "/resources" with "/modeshape-rest" in each of the URLs.

Currently, only JSON-encoded responses are provided.

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Chapter 9. Accessing ModeShap...

230

Table 9.1. Supported URIs for the ModeShape REST Server

URI Pattern HTTP Method(s) HTTP

Description

/resources Returns a list

of accessible

repositories

GET

/resources/{repositoryName} Returns a list

of accessible

workspaces

within that

repository

GET

/resources/{repositoryName}/{workspaceName} Returns a list

of available

operations within

the workspace

GET

/resources/{repositoryName}/{workspaceName}/item/

{path}

Accesses the

item (node or

property) at the

path

GET, POST,

PUT, DELETE

/resources/{repositoryName}/{workspaceName}/query Executes the

query in the

request body

POST

Note that this approach supports dynamic discovery of the available repositories on the server. A

typical conversation might start with a request to the server to check the available repositories.

GET http://www.example.com/resources

This request would generate a response that mapped the names of the available repositories to

metadata information about the repositories like so:

{

 "modeshape%3arepository" : {

 "repository" : {

 "name" : "modeshape%3arepository",

 "resources" : { "workspaces":"/resources/modeshape%3arepository" }

 "metadata" : {

 "jcr.specification.name" : "Content Repository for Java Technology API",

 "jcr.specification.version" : "2.0",

Supported Resources and Methods

231

 "jcr.repository.name" : "ModeShape JCR Repository",

 "jcr.repository.vendor.url" : "http://www.modeshape.org",

 "jcr.repository.version" : "2.6.0.FINAL",

 "option.versioning.supported" : "true",

 ... etc. ...

 }

 }

 }

 }

}

The actual response wouldn't be pretty-printed like the example, but the format would be the same.

The name of the repository ("repository" URL-encoded) is mapped to a repository object that

contains a name (the redundant "repository") and a list of available resources within the repository

and their respective URIs. Note that ModeShape supports deploying multiple JCR repositories

side-by-side on the same server, so this response could easily contain multiple repositories in a

real deployment.

Also, the "metadata" section is included only in responses from RESTful services starting

with the version 2.5.0.Final release, and contains the JCR descriptors [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html#getDescriptor(java.lang.String)] keys

and values, where each value will either be a string or, if there are multiple values for the descriptor,

an array of strings. Note not all the descriptors are shown in the above example.

The only thing that you can do with a repository through the REST interface at this time is to get

a list of its workspaces. A request to do so can be built up from the previous response like this:

GET http://www.example.com/resources/modeshape%3arepository

This request (and all of the following requests) actually create a JCR Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] to service the request and require that

security be configured. This process is described in more detail in a later section. Assuming that

security has been properly configured, the response would look something like this:

{

 "default" : {

 "workspace" : {

 "name" : "default",

 "resources" : {

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html#getDescriptor(java.lang.String)
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html#getDescriptor(java.lang.String)
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html#getDescriptor(java.lang.String)
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Chapter 9. Accessing ModeShap...

232

 "items":"/resources/modeshape%3arepository/default/items",

 "query":"/resources/modeshape%3arepository/default/query"

 },

 }

 }

}

Like the first response, this response consists of a list of workspace names mapped to metadata

about the workspaces. The example above only lists one workspace for simplicity, but there could

be many different workspaces returned in a real deployment. Note that the "items" resource builds

the full URI to the root of the items hierarchy, including the encoding of the repository name and

the workspace name and the "query" resource builds the full URI needed to execute queries.

Now a request can be built to retrieve the root item of the repository.

GET http://www.example.com/resources/modeshape%3arepository/default/items

Any other item in the repository could be accessed by appending its path to the URI above. In a

default repository with no content, this would return the following response:

{

 "properties": {

 "jcr:primaryType": "mode:root",

 "jcr:uuid": "97d7e2ef-996e-4d99-8ec2-dc623e6c2239"

 },

 "children": ["jcr:system"]

The response contains a mapping of property names to their values and an array of child names.

Had one of the properties been multi-valued, the values for that property would have been provided

as an array as well, as will shortly be shown.

The items resource also contains an option query parameter: mode:depth. This parameter, which

defaults to 1, controls how deep the hierarchy of returned nodes should be. Had the request had

the parameter:

GET http://www.example.com/resources/modeshape%3arepository/default/items?

mode:depth=2

Supported Resources and Methods

233

Then the response would have contained details for the children of the root node as well.

{

 "properties": {

 "jcr:primaryType": "mode:root",

 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"

 },

 "children": {

 "jcr:system": {

 "properties": {"jcr:primaryType": "mode:system"},

 "children": ["mode:namespaces"]

 }

 }

}

It is also possible to use the RESTful API to add, modify and remove repository content. Removes

are simple - a DELETE request with no body returns a response with no body.

DELETE http://www.example.com/resources/modeshape%3arepository/default/items/path/to/

deletedNode

Adding content simply requires a POST to the name of the relative root node of the content that

you wish to add and a request body in the same format as the response from a GET. Adding

multiple nodes at once is supported, as shown below.

POST http://www.example.com/resources/modeshape%3arepository/default/items/newNode

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:mixinTypes": "mix:referenceable",

 "someProperty": "foo"

 },

 "children": {

 "newChildNode": {

 "properties": {"jcr:primaryType": "nt:unstructured"}

 }

 }

Chapter 9. Accessing ModeShap...

234

}

Note that protected properties like jcr:uuid are not provided but that the primary type and mixin

types are provided as properties. The REST server will translate these into the appropriate calls

behind the scenes. The JSON-encoded response from the request will contain the node that you

just posted, including any autocreated properties and child nodes.

If you do not need this information, add mode:includeNode=false as a query parameter to your

URL.

POST http://www.example.com/resources/modeshape%3arepository/default/items/newNode?

mode:includeNode=false

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:mixinTypes": "mix:referenceable",

 "someProperty": "foo"

 },

 "children": {

 "newChildNode": {

 "properties": {"jcr:primaryType": "nt:unstructured"}

 }

 }

}

This will instruct the REST server to only return the path of the newly-created node in the response.

The PUT method allows for updates of nodes and properties. If the URI points to a property,

the body of the request should be the new JSON-encoded value for the property, which includes

the property name (allowing proper determination of whether the values are binary; see the next

section"").

PUT http://www.example.com/resources/modeshape%3arepository/default/items/some/existing/

node/someProperty

{

 "someProperty" : "bar"

}

Supported Resources and Methods

235

Setting multiple properties at once can be performed by providing a URI to a node instead of a

property. The body of the request should then be a JSON object that maps property names to

their new values.

PUT http://www.example.com/resources/modeshape%3arepository/default/items/some/existing/

node

{

 "someProperty": "foobar",

 "someOtherProperty": "newValue"

}

The JSON request can even contain a properties container:

PUT http://www.example.com/resources/modeshape%3arepository/default/items/some/existing/

node

{

 "properties": {

 "someProperty": "foobar",

 "someOtherProperty": "newValue"

 }

}

A subgraph can be updated all at once using a PUT against a URI of the top node in the subgraph.

Note that in this case, very node in the subgraph must be provided in the JSON request (any node

not in the request will be removed). This method will attempt to set all of the properties to the

new value(s) as specified in the JSON request, plus any descendant node in the JSON request

that doesn't reflect an existing node will be created while any existing node not reflected in the

JSON request will be removed. (Any specifications of "jcr:primaryType" are ignored if the node

already exists.) In other words, the request only needs to contain the properties that are changed.

Of course, if a node is being added, all of its properties need to be included in the request.

Here is an example:

PUT http://www.example.com/resources/modeshape%3arepository/default/items/some/existing/

node

Chapter 9. Accessing ModeShap...

236

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:mixinTypes": "mix:referenceable",

 "someProperty": "foo"

 },

 "children": {

 "childNode": {

 "properties": {"jcr:primaryType": "nt:unstructured"}

 }

 }

}

This will update the existing node at "/some/existing/node" with the specified properties, and

ensure that it contains one child node named "childNode". Note that the body of this request is

identical in structure to that of the POST requests.

Queries can be executed through the REST interface by POSTing to the query URI with the

query statement in the body of the request. The query language must be specified by setting the

appropriate MIME type.

Table 9.2. Query Content Types for the ModeShape REST Server

Query Language Content Type

XPath application/jcr+xpath

JCR-SQL application/jcr+sql

JCR-SQL2 application/jcr+sql2

Full Text Search application/jcr+search

If no content type is specified or the content type for the request is not one of the content types

listed above, the request will generate a response code of 400 (BAD REQUEST).

All queries for a given workspace are posted to the same URI and the request body is not JSON-

encoded.

POST http://www.example.com/resources/modeshape%3arepository/default/query

/a/b/c/d[@foo='bar']

Assuming that the request above was POSTed with a content type of application/jcr+xpath,

a response would be generated that consisted of a JSON object that contained a property named

Supported Resources and Methods

237

"rows". The "rows" property would contain an array of rows with each element being a JSON

object that represented one row in the query result set.

{

 "types": {

 "someProperty": "STRING",

 "someOtherProperty": "BOOLEAN",

 "jcr:path": "STRING",

 "jcr:score": "DECIMAL"

 },

 "rows": {

 {

 "someProperty": "foobar",

 "someOtherProperty": "true",

 "jcr:path" : "/a/b/c/d",

 "jcr:score" : 0.9327

 },

 {

 "someProperty": "localValue",

 "someOtherProperty": "false",

 "jcr:path" : "/a/b/c/d[2]",

 "jcr:score" : 0.8143

 }

 }

}

If ModeShape is used as the underlying JCR implementation, the JSON object in the response

will also contain a "types" property. The value of the "types" property is a JSON object that maps

column names to their JCR type.

9.2.1.1. Binary properties

Binary property values are included in any of the the responses or requests, but are represented

string values containing the Base 64 encoding [http://en.wikipedia.org/wiki/Base64] of the binary

content. Any such property is explicitly annotated such that "/base64/" is appended to the property

name. First of all, this makes it very clear to the client and service which properties are encoded,

allowing them to properly decode the values before use. Secondly, the "/base64/" suffix was

carefully chosen because it cannot be used in a real property name (without escaping). Here's an

example of a node containing a "jcr:primaryType" property with a single string value, a "jcr:uuid"

property with another single UUID value, another "options" property that has two integer values,

and a fourth "content" property that has a single binary value:

http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Base64

Chapter 9. Accessing ModeShap...

238

{

 "properties": {

 "jcr:primaryType": "nt:unstructured",

 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"

 "options": ["1", "2"]

 "content/base64/":

 "TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlz

IHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg

dGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu

dWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo

ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4="

 },

}

All values of a property will always be Base 64 encoded if at least one of the values is binary. If

there are multiple values, then they will be separated by commas and will appear within '[' and ']'

characters (just like other properties).

9.2.2. Configuring the ModeShape REST Server

The ModeShape REST server is deployed as a WAR and configured mostly through its web

configuration file (web.xml). Here is an example web configuration that is used for integration

testing of the ModeShape REST server along with an explanation of its parts.

<?xml version="1.0"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>ModeShape JCR RESTful Interface</display-name>

This first section is largely boilerplate and should look familiar to anyone who has deployed a

servlet-based application before. The display-name can be customized, of course.

The next stanza configures the repository provider.

 <!--

 This parameter provides the fully-qualified name of a class that implements

 the o.m.web.jcr.spi.RepositoryProvider interface. It is required

 by the ModeShapeJcrDeployer that controls the lifecycle for the ModeShape REST server.

Configuring the ModeShape REST Server

239

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.REPOSITORY_PROVIDER</param-name>

 <param-value>org.modeshape.web.jcr.spi.FactoryRepositoryProvider</param-value>

 </context-param>

As noted above, this parameter informs the ModeShapeJcrDeployer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html] of the specific

repository provider in use. Unless you are using the ModeShape REST server to connect to a

different JCR implementation, this should never change.

Next we configure the ModeShape JcrEngine [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/jcr/JcrEngine.html] itself.

 <!--

 This parameter, specific to the FactoryRepositoryProvider implementation, specifies

 the name of the configuration file to initialize the repository or repositories.

 This configuration file must be on the classpath and is given as a classpath-relative

 directory.

 -->

 <context-param>

 <param-name>org.modeshape.web.jcr.JCR_URL</param-name>

 <param-value>file:/configRepository.xml</param-value>

 </context-param>

If you are not familiar with the file format for a JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] configuration file, you can build

one programatically with the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrConfiguration.html] class and call save(...) instead of build() to

output the configuration file that equates to the configuration.

This is followed by a bit of RESTEasy and JAX-RS boilerplate.

 <!--

 This parameter defines the JAX-RS application class, which is really just a metadata class

 that lets the JAX-RS engine (RESTEasy in this case) know which classes implement pieces

 of the JAX-RS specification like exception handling and resource serving.

 This should not be modified.

 -->

 <context-param>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 9. Accessing ModeShap...

240

 <param-name>javax.ws.rs.Application</param-name>

 <param-value>org.modeshape.web.jcr.rest.JcrApplication</param-value>

 </context-param>

 <!-- Required parameter for RESTEasy - should not be modified -->

 <listener>

 <listener-class>org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-class>

 </listener>

 <!-- Required parameter for ModeShape REST - should not be modified -->

 <listener>

 <listener-class>org.modeshape.web.jcr.ModeShapeJcrDeployer</listener-class>

 </listener>

 <!-- Required parameter for RESTEasy - should not be modified -->

 <servlet>

 <servlet-name>Resteasy</servlet-name>

 <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-class>

 </servlet>

 <!-- Required parameter for ModeShape REST - should not be modified -->

 <servlet-mapping>

 <servlet-name>Resteasy</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

In general, this part of the web configuration file should not be modified.

Finally, security must be configured for the REST server.

 <!--

 The ModeShape REST implementation leverages the HTTP credentials to for authentication

 and

 authorization within the JCR repository. It makes no sense to try to log into the JCR

 repository without credentials, so this constraint helps lock down the repository.

 This should generally not be modified.

 -->

 <security-constraint>

 <display-name>ModeShape REST</display-name>

 <web-resource-collection>

 <web-resource-name>RestEasy</web-resource-name>

Deploying the ModeShape REST Server

241

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!--

 A user must be assigned this role to connect to any JCR repository, in addition to needing the

 READONLY or READWRITE roles to actually read or modify the data. This is not used

 internally,

 so another role could be substituted here.

 -->

 <role-name>connect</role-name>

 </auth-constraint>

 </security-constraint>

 <!--

 Any auth-method will work for ModeShape. BASIC is used this example for simplicity.

 -->

 <login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

 <!--

 This must match the role-name in the auth-constraint above.

 -->

 <security-role>

 <role-name>connect</role-name>

 </security-role>

</web-app>

As noted above, the REST server will not function properly unless security is configured. All

authorization methods supported by the Servlet specification are supported by ModeShape and

can be used interchangeable, as long as authenticated users have the connect role listed above.

9.2.3. Deploying the ModeShape REST Server

Just as with the ModeShape WebDAV server, deploying the ModeShape REST server only

requires three steps: preparing the web configuration, configuring the users and their roles in

your web container (outside the scope of this document), and assembling the WAR. This section

describes the requirements for assembling the WAR.

If you are using Maven to build your projects, the WAR can be built from a POM. Here is a portion

of the POM used to build the ModeShape REST Server integration subproject.

<project xmlns="http://maven.apache.org/POM/4.0.0"

Chapter 9. Accessing ModeShap...

242

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <artifactId>modeshape</artifactId>

 <groupId>org.modeshape</groupId>

 <version>2.0</version>

 <relativePath>../..</relativePath>

 </parent>

 <artifactId>modeshape-web-jcr-rest-war</artifactId>

 <packaging>war</packaging>

 <name>ModeShape JCR REST Servlet</name>

 <description>ModeShape servlet that provides RESTful access to JCR items</description>

 <url>http://www.modeshape.org</url>

 <dependencies>

 <dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-web-jcr-rest</artifactId>

 <version>2.0</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.5.8</version>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-client</artifactId>

 <version>1.2.1.GA</version>

 </dependency>

 </dependencies>

</project>

If you use this approach, make sure that web configuration file is in the /src/main/webapp/WEB-

INF directory.

The JBoss REST Server WAR is still easy enough to build if you are not using Maven. Simply

construct a WAR with the following contents:

Deploying the ModeShape REST Server

243

+ /WEB-INF

 + /classes

 | + configRepository.xml

 | + log4j.properties (Optional)

 + /lib

 | + activation-1.1.jar

 | + commons-codec-1.2.jar

 | + commons-httpclient-3.1.jar

 | + hamcrest-core-1.1.jar

 | + httpclient-4.0.jar

 | + httpcore-4.0.1.jar

 | + jakarta-regexp-1.4.jar

 | + javassist-3.6.0.GA.jar

 | + jaxb-api-2.1.jar

 | + jaxb-impl-2.1.12.jar

 | + jaxrs-api-1.2.1.GA.jar

 | + jcl-over-slf4j-1.5.8.jar

 | + jcr-2.0.jar

 | + jettison-1.1.jar

 | + joda-time-1.6.jar

 | + jsr250-api-1.0.jar

 | + junit-dep-4.4.jar

 | + lucene-analyzers-3.0.0.jar

 | + lucene-core-3.0.0.jar

 | + lucene-regex-3.0.0.jar

 | + lucene-snowball-3.0.0.jar

 | + modeshape-cnd-2.6.0.Beta2.jar

 | + modeshape-common-2.6.0.Beta2.jar

 | + modeshape-graph-2.6.0.Beta2.jar

 | + modeshape-jcr-2.6.0.Beta2.jar

 | + modeshape-jcr-api-2.6.0.Beta2.jar

 | + modeshape-repository-2.6.0.Beta2.jar

 | + modeshape-search-lucene-2.6.0.Beta2.jar

 | + modeshape-web-jcr-2.6.0.Beta2.jar

 | + modeshape-web-jcr-rest-2.6.0.Beta2.jar

 | + resteasy-jaxb-provider-1.2.1.GA.jar

 | + resteasy-jaxrs-1.2.1.GA.jar

 | + resteasy-jettison-provider-1.2.1.GA.jar

 | + scannotation-1.0.2.jar

 | + sjsxp-1.0.1.jar

 | + slf4j-api-1.5.11.jar

 | + slf4j-log4j12-1.5.8.jar

Chapter 9. Accessing ModeShap...

244

 | + slf4j-simple-1.5.8.jar

 | + stax-api-1.0-2.jar

 + web.xml

If you are using sequencers or any connectors other than the in-memory or federated connector,

you will also have to add the JARs for those dependencies into the WEB-INF/lib directory as

well. You will also have to change the version numbers on the JARs to reflect the current version

of ModeShape.

Note

Your servlet container may already provide a logging system, and you may need to

remove the "slf4j-log4j12-1.5.8.jar" and replace with the appropriate SLF4J binding

[http://www.slf4j.org/manual.html] jar. Or, if your servlet container already uses

SLF4J globally, you may want to remove all of the "slf4j*.jar" files.

This WAR can be deployed into your servlet container.

9.2.4. ModeShape REST Client API

The ModeShape REST Client API provides a POJO way of using the ModeShape REST web

service to publish (upload) and unpublish (delete) files from ModeShape repositories. Java objects

open the HTTP connection, create the HTTP request URLs, attach the payload associated with

PUT and POST requests, parse the HTTP JSON response back into Java objects, and close the

HTTP connection.

Here are the Java business objects you will need (all found in the

org.modeshape.web.jcr.rest.client.domain package):

• Server - hosts one or more ModeShape JCR repositories,

• Repository - a ModeShape JCR repository containing one or more workspaces, and

• Workspace - a ModeShape JCR repository workspace.

Along with the POJOs above, an org.modeshape.web.jcr.rest.client.IRestClient is

needed. The IRestClient is responsible for executing the publishing and unpublishing

operations. You can also use the IRestClient to find out what repositories and workspaces are

available on a ModeShape server.

Note

The only implementation of IRestClient is JsonRestClient as JSON-encoded

responses are all that are currently available.

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Repository Providers

245

Here's a code snippet that publishes (uploads) a file:

// Setup POJOs

Server server = new Server("http://localhost:8080", "username", "password");

Repository repository = new Repository("repositoryName", server);

Workspace workspace = new Workspace("workspaceName", repository);

// Publish

File file = new File("/path/to/file");

IRestClient restClient = new JsonRestClient();

Status status = restClient.publish(workspace, "/workspace/path/", file);

if (status.isError() {

 // Handle error here

}

Successfully executing the above code results in the creation a JCR folder node (nt:folder) for

each segment of the workspace path (if the folder didn't already exist). Also, a JCR file node (a

node with primary type nt:file) is created or updated under the last folder node and the file

contents are encoded and uploaded into a child node of that file node.

9.3. Repository Providers

Both the ModeShape REST server and the ModeShape WebDAV server can also

be used as an interface to to other JCR repositories by creating an implementation

of the RepositoryProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

web/jcr/spi/RepositoryProvider.html] interface that connects to the other repository.

The RepositoryProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

web/jcr/spi/RepositoryProvider.html] only has a few methods that must be implemented.

When the ModeShapeJcrDeployer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/web/jcr/ModeShapeJcrDeployer.html] starts up, it will dynamically load

the RepositoryProvider [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

web/jcr/spi/RepositoryProvider.html] implementation (as noted above) and call the

startup(ServletContext) method on the provider. The provider can use this method to load

any required configuration parameters from the web configuration (web.xml) and initialize the

repository.

As an example, here's the ModeShape JCR provider implementation of this method with exception

handling omitted for brevity.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/ModeShapeJcrDeployer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/web/jcr/spi/RepositoryProvider.html

Chapter 9. Accessing ModeShap...

246

public void startup(ServletContext context) {

 String configFile = context.getInitParameter(CONFIG_FILE);

 InputStream configFileInputStream = getClass().getResourceAsStream(configFile);

 jcrEngine = new JcrConfiguration().loadFrom(configFileInputStream).build();

 jcrEngine.start();

}

As you can see, the name of configuration file for the JcrEngine [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html] is read from the servlet context

and used to initialize the engine. Once the repository has been started, it is now ready to accept

the main methods that provide the interface to the repository.

The first method returns the set of repository names supported by this repository.

public Set<String> getJcrRepositoryNames() {

 return new HashSet<String>(jcrEngine.getRepositoryNames());

}

The ModeShape JCR repository does support multiple repositories on the same server. Other

JCR implementations that don't support multiple repositories are free to return a singleton set

containing any string from this method.

The other required method returns an open JCR Session [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Session.html] for the user from the current request in a given repository

and workspace. The provider can use the HttpServletRequest [http://java.sun.com/javaee/6/

docs/api/javax/servlet/http/HttpServletRequest.html] to get the authentication credentials for the

HTTP user.

public Session getSession(HttpServletRequest request,

 String repositoryName,

 String workspaceName) throws RepositoryException {

 Repository repository = getRepository(repositoryName);

 SecurityContext context = new ServletSecurityContext(request);

 Credentials credentials = new SecurityContextCredentials(context);

 return repository.login(credentials, workspaceName);

}

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html

Summary

247

The getSession(...) method is used by most of the REST server methods to access the JCR

repository and return results as needed.

Finally, the shutdown() method signals that the web context is being undeployed and the JCR

repository should shutdown and clean up any resources that are in use.

9.4. Summary

This chapter has described two ways to access a ModeShape JCR repository remotely through

HTTP-based protocols. In the next chapter, the different repository connectors will be described

so that you can start to use ModeShape to store new data, connect to existing data through JCR,

or both.

248

Part III. Connector Library
The ModeShape project provides a number of connectors out-of-the-box. These are ready to be

used by simply including them in the classpath and configuring them as a repository source.

Chapter 10.

251

In-Memory Connector
The in-memory repository connector is a simple connector that creates a transient, in-memory

repository. This repository is used as a very simple in-memory cache or as a standalone transient

repository. This connector works well for a readable and writable repository source with small to

moderate sized content that need not be permanently saved.

The InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/inmemory/InMemoryRepositorySource.html] class provides a

number of JavaBean properties that control its behavior:

defaultCachePolicy

Optional property that, if used, defines the default for how long this information provided by this

source may to be cached by other, higher-level components. The default value is an empty

string (or null) and implies that this source does not define a specific duration for caching

information provided by this repository source.

defaultWorkspaceName

Optional property that defines the name for the workspace that will be used in cases when

clients do not explicitly specify the workspace name. If not specified, "default" will be used.

jndiName

Optional property that, if used, specifies the name in JNDI where

an InMemoryRepository [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/inmemory/InMemoryRepository.html] instance can be found. This is an

advanced property that is infrequently used.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a new UUID is generated.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

One way to configure the in-memory connector is to

create JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrConfiguration.html] instance with a repository source that uses the

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepository.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 10. In-Memory Connector

252

InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/inmemory/InMemoryRepositorySource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("IMR Store")

 .usingClass(InMemoryRepositorySource.class)

 .setDescription("The repository for our content")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"})

 .setProperty("defaultWorkspaceName", workspaceName);

Another way to configure the in-memory connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses the

InMemoryRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/inmemory/InMemoryRepositorySource.html] class. For example a file named

configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'IMR Store' repository is an in-memory source with a single default workspace (though

 others could be created, too).

 -->

 <mode:source jcr:name="IMR Store"

 mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySource"

 mode:description="The repository for our content"

 mode:defaultWorkspaceName="default">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/inmemory/InMemoryRepositorySource.html

253

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

254

Chapter 11.

255

File System Connector
This connector exposes an area of the local file system as a graph of "nt:file" and "nt:folder"

nodes. The connector can be configured so that the workspace name is either a path to the

directory on the file system that represents the root of that workspace or the name of subdirectory

within a root directory (see the workspaceRootPath property below). Each connector can define

whether it allows new workspaces to be created. If the directory for a workspace does not exist,

this connector will attempt to create the directory (and any missing parent directories).

By default, this connector is not capable of storing extra properties other than those defined on

the nt:file, nt:folder and nt:resource node types. This is because such properties cannot

be represented natively on the file system. When the connector is asked to store such properties,

the default behavior is to log warnings and then to ignore these extra properties. Obviously this

is probably not sufficient for production (unless only the standard properties are to be used). To

explicitly turn on this behavior, set the "extraPropertiesBehavior" to "log".

However, the connector can be configured differently. If the "extraPropertiesBehavior" is set to

"ignore", then these extra properties will simply be silently ignored and lost: none will be stored,

none will be loaded, and no warnings will be logged. If the "extraPropertiesBehavior" is set to

"error", the connector will throw an exception if any extra properties are used.

Perhaps the best setting for general use, however, is to set the "extraPropertiesBehavior" to

"store". In this mode, any extra properties are written to files on the file system that are adjacent

to the actual file or folder. For example, given a "nt:folder" node that represents the "folder1"

directory, all extra properties will be stored in a text file named "folder1.modeshape" in the same

parent directory as the "folder1" directory. Similarly, given a "nt:file" node that represents the "file1"

file on the file system, all extra properties will be stored in a text file named "file1.modeshape"

located next to the "file1" file. Note that the "nt:resource" node for our "nt:file" node also is stored

in the same location, so we can't use the "file1.modeshape" file (it's already used for the "nt:file"

node), so the connector uses the "file1.content.modeshape" file instead.

Note

The "store" behavior may result in the creation of many "*.modeshape" files, and

because of this the "store" behavior is not the default.

The FileSystemSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/filesystem/FileSystemSource.html] class provides a number of JavaBean properties

that control its behavior:

cachePolicy

Optional property that, if used, defines the cache policy for this repository source. When not

used, this source will not define a specific duration for caching information.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html

Chapter 11. File System Connector

256

creatingWorkspaceAllowed

Optional property that defines whether clients can create additional workspaces. The default

value is "true".

customPropertiesFactory

Optional property that specifies the CustomPropertiesFactory [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/

CustomPropertiesFactory] implementation that should be used to augment the default

properties available on each node. This property can be set either from an object that

implements the CustomPropertiesFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/connector/filesystem/CustomPropertiesFactory] interface or from the

name of a class with a public, no-argument constructor that implements

the CustomPropertiesFactory [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/connector/filesystem/CustomPropertiesFactory] interface. In the latter case, a the

named class will be instantiated and used as the custom properties factory implementation.

This is really intended for cases where the "extraPropertiesBehavior" is not sufficient. Most

often, however, the "extraPropertiesBehavior" setting will be sufficient and should be used

instead of "customPropertiesFactory".

defaultWorkspaceName

Optional property that defines the name for the workspace that will be used in cases when

clients do not explicitly specify the workspace name. If not specified, "default" will be used.

extraPropertiesBehavior

Optional setting that specifies how to handle the extra properties on "nt:file", "nt:folder", and

"nt:resource" nodes that cannot be represented on the native files themselves. Set this to

"log" if warnings are to be sent to the log (the default), or "error" if setting such properties

should cause an error, or "store" if they should be stored in ancillary files next to the files and

folders, or "ignore" if they should be silently ignored. The "log" value will be used by default

or an invalid value is specified.

This setting will be ignored if a "customPropertiesFactory" class name is specified.

exclusionPattern

Optional property that specifies a regular expression that is used to determine which files and

folders in the underlying file system are exposed through this connector. Files and folders

with a name that matches the provided regular expression will not be exposed by this source.

Setting this property to null has the effect of removing the exclusion pattern.

This may be combined with an "inclusionPattern", in which a file or folder will be exposed

by this connector only when it satisfies the "inclusionPattern" and does not satisfy the

"exclusionPattern". Also, the "inclusionPattern" and "exclusionPattern" cannot be used with

"filenameFilter", since the latter will always override the patterns.

inclusionPattern

Optional property that specifies a regular expression that is used to determine which files and

folders in the underlying file system are exposed through this connector. Files and folders with

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/CustomPropertiesFactory

257

a name that matches the provided regular expression will be exposed by this source. Setting

this property to null has the effect of removing the inclusion pattern.

This may be combined with an "exclusionPattern", in which a file or folder will be exposed

by this connector only when it satisfies the "inclusionPattern" and does not satisfy the

"exclusionPattern". Also, the "inclusionPattern" and "exclusionPattern" cannot be used with

"filenameFilter", since the latter will always override the patterns.

filenameFilter

Optional property that specifies the name of the FilenameFilter [http://java.sun.com/

javase/6/docs/api/java/io/FilenameFilter.html] implementation class that used to determine

which files and folders in the underlying file system are exposed through

this connector. Only files and folders that the filter accepts will be accessible

through this source. The FilenameFilter [http://java.sun.com/javase/6/docs/api/java/io/

FilenameFilter.html] implementation class must have a public, no-argument constructor. Use

this when the "inclusionPattern" and "exclusionPattern" values would be too complicated or

are not able to represent the logic.

Note that the "filenameFilter", "exclusionPattern", and "inclusionPattern" properties are

somewhat mutually exclusive. If a "filenameFilter" is specified, then "exclusionPattern" and

"inclusionPattern" are both ignored. Setting this property to an empty value (or null) has the

effect of clearing the filter.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

nodeCachePolicy

Optional property that, if used, defines the cache policy to use for caching nodes within the

connector.

predefinedWorkspaceNames

Optional property that, if used, defines names of the workspaces that are predefined and

need not be created before being used. This can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow only the use of only predefined workspaces.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a default UUID is used.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://java.sun.com/javase/6/docs/api/java/io/FilenameFilter.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 11. File System Connector

258

temporaryStoragePath

Optional property that specifies a location for the file system connector's temporary storage.

When writing file content, this connector first writes the content to a file in the temporary

storage area. After that write succeeds in full, the temporary file is moved to its final location

in the workspace. This extra step is taken so that an error or failure while writing the file does

not cause corruption in the existing target file.

This path must be set to a path on the same file system specified by the workspaceRootPath

property. Otherwise, the temporary storage area will be located on a different file system

than where the file will ultimately be written, so the rename operation cannot be used and a

separate file copy must occur, increasing the risk of data loss if a network failure or hardware

problem occurs.

updatesAllowed

Determines whether the content in the file system can be updated ("true"), or if the content may

only be read ("false"). The default value is "false" to avoid unintentional security vulnerabilities.

workspaceRootPath

Optional property that, if used, specifies a path on the local file system to the root of all

workspaces. The source will will use the name of the workspace as a relative path from the

workspaceRootPath to determine the path for a particular workspace. If no value (or a null

value) is specified, the source will use the name of the workspace as a relative path from the

current working directory of this virtual machine (as defined by new File(".").

As an example, if workspaceRootPath is set to a non-null value, then for a workspace named

"default/foo" the source will use new File(workspaceRootPath, "default/foo") as

the source directory for the workspace content. If workspaceRootPath is not set (or set to an

empty string or null value), then the source will use new File(".", "default/foo") as the

source directory for the workspace content.

