OptaPlanner User Guide

The OptaPlanner team [http://www.optaplanner.org/community/team.html]

http://www.optaplanner.org/community/team.html
http://www.optaplanner.org/community/team.html

OptaPlanner User Guide
by
Version 6.5.0.Final

1. OptaPlanner INTrodUCTION ...o..u. it 1

1.1. What is OPtaPlanner?ccouiiiiiiiiii e e e e e e et eaaaees 1
1.2, REQUITEMENTS ..oetiiiiiiiii ettt ettt ettt e e et e ettt e et ettt e e e ebbreeeeabaeeeenbnaeeeees 3
1.3. What is a Planning Problem? ..o 4
1.3.1. A Planning Problem is NP-complete or NP-hardcccooiiiiiiiiinneiiinnnnen. 4
1.3.2. A Planning Problem Has (Hard and Soft) Constraintscccooevvvvevinnenns 5
1.3.3. A Planning Problem Has a Huge Search Spaceccccoovveiiiiiniiiiiiinnenenns 5
1.4. Download and Run the EXamMPIESoiiiiiiiiiiii e 6
1.4.1. Get the Release .zip and Run the EXamplesccccoiviiiiiiineiiiiineeniiie, 6
1.4.2. Run the Examples in an IDE (IntelliJ, Eclipse, NetBeans)cccoeeevunnnes 9
1.4.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANTcccoeiveiiinnnnen. 10
1.4.4. Build OptaPlanner from SOUICEociuiiiiiieiii e 11
T C10)V/=T 1 g = g (o T PR PRPP 12
1.5.1. Status of OPtaPIaNNErccuuiiiiiieiii e 12
1.5.2. Backwards Compatibilityccoouviiiiiiiiiiieii e 12
1.5.3. Community and SUPPOIT .. .cvuniiiiieiiii e e e e e e e eaaas 13
1.5.4. Relationship with Drools and jBPMcccooiiiiiiiiiiiii e 13
D O 1 o] S - 1 A PPN 15
2.1. Cloud Balancing TULOMAIuuieiiiiiieieii et 15
2.1.1. Problem DeSCHPLONciuuiiiii e 15
2.1.2. ProblEm SIZE ...uiiiiiiiii e e 16
2.1.3. Domain Model DESIGNciiiiiiiiei e 17
2.1.4. Main Methodoiiiii e e 18
2.1.5. Solver Configurationcouiiiiiiiiiiiii e 19
2.1.6. Domain Model Implementationoooeeuiiriieiine e 20
2.1.7. Score ConfiguIationcieiiiiiiiie e e e e e ea e 23
2.1.8. Beyond this TULOIaAliiiiiiiiiiii e 26
3. Use Cases and EXAmMPIES ... 27
3.1 EXAMPIES OVEIVIEWuiiiiiiiee ettt 27
3.2, BASIC EXAMPIES ..ioiiiiiiiii e 31
321, N QUEBEBNS ettt e 31
3.2.2. Cloud BalanCiNgccuuiiiiiiiiiieeii e e 35
3.2.3. Traveling Salesman (TSP - Traveling Salesman Problem) 35
G 1oL a1 g == s Y 36
3.2.5. Tennis Club SChedulingovoiiiiiiii e 37
3.2.6. Meeting SChedulingooiiiiiii e 38
3.3, REAI EXAMPIES ..ottt et 39
3.3.1. Course Timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling).... 39
3.3.2. Machine Reassignment (Google ROADEF 2012)ccccviiiiiiiinieeiiiinneees 41
3.3.3. VEhICIE ROULING ...uciiiiiiii e e e e 44
3.3.4. Project Job SChedulingcooviiiiiii e 54
3.3.5. Hospital Bed Planning (PAS - Patient Admission Scheduling) 57
3.4. DIffiCUlt EXQMPIES ...eeniiiii e 60
3.4.1. Exam Timetabling (ITC 2007 track 1 - Examination)cccceevvveeennnnnnn. 60

OptaPlanner User Guide

3.4.2. Employee Rostering (INRC 2010 - Nurse ROStering)ccceeevvvvevevneeennnn. 64
3.4.3. Traveling Tournament Problem (TTP) ...couiiiiiiiiie e 71
3.4.4. Cheap Time Schedulingoviiiiiiiii e 74
3.4.5. Investment asset class allocation (portfolio optimization)c.c.cceuneis 78

4. Planner COoNTIQUIALIONciiuie ittt et e e e e e e b s 79
I @ Y= TP 79
4.2, Solver CONfIQUIALIONiiiii et 80
4.2.1. Solver Configuration by XMLcooiiiiiiiiiiiii e 80
4.2.2. Solver Configuration by Java APl ..o 81
4.2.3. Annotations Configurationcccoveiiiieiiiieiiii e e 82

4.3. Model a Planning Problem ... 84
4.3.1. Is This Class a Problem Fact or Planning Entity?cccooiiiiiiiiincnnnenn, 84
4.3.2. Problem Factoiiiiiiiei e 86
4.3.3. Planning ENLiLYcoouiiiii e 87
4.3.4. Planning Variable ... 90
4.3.5. Planning Value and Planning Value Rangecc.ccoevviiiieiiineeiineciieeeennn, 92
4.3.6. Shadow Variableooiiiiiii e 100
4.3.7. Planning Problem and Planning Solutionccccccoiiiiiiiiiiin e, 107

4.4, USE thE SOl VEI ireiiiiii et e et e e ans 115
4.4.1. The Sol ver INterfaceccooviuiiiiiiiii e 115
4.4.2. SOIVING @ Problem ... 116
4.4.3. Environment Mode: Are There Bugs in my Code?cccoeeeviveviineiinnennnn. 117
4.4.4. Logging Level: What is the Sol ver DOING?cccuuiveviiiiiiiiiiiieieiieeeeeenn 119
4.4.5. Random NUMbEr GENETatOriveiiiiiiieeiiiiiiee e e e e 122

5. SCOre CalCUIAtION .oeiiie e e e 123
5.1. SCOre TermMINOIOGYcccuuiiiiiieiiii i e e e e et e e e e aa s 123
5.1.1. WhHAt IS @ SCOMB? .eiieiiieii ettt e e e e e e eens 123
5.1.2. Score Constraint Signum (Positive or Negative)ccocccevevviiiiiiiieninenns 124
5.1.3. Score Constraint Weightooiiiiiiiii e 125
5.1.4. Score Constraint Level (hard, SOft, ...) cocooiiiiiiii e 127
5.1.5. Pareto Scoring (AKA Multi-objective Optimization Scoring)c....... 129
5.1.6. Combining Score TEChNIQUESccvviiiiiiieii e 131
5.1.7. SCOre INEIACEiiie e e 131
5.1.8. Avoid Floating Point Numbers in Score Calculationccccoccveveinnne. 132

5.2. Choose a Score Definitiono..iiiiiiiiii e 134
L S 1]][o o = P 134
5.2.2. HardSoftScore (Recommended)cocuuiiiiiiiiiiiiiiiinei e 134
5.2.3. HardMediumSOftSCOIeoveiiiiiiieiiii e 135
5.2.4. BENAADIESCOIEceeiiiiiiei e 135
5.2.5. Implementing @ CUSIOM SCOIEoiiiviiiiiiiiiii e e 135