One way to configure the file system connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the FileSystemSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html] class.

For example:

JcrConfiguration config = ...

config.repositorySource("FS Store")

 .usingClass(FileSystemSource.class)

 .setDescription("The repository for our content")

 .setProperty("workspaceRootPath", "/home/content/someApp")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"})

 .setProperty("rootNodeUuid", UUID.fromString("fd129c12-81a8-42ed-aa4b-820dba49e6f0")

 .setProperty("updatesAllowed", "true")

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html

259

 .setProperty("creatingWorkspaceAllowed", "false");

Another way to configure the file system connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source

that uses the FileSystemSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/connector/filesystem/FileSystemSource.html] class. For example a file named

configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You can

 think of these as being similar to JDBC DataSource objects, except that they expose graph

 content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'FS Store' repository is a file system source with a three predefined workspaces

 ("prod", "staging", and "dev").

 -->

 <mode:source jcr:name="FS Store"

 mode:classname="org.modeshape.connector.filesystem.FileSystemSource"

 mode:description="The repository for our content"

 mode:workspaceRootPath="/home/content/someApp"

 mode:defaultWorkspaceName="prod"

 mode:creatingWorkspacesAllowed="false"

 mode:rootNodeUuid="fd129c12-81a8-42ed-aa4b-820dba49e6f0"

 mode:updatesAllowed="true" >

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300 s).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="nodeCachePolicy"

 mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache

$PathCachePolicy"

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/filesystem/FileSystemSource.html

Chapter 11. File System Connector

260

 mode:timeToLive="300" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 12.

261

JPA Connector
This connector stores a graph of any structure or size in a relational database, using a JPA provider

on top of a JDBC driver. Currently this connector relies upon some Hibernate-specific capabilities.

The schema of the database is dictated by this connector and is optimized for storing a graph

structure. (In other words, this connector does not expose as a graph the data in an existing

database with an arbitrary schema.)

The JpaSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/

store/jpa/JpaSource.html] class provides a number of JavaBean properties that control its

behavior:

autoGenerateSchema

Sets the Hibernate setting dictating what it does with the database schema upon first

connection. Valid values are as follows (though the value is not checked):

• "create" - Create the database schema objects when the EntityManagerFactory [http://

java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html] is created

(actually when Hibernate's SessionFactory is created by the entity manager factory). If a

file named "import.sql" exists in the root of the class path (e.g., '/import.sql') Hibernate will

read and execute the SQL statements in this file after it has created the database objects.

Note that Hibernate first delete all tables, constraints, or any other database object that is

going to be created in the process of building the schema.

• "create-drop" - Same as "create", except that the schema will be dropped

after the EntityManagerFactory [http://java.sun.com/javase/6/docs/api/javax/persistence/

EntityManagerFactory.html] is closed.

• "update" - Attempt to update the database structure to the current mapping (but does not

read and invoke the SQL statements from "import.sql"). Use with caution.

• "validate" - Validates the existing schema with the current entities configuration, but does

not make any changes to the schema (and does not read and invoke the SQL statements

from "import.sql"). This is the default value because it is the least intrusive and safest option,

since it will verify the database's schema matches what the connector expects.

• "disable" - Does nothing and assumes that the database is already properly configured.

This should be the setting used in production, as it is a best-practice that DB administrators

explicitly configure/upgrade production database schemas (using scripts).

cacheConcurrencyStrategy

Optional property that specifies the cache concurrency strategy to use. When Hibernate,

ModeShape's default JPA provider, is used, this value should be one of "read-only", "read-

write" (the default), "nonstrict-read-write", or "transactional".

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html
http://java.sun.com/javase/6/docs/api/javax/persistence/EntityManagerFactory.html

Chapter 12. JPA Connector

262

cacheProviderClassName

Optional property that specifies the class name of the cache provider. The default value of an

empty string (or null) indicates that no caching should occur. Valid values for this property are

JPA implementation-dependent. When using Hibernate, (ModeShape's default JPA provider),

this value is used to set the "hibernate.cache.provider_class" property.

cacheTimeToLiveInMilliseconds

Optional property that, if used, defines the maximum time in milliseconds that any information

returned by this connector is allowed to be cached before being considered invalid. When not

used, this source will not define a specific duration for caching information. The default value

is "600000" milliseconds, or 10 minutes.

compressData

An advanced optional boolean property that dictates whether large binary and string values

should be stored in a compressed form. This is enabled by default. Setting this value only

affects how new records are stored; records can always be read regardless of the value of

this setting. The default value is "true".

creatingWorkspaceAllowed

Optional property that defines whether clients can create additional workspaces. The default

value is "true".

dialect

The dialect of the database, which must match one of the Hibernate dialect

names [http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html_single/#configuration-

optional-dialects], and must correspond to the type of driver being used. If not provided, the

dialect will be auto-discovered by Hibernate. Because Hibernate does a good job of auto-

determining the dialect, it is recommended that you set this only if auto-discovery fails for

your database.

However, it is recommended that MySQL users always set this value, as Hibernate's auto-

discovery of the dialect does not work for many MySQL installations. For example, the

most common MySQL installation is MySQL 5.x with InnoDB, which requires a value of

"org.hibernate.dialect.MySQLInnoDBDialect" for the "dialect" property.

dataSourceJndiName

The JNDI name of the JDBC DataSource instance that should be used. If not specified, the

other driver properties must be set.

driverClassloaderName

Optional property that defines the name of the ModeShape class loader or classpath that

should be used to load the JDBC driver class. This is not required if the DataSource is found

in JNDI, or if the driver is on the application's classpath.

driverClassName

The name of the JDBC driver class. This is not required if the DataSource is found in JNDI,

but is required otherwise.

http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html_single/#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html_single/#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html_single/#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html_single/#configuration-optional-dialects

263

idleTimeInSecondsBeforeTestingConnections

Optional property that specifies the number of seconds after a connection remains in the pool

that the connection should be tested to ensure it is still valid. The default is 180 seconds (or

3 minutes).

isolationLevel

Optional property that, if used, denotes which of the java.sql.Connection#TRANSACTION_*

constants should be used to control the transaction isolation level.

Valid values are: "TRANSACTION_READ_COMMITTED", "TRANSACTION_READ_UNCOMMITTED",

"TRANSACTION_REPEATABLE_READ", "TRANSACTION_SERIALIZABLE", and

"TRANSACTION_NONE". When this property is not used, the default isolation level is set to

whichever isolation level was previously set on the connection. Note that not all JDBC drivers

support all isolation levels.

largeValueSizeInBytes

An advanced optional boolean property that controls the size of property values at which they

are considered to be "large values". Depending upon the model, large property values may

be stored in a centralized area and keyed by a secure hash of the value. This is a space and

performance optimization that stores each unique large value only once. The default value

is "1024" bytes, or 1 kilobyte.

maximumConnectionsInPool

Optional property that specifies the maximum number of connections that may be in the

connection pool. The default is "5".

maximumConnectionIdleTimeInSeconds

Optional property that specifies the maximum number of seconds that a connection should

remain in the pool before being closed. The default is "600" seconds (or 10 minutes).

maximumSizeOfStatementCache

Optional property that specifies the maximum number of statements that should be cached.

Statement caching can be disabled by setting to "0". The default is "100".

minimumConnectionsInPool

Optional property that specifies the minimum number of connections that will be kept in the

connection pool. The default is "0".

model

An advanced property that dictates the type of storage schema that is used. Currently, the

only supported value is "Simple", which is also the default value.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 12. JPA Connector

264

nameOfDefaultWorkspace

Optional property that is initialized to an empty string and which defines the name for the

workspace that will be used by default if none is specified.

numberOfConnectionsToAcquireAsNeeded

Optional property that defines the number of connections that should be added to the pool

when there are not enough to be used. The default is "1".

password

The password that should be used when creating JDBC connections using the JDBC driver

class. This is not required or used if the DataSource is found in JNDI.

predefinedWorkspaceNames

Optional property that, if used, defines names of the workspaces that are predefined and

need not be created before being used. This can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow only the use of only predefined workspaces.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a default UUID is used.

schemaName

Optional property that, if set, specifies the name of the schema in which this repository source

will read and write data. If no schema name is specified, then data will be read from the default

schema associated with the database connection.

updatesAllowed

Determines whether the content in the database is can be updated ("true"), or if the content

may only be read ("false"). The default value is "true".

url

The URL that should be used when creating JDBC connections using the JDBC driver class.

This is not required or used if the DataSource is found in JNDI.

username

The username that should be used when creating JDBC connections using the JDBC driver

class. This is not required or used if the DataSource is found in JNDI.

One way to configure the JPA connector is to create JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance with a repository

source that uses the JpaSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/connector/store/jpa/JpaSource.html] class. For example:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html

265

JcrConfiguration config = ...

config.repositorySource("JPA Store")

 .usingClass(JpaSource.class)

 .setDescription("The database store for our content")

 .setProperty("dataSourceJndiName", "java:/MyDataSource")

 .setProperty("defaultWorkspaceName", "My Default Workspace")

 .setProperty("autoGenerateSchema", "validate");

Of course, setting other more advanced properties would entail calling setProperty(...) for

each. Since almost all of the properties have acceptable default values, however, we don't need

to set very many of them.

Another way to configure the JPA connector is to create JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance and load an XML

configuration file that contains a repository source that uses the JpaSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html] class. For

example a file named configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'JPA Store' repository is an JPA source with a single default workspace (though

 others could be created, too).

 -->

 <mode:source jcr:name="JPA Store"

 mode:classname="org.modeshape.connector.store.jpa.JpaSource"

 mode:description="The database store for our content"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultWorkspaceName="default"

 mode:autoGenerateSchema="validate"/>

 </mode:sources>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html

Chapter 12. JPA Connector

266

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

ModeShape users who prefer not to give DDL privileges to the ModeShape database user for

this connector can use the ModeShape JPA DDL generation tool to create the proper DDL files

for their database dialect. This tool is packaged as a zip in utils/modeshape-jpa-ddl-gen/target/

distribution when the Maven assembly profile -Passembly is run. Unzip the contents and run the

ddl-gen script with the following syntax:

ddl-gen.sh(.bat) -dialect <dialect name> -model <model_name> [-out <path to output directory>]

The dialect and model parameters should match the value of the dialect and model properties

specified for the JPA connector.

Running this executable will create two files in the output directory (or the current directory if no

output directory was specified): create.modeshape-jpa-connector.ddl and drop.modeshape-jpa-

connector.ddl. The former contains the DDL to create or replace the tables, foreign keys, indices,

and sequences needed by the JPA connector and the latter contains the DDL to drop any tables,

foreign keys, indices, and sequences needed by the JPA connector.

Note

It is strongly recommended that production users of ModeShape

utilize this tool to generate the DDL for production and test

databases. After this tool is used, the autoGenerateSchema property on

the JpaSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/store/jpa/JpaSource.html] should be set to "disable". This will prevent

the schema from being dropped and recreated (or needlessly re-validated) each

time that a ModeShape instance starts.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/store/jpa/JpaSource.html

Simple Model

267

12.1. Simple Model

This database schema model stores node properties as opaque records in the same row as

transparent values like the node's namespace, local name, and same-name-sibling index. Large

property values are stored separately.

The set of tables used in this model includes:

• Workspaces - the set of workspaces and their names.

• Namespaces - the set of namespace URIs used in paths, property names, and property values.

• Nodes - the nodes in the repository, where each node and its properties are represented

by a single record. This approach makes it possible to efficiently work with nodes containing

large numbers of children, where adding and removing child nodes is largely independent of

the number of children. Since the primary consumer of ModeShape graph information is the

JCR layer, and the JCR layer always retrieves the nodes' properties for retrieved nodes, the

properties have been moved in-row with the nodes. Properties are still store in an opaque,

serialized (and optionally compressed) form.

• Large values - property values larger than a certain size will be broken out into this table, where

they are tracked by their SHA-1 has and shared by all properties that have that same value.

The values are stored in a binary (and optionally compressed) form.

• Subgraph - a working area for efficiently computing the space of a subgraph; see below

• Options - the parameters for this store's configuration (common to all models)

This database model contains two tables that are used in an efficient mechanism to find all of

the nodes in the subgraph below a certain node. This process starts by creating a record for

the subgraph query, and then proceeds by executing a join to find all the children of the top-

level node, and inserting them into the database (in a working area associated with the subgraph

query). Then, another join finds all the children of those children and inserts them into the same

working area. This continues until the maximum depth has been reached, or until there are no

more children (whichever comes first). All of the nodes in the subgraph are then represented by

records in the working area, and can be used to quickly and efficient work with the subgraph

nodes. When finished, the mechanism deletes the records in the working area associated with

the subgraph query.

This subgraph query mechanism is extremely efficient, performing one join/insert statement per

level of the subgraph, and is completely independent of the number of nodes in the subgraph. For

example, consider a subgraph of node A, where A has 10 children, and each child contains 10

children, and each grandchild contains 10 children. This subgraph has a total of 1111 nodes (1

root + 10 children + 10*10 grandchildren + 10*10*10 great-grandchildren). Finding the nodes in

this subgraph would normally require 1 query per node (in other words, 1111 queries). But with

this subgraph query mechanism, all of the nodes in the subgraph can be found with 1 insert plus

4 additional join/inserts.

Chapter 12. JPA Connector

268

This mechanism has the added benefit that the set of nodes in the subgraph are kept in a working

area in the database, meaning they don't have to be pulled into memory.

In the Simple model, subgraph queries are used to efficiently process a

number of different requests, including ReadBranchRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html] and

DeleteBranchRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/DeleteBranchRequest.html]. Processing each of these kinds of requests requires

knowledge of the subgraph, and in fact all but the ReadBranchRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html] need to

know the complete subgraph.

Warning

Most DBMS systems have built-in sizes for LOB columns (although many

allow DB admins to control the size), and thus do not require any special

consideration. However, Apache Derby and IBM DB2 require explicit sizes on LOB

columns. Currently, the ModeShape database schema has two such columns: the

MODE_SIMPLE_NODE.DATA and MODE_LARGE_VALUES.DATA columns. The sizes of

these columns are sufficiently large (1MB and 1GB, respectively), but attempts to

store larger values than these sizes will fail.

Therefore, when using IBM DB2 and Apache Derby, determine the appropriate

size of these columns for your environment. For production systems, ModeShape

recommends using the DDL generation utility (provided with ModeShape, see

above) to generate the DDL for your particular DBMS, and its very easy to adjust

that file to specify alternative sizes for the two columns. Alternatively, database

administrators can alter the two tables by increasing the size of these columns.

Other databases do not seem to be affected by this issue.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/DeleteBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ReadBranchRequest.html

Chapter 13.

269

JCR Connector
This connector enables ModeShape to access and store content in another separate JCR

repository instance. With it, ModeShape can integrate with other JCR implementations and even

federate multiple JCR repositories into a single unified repository.

Note

This connector is currently a technical preview, and we're seeking feedback and

assistance in identifying bugs and specifying the required functionality.

The connector is designed to find the external JCR Repository instance in JNDI, though the

location in JNDI can be easily configured with the "repositoryJndiName" property.

The connector also has several ways to authenticate and obtain a Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. First of all, if a fixed Credentials

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html] are set via the

properties, then the Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

Session.html] will always be obtained using these credentials. If a username and password are

set via the properties (and no Credentials [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Credentials.html] is set), then the connector will create a SimpleCredentials [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html] and use it to

obtain a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. In

all other cases, the connector will use the login methods on Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] that do not require a Credentials

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html].

This means that when JAAS is used by both the ModeShape repository using the JCR connector

and a ModeShape repository accessed by the connector, the connector will obtain a Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] to the underlying

repository using the same Subject [http://java.sun.com/javase/6/docs/api/javax/security/auth/

Subject.html] used in the incoming request.

The connector automatically handles any differences in namespaces between the underlying JCR

repository and the ModeShape system. However, at this time it is a requirement that node types

used by the content in the underlying JCR repository must also be registered into the ModeShape

repository (or repositories) using the connector.

The JcrRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/jcr/JcrRepositorySource.html] class provides a number of JavaBean properties that

control its behavior:

defaultCachePolicy

Optional property that, if used, defines the default cache policy for this repository source.

When not used, this source will not define a specific duration for caching information.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html

Chapter 13. JCR Connector

270

repositoryJndiName

Property that defines where in JNDI the connector can find the javax.jcr.Repository

instance.

username

Optional property that defines the username that should be used when logging into

the Repository to obtain a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]. When used, the connector creates a SimpleCredentials [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html] instance.

Should not be used if the "credentials" properties is to be used.

password

Optional property that defines the password that should be used when logging into

the Repository to obtain a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Session.html]. When used, the connector creates a SimpleCredentials [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html] instance.

Should not be used if the "credentials" properties is to be used.

credentials

Optional property that, if used, defines Credentials [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Credentials.html] instance that should be used when logging into the

Repository to obtain a Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/Session.html]. Should be used only if the "username" and "password" properties are not

set.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

One way to configure the JCR connector is to create JcrConfiguration [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance with a repository

source that uses the JcrRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/connector/jcr/JcrRepositorySource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Repository Source")

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/SimpleCredentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Credentials.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html

271

 .usingClass(FileSystemSource.class)

 .setDescription("The repository for our content")

 .setProperty("repositoryJndiName", "java:/myRepository")

 .setProperty("username", "jsmith")

 .setProperty("password", "secret");

Another way to configure the JCR connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the JcrRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/jcr/JcrRepositorySource.html] class. For example, here's a file named

configRepository.xml that represents the same configuration as above:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You can

 think of these as being similar to JDBC DataSource objects, except that they expose graph

 content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Repository Source' repository is a JCR source.

 -->

 <mode:source jcr:name="Repository Source"

 mode:classname="org.modeshape.connector.jcr.JcrRepositorySource"

 mode:description="The repository for our content"

 mode:repositoryJndiName="java:/myRepository"

 mode:username="jsmith"

 mode:password="secret">

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300000 ms).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="cachePolicy"

 mode:classname="org.modeshape.graph.connector.path.cache.InMemoryWorkspaceCache

$InMemoryCachePolicy"

 mode:timeToLiveInMilliseconds="300000" />

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jcr/JcrRepositorySource.html

Chapter 13. JCR Connector

272

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 14.

273

Federation Connector
The federated repository source provides a unified repository consisting of information

that is dynamically federated from multiple other RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html] instances.

This is a very powerful repository source that appears to be a single repository,

when in fact the content is stored and managed in multiple other systems.

Each FederatedRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/federation/FederatedRepositorySource.html] is typically configured

with the name of another RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/connector/RepositorySource.html] that should be used

as the local, unified cache of the federated content.

The FederatedRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/federation/FederatedRepositorySource.html] then looks in the

configuration repository to determine the various workspaces and how other sources are projected

into each workspace.

Figure 14.1. Federating multiple sources using the Federated Repository

Connector

14.1. Projections

Each federated repository source provides a unified repository consisting of information

that is dynamically federated from multiple other RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html] instances.

The connector is configured with a number of projections that each describe where in the unified

repository the federated connector should place the content from another source. Projections

consist of the name of the source containing the content and a number of rules that define the

path mappings, where each rule is defined as a string with this format:

pathInFederatedRepository => pathInSourceRepository

Here, the pathInFederatedRepository is the string representation of the path in the unified (or

federated) repository, and pathInSourceRepository is the string representation of the path of

the actual content in the underlying source. For example:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 14. Federation Connector

274

/ => /

is a trivial rule that states that all of the content in the underlying source should be mapped into

the unified repository such that the locations are the same. Therefore, a node at /a/b/c in the

source would appear in the unified repository at /a/b/c. This is called a mirror projection, since

the unified repository mirrors the underlying source repository.

Another example is an offset projection, which is similar to the mirror projection except that the

federated path includes an offset not found in the source:

/alpha/beta => /

Here, a node at /a/b/c in the source would actually appear in the unified repository at /alpha/

beta/a/b/c. The offset path (/alpha/beta in this example) can have 1 or more segments. (If

there are no segments, then it reduces to a mirror projection.)

Often a rule will map a path in one source into another path in the unified source:

/alpha/beta => /foo/bar

Here, the content at /foo/bar is projected in the unified repository under /alpha/beta, meaning

that the /foo/bar prefix never even appears in the unified repository. So the node at /foo/bar/

baz/raz would appear in the unified repository at /alpha/beta/baz/raz. Again, the size of the

two paths in the rule don't matter.

14.2. Multiple Projections

Federated repositories that use a single projection are useful, but they aren't as interesting or

powerful as those that use multiple projections. Consider a federated repository that is defined

by two projections:

/ => / for source "S1"

/alpha => /foo/bar for source "S2"

And consider that S1 contains the following structure:

+- a

Multiple Projections

275

| +- i

| +- j

+- b

 +- k

 +- m

 +- n

and S2 contains the following:

+- foo

 +- bar

 | +- baz

 | | +- taz

 | | +- zaz

 | +- raz

 +- bum

 +- bot

The unified repository would then have this structure:

+- a

| +- i

| +- j

+- b

| +- k

| +- m

| +- n

+- alpha

 +- baz

 +- taz

 | +- zaz

 +- raz

Note how the /foo/bum branch does not even appear in the unified repository, since it is outside

of the branch being projected. Also, the /alpha node doesn't exist in S1 or S2; it's what is called a

placeholder node that exists purely so that the nodes below it have a place to exist. Placeholders

are somewhat special: they allow any structure below them (including other placeholder nodes or

real projected nodes), but they cannot be modified.

Chapter 14. Federation Connector

276

Even more interesting are cases that involve more projections. Consider a federated repository

that contains information about different kinds of automobiles, aircraft, and spacecraft, except that

the information about each kind of vehicle exists in a different source (and possibly a different kind

of source, such as a database, or file, or web service).

First, the sources. The "Cars" source contains the following structure:

+- Cars

 +- Hybrid

 | +- Toyota Prius

 | +- Toyota Highlander

 | +- Nissan Altima

 +- Sports

 | +- Aston Martin DB9

 | +- Infinity G37

 +- Luxury

 | +- Cadillac DTS

 | +- Bentley Continental

 | +- Lexus IS350

 +- Utility

 +- Land Rover LR2

 +- Land Rover LR3

 +- Hummer H3

 +- Ford F-150

The "Aircraft" source contains the following structure:

+- Aviation

 +- Business

 | +- Gulfstream V

 | +- Learjet 45

 +- Commercial

 | +- Boeing 777

 | +- Boeing 767

 | +- Boeing 787

 | +- Boeing 757

 | +- Airbus A380

 | +- Airbus A340

 | +- Airbus A310

 | +- Embraer RJ-175

 +- Vintage

Multiple Projections

277

 | +- Fokker Trimotor

 | +- P-38 Lightning

 | +- A6M Zero

 | +- Bf 109

 | +- Wright Flyer

 +- Homebuilt

 +- Long-EZ

 +- Cirrus VK-30

 +- Van's RV-4

Finally, our "Spacecraft" source contains the following structure:

+- Space Vehicles

 +- Manned

 | +- Space Shuttle

 | +- Soyuz

 | +- Skylab

 | +- ISS

 +- Unmanned

 | +- Sputnik

 | +- Explorer

 | +- Vanguard

 | +- Pioneer

 | +- Marsnik

 | +- Mariner

 | +- Mars Pathfinder

 | +- Mars Observer

 | +- Mars Polar Lander

 +- Launch Vehicles

 | +- Saturn V

 | +- Aries

 | +- Delta

 | +- Delta II

 | +- Orion

 +- X-Prize

 +- SpaceShipOne

 +- WildFire

 +- Spirit of Liberty

So, we can define our unified "Vehicles" source with the following projections:

Chapter 14. Federation Connector

278

/Vehicles => / for source "Cars"

/Vehicles/Aircraft => /Aviation for source "Aircraft"

/Vehicles/Spacecraft => /Space Vehicles for source "Spacecraft"

The result is a unified repository with the following structure:

+- Vehicles

 +- Cars

 | +- Hybrid

 | | +- Toyota Prius

 | | +- Toyota Highlander

 | | +- Nissan Altima

 | +- Sports

 | | +- Aston Martin DB9

 | | +- Infinity G37

 | +- Luxury

 | | +- Cadillac DTS

 | | +- Bentley Continental

 | +- Lexus IS350

 | +- Utility

 | +- Land Rover LR2

 | +- Land Rover LR3

 | +- Hummer H3

 | +- Ford F-150

 +- Aircraft

 | +- Business

 | | +- Gulfstream V

 | | +- Learjet 45

 | +- Commercial

 | | +- Boeing 777

 | | +- Boeing 767

 | | +- Boeing 787

 | | +- Boeing 757

 | | +- Airbus A380

 | | +- Airbus A340

 | | +- Airbus A310

 | | +- Embraer RJ-175

 | +- Vintage

 | | +- Fokker Trimotor

 | | +- P-38 Lightning

Processing flow

279

 | | +- A6M Zero

 | | +- Bf 109

 | | +- Wright Flyer

 | +- Homebuilt

 | +- Long-EZ

 | +- Cirrus VK-30

 | +- Van's RV-4

 +- Spacecraft

 +- Manned

 | +- Space Shuttle

 | +- Soyuz

 | +- Skylab

 | +- ISS

 +- Unmanned

 | +- Sputnik

 | +- Explorer

 | +- Vanguard

 | +- Pioneer

 | +- Marsnik

 | +- Mariner

 | +- Mars Pathfinder

 | +- Mars Observer

 | +- Mars Polar Lander

 +- Launch Vehicles

 | +- Saturn V

 | +- Aries

 | +- Delta

 | +- Delta II

 | +- Orion

 +- X-Prize

 +- SpaceShipOne

 +- WildFire

 +- Spirit of Liberty

Other combinations are of course possible.

14.3. Processing flow

This connector executes Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/request/Request.html]s against the federated repository by projecting them

into requests against the underlying sources that are being federated.

One important design of the connector framework is that requests can be submitted in a batch,

which may be processed more efficiently than if each request was submitted one at a time.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html

Chapter 14. Federation Connector

280

This connector design accomplishes this by projecting the incoming requests into requests

against each source, then submitting the batch of projected requests to each source, and then

transforming the results of the projected requests back into original requests.

This is accomplished using a three-step process:

1. Process the incoming requests and for each generate the appropriate request(s) against

the sources (dictated by the workspace's projections). These "projected requests" are then

enqueued for each source.

2. Submit each batch of projected requests to the appropriate source, in parallel where possible.

Note that the requests are still ordered correctly for each source.

3. Accumulate the results for the incoming requests by post-processing the projected requests

and transforming the source-specific results back into the federated workspace (again, using

the workspace's projections).

This process is a form of the fork-join divide-and-conquer algorithm, which involves

splitting a problem into smaller parts, forking new subtasks to execute each smaller

part, joining on the subtasks (waiting until all have finished), and then composing

the results. Technically, Step 2 performs the fork and join operations, but this class

uses RequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/processor/RequestProcessor.html] implementations to do Step 1 and 3 (called

ForkRequestProcessor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/federation/ForkRequestProcessor.html] and JoinRequestProcessor [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/

JoinRequestProcessor.html], respectively).

Such fork-join style techniques are well-suited to parallel processing. This

connector uses an ExecutorService [http://java.sun.com/javase/6/docs/api/java/util/concurrent/

ExecutorService.html] to allow these different processors to operate concurrently. This can greatly

improve the performance as perceived by the clients, since indeed much of the operations on the

different sources are occurring at the same time.

It is also possible that not every incoming Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/request/Request.html] get projected to all sources. Indeed, many

operations can effectively be mapped to a single projection. In such cases, the overhead of the

federated connector is quite minimal.

Note

Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/Request.html]s that include the Path [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html] within the

request's Location [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/Location.html] can be very quickly mapped to the correct

projection, and thus such federated requests can be processed with very

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/processor/RequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/ForkRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/JoinRequestProcessor.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html

Update operations

281

little overhead. However, when requests contain Location [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html]s that only

contain identification properties (e.g., UUIDs), the connector may not be able to

determine the correct projection(s), and may have to simply forward the request to

all of the projections. This is obviously less desirable, so when possible ensure that

the Request [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/request/Request.html] objects include the Path [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html].

14.4. Update operations

The federated connector behavior for read-only requests is fairly obvious. In the best case,

the connector determines the appropriate projections, forwards the request into the appropriate

sources, and then combines the results. But what happens with change requests?

Currently, the federated connector requires that each ChangeRequest [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html] be mapped to

one and only one projection. However, when a single projection cannot be determined

for a ChangeRequest [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

request/ChangeRequest.html], the connector throws an error.

This is thought to be a minimal problem that will not actually be an issue

in most uses of the federated connector. If you find that your usage does

indeed fall into this category, please let us know via the mailing lists [http://

www.modeshape.org/lists.html] or log an enhancement request in JIRA [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel]. Be sure

to include as much detail as possible about the scenario, the problem condition, and the desired

behavior.

14.5. Configuration

The federated repository uses other RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html]s that are

to be federated and a RepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/RepositorySource.html] that is to be used as the cache of the

unified contents. These are configured in another RepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html] that is

treated as a configuration repository, which should contain information about the workspaces and

how other sources are projected:

<!-- Define the federation configuration. -->

<mode:workspaces>

 <mode:workspace jcr:name="default">

 <!-- Define how the content in the two sources maps to the federated/unified repository.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/Location.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/property/Path.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/request/ChangeRequest.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositorySource.html

Chapter 14. Federation Connector

282

 This example puts the 'Cars' and 'Aircraft' content underneath '/vehicles', but the

 'Configuration' content (which is defined by this file) will appear under '/'. -->

 <mode:projections>

 <!-- Project the 'Cars' content, starting with the '/Cars' node. -->

 <mode:projection jcr:name="Cars projection"

 mode:source="Cars"

 mode:workspaceName="workspace1">

 <mode:projectionRules>/Vehicles/Cars => /Cars</mode:projectionRules>

 </mode:projection>

 <!-- Project the 'Aicraft' content, starting with the '/Aircraft' node. -->

 <mode:projection jcr:name="Aircarft projection"

 mode:source="Aircraft"

 mode:workspaceName="workspace2">

 <mode:projectionRules>/Vehicles/Aircraft => /Aircraft</mode:projectionRules>

 </mode:projection>

 <!-- Project the 'System' content. Only needed when this source is accessed through JCR. -->

 <mode:projection jcr:name="System projection" mode:source="System"

 mode:workspaceName="default">

 <mode:projectionRules>/jcr:system => /</mode:projectionRules>

 </mode:projection>

 </mode:projections>

 </mode:workspace>

</mode:workspaces>

Note

We're using XML to represent a graph structure, since the two map pretty well.

Each XML element represents a node and XML attributes represent properties on

a node. The name of the node is defined by either the jcr:name attribute (if it

exists) or the name of the XML element. And we use XML namespaces to define

the namespaces used in the node and property names. As an aside, this is exactly

how the XML graph importer works.

14.6. Repository Source properties

While the majority of the configuration is defined using the configuration source (as discussed

above), the FederatedRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/connector/federation/FederatedRepositorySource.html] class does have a few

JavaBean properties:

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/federation/FederatedRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html

Repository Source properties

283

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

284

Chapter 15.

285

Subversion Connector
This connector provides read and write access to the directories and folders within a Subversion

repository, providing that content in the form of nt:file and nt:folder nodes. This source

considers a workspace name to be the path to the directory on the repository's root directory

location that represents the root of that workspace (e.g., "trunk" or "branches"). New workspaces

can be created, as long as the names represent valid existing directories within the SVN repository.

The SvnRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/svn/SvnRepositorySource.html] class provides a number of JavaBean properties that

control its behavior:

cachePolicy

Optional property that, if used, defines the cache policy for this repository source. When not

used, this source will not define a specific duration for caching information.

creatingWorkspaceAllowed

Optional property that defines whether clients can create additional workspaces. The default

value is "true".

defaultWorkspaceName

Optional property that, if used, specifies the name of the workspace to use when no workspace

name is specified in an operation. If not specified, "trunk" is used.

Each workspace name is treated as a path relative to the SVN repository being exposed.

For example, given a repository root URL of "http://acme.com/repo/", a workspace name of

"trunk" will map to "http://acme.com/repo/trunk".

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

nodeCachePolicy

Optional property that, if used, defines the cache policy to use for caching nodes within the

connector.

password

The password that should be used to establish a connection to the repository. This is not

required if the URL represents an anonymous SVN repository address.

predefinedWorkspaceNames

Optional property that, if used, defines names of the workspaces that are predefined and

need not be created before being used. This can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow only the use of only predefined workspaces.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 15. Subversion Connector

286

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

repositoryRootURL

Required property that should be set with the URL to the Subversion repository.

username

The username that should be used to establish a connection to the repository. This is not

required if the URL represents an anonymous SVN repository address.