5.3. CalCUulate the SCOI & ..iiieiiiiieiiie e e 136
5.3.1. Score Calculation TYPESciuuiiiiiiiiiiiie et ee e e e e e e e et e eanaees 136
5.3.2. Easy Java Score CalCulationcoocoviviiiiiiiinieeiiii e 137
5.3.3. Incremental Java Score Calculationccooveveiiiieiiiiiiieeiii e 138

OptaPlanner User Guide

5.3.4. Drools Score CalCulationcc.oieiiiiiiiniiie e e 142
5.3.5. INitializingSCoreTrendc.oeiiiiiiii e 147
5.3.6. Invalid SCOore DeteCHIONovvvuieiiieiii e 148

5.4. Score Calculation Performance TrHCKSooviiiiiiiiiiiiiiiiecnee e 148
B4, 1. OVEIVIEW ..oeniitiiiiii ettt e e e e e e e e et e et e e et e et e et e et aaaanas 148
5.4.2. Average Calculation Count Per Secondcccocceiiiiiiiiiiin i, 149
5.4.3. Incremental Score Calculation (with Deltas)cccccoiviiiiiiiiiiiiiinieeeennn. 149
5.4.4. Avoid Calling Remote Services During Score Calculation 150
5.4.5. Pointless CONSIIAINTSiiiiiiiiiiiiiiie e e e e e eane e 151
5.4.6. Built-in Hard CONSLraINtcoouviiiiiiiiiieces e 151
5.4.7. Other Score Calculation Performance Trickscccoooiiviiiiiiiiiiies 151
LR S TS Tolo | (=T 1 - o PPN 152
5.4.9. stepLimit BENChMarkcooiiiiiiiiii e 153
5.4.10. Fairness Score CONSIIAINTSccvvviieiiiiiiieeeiiie e 154

5.5. Explaining the Score: Using Score Calculation Outside the Sol verc.......... 156
6. Optimization AlgOTithMS ... e 157
6.1. Search Space Size in the Real Worldccoooiiiiiiiiiii e 157
6.2. Does Planner Find the Optimal Solution?c.cciiiiiii i 159
6.3. ArChiteCIUIE OVEIVIEWuiiiiiiiiiii e e et e e aaaas 159
6.4. Optimization Algorithms OVEIVIEWoiiiiiiiiiiieiiiieeie e 160
6.5. Which Optimization Algorithms Should | USE?ccoiiiiiiiiiiiiiiie e, 162
6.6. Power tweaking or default parameter valuesccooeeiiiiiiiiiiiii i, 163
B.7. SOIVEI PRASE .. oot 163
6.8. SCOPE OVEIVIEW ...eiviiiiiiiiiii et e e e e e e e e e e e e e e e et e et e e eaeeeen s 165
(SIS T =11 1111 F= LT o PSP 166
6.9.1. TimeMillisSpPentTerminationc.cccieeiiiiiiiiii e 167
6.9.2. UnimprovedTimeMillisSpentTerminationcccooveviiiiieiiiiinneieiiineeenen 168
6.9.3. BeStSCOreTermMiNAtiONccuuuiiiiiiiiiee e 169
6.9.4. BestScoreFeasibleTerminationcccooviiiiiiiineii e 170
6.9.5. StepCountTerMinNatioNcoceuuiiiiiiieii e e ea e eees 170
6.9.6. UnimprovedStepCountTerminationccooiveviiinieiiiiinieeeiin e 170
6.9.7. CalculateCountTerminationc.uiiiiiiiiiieeiiie e 171
6.9.8. Combining Multiple Terminationscceeuviiiiiiiiiieei e 171
6.9.9. Asynchronous Termination from Another Threadccc.ccoeviiiiiennn 172
6.10. SOIVEIEVENTLISIENET ...ouiiiiiiiei e e e aans 172
6.11. CUSIOM SOIVEr PRASEcieiiiiiiiiii e eaenns 173
7. Move and Neighborhood Selection ..o 176
7.1. Move and Neighborhood INtroduCtioncccouiiiiiiiiiii e 176
7.1.1. WRAL IS @ MDVE? .ouiiiiiiiiieeiiie et e e e e e e e e e e aa e e eanaes 176
7.1.2. What iS @ MoVESEl ECT O 2 ovvuniiiiieiii e e e e e eeaas 177
7.1.3. Subselecting of Entities, Values and Other MOVESccocvevviiiiiinnnnnn. 177

7.2. GENEIIC MOVESEIECLONSuiiiiiiiiieiiii e e e e e e eees 179
7.2.1. changeMOVESEl BCE OF iuuiiiiiieii e e e eans 179
7.2.2. SWAPMOVESEIECION ...iviiiii e e e e 180

OptaPlanner User Guide

7.2.3. pillarChangeMOoVESEIECIONoociiiiiiieiii e 182
7.2.4. pillarSWapMOVESEIECIOLcviiiciiice e 184
7.2.5. tailChainSwapMoveSelector or 2-opt (chained variables only) 186
7.2.6. subChainChangeMoveSelector (chained variables only) 187
7.2.7. subChainSwapMoveSelector (chained variables only)c....cceeieiies 188

7.3. Combining MUItIPle MOVESEl BCL OIS .uuiiviiiiiiieiiii e e e e e e aens 189
7.3. 1. UNIONMOVESEIECION .. ceviiiiiieii e e e e 189
7.3.2. cartesianProductMOVESEIECIOrccuuiiiiiiiiiiiii e 191

T4, ENUEYSEIECION ..ttt e enaaas 192
FA Y 4= U1 T =] 1=t (o] PP 192
7.6. General Sel et or FEAIUMNESiiivuiiiii e e e ees 193
7.6.1. CacheType: Create Moves Ahead of Time or Just INn Timec.ceeunees 193
7.6.2. SelectionOrder: Original, Sorted, Random, Shuffled or Probabilistic 194
7.6.3. Recommended Combinations of CacheType and Sel ecti onOrder 195
7.6.4. Filtered SeleCtionco.uiiiiiiiiiee e 198
7.6.5. SOMed SEIECHONiiiiii e e e et e e e e e e 200
7.6.6. Probabilistic SeleCtionoiiiiiiiii 203
7.6.7. LiMited SelECHONuiiiiiii e 205
7.6.8. Mimic Selection (ReCOrd/REPIAY)ceveeviiieiiiiieiiii e 205
7.6.9. Nearby SeIeCtioNnccoouiiiiiiii 206

T.7. CUSTOM MOVES ...ttt e et e et e e e e et e e e eaaees 209
7.7.1. Which Move Types Might be Missing in my Implementation? 209
7.7.2. Custom Moves INtrOdUCHIONviiuiei e 210
7.7.3. The INtErface MDVE ...iiiiiiiiiii e 210
7.7.4. Moveli st Fact ory: the Easy Way to Generate Custom Moves 213
7.7.5. Movel t er at or Fact or y: Generate Custom Moves Just in Time 214

8. EXNAUSTIVE SEAICK ..ot e 216
S I O 1= o T PSP 216
8.2, BIULE FOICE ..o e e 216
8.2.1. Algorithm DeSCIIPLONiiiiiiii e e 216
8.2.2. CONFIQUIALION ..eevuiiiiiii et 217

8.3. Branch And BOUNGiiiiiiiiiiiii et aaaa 217
8.3.1. AIgOrithm DeSCHPLIONccuuiiiiiii it 217
8.3.2. CONfIQUIAtIONiiii i e e et e e 218

8.4. Scalability of EXhaustive SEarchocoouiiiiiiiiiiii e 220
9. CONSIIUCION HEUIISTICS L.uiiiiiiiiiiiiiis et e e e e et e e aaa e e eeeans 223
LS TR O 1YY 4T PP 223
LS 2 = | PP 223
9.2.1. AIgOrithm DESCHPLION ...ccevuiiiiiii et 223

LS B2 ©Xa] 110 [0 - 1o o [RE N 224

9.3. FirSt Fit DECIEASINGeeeeviieiiiiiie ettt ettt e et e e et e e eata e eees 224
9.3.1. Algorithm DeSCIIPLONcviieiii i 224
9.3.2. CONFIGUIALION .eeviiiiiiii et 225

9.4, WEAKESE Fil ...iiiiiiiiiiiii et 226

Vi

OptaPlanner User Guide

9.4.1. AIgOrithm DeSCHPLION ...cceuuiiiiiii et 226

LS I @da] 10 [0 - 1o o [N 226

9.5. Weakest Fit DECIEASING ... cceuuuneiiiiii ettt e e et e e e e e e e e e eens 227
9.5.1. Algorithm DeSCIIPLONciiiiiiiieii e e 227
9.5.2. CONFIQUIALION .eeviiiiiiii e 227

9.6, SHrONQEST Fit .. 227
9.6.1. AIgOrithm DeSCHPLION ...cccvuiiiiii et 227
9.6.2. CONfIQUIALIONuiiiiiii e e e e e e e e e e e e e ee 228

9.7. Strongest Fit DECIEASING ... ccvertneiiiii ettt ettt e e et e e eeri e e 228
9.7.1. Algorithm DeSCIIPLONciiiiiiiici e e 228
9.7.2. CONFIGUIALION .eettiiiiii et eeanns 228

9.8. Allocate Entity From QUEUEciuuiiiiiiiii e e e e e e e 229
9.8.1. AIGOrithm DeSCHPLIONccuuiiiiiiie et 229
9.8.2. CONfIQUIALIONiiiiiiiii e e et e e e e e e e e 229
9.8.3. Multiple Variables ... 231
9.8.4. Multiple Entity CIaSSESccuiiiiiiiiiieiie e e 232
9.8.5. PIiCK Barly TYPE ..ouiiiiii i e 233

9.9. Allocate To Value From QUEUEcceuuiiiiiiiiiiei e e e e e e e e 234
9.9.1. AIQOrithm DeSCHPLIONcevuiiiiiii et 234

LIRS I @4e] 10 [0 - 1o o [NE N 234
9.10. Cheapest INSEITIONcccuuuieiiii et 235
9.10.1. Algorithm DeSCIPLIONiiiiiieiii i 235
9.10.2. CONfIGUIALION ...ceiveiieiiit et 236
9.11. REQret INSEITION ...cevuiiii i e e e e e e e e e e e aens 237
9.11.1. AIgOrithm DESCHIPLIONcieeiti ettt e e e e 237

Lo 00 @) 1o [0 - 1o o 237
9.12. AlloCate From POOIuieiieii et 237
9.12.1. Algorithm DeSCIPLIONiiiiieiiiiciie e e 237
9.12.2. CONfIGUIALION ...ceiienieiiiie et 237

O o Yo | ST Y- o o PPN 239
O R @ Y= V1= S 239
10.2. Local SEarch CONCEPLS ...uiivuiiiiieiiie e e e e e e e e e e eees 239
10.2.1. SEEP DY SEEP vttt 239
10.2.2. Decide the NEXE STEP ...civii i e e 241
F0.2.3. ACCEPION ..ttt ettt et 244

O D T o =T] (PP PPPPRP 244
10.3. Hill Climbing (Simple Local SEarch)ccoviiiiiiiiiiiiiiieii e 245
10.3.1. Algorithm DeSCHPLONciiiciie e e e 245
10.3.2. Stuck iN LOCAI OPLIMEA ..euueiiiiiieiiii et 246
10.3.3. CoNfiIQUIALIONvuiiiiiieee e e e 247
10.4. TABU SEAICH ..o 248
10.4.1. Algorithm DeSCHPLONiiuiiiii e e 248
10.4.2. CONfIQUIALIONceeieiiiiii e 249
10.5. Simulated ANNEALINGivieii e e 251

Vi

OptaPlanner User Guide

10.5.1. AIGOrithm DeSCHPLONuuuiiiiiiiieeieii et 251
10.5.2. CoNfIQUIALiONuuiiii e e 252
10.6. Late ACCEPLANCEciitiiiii ettt e 252
10.6.1. Algorithm DeSCHPLONciviiiie e 252
10.6.2. CONFIQUIALIONceeiiiieiiii e 253
10.7. Step Counting Hill CHMBINGcoovniiii e 254
10.7.1. AlGOrithm DESCHIPLONuuiiiiiiiieeieii e 254
10.7.2. CoNfiIQUIALION ...cvviiiii e 254
10.8. StrategiC OSCIlIAtIONooiiiiiiei e 255
10.8.1. Algorithm DeSCHPLONiiiiiiie e e e 255
10.8.2. CONFIQUIALIONceeieiieiiii ettt e 255
10.9. Using a Custom Termination, MoveSelector, EntitySelector, ValueSelector or Ac-
(05T 0] (0] PP 256
11. Evolutionary AIGOritNmMS ... 257
B R O Y= 1= PR 257
11.2. EVOlUtioNary SIrat@Qi€Scvvviiiii e e e 257
11.3. GenetiC AlIGOMTNMS ..ottt e 257
R o 1Y o L= =N 1] Ao 258
2 I @ Y= V1= P 258
13, Partitioned SEAICHoiiiiiiiiie e 259
R 0 I @ Y= V1= P 259
14. Benchmarking ANd TWeEAKINGuoiiiiiiiiiei e e e e e e e e e e eaaas 260
14.1. Find The Best Sol ver Configurationcccuoiiiiiiinieiiiiee e 260
14.2. Benchmark Configurationccoceuiiiiiiiiiii e e 261
14.2.1. Add Dependency On opt apl anner-benchmarkcccoooveviiiiiieiiiinnnnen, 261
14.2.2. Build And Run A Pl anner BENCANMBI Kveiieiiiieiiiiieeeiii e 261
14.2.3. SolutionFilelO: Input And Output Of Solution Filesccccoevveeiiinnnen. 263
14.2.4. Warming Up The HotSpot COMPIlErcccoviiiiiiiiiicii e, 265
14.2.5. Benchmark Blueprint: A Predefined Configurationccccceeveiiinnnnnn. 265
14.2.6. Write The Output Solution Of Benchmark Runsccoccooiiiiininnn, 266
14.2.7. Benchmark LOGOING ...ccouuiiiiiiiieiiiiie et 266
14.3. BENChMArK REPOIiiiicii e e e e e 267
e T o 1Y =T o o o AN 267
14.3.2. RaNKING THE S0l VEI'S oiuuniiiii e e e 268
14.4. SUMMANY SEALISTICS ..oeevuniiiiiiii et eaeas 269
14.4.1. Best Score Summary (Graph And Table)cccoeeviiiiiiiiiiii e, 269
14.4.2. Best Score Scalability Summary (Graph)cooeveviiiiiiiiinieiieeee 269
14.4.3. Best Score Distribution Summary (Graph)ccoocoiviiiiiiini 270
14.4.4. Winning Score Difference Summary (Graph And Table) 271
14.4.5. Worst Score Difference Percentage (ROI) Summary (Graph and Table)... 271
14.4.6. Average Calculation Count Summary (Graph and Table) 271
14.4.7. Time Spent Summary (Graph And Table)c.ccooviiiiiiiiiien, 271
14.4.8. Time Spent Scalability Summary (Graph)ccoeviiiiiiiiiniiiiie, 271
14.4.9. Best Score Per Time Spent Summary (Graph)cccooeviiiiiiiiiiiineiine, 271