One way to configure the Subversion connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the SvnRepositorySource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html] class.

For example:

JcrConfiguration config = ...

config.repositorySource("SVN Store")

 .usingClass(SVNRepositorySource.class)

 .setDescription("The ModeShape SVN repository (anonymous access)")

 .setProperty("repositoryRootUrl", "http://anonsvn.jboss.org/repos/modeshape");

 .setProperty("defaultWorkspaceName", "trunk");

 .setProperty("predefinedWorkspaceNames", new String[] {"trunk","tags" });

Another way to configure the Subversion connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the SvnRepositorySource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/svn/SvnRepositorySource.html] class. For example a file named configRepository.xml

can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/svn/SvnRepositorySource.html

287

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'SVN Store' repository is an Subversion source with one workspace (although others

 could

 be defined).

 -->

 <mode:source jcr:name="SVN Store"

 mode:classname="org.modeshape.connector.svn.SVNRepositorySource"

 mode:description="The ModeShape SVN repository (anonymous access)"

 mode:repositoryRootUrl="http://anonsvn.jboss.org/repos/modeshape"

 mode:defaultWorkspaceName="trunk"

 mode:defaultWorkspaceName="default" >

 <mode:predefinedWorkspaceNames>tags</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>trunk</mode:predefinedWorkspaceNames>

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300 s).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="nodeCachePolicy"

 mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache

$PathCachePolicy"

 mode:timeToLive="300" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

288

Chapter 16.

289

JBoss Cache Connector
The JBoss Cache repository connector allows a JBoss Cache [http://www.jboss.org/jbosscache/]

instance to be used as a ModeShape (and thus JCR) repository. This provides a repository that is

an effective, scalable, and distributed cache, and can be federated with other repository sources

to provide a distributed repository.

The JBossCacheSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/jbosscache/JBossCacheSource.html] class provides a number of JavaBean properties

that control its behavior:

cacheConfigurationName

Optional property that, if used, specifies the name of the configuration that is supplied to the

cache factory when creating a new JBoss Cache instance.

cacheFactoryJndiName

Optional property that, if used, specifies the name in JNDI where an existing JBoss Cache

Factory instance can be found. That factory would then be used if needed to create a JBoss

Cache instance. If no value is provided, then the JBoss Cache DefaultCacheFactory class

is used.

cacheJndiName

Optional property that, if used, specifies the name in JNDI where an existing JBoss Cache

instance can be found. This should be used if your application already defines a cache, or if

you need to configure the cache in a special way.

creatingWorkspacesAllowed

Optional property that is by default 'true' that defines whether clients can create new

workspaces.

defaultCachePolicy

Optional property that, if used, defines the default for how long this information provided by this

source may to be cached by other, higher-level components. The default value is an empty

string (or null) and implies that this source does not define a specific duration for caching

information provided by this repository source.

defaultWorkspaceName

Optional property that defines the name for the workspace that will be used in cases when

clients do not explicitly specify the workspace name. If not specified, "default" will be used.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 16. JBoss Cache Connector

290

predefinedWorkspaceNames

Optional property that defines the names of the workspaces that exist and that are available

for use without having to create them.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a random UUID is generated each time that the

repository is started.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

updatesAllowed

Optional property that determines whether the content in the connector is can be updated

("true"), or if the content may only be read ("false"). The default value is "true".

uuidPropertyName

Optional property that, if used, defines the property that should be used to find the UUID value

for each node in the cache. "mode:uuid" is the default.

One way to configure the JBoss Cache connector is to

create JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrConfiguration.html] instance with a repository source that uses

the JBossCacheSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/jbosscache/JBossCacheSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Store")

 .usingClass(JBossCacheSource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("rootNodeUuid", UUID.fromString("12083e7e-2b55-4c8d-954d-627a9f5c45c2"))

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"});

Another way to configure the JBoss Cache connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that

uses the JBossCacheSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/jbosscache/JBossCacheSource.html] class. For example a file named

configRepository.xml can be created with these contents:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/jbosscache/JBossCacheSource.html

291

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Store' repository is a JBoss Cache repository with a single default workspace (though

 others could be created, too).

 -->

 <mode:source jcr:name="Store"

 mode:classname="org.modeshape.graph.connector.jbosscache.JBossCacheSource"

 mode:description="The repository for our content"

 mode:defaultworkspaceName="prod"

 mode:rootNodeUuid="12083e7e-2b55-4c8d-954d-627a9f5c45c2">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

292

Chapter 17.

293

Infinispan Connector
The Infinispan repository connector allows a Infinispan [http://www.jboss.org/infinispan/] instance

to be used as a ModeShape (and thus JCR) repository. This provides a way for the content in a

repository to be stored in an effective, scalable, and distributed data grid, and can be federated

with other repository sources to provide a distributed repository.

There are two connectors that can be used. The InfinispanSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html] class,

which was introduced in ModeShape 1.x, stores the content in an Infinispan

data grid that is running, at least in part, within the same process. The

RemoteInfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/infinispan/RemoteInfinispanSource.html] class, which was introduced in ModeShape

2.3.0.Final, is capable of storing content in a remote Infinispan data grid (where Infinispan is

running in remote processes). Because these two connectors communicate with Infinispan in

different ways, they are configured differently.

The InfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/infinispan/InfinispanSource.html] class provides a number of JavaBean properties that

control its behavior:

cacheContainerJndiName

Optional property that, if used, specifies the name in JNDI where an existing Infinispan Cache

Manager instance can be found. That factory would then be used if needed to create an

Infinispan Cache instance. If no value is provided, then the Infinispan DefaultCacheManager

class is used.

Note that the "cacheManagerJndiName" property is checked first as a pointer to the Infinispan

CacheManager. If the JNDI name points to a CacheManager, the "cacheConfigurationName"

property will not be considered.

cacheConfigurationName

Optional property that, if used, specifies the name of the configuration resource or file that

is supplied to the cache manager when creating a new Infinispan DefaultCacheManager

instance. The configuration name is first treated as a resource name and will be

attempted to be loaded from the ClassLoader [http://java.sun.com/javase/6/docs/api/java/

lang/ClassLoader.html]. If that is unsuccessful, the configuration name is assumed to be a

file name and will be loaded from the file system. This initialization happens the first time that

the source is used.

Note that the "cacheManagerJndiName" property is checked first as a pointer to the Infinispan

CacheManager. If the JNDI name points to a CacheManager, the "cacheConfigurationName"

property will not be considered.

http://www.jboss.org/infinispan/
http://www.jboss.org/infinispan/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassLoader.html

Chapter 17. Infinispan Connector

294

defaultCachePolicy

Optional property that, if used, defines the default for how long this information provided by this

source may to be cached by other, higher-level components. The default value is an empty

string (or null) and implies that this source does not define a specific duration for caching

information provided by this repository source.

defaultWorkspaceName

Optional property that defines the name for the workspace that will be used in cases when

clients do not explicitly specify the workspace name. If not specified, "default" will be used.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

predefinedWorkspaceNames

Optional property that defines the names of the workspaces that exist and that are available

for use without having to create them.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a pre-defined UUID constant is used. A custom value

need only be supplied for Infinispan sources created prior to ModeShape 2.0, or if a specific

UUID is desired or needed.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

updatesAllowed

Optional property that determines whether the content in the connector is can be updated

("true"), or if the content may only be read ("false"). The default value is "true".

The RemoteInfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/connector/infinispan/RemoteInfinispanSource.html] class provides a number of

JavaBean properties that control its behavior:

defaultCachePolicy

Optional property that, if used, defines the default for how long this information provided by this

source may to be cached by other, higher-level components. The default value is an empty

string (or null) and implies that this source does not define a specific duration for caching

information provided by this repository source.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html

295

defaultWorkspaceName

Optional property that defines the name for the workspace that will be used in cases when

clients do not explicitly specify the workspace name. If not specified, "default" will be used.

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

predefinedWorkspaceNames

Optional property that defines the names of the workspaces that exist and that are available

for use without having to create them.

remoteInfinispanServerList

Optional property that defines the list of Infinispan HotRod servers. The list must be in

the appropriate format of "host:port[;host:port...]" that would be used when defining

an Infinispan RemoteCacheManager instance. If the value is missing, "localhost:11311" is

assumed.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a pre-defined UUID constant is used. A custom value

need only be supplied for Infinispan sources created prior to ModeShape 2.0, or if a specific

UUID is desired or needed.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

updatesAllowed

Optional property that determines whether the content in the connector is can be updated

("true"), or if the content may only be read ("false"). The default value is "true".

One way to configure the Infinispan connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the InfinispanSource [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html] class.

For example:

JcrConfiguration config = ...

config.repositorySource("Infinispan Store")

 .usingClass(InfinispanSource.class)

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html

Chapter 17. Infinispan Connector

296

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", "prod")

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"});

Another way to configure the Infinispan connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that

uses the InfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/infinispan/InfinispanSource.html] class. For example a file named configRepository.xml

can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Infinispan Store' repository is a Infinispan repository with a single default

 workspace (though others could be created, too).

 -->

 <mode:source jcr:name="Infinispan Store"

 mode:classname="org.modeshape.connector.infinispan.InfinispanSource"

 mode:description="The repository for our content"

 mode:defaultworkspaceName="prod">

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html

Considerations for Distributed Sources

297

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

17.1. Considerations for Distributed Sources

The InfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/infinispan/InfinispanSource.html] can be used to provide access to an Infinispan cluster,

but be sure to use the DIST_SYNC cache mode. Using other modes will likely lead to data

inconsistency. The RemoteInfinispanSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/connector/infinispan/RemoteInfinispanSource.html] can be used to connect to an

Infinispan HotRod cache server.

Additionally, some operating systems (e.g., OS X) require you to set either the

java.net.preferIPv4Stack or the java.net.preferIPv6Addresses system property to true.

These properties are used by JGroups, the communications library that underlies Infinispan, to

help determine which address type to use.

Note

The rootNodeUuid property must be set to the same value for all Infinispan sources

in the cluster.

17.1. Considerations for using the HotRod Server

The Infinispan HotRod Server must be made aware of the ModeShape classes that will be stored

in it, since it will be running in a separate JVM. The following jar files should be added to the

classpath of the HotRod Server:

• modeshape-common

• modeshape-graph

• modeshape-connector-infinispan

• joda-time

Only these libraries contain the classes that are used to store content within Infinispan.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/InfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/infinispan/RemoteInfinispanSource.html

298

Chapter 18.

299

Disk Connector
This connector stores content in a ModeShape-specific file format on disk. Although this may seem

similar in concept to the File System Connector, this connector actually serves a much different

purpose. While the File System Connector is designed to expose existing files and folders on the

disk and allow ModeShape users to create content that can be read directly by other applications,

the Disk Connector is designed for efficiency and stores content in a serialized representation

that is not readily accessible to other applications. Conversely, the Disk Connector supports

referenceable nodes and can efficiently access nodes by UUID, unlike the File System Connector.

The DiskSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/

disk/DiskSource.html] class provides a number of JavaBean properties that control its behavior:

cachePolicy

Optional property that, if used, defines the cache policy for this repository source. When not

used, this source will not define a specific duration for caching information.

creatingWorkspaceAllowed

Optional property that defines whether clients can create additional workspaces. The default

value is "true".

defaultWorkspaceName

Optional property that is initialized to "default" and which defines the name for the

workspace that will be used by default if none is specified.

largeValuePath

Optional, advanced property that, if specified, specifies the path to the large value area. This

path is relative to the value of the repositoryRootPath property. The default value for this

property is "largeValues" and it only needs to be changed if there will be a workspace named

"largeValues".

largeValueSizeInBytes

Optional property that, if specified, sets the threshold for large values. Binary property values

that exceed this size will be copied into the large value area for this repository, where they

can be shared between nodes and lazily loaded to improve node retrieval time. The default

value is "8192".

lockFileUsed

An advanced property that, if set to "true", indicates that repository read and write locks

should be synchronized with file lock options on a file in the on-disk storage. This causes a

performance penalty, but allows disk sources in different JVMS (e.g., clustered disk sources)

to coordinate their locks as long as all cluster members share the same disk. This approach

uses Java NIO file locking and is subject to the limitations of the Java NIO file locking for the

current JVM implementation.

The default value is "false", but this should always be set to "true" when used in a clustered

environment.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html

Chapter 18. Disk Connector

300

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

nodeCachePolicy

Optional property that, if used, defines the cache policy to use for caching nodes within the

connector.

predefinedWorkspaceNames

Optional property that, if used, defines names of the workspaces that are predefined and

need not be created before being used. This can be coupled with a "false" value for the

"creatingWorkspaceAllowed" property to allow only the use of only predefined workspaces.

repositoryRootPath

Optional property that specifies a path on the local file system to the root of all workspaces. The

connector will use this as the root for a file and folder structure for storing content. The default

value is "/tmp", so setting this property to a more logical value is strongly recommended.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a default UUID is used.

updatesAllowed

Optional property that determines whether the content in the file system can be updated

("true"), or if the content may only be read ("false"). The default value is "true".

One way to configure the file system connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

with a repository source that uses the DiskSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/connector/disk/DiskSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Disk Store")

 .usingClass(DiskSource.class)

 .setDescription("The repository for our content")

 .setProperty("repositoryRootPath", "/home/content/someApp")

 .setProperty("defaultWorkspaceName", "prod")

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html

301

 .setProperty("predefinedWorkspaceNames", new String[] { "staging", "dev"})

 .setProperty("rootNodeUuid", UUID.fromString("fd129c12-81a8-42ed-aa4b-820dba49e6f0")

 .setProperty("updatesAllowed", "true")

 .setProperty("creatingWorkspaceAllowed", "false");

Another way to configure the file system connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the DiskSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/

disk/DiskSource.html] class. For example a file named configRepository.xml can be created with

these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You can

 think of these as being similar to JDBC DataSource objects, except that they expose graph

 content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Disk Store' repository is a disk source with a three predefined workspaces

 ("prod", "staging", and "dev").

 -->

 <mode:source jcr:name="Disk Store"

 mode:classname="org.modeshape.connector.disk.DiskSource"

 mode:description="The repository for our content"

 mode:repositoryRootPath="/home/content/someApp"

 mode:defaultWorkspaceName="prod"

 mode:creatingWorkspacesAllowed="false"

 mode:rootNodeUuid="fd129c12-81a8-42ed-aa4b-820dba49e6f0"

 mode:updatesAllowed="true" >

 <mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300 s).

 This fragment can be left out if the connector should not cache any content.

 -->

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/disk/DiskSource.html

Chapter 18. Disk Connector

302

 <mode:cachePolicy jcr:name="nodeCachePolicy"

 mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache

$MapCachePolicy"

 mode:timeToLive="300" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 19.

303

JDBC Metadata Connector
This connector provides read-only access to the metadata (e.g., catalogs, schemas, table

structures) of a relational database. The connector yields a content graph that looks like this:

/ (root node)

 + <catalog name> - one node for each accessible catalog in the database.

 + <schema name> - one node for each accessible schema in the catalog.

 + tables - a single node that is the parent of all tables in the schema.

 | + <table name> - one node for each table in the schema.

 | + <column name> - one node for each column in the table.

 + procedures - a single node that is the parent of all procedures in the schema.

 + <procedure name> - one node for each procedure in the schema.

The root, table, column, and procedure nodes contain additional properties that correspond to

the metadata provide by the DatabaseMetaData [http://java.sun.com/javase/6/docs/api/java/sql/

DatabaseMetaData.html] class. In databases that do not support catalogs or schemas (or allow

the empty string as a valid catalog or schema name, the value of the defaultCatalogName and/

or defaultSchemaName properties will be used instead when determining the graph name.

Note

This connector has currently been tested successfully against Oracle 10g,

Oracle 11g, Microsoft SQL Server 2008 (with the Microsoft JDBC driver), IBM

DB2 v9, Sybase ASE 15, MySQL 5 (with the InnoDB engine), PostgreSQL

8, and HSQLDB. As JDBC driver implementations of the DatabaseMetaData

[http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html] interface

tend to vary widely, other databases may or may not work with

the default MetadataCollector [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/connector/meta/jdbc/MetadataCollector] implementation. As

one example, the metadataCollectorClassName property must be set to

org.modeshape.connector.meta.jdbc.SqlServerMetadataConnector if the

Microsoft JDBC driver is used. This is to work around a known bug where that

driver returns a list of users from a call to DatabaseMetaData [http://java.sun.com/

javase/6/docs/api/java/sql/DatabaseMetaData.html].getSchemas() instead of a list

of schemas.

To use this connector with the ModeShape JCR layer, you must import the JCR node types that

this connector uses. These are bundled in the JAR for this connector at the path /org/modeshape/

connector/meta/jdbc/nodeTypes.cnd. Please see the Getting Started [http://docs.jboss.org/

http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html

Chapter 19. JDBC Metadata Con...

304

modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html] Guide for detailed examples of

how to import custom JCR node types.

The JdbcMetadataSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/meta/jdbc/JdbcMetadataSource.html] class provides a number of JavaBean properties

that control its behavior:

cachePolicy

Optional property that, if used, defines the cache policy to use for this repository source. When

not used, this source will not define a specific duration for caching information.

dataSourceJndiName

The JNDI name of the JDBC DataSource instance that should be used. If not specified, the

other driver properties must be set.

defaultCatalogName

Optional property that defines the name to use for the catalog name if the database does not

support catalogs or the database has a catalog with the empty string as a name. The default

value is "default".

defaultSchemaName

Optional property that defines the name to use for the schema name if the database does

not support schemas or the database has a schema with the empty string as a name. The

default value is "default".

driverClassloaderName

Optional property that defines the name of the ModeShape class loader or classpath that

should be used to load the JDBC driver class. This is not required if the DataSource is found

in JNDI, or if the driver is on the application's classpath.

driverClassName

The name of the JDBC driver class. This is not required if the DataSource is found in JNDI,

but is required otherwise.

idleTimeInSecondsBeforeTestingConnections

Optional property that defines the number of seconds after a connection remains in the pool

that the connection should be tested to ensure it is still valid. The default is 180 seconds (or

3 minutes).

maximumConnectionsInPool

Optional property that defines the maximum number of connections that may be in the

connection pool. The default is "5".

maximumConnectionIdleTimeInSeconds

Optional property that defines the maximum number of seconds that a connection should

remain in the pool before being closed. The default is "600" seconds (or 10 minutes).

http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html

305

maximumSizeOfStatementCache

Optional property that defines the maximum number of statements that should be cached.

The default value is "100", but statement caching can be disabled by setting to "0".

metadataCollectorClassName

Advanced optional property that defines the name of a custom class to use

for metadata collection, which is typically needed for JDBC drivers that don't

properly support the standard DatabaseMetaData [http://java.sun.com/javase/6/docs/

api/java/sql/DatabaseMetaData.html] methods. The specified class must implement

the MetadataCollector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/meta/jdbc/MetadataCollector] interface and must have a public no-

argument constructor. If an empty string (or null) value is specified for this

property, a default MetadataCollector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/connector/meta/jdbc/MetadataCollector] implementation will be used that

relies on the driver's DatabaseMetaData [http://java.sun.com/javase/6/docs/api/java/sql/

DatabaseMetaData.html].

minimumConnectionsInPool

Optional property that defines the minimum number of connections that will be kept in the

connection pool. The default is "0".

name

Required property that specifies the name of the repository source, which is used by

the RepositoryService [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

repository/RepositoryService.html] when obtaining a RepositoryConnection [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/

RepositoryConnection.html] by name.

nameOfDefaultWorkspace

Optional property that is initialized to an empty string and which defines the name for the

workspace that will be used by default if none is specified.

nodeCachePolicy

Optional property that, if used, defines the cache policy to use for caching nodes within the

connector.

numberOfConnectionsToAcquireAsNeeded

The number of connections that should be added to the pool when there are not enough to

be used. The default is "1".

password

The password that should be used when creating JDBC connections using the JDBC driver

class. This is not required if the DataSource is found in JNDI.

retryLimit

Optional property that, if used, defines the number of times that any single operation on

a RepositoryConnection [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/MetadataCollector
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/RepositoryService.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html

Chapter 19. JDBC Metadata Con...

306

graph/connector/RepositoryConnection.html] to this source should be retried following a

communication failure. The default value is '0'.

rootNodeUuid

Optional property that, if used, specifies the UUID that should be used for the root node of

each workspace. If no value is specified, a new UUID is generated.

url

The URL that should be used when creating JDBC connections using the JDBC driver class.

This is not required if the DataSource is found in JNDI.

username

The username that should be used when creating JDBC connections using the JDBC driver

class. This is not required if the DataSource is found in JNDI.

One way to configure the JDBC metadata connector is to

create JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

jcr/JcrConfiguration.html] instance with a repository source that uses

the JdbcMetadataSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/meta/jdbc/JdbcMetadataSource.html] class. For example:

JcrConfiguration config = ...

config.repositorySource("Meta Store")

 .usingClass(JdbcMetadataSource.class)

 .setDescription("The database source for our content")

 .setProperty("dataSourceJndiName", "java:/MyDataSource")

 .setProperty("nameOfDefaultWorkspace", "default");

Of course, setting other more advanced properties would entail calling setProperty(...) for

each. Since almost all of the properties have acceptable default values, however, we don't need

to set very many of them.

Another way to configure the JDBC metadata connector is to create JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] instance

and load an XML configuration file that contains a repository source that uses

the JdbcMetadataSource [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

connector/meta/jdbc/JdbcMetadataSource.html] class. For example a file named

configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html

307

 <!--

 Define the sources for the content. These sources are directly accessible using the

 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR implementation works.

 You

 can think of these as being similar to JDBC DataSource objects, except that they expose

 graph content via the Graph API instead of records via SQL or JDBC.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <!--

 The 'Meta Store' repository is a JDBC metadata repository with a single default

 workspace (though others could be created, too).

 -->

 <mode:source jcr:name="Meta Store"

 mode:classname="org.modeshape.connector.meta.jdbc.JdbcMetadataSource"

 mode:description="The database source for our content"

 mode:dataSourceJndiName="java:/MyDataSource"

 mode:defaultworkspaceName="default" >

 <!--

 If desired, specify a cache policy that caches items in memory for 5 minutes (300 s).

 This fragment can be left out if the connector should not cache any content.

 -->

 <mode:cachePolicy jcr:name="nodeCachePolicy"

 mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache

$PathCachePolicy"

 mode:timeToLive="300" />

 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->

</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new JcrConfiguration().loadFrom("/configRepository.xml");

308

Part IV. Sequencer Library
The ModeShape project provides a number of sequencers out-of-the-box. These are ready to be

used by simply including them in the classpath and configuring them appropriately.

Chapter 20.

311

Compact Node Type (CND)

Sequencer
This sequencer processes JCR Compact Node Definition (CND) files to extract the node

definitions with their property definitions, and inserts these into the repository using JCR built-in

types. The node structure generated by this sequencer is equivalent to the node structure used

in /jcr:system/jcr:nodeTypes.

20.1. Example

This sequencer generates a graph structure that corresponds to what can be found in the /

jcr:system/jcr:nodeTypes subtree. As an example, the CND file below:

<mode = "http://www.modeshape.org/1.0">

// My CND type

[mode:example] mixin

- mode:name (string) multiple copy

+ mode:child (mode:example) = mode:example version

The resulting graph structure (listed in the JCR document view) contains the node type information

from the CND file above. Note that comments are not sequenced.

<mode:example jcr:primaryType="nt:nodeType"

 jcr:mixinTypes="mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/docForReferenceGuide.xml"

 jcr:nodeTypeName="mode:example"

 jcr:supertypes="nt:base"

 jcr:isAbstract="false"

 jcr:isMixin="true"

 jcr:isQueryable="true"

 jcr:hasOrderableChildNodes="false">

 <nt:propertyDefinition jcr:name="mode:name"

 jcr:autoCreated="false"

 jcr:mandatory="false"

 jcr:isFullTextSearchable="true"

 jcr:isQueryOrderable="true"

Chapter 20. Compact Node Type...

312

 jcr:onParentVersion="copy"

 jcr:protected="false"

 jcr:requiredType="STRING"

 jcr:availableQueryOperators="= > >= < <= <> LIKE"

 jcr:multiple="true" />

 <nt:childNodeDefinition jcr:name="mode:child"

 jcr:autoCreated="false"

 jcr:mandatory="false"

 jcr:onParentVersion="VERSION"

 jcr:protected="false"

 jcr:requiredPrimaryTypes="mode:example"

 jcr:defaultPrimaryType="mode:example"

 jcr:sameNameSiblings="false" />

</mode:example>

This sequencer can be added to the repository configuration like so:

JcrConfiguration config = ...

config.sequencer("CND Sequencer")

 .usingClass("org.modeshape.sequencer.cnd.CndSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences CND files to extract the node type definitions")

 .sequencingFrom("//(*.cnd[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/nodeTypes/$1");

Chapter 21.

313

XML Document Sequencer
This sequencer stores the structure and data of an XML file into the repository. DTD, entity,

comments, and other content are maintained by the sequencer in the output structure.

21.1. Example

For this XML document:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-

open.org/docbook/xml/4.4/docbookx.dtd" [

<!ENTITY % RH-ENTITIES SYSTEM "Common_Config/rh-entities.ent">

<!ENTITY versionNumber "0.1">

<!ENTITY copyrightYear "2008">

<!ENTITY copyrightHolder "Red Hat Middleware, LLC.">]>

<?target content ?>

<?target2 other stuff ?>

<Cars xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <!-- This is a comment -->

 <Hybrid>

 <car jcr:name="Toyota Prius"/>

 </Hybrid>

 <Sports>

 </Sports>

</Cars>

The sequencer will generate this content (listed in document view) if the sequencer outputtingTo

property generates an output path ending in "myxml":

 xml jcr:primaryType=nt:unstructured

 <myxml jcr:primaryType="modexml:document"

 jcr:mixinTypes="mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/docForReferenceGuide.xml"

 modedtd:name="book"

 modedtd:publicId="-//OASIS//DTD DocBook XML V4.4//EN"

 modedtd:systemId="http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">

 <modedtd:entity jcr:primaryType="modedtd:entity"

 modedtd:name="%RH-ENTITIES"

Chapter 21. XML Document Sequ...

314

 modedtd:systemId="Common_Config/rh-entities.ent" />

 <modedtd:entity[2] jcr:primaryType="modedtd:entity"

 modedtd:name="versionNumber"

 modedtd:value="0.1" />

 <modedtd:entity[3] jcr:primaryType="modedtd:entity"

 modedtd:name="copyrightYear"

 modedtd:value="2008" />

 <modedtd:entity[4] jcr:primaryType="modedtd:entity"

 modedtd:name="copyrightHolder"

 modedtd:value="Red Hat Middleware, LLC." />

 <modexml:processingInstruction jcr:primaryType="modexml:processingInstruction"

 modexml:processingInstructionContent="content"

 modexml:target="target" />

 <modexml:processingInstruction[2] jcr:primaryType="modexml:processingInstruction"

 modexml:processingInstructionContent="other stuff"

 modexml:target="target2" />

 <Cars jcr:primaryType="modexml:element">

 <modexml:comment jcr:primaryType="modexml:comment"

 modexml:commentContent="This is a comment" />

 <Hybrid jcr:primaryType="modexml:element">

 <car jcr:primaryType="modexml:element" />

 </Hybrid>

 <Sports jcr:primaryType="modexml:element" />

 </Cars>

</myxml>

The CND used by this sequencer is provided below. Note that the XML sequencer will parse

CDATA into its own node in the sequenced output even though the example above does not

explicitly demonstrate this.

<modexml='http://www.modeshape.org/xml/1.0'>

<modedtd='http://www.modeshape.org/dtd/1.0'>

[modexml:document] > nt:unstructured, mix:mimeType

 - modexml:cDataContent (string)

[modexml:comment] > nt:unstructured

 - modexml:commentContent (string)

[modexml:element] > nt:unstructured

[modexml:elementContent] > nt:unstructured

Example

315

 - modexml:elementContent (string)

[modexml:cData] > nt:unstructured

 - modexml:cDataContent (string)

[modexml:processingInstruction] > nt:unstructured

 - modexml:processingInstruction (string)

 - modexml:target (string)

[modedtd:entity] > nt:unstructured

 - modexml:name (string)

 - modexml:value (string)

 - modexml:publicId (string)

 - modexml:systemId (string)

JcrConfiguration config = ...

config.sequencer("XML Sequencer")

 .usingClass("org.modeshape.sequencer.xml.XmlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences XML documents and maps their data into the repository")

 .sequencingFrom("//(*.xml[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/xml/$1");

316

Chapter 22.

317

XML Schema Document (XSD)

Sequencer
The XSD sequencer included in ModeShape can parse XML Schema Documents that adhere

to the W3C's XML Schema Part 1 [http://www.w3.org/TR/xmlschema-1/] and Part 2 [http://

www.w3.org/TR/xmlschema-2/] specifications, and output a representation of the XSD's attribute

declarations, element declarations, simple type definitions, complex type definitions, import

statements, include statements, attribute group declarations, annotations, other components,

and even attributes with a non-schema namespace. This derived information is intended to

accurately reflect the structure and semantics of the XSD files while also making it possible

for ModeShape users to easily navigate, query and search over this derived information. This

sequencer captures the namespace and names of all referenced components, and will resolve

references to components appearing within the same files.

The design of this sequencer and it's output structure have been influenced by the SOA Repository

Artifact Model and Protocol (S-RAMP) draft specification, which is currently under development

as an OASIS Technology Committee. S-RAMP defines a model for a variety of file types, including

WSDL and XSD. This sequencer's output was designed to mirror that model, and thus some of

the properties and node types used are defined within the "sramp" namespace.

The XML Schema specification is powerful, flexible, rich, and complicated. This means that many

XML Schema Documents themselves are complicated. But it also means that there is a lot of

variation in XSDs, and consequently there is a lot of variation in the output structure that this

sequencer derives from XSD files.

22.1. Example

So before we get too far, let's look at an example XML Schema Document taken from the XML

Schema Primer [http://www.w3.org/TR/xmlschema-0/]:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Purchase order schema for Example.com.

 Copyright 2000 Example.com. All rights reserved.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Chapter 22. XML Schema Docume...

318

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">

 <xsd:sequence>

 <xsd:element name="shipTo" type="USAddress"/>

 <xsd:element name="billTo" type="USAddress"/>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="items" type="Items"/>

 </xsd:sequence>

 <xsd:attribute name="orderDate" type="xsd:date"/>

 </xsd:complexType>

 <xsd:complexType name="USAddress">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:decimal"/>

 </xsd:sequence>

 <xsd:attribute name="country" type="xsd:NMTOKEN"

 fixed="US"/>

 </xsd:complexType>

 <xsd:complexType name="Items">

 <xsd:sequence>

 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="productName" type="xsd:string"/>

 <xsd:element name="quantity">

 <xsd:simpleType>

 <xsd:restriction base="xsd:positiveInteger">

 <xsd:maxExclusive value="100"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="USPrice" type="xsd:decimal"/>

 <xsd:element ref="comment" minOccurs="0"/>

 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="partNum" type="SKU" use="required"/>

 </xsd:complexType>

 </xsd:element>

Example

319

 </xsd:sequence>

 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->

 <xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

This schema defines the structure of several XML elements used to represent purchase orders,

and describes an XML document such as the following:

<?xml version="1.0"?>

<purchaseOrder orderDate="1999-10-20">

 <shipTo country="US">

 <name>Alice Smith</name>

 <street>123 Maple Street</street>

 <city>Mill Valley</city>

 <state>CA</state>

 <zip>90952</zip>

 </shipTo>

 <billTo country="US">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <comment>Hurry, my lawn is going wild<!/comment>

 <items>

 <item partNum="872-AA">

 <productName>Lawnmower</productName>

 <quantity>1</quantity>

 <USPrice>148.95</USPrice>

 <comment>Confirm this is electric</comment>

 </item>

 <item partNum="926-AA">

 <productName>Baby Monitor</productName>

 <quantity>1</quantity>

Chapter 22. XML Schema Docume...

320

 <USPrice>39.98</USPrice>

 <shipDate>1999-05-21</shipDate>

 </item>

 </items>

</purchaseOrder>

The XSD sequencer will derive the following content from the above XSD:

 po.xsd jcr:primaryType=xs:schemaDocument jcr:mixinTypes=[mode:derived]

 - jcr:uuid=ca46f972-6875-481d-b9e1-cfb64ae76f74

 - mode:derivedAt=2011-05-18T18:34:08.922Z

 - mode:derivedFrom=/files/po.xsd

 - sramp:contentEncoding="UTF-8"

 - sramp:contentSize=2353

 - sramp:contentType="application/xsd"

 - sramp:description="Purchase order schema for Example.com.