viii

OptaPlanner User Guide

14.5. Statistic Per Dataset (Graph ANd CSV)iiiiiiiiiiiiiiec e 272
14.5.1. Enable A Problem StatiStiCcooovvviiiiiiiiiiiici e 272
14.5.2. Best Score Over Time Statistic (Graph And CSV)ccooviviiiiiinneiiinnnnn. 272
14.5.3. Step Score Over Time Statistic (Graph And CSV)ccoovviiiiiiiiiiiieiiins 274
14.5.4. Calculate Count Per Second Statistic (Graph And CSV)cccevvveeennnn. 275
14.5.5. Best Solution Mutation Over Time Statistic (Graph And CSV) 277
14.5.6. Move Count Per Step Statistic (Graph And CSV)ccoeiviiiiiinieiiinnnnnn. 278
14.5.7. Memory Use Statistic (Graph ANd CSV)cooovviiiiiiiiiiiiii e 279

14.6. Statistic Per Single Benchmark (Graph And CSV) ..., 280
14.6.1. Enable A Single StatiStiCccevviiiiiiiiie e 280

14.6.2. Constraint Match Total Best Score Over Time Statistic (Graph And CSV).. 280
14.6.3. Constraint Match Total Step Score Over Time Statistic (Graph And CSV).. 281
14.6.4. Picked Move Type Best Score Diff Over Time Statistic (Graph And CSV).. 282
14.6.5. Picked Move Type Step Score Diff Over Time Statistic (Graph And CSV).. 283

14.7. Advanced Benchmarkingcooooouiiiiiii e 284
14.7.1. Benchmarking Performance TrickSccccciiiiiiiiiiiiiieeceee e 284
14.7.2. Statistical BENChmarkingco.uoiiiiiiiiiii e 286
14.7.3. Template Based Benchmarking And Matrix Benchmarking 286
14.7.4. Benchmark Report Aggregationcoveeveeiiieeiiiiineeei e 287
15. Repeated Planning ...co.iiiiiiiii e 290
15.1. Introduction to Repeated Planningccovviiiiiiiiiiii e 290
15.2. Backup Planningccoiiiiiii e 290
15.3. Overconstrained PIANNINGoieiiiiiieiiiie e 290
15.4. Continuous Planning (Windowed Planning)cccccoiveiiiiiiiiiiiieeie e 291
15.4.1. Immovable Planning ENitIeSccccuuiiiiiiiinieiiiiieei e 292

15.4.2. Nonvolatile Replanning to minimize disruption (Semi-movable Planning
ENEIEIES) e e e 293
15.5. Real-time Planningcociiiiiiii e 295
15.5.1. Probl enFact ChaNgeccuuviuniiiiiiiiei e e e e 296
15.5.2. Daemon: sol ve() Does NOt REtUINcoovvviiiiiiiniii e 298
G] (=Te &= 11T] o R PP PPPPT 300
T B @Y= V= PP 300
16.2. PerSISIENT STOTAUEcceevtueeiiitii ettt e e ettt e e et e e e et e e e ebt e e eeninaeaees 301
16.2.1. Database: JPA and Hibernatecccoooveiiiiiiiiii e 301
16.2.2. XML 0Or JSON: XSErEAM ...uuiiuiiiii ittt e e 303
16.2.3. XML OF JSON: JAXB ..oeiiiiiiiiie ettt eeaae e 305
16.3. SOA AN ESBouiiiiiii i 305
16.3.1. Camel and Karafoviiiiiiiiiiii e 305
16.4. Other ENVIFONMENTSiiiiiiiiiiiii et e e e e e e et e e e eanaeaes 305
16.4.1. JBoss Modules, WildFly and JBOSS EAPc.ooeviiiiiiiiiiiiieiieeeeeeies 305
16.4.2. OSGi covuiiiiiii i 306
R S T Y oo | (] T P 306
16.5. Integration with Human Planners (POIItICS)ccuuiviviiiiiiiiiiiiieece e, 307
A TSy o o T == 1 =] 1 P 308

OptaPlanner User Guide

17.1. Design Patterns INtrodUCLIONviiiiiiiiiiii et 308
17.2. Assigning Time to Planning ENtItieScccoiviiiiiiiiiiiie e 308
17.2.1. Timeslot Pattern: Assign to a Fixed-Length Timeslotc.....cceiieis 310
17.2.2. TimeGrain Pattern: Assign to a Starting TimeGrainccc.cceeeeennnnns 311

17.2.3. Chained Through Time Pattern: Assign in a Chain that Determines Start-
1o T 1T = P 311
17.3. MUlti-Stage Planningooeeeeriieiiii e e 312
S TV o o1 0T 0| 313
18.1. MethodOlOgY OVEIVIEWcouuuiiiiiiieeiiii e ettt e et e e e e e eaa e e eees 313
18.2. Development QUIAEIINEScouuiiiii e e 314

Chapter 1. OptaPlanner
Introduction

1.1. What is OptaPlanner?

OptaPlanner@

OptaPlanner [http://www.optaplanner.org] is a lightweight, embeddable constraint satis-
faction engine which optimizes planning problems. It solves use cases such as:

* Employee shift rostering: timetabling nurses, repairmen, ...

e Agenda scheduling: scheduling meetings, appointments, maintenance jobs, advertise-
ments, ...

« Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...
« Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

« Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers
nodes, ...

« Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

« Cutting stock: minimizing waste while cutting paper, steel, carpet, ...
» Sport scheduling: planning football leagues, baseball leagues, ...

« Financial optimization: investment portfolio optimization, risk spreading, ...

http://www.optaplanner.org
http://www.optaplanner.org

OptaPlanner Introduction

Job shop scheduling

January
1 2 3 4 s 8 7T

Vehicle routing Job 1 Equipment scheduling

November
Job 2

Job 3
Job 4

Less makespan

Ao,
OptaP g
Do more business
. with less resources o
| % Employee rostering
! &° Sat Sun Mon
e
94?9,_&{?0 \?‘@QQ ? 1I-1 2I2 IIE 1|-t 2I2 EI. 1;1 zlz
Cg&,—
Bin packing s Employee 1 Free

.] CPU RAM i Employee 2 @ Free
) Employee 3 () Free | Free

oo @I e J(Cs T3] Employee 4 | Free | (E) (E)
Employee 5 Free @ @

Every organization faces planning problems: provide products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such plan-
ning to do more business with less resources. This is known as Constraint Satisfaction Program-
ming (which is part of the Operations Research discipline).

OptaPlanner Introduction

What is a planning problem?

Optimize goals with limited resources under constraints

Optimize goals %) Maximize profit
() Minimize ecological footprint

* Maximize happiness of employees / customers

With limited resources # Employees
@ Assets (machines, buildings, vehicles, ...)

() Time

%) Budget

Under constraints # vs (+) Working hours
W vs @ Skills / affinity
@ vs (>) Logistic conflicts

OptaPlanner helps normal Java™ programmers solve constraint satisfaction problems efficiently.
Under the hood, it combines optimization heuristics and metaheuristics with very efficient score
calculation.

1.2. Requirements

OptaPlanner is open source software, released under the Apache Software License 2.0 [http:/
www.apache.org/licenses/LICENSE-2.0.html]. This license is very liberal and allows reuse
for commercial purposes. Read the layman's explanation [http://www.apache.org/foundation/li-
cence-FAQ.htmi#WhatDoesItMEAN].

OptaPlanner is 100% pure Java™ and runs on any JVM 1.6 or higher. It integrates very easily
with other Java™ technologies. OptaPlanner is available in the Maven Central Repository.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN

OptaPlanner Introduction

Compatibility

OptaPlanner works on any Java Virtual Machine

f@ﬁ

Enterprise Java JVM languages
WildFy>= <,

O OPENSHIFT Jécfu_';
Ferstiugd ﬁ #Scala ~¢fm-

1.3. What is a Planning Problem?

1.3.1. A Planning Problem is NP-complete or NP-hard

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete] or
harder. In layman's terms, NP-complete means:

« It's easy to verify a given solution to a problem in reasonable time.

« There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

OptaPlanner Introduction

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the 2 common techniques won't suffice:

» A Brute Force algorithm (even a smarter variant) will take too long.

« A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a good solution in reason-
able time for such planning problems.

1.3.2. A Planning Problem Has (Hard and Soft) Constraints

Usually, a planning problem has at least 2 levels of constraints:

* A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

« A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

» A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some basic problems (such as N Queens) only have hard constraints. Some problems have 3 or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as Java code or Drools rules. Such code
is easy, flexible and scalable.

1.3.3. A Planning Problem Has a Huge Search Space

A planning problem has a number of solutions. There are several categories of solutions:

» A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

» Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

OptaPlanner Introduction

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there
are no feasible solutions and the optimal solution isn't feasible.

« The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time,
it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it's impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm, by changing the solver configuration in a few lines of XML
or code.

1.4. Download and Run the Examples

1.4.1. Get the Release .zip and Run the Examples

To try it now:

1. Download a release zip of OptaPlanner from the OptaPlanner website [http://
www.optaplanner.org] and unzip it.

2. Open the directory exanpl es and run the script.

Linux or Mac:

$ cd exanpl es$./runExanpl es. sh
anpl es$

Windows:

$ cd exanpl es$ runExanpl es. bat
anpl es$

http://www.optaplanner.org
http://www.optaplanner.org
http://www.optaplanner.org

OptaPlanner Introduction

Distribution zip

Running the examples locally

(D Surf to www.optaplanner.org @ Open the directory examples

and double click on runExamples

v optaplanner-distribution-*
@ ol ¢4 8 A4 Download OptaPlanner » [l binaries

v examples
3 binaries
3 data
i optaplanner-distribution-*.zi -
@ UnZIP ﬁ Prap . 2 sources

=| runExamples.bat

|=| runExamples.sh
> il javadocs

B reference_manual
(3 sources

» [l webexamples

=| ReadMeOptaPlanner.txt

|=| UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Pick an example to try it out:

OptaPlanner Introduction

OptaPlanner examples

Which example do you want to see?

Basic examples Real examples Difficult examples
r r r

N queens

Course timetabling

- Exam timetabling

Cloud balancing

h

e

Machine reassignment

Employee rostering

Traveling salesman

Vehicle routing

Traveling tournament

s

Dinner party == FProject job scheduling Cheap time scheduling

AW /|3 |

Tennis club scheduling Hospital bed planning $ Investment asset class allocation

¥
%M

Description
B [Show web examples J
Assign processes to computers, :‘
Each computer must have enough hardware to run all of its processes,
Each used computer inflicts a maintenance cost.
[Homepage J
= [Documentation J

Besides the GUI examples, there are also a set of webexamples to try out:

1. Download a JEE application server, such as JBoss EAP or WildFly [http://www.wildfly.org/] and
unzip it.

2. Download a release zip of OptaPlanner from the OptaPlanner website [http:/
www.optaplanner.org] and unzip it.

3. Open the directory webexanpl es and deploy the opt apl anner - webexanpl es- *. war file on the
JEE application server.

4. Surf to http://localhost:8080/optaplanner-webexamples-*/ (replace the * with the actual ver-
sion).

http://www.wildfly.org/
http://www.wildfly.org/
http://www.optaplanner.org
http://www.optaplanner.org
http://www.optaplanner.org
http://localhost:8080/optaplanner-webexamples-*/

OptaPlanner Introduction

Pick an example to try it out, such as the Vehicle Routing example:

&6 [Ij localhost:8080/optaplanner-webexamples-6.3.0-SNAPSHOT/vehiclerouting/leaflet.jsp

OptaPlanner@ \fahicle rOUting

= \ehicle routing
» Cloud balancing

| Leaflet.js || Google Maps ‘

Leaflet.js visualization

Pick up all items of all customers with a few vehicles in the shortest route possible.
Each location shows the number of items to pick up. Each vehicle has a limited capac

| Solve this planning problem | Terminate early Total travel distan

1.4.2. Run the Examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE:

1. Configure your IDE:

* In IntelliJ IDEA, NetBeans or a non-vanilla Eclipse, just open the file exanpl es/ sour ces/
pom xm as a new project, the maven integration will take care of the rest.

OptaPlanner Introduction

« In a vanilla Eclipse (which lacks the M2Eclipse plugin), open a new project for the directory
exanpl es/ sour ces.

« Add all the jars to the classpath from the directory bi nari es and the directory exam
pl es/ bi nari es, except for the file exanpl es/ bi nari es/ opt apl anner - exanpl es-*. j ar.

» Add the Java source directory src/ mai n/j ava and the Java resources directory src/
mai n/ r esour ces.

2. Create a run configuration:
« Main class: or g. opt apl anner . exanpl es. app. Qpt aPl anner Exanpl esApp
* VM parameters (optional): - Xnx512M - ser ver

3. Run that run configuration.

To run a specific example directly and skip the example selection window, run its App class (for
example C oudBal anci ngApp) instead of Opt aPl anner Exanpl esApp.

1.4.3. Use OptaPlanner with Maven, Gradle, lvy, Buildr or ANT

The OptaPlanner jars are also available in the central maven repository [http://
search.maven.org/#search|gall|org.optaplanner] (and also in the JBoss maven repository [https://
repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~1).

If you use Maven, add a dependency to opt apl anner - cor e in your project's pom xm :

<dependency>
<groupl d>or g. opt apl anner </ gr oupl d>
<artifact|d>optapl anner-core</artifactld>
</ dependency>

This is similar for Gradle, vy and Buildr. To identify the latest version, check the central maven
repository [http://search.maven.org/#search|gall|org.optaplanner].

Because you might end up using other OptaPlanner modules too, it's recommended to import the
opt apl anner - bomin Maven's dependencyManagenent so the OptaPlanner version is specified
only once:

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. opt apl anner </ gr oupl d>
<artifact|d>optapl anner-bonx/artifact!d>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>

10

http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner

OptaPlanner Introduction

</ dependency>

</ dependenci es>
</ dependencyManagenent >

If you're still using ANT (without Ivy), copy all the jars from the download zip's bi nari es directory
in your classpath.