 Copyright 2000 Example.com. All rights reserved."

 purchaseOrder jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=eff3bcfb-42d1-4d55-805b-5133279e15eb

 - xs:abstract=false

 - xs:form="qualified"

 - xs:ncName="purchaseOrder"

 - xs:nillable=false

 - xs:type=5088dc05-ad30-4d7d-8d24-3edc548a777f

 - xs:typeName="PurchaseOrderType"

 comment jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=2daaa747-01f1-41f3-b5c2-ec218d8a7290

 - xs:abstract=false

 - xs:form="qualified"

 - xs:ncName="comment"

 - xs:nillable=false

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 PurchaseOrderType jcr:primaryType=xs:complexTypeDefinition

 - jcr:uuid=5088dc05-ad30-4d7d-8d24-3edc548a777f

 - xs:abstract=false

 - xs:baseTypeName="anyType"

 - xs:baseTypeNamespace="http://www.w3.org/2001/XMLSchema"

 - xs:method="restriction"

 - xs:mixed=false

 - xs:ncName="PurchaseOrderType"

 xs:sequence jcr:primaryType=xs:sequence

Example

321

 - jcr:uuid=1b87d92d-4d59-44ac-859f-2a51c3a48eb2

 - xs:maxOccurs=1

 - xs:minOccurs=1

 shipTo jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=994ba18b-c389-4635-8ce3-27d3a81cf97d

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="shipTo"

 - xs:nillable=false

 - xs:type=dd683707-83bb-4893-aa6e-f3ce81237e76

 - xs:typeName="USAddress"

 billTo jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=e260c1aa-5a5a-4db5-a962-b02576359ee7

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="billTo"

 - xs:nillable=false

 - xs:type=dd683707-83bb-4893-aa6e-f3ce81237e76

 - xs:typeName="USAddress"

 comment jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=a7796d20-0e7b-4833-96b6-16e0ac6676ca

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=0

 - xs:nillable=false

 - xs:ref=2daaa747-01f1-41f3-b5c2-ec218d8a7290

 - xs:refName="comment"

 items jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=02ab83d1-ea1a-4a7b-b66d-a1974f13ca63

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="items"

 - xs:nillable=false

 - xs:type=7543bf0f-1753-4813-9a31-f2bbed34fd11

 - xs:typeName="Items"

 orderDate jcr:primaryType=xs:attributeDeclaration

 - jcr:uuid=8b23e048-c683-4d6d-8835-faf81df6912d

Chapter 22. XML Schema Docume...

322

 - xs:ncName="orderDate"

 - xs:typeName="date"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 - xs:use="optional"

 USAddress jcr:primaryType=xs:complexTypeDefinition

 - jcr:uuid=dd683707-83bb-4893-aa6e-f3ce81237e76

 - xs:abstract=false

 - xs:baseTypeName="anyType"

 - xs:baseTypeNamespace="http://www.w3.org/2001/XMLSchema"

 - xs:method="restriction"

 - xs:mixed=false

 - xs:ncName="USAddress"

 xs:sequence jcr:primaryType=xs:sequence

 - jcr:uuid=82411c47-7f1a-4b11-9778-acc310c9e51c

 - xs:maxOccurs=1

 - xs:minOccurs=1

 name jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=40dcb6fc-386c-4d3a-841b-dab478348d74

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="name"

 - xs:nillable=false

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 street jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=a3ff1a2d-38e7-442a-a46b-141fa1ac4442

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="street"

 - xs:nillable=false

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 city jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=30d4215f-cd44-4857-9589-3df127e42cf3

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="city"

 - xs:nillable=false

Example

323

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 state jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=061a58d9-94fd-4dca-84e2-6ced7fe523fe

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="state"

 - xs:nillable=false

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 zip jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=100dc3cc-b59f-4835-b14e-243b9e7a2ecf

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="zip"

 - xs:nillable=false

 - xs:typeName="decimal"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 country jcr:primaryType=xs:attributeDeclaration

 - jcr:uuid=f323219f-bea0-4d6f-9ad5-f51cf8409f13

 - xs:ncName="country"

 - xs:typeName="NMTOKEN"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 - xs:use="optional"

 Items jcr:primaryType=xs:complexTypeDefinition

 - jcr:uuid=7543bf0f-1753-4813-9a31-f2bbed34fd11

 - xs:abstract=false

 - xs:baseTypeName="anyType"

 - xs:baseTypeNamespace="http://www.w3.org/2001/XMLSchema"

 - xs:method="restriction"

 - xs:mixed=false

 - xs:ncName="Items"

 xs:sequence jcr:primaryType=xs:sequence

 - jcr:uuid=d907da56-f370-40e3-b06e-e3a5ae957f4d

 - xs:maxOccurs=1

 - xs:minOccurs=1

 item jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=87cc1352-2f90-49f4-9f36-3db7b9ffcf26

 - xs:abstract=false

 - xs:form="qualified"

Chapter 22. XML Schema Docume...

324

 - xs:minOccurs=0

 - xs:ncName="item"

 - xs:nillable=false

 SKU jcr:primaryType=xs:simpleTypeDefinition

 - jcr:uuid=4127108d-a699-461e-8210-3bb40c923318

 - xs:baseTypeName="string"

 - xs:baseTypeNamespace=http://www.w3.org/2001/XMLSchema

 - xs:ncName="SKU"

 - xs:pattern="\d{3}-[A-Z]{2}"

The first thing to note is that the sequencer produces a node of type xs:schemaDocument that

includes the mode:derived information (e.g., the time of sequencing and the path to the file from

which this information was derived), information about the XSD itself, plus an sramp:description

property containing the documentation content from any annotations directly under the schema

element in the XSD.

Secondly, there is a node for each top-level element declaration, namely "purchaseOrder" and

"comment", with properties capturing the element's name, namespace (not shown since there

is no target namespace for the schema), and XSD type name, namespace and reference. The

"comment" element declaration has a base type of "xs:string", whereas the "purchaseOrder"

element declaration has a type of "PurchaseOrderType" (defined later in the XSD and in the

derived content). Each node is "mix:referenceable" and has a jcr:uuid property, allowing the

"purchaseOrder" element declaration to have a "xs:type" REFERENCE property pointing to the

"PurchaseOrderType" complex type definition node.

There are also nodes representing each of the global complex type definitions, including

"PurchaseOrderType", "USAddress", "Items", and "SKU". Each of these nodes has properties

representing the complex type's features (such as abstract, mixed, name, etc.), as well as child

nodes that represent the definition of the complex type's content (e.g., sequence, choice, all,

simple content, complex content, etc.).

This example shows some of the structure that this sequencer derives from the XML Schema

Documents. Our goal for this sequencer was to output content that reflected as accurately as

possible the structure of the XML Schema Documents while also making the content easy to

navigate, search and query.

22.2. Node Types

The XSD sequencer follows JCR best-practices by defining all nodes to have a primary type

that allows any single or multi-valued property, meaning it's possible and valid for any node to

have any property (with single or multiple values). In fact, this feature is used when XSD files

contain attributes with non-schema namespaces, which are then mapped onto properties with the

attributes name and possibly-empty namespace. However, it is still useful to capture the metadata

about what that node represents, and so the sequencer use explicit node type definitions and

mixins for this.

Node Types

325

The compact node definitions for the "xs" namespace are as follows:

<jcr='http://www.jcp.org/jcr/1.0'>

<nt='http://www.jcp.org/jcr/nt/1.0'>

<mix='http://www.jcp.org/jcr/mix/1.0'>

<sramp = "http://s-ramp.org/xmlns/2010/s-ramp">

<xs = "http://www.w3.org/2001/XMLSchema">

//--

// N O D E T Y P E S

//--

[xs:component] > sramp:derivedArtifactType abstract

- xs:id (string)

- * (undefined) multiple

- * (undefined)

[xs:namespaced] mixin

- xs:namespace (uri) mandatory

[xs:located] mixin

- xs:schemaLocation (string)

[xs:import] > xs:component, xs:located, xs:namespaced

[xs:include] > xs:component, xs:located

[xs:redefine] > xs:component, xs:located

[xs:named] > xs:namespaced mixin

- xs:ncName (string) mandatory

[xs:typeDefinition] > xs:component

// A mixin representing a reference to an 'xs:typeDefinition'

[xs:typed] mixin

- xs:typeName (string)

- xs:typeNamespace (uri)

- xs:type (weakreference) < 'xs:typeDefinition'

// Attribute wildcard

[xs:anyAttribute] > xs:component

- xs:minOccurs (long) < '[0,)'

Chapter 22. XML Schema Docume...

326

- xs:maxOccurs (long) < '[0,)'

- xs:namespace (uri) multiple

- xs:processContents (string) = 'strict' < 'lax', 'strict', 'skip'

//

// The 'group', 'all', 'sequence' and 'choice' components

//

[xs:modelGroup] > xs:component abstract

- xs:minOccurs (long) < '[0,)'

- xs:maxOccurs (long) < '[0,)'

- xs:refName (string)

- xs:refNamespace (uri)

- xs:ref (weakReference) < 'xs:modelGroup'

+ * (xs:elementDeclaration)

[xs:group] > xs:modelGroup

+ 'xs:anyAttribute' (xs:anyAttribute)

[xs:all] > xs:modelGroup

[xs:sequence] > xs:modelGroup

+ 'xs:sequence' (xs:sequence)

+ 'xs:choice' (xs:choice)

+ 'xs:all' (xs:all)

+ 'xs:anyAttribute' (xs:anyAttribute)

[xs:choice] > xs:modelGroup

+ 'xs:sequence' (xs:sequence)

+ 'xs:choice' (xs:choice)

+ 'xs:all' (xs:all)

+ 'xs:anyAttribute' (xs:anyAttribute)

//

// The 'simpleContent' and 'complexContent' components

//

[xs:complexContent] > xs:component

- xs:method (string) < 'restriction', 'extension'

+ * (xs:attributeDeclaration)

+ * (xs:attributeGroup)

+ * (xs:group)

+ 'xs:anyAttribute' (xs:anyAttribute)

+ 'xs:sequence' (xs:sequence)

+ 'xs:choice' (xs:choice)

+ 'xs:all' (xs:all)

Node Types

327

[xs:simpleContent] > xs:component

- xs:method (string) < 'restriction', 'extension'

- xs:minValueExclusive (*)

- xs:minValueInclusive (*)

- xs:maxValueExclusive (*)

- xs:maxValueInclusive (*)

- xs:totalDigits (long) < '[0,]'

- xs:fractionDigits (long) < '[0,]'

- xs:length (long)

- xs:maxLength (long) < '[0,]'

- xs:minLength (long) < '[0,]'

- xs:enumeratedValues (string) multiple

- xs:whitespace (string) < 'preserve','collapse','replace'

- xs:pattern (string)

+ * (xs:attributeDeclaration) sns

+ * (xs:attributeGroup) sns

+ * (xs:simpleTypeDefinition) sns

+ 'xs:anyAttribute' (xs:anyAttribute)

//

// Attribute Groups

//

[xs:attributeGroup] > xs:component

- xs:ncName (string)

- xs:namespace (uri)

- xs:refName (string)

- xs:refNamespace (uri)

- xs:ref (weakReference) < 'xs:attributeGroup'

+ * (xs:attributeDeclaration) sns

+ * (xs:attributeGroup) sns

+ 'xs:anyAttribute' (xs:anyAttribute)

//

// Complex and simple type definitions

//

[xs:complexTypeDefinition] > xs:typeDefinition, xs:named

- xs:abstract (boolean) = 'false'

- xs:mixed (boolean) = 'false'

- xs:block (string) multiple < 'restriction', 'extension', 'all'

- xs:final (string) multiple < 'restriction', 'extension', 'all'

+ * (xs:attributeDeclaration) sns

+ * (xs:attributeGroup) sns

+ * (xs:complexContent) sns

Chapter 22. XML Schema Docume...

328

+ * (xs:simpleContent) sns

+ * (xs:group) sns

+ 'xs:anyAttribute' (xs:anyAttribute)

+ 'xs:sequence' (xs:sequence)

+ 'xs:choice' (xs:choice)

+ 'xs:all' (xs:all)

[xs:simpleTypeDefinition] > xs:typeDefinition, xs:named

- xs:baseTypeName (string)

- xs:baseTypeNamespace (uri)

- xs:baseType (weakreference) < 'xs:typeDefinition'

- xs:final (string) multiple < 'restriction', 'list', 'union', 'all'

//

// Attribute declaration

//

[xs:attributeDeclaration] > xs:component, xs:named, xs:typed

- xs:length (long)

- xs:maxLength (long)

- xs:minLength (long)

- xs:enumeratedValues (string) multiple

- xs:whitespace (string) < 'preserve','collapse','replace'

- xs:maxValueExclusive (*)

- xs:minValueExclusive (*)

- xs:maxValueInclusive (*)

- xs:minValueInclusive (*)

- xs:totalDigits (long)

- xs:fractionDigits (long)

- xs:pattern (string)

- xs:use (string)

//

// Identity constraint definition

//

[xs:selector] > xs:component

- xs:xpath (string) mandatory

[xs:field] > xs:component

- xs:xpath (string) mandatory

[xs:identityConstraintDefinition] > xs:component abstract

- xs:ncName (string) mandatory

+ 'selector' (xs:selector)

+ 'field' (xs:field) sns

Node Types

329

[xs:unique] > xs:identityConstraintDefinition

[xs:key] > xs:identityConstraintDefinition

[xs:keyref] > xs:identityConstraintDefinition

- xs:refer (string) mandatory

//

// Element declaration

//

[xs:elementDeclaration] > xs:component, xs:named, xs:typed

- xs:abstract (boolean) = 'false'

- xs:nillable (boolean) = 'false'

- xs:final (string) multiple < 'all', 'extension', 'restriction'

- xs:block (string) multiple < 'all', 'extension', 'restriction', 'substitution'

- xs:default (string)

- xs:fixed (string)

- xs:form (string) < 'qualified', 'unqualified'

- xs:minOccurs (long) < '[0,)'

- xs:maxOccurs (long) < '[0,)'

- xs:refName (string)

- xs:refNamespace (uri)

- xs:ref (weakReference) < 'xs:elementDeclaration'

- xs:substitutionGroupName (string)

- xs:substitutionGroup (weakReference) < 'xs:elementDeclaration'

+ * (xs:typeDefinition)

+ * (xs:identityConstraintDefinition)

//

// XML Schema Document

//

[xs:schemaDocument] > sramp:xmlDocument

- xs:id (string)

- xs:targetNamespace (uri)

- xs:version (string)

- xs:attributeFormDefault (string) = 'unqualified' < 'qualified', 'unqualified'

- xs:elementFormDefault (string) = 'unqualified' < 'qualified', 'unqualified'

- xs:finalDefault (string) multiple < 'all', 'extension', 'restriction', 'list', 'union'

- xs:blockDefault (string) multiple < 'all', 'extension', 'restriction', 'substitution'

- xs:importedXsds (weakreference) multiple < 'xs:xsdDocument'

- xs:includedXsds (weakreference) multiple < 'xs:xsdDocument'

- xs:redefinedXsds (weakreference) multiple < 'xs:xsdDocument'

- * (undefined) multiple

Chapter 22. XML Schema Docume...

330

- * (undefined)

+ * (xs:import) sns

+ * (xs:include) sns

+ * (xs:redefine) sns

// Technically need 'sns' because the attributes, elements, simple types, complex types, attribute

 groups,

// and groups don't share same name scopes

+ * (xs:attributeDeclaration) sns

+ * (xs:elementDeclaration) sns

+ * (xs:attributeGroup) sns

+ * (xs:group) sns

+ * (xs:simpleTypeDefinition) sns

+ * (xs:complexTypeDefinition) sns

These types use some of the node types and mixins defined in the "sramp" namespace:

<jcr='http://www.jcp.org/jcr/1.0'>

<nt='http://www.jcp.org/jcr/nt/1.0'>

<mix='http://www.jcp.org/jcr/mix/1.0'>

<sramp = "http://s-ramp.org/xmlns/2010/s-ramp">

//--

// N O D E T Y P E S

//--

// ---

// S-RAMP Core Model Artifacts

// ---

[sramp:baseArtifactType] > mix:created, mix:lastModified, mix:referenceable, mix:versionable

 abstract mixin

- sramp:classifiedBy (reference) multiple < 'owl:class'

- sramp:description (string)

- * (string)

- * (string) multiple

[sramp:documentArtifactType] > sramp:baseArtifactType abstract mixin

- sramp:contentType (string)

- sramp:contentSize (long)

[sramp:xmlDocument] > sramp:documentArtifactType mixin

- sramp:contentEncoding (string) mandatory

Configuration

331

[sramp:document] > sramp:documentArtifactType mixin

[sramp:derivedArtifactType] > sramp:baseArtifactType abstract mixin

- sramp:relatedDocuments (reference) < 'sramp:documentArtifactType'

[sramp:userDefinedArtifactType] > sramp:baseArtifactType mixin

- sramp:userType (string) mandatory

[sramp:storedQuery] > nt:query

- sramp:propertyList (string) multiple

[sramp:relatedTo] mixin

- * (weakreference) multiple

22.3. Configuration

To use this sequencer, simply include the appropriate version of the Maven artifact with a

"org.modeshape" group ID and "modeshape-sequencer-xsd" artifact ID. Or, if you're using JAR

files and manually setting up the classpath for your application, use the "modeshape-sequencer-

xsd-2.6.0.Beta2-jar-with-dependencies.jar" file. Then, define a sequencing configuration

in the ModeShape configuration, using something similar to:

<configuration xmlns:mode="http://www.modeshape.org/1.0"

 xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <mode:sequencers>

 ...

 <mode:sequencer jcr:name="XSD Sequencer"

 mode:classname="org.modeshape.sequencer.xsd.XsdSequencer">

 <mode:description>Sequences XML Schema Documents (e.g., *.xsd) loaded

 into the repository under '/files', extracting the XSD attribute

 and element declarations, simple and complex type definitions,

 attribute and element groups, annotations, imports, includes and

 any other component of XSDs.</mode:description>

 <!-- Note this path expression captures the path below '/files' but

 excludes the filename, and places the sequenced content under the

 same relative path below '/sequenced/xsd'. For example, if an XSD

 file is uploaded to '/files/my/favorites/Customers.xsd', then the

 sequenced output will be placed at the

 '/sequenced/xsd/my/favorites/Customer.xsd' node, which will have

 a primary type of 'xs:schemaDocument' and will contain under it

 the components within the schema document. Of course, the path

Chapter 22. XML Schema Docume...

332

 expression can be modified as needed. -->

 <mode:pathExpression>/files(//)(*.xsd[*])/jcr:content[@jcr:data]

 => /sequenced/xsd/$1 </mode:pathExpression>

 </mode:sequencer>

 ...

 </mode:sequencers>

 ...

</configuration>

or using the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html]:

JcrConfiguration config = ...

config.sequencer("XSD Sequencer")

 .usingClass(XsdSequencer.class)

 .setDescription("Sequences XML Schema documents")

 .sequencingFrom("/files(//)(*.xsd[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/sequenced/xsd/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 23.

333

Web Service Definition Language

(WSDL) 1.1 Sequencer
The XSD sequencer included in ModeShape can parse WSDL files that adhere to the W3C's Web

Service Definition Language (WSDL) 1.1 [http://www.w3.org/TR/wsdl] specification, and output

a representation of the WSDL file's messages, port types, bindings, services, types (including

embedded XML Schemas), documentation, and extension elements (including HTTP, SOAP and

MIME bindings). This derived information is intended to mirror the structure and semantics of the

actual WSDL files while also making it possible for ModeShape users to easily navigate, query

and search over this derived information. This sequencer captures the namespace and names

of all referenced components, and will resolve references to components appearing within the

same file.

The design of this sequencer and it's output structure have been influenced by the SOA Repository

Artifact Model and Protocol (S-RAMP) draft specification, which is currently under development

as an OASIS Technology Committee. S-RAMP defines a model for a variety of file types, including

WSDL and XSD. This sequencer's output was designed to mirror that model, and thus some of

the properties and node types used are defined within the "sramp" namespace. However, the

structure derived by the ModeShape WSDL sequencer is a superset of that defined by S-RAMP.

The WSDL specification allows for a fair amount of variation in WSDL files, and consequently this

variation is reflected in the derived output structure.

23.1. Example

Let's look at an example WSDL file from the WSDL 1.1 specification [http://www.w3.org/TR/

wsdl#_wsdl]:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<?xml version="1.0"?>

<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote.wsdl"

 xmlns:tns="http://example.com/stockquote.wsdl"

 xmlns:xsd1="http://example.com/stockquote.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl#_wsdl
http://www.w3.org/TR/wsdl#_wsdl
http://www.w3.org/TR/wsdl#_wsdl

Chapter 23. Web Service Defin...

334

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 <message name="GetLastTradePriceOutput">

 <part name="body" element="xsd1:TradePrice"/>

 </message>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/>

 </operation>

 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation

 soapAction="http://example.com/GetLastTradePrice"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

Example

335

 <service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort" binding="tns:StockQuoteBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

 </service>

</definitions>

This WSDL definition includes an embedded XML Schema that defines the structure of two XML

elements used in the web service messages, and it defines a 'StockQuotePortType' port type with

input and output messages, a SOAP binding, and a SOAP service. The WSDL sequencer will

derive from this file the following content:

 stockQuote.wsdl jcr:primaryType=wsdl:wsdlDocument jcr:mixinTypes=[mode:derived]

 - jcr:uuid=d69d9fac-c5b5-42fc-ae70-0947d5986744

 - mode:derivedAt=2011-05-24T20:22:23.404Z

 - mode:derivedFrom=/files/stockQuote.wsdl

 - sramp:contentSize=2210

 - sramp:contentType="application/wsdl"

 wsdl:schema jcr:primaryType=xs:schemaDocument

 - jcr:uuid=8e0b8a17-11d2-4611-bc83-ef067526329c

 - sramp:contentSize=623

 - sramp:contentType="application/xsd"

 - targetNamespace="http://example.com/stockquote.xsd"

 - xmlns:xmlns="http://www.w3.org/2001/XMLSchema"

 TradePriceRequest jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=8407370d-9c6a-43ad-84ee-53f480524432

 - xs:abstract=false

 - xs:form="qualified"

 - xs:namespace=http://example.com/stockquote.xsd

 - xs:ncName="TradePriceRequest"

 - xs:nillable=false

 - xs:typeNamespace=http://example.com/stockquote.xsd

 xs:complexType jcr:primaryType=xs:complexTypeDefinition

 - jcr:uuid=5afc2fe3-e6c3-4cc2-8667-e5a9faf8963d

 - xs:abstract=false

 - xs:baseTypeName="anyType"

 - xs:baseTypeNamespace="http://www.w3.org/2001/XMLSchema"

 - xs:method="restriction"

 - xs:mixed=false

Chapter 23. Web Service Defin...

336

 - xs:namespace=http://example.com/stockquote.xsd

 xs:all jcr:primaryType=xs:all

 - jcr:uuid=e491f657-c20a-43e7-99b7-e5f76778c11e

 - xs:maxOccurs=1

 - xs:minOccurs=1

 tickerSymbol jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=22c26a7f-e9fa-4c44-a346-7df3cf436c7a

 - id="string"

 - name="string"

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

 - xs:ncName="tickerSymbol"

 - xs:nillable=false

 - xs:typeName="string"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 TradePrice jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=5667cfcc-d87e-4ef3-811c-4e64dc27f263

 - xs:abstract=false

 - xs:form="qualified"

 - xs:namespace=http://example.com/stockquote.xsd

 - xs:ncName="TradePrice"

 - xs:nillable=false

 - xs:typeNamespace=http://example.com/stockquote.xsd

 xs:complexType jcr:primaryType=xs:complexTypeDefinition

 - jcr:uuid=b2eb5936-4a12-4d2f-854c-ca4b251c6a74

 - xs:abstract=false

 - xs:baseTypeName="anyType"

 - xs:baseTypeNamespace="http://www.w3.org/2001/XMLSchema"

 - xs:method="restriction"

 - xs:mixed=false

 - xs:namespace=http://example.com/stockquote.xsd

 xs:all jcr:primaryType=xs:all jcr:uuid=57d8f62f-71b1-44c7-8807-a1faac3582a4

 - xs:maxOccurs=1

 - xs:minOccurs=1

 price jcr:primaryType=xs:elementDeclaration

 - jcr:uuid=049a905c-1c1d-4122-aa2f-7d2fe7d45bef

 - id="float"

 - name="float"

 - xs:abstract=false

 - xs:form="qualified"

 - xs:maxOccurs=1

 - xs:minOccurs=1

Example

337

 - xs:ncName="price"

 - xs:nillable=false

 - xs:typeName="float"

 - xs:typeNamespace=http://www.w3.org/2001/XMLSchema

 wsdl:messages jcr:primaryType=wsdl:messages

 - jcr:uuid=3ae584b3-2807-4022-b1fb-c7d39d0cfc48

 GetLastTradePriceInput jcr:primaryType=wsdl:message

 - jcr:uuid=6eac84de-e7e3-4e12-ac5e-d5a8dfe11c7f

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="GetLastTradePriceInput"

 body jcr:primaryType=wsdl:part

 - jcr:uuid=28d5bc74-f21c-49c2-9850-a9992cbbf88e

 - wsdl:elementName="TradePriceRequest"

 - wsdl:elementNamespace=http://example.com/stockquote.xsd

 - wsdl:ncName="body"

 GetLastTradePriceOutput jcr:primaryType=wsdl:message

 - jcr:uuid=1be232c8-898b-49ce-90c7-8e31b20f991f

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="GetLastTradePriceOutput"

 body jcr:primaryType=wsdl:part

 - jcr:uuid=06feaf78-f1ce-4f6c-a8e3-65eda3d600da

 - wsdl:elementName="TradePrice"

 - wsdl:elementNamespace=http://example.com/stockquote.xsd

 - wsdl:ncName="body"

 wsdl:portTypes jcr:primaryType=wsdl:portTypes

 - jcr:uuid=44afcb97-9b19-4dd0-98ca-191ca14495b2

 StockQuotePortType jcr:primaryType=wsdl:portType

 - jcr:uuid=3e81f0fd-7759-445a-b540-1253605ce0fd

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="StockQuotePortType"

 GetLastTradePrice jcr:primaryType=wsdl:operation

 - jcr:uuid=bd5d2f23-5454-4de2-9962-93c30b1be6d9

 - wsdl:ncName="GetLastTradePrice"

 wsdl:input jcr:primaryType=wsdl:operationInput

 - jcr:uuid=fba4398b-84c8-4ebe-8eb8-f83ce867329b

 - wsdl:message=6eac84de-e7e3-4e12-ac5e-d5a8dfe11c7f

 - wsdl:messageName="GetLastTradePriceInput"

 - wsdl:messageNamespace="http://example.com/stockquote.wsdl"

 - wsdl:ncName="GetLastTradePriceRequest"

 wsdl:output jcr:primaryType=wsdl:operationOutput

 - jcr:uuid=aa7a2ef8-883e-4598-a822-15283c0b63d4

 - wsdl:message=1be232c8-898b-49ce-90c7-8e31b20f991f

 - wsdl:messageName="GetLastTradePriceOutput"

 - wsdl:messageNamespace="http://example.com/stockquote.wsdl"

Chapter 23. Web Service Defin...

338

 - wsdl:ncName="GetLastTradePriceResponse"

 wsdl:bindings jcr:primaryType=wsdl:bindings

 - jcr:uuid=f736166e-cf40-45ec-b4a4-23243e241205

 StockQuoteBinding jcr:primaryType=wsdl:binding

 - jcr:uuid=b224c1f5-d223-483b-ab43-479ceef3e015

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="StockQuoteBinding"

 StockQuoteSoapBinding jcr:primaryType=wsdl:binding

 - jcr:uuid=cd65da16-bc97-479c-bb27-c9766ee5c946

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="StockQuoteSoapBinding"

 - wsdl:type=3e81f0fd-7759-445a-b540-1253605ce0fd

 - wsdl:typeName="StockQuotePortType"

 - wsdl:typeNamespace="http://example.com/stockquote.wsdl"

 GetLastTradePrice jcr:primaryType=wsdl:bindingOperation

 - jcr:uuid=949919a7-23c4-4994-853a-5a14b1fd04ed

 - wsdl:ncName="GetLastTradePrice"

 wsdl:input jcr:primaryType=wsdl:bindingOperationInput

 - jcr:uuid=76069b3a-c73e-4c23-be3d-b0ee6f874e7a

 - wsdl:input="fba4398b-84c8-4ebe-8eb8-f83ce867329b"

 - wsdl:inputName="GetLastTradePriceRequest"

 - wsdl:ncName="GetLastTradePriceRequest"

 wsdl:soapBody jcr:primaryType=wsdl:soapBody

 - jcr:uuid=22bd5f19-5450-4720-ab23-e4d97c8adee5

 - wsdl:use="literal"

 wsdl:output jcr:primaryType=wsdl:bindingOperationOutput

 - jcr:uuid=03b70411-d992-41db-ade1-de70ddd7822a

 - wsdl:ncName="GetLastTradePriceResponse"

 - wsdl:output="aa7a2ef8-883e-4598-a822-15283c0b63d4"

 - wsdl:outputName="GetLastTradePriceResponse"

 wsdl:soapBody jcr:primaryType=wsdl:soapBody

 - jcr:uuid=5d9d8127-8617-4947-b142-6d31e0b84c03

 - wsdl:use="literal"

 wsdl:soapOperation jcr:primaryType=wsdl:soapOperation

 - jcr:uuid=52ce3adf-b018-4148-a679-64822b870908

 - wsdl:soapAction=http://example.com/GetLastTradePrice

 wsdl:soapBinding jcr:primaryType=wsdl:soapBinding

 - jcr:uuid=659102a6-206e-4ebc-8d51-9b21e5dcc431

 - wsdl:style="document"

 - wsdl:transport=http://schemas.xmlsoap.org/soap/http

 wsdl:services jcr:primaryType=wsdl:services

 - jcr:uuid=3dbd2a54-9d2d-4223-98a2-8362369e8f0d

 StockQuoteService jcr:primaryType=wsdl:service

 - jcr:uuid=72420bcb-dd3f-4a5e-ba13-811af5a98bd5

Example

339

 - sramp:description="My first service"

 - wsdl:namespace=http://example.com/stockquote.wsdl

 - wsdl:ncName="StockQuoteService"

 StockQuotePort jcr:primaryType=wsdl:port

 - jcr:uuid=24779c9f-ebe6-4030-b9cd-3f0e623b94fa

 - wsdl:binding=b224c1f5-d223-483b-ab43-479ceef3e015

 - wsdl:ncName="StockQuotePort"

 wsdl:soapAddress jcr:primaryType=wsdl:soapAddress

 - jcr:uuid=d015a2ee-fbae-4b28-bda8-16a8295d8e02

 - wsdl:soapLocation=http://example.com/stockquote

The first thing to note is that the sequencer produces a node of type wsdl:wsdlDocument that

includes the mode:derived information (e.g., the time of sequencing and the path to the file from

which this information was derived), and information about the WSDL file itself. If the WSDL file

contained documentation elements directly under the root element, the content of those elements

would have been placed inside an sramp:description property.

Secondly, the WSDL file contains an embedded XML Schema document, and this XSD was

sequenced also. See the XML Schema sequencer documentation for the structure of the XML

Schema documents. Any references to the XSD components in the embedded schema(s) will

be captured as REFERENCE properties as well as properties containing the local name and

namespace of the components.

Thirdly, there are several "container" nodes underneath the top-level wsdl:wsdlDocument node,

and are named wsdl:messages, wsdl:portTypes, wsdl:bindings, and wsdl:services. These

container nodes serve to separate out the various kinds of definitions, since per the WSDL 1.1

specification the name scope of each kind of component is distinct from the other kinds.

Within the wsdl:messages container node are all of the messages. In this case, there are

two: the "GetLastTradePriceInput" input message and "GetLastTradePriceOutput" output

message for the "GetLastTracePrice" operation defined a bit later in the structure. Note how

these messages contain the name, namespace URI, and REFERENCE to the corresponding

element node in the embedded schema content. (If the element reference could not be resolved,

REFERENCE property would not be set.)

Within the wsdl:portTypes container node are all of the port types. In this example, there is just

one: the "StockQuotePortType" that contains a single "GetLastTradePrice" operation. Here, the

operation's input and output reference the corresponding message nodes vi the name, namespace

URI, and REFERENCE property. Again, the REFERENCE property would not be set if the input

and/or output use a message that is not in this WSDL file.