1.4.4. Build OptaPlanner from Source

It's easy to build OptaPlanner from source:

1. Set up Git [https://help.github.com/articles/set-up-git/] and clone opt apl anner from GitHub (or
alternatively, download the zipball [https://github.com/droolsjbpm/optaplanner/zipball/master]):

$ git clone git@ithub.com drool sjbpnl optapl anner.git optaplanner...
ta

$ git clone https://github. cont drool sj bpn opt apl anner. git optapl anner. ..
op

2. Build it with Maven [http://maven.apache.org/]:

$ cd optapl anner$ nmvn clean install -DskipTests...
tapl anner$ nvn cl ean install

11

https://help.github.com/articles/set-up-git/
https://help.github.com/articles/set-up-git/
https://github.com/droolsjbpm/optaplanner/zipball/master
https://github.com/droolsjbpm/optaplanner/zipball/master
http://maven.apache.org/
http://maven.apache.org/

OptaPlanner Introduction

@ Note
The first time, Maven might take a long time, because it needs to download jars.
3. Run the examples:

$ cd optapl anner - exanpl es$ nvn exec:java. ..
pl anner - exanpl es
$

4. Edit the sources in your favorite IDE.

5. Optional: use a Java profiler.

1.5. Governance

1.5.1. Status of OptaPlanner

OptaPlanner is:

« Stable: Heavily tested with unit, integration and stress tests.
* Reliable: Used in production across the world.

« Scalable: One of the examples handles 50 000 variables with 5 000 variables each, multiple
constraint types and billions of possible constraint matches.

« Documented: See this detailed manual or one of the many examples.

1.5.2. Backwards Compatibility

OptaPlanner separates its APl and implementation:

« Public API: All classes in the package namespace org.optaplanner.core.api are 100% back-
wards compatible in future releases (especially minor and hotfix releases). In rare circum-
stances, if the major version number changes, a few specific classes might have a few back-
wards incompatible changes, but those will be clearly documented in the upgrade recipe [http://
www.optaplanner.org/download/upgradeRecipe/].

* XML configuration: The XML solver configuration is backwards compatible for all elements,
except for elements that require the use of non public API classes. The XML solver configuration
is defined by the classes in the package namespace org.optaplanner.core.config.

12

http://www.optaplanner.org/download/upgradeRecipe/
http://www.optaplanner.org/download/upgradeRecipe/
http://www.optaplanner.org/download/upgradeRecipe/

OptaPlanner Introduction

« Implementation classes: All classes in the package namespace org.optaplanner.core.impl
are not backwards compatible: they will change in future major or minor releases (but prob-
ably not in hotfix releases). The upgrade recipe [http://www.optaplanner.org/download/up-
gradeRecipe/] describes every such relevant change and on how to quickly deal with it when
upgrading to a newer version. That recipe file is included in every release zip.

@ Note

This documentation covers some impl classes too. Those documented impl class-
es are reliable and safe to use (unless explicitly marked as experimental in this
documentation), but we're just not entirely comfortable yet to write their signatures
in stone.

1.5.3. Community and Support

For news and articles, check our blog [http://www.optaplanner.org/blog/], Google+ (OptaPlan-
ner [https://plus.google.com/+OptaPlannerOrg], Geoffrey De Smet [https://plus.google.com/+Ge-
offreyDeSmet]) and twitter (OptaPlanner [https://twitter.com/OptaPlanner], Geoffrey De Smet
[https:/itwitter.com/GeoffreyDeSmet]). If OptaPlanner helps you, help us by blogging or tweet-
ing about it!

Public questions are welcome on our community forum [http://www.optaplanner.org/com-
munity/forum.html]. Bugs and feature requests are welcome in our issue tracker [https://
issues.jboss.org/browse/PLANNER]. Pull requests are very welcome on GitHub and get priority
treatment! By open sourcing your improvements, you 'll benefit from our peer review and from our
improvements made on top of your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at the BRMS and BPMS products [http://www.optaplanner.org/com-
munity/product.html] (which contain OptaPlanner) or contact Red Hat [http://www.redhat.com/en/
about/contact/sales].

1.5.4. Relationship with Drools and |BPM

OptaPlanner is part of the KIE group of projects [http://www.kiegroup.org]. It releases regularly
(often once or twice per month) together with the Drools [http://www.drools.org/] rule engine and
the jBPM [http://www.jbpm.org/] workflow engine.

13

http://www.optaplanner.org/download/upgradeRecipe/
http://www.optaplanner.org/download/upgradeRecipe/
http://www.optaplanner.org/download/upgradeRecipe/
http://www.optaplanner.org/blog/
http://www.optaplanner.org/blog/
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+OptaPlannerOrg
https://plus.google.com/+GeoffreyDeSmet
https://plus.google.com/+GeoffreyDeSmet
https://plus.google.com/+GeoffreyDeSmet
https://twitter.com/OptaPlanner
https://twitter.com/OptaPlanner
https://twitter.com/GeoffreyDeSmet
https://twitter.com/GeoffreyDeSmet
http://www.optaplanner.org/community/forum.html
http://www.optaplanner.org/community/forum.html
http://www.optaplanner.org/community/forum.html
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
http://www.optaplanner.org/community/product.html
http://www.optaplanner.org/community/product.html
http://www.optaplanner.org/community/product.html
http://www.redhat.com/en/about/contact/sales
http://www.redhat.com/en/about/contact/sales
http://www.redhat.com/en/about/contact/sales
http://www.kiegroup.org
http://www.kiegroup.org
http://www.drools.org/
http://www.drools.org/
http://www.jbpm.org/
http://www.jbpm.org/

OptaPlanner Introduction

KIE functionality overview

What are the KIE projects?

Drools Drools workbench
Rule engine WebApp to manage
and Complex Event Processing rules, decision tables, ...

Example: insurance rate calculation

&2 OptaPlanner
Planning engine
and optimization solver

Example: employee rostering

@ redhat
BRMS

. jBPM jBPM workbench

Workflow engine WebApp to manage and monitor
workflows, forms, ...

Example: mortgage approval process

Q redhat
BPMS

L o

Nd N
Lightweight, embeddable engines (jars) Web applications (wars)
which run in a Java VM which run on a Java Application Server

See the architecture overview to learn more about the optional integration with Drools.

14

Chapter 2. Quick Start

2.1. Cloud Balancing Tutorial

2.1.1. Problem Description

Suppose your company owns a number of cloud computers and needs to run a number of process-
es on those computers. Assign each process to a computer under the following four constraints.

The following hard constraints must be fulfilled:

« Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

e The CPU power of a computer must be at least the sum of the CPU power required by the
processes assigned to that computer.

e The RAM memory of a computer must be at least the sum of the RAM memory required by
the processes assigned to that computer.

» The network bandwidth of a computer must be at least the sum of the network bandwidth
required by the processes assigned to that computer.

The following soft constraints should be optimized:

« Each computer that has one or more processes assigned, incurs a maintenance cost (which
is fixed per computer).

* Minimize the total maintenance cost.

This problem is a form of bin packing. The following is a simplified example, where we assign four
processes to two computers with two constraints (CPU and RAM) with a simple algorithm:

15

Quick Start

Computers

Cloud balance . | 7 6]
Assign each process to a computer. _
“ | 6 v 6]
CPU Processes RAM

| | |
e R T B

[4 8])

4 Je[3] T 5)
(Bl 4+ x5 el

20 - S e M S e——
Nntennugh[L 2] 4 }x{ 3 | 3]

L2l room | 5 Jv 5 B

(2 ST (6 1]
21 4+ (s 73]

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it is
not optimal, as it does not leave enough room to assign the yellow process "D".

Optimal solution

Planner does find the more optimal solution fast by using additional, smarter algorithms. It also
scales: both in data (more processes, more computers) and constraints (more hardware require-
ments, other constraints). So see how Planner can be used in this scenario.

2.1.2. Problem Size

Table 2.1. Cloud Balancing Problem Size

Problem Size Computers Processes Search Space
2computers-6processes?2 6 64
3computers-9processes3 9 10M
4computers-012processés 12 1017
100computers-300proces3@s 300 107600
200computers-600procex3@s 600 1071380

16

Quick Start

Problem Size Computers Processes Search Space
400computers-1200procé3Bes 1200 1073122
800computers-2400proc&iBes 2400 1076967

2.1.3. Domain Model Design

Beginning with the domain model:

« Conput er : represents a computer with certain hardware (CPU power, RAM memory, network
bandwidth) and maintenance cost.

* Process: represents a process with a demand. Needs to be assigned to a Conput er by Planner.

e O oudBal ance: represents a problem. Contains every Conput er and Pr ocess for a certain data
set.

Cloud balance class diagram

@PlanningEntity

—

Computer Process
l(" e ' "
cpuPower @PFlanningVariable requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 * | requiredNetworkBandwidth
cost
CloudBalance
score
computerList processlList
@PlanningEntityCollectionProperty

In the UML class diagram above, the Planner concepts are already annotated:

« Planning entity: the class (or classes) that changes during planning. In this example, it is the
class Process.

17

Quick Start

« Planning variable: the property (or properties) of a planning entity class that changes during
planning. In this example, it is the property conput er on the class Pr ocess.

« Solution: the class that represents a data set and contains all planning entities. In this example
that is the class d oudBal ance.

2.1.4. Main Method

Try it yourself. Download and configure the examples in your preferred IDE. Run
or g. opt apl anner . exanpl es. cl oudbal anci ng. app. d oudBal anci ngHel | oWr | d. By default, it
is configured to run for 120 seconds. It will execute this code:

Example 2.1. CloudBalancingHelloWorld.java

public class C oudBal anci ngHel | oWorl d {

public static void main(String[] args) {
/1 Build the Sol ver
Sol ver Fact or y<Cl oudBal ance> sol ver Factory = Sol ver Factory. cr eat eFr omXnl Resour ce(
"or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/ cl oudBal anci ngSol ver Confi g. xm ");
Sol ver <O oudBal ance> sol ver = sol ver Factory. bui | dSol ver () ;

/1 Load a problemwi th 400 conputers and 1200 processes
Cl oudBal ance unsol vedC oudBal ance = new C oudBal anci ngGener at or (). cr eat eCl oudBal ance(400, 1200);

/] Sol ve the problem
C oudBal ance sol vedd oudBal ance = sol ver. sol ve(unsol vedCl oudBal ance) ;

/1 Display the result

Systemout. println("\nSol ved cl oudBal ance with 400 conputers and 1200 processes:\n"
+ toDi spl ayString(sol vedCl oudBal ance)) ;

The code example does the following:

* Build the Sol ver based on a solver configuration (in this case an XML file from the classpath).

Sol ver Fact or y<Cl oudBal ance> sol ver Factory = Sol ver Fact ory. cr eat eFr onXml Resour ce(
"or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/ cl oudBal anci ngSol ver Confi g. xm ");
Sol ver sol ver <Cl oudBal ance> = sol ver Fact ory. bui | dSol ver () ;

» Load the problem. C oudBal anci ngGener at or generates a random problem: you will replace
this with a class that loads a real problem, for example from a database.

18

Quick Start

Cl oudBal ance unsol vedd oudBal
ance = new C oudBal anci ngGener at or (). creat ed oudBal ance(400, 1200);

* Solve the problem.

Cl oudBal ance sol vedd oudBal ance = sol ver. sol ve(unsol vedd oudBal ance) ;

» Display the result.

System out. println("\nSol ved cl oudBal ance with 400 conputers and 1200 processes:\n"
+ toDi spl ayStri ng(sol vedd oudBal ance)) ;

The only complicated part is building the Sol ver, as detailed in the next section.

2.1.5. Solver Configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<sol ver >
<!-- Domai n nodel configuration -->
<scanAnnot at edCl asses/ >

<!-- Score configuration -->
<scoreDi rect or Fact or y>
<scoreDefini ti onType>HARD SCOFT</ scor eDefi niti onType>

ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. sol ver. scor e. G oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at ord ass>
<! --<scoreDrl >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/ cl oudBal anci ngScor eRul es. dr| </
scoreDr| >-->
</ scorebDirectorFactory>

<l-- Optimzation algorithnms configuration -->
<t erm nation>
<secondsSpent Li m t >30</ secondsSpent Li m t >
</term nation>
</ sol ver >

This solver configuration consists of three parts:

« Domain model configuration: What can Planner change? We need to make Planner aware of
our domain classes. In this configuration, it will automatically scan all classes in your classpath
(for an @ anni ngEntity or @Il anni ngSol uti on annotation):

19

Quick Start

<scanAnnot at edCl asses/ >

» Score configuration: How should Planner optimize the planning variables? What is our goal?
Since we have hard and soft constraints, we use a Har dSof t Scor e. But we also need to tell
Planner how to calculate the score, depending on our business requirements. Further down,
we will look into two alternatives to calculate the score: using an easy Java implementation,
or using Drools DRL.

<scorebDi rect or Fact ory>
<scoreDefiniti onType>HARD SOFT</ scor eDefi ni ti onType>

s>0r g. opt apl anner . exanpl es. cl oudbal anci ng. sol ver. score. C oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at ord ass>
<! --<scoreDrl| >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/
cl oudBal anci ngScor eRul es. drl </ scoreDr| >-->
</scoreDirectorFactory>

« Optimization algorithms configuration: How should Planner optimize it? In this case, we use
the default optimization algorithms (because no explicit optimization algorithms are configured)
for 30 seconds:

<t erni nation>
<secondsSpent Li m t >30</ secondsSpent Li m t >
</term nation>

Planner should get a good resultin seconds (and even in less than 15 milliseconds with real-time
planning), but the more time it has, the better the result will be. Advanced use cases will likely
use a different termination criteria than a hard time limit.

The default algorithms will already easily surpass human planners and most in-house imple-
mentations. Use the Benchmarker to power tweak to get even better results.

Let's examine the domain model classes and the score configuration.
2.1.6. Domain Model Implementation

2.1.6.1. The Conput er Class

The Comput er class is a POJO (Plain Old Java Object). Usually, you will have more of this kind
of classes.

Example 2.3. CloudComputer.java

public class C oudConputer ... {

20

Quick Start

private int cpuPower;

private int nenory;

private int networkBandwi dth;
private int cost;

/] getters

2.1.6.2. The process Class

The Process class is particularly important. We need to tell Planner that it can change the field
conput er, so we annotate the class with @I anni ngEnti ty and the getter get Conput er () with
@ anni ngVari abl e:

Example 2.4. CloudProcess.java

@l anni ngEntity(...)
public class O oudProcess ... {

private int requiredCpuPower;
private int requiredMenory;
private int requiredNetworkBandw dt h;

private O oudConputer conputer;
/] getters

@ anni ngVar i abl e(val ueRangePr ovi der Refs = {"conput er Range"})
public d oudConputer getConmputer() {
return conputer;

public void set Conputer(C oudConput er conputer) {
conputer = conputer;

[| RF KR KA KK A KKK AT AK A K AKIEK A I AR A KA K AK A K AR KKK A XK AX I KK AR KA KA F AR KA KA

/| Conpl ex met hods

[| KF R KA KKK KKKk R KKK KA KK KKK KKK KKK AR KA KKK AR KR KKK AR KRk AR KAk Kk kA kKA h Kk kA kK *

The values that Planner can choose from for the field conput er, are retrieved from a method
on the Sol ut i on implementation: C oudBal ance. get Conput er Li st (), which returns a list of all
computers in the current data set. The val ueRangePr ovi der Ref s property is used to pass this
information to the Planner.