Within the wsdl:bindings container node are all of the bindings defined in the WSDL. In this

example, there is just a single binding that uses SOAP extensions, which describe all of the

SOAP-specific information for the port type. The sequencer also supports HTTP and MIME

extensions. And node how the input, output and faults of each binding operation reference (using

Chapter 23. Web Service Defin...

340

the name, namespace URI, and REFERENCE properties) the corresponding input, output and

fault (respectively) in the correct port type.

Finally, within the wsdl:services container node are all of the services defined in the WSDL.

In this example, there is just a single SOAP service that references the "StockQuotePortType"

port type.

This example shows the basic structure this sequencer derives from WSDL 1.1 files. Not only

does this structure mirror that of the actual WSDL file, but it makes this structure easy to navigate,

search and query, especially when it includes the names and namespace URIs of the referenced

components (and setting REFERENCE properties to the referenced component where possible).

23.2. Node Types

The WSDL 1.1 sequencer follows JCR best-practices by defining all nodes to have a primary type

that allows any single or multi-valued property, meaning it's possible and valid for any node to

have any property (with single or multiple values). This sequencer doesn't add any such properties

or nodes, but you are free to annotate the structure as needed.

The compact node definitions for the "wsdl" namespace are as follows:

<jcr='http://www.jcp.org/jcr/1.0'>

<nt='http://www.jcp.org/jcr/nt/1.0'>

<mix='http://www.jcp.org/jcr/mix/1.0'>

<sramp = "http://s-ramp.org/xmlns/2010/s-ramp">

<xs = "http://www.w3.org/2001/XMLSchema">

<wsdl = "http://schemas.xmlsoap.org/wsdl/">

//--

// N O D E T Y P E S

//--

[wsdl:wsdlExtension] > sramp:derivedArtifactType

- wsdl:ncName (string)

- wsdl:namespace (uri) mandatory

[wsdl:wsdlDerivedArtifactType] > sramp:derivedArtifactType abstract

- wsdl:namespace (uri) mandatory

+ * (wsdl:wsdlExtension)

[wsdl:namedWsdlDerivedArtifactType] > wsdl:wsdlDerivedArtifactType

- wsdl:ncName (string) mandatory

/*

Node Types

341

 * Messages and parts

 */

[wsdl:part] > wsdl:namedWsdlDerivedArtifactType

- wsdl:element (reference) < 'xs:elementDeclaration'

- wsdl:elementName (string)

- wsdl:elementNamespace (uri)

- wsdl:type (reference) < 'xs:simpleTypeDefinition'

- wsdl:typeName (string)

- wsdl:typeNamespace (uri)

[wsdl:message] > wsdl:namedWsdlDerivedArtifactType

+ * (wsdl:part) = wsdl:part multiple

/*

 * Port types, operations, inputs, outputs, and faults

 */

[wsdl:operationInput] > wsdl:namedWsdlDerivedArtifactType

- wsdl:message (reference) mandatory < 'wsdl:message'

[wsdl:operationOutput] > wsdl:namedWsdlDerivedArtifactType

- wsdl:message (reference) mandatory < 'wsdl:message'

[wsdl:fault] > wsdl:namedWsdlDerivedArtifactType

- wsdl:message (reference) mandatory < 'wsdl:message'

[wsdl:operation] > wsdl:namedWsdlDerivedArtifactType

- wsdl:parameterOrder (string) multiple

+ wsdl:input (wsdl:operationInput) = wsdl:operationInput

+ wsdl:output (wsdl:operationOutput) = wsdl:operationOutput

+ wsdl:fault (wsdl:fault) = wsdl:fault sns

[wsdl:portType] > wsdl:namedWsdlDerivedArtifactType

+ * (wsdl:operation) sns

/*

 * Bindings, binding operations, inputs, outputs

 */

[wsdl:bindingOperationOutput] > wsdl:namedWsdlDerivedArtifactType

- wsdl:input (reference) < 'wsdl:operationInput'

- wsdl:inputName (string)

[wsdl:bindingOperationInput] > wsdl:namedWsdlDerivedArtifactType

- wsdl:output (reference) < 'wsdl:operationOutput'

- wsdl:outputName (string)

Chapter 23. Web Service Defin...

342

[wsdl:bindingOperationFault] > wsdl:namedWsdlDerivedArtifactType

[wsdl:bindingOperation] > wsdl:namedWsdlDerivedArtifactType

+ wsdl:input (wsdl:bindingOperationInput) = wsdl:bindingOperationInput

+ wsdl:output (wsdl:bindingOperationOutput) = wsdl:bindingOperationOutput

+ wsdl:fault (wsdl:bindingOperationFault) = wsdl:bindingOperationFault sns

[wsdl:binding] > wsdl:namedWsdlDerivedArtifactType

- wsdl:type (reference) < 'wsdl:portType'

+ * (wsdl:bindingOperation) sns

/*

 * Ports and services

 */

[wsdl:port] > wsdl:namedWsdlDerivedArtifactType

- wsdl:binding (reference) < 'wsdl:binding'

- wsdl:bindingName (string)

- wsdl:bindingNamespace (uri)

[wsdl:service] > wsdl:namedWsdlDerivedArtifactType

+ * (wsdl:port) sns

/*

 * Types, schemas, and schema references

 */

[wsdl:referencedXsd] > sramp:derivedArtifactType abstract

- xs:id (string)

- xs:schemaLocation (string)

- * (undefined) multiple

- * (undefined)

[wsdl:importedXsd] > wsdl:referencedXsd

- xs:namespace (uri) mandatory

[wsdl:includedXsd] > wsdl:referencedXsd

[wsdl:redefinedXsd] > wsdl:referencedXsd

/*

 * The containers for the different kinds of components within WSDL documents.

 * Strictly speaking, the containers should not allow SNS, but these components'

 * names in WSDL are QNames, and we're only using the local part for the node name.

 * Therefore, two components might have the same local part but different namespaces.

Node Types

343

 * (This is probably not a common occurance.)

 */

[wsdl:container] > sramp:derivedArtifactType abstract

- * (string)

- * (string) multiple

[wsdl:messages] > wsdl:container

+ * (wsdl:message) = wsdl:message sns

[wsdl:portTypes] > wsdl:container

+ * (wsdl:portType) = wsdl:portType sns

[wsdl:bindings] > wsdl:container

+ * (wsdl:binding) = wsdl:binding sns

[wsdl:services] > wsdl:container

+ * (wsdl:service) = wsdl:service sns

/*

 * WSDL documents

 */

[wsdl:wsdlDocument] > sramp:xmlDocument

- wsdl:importedXsds (weakreference) multiple < 'xs:schemaDocument'

- wsdl:includedXsds (weakreference) multiple < 'xs:schemaDocument'

- wsdl:redefinedXsds (weakreference) multiple < 'xs:schemaDocument'

- wsdl:importedWsdls (weakreference) multiple < 'wsdl:wsdlDocument'

+ wsdl:schema (xs:schemaDocument) = xs:schemaDocument sns

+ wsdl:importedXsd (wsdl:importedXsd) sns

+ wsdl:includedXsd (wsdl:includedXsd) sns

+ wsdl:redefinedXsd (wsdl:redefinedXsd) sns

+ wsdl:messages (wsdl:messages) = wsdl:messages

+ wsdl:portTypes (wsdl:portTypes) = wsdl:portTypes

+ wsdl:bindings (wsdl:bindings) = wsdl:bindings

+ wsdl:services (wsdl:services) = wsdl:services

// ---

// HTTPWSDL Model

// ---

[wsdl:httpExtension] > wsdl:wsdlExtension

[wsdl:httpAddress] > wsdl:httpExtension

- wsdl:location (uri) mandatory

Chapter 23. Web Service Defin...

344

[wsdl:httpBinding] > wsdl:httpExtension

- wsdl:verb (string) mandatory

[wsdl:httpOperation] > wsdl:httpExtension

- wsdl:location (uri) mandatory

[wsdl:httpUrlEncoded] > wsdl:httpExtension

[wsdl:httpUrlReplacement] > wsdl:httpExtension

// ---

// SOAPWSDL Model

// ---

[wsdl:soapExtension] > wsdl:wsdlExtension

[wsdl:soapAddress] > wsdl:soapExtension

- wsdl:soapLocation (uri) mandatory

[wsdl:soapBinding] > wsdl:soapExtension

- wsdl:style (string)

- wsdl:transport (uri)

[wsdl:soapOperation] > wsdl:soapExtension

- wsdl:style (string)

- wsdl:soapAction (uri)

[wsdl:soapBody] > wsdl:soapExtension

- wsdl:encodingStyle (uri) multiple

- wsdl:parts (string)

- wsdl:use (string) < 'literal','encoded'

[wsdl:soapFault] > wsdl:soapExtension

- wsdl:encodingStyle (uri) multiple

- wsdl:use (string) < 'literal','encoded'

[wsdl:soapHeader] > wsdl:soapExtension

- wsdl:message (string)

- wsdl:part (string)

- wsdl:encodingStyle (uri) multiple

- wsdl:use (string) < 'literal','encoded'

+ * (wsdl:soapHeaderFault) = wsdl:soapHeaderFault

[wsdl:soapHeaderFault] > wsdl:soapExtension

Node Types

345

- wsdl:encodingStyle (uri) multiple

- wsdl:use (string) < 'literal','encoded'

// ---

// SOAPMIME Model

// ---

[wsdl:mimeExtension] > wsdl:wsdlExtension

[wsdl:mimeMultipartRelated] > wsdl:mimeExtension

+ wsdl:mimePart (wsdl:mimePart) sns

[wsdl:mimePart] > wsdl:mimeExtension

+ * (wsdl:mimeExtension) sns

[wsdl:mimeContent] > wsdl:mimeExtension

- wsdl:mimeType (string)

- wsdl:mimePart (string)

[wsdl:mimeXml] > wsdl:mimeExtension

- wsdl:mimePart (string)

These types use some of the node types and mixins defined in the "sramp" namespace:

<jcr='http://www.jcp.org/jcr/1.0'>

<nt='http://www.jcp.org/jcr/nt/1.0'>

<mix='http://www.jcp.org/jcr/mix/1.0'>

<sramp = "http://s-ramp.org/xmlns/2010/s-ramp">

//--

// N O D E T Y P E S

//--

// ---

// S-RAMP Core Model Artifacts

// ---

[sramp:baseArtifactType] > mix:created, mix:lastModified, mix:referenceable, mix:versionable

 abstract mixin

- sramp:classifiedBy (reference) multiple < 'owl:class'

- sramp:description (string)

- * (string)

Chapter 23. Web Service Defin...

346

- * (string) multiple

[sramp:documentArtifactType] > sramp:baseArtifactType abstract mixin

- sramp:contentType (string)

- sramp:contentSize (long)

[sramp:xmlDocument] > sramp:documentArtifactType mixin

- sramp:contentEncoding (string) mandatory

[sramp:document] > sramp:documentArtifactType mixin

[sramp:derivedArtifactType] > sramp:baseArtifactType abstract mixin

- sramp:relatedDocuments (reference) < 'sramp:documentArtifactType'

[sramp:userDefinedArtifactType] > sramp:baseArtifactType mixin

- sramp:userType (string) mandatory

[sramp:storedQuery] > nt:query

- sramp:propertyList (string) multiple

[sramp:relatedTo] mixin

- * (weakreference) multiple

23.3. Configuration

To use this sequencer, simply include the appropriate version of the Maven artifact with a

"org.modeshape" group ID and "modeshape-sequencer-wsdl" artifact ID. Or, if you're using JAR

files and manually setting up the classpath for your application, use the "modeshape-sequencer-

wsdl-2.6.0.Beta2-jar-with-dependencies.jar" file. Then, define a sequencing configuration

in the ModeShape configuration, using something similar to:

<configuration xmlns:mode="http://www.modeshape.org/1.0"

 xmlns:jcr="http://www.jcp.org/jcr/1.0">

 <mode:sequencers>

 ...

 <mode:sequencer jcr:name="WSDL Sequencer"

 mode:classname="org.modeshape.sequencer.wsdl.WsdlSequencer">

 <mode:description>Sequences WSDL 1.1 files (e.g., *.wsdl) loaded into the

 repository under '/files', extracting the WSDL components as well as

 any XSD components contained within an embedded XSD.

 </mode:description>

 <!-- Note this path expression captures the path below '/files' (in the

Configuration

347

 'store' source and 'default' workspace only), including the filename,

 and places the sequenced content under the same relative path below

 '/sequenced/wsdl'. For example, if a WSDL file is uploaded to

 '/files/my/favorites/Customers.wsdl', then the sequenced output will

 be placed at the '/sequenced/wsdl/my/favorites/Customer.wsdl' node,

 which will have a primary type of 'wsdl:wsdlDocument' and will

 contain under it the nodes representing the WSDL components. Of

 course, the path expression can be modified as needed; for example,

 to exclude the filename extension, or to exclude the relative path.

 -->

 <mode:pathExpression>/files(//)*.wsdl[*]/jcr:content[@jcr:data]

 => /sequenced/wsdl/$1 </mode:pathExpression>

 </mode:sequencer>

 ...

 </mode:sequencers>

 ...

</configuration>

or using the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html]:

JcrConfiguration config = ...

config.sequencer("WSDL Sequencer")

 .usingClass(WsdlSequencer.class)

 .setDescription("Sequences WSDL 1.1 files")

 .sequencingFrom("/files(//)(*.wsdl[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/sequenced/wsdl/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

348

Chapter 24.

349

ZIP File Sequencer
The ZIP file sequencer is included in ModeShape and extracts the files and folders contained in

the ZIP archive file, extracting the files and folders into the repository using JCR's nt:file and

nt:folder built-in node types. The structure of the output thus matches the logical structure of

the contents of the ZIP file.

24.1. Example

This sequencer generates a graph structure that maps to the files and folders in the ZIP file. An

example (listed in the JCR document view) from sequencing a ZIP file written into /a/foo and

containing one file, /x/y/z.txt is provided below:

<foo jcr:primaryType="zip:file"

 jcr:mixinTypes="mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/docForReferenceGuide.xml" >

 <x jcr:primaryType="nt:folder"

 jcr:created="2011-05-12T20:07Z"

 jcr:createdBy="currentJcrUser">

 <y jcr:primaryType="nt:folder"

 jcr:created="2011-05-12T20:09Z"

 jcr:createdBy="currentJcrUser">

 <z.txt jcr:primaryType="nt:file">

 <jcr:content jcr:primaryType="nt:resource"

 jcr:data="This is the file content"

 jcr:lastModified="2011-05-12T20:12Z"

 jcr:lastModifiedBy="currentJcrUser"

 jcr:mimeType="text/plain" />

 </z.txt>

 </y>

 </x>

</foo>

The CND for the zip:file node type is listed below.

[zip:file] > nt:folder, mix:mimeType

Chapter 24. ZIP File Sequencer

350

To use this sequencer, simply include the modeshape-sequencer-zip JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("ZIP Sequencer")

 .usingClass("org.modeshape.sequencer.zip.ZipSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences compressed files to extract the internal file and folder structure")

 .sequencingFrom("//(*.(zip|gz|jar|war|ear)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/zips/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 25.

351

Microsoft Office Document

Sequencer
This sequencer is included in ModeShape and processes Microsoft Office documents, including

Word documents, Excel spreadsheets, and PowerPoint presentations. With documents, the

sequencer attempts to infer the internal structure from the heading styles. With presentations, the

sequencer extracts the slides, titles, text and slide thumbnails. With spreadsheets, the sequencer

extracts the names of the sheets. And, the sequencer extracts for all the files the general file

information, including the name of the author, title, keywords, subject, comments, and various

dates.

25.1. Example

This sequencer generates a simple graph structure containing a variety of metadata from the

Office document. The example below provides example output (in the JCR document view) from

a Word document sequenced into /document.

<document jcr:primaryType="msoffice:metadata"

 jcr:mixinTypes="mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/docForReferenceGuide.xml"

 msoffice:title="My Word Document"

 msoffice:subject="My Subject"

 msoffice:author="James Joyce"

 msoffice:keywords="essay english term paper"

 msoffice:comment="This is my English 101 term paper"

 msoffice:template="term_paper.dot"

 msoffice:last_saved_by="jjoyce"

 msoffice:revision="42"

 msoffice:total_editing_time="1023"

 msoffice:last_printed="2011-05-12T14:33Z"

 msoffice:created="2011-05-10T20:07Z"

 msoffice:saved="2011-05-12T14:32Z"

 msoffice:pages="14"

 msoffice:words="3025"

 msoffice:characters="12420"

 msoffice:creating_application="MSWORD.EXE"

 msoffice:thumbnail="..." />

Chapter 25. Microsoft Office®...

352

As indicated in the CND below, sequencing Excel spreadsheets also populates the

msoffice:full_content property with all text in the document and the msoffice:sheets

multi-valued string property with one value for each worksheet name. Sequencing PowerPoint

presentations adds a child node for each slide containing the title (msoffice:title), slide text

(msoffice:text), and thumbnail image (msoffice:thumbnail) for each slide.

[msoffice:metadata] > nt:unstructured, mix:mimeType

 - msoffice:title (string)

 - msoffice:subject (string)

 - msoffice:author (string)

 - msoffice:keywords (string)

 - msoffice:comment (string)

 - msoffice:template (string)

 - msoffice:last_saved_by (string)

 - msoffice:revision (string)

 - msoffice:total_editing_time (long)

 - msoffice:last_printed (date)

 - msoffice:created (date)

 - msoffice:saved (date)

 - msoffice:pages (long)

 - msoffice:words (long)

 - msoffice:characters (long)

 - msoffice:creating_application (string)

 - msoffice:thumbnail (binary)

// PowerPoint specific data

 + msoffice:slide (msoffice:pptslide) sns

// Excel specific data

 - msoffice:full_content (string)

 - msoffice:sheet_name (string) multiple

[msoffice:pptslide]

 - msoffice:title (string)

 - msoffice:text (string)

 - msoffice:thumbnail (binary)

To use this sequencer, simply include the modeshape-sequencer-msoffice JAR and all of the

POI [http://poi.apache.org/] JARs in your application and configure the JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] to use this

sequencer using something similar to:

http://poi.apache.org/
http://poi.apache.org/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Example

353

JcrConfiguration config = ...

config.sequencer("Microsoft Office Document Sequencer")

 .usingClass("org.modeshape.sequencer.msoffice.MSOfficeMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences MS Office documents, including spreadsheets and presentations")

 .sequencingFrom("//(*.(*.(doc|docx|ppt|pps|xls)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/msoffice/$1");

354

Chapter 26.

355

Java Source File Sequencer
One of the sequencers that included in ModeShape is the modeshape-sequencer-java

subproject. This sequencer parses Java source code added to the repository and extracts the

basic structure of the classes and enumerations defined in the code. This structure includes:

the package structures, class declarations, class and member attribute declarations, class and

member method declarations with signature (but not implementation logic), enumerations with

each enumeration literal value, annotations, and JavaDoc information for all of the above. After

extracting this information from the source code, the sequencer then writes this structure into the

repository, where it can be further processed, analyzed, searched, navigated, or referenced.

As noted previously, the JavaMetadataSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/java/JavaMetadataSequencer.html] class provides a

pair of JavaBean properties that can be used to specify

a custom SourceFileRecorder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/java/SourceFileRecorder.html] implementation to use to map the

extracted metadata to an output location:

Table 26.1. JavaMetadataSequencer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/

JavaMetadataSequencer.html] properties

Property Description

sourceFileRecorder Optional property that, if set, provides an

instance of the SourceFileRecorder [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/java/

SourceFileRecorder.html] interface that

will be used for all subsequent sequencing

activity for this sequencer. If this property is

set to null, a default implementation will be

used. The default value of this property is null.

sourceFileRecorderClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the SourceFileRecorder

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/java/

SourceFileRecorder.html] interface. This

class must have a no-argument, public

constructor. If set, an instance of this class

will be created immediately and reused for

all subsequent sequencing activity for this

sequencer. If this property is set to null, a

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/JavaMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/SourceFileRecorder.html

Chapter 26. Java Source File ...

356

Property Description

default implementation will be used. The

default value of this property is null.

The default class file recorder (called ClassSourceFileRecorder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html]) is

used when these properties are not set, and creates a subgraph rooted at the output location that

takes the following form:

<nt:unstructured jcr:name="packageName1"

 jcr:mixinTypes = "mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/org/modeshape/Foo.java">

 ...

 <nt:unstructured jcr:name="packageNameN">

 <class:class jcr:name="ClassName">

 <class:annotations jcr:name="class:annotations">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:annotations>

 <class:constructors jcr:name="class:constructors">

 <class:constructor jcr:name="constructor parameters">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:constructor>

 </class:constructors>

 <class:methods jcr:name="class:methods">

 <class:method jcr:name="methodName(parameters)">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:method>

 </class:methods>

 <class:fields jcr:name="class:fields">

 <class:field jcr:name="fieldName">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:field>

 </class:fields>

 </class:class>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/ClassSourceFileRecorder.html

357

 </nt:unstructured>

 ...

</nt:unstructured>

This is the same structure that is produced by the Java class file sequencer, meaning that by

default the same structure will be produced when sequencing Java source or class files.

The compact node definitions for the class:* types is provided below:

[class:annotationMember]

- class:name (string) mandatory

- class:value (string)

[class:annotation]

- class:name (string) mandatory

+ * (class:annotationMember) = class:annotationMember

[class:annotations]

+ * (class:annotation) = class:annotation

[class:field]

- class:name (string) mandatory

- class:typeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:transient (boolean) mandatory

- class:volatile (boolean) mandatory

+ class:annotations (class:annotations) = class:annotations

[class:fields]

+ * (class:field) = class:field

[class:interfaces]

- * (string)

[class:parameters]

- * (string)

[class:method]

- class:name (string) mandatory

Chapter 26. Java Source File ...

358

- class:returnTypeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:abstract (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:native (boolean) mandatory

- class:synchronized (boolean) mandatory

- class:parameters (string) multiple

+ class:annotations (class:annotations) = class:annotations

[class:methods]

+ * (class:method) = class:method

[class:constructors]

+ * (class:method) = class:method

[class:class]

- class:name (string) mandatory

- class:superClassName (string)

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:abstract (boolean) mandatory

- class:interface (boolean) mandatory

- class:final (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:interfaces (string) multiple

+ class:annotations (class:annotations) = class:annotations

+ class:constructors (class:constructors) = class:constructors

+ class:methods (class:methods) = class:methods

+ class:fields (class:fields) = class:fields

[class:enum] > class:class

- class:enumValues (string) mandatory multiple

Note

This sequencer defaulted to using a different recorder implementation in

ModeShape 1.x, but this earlier structure did not match that produced

by the ClassFileSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/sequencer/classfile/ClassFileSequencer.html] and a different

default recorder is used in ModeShape 2.0 (or later). The

sequencer can be configured to use the original structure

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html

359

by using the OriginalFormatSourceFileRecorder [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/

OriginalFormatSourceFileRecorder.html] class.

To use this sequencer, simply include the modeshape-sequencer-java JAR (plus all of the

JARs that it is dependent upon) in your application and configure the JcrConfiguration [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html] to use this

sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Java Sequencer")

 .usingClass("org.modeshape.sequencer.java.JavaMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences java files to extract the characteristics of the Java source")

 .sequencingFrom("//(*.(java)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/java/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/java/OriginalFormatSourceFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

360

Chapter 27.

361

Java Class File Sequencer
The Java class file sequencer parses Java class file to extract metadata for the class, its

methods, its fields, and its annotations. The output of the sequencer can be customized by

using the classFileRecorder or classFileRecorderClassName properties to provide a custom

implementation of the ClassFileRecorder [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/ClassFileRecorder.html] interface. A default

implementation (DefaultClassFileRecorder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html]) is provided that records all

extracted metadata to the output location.

As noted previously, the ClassFileSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/ClassFileSequencer.html] class provides a

pair of JavaBean properties that can be used to specify a

custom ClassFileRecorder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

sequencer/classfile/ClassFileRecorder.html] implementation to use to map the extracted

metadata to an output location:

Table 27.1. ClassFileSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/ClassFileSequencer.html]

properties

Property Description

classFileRecorder Optional property that, if set, provides an

instance of the ClassFileRecorder [http://

docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/

ClassFileRecorder.html] interface that will be

used for all subsequent sequencing activity

for this sequencer. If this property is set to

null, a default implementation will be used.

The default value of this property is null.

classFileRecorderClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the ClassFileRecorder

[http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/

ClassFileRecorder.html] interface. This

class must have a no-argument, public

constructor. If set, an instance of this class

will be created immediately and reused for

all subsequent sequencing activity for this

sequencer. If this property is set to null, a

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileRecorder.html

Chapter 27. Java Class File S...

362

Property Description

default implementation will be used. The

default value of this property is null.

The default class file recorder creates a subgraph rooted at the output location that takes the

following form:

<nt:unstructured jcr:name="packageName1"

 jcr:mixinTypes = mode:derived

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/org/modeshape/Foo.class">

 ...

 <nt:unstructured jcr:name="packageNameN">

 <class:class jcr:name="ClassName">

 <class:annotations jcr:name="class:annotations">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:annotations>

 <class:constructors jcr:name="class:constructors">

 <class:constructor jcr:name="constructor parameters">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:constructor>

 </class:constructors>

 <class:methods jcr:name="class:methods">

 <class:method jcr:name="methodName(parameters)">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:method>

 </class:methods>

 <class:fields jcr:name="class:fields">

 <class:field jcr:name="fieldName">

 <class:annotation jcr:name="AnnotationName1"/>

 ...

 <class:annotation jcr:name="AnnotationNameN"/>

 </class:field>

 </class:fields>

 </class:class>

 </nt:unstructured>

 ...

363

</nt:unstructured>

The compact node definitions for the class:* types is provided below. Please note that these

definitions may change in a future release.

[class:annotationMember]

- class:name (string) mandatory

- class:value (string)

[class:annotation]

- class:name (string) mandatory

+ * (class:annotationMember) = class:annotationMember

[class:annotations]

+ * (class:annotation) = class:annotation

[class:field]

- class:name (string) mandatory

- class:typeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

- class:transient (boolean) mandatory

- class:volatile (boolean) mandatory

+ class:annotations (class:annotations) = class:annotations

[class:fields]

+ * (class:field) = class:field

[class:interfaces]

- * (string)

[class:parameters]

- * (string)

[class:method]

- class:name (string) mandatory

- class:returnTypeClassName (string) mandatory

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:static (boolean) mandatory

- class:final (boolean) mandatory

Chapter 27. Java Class File S...

364

- class:abstract (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:native (boolean) mandatory

- class:synchronized (boolean) mandatory

- class:parameters (string) multiple

+ class:annotations (class:annotations) = class:annotations

[class:methods]

+ * (class:method) = class:method

[class:constructors]

+ * (class:method) = class:method

[class:class]

- class:name (string) mandatory

- class:superClassName (string)

- class:visibility (string) mandatory < 'public', 'protected', 'package', 'private'

- class:abstract (boolean) mandatory

- class:interface (boolean) mandatory

- class:final (boolean) mandatory

- class:strictFp (boolean) mandatory

- class:interfaces (string) multiple

+ class:annotations (class:annotations) = class:annotations

+ class:constructors (class:constructors) = class:constructors

+ class:methods (class:methods) = class:methods

+ class:fields (class:fields) = class:fields

[class:enum] > class:class

- class:enumValues (string) mandatory multiple

To use this sequencer, simply include the modeshape-sequencer-classfile JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Java Class Sequencer")

 .usingClass(ClassFileSequencer.class)

 .setDescription("Sequences Java class files to extract the structure of the classes")

 .sequencingFrom("//*.class[*]/jcr:content[@jcr:data]")

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

365

 .andOutputtingTo("/classes");

366

Chapter 28.

367

Image Sequencer
The ImageMetadataSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/image/ImageMetadataSequencer.html] sequencer extracts metadata

from JPEG, GIF, BMP, PCX, PNG, IFF, RAS, PBM, PGM, PPM and PSD image files. This

sequencer extracts the file format, image resolution, number of bits per pixel and optionally number

of images, comments and physical resolution, and then writes this information into the repository

using the following structure:

• image:metadata node of type image:metadata

• • jcr:mixinTypes - "mode:derived"

• mode:derivedAt - the date that at which content was sequenced to produce this record

• mode:derivedFrom - the repository path to the content that was sequenced

• jcr:mimeType - optional string property for the mime type of the image

• jcr:encoding - optional string property for the encoding of the image

• image:formatName - string property for the name of the format

• image:width - optional integer property for the image's width in pixels

• image:height - optional integer property for the image's height in pixles

• image:bitsPerPixel - optional integer property for the number of bits per pixel

• image:progressive - optional boolean property specifying whether the image is stored in a

progressive (i.e., interlaced) form

• image:numberOfImages - optional integer property for the number of images stored in the

file; defaults to 1

• image:physicalWidthDpi - optional integer property for the physical width of the image in

dots per inch

• image:physicalHeightDpi - optional integer property for the physical height of the image in

dots per inch

• image:physicalWidthInches - optional double property for the physical width of the image

in inches

• image:physicalHeightInches - optional double property for the physical height of the image

in inches

This structure could be extended in the future to add EXIF and IPTC metadata as child nodes. For

example, EXIF metadata is structured as tags in directories, where the directories form something

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/image/ImageMetadataSequencer.html

Chapter 28. Image Sequencer

368

like namespaces, and which are used by different camera vendors to store custom metadata. This

structure could be mapped with each directory (e.g. "EXIF" or "Nikon Makernote" or "IPTC") as

the name of a child node, with the EXIF tags values stored as either properties or child nodes.

To use this sequencer, simply include the modeshape-sequencer-images JAR in your

application and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Image Sequencer")

 .usingClass("org.modeshape.sequencer.image.ImageMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences image files to extract the characteristics of the image")

 .sequencingFrom("//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd)[*])/

jcr:content[@jcr:data]")

 .andOutputtingTo("/images/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 29.

369

MP3 Sequencer
Another sequencer that is included in ModeShape is the modeshape-sequencer-mp3 sequencer

project. This sequencer processes MP3 audio files added to a repository and extracts the ID3

[http://www.id3.org/] metadata for the file, including the track's title, author, album name, year,

and comment. After extracting this information from the audio files, the sequencer then writes this

structure into the repository, where it can be further processed, analyzed, searched, navigated,

or referenced.

29.1. Example

This sequencer generates a node with the name mp3:metadata below the sequencing target.

That is if the ouputtingTo property from the sequencer configuration is /mp3s/LivinOnAPrayer,

the sequencer will output a node to /mp3s/LivinOnAPrayer/mp3:metadata.

<mp3:metadata jcr:primaryType="mp3:metadata"

 jcr:mixinTypes="mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/LOP.mp3"

 mp3:title="Livin' on a Prayer"

 mp3:author="Bon Jovi"

 mp3:album="Slippery When Wet"

 mp3:year="1986"

 mp3:comment="Rock 'n' roll!" />

The CND used by this sequencer is provided below.

[mp3:metadata] > nt:unstructured, mix:mimeType

 - mp3:title (string)

 - mp3:author (string)

 - mp3:album (string)

 - mp3:year (long)

 - mp3:comment (string)

To use this sequencer, simply include the modeshape-sequencer-mp3 JAR and the

JAudioTagger [http://www.jthink.net/jaudiotagger/] library in your application and configure

the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/

JcrConfiguration.html] to use this sequencer using something similar to:

http://www.id3.org/
http://www.id3.org/
http://www.jthink.net/jaudiotagger/
http://www.jthink.net/jaudiotagger/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 29. MP3 Sequencer

370

JcrConfiguration config = ...

config.sequencer("MP3 Sequencer")

 .usingClass("org.modeshape.sequencer.mp3.Mp3MetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences MP3 files to extract the ID3 tags of the audio file")

 .sequencingFrom("//(*.mp3[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/mp3s/$1");

Chapter 30.

371

DDL File Sequencer
The DDL file sequencer included in ModeShape is capable of parsing the more important DDL

statements from SQL-92, Oracle, Derby, and PostgreSQL, and constructing a graph structure

containing a structured representation of these statements. The resulting graph structure is largely

the same for all dialects, though some dialects have non-standard additions to their grammar, and

thus require dialect-specific additions to the graph structure.

The sequencer is designed to behave as intelligently as possible with as little configuration. Thus,

the sequencer automatically determines the dialect used by a given DDL stream. This can be

tricky, of course, since most dialects are very similar and the distinguishing features of a dialect

may only be apparent in some of the statements.

To get around this, the sequencer uses a "best fit" algorithm: run the DDL stream through the

parser for each of the dialects, and determine which parser was able to successfully read the

greatest number of statements and tokens.

Note

It is possible to define which DDL dialects (or grammars) should be

considered during sequencing using the "grammars" property in the sequencer

configuration. Set the values of this property to the names of the

grammars (e.g., "oracle", "postgres", "standard", or "derby"), specified in

the order they should be used. To use a custom DDL parser not

provided by ModeShape, simply provide the fully-qualified class name of

the DdlParser [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

sequencer/ddl/DdlParser] implementation class.

One very interesting capability of this sequencer is that, although only a subset of the (more

common) DDL statements are supported, the sequencer is still extremely functional since it does

still add all statements into the output graph, just without much detail other than just the statement

text and the position in the DDL file. Thus, if a DDL file contains statements the sequencer

understands and statements the sequencer does not understand, the graph will still contain all

statements, where those statements understood by the sequencer will have full detail. Since the

underlying parsers are able to operate upon a single statement, it is possible to go back later (after

the parsers have been enhanced to support additional DDL statements) and re-parse only those

incomplete statements in the graph.

At this time, the sequencer supports SQL-92 standard DDL as well as dialects from Oracle, Derby,

and PostgreSQL. It supports:

• Detailed parsing of CREATE SCHEMA, CREATE TABLE and ALTER TABLE.

• Partial parsing of DROP statements

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser

Chapter 30. DDL File Sequencer

372

• General parsing of remaining schema definition statements (i.e. CREATE VIEW, CREATE

DOMAIN, etc.

Note that the sequencer does not perform detailed parsing of SQL (i.e. SELECT, INSERT,

UPDATE, etc....) statements.

Caution

The DDL sequencer is being included as a Technology Preview. It is fully functional

for the dialects listed above, and may indeed work on certain DDL files that

use other dialects. But we would like to have feedback from users, test against

more DDL examples, support additional dialects, and support more kinds of

DDL statements. As such, the output format and node types associated with the

DefaultClassFileRecorder [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html] may change

in future versions.

30.1. Example

Sequencing results in graph nodes basically representing the BNF structure of each DDL

statement. Below is an example DDL schema definition statement containing table and view

definition statements.

CREATE SCHEMA hollywood

 CREATE TABLE films (title varchar(255), release date, producerName varchar(255))

 CREATE VIEW winners AS SELECT title, release FROM films WHERE producerName IS NOT

 NULL;

The resulting graph structure contains the raw statement expression, pertinent table, column and

key reference information and position of the statement in the text stream (e.g., line number,

column number and character index) so the statement can be tied back to the original DDL:

<nt:unstructured jcr:name="statements"

 jcr:mixinTypes = "mode:derived"

 mode:derivedAt="2011-05-13T13:12:03.925Z"

 mode:derivedFrom="/files/foo.sql"

 ddl:parserId="POSTGRES">

 <nt:unstructured jcr:name="hollywood" jcr:mixinTypes="ddl:createSchemaStatement"

 ddl:startLineNumber="1"

 ddl:startColumnNumber="1"

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/DefaultClassFileRecorder.html

Example

373

 ddl:expression="CREATE SCHEMA hollywood"

 ddl:startCharIndex="0">

 <nt:unstructured jcr:name="films" jcr:mixinTypes="ddl:createTableStatement"

 ddl:startLineNumber="2"

 ddl:startColumnNumber="5"

 ddl:expression="CREATE TABLE films (title varchar(255), release date, producerName

 varchar(255))"

 ddl:startCharIndex="28"/>

 <nt:unstructured jcr:name="title" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="VARCHAR"

 ddl:datatypeLength="255"/>

 <nt:unstructured jcr:name="release" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="DATE"/>

 <nt:unstructured jcr:name="producerName" jcr:mixinTypes="ddl:columnDefinition"

 ddl:datatypeName="VARCHAR"

 ddl:datatypeLength="255"/>

 <nt:unstructured jcr:name="winners" jcr:mixinTypes="ddl:createViewStatement"

 ddl:startLineNumber="3"

 ddl:startColumnNumber="5"

 ddl:expression="CREATE VIEW winners AS SELECT title, release FROM films

 WHERE producerName IS NOT NULL;"

 ddl:queryExpression="SELECT title, release FROM films WHERE producerName

 IS NOT NULL"

 ddl:startCharIndex="113"/>

</nt:unstructured>

Note that all nodes are of type nt:unstructured while the type of statement is identified using

mixins. Also, each of the nodes representing a statement contain: a ddl:expression property

with the exact statement as it appeared in the original DDL stream; a ddl:startLineNumber

and ddl:startColumnNumber property defining the position in the original DDL stream of the first

character in the expression; and a ddl:startCharIndex property that defines the integral index

of the first character in the expression as found in the DDL stream. All of these properties make

sure the statement can be traced back to its location in the original DDL.

To use this sequencer, simply include the modeshape-sequencer-ddl JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 30. DDL File Sequencer

374

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/ddls/$1");

This will use all of the built-in grammars (e.g., "standard", "oracle", "postgres", and "derby"). To

specify a different order or subset of the grammars, use the setProperty(...) method. Here's

an example that just uses the standard grammar followed by the PostgreSQL grammar:

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .setProperty("grammar","standard","postgres")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/ddls/$1");

And, to use a custom implementation of DdlParser [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/ddl/DdlParser], simply use the fully-qualified name of the

implementation class (which must have a no-arg constructor) as the name of the grammar:

config.sequencer("DDL Sequencer")

 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences DDL files to extract individual statements and accompanying

 statement properties and values")

 .setProperty("grammar","standard","postgres","org.example.ddl.MyCustomDdlParser")

 .sequencingFrom("//(*.(ddl)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/ddls/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/ddl/DdlParser

Chapter 31.

375

Text Sequencers
The text sequencers extract data from text streams. There are separate sequencers for character-

delimited sequencing and fixed width sequencing, but both treat the incoming text stream as a

series of rows (separated by line-terminators, as defined in BufferedReader [http://java.sun.com/

javase/6/docs/api/java/io/BufferedReader.html].readLine() with each row consisting of one or

more columns. As noted above, each text sequencer provides its own mechanism for splitting the

row into columns.

The AbstractTextSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/text/AbstractTextSequencer.html] class provides a number of JavaBean

properties that are common to both of the concrete text sequencer classes:

Table 31.1. AbstractTextSequencer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/

AbstractTextSequencer.html] properties

Property Description

commentMarker Optional property that, if set, indicates that

any line beginning with exactly this string

should be treated as a comment and should

not be processed further. If this value is null,

then all lines will be sequenced. The default

value for this property is null.

maximumLinesToRead Optional property that, if set, limits the

number of lines that will be read during

sequencing. Additional lines will be ignored.

If this value is non-positive, all lines will be

read and sequenced. Comment lines are not

counted towards this total. The default value

of this property is -1 (indicating that all lines

should be read and sequenced).

rowFactoryClassName Optional property that, if set, provides the

name of a class that provides a custom

implementation of the RowFactory [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/sequencer/text/RowFactory]

interface. This class must have a no-

argument, public constructor. If set, an

instance of this class will be created each

time that the sequencer sequences an input

stream and will be used to provide the output

structure of the graph. If this property is set

http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/AbstractTextSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/RowFactory
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/RowFactory

Chapter 31. Text Sequencers

376

Property Description

to null, a default implementation will be used.

The default value of this property is null.

The default row factory creates one node in the output location for each row sequenced from the

source and adds each column with the row as a child node of the row node. The output graph

takes the following form (all nodes have primary type nt:unstructured:

 <graph root jcr:mixinTypes = mode:derived,

 mode:derivedAt="2011-05-13T13:12:03.925Z",

 mode:derivedFrom="/files/foo.dat">

 + text:row[1]

 | + text:column[1] (jcr:mixinTypes = text:column, text:data = <column1 data>)

 | + ...

 | + text:column[n] (jcr:mixinTypes = text:column, text:data = <columnN data>)

 + ...

 + text:row[m]

 + text:column[1] (jcr:mixinTypes = text:column, text:data = <column1 data>)

 + ...

 + text:column[n] (jcr:mixinTypes = text:column, text:data = <columnN data>)

31.1. Delimited Text Sequencer

The DelimitedTextSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/text/DelimitedTextSequencer] splits rows into columns based on a regular

expression pattern. Although the default pattern is a comma, any regular expression can be

provided allowing for more sophisticated splitting patterns.

The DelimitedTextSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/text/DelimitedTextSequencer] class provides an additional JavaBean

property to override the default regular expression pattern:

Table 31.2. DelimitedTextSequencer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/

DelimitedTextSequencer] properties

Property Description

splitPattern Optional property that, if set, sets the regular

expression pattern that is used to split each

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/DelimitedTextSequencer

Fixed Width Text Sequencer

377

Property Description

row into columns. This property may not be

set to null and defaults to ",".

To use this sequencer, simply include the modeshape-sequencer-text JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Delimited Text Sequencer")

 .usingClass("org.modeshape.sequencer.text.DelimitedTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences delimited files to extract values")

 .sequencingFrom("//(*.(txt)[*])/jcr:content[@jcr:data]")

 .setProperty("splitPattern", "|")

 .andOutputtingTo("/txt/$1");

31.2. Fixed Width Text Sequencer

The FixedWidthTextSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/sequencer/text/FixedWidthTextSequencer] splits rows into columns based on

predefined positions. The default setting is to have a single column per row. It also provides an

additional JavaBean property to override the default start positions for each column.

Table 31.3. FixedWidthTextSequencer [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/

FixedWidthTextSequencer] properties

Property Description

columnStartPositions Optional property that, if set, provides the

start position of each column after the first.

The start positions are concatenated into a

single, comma-delimited string. The default

value is the empty string (implying that each

row should be treated as a single column).

This property may not be set to null. There

is an implicit column start position of 0 that

never needs to be specified.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/text/FixedWidthTextSequencer

Chapter 31. Text Sequencers

378

To use this sequencer, simply include the modeshape-sequencer-text JAR in your application

and configure the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html] to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Fixed Width Text Sequencer")

 .usingClass("org.modeshape.sequencer.text.FixedWidthTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences fixed width files to extract values")

 .sequencingFrom("//(*.(txt)[*])/jcr:content[@jcr:data]")

 .setProperty("columnStartPositions", "3,6,15")

 .andOutputtingTo("/txt/$1");

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 32.

379

Teiid Relational Model Sequencer
Teiid Designer [http://www.jboss.org/teiiddesigner], is a visual tool that enables rapid, model-

driven definition, integration, management and testing of data services without programming using

the Teiid runtime engine. It is capable of modeling several different kinds of data structures, but the

most common and widely-used are relational models that describe a relational database schema,

including the catalogs/schemas, tables, views, columns, primary keys, foreign keys, indexes,

procedures, procedure results, procedure results, and logical relationships. Teiid Designer can

reverse-engineer a relational model from a JDBC relational database or DDL file. It can also define

"virtual" models that are transformations of other models (where the transformations are defined in

terms of SQL select, insert, update, and delete statements). These models can then be packaged

into a virtual database, which can be deployed to a Teiid runtime engine.

Teiid [http://www.jboss.org/teiid] is a high-performance database virtualization engine that allows

JDBC and ODBC client applications access the virtual database as if it were a real database,

using relational, XML, XQuery and procedural queries. Teiid dynamically (and in real-time) figures

out how to answer the queries and operations issued by clients by efficiently accessing and

manipulating the data inside the underlying data sources. Teiid's sophisticated engine is able

to plan and optimize these operations, even when multiple heterogeneous relational and non-

relational data sources must be accessed to obtain the required information.

The Teiid relational model sequencer parses the model files produced by the Teiid Designer, and

extracts the structured relational data model described by the XMI file. This means that when

these models are uploaded into a ModeShape repository, the sequencer writes to the repository

all this relational metadata, where it can be queried and accessed by JCR, RESTful, and even

JDBC clients.

The ModelSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

sequencer/teiid/ModelSequencer.html] has a single JavaBean properties for changing behavior:

Table 32.1. ClassFileSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/sequencer/classfile/ClassFileSequencer.html]

properties

Property Description

useXmiUuidsAsJcrUuids Optional property that, if set to 'true', reuses

the model's "xmi:uuid" values as the

generated nodes' "jcr:uuid" identifiers. In

such cases, a model may only appear in

the repository once, so even those a model

might be uploaded into the repository multiple

times, each time the model is sequenced the

newly generated output will overwrite any

output from previous sequencing operations.

http://www.jboss.org/teiiddesigner
http://www.jboss.org/teiiddesigner
http://www.jboss.org/teiid
http://www.jboss.org/teiid
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/ModelSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/ModelSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/ModelSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/classfile/ClassFileSequencer.html

Chapter 32. Teiid Relational ...

380

Property Description

If set the 'false', a model (or different versions

of a model) can be uploaded into the

repository multiple times, where they all can

be accessed at any time. The default value

for this property is 'false'; changing it may

have drastic ramifications and is suggested

only for advanced users.

32.1. UUIDs

As mentioned above, the Teiid model sequencer can operate in two modes. The behavior you

choose will dramatically change what you can do with the sequenced relational models.

The first mode reuses the "xmi:uuid" identifiers on each object in the model as the "jcr:uuid"

node identifiers. In this mode, the sequencer represents each model reference as a JCR

WEAKREFERENCE, making it very easy to navigate and query relationships. However, there is

one major disadvantage of this approach: each time a model is uploaded into the repository, the

sequencer will override any output generated by earlier sequencing operations upon that file (or

other versions of it). Thus, the sequenced representation of an uploaded model can ever appear

only once within the repository, even though different versions of that model might exist in the

repository at different locations. This may be desirable in some situations, but for most situations

it is simply not acceptable.

In the second mode of operation (which is the default mode), there is no correlation between

the model's "xmi:uuid" and "jcr:uuid" node identifiers. Various versions of a given model can

be uploaded into the repository at multiple locations, yet each model's relational schema will

exist in the repository. The downside of this approach is that references are no longer simply

WEAKREFERENCE properties. Instead, each single-valued reference will be represented as a

series of four properties:

• {referenceName}Href - stores the href literal value from the XMI file; this is always set

• {referenceName}XmiUuid - stores the XMI UUID to the referenced node; this is set only if the

href had an embedded UUID (hrefs to data types and XSD components don't use UUIDs)

• {referenceName}Name - stores the name of the resolved node, though this may not be set if

the object being referenced is in another model

• {referenceName} - stores the JCR weak reference to the resolve node, though this may not

be set if the object being referenced is in another model

where "{referenceName}" is the name of the model reference. Multi-value references are also

represented as a series of four properties, but with a slightly different naming pattern:

• {singularReferenceName}Href - stores the href literal values from the XMI file; this is always

set

Node Types

381

• {singularReferenceName}XmiUuid - stores the XMI UUID to the referenced nodes; this is set

only if the hrefs have an embedded UUID (hrefs to data types and XSD components don't use

UUIDs)

• {singularReferenceName}Name - stores the name of the resolved nodes, though this may not

be set if the object being referenced is in another model

• {pluralReferenceName} - stores the JCR weak reference to the resolve nodes, though this

may not be set if the object being referenced is in another model

Here, "{singularReferenceName}" is the singular form of the model reference name, and

"{pluralReferenceName}" is the plural form of the model reference name. For example, for a

reference named "columns", the "{singularReferenceName}" value would be "column" and the

plural form is "columns". If the reference name is "properties", the singular form is "property" and

the plural form is "properties". (ModeShape uses a novel algorithm to determine the singular and

plural forms of many English words.)

References to model objects within the same model are easily resolved upon sequencing, and

so we set all of the properties (regardless of the mode). However, references to objects in other

models cannot be resolved at sequencing time.

Note

The Teiid VDB sequencer behavior is unrelated to this mode, since it always

sequences models with new "jcr:uuid" identifiers that are unrelated to the

"xmi:uuid" values. In this manner, each sequencing of a VDB will produce the

relational model representation for each model in the VDB (with all valid references

resolved between all models), independent of any generated output from the Teiid

model sequencer.

32.2. Node Types

The model sequencer follows JCR best-practices by defining all nodes to have a primary type of

"nt:unstructured" (or a node type that extends "nt:unstructured"), meaning it's possible and

valid for any node to have any property (with single or multiple values). However, it is still useful to

capture the metadata about what that node represents, and so the sequencer use mixins for this.

For example, there is a "xmi:referenceable" mixin with a single "xmi:uuid" property (patterned

after the built-in "mix:referenceable" mixin). Since all model objects have mmuuids, all nodes

produced by this sequencer will have this mixin.

The rest of this section covers the various (and many!) node types defined for and used by this

sequencer. Note that these are non-normative definitions of the node types; see the CND files in

the "modeshape-sequencer-teiid" JAR file (or source) for the official definitions.

32.2.1. XMI Namespace

The compact node definitions for the "xmi" namespace are as follows:

Chapter 32. Teiid Relational ...

382

<nt = "http://www.jcp.org/jcr/nt/1.0">

<xmi = "http://www.omg.org/XMI">

//--

// N O D E T Y P E S

//--

[xmi:referenceable] mixin

 - xmi:uuid (string) mandatory

[xmi:model] > nt:unstructured, xmi:referenceable orderable

 - xmi:version (double) = '2.0'

32.2.2. Core Namespace

The compact node definitions for the "mmcore" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">

<xmi = "http://www.omg.org/XMI">

<mmcore = "http://www.metamatrix.com/metamodels/Core">

<mode = "http://www.modeshape.org/1.0">

[mmcore:model] > xmi:referenceable, mode:hashed mixin

 - mmcore:modelType (string) = 'UNKNOWN' < 'PHYSICAL','VIRTUAL','TYPE','VDB_ARCHIVE',

 'UNKNOWN','FUNCTION','CONFIGURATION','METAMODEL',

 'EXTENSION','LOGICAL','MATERIALIZATION'

 - mmcore:primaryMetamodelUri (string)

 - mmcore:description (string)

 - mmcore:nameInSource (string)

 - mmcore:maxSetSize (long) = '100'

 - mmcore:visible (boolean) = 'true'

 - mmcore:supportsDistinct (boolean) = 'true'

 - mmcore:supportsJoin (boolean) = 'true'

 - mmcore:supportsOrderBy (boolean) = 'true'

 - mmcore:supportsOuterJoin (boolean) = 'true'

 - mmcore:supportsWhereAll (boolean) = 'true'

 - mmcore:supportsDistinct (boolean) = 'true'

 - mmcore:producerName (string)

 - mmcore:producerVersion (string)

 - mmcore:originalFile (string)

Relational Namespace

383

 - mmcore:sha1 (string)

[mmcore:import] > nt:unstructured, xmi:referenceable orderable

 - mmcore:modelType (string) = 'UNKNOWN' < 'PHYSICAL','VIRTUAL','TYPE','VDB_ARCHIVE',

 'UNKNOWN','FUNCTION','CONFIGURATION','METAMODEL',

 'EXTENSION','LOGICAL','MATERIALIZATION'

 - mmcore:primaryMetamodelUri (string)

 - mmcore:path (string)

 - mmcore:name (string)

 - mmcore:modelLocation (string)

[mmcore:annotated] mixin

 - mmcore:description (string)

 - mmcore:keywords (string) multiple

[mmcore:tags] mixin

 - * (undefined) multiple

 - * (undefined)

32.2.3. Relational Namespace

The compact node definitions for the "relational" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">

<relational='http://www.metamatrix.com/metamodels/Relational'>

<xmi = "http://www.omg.org/XMI">

//--

// N O D E T Y P E S

//--

[relational:relationalEntity] > xmi:referenceable abstract mixin

 - relational:nameInSource (string)

[relational:relationship] > nt:unstructured, relational:relationalEntity abstract

// ---

// Columns and Column Sets

// ---

[relational:column] > nt:unstructured, relational:relationalEntity

 - relational:nativeType (string)

Chapter 32. Teiid Relational ...

384

 - relational:type (weakreference)

 - relational:typeHref (string)

 - relational:typeXmiUuid (string)

 - relational:typeName (string)

 - relational:length (long)

 - relational:fixedLength (boolean)

 - relational:precision (long)

 - relational:scale (long)

 - relational:nullable (string) = 'NULLABLE' < 'NO_NULLS', 'NULLABLE',

 'NULLABLE_UNKNOWN'

 - relational:autoIncremented (boolean) = 'false'

 - relational:defaultValue (string)

 - relational:minimumValue (string)

 - relational:maximumValue (string)

 - relational:format (string)

 - relational:characterSetName (string)

 - relational:collationName (string)

 - relational:selectable (boolean) = 'true'

 - relational:updateable (boolean) = 'true'

 - relational:caseSensitive (boolean) = 'true'

 - relational:searchability (string) = 'SEARCHABLE' < 'SEARCHABLE',

 'ALL_EXCEPT_LIKE', 'LIKE_ONLY', 'UNSEARCHABLE'

 - relational:currency (boolean) = 'false'

 - relational:radix (long) = '10'

 - relational:signed (boolean) = 'true'

 - relational:distinctValueCount (long) = '-1'

 - relational:nullValueCount (long) = '-1'

 - relational:uniqueKeys (weakreference) multiple

 - relational:uniqueKeyHrefs (string) multiple

 - relational:uniqueKeyXmiUuids (string) multiple

 - relational:uniqueKeyNames (string) multiple

 - relational:indexes (weakreference) multiple

 - relational:indexHrefs (string) multiple

 - relational:indexXmiUuids (string) multiple

 - relational:indexNames (string) multiple

 - relational:foreignKeys (weakreference) multiple

 - relational:foreignKeyHrefs (string) multiple

 - relational:foreignKeyXmiUuids (string) multiple

 - relational:foreignKeyNames (string) multiple

 - relational:accessPatterns (weakreference) multiple

 - relational:accessPatternHrefs (string) multiple

 - relational:accessPatternXmiUuids (string) multiple

 - relational:accessPatternNames (string) multiple

Relational Namespace

385

[relational:columnSet] > nt:unstructured, relational:relationalEntity abstract orderable

 + * (relational:column) = relational:column copy

// ---

// Constraints

// ---

[relational:uniqueKey] > nt:unstructured, relational:relationalEntity abstract

 - relational:columns (weakreference) multiple

 - relational:columnXmiUuids (string) multiple

 - relational:columnNames (string) multiple

 - relational:foreignKeys (weakreference) multiple

 - relational:foreignKeyHrefs (string) multiple

 - relational:foreignKeyXmiUuids (string) multiple

 - relational:foreignKeyNames (string) multiple

[relational:uniqueConstraint] > relational:uniqueKey

[relational:primaryKey] > relational:uniqueKey

[relational:foreignKey] > relational:relationship

 - relational:foreignKeyMultiplicity (string) = 'ZERO_TO_MANY' < 'ONE', 'MANY',

 'ZERO_TO_ONE', 'ZERO_TO_MANY', 'UNSPECIFIED'

 - relational:primaryKeyMultiplicity (string) = 'ONE' < 'ONE', 'MANY', 'ZERO_TO_ONE',

 'ZERO_TO_MANY', 'UNSPECIFIED'

 - relational:columns (weakreference) multiple

 - relational:columnXmiUuids (string) multiple

 - relational:columnNames (string) multiple

 - relational:uniqueKeys (weakreference) multiple

 - relational:uniqueKeyHrefs (string) multiple

 - relational:uniqueKeyXmiUuids (string) multiple

 - relational:uniqueKeyNames (string) multiple

[relational:index] > nt:unstructured, relational:relationalEntity

 - relational:filterCondition (string)

 - relational:nullable (boolean) = 'true'

 - relational:autoUpdate (boolean)

 - relational:unique (boolean)

 - relational:columns (weakreference) multiple

 - relational:columnXmiUuids (string) multiple

 - relational:columnNames (string) multiple

[relational:accessPattern] > nt:unstructured, relational:relationalEntity orderable

 - relational:columns (UNDEFINED) multiple

Chapter 32. Teiid Relational ...

386

// ---

// Tables and Views

// ---

[relational:table] > relational:columnSet abstract orderable

 - relational:system (boolean) = 'false'

 - relational:cardinality (long)

 - relational:supportsUpdate (boolean) = 'true'

 - relational:materialized (boolean) = 'false'

 - relational:logicalRelationships (weakreference) multiple

 - relational:logicalRelationshipHrefs (string) multiple

 - relational:logicalRelationshipXmiUuids (string) multiple

 - relational:logicalRelationshipNames (string) multiple

 + * (relational:primaryKey) = relational:primaryKey copy

 + * (relational:foreignKey) = relational:foreignKey copy

 + * (relational:accessPattern) = relational:accessPattern copy sns

[relational:baseTable] > relational:table orderable

[relational:view] > relational:table orderable

// ---

// Procedures

// ---

[relational:procedureParameter] > nt:unstructured, relational:relationalEntity

 - relational:direction (string) < 'IN', 'OUT', 'INOUT', 'RETURN', 'UNKNOWN'

 - relational:defaultValue (string)

 - relational:nativeType (string)

 - relational:type (weakreference)

 - relational:typeXmiUuid (string)

 - relational:typeName (string)

 - relational:length (long)

 - relational:precision (long)

 - relational:scale (long)

 - relational:nullable (string) = 'NULLABLE' < 'NO_NULLS', 'NULLABLE',

 'NULLABLE_UNKNOWN'

 - relational:radix (long) = '10'

[relational:procedureResult] > relational:columnSet orderable

[relational:procedure] > nt:unstructured, relational:relationalEntity orderable

JDBC Source Namespace

387

 - relational:function (boolean)

 - relational:updateCount (string) < 'AUTO', 'ZERO', 'ONE', 'MULTIPLE'

 + * (relational:procedureParameter) = relational:procedureParameter copy sns

 + * (relational:procedureResult) = relational:procedureResult copy

// ---

// Logical Relationships

// ---

[relational:logicalRelationshipEnd] > nt:unstructured, relational:relationalEntity

 - relational:multiplicity (string) < 'ONE', 'MANY', 'ZERO_TO_ONE', 'ZERO_TO_MANY',

 'UNSPECIFIED'

 - relational:table (weakreference)

 - relational:tableHref (string)

 - relational:tableXmiUuid (string)

 - relational:tableName (string)

[relational:logicalRelationship] > relational:relationship orderable

 + * (relational:logicalRelationshipEnd) = relational:logicalRelationshipEnd copy sns

// ---

// Catalogs and Schemas

// ---

[relational:schema] > nt:unstructured, relational:relationalEntity orderable

 + * (relational:table) = relational:baseTable copy

 + * (relational:procedure) = relational:procedure copy sns

 + * (relational:index) = relational:index copy

 + * (relational:logicalRelationship) = relational:logicalRelationship copy

[relational:catalog] > nt:unstructured, relational:relationalEntity orderable

 + * (relational:schema) = relational:schema copy

 + * (relational:table) = relational:baseTable copy

 + * (relational:procedure) = relational:procedure copy sns

 + * (relational:index) = relational:index copy

 + * (relational:logicalRelationship) = relational:logicalRelationship copy

32.2.4. JDBC Source Namespace

The compact node definitions for the "jdbcs" namespace are as follows:

Chapter 32. Teiid Relational ...

388

<nt = "http://www.jcp.org/jcr/nt/1.0">

<xmi = "http://www.omg.org/XMI">

<jdbcs = "http://www.metamatrix.com/metamodels/JDBC">

//--

// N O D E T Y P E S

//--

[jdbcs:source] > nt:unstructured, xmi:referenceable

 - jdbcs:name (string)

 - jdbcs:driverName (string)

 - jdbcs:driverClass (string)

 - jdbcs:username (string)

 - jdbcs:url (string)

[jdbcs:imported] > nt:unstructured, xmi:referenceable

 - jdbcs:createCatalogsInModel (boolean) = 'true'

 - jdbcs:createSchemasInModel (boolean) = 'true'

 - jdbcs:convertCaseInModel (string) < 'NONE', 'TO_UPPERCASE', 'TO_LOWERCASE'

 - jdbcs:generateSourceNamesInModel (string) = 'UNQUALIFIED' < 'NONE', 'UNQUALIFIED',

 'FULLY_QUALIFIED'

 - jdbcs:includedCatalogPaths (string) multiple

 - jdbcs:includedSchemaPaths (string) multiple

 - jdbcs:excludedObjectPaths (string) multiple

 - jdbcs:includeForeignKeys (boolean) = 'true'

 - jdbcs:includeIndexes (boolean) = 'true'

 - jdbcs:includeProcedures (boolean) = 'false'

 - jdbcs:includeApproximateIndexes (boolean) = 'true'

 - jdbcs:includeUniqueIndexes (boolean) = 'false'

 - jdbcs:includedTableTypes (string) multiple

32.2.5. Transformation Namespace

The compact node definitions for the "transformation" namespace are as follows:

<transform='http://www.metamatrix.com/metamodels/Transformation'>

//--

// N O D E T Y P E S

//--

[transform:transformed] mixin

Default values

389

 - transform:transformedFrom (weakreference)

 - transform:transformedFromHrefs (string)

 - transform:transformedFromXmiUuids (string)

 - transform:transformedFromNames (string)

[transform:withSql] mixin

 - transform:selectSql (string)

 - transform:insertSql (string)

 - transform:updateSql (string)

 - transform:deleteSql (string)

 - transform:insertAllowed (boolean) = 'true'

 - transform:updateAllowed (boolean) = 'true'

 - transform:deleteAllowed (boolean) = 'true'

 - transform:outputLocked (boolean) = 'false'

 - transform:insertSqlDefault (boolean) = 'true'

 - transform:updateSqlDefault (boolean) = 'true'

 - transform:deleteSqlDefault (boolean) = 'true'

32.3. Default values

Teiid Designer does not persist default values in the XMI files. The sequencer knows these default

values, and includes them in the sequenced output so that they can be accessed and queried.

32.4. Annotations

Rather than creating a separate "Annotation" object like what exist in the XMI models, the

annotation's description and keywords are simply recorded as a "mmcore:description" and

"mmcore:keywords" properties on the node created for the target of the annotation. This is really

nice, because if a description is placed on a relational column object in a model, then that

description appears as a property directly on the corresponding "relational:column" node. Note

that when any annotation properties are placed on a node, the "mmcore:annotated" mixin is

added to that node.

32.5. Tags

Tags are also stored on "Annotation" objects, and each tag consist of a key-value pair. The

sequencer does two things depending upon what the key looks like. When the key is a simple

string without a ':', then a property is created on the annotation's target object using this string as

the property name and the tag's value as the property's value. More recently Teiid Designer has

started to use tags with keys of the form "namespace:name", where "namespace" is really informal

and can theoretically be any string value. While this format is the same as JCR property names,

treating them as namespaced JCR property names would require there be a namespace URI

registered with the prefix matching the "namespace" value.

Chapter 32. Teiid Relational ...

390

The sequencer tries to parse the tag key as a property name, and if it works then the tag is

added as a property just as mentioned earlier. However, if the namespace does not exist, then

the sequencer splits the key into the two parts, where the first is used to identify a child node and

the second is used as a property name.

For example, a tag on the "ID" column object under the "MyTable" base table:

foo="bar"

will be stored as a property "foo" with value "bar" on the "MyTable/ID" node. However, the

connection:driver-class="oracle.jdbc.OracleDriver"

tag on the same object would be stored as the "driver-class" property (with value

"oracle.jdbc.OracleDriver") on the "MyTable/ID/connection" object.

32.6. Transformation

The transformation information, like with annotations, is projected onto the nodes representing

the model objects that are the "output" of the transformation, where the objects that are "inputs"

to the transformation are recorded as a (potentially multi-valued) property on the "output" object,

and the "transform:transformed" mixin is added to the output node. In other words, virtual base

tables, columns, procedures, etc., are marked as "transform:transformed" and have an "input"

property pointing to the node(s) that are the inputs for the transformation. The SQL statements,

supports flags, and defaults flags are also added as properties on the output virtual base table

and procedures, and the "transform:withSql" mixin that defines these properties is added to

that output node.

32.7. Configuration

To use this sequencer, simply include the modeshape-sequencer-teiid-2.6.0.Beta2.jar file

in your application and define a sequencing configuration in the ModeShape configuration it using

something similar to:

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <mode:sequencers>

 ...

 <mode:sequencer jcr:name="Teiid Model

 Sequencer" mode:classname="org.modeshape.sequencer.teiid.ModelSequencer">

Example

391

 <mode:description>Sequences Teiid relational models (e.g., *.xmi) loaded into the repository under '/

files', extracting the structure defined in the models.</mode:description>

 <!-- Note this path expression captures the path below '/files' but excludes the filename,

 and places the sequenced

 content under the same relative path below '/sequenced/teiid/models'. For example,

 if an XMI model is uploaded

 to '/files/my/favorites/CustomerDetails.xmi', then the sequenced output will be placed at

 the '/sequenced/teiid/models/CustomerDetails' node, which will have a primary type

 of 'xmi:model' and will

 contain under it the nodes representing the catalogs, schemas, tables, views, columns,

 etc. Of course, the

 path expression can be modified as needed; for example, to include the filename

 of the XMI model in the

 sequenced output path. -->

 <mode:pathExpression>/files(//)(*.xmi[*])/jcr:content[@jcr:data] => /sequenced/teiid/

models$1 </mode:pathExpression>

 </mode:sequencer>

 ...

 </mode:sequencers>

 ...

</configuration>

or using the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html]:

JcrConfiguration config = ...

config.sequencer("Teiid Model Sequencer")

 .usingClass(ModelSequencer.class)

 .setDescription("Sequences Teiid relational models")

 .sequencingFrom("/files(//)(*.xmi[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/sequenced/teiid/models$1");

32.8. Example

Here is a representation of the nodes output by the sequencing of an example virtual relational

model:

PartsVirtual jcr:primaryType="xmi:model"

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 32. Teiid Relational ...

392

 - jcr:mixinTypes=["mmcore:model","mix:referenceable","xmi:referenceable", "mode:derived"]

 - mode:derivedAt="2011-05-13T13:12:03.925Z"

 - mode:derivedFrom="/files/foo.xmi"

 - jcr:uuid="d1a1b82f-055b-4db2-a3e7-a9668f3a70b6"

 - mmcore:maxSetSize="100"

 - mmcore:modelType="VIRTUAL"

 - mmcore:originalFile="/model/parts/PartsVirtual.xmi"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - mmcore:producerName="Teiid Designer"

 - mmcore:producerVersion="6.0"

 - mode:sha1="84a77940f9140a358861d12d4bbb4160afadc08c"

 - mmcore:supportsDistinct="true"

 - mmcore:supportsJoin="true"

 - mmcore:supportsOrderBy="true"

 - mmcore:supportsOuterJoin="true"

 - mmcore:supportsWhereAll="true"

 - xmi:uuid="fb52cb80-128a-1eec-8518-c32201e76066"

 - xmi:version="2.0"

 - mmcore:visible="true"

 PartSupplier_SourceB jcr:primaryType="mmcore:import"

 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 - jcr:uuid="c3a98bf2-7dbf-4c46-8baa-bf32e389cddd"

 - mmcore:modelType="PHYSICAL"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - xmi:uuid="mmuuid:980de782-b1e5-1f55-853c-ed5dfdd1bb78"

 PartsSupplier_SourceA jcr:primaryType="mmcore:import"

 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 - jcr:uuid="55385418-01c9-4d5c-9f79-91b8e10c6946"

 - mmcore:modelType="PHYSICAL"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - xmi:uuid="mmuuid:980de784-b1e5-1f55-853c-ed5dfdd1bb78"

 XMLSchema jcr:primaryType="mmcore:import"

 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 - jcr:uuid="8b5c2268-0770-405b-a4d8-12a868cc27a4"

 - mmcore:modelType="PHYSICAL"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:a6591280-bf1d-1f2c-9911-b53abd16b14e"

 SupplierInfo jcr:primaryType="relational:baseTable"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="37bf368e-0618-4f2f-b4c2-2ab4c0729502"

 - transform:deleteAllowed="true"

 - transform:deleteSqlDefault="true"

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400080-1284-1eec-8518-

c32201e76066"

Example

393

 - transform:inputXmiUuids="bc400080-1284-1eec-8518-c32201e76066"

 - transform:insertAllowed="true"

 - transform:insertSqlDefault="true"

 - relational:materialized="false"

 - transform:selectSql="SELECT PartSupplier_Oracle.SUPPLIER_PARTS.SUPPLIER_ID,

 PartSupplier_Oracle.SUPPLIER_PARTS.PART_ID,

 PartSupplier_Oracle.SUPPLIER_PARTS.QUANTITY,

 PartSupplier_Oracle.SUPPLIER_PARTS.SHIPPER_ID,

 PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_NAME,

 PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_STATUS,

 PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_CITY,

 PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_STATE FROM

 PartSupplier_Oracle.SUPPLIER_PARTS, PartsSupplier_SQLServer.SUPPLIER WHERE

 PartSupplier_Oracle.SUPPLIER_PARTS.SUPPLIER_ID =

 PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_ID"

 - relational:supportsUpdate="true"

 - relational:system="false"

 - transform:updateAllowed="true"

 - transform:updateSqlDefault="true"

 - xmi:uuid="2473dbc0-128c-1eec-8518-c32201e76066"

 SUPPLIER_ID jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="5f62a519-7948-4c9d-95df-131b489cec8e"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/55e12d01-1275-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="55e12d01-1275-1eec-8518-c32201e76066"

 - relational:length="10"

 - relational:nativeType="VARCHAR2"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="143ff680-1291-1eec-8518-c32201e76066"

 PART_ID jcr:primaryType="relational:column"

Chapter 32. Teiid Relational ...

394

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="bcce191f-acfd-48b9-8be8-ea04c0d37283"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:fixedLength="true"

 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/54ed0902-1275-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="54ed0902-1275-1eec-8518-c32201e76066"

 - relational:length="4"

 - relational:nativeType="CHAR"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="1d9b97c0-1291-1eec-8518-c32201e76066"

 QUANTITY jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="126d6138-ce5e-40e3-92d9-48a239453dbb"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:fixedLength="true"

 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/55e12d02-1275-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="55e12d02-1275-1eec-8518-c32201e76066"

 - relational:nativeType="NUMBER"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:precision="3"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"

 - relational:typeName="short"

Example

395

 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"

 - relational:updateable="true"

 - xmi:uuid="250ef100-1291-1eec-8518-c32201e76066"

 SHIPPER_ID jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="d9856363-6950-40ea-9c9a-44c4af43ec38"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:fixedLength="true"

 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/54ed0903-1275-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="54ed0903-1275-1eec-8518-c32201e76066"

 - relational:nativeType="NUMBER"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:precision="2"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"

 - relational:typeName="short"

 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"

 - relational:updateable="true"

 - xmi:uuid="2b8e2640-1291-1eec-8518-c32201e76066"

 SUPPLIER_NAME jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="d0b9d5cc-f95a-4e97-a3f9-59571f58e206"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400084-1284-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="bc400084-1284-1eec-8518-c32201e76066"

 - relational:length="30"

 - relational:nativeType="varchar"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

Chapter 32. Teiid Relational ...

396

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="34da8540-1291-1eec-8518-c32201e76066"

 SUPPLIER_STATUS jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="06253965-9f6f-4d6e-8219-2eb70a2745ed"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:fixedLength="true"

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400083-1284-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="bc400083-1284-1eec-8518-c32201e76066"

 - relational:nativeType="numeric"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:precision="2"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"

 - relational:typeName="short"

 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"

 - relational:updateable="true"

 - xmi:uuid="3c4dde80-1291-1eec-8518-c32201e76066"

 SUPPLIER_CITY jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="a9cfd1fd-1a99-4b7d-83dc-3dbeb86c7f0a"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400081-1284-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="bc400081-1284-1eec-8518-c32201e76066"

 - relational:length="30"

 - relational:nativeType="varchar"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

Example

397

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="43c137c0-1291-1eec-8518-c32201e76066"

 SUPPLIER_STATE jcr:primaryType="relational:column"

 - jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 - jcr:uuid="8e040c5d-acf8-407f-a090-4bc1feac45cc"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400082-1284-1eec-8518-

c32201e76066"

 - transform:inputXmiUuids="bc400082-1284-1eec-8518-c32201e76066"

 - relational:length="2"

 - relational:nativeType="varchar"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="4a4faf40-1291-1eec-8518-c32201e76066"

398

Chapter 33.

399

Teiid VDB Sequencer
Teiid Designer [http://www.jboss.org/teiiddesigner], is a visual tool that enables rapid, model-

driven definition, integration, management and testing of data services without programming using

the Teiid runtime engine. It is capable of modeling several different kinds of data structures, but the

most common and widely-used are relational models that describe a relational database schema,

including the catalogs/schemas, tables, views, columns, primary keys, foreign keys, indexes,

procedures, procedure results, procedure results, and logical relationships. Teiid Designer can

reverse-engineer a relational model from a JDBC relational database or DDL file. It can also define

"virtual" models that are transformations of other models (where the transformations are defined in

terms of SQL select, insert, update, and delete statements). These models can then be packaged

into a virtual database, which can be deployed to a Teiid runtime engine.

Teiid [http://www.jboss.org/teiid] is a high-performance database virtualization engine that allows

JDBC and ODBC client applications access the virtual database as if it were a real database,

using relational, XML, XQuery and procedural queries. Teiid dynamically (and in real-time) figures

out how to answer the queries and operations issued by clients by efficiently accessing and

manipulating the data inside the underlying data sources. Teiid's sophisticated engine is able

to plan and optimize these operations, even when multiple heterogeneous relational and non-

relational data sources must be accessed to obtain the required information.

The Teiid VDB sequencer parses the VDB archive files produced by the Teiid Designer, and

extracts the structured relational data model described by each of the contained XMI files. This

means that when VDB files are uploaded into a ModeShape repository, the sequencer writes to

the repository all this virtual database and relational metadata contained in the VDB, where it can

be queried and accessed by JCR, RESTful, and even JDBC clients.

The VdbSequencer [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

sequencer/teiid/VdbSequencer.html] has no properties for changing behavior.

33.1. UUIDs and References

A Teiid virtual database file is entirely self-contained: it contains all of the models required for the

VDB. No model can contain references to objects outside of these models, so the entire VDB

archive is consistent and complete. When the sequencer extracts the relational information from

these models, it automatically resolves all references. Also, the resulting content is independent

of any the content from all other previous sequencing operations, including that of the Teiid Model

Sequencer.

33.2. Node Types

The VDB sequencer follows JCR best-practices by defining all nodes to have a primary type of

"nt:unstructured" (or a node type that extends "nt:unstructured"), meaning it's possible and

valid for any node to have any property (with single or multiple values). However, it is still useful to

capture the metadata about what that node represents, and so the sequencer use mixins for this.

http://www.jboss.org/teiiddesigner
http://www.jboss.org/teiiddesigner
http://www.jboss.org/teiid
http://www.jboss.org/teiid
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/VdbSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/VdbSequencer.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/sequencer/teiid/VdbSequencer.html

Chapter 33. Teiid VDB Sequencer

400

The VDB sequencer reuses all of the model node types from the Teiid Model Sequencer, plus

several new node types that are used for the VDB-specific metadata, as described below. Note

that these are non-normative definitions of the node types; see the CND files in the "modeshape-

sequencer-teiid" JAR file (or source) for the official definitions.

33.2.1. VDB Namespace

The compact node definitions for the "vdb" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">

<xmi = "http://www.omg.org/XMI">

<vdb = "http://www.metamatrix.com/metamodels/VirtualDatabase">

<mmcore = "http://www.metamatrix.com/metamodels/Core">

//--

// N O D E T Y P E S

//--

[vdb:virtualDatabase] > nt:unstructured

 - vdb:description (string)

 - vdb:version (long) = '1'

 - vdb:preview (boolean) = 'false'

 - vdb:originalFile (string)

 - mmcore:sha1 (string)

[vdb:model] > xmi:model, mmcore:model

 - vdb:visible (boolean) = 'true'

 - vdb:checksum (long)

 - vdb:builtIn (boolean) = 'false'

 - vdb:pathInVdb (string)

 - vdb:sourceTranslator (string)

 - vdb:sourceJndiName (string)

 - vdb:sourceName (string)

 + vdb:markers (vdb:markers) = vdb:markers copy

[vdb:markers] > nt:unstructured

 + vdb:marker (vdb:marker) = vdb:marker copy sns

[vdb:marker] > nt:unstructured

 - vdb:severity (string) = 'WARNING' < 'WARNING','ERROR','INFO'

 - vdb:path (string)

 - vdb:message (string)

Configuration

401

33.3. Configuration

To use this sequencer, simply include the modeshape-sequencer-teiid-2.6.0.Beta2.jar file

in your application and define a sequencing configuration in the ModeShape configuration, using

something similar to:

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <mode:sequencers>

 ...

 <mode:sequencer jcr:name="Teiid VDB

 Sequencer" mode:classname="org.modeshape.sequencer.teiid.VdbSequencer">

 <mode:description>Sequences Teiid Virtual Databases (e.g., *.vdb) loaded into the repository under '/

files', extracting the VDB metadata and the structure defined in the VDB's relational models.</

mode:description>

 <!-- Note this path expression captures the path below '/files' but excludes the filename,

 and places the sequenced

 content under the same relative path below '/sequenced/teiid/models'. For example,

 if a VDB file is uploaded

 to '/files/my/favorites/Customers.vdb', then the sequenced output will be placed at

 the '/sequenced/teiid/models/Customer' node, which will have a primary type of

 'vdb:virtualDatabase' and will

 contain under it the nodes representing the models (which will each contain the

 nodes representing that

 model's catalogs, schemas, tables, views, columns, etc.). Of course, the path expression

 can be modified as needed; for example, to include the filename of the XMI model

 in the sequenced output path. -->

 <mode:pathExpression>/files(//)(*.vdb[*])/jcr:content[@jcr:data] => /sequenced/teiid/

vdbs$1 </mode:pathExpression>

 </mode:sequencer>

 ...

 </mode:sequencers>

 ...

</configuration>

or using the JcrConfiguration [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/jcr/JcrConfiguration.html]:

JcrConfiguration config = ...

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/jcr/JcrConfiguration.html

Chapter 33. Teiid VDB Sequencer

402

config.sequencer("Teiid VDB Sequencer")

 .usingClass(VdbSequencer.class)

 .setDescription("Sequences Teiid VDBs")

 .sequencingFrom("/files(//)(*.vdb[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/sequenced/teiid/vdbs$1");

33.4. Example

Here is a representation of the nodes output by the sequencing of an example "qe.2.vdb" virtual

database:

qe jcr:primaryType="vdb:virtualDatabase"

 - jcr:mixinTypes=["mix:referenceable", "mode:derived"]

 - jcr:uuid="1d110326-f8e9-4f5e-becd-2f3e4d63296e"

 - mode:derivedAt="2011-05-13T13:12:03.925Z"

 - mode:derivedFrom="/files/foo.vdb"

 - vdb:description="This VDB is for testing Recursive XML documents and Text Sources"

 - vdb:originalFile="/vdb/qe.vdb"

 - vdb:preview="false"

 - mode:sha1="4cec9166f20a8d3772a1cfddb493329e35c3adb7"

 - vdb:version="2"

 text jcr:primaryType="vdb:model"

 jcr:mixinTypes=["mmcore:model","mix:referenceable","xmi:referenceable"]

 jcr:uuid="5cffd0ee-2edd-44af-8a8d-46459d849afe"

 - vdb:builtIn="true"

 - vdb:checksum="958072371"

 - mmcore:maxSetSize="100"

 - mmcore:modelType="PHYSICAL"

 - mmcore:originalFile="/vdb/qe.vdb"

 - vdb:pathInVdb="QuickText/text.xmi"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - mmcore:producerName="Teiid Designer"

 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"

 - mode:sha1="893accdcb0745f8061626b4ab60079daeb3eb74f"

 - vdb:sourceJndiName="empdata-file"

 - vdb:sourceName="text"

 - vdb:sourceTranslator="file"

 - mmcore:supportsDistinct="true"

 - mmcore:supportsJoin="true"

 - mmcore:supportsOrderBy="true"

 - mmcore:supportsOuterJoin="true"

Example

403

 - mmcore:supportsWhereAll="true"

 - xmi:uuid="ba1f1ca6-b9a7-44f8-9d89-8d9ba9f801ba"

 - xmi:version="2.0"

 - mmcore:visible="true"

 - vdb:visible="true"

 vdb:markers jcr:primaryType="vdb:markers"

 vdb:marker jcr:primaryType="vdb:marker"

 - vdb:message="Missing or invalid Length on column with a string/character datatype (See

 validation Preferences)"

 - vdb:path="getTextFiles/NewProcedureResult/filePath"

 - vdb:severity="WARNING"

 XMLSchema jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="1787cc24-d545-437c-a7ef-

e18569eec9c3"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:5a23faba-871a-490e-9799-efdffea80b6b"

 SimpleDatatypes-instance jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="4e11258b-06e2-4d39-8a10-7e6b8e02dc37"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:b09c455c-1c5a-4de4-8373-e823482ce517"

 getTextFiles jcr:primaryType="relational:procedure"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="137968e0-e375-43c3-

b25a-03953ff975ff"

 - xmi:uuid="bf60b5cb-fd8c-474a-9f4c-68eb42ca40f2"

 pathAndPattern jcr:primaryType="relational:procedureParameter"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="2a2de9a3-561d-4d14-82cf-8155b965d2bb"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - xmi:uuid="f44bb026-8bdf-413b-b705-65dcd40bf437"

 NewProcedureResult jcr:primaryType="relational:procedureResult"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="b5d7be35-9a73-477e-

ab20-5a4b9248da9f"

 - xmi:uuid="eb2f5c65-bede-4dd2-8c85-441c240ebca1"

 file jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="2ebe184b-25ce-4cb4-89f4-0e6289112c68"

 - relational:autoIncremented="false"

Chapter 33. Teiid VDB Sequencer

404

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#clob"

 - relational:typeName="clob"

 - relational:typeXmiUuid="559646c0-4941-1ece-b22b-f49159d22ad3"

 - relational:updateable="true"

 - xmi:uuid="092a2a85-7ec6-40da-9437-afd0812eccbb"

 filePath jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="ec43aa0d-20df-49ff-8b4f-

ed95961aa9a5"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="232d5fd7-e5a6-49a7-bd5f-e5d6b7e753a3"

 Employees jcr:primaryType="vdb:model"

 jcr:mixinTypes=["mmcore:model","mix:referenceable","xmi:referenceable"] jcr:uuid="88ca643b-

ebab-43a1-902c-462f3ea17fd8"

 - vdb:builtIn="true"

 - vdb:checksum="1269937912"

 - mmcore:maxSetSize="100"

 - mmcore:modelType="VIRTUAL"

 - mmcore:originalFile="/vdb/qe.vdb"

 - vdb:pathInVdb="QuickEmployees/Employees.xmi"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - mmcore:producerName="Teiid Designer"

Example

405

 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"

 - mode:sha1="a63c108098232739aad1d6ab4cf0d3cc1911aa12"

 - mmcore:supportsDistinct="true"

 - mmcore:supportsJoin="true"

 - mmcore:supportsOrderBy="true"

 - mmcore:supportsOuterJoin="true"

 - mmcore:supportsWhereAll="true"

 - xmi:uuid="9c034c0d-10c7-4fa5-beae-ff602bfcf88e"

 - xmi:version="2.0"

 - mmcore:visible="true"

 - vdb:visible="true"

 vdb:markers jcr:primaryType="vdb:markers"

 vdb:marker jcr:primaryType="vdb:marker"

 - vdb:message="Possible cross-join: Group/s '[f, emp]' are not joined either directly or

 transitively to other groups through a join criteria. Check all queries in the transformation."

 - vdb:path="EmpTable"

 - vdb:severity="WARNING"

 text jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="ee4b288a-47b0-4c81-98e5-

ddf01f8a4cda"

 - mmcore:modelType="PHYSICAL"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - xmi:uuid="mmuuid:46ba6b40-bb81-43ba-996e-6f3ebaffea3b"

 SimpleDatatypes-instance jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="98b1dbae-5ad6-4439-

adb0-64d6e5d0a42f"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:36a2080b-7243-445c-a153-79a19d42f558"

 XMLSchema jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="71eba18c-195e-47ec-

b925-415f981bcd45"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:ea4a1ff7-fa32-4348-b5a2-192c554b70a4"

 EmpTable jcr:primaryType="relational:baseTable"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="6209d827-62eb-4909-8e66-edbf615a42db"

 - transform:deleteAllowed="true"

 - transform:deleteSqlDefault="true"

 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/bf60b5cb-

fd8c-474a-9f4c-68eb42ca40f2"

 - transform:inputNames="getTextFiles"

 - transform:inputXmiUuids="bf60b5cb-fd8c-474a-9f4c-68eb42ca40f2"

Chapter 33. Teiid VDB Sequencer

406

 - transform:inputs="137968e0-e375-43c3-b25a-03953ff975ff"

 - transform:insertAllowed="true"

 - transform:insertSqlDefault="true"

 - relational:materialized="false"

 - transform:selectSql="SELECT * FROM (EXEC text.getTextFiles('EmpData.txt')) AS f,

 TEXTTABLE(F.file COLUMNS lastName string, firstName string, middleName string, empId

 biginteger, department string, annualSalary double, title string, homePhone string, mgrId

 biginteger, street string, city string, state string, ZipCode string HEADER 3) AS emp"

 - relational:supportsUpdate="true"

 - relational:system="false"

 - transform:updateAllowed="true"

 - transform:updateSqlDefault="true"

 - xmi:uuid="6179a495-7b7e-4e12-9da3-998e4f709de4"

 file jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="de7902d1-9782-4137-a002-85681e45c0c6"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/092a2a85-7ec6-40da-9437-

afd0812eccbb"

 - transform:inputNames="file"

 - transform:inputXmiUuids="092a2a85-7ec6-40da-9437-afd0812eccbb"

 - transform:inputs="2ebe184b-25ce-4cb4-89f4-0e6289112c68"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#clob"

 - relational:typeName="clob"

 - relational:typeXmiUuid="559646c0-4941-1ece-b22b-f49159d22ad3"

 - relational:updateable="true"

 - xmi:uuid="5ca79549-8edc-4972-9d05-cb3066d41676"

 filePath jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="4b19a0f6-d65b-4b5b-845f-f30027947f6c"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

Example

407

 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/232d5fd7-e5a6-49a7-bd5f-

e5d6b7e753a3"

 - transform:inputNames="filePath"

 - transform:inputXmiUuids="232d5fd7-e5a6-49a7-bd5f-e5d6b7e753a3"

 - transform:inputs="ec43aa0d-20df-49ff-8b4f-ed95961aa9a5"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="fea43d8f-94e4-41f3-9743-3286f8c28590"

 lastName jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="6672adb4-1ded-4289-989d-3b707fc7384b"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="f0b80cce-dd11-44b7-ab2d-4e382befd701"

 firstName jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="13986096-1e2f-483b-

b603-3e7098bc0897"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

Chapter 33. Teiid VDB Sequencer

408

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="aae0eea7-fb09-4b46-9a41-8815bf5331db"

 middleName jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="53ba886e-e6b7-4771-8a70-

bf0e6c9cad63"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="74333281-f3f8-4907-8ac1-4c819dfc76a8"

 empId jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="80fcf4ac-d51d-4d24-

b84f-3db7dbbcfa2b"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

Example

409

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#biginteger"

 - relational:typeName="biginteger"

 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"

 - relational:updateable="true"

 - xmi:uuid="5e42fcfc-fe7a-476d-8b55-8a5ce0cd7050"

 department jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="8c805831-d1f9-4070-9e4b-

a95234e6a7d7"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="36ea6df0-ddc0-4311-be2e-f4a6cbe2b580"

 annualSalary jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="d9ee87bd-3567-4446-80f8-17bead52dd4b"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#double"

 - relational:typeName="double"

 - relational:typeXmiUuid="1f18b140-c4a3-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="79c7b080-c9de-42c9-b252-a449d44e5d34"

Chapter 33. Teiid VDB Sequencer

410

 title jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="794a1e06-6160-4255-8f7a-23f30e5e9af5"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="001ac238-21c6-45f3-8959-3fa0c7bea6c6"

 homePhone jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="24edebac-093d-4aaf-8063-2b4e48c9f08d"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="432c3937-e7ad-40de-9cb4-deb9d52511b2"

 mgrId jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="c61173a4-27c8-41c2-

bebf-05e24fa82f94"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

Example

411

 - relational:distinctValueCount="-1"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#biginteger"

 - relational:typeName="biginteger"

 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"

 - relational:updateable="true"

 - xmi:uuid="9c7b26dc-bbf6-4b83-9f03-438ad6a0b3f0"

 street jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="ae505cbf-13bd-4c87-

b020-526dece5c8b9"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="1181dfe5-0d2b-4331-b10b-5d6409dd6cbe"

 city jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="7f32a1c1-622f-40ff-8005-

ab42bb02a857"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

Chapter 33. Teiid VDB Sequencer

412

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="60792162-1659-416b-a6da-b78119429247"

 state jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="41067115-320e-44e3-

a70a-8a71e85fa8d8"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="67ed3d16-7fd6-43bb-b16a-61579a49db91"

 ZipCode jcr:primaryType="relational:column"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="93c47676-fec3-46fa-

aa19-777be6136de2"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

Example

413

 - xmi:uuid="2c2267b6-bddf-4d42-aef8-7d24e7527b65"

 EmpV jcr:primaryType="vdb:model"

 jcr:mixinTypes=["mmcore:model","mix:referenceable","xmi:referenceable"]

 jcr:uuid="c9722b47-03ad-4cdd-81d1-d75e639517a1"

 - vdb:builtIn="true"

 - vdb:checksum="2273245105"

 - mmcore:maxSetSize="100"

 - mmcore:modelType="VIRTUAL"

 - mmcore:originalFile="/vdb/qe.vdb"

 - vdb:pathInVdb="QuickEmployees/EmpV.xmi"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - mmcore:producerName="Teiid Designer"

 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"

 - mode:sha1="502cc1e3dbec4c5cd880662473e8dc2a668d5e78"

 - mmcore:supportsDistinct="true"

 - mmcore:supportsJoin="true"

 - mmcore:supportsOrderBy="true"

 - mmcore:supportsOuterJoin="true"

 - mmcore:supportsWhereAll="true"

 - xmi:uuid="e17f3917-d880-4bad-9a19-7d0f8f3d2135"

 - xmi:version="2.0"

 - mmcore:visible="true"

 - vdb:visible="true"

 vdb:markers jcr:primaryType="vdb:markers"

 vdb:marker jcr:primaryType="vdb:marker"

 - vdb:message="Missing or invalid Precision on column with a numeric datatype (See

 validation Preferences)"

 - vdb:path="EmpTable/empId"

 - vdb:severity="WARNING"

 XMLSchema jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]

 jcr:uuid="54a5401e-3bab-4918-81cb-4a278d0263c4"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:deb854d2-af4d-4158-9846-4ac17f207291"

 SimpleDatatypes-instance jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="699f153e-7301-4ef4-

bffa-7522475f8c0a"

 - mmcore:modelType="TYPE"

 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"

 - xmi:uuid="mmuuid:6471e823-eeee-46e8-8d7d-fb00b336cfe7"

 Employees jcr:primaryType="mmcore:import"

 jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="5f672add-38cd-469f-a180-

ac75306298b5"

Chapter 33. Teiid VDB Sequencer

414

 - mmcore:modelType="VIRTUAL"

 - mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"

 - xmi:uuid="mmuuid:5806eb6e-fc70-4ad7-b7ff-13f14ec00ca2"

 EmpTable jcr:primaryType="relational:baseTable"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="0568b4b9-44c9-4798-9bee-662094015d67"

 - transform:deleteAllowed="true"

 - transform:deleteSqlDefault="true"

 - transform:inputHrefs="Employees.xmi#mmuuid/6179a495-7b7e-4e12-9da3-998e4f709de4"

 - transform:inputNames="EmpTable"

 - transform:inputXmiUuids="6179a495-7b7e-4e12-9da3-998e4f709de4"

 - transform:inputs="6209d827-62eb-4909-8e66-edbf615a42db"

 - transform:insertAllowed="true"

 - transform:insertSqlDefault="true"

 - relational:materialized="false"

 - transform:selectSql="SELECT "Employees.EmpTable.lastName",

 "Employees.EmpTable.firstName", "Employees.EmpTable.middleName",

 "Employees.EmpTable.empId", "Employees.EmpTable.department",

 "Employees.EmpTable.annualSalary", "Employees.EmpTable.title",

 "Employees.EmpTable.homePhone", "Employees.EmpTable.mgrId",

 "Employees.EmpTable.street", "Employees.EmpTable.city", "Employees.EmpTable.state",

 "Employees.EmpTable.ZipCode" FROM "Employees.EmpTable""

 - relational:supportsUpdate="true"

 - relational:system="false"

 - transform:updateAllowed="true"

 - transform:updateSqlDefault="true"

 - xmi:uuid="92cbc96b-f080-42d6-85dc-95cd07edd682"

 lastName jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="cf26def7-de5a-4a1a-8276-f48d988439e4"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/f0b80cce-dd11-44b7-ab2d-4e382befd701"

 - transform:inputNames="lastName"

 - transform:inputXmiUuids="f0b80cce-dd11-44b7-ab2d-4e382befd701"

 - transform:inputs="6672adb4-1ded-4289-989d-3b707fc7384b"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

Example

415

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="a4c30553-7f10-445b-971b-c54cee534639"

 firstName jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="5b932651-6de2-4e89-917f-0d515a5270b0"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/aae0eea7-fb09-4b46-9a41-8815bf5331db"

 - transform:inputNames="firstName"

 - transform:inputXmiUuids="aae0eea7-fb09-4b46-9a41-8815bf5331db"

 - transform:inputs="13986096-1e2f-483b-b603-3e7098bc0897"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="a48c7515-d271-45ed-8920-22cf8c9d01bb"

 middleName jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="ac7511b4-4b3d-4d42-886e-26ea5b669b5b"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/74333281-f3f8-4907-8ac1-4c819dfc76a8"

 - transform:inputNames="middleName"

 - transform:inputXmiUuids="74333281-f3f8-4907-8ac1-4c819dfc76a8"

 - transform:inputs="53ba886e-e6b7-4771-8a70-bf0e6c9cad63"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

Chapter 33. Teiid VDB Sequencer

416

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="1d792d5e-ae70-4855-b59f-3eb7dceeb5a3"

 empId jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="d1a61bb1-f94d-40c9-bee7-f91d12b26d80"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/5e42fcfc-fe7a-476d-8b55-8a5ce0cd7050"

 - transform:inputNames="empId"

 - transform:inputXmiUuids="5e42fcfc-fe7a-476d-8b55-8a5ce0cd7050"

 - transform:inputs="80fcf4ac-d51d-4d24-b84f-3db7dbbcfa2b"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#biginteger"

 - relational:typeName="biginteger"

 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"

 - relational:updateable="true"

 - xmi:uuid="d9cc45f7-c9de-44f9-b22e-3674b1a7d33c"

 department jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="46c5910c-0cb0-481c-bbad-577e52ac9c96"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/36ea6df0-ddc0-4311-be2e-f4a6cbe2b580"

 - transform:inputNames="department"

 - transform:inputXmiUuids="36ea6df0-ddc0-4311-be2e-f4a6cbe2b580"

 - transform:inputs="8c805831-d1f9-4070-9e4b-a95234e6a7d7"

 - relational:length="10"

 - relational:nullValueCount="-1"

Example

417

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="19932ef1-4794-496d-a98b-027971cb5599"

 annualSalary jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="61cb7c5a-c7f8-420d-b84a-0a4cabceed81"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/79c7b080-c9de-42c9-b252-a449d44e5d34"

 - transform:inputNames="annualSalary"

 - transform:inputXmiUuids="79c7b080-c9de-42c9-b252-a449d44e5d34"

 - transform:inputs="d9ee87bd-3567-4446-80f8-17bead52dd4b"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#double"

 - relational:typeName="double"

 - relational:typeXmiUuid="1f18b140-c4a3-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="925999e2-15a5-4728-a76e-e0c9ae235d80"

 title jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="e2db3e5e-d2c9-462c-9581-24c700792f0c"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/001ac238-21c6-45f3-8959-3fa0c7bea6c6"

 - transform:inputNames="title"

 - transform:inputXmiUuids="001ac238-21c6-45f3-8959-3fa0c7bea6c6"

 - transform:inputs="794a1e06-6160-4255-8f7a-23f30e5e9af5"

 - relational:length="10"

Chapter 33. Teiid VDB Sequencer

418

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="36cf25e4-5164-4c9f-81a9-572d0fc11e8b"

 homePhone jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="6ef5a18f-db08-44e6-beb0-d7e6842f3ca5"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/432c3937-e7ad-40de-9cb4-

deb9d52511b2"

 - transform:inputNames="homePhone"

 - transform:inputXmiUuids="432c3937-e7ad-40de-9cb4-deb9d52511b2"

 - transform:inputs="24edebac-093d-4aaf-8063-2b4e48c9f08d"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="8a782b60-0296-4e10-85b1-e0ec03b34d00"

 mgrId jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="11a41f81-5a32-434a-8cd9-04bbbdc4b00c"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/9c7b26dc-bbf6-4b83-9f03-438ad6a0b3f0"

 - transform:inputNames="mgrId"

Example

419

 - transform:inputXmiUuids="9c7b26dc-bbf6-4b83-9f03-438ad6a0b3f0"

 - transform:inputs="c61173a4-27c8-41c2-bebf-05e24fa82f94"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-

instance#biginteger"

 - relational:typeName="biginteger"

 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"

 - relational:updateable="true"

 - xmi:uuid="4f0439b3-8899-44f9-99a6-30971c4a563f"

 street jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="8b7dea23-1a6b-4a76-9fbf-5b4770b8cac9"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/1181dfe5-0d2b-4331-b10b-5d6409dd6cbe"

 - transform:inputNames="street"

 - transform:inputXmiUuids="1181dfe5-0d2b-4331-b10b-5d6409dd6cbe"

 - transform:inputs="ae505cbf-13bd-4c87-b020-526dece5c8b9"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="c68dfbeb-bc26-4932-ae0b-d354ed000a4e"

 city jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="a1c94897-33ae-4d9e-9dd5-7c9a09e7ebf2"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

Chapter 33. Teiid VDB Sequencer

420

 - transform:inputHrefs="Employees.xmi#mmuuid/60792162-1659-416b-a6da-

b78119429247"

 - transform:inputNames="city"

 - transform:inputXmiUuids="60792162-1659-416b-a6da-b78119429247"

 - transform:inputs="7f32a1c1-622f-40ff-8005-ab42bb02a857"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="b27874ae-4c7b-4545-84f1-5d95c6a70b3a"

 state jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="d5fded76-1ddc-4a87-af76-a566bb5919dc"

 - relational:autoIncremented="false"

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/67ed3d16-7fd6-43bb-b16a-61579a49db91"

 - transform:inputNames="state"

 - transform:inputXmiUuids="67ed3d16-7fd6-43bb-b16a-61579a49db91"

 - transform:inputs="41067115-320e-44e3-a70a-8a71e85fa8d8"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="248a034b-7331-46ee-a4a4-5db5176ce1bc"

 ZipCode jcr:primaryType="relational:column"

 jcr:mixinTypes=["transform:transformed","mix:referenceable","xmi:referenceable"]

 jcr:uuid="a73b2a7c-9b19-4697-ae83-f7be5cca7778"

 - relational:autoIncremented="false"

Example

421

 - relational:caseSensitive="true"

 - relational:currency="false"

 - relational:distinctValueCount="-1"

 - transform:inputHrefs="Employees.xmi#mmuuid/2c2267b6-bddf-4d42-aef8-7d24e7527b65"

 - transform:inputNames="ZipCode"

 - transform:inputXmiUuids="2c2267b6-bddf-4d42-aef8-7d24e7527b65"

 - transform:inputs="93c47676-fec3-46fa-aa19-777be6136de2"

 - relational:length="10"

 - relational:nullValueCount="-1"

 - relational:nullable="NULLABLE"

 - relational:radix="10"

 - relational:searchability="SEARCHABLE"

 - relational:selectable="true"

 - relational:signed="true"

 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"

 - relational:typeName="string"

 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

 - relational:updateable="true"

 - xmi:uuid="836656b4-30b1-4c57-a64b-f810763a4a0c"

422

Part V. MIME Type Detector Library
The ModeShape project provides a number of MIME type detectors out-of-the-box. These are

ready to be used by simply including them in the classpath and configuring ModeShape to use

them.

Chapter 34.

425

Aperture MIME type detector
The ApertureMimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/mimetype/aperture/ApertureMimeTypeDetector.html] class is an implementation

of MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] that uses the Aperture [http://aperture.sourceforge.net/] open-

source library, which is a very capable utility for determining the MIME type for a wide range of

file types, using both the file name and the actual content.

To use, simply include the modeshape-mime-type-detector-aperture.jar file on the classpath

and create a new ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/ExecutionContext.html] subcontext with it:

MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

mimetype/MimeTypeDetector.html] myDetector = new ApertureMimeTypeDetector();

ExecutionContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/

ExecutionContext.html] contextWithMyDetector = context.with(myDetector);

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/mimetype/aperture/ApertureMimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://aperture.sourceforge.net/
http://aperture.sourceforge.net/
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/ExecutionContext.html

426

Chapter 35.

427

Writing custom detectors
Creating a custom detector involves the following steps:

• Create a Maven 3 project for your detector;

• Implement the MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/mimetype/MimeTypeDetector.html] interface with your own implementation,

and create unit tests to verify the functionality and expected behavior;

• Add a MimeTypeDetectorConfig [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/repository/mimetype/MimeTypeDetectorConfig.html] to the MimeType [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/

MimeType.html] class in your application as described earlier; and

• Deploy the JAR file with your implementation (as well as any dependencies), and make them

available to ModeShape in your application.

It's that simple.

The first step is to create the Maven 3 project that you can use to compile your code and build

the JARs. Maven 3 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 3, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

Note

ModeShape may provide in the future a Maven archetype for creating detector

projects. If you'd find this useful and would like to help create it, please join the

community.

Note

The modeshape-mimetype-detector-aperture project is a small, self-

contained detector implementation that that you can use to help

you get going. Starting with this project's source and modifying

it to suit your needs may be the easiest way to get started.

See the Git repository: http://github.com/ModeShape/modeshape//tree/

modeshape-2.6.0.Beta2/extensions/modeshape-mimetype-detector-aperture/

You can create your Maven project any way you'd like. For examples,

see the Maven 3 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-mimetype-detector-aperture/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-mimetype-detector-aperture/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 35. Writing custom de...

428

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-common</artifactId>

 <version>2.5.0.Beta-1</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.5.0.Beta-1</version>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.8.4</version>

</dependency>

These are minimum dependencies required for compiling a detector. Of course, you'll have to add

other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed here:

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.8</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

429

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

After you've created the project, simply implement the MimeTypeDetector [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html] interface.

And testing should be quite straightforward, as MIME type detectors

don't require any other components. In your tests, simply instantiate

your MimeTypeDetector [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/mimetype/MimeTypeDetector.html] implementation, supply various combinations of names

and/or InputStream [http://java.sun.com/javase/6/docs/api/java/io/InputStream.html]s, and verify

the output is what you expect.

To use in your application, create a MimeTypeDetectorConfig [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/

MimeTypeDetectorConfig.html] object with the name, description,

and class information for your detector, and add to

the MimeType [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/

mimetype/MimeType.html] class using the addDetector(MimeTypeDetectorConfig [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/

MimeTypeDetectorConfig.html] config) method. Then, just use

the MimeType [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/

mimetype/MimeType.html] class.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/mimetype/MimeTypeDetector.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://java.sun.com/javase/6/docs/api/java/io/InputStream.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeTypeDetectorConfig.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/repository/mimetype/MimeType.html

430

Part VI. Text Extractor Library
The ModeShape project provides a number of text extractors out-of-the-box. These are ready to

be used by simply including them in the classpath and configuring ModeShape to use them.

Chapter 36.

433

Teiid text extractor
The TeiidVdbTextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/extractor/teiid/TeiidVdbTextExtractor.html] class is an implementation

of TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/

TextExtractor.html] that extracts from Teiid virtual database (i.e., ".vdb") files the virtual database's

logical name, description, and version, plus the logical name, description, source name, source

translator name, and JNDI name for each of the virtual database's models.

This sequencer is not enabled by default, but it's very easy to add this text extractor to the

ModeShape configuration. To do so in a configuration file, simply add the following fragment under

the "<mode:textExtractors>" element (which should be immediately under the "<configuration>"

root element):

<mode:textExtractor jcr:name="VDB Text Extractors">

 <mode:description>Extract text from Teiid VDB files</mode:description>

 <mode:classname>org.modeshape.extractor.teiid.TeiidVdbTextExtractor</mode:classname>

</mode:textExtractor>

Then, make sure the modeshape-sequencer-teiid.jar file on the classpath or, if you're using

Maven, your application has a dependency on the org.modeshape:modeshape-sequencer-

teiid library.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/teiid/TeiidVdbTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/teiid/TeiidVdbTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/teiid/TeiidVdbTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html

434

Chapter 37.

435

Tika text extractor
The TikaTextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

extractor/tika/TikaTextExtractor.html] class is an implementation of TextExtractor [http://

docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html] that

uses the Tika [http://tika.apache.org/] toolkit from Apache to parse and extract text from a variety

of file types, including Microsoft Office, PDF, HTML, plain text, XML, and others.

This sequencer is not enabled by default, but it's very easy to add this text extractor to the

ModeShape configuration. To do so in a configuration file, simply add the following fragment under

the "<mode:textExtractors>" element (which should be immediately under the "<configuration>"

root element):

<mode:textExtractor jcr:name="Tika Text Extractors">

 <mode:description>Text extractors using Tika parsers</mode:description>

 <mode:classname>org.modeshape.extractor.tika.TikaTextExtractor</mode:classname>

 <!--

 A comma- or whitespace-delimited list of MIME types that are to be excluded.

 The following are excluded by default, but the default is completely overridden

 when this property is set. In other words, if you explicitly exclude any MIME types,

 be sure to list all of the MIME types you want to exclude. Exclusions always

 have a higher precedence than inclusions.

 -->

 <mode:excludedMimeTypes>

 application/x-archive,application/x-bzip,application/x-bzip2,

 application/x-cpio,application/x-gtar,application/x-gzip,

 application/x-ta,application/zip,application/vnd.teiid.vdb

 </mode:excludedMimeTypes>

 <!--

 A comma- or whitespace-delimited list of MIME types that are to be included.

 If this is used, then the extractor will include only those MIME types found

 in this list for which there is an available parser (unless the MIME type

 is also excluded). Including explicit MIME types is often easier if text is

 to be extracted for are only a few MIME types.

 -->

 <mode:includedMimeTypes>

 application/msword,application/vnd.oasis.opendocument.text

 </mode:includedMimeTypes>

</mode:textExtractor>

Note that because Tika can process many different MIME types, you can easily specify which

MIME types should be included or excluded. It is considered a best practice to specifically include

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/tika/TikaTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/tika/TikaTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/extractor/tika/TikaTextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://tika.apache.org/
http://tika.apache.org/

Chapter 37. Tika text extractor

436

all of the MIME types from which text should be extracted. One reason is that text extraction can be

an expensive operation, so you may want to limit it to a specific set of file types. Second, explicitly

listing out all of the MIME types is much easier to see and understand. And third, Tika supports a

few MIME types without extra libraries, but generally it requires additional dependencies for each

type of file, and you probably want to depend on only those libraries that you actually need.

After changing the configuration, be sure to include the necessary libraries. If your application is

using Maven, you will need the following dependency:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-extractor-tika</artifactId>

 <version>2.5.0.Beta-1</version>

</dependency>

plus the following dependencies based upon the file types:

Table 37.1. Tika third-party dependencies that must be manually included

Dependency Description of files

<dependency>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-compress</artifactId>

 <version>1.1</version>

</dependency>

Compressed archive formats, such as 'ar',

'cpio', 'tar', 'zip', 'gzip' and 'bzip2'.

<dependency>

 <groupId>asm</groupId>

 <artifactId>asm</artifactId>

 <version>3.1</version>

</dependency>

Used for parsing Java files.

<dependency>

 <groupId>com.drewnoakes</groupId>

 <artifactId>metadata-extractor</artifactId>

 <version>2.4.0-beta-1</version>

Exif and other image metadata.

437

Dependency Description of files

</dependency>

<dependency>

 <groupId>de.l3s.boilerpipe</groupId>

 <artifactId>boilerpipe</artifactId>

 <version>1.1.0</version>

</dependency>

Boilerpipe [http://code.google.com/p/

boilerpipe/] HTML templates

<dependency>

 <groupId>rome</groupId>

 <artifactId>rome</artifactId>

 <version>0.9</version>

</dependency>

RSS and Atom feeds using the Rome [http://

java.net/projects/rome/] library.

<dependency>

 <groupId>edu.ucar</groupId>

 <artifactId>netcdf</artifactId>

 <version>4.2-min</version>

</dependency>

<dependency>

 <groupId>commons-httpclient</groupId>

 <artifactId>commons-httpclient</artifactId>

 <version>3.1</version>

</dependency>

NetCDF [http://www.unidata.ucar.edu/

software/netcdf/] and HDF

[http://en.wikipedia.org/wiki/

Hierarchical_Data_Format] file formats, which

are used within the scientific data community

but generally not elsewhere.

<dependency>

 <groupId>org.apache.james</groupId>

 <artifactId>apache-mime4j</artifactId>

 <version>0.6</version>

</dependency>

Raw email messages and mbox files typically

used within a file-based email system.

The following dependencies are automatically included by the Tika text extractor module, but if

any are not needed in your application or project may be explicitly excluded without problems.

http://code.google.com/p/boilerpipe/
http://code.google.com/p/boilerpipe/
http://code.google.com/p/boilerpipe/
http://java.net/projects/rome/
http://java.net/projects/rome/
http://java.net/projects/rome/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://en.wikipedia.org/wiki/Hierarchical_Data_Format
http://en.wikipedia.org/wiki/Hierarchical_Data_Format
http://en.wikipedia.org/wiki/Hierarchical_Data_Format

Chapter 37. Tika text extractor

438

Table 37.2. Tika third-party dependencies (included by default)

Dependency Description of files

<dependency>

 <groupId>org.apache.poi</groupId>

 <artifactId>poi</artifactId>

 <version>${poi.version}</version>

</dependency>

<dependency>

 <groupId>org.apache.poi</groupId>

 <artifactId>poi-scratchpad</artifactId>

 <version>${poi.version}</version>

</dependency>

<dependency>

 <groupId>org.apache.poi</groupId>

 <artifactId>poi-ooxml</artifactId>

 <version>${poi.version}</version>

 <exclusions>

 <exclusion>

 <groupId>stax</groupId>

 <artifactId>stax-api</artifactId>

 </exclusion>

 <exclusion>

 <groupId>xml-apis</groupId>

 <artifactId>xml-apis</artifactId>

 </exclusion>

 </exclusions>

</dependency>

Microsoft Office and Open Office file formats

<dependency>

 <groupId>org.apache.geronimo.specs</

groupId>

 <artifactId>geronimo-stax-api_1.0_spec</

artifactId>

 <version>1.0.1</version>

</dependency>

XML files

<dependency>

 <groupId>org.ccil.cowan.tagsoup</groupId>

HTML files

439

Dependency Description of files

 <artifactId>tagsoup</artifactId>

 <version>1.2</version>

</dependency>

<dependency>

 <groupId>org.apache.pdfbox</groupId>

 <artifactId>pdfbox</artifactId>

 <version>1.4.0</version>

</dependency>

<!-- TIKA-370: PDFBox declares the Bouncy

 Castle dependencies

 as optional, but we prefer to have them

 always to avoid

 problems with encrypted PDFs. -->

<dependency>

 <groupId>org.bouncycastle</groupId>

 <artifactId>bcmail-jdk15</artifactId>

 <version>1.45</version>

</dependency>

<dependency>

 <groupId>org.bouncycastle</groupId>

 <artifactId>bcprov-jdk15</artifactId>

 <version>1.45</version>

</dependency>

PDF files

If you're not using Maven, the be sure to put onto your classpath all of the JAR files from the

Maven modules listed above.

440

Chapter 38.

441

Writing custom text extractors
Creating a custom text extractor involves the following steps:

• Create a Maven 3 project for your detector;

• Implement the TextExtractor [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/text/TextExtractor.html] interface with your own implementation, and create

unit tests to verify the functionality and expected behavior; and

• Deploy the JAR file with your implementation (as well as any dependencies), and make them

available to ModeShape in your application via ModeShape's configuration as described earlier.

It's that simple.

The first step is to create the Maven 3 project that you can use to compile your code and build

the JARs. Maven 3 automates a lot of the work, and since you're already set up to use Maven,

using Maven for your project will save you a lot of time and effort. Of course, you don't have to

use Maven 3, but then you'll have to get the required libraries and manage the compiling and

building process yourself.

Note

ModeShape may provide in the future a Maven archetype for creating detector

projects. If you'd find this useful and would like to help create it, please join the

community.

Note

The modeshape-extractor-tika project is a small, self-contained detector

implementation that that you can use to help you get going. Starting with

this project's source and modifying it to suit your needs may be the easiest

way to get started. See the subversion repository: http://github.com/ModeShape/

modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/

You can create your Maven project any way you'd like. For examples,

see the Maven 3 documentation [http://maven.apache.org/guides/getting-started/

index.html#How_do_I_make_my_first_Maven_project]. Once you've done that, just add the

dependencies in your project's pom.xml dependencies section:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-common</artifactId>

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project
http://maven.apache.org/guides/getting-started/index.html#How_do_I_make_my_first_Maven_project

Chapter 38. Writing custom te...

442

 <version>2.5.0.Beta-1</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-graph</artifactId>

 <version>2.5.0.Beta-1</version>

</dependency>

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.8.4</version>

</dependency>

These are minimum dependencies required for compiling a detector. Of course, you'll have to add

other dependencies that your sequencer needs.

As for testing, you probably will want to add more dependencies, such as those listed here:

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.8</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-library</artifactId>

 <version>1.1</version>

 <scope>test</scope>

</dependency>

<!-- Logging with Log4J -->

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.8.4</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

 <scope>test</scope>

</dependency>

443

After you've created the project, simply implement the TextExtractor [http://docs.jboss.org/

modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html] interface. As

mentioned in the JavaDoc, the "supportsMimeType" method will be called by ModeShape first,

and only if your implementation returns true for a given MIME type will the "extractFrom" method be

called. The supplied TextExtractorContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/

org/modeshape/graph/text/TextExtractorContext.html] object provides information about the text

being processed, while the TextExtractorOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/

api/org/modeshape/graph/text/TextExtractorOutput.html] is a simple interface that your extractor

uses to record one or more strings containing the extracted text.

Testing should be quite straightforward as text extractors can simply be

instantiated and called by your test methods, which can simply instantiate

the TextExtractorContext [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/

graph/text/TextExtractorContext.html] class (with the correct information) and either mock

or implement the TextExtractorOutput [http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/

modeshape/graph/text/TextExtractorOutput.html] interface. Again, see the test cases in the Tika

text extractor module [http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/

extensions/modeshape-extractor-tika/] for ideas.

http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractor.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorContext.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/api/org/modeshape/graph/text/TextExtractorOutput.html
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/
http://github.com/ModeShape/modeshape//tree/modeshape-2.6.0.Beta2/extensions/modeshape-extractor-tika/

444

Part VII. Administration

and Monitoring
The ModeShape project provides an RHQ plugin for use in the Administrative Console available

in JBossAS. The console is accessible at http://{host}:{port}/admin-console.

Chapter 39.

447

ModeShape Administration Console
The ModeShape Administration Console is a web based administrative and monitoring tool for

ModeShape. ModeShape's Administration Console is built using the RHQ library and adds an

additional plugin into the Embedded JOPR application already available in the JBoss AS.

Figure 39.1. Administration Console

39.1. What can be managed and/or monitored?

• The ModeShape Engine

• Repositories

• The Sequencing Service

• Sequencers

• Connectors

Chapter 39. ModeShape Adminis...

448

39.2. Configuration

While you cannot directly configure ModeShape through the Administration Console, the

configuration properties are displayed for several ModeShape components including:

• Repositories

• Sequencers

• Connectors

39.3. Metrics

Table 39.1. Repository

of Active Sessions The number of JCR sessions that are

currently active.

Table 39.2. Sequencing Service

Number Of Nodes Sequenced The number of nodes sequenced.

Number Of Nodes Skipped The number of nodes that were skipped

because no sequencers applied.

Table 39.3. Connectors

Total Connections in Use The number of connections in use.

39.4. Control (Operations)

Table 39.4. ModeShape Engine

Start/Restart Start the engine or restart if it's already

running.

Shutdown Stop the engine.

Table 39.5. Sequencing Service

Number Of Nodes Sequenced The number of nodes sequenced.

Number Of Nodes Skipped The number of nodes that were skipped

because no sequencers applied.

Table 39.6. Connectors

Ping Ping the connector to test availability.

Chapter 40.

449

Looking to the future
ModeShape 2.6.0.Beta2 provides a very capable JCR implementation with powerful and unique

features not matched by other implementations. Version 2.6.0.Beta2 improves the JDBC driver,

the JBoss AS deployment, and the RHQ monitoring plugin, along with numerous other fixes and

improvements. Of course, the release also comes with quite a few bug fixes and improvements

[http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html].

ModeShape now implements all of the required JCR 2.0 features:

• repository acquisition

• authentication

• reading/navigating

• query

• export

• node type discovery

• permissions and capability checking

and implements most of the optional JCR 2.0 features:

• writing

• import

• observation

• workspace management

• versioning

• locking

• node type management

• same-name siblings

• orderable child nodes

ModeShape supports the following query languages:

• JCR-SQL2 defined in JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]

• JCR-QOM defined in JSR-283 [http://www.jcp.org/en/jsr/detail?id=283]

• XPath defined in JSR-170 [http://www.jcp.org/en/jsr/detail?id=170]

http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/release.html
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

Chapter 40. Looking to the future

450

• JCR-SQL defined in JSR-170 [http://www.jcp.org/en/jsr/detail?id=170]

• Full-text search that is similar to a search engine

At this point, ModeShape passes virtually all of the JCR Technology Compatibility Kit (TCK) tests,

except for a few known issues with ModeShape as well as bugs in the TCK tests. As soon as

these are fixed, we'll start the process of attaining JCR 2.0 certification for ModeShape.

What's next for ModeShape? The focus for the next release will be to focus on optimization and

performance improvements. Other items on our longer term roadmap [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel] include a web user

interface, Seam integration, and integration with even more kinds of information systems and

repositories.

We're always looking for suggestions and contributors. If you'd like to get involved on ModeShape,

the first step is joining the mailing lists [http://www.modeshape.org/lists.html] or hopping into

our chat room on IRC (at irc.freenode.net#jbossmodeshape). You can also download the

code [http://www.modeshape.org/subversion.html] and get it building, and start looking for

simple issues or bugs in our JIRA issue management system [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel].

But if nothing else, please contact us and let us know how you're using ModeShape and what we

can do to make it even better.

And, if you haven't already, check out our Getting Started [http://docs.jboss.org/

modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html] guide, which has examples that

you can build and run to see ModeShape in action.

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://www.modeshape.org/lists.html
http://www.modeshape.org/lists.html
http://www.modeshape.org/subversion.html
http://www.modeshape.org/subversion.html
http://www.modeshape.org/subversion.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html
http://docs.jboss.org/modeshape/2.6.0.Beta2/manuals/gettingstarted/html/index.html

	ModeShape
	Table of Contents
	Target audience
	Chapter 1. Introduction to ModeShape
	1.1. Use cases for ModeShape
	1.2. What is metadata?
	1.3. What is JCR?
	1.4. Project roadmap
	1.5. ModeShape modules
	1.6. Compiling and building
	1.7. What's new?

	Part I. ModeShape Core
	Chapter 2. Execution Context
	2.1. Security
	2.1.1. JAAS
	2.1.2. Web application security

	2.2. Namespace Registry
	2.3. Class Loaders
	2.4. MIME Type Detectors
	2.5. Text Extractors
	2.6. Property factory and value factories
	2.7. Summary

	Chapter 3. Graph Model
	3.1. Names
	3.2. Paths
	3.3. Properties
	3.4. Values and Value Factories
	3.5. Readable, TextEncoder, and TextDecoder
	3.6. Locations
	3.7. Graph API
	3.7.1. Using Workspaces
	3.7.2. Working with Nodes

	3.8. Requests
	3.8.1. Basic Requests
	3.8.2. Change Requests
	3.8.3. Workspace Read Requests
	3.8.4. Workspace Change Requests
	3.8.5. Search Requests
	3.8.6. Function Requests

	3.9. Request processors
	3.10. Observation
	3.10.1. Observable
	3.10.2. Observers
	3.10.3. Changes

	3.11. Summary

	Chapter 4. Connector Framework
	4.1. Connectors
	4.2. Out-of-the-box connectors
	4.3. Writing custom connectors
	4.3.1. Creating the Maven 3 project
	4.3.2. Implementing a RepositorySource
	4.3.2.1. Workspaces
	4.3.2.2. Broadcasting events
	4.3.2.3. Cache policy
	4.3.2.4. Leveraging JNDI
	4.3.2.5. Capabilities
	4.3.2.6. Security and authentication

	4.3.3. Implementing a RepositoryConnection
	4.3.4. Testing custom connectors

	4.4. Summary

	Chapter 5. Sequencing framework
	5.1. Sequencers
	5.2. Stream Sequencers
	5.3. Path Expressions
	5.4. Out-of-the-box Sequencers
	5.5. Creating Custom Sequencers
	5.5.1. Creating the Maven 3 project
	5.5.2. Testing custom sequencers

	5.6. Summary

	Part II. ModeShape JCR
	Chapter 6. Configuration
	6.1. Configuring ModeShape
	6.1.1. Configuration Files
	6.1.2. Programmatic Configuration
	6.1.2.1. Repository Sources
	6.1.2.2. Repositories
	6.1.2.3. Sequencers
	6.1.2.4. MIME Type Detectors
	6.1.2.5. Storing Configuration

	6.1.3. Loading from a Configuration Repository

	6.2. JCR Repository options
	6.3. Repository system content
	6.4. Query index directory
	6.5. Authentication and Authorization
	6.5.1. Built-in Providers
	6.5.2. Custom Providers

	6.6. Clustering
	6.6.1. Enabling Clustering in ModeShape
	6.6.2. JGroups configuration

	6.7. Using ModeShape in Web Applications
	6.7.1. Deploying ModeShape to JBoss AS
	6.7.2. Deploying ModeShape to Tomcat

	6.8. Setting the Classpath
	6.8.1. Building against ModeShape via Maven
	6.8.1.1. Using the JBoss Maven repository
	6.8.1.2. Add dependency to ModeShape

	6.8.2. Add dependencies for logging
	6.8.3. Building against ModeShape via JARs

	6.9. What's next

	Chapter 7. Using the JCR API with ModeShape
	7.1. What's new in JCR 2.0?
	7.1.1. Connecting
	7.1.2. Identifiers
	7.1.3. Binary Values
	7.1.4. Node Type Management
	7.1.5. Queries
	7.1.6. Workspace Management
	7.1.7. Observation
	7.1.8. Locking
	7.1.9. Versioning
	7.1.10. Importing and Exporting
	7.1.11. Shareable Nodes
	7.1.12. Orderable Child Nodes
	7.1.13. Paths
	7.1.14. getItem(String)

	7.2. Obtaining a JCR Repository
	7.2.1. Configuration File URLs
	7.2.2. Using JNDI URLs
	7.2.3. Cleaning Up after JcrRepositoryFactory

	7.3. ModeShape's JcrEngine
	7.4. Creating JCR Sessions
	7.4.1. Using JAAS
	7.4.2. Using HTTP Servlet security
	7.4.3. Guest (Anonymous) User Access
	7.4.4. Using Custom Security

	7.5. JCR Specification Support
	7.5.1. Required features
	7.5.2. Optional features
	7.5.3. TCK Compatibility features
	7.5.4. JCR Security
	7.5.5. Built-In Node Types
	7.5.6. Custom Node Type Registration
	7.5.6.1. Managing Node Types Using the JCR API
	7.5.6.2. Reading JCR CND files
	7.5.6.3. Reading Jackrabbit XML Node Type Files

	7.6. Summary

	Chapter 8. Querying and Searching using JCR
	8.1. JCR Query API
	8.2. JCR XPath Query Language
	8.2.1. Column Specifiers
	8.2.2. Type Constraints
	8.2.3. Property Constraints
	8.2.4. Path Constraints
	8.2.5. Ordering Specifiers
	8.2.6. Miscellaneous

	8.3. JCR-SQL Query Language
	8.3.1. Queries

	8.4. JCR-SQL2 Query Language
	8.4.1. Queries
	8.4.2. Sources
	8.4.3. Joins
	8.4.4. Equi-Join Conditions
	8.4.5. Same-Node Join Conditions
	8.4.6. Child-Node Join Conditions
	8.4.7. Descendant-Node Join Conditions
	8.4.8. Constraints
	8.4.9. And Constraints
	8.4.10. Or Constraints
	8.4.11. Not Constraints
	8.4.12. Comparison Constraints
	8.4.13. Between Constraints
	8.4.14. Property Existence Constraints
	8.4.15. Set Constraints
	8.4.16. Full-text Search Constraints
	8.4.17. Same-Node Constraint
	8.4.18. Child-Node Constraints
	8.4.19. Descendant-Node Constraints
	8.4.20. Paths and Names
	8.4.21. Static Operands
	8.4.22. Bind Variables
	8.4.23. Subqueries
	8.4.24. Dynamic Operands
	8.4.25. Ordering
	8.4.26. Columns
	8.4.27. Limit and Offset
	8.4.28. Pseudo-columns
	8.4.29. Example JCR-SQL2 queries

	8.5. Full-Text Search Language
	8.5.1. Full-text Search Language

	8.6. JCR Query Object Model (JCR-QOM) API

	Chapter 9. Accessing ModeShape Remotely
	9.1. The ModeShape WebDAV Server
	9.1.1. Configuring the ModeShape WebDAV Server
	9.1.2. Deploying the ModeShape WebDAV Server

	9.2. The ModeShape REST Server
	9.2.1. Supported Resources and Methods
	9.2.1.1. Binary properties

	9.2.2. Configuring the ModeShape REST Server
	9.2.3. Deploying the ModeShape REST Server
	9.2.4. ModeShape REST Client API

	9.3. Repository Providers
	9.4. Summary

	Part III. Connector Library
	Chapter 10. In-Memory Connector
	Chapter 11. File System Connector
	Chapter 12. JPA Connector
	12.1. Simple Model

	Chapter 13. JCR Connector
	Chapter 14. Federation Connector
	14.1. Projections
	14.2. Multiple Projections
	14.3. Processing flow
	14.4. Update operations
	14.5. Configuration
	14.6. Repository Source properties

	Chapter 15. Subversion Connector
	Chapter 16. JBoss Cache Connector
	Chapter 17. Infinispan Connector
	17.1. Considerations for Distributed Sources
	17.1. Considerations for using the HotRod Server

	Chapter 18. Disk Connector
	Chapter 19. JDBC Metadata Connector

	Part IV. Sequencer Library
	Chapter 20. Compact Node Type (CND) Sequencer
	20.1. Example

	Chapter 21. XML Document Sequencer
	21.1. Example

	Chapter 22. XML Schema Document (XSD) Sequencer
	22.1. Example
	22.2. Node Types
	22.3. Configuration

	Chapter 23. Web Service Definition Language (WSDL) 1.1 Sequencer
	23.1. Example
	23.2. Node Types
	23.3. Configuration

	Chapter 24. ZIP File Sequencer
	24.1. Example

	Chapter 25. Microsoft Office Document Sequencer
	25.1. Example

	Chapter 26. Java Source File Sequencer
	Chapter 27. Java Class File Sequencer
	Chapter 28. Image Sequencer
	Chapter 29. MP3 Sequencer
	29.1. Example

	Chapter 30. DDL File Sequencer
	30.1. Example

	Chapter 31. Text Sequencers
	31.1. Delimited Text Sequencer
	31.2. Fixed Width Text Sequencer

	Chapter 32. Teiid Relational Model Sequencer
	32.1. UUIDs
	32.2. Node Types
	32.2.1. XMI Namespace
	32.2.2. Core Namespace
	32.2.3. Relational Namespace
	32.2.4. JDBC Source Namespace
	32.2.5. Transformation Namespace

	32.3. Default values
	32.4. Annotations
	32.5. Tags
	32.6. Transformation
	32.7. Configuration
	32.8. Example

	Chapter 33. Teiid VDB Sequencer
	33.1. UUIDs and References
	33.2. Node Types
	33.2.1. VDB Namespace

	33.3. Configuration
	33.4. Example

	Part V. MIME Type Detector Library
	Chapter 34. Aperture MIME type detector
	Chapter 35. Writing custom detectors

	Part VI. Text Extractor Library
	Chapter 36. Teiid text extractor
	Chapter 37. Tika text extractor
	Chapter 38. Writing custom text extractors

	Part VII. Administration and Monitoring
	Chapter 39. ModeShape Administration Console
	39.1. What can be managed and/or monitored?
	39.2. Configuration
	39.3. Metrics
	39.4. Control (Operations)

	Chapter 40. Looking to the future