21

Quick Start

Note

Instead of getter annotations, it is also possible to use field annotations.

2.1.6.3. The d oudgal ance Class

The d oudBal ance class implements the Sol ut i on interface. It holds a list of all computers and
processes. We need to tell Planner how to retrieve the collection of processes that it can change,
therefore we must annotate the getter get Pr ocessLi st with @l anni ngEnt it yCol | ecti onPr op-
erty.

The d oudBal ance class also has a property scor e, which is the Scor e of that Sol ut i on instance
in its current state:

Example 2.5. CloudBalance.java

@! anni ngSol uti on
public class C oudBal ance ... inplenments Sol ution<HardSoft Score> {

private List<C oudConputer> conputerList;
private List<Cl oudProcess> processList;
private HardSoft Score score;

@/al ueRangeProvi der (i d = "conput er Range")
public List<C oudConputer> get ConputerList() {
return conputerlList;

@l anni ngEntityCol | ecti onProperty
public List<C oudProcess> get ProcessList() {
return processList;

publ i c HardSoftScore getScore() {
return score;

public void setScore(HardSoftScore score) {
this.score = score;

[FEERE KA KKK KK KK KKK KK KKK KKK KKK KK KKK KKK KKK KKK KKK I KKK KKK F KK KKK AKX Kh Kk Kk kK kK k

/| Conpl ex met hods

[| KF R KA KKK KAk KR K KKK AR KKK AR KA KKK KKK A KA I AR AR I AR KA KK R KA KK A I Ak A h KA F Kk h kA kK x

public Collection<? extends (bject> getProbl enfFacts() {
Li st <Obj ect> facts = new ArrayLi st <Cbj ect>();
facts.addAl | (conputerlList);

22

Quick Start

/1 Do not add the planning entity's (processList) because that will be done autonatically
return facts;

The get Pr obl enfact s() method is only needed for score calculation with Drools. It is not needed
for the other score calculation types.

2.1.7. Score Configuration

Planner will search for the Sol ut i on with the highest Scor e. This example uses a Har dSof t Scor e,
which means Planner will look for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

Processes Computers
CPU CPU Cost
o @[6 v e
Score
2
:] -2hard [-500soft
\ | Y 10008
Ohard / -1500s0ft
[[3 } Y 10008
| | X 5008 ‘
Optimal solution) _ Ohard [/ -1000soft
- Y 10003 Highest score

Of course, Planner needs to be told about these domain-specific score constraints. There are
several ways to implement such a score function:

» Easy Java

23

Quick Start

¢ Incremental Java
* Drools

Let's take a look at two different implementations:

2.1.7.1. Easy Java Score Configuration

One way to define a score function is to implement the interface EasyScor eCal cul at or in plain
Java.

<scoreDi rect or Fact ory>
<scoreDefini ti onType>HARD SCOFT</ scor eDefi niti onType>

ass>or g. opt apl anner . exanpl es. cl oudbal anci ng. sol ver. scor e. G oudBal anci ngEasyScor eCal cul at or </
easyScor eCal cul at ord ass>
</ scoreDirect or Fact ory>

Just implement the cal cul at eScor e(Sol uti on) method to return a Har dSof t Scor e instance.

Example 2.6. CloudBalancingEasyScoreCalculator.java

public class Cl oudBal anci ngeasyScor eCal cul ator inplenents EasyScoreCal cul at or <G oudBal ance> {

/**

* Avery sinple inplenentati on. The doubl e | oop can easily be renpved by usi ng Maps as shown in
* { Cl oudBal anci ngMapBasedEasyScor eCal cul at or #cal cul at eScor e(C oudBal ance) } .
*/

publ i c HardSoft Score cal cul at eScor e(G oudBal ance cl oudBal ance) {

int hardScore = 0;
int softScore = 0;
for (C oudConputer conputer : cloudBal ance. get ConputerList()) {
int cpuPowerUsage = O;
int nmenoryUsage = O;
int networ kBandw dt hUsage = O;
bool ean used = fal se;

/] Cal cul ate usage
for (C oudProcess process : cloudBal ance. getProcessList()) {
if (conputer.equal s(process. get Conputer())) {
cpuPower Usage += process. get Requi r edCpuPower () ;
menor yUsage += process. get Requi redMenory();
net wor kBandwi dt hUsage += process. get Requi r edNet wor kBandwi dt h() ;
used = true;

[/l Hard constraints
int cpuPower Avai |l abl e = conput er. get CouPower () - cpuPower Usage;
if (cpuPowerAvailable < 0) {

hardScore += cpuPower Avai | abl e;

}

int nmenoryAvail abl e = conputer.get Menory() - nenoryUsage;

24

Quick Start

if (menoryAvailable < 0) {
hardScore += nenoryAvail abl e;

}
i nt networ kBandwi dt hAvai | abl e = conput er. get Net wor kBandwi dt h() - networ kBandwi dt hUsage;

if (networ kBandw dt hAvailable < 0) {
hardScore += net wor kBandwi dt hAvai | abl e;

/1 Soft constraints
if (used) {
sof t Score -= conputer. get Cost () ;

}
return HardSoft Score. val ueO (hardScore, softScore);

Even if we optimize the code above to use Maps to iterate through the processLi st only once,
it is still slow because it does not do incremental score calculation. To fix that, either use an
incremental Java score function or a Drools score function. Let's take a look at the latter.

2.1.7.2. Drools Score Configuration

To use the Drools rule engine as a score function, simply add a scor eDr| resource in the class-
path:

<scorebDi rector Factory>
<scoreDefini ti onType>HARD SCOFT</ scor eDef i niti onType>
<scoreDr| >or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ sol ver/ cl oudBal anci ngScor eRul es. drl </
scorebDr| >
</ scoreDirector Fact ory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth
to support all their processes, so we make these hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - Hard Constraints

import org.optapl anner. exanpl es. cl oudbal anci ng. domai n. C oudBal ance;
import org.optapl anner. exanpl es. cl oudbal anci ng. donmai n. d oudConput er;
import org.optapl anner. exanpl es. cl oudbal anci ng. domai n. Cl oudPr ocess;

gl obal Har dSoft Scor eHol der scor eHol der;

11 it
/1 Hard constraints
|| HHHHHH R R R

rul e "requi redCpuPower Tot al "

25

Quick Start

when
$conmputer : C oudConput er ($cpuPower : cpuPower)
$requi redCpuPower Total : Number (i nt Val ue > $cpuPower) from accurnul at e(
Cl oudPr ocess(
conputer == $conputer,
$requi redCpuPower : requiredCpuPower),
sun($r equi r edCpuPower)
)
then
scor eHol der. addHar dConst r ai nt Mat ch(kcont ext, $cpuPower
$requi redCpuPower Tot al . i nt Val ue());

end

rul e "requi redMenoryTotal "

end

rul e "requiredNet wor kBandw dt hTot al "

end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as
a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - Soft Constraints

/1l
/] Soft constraints
/1

rul e "conput er Cost "
when
$computer : O oudConput er ($cost : cost)
exi sts O oudProcess(conmputer == $conputer)
t hen
scor eHol der. addSof t Const r ai nt Mat ch(kcont ext, - $cost);
end

If you use the Drools rule engine for score calculation, you can integrate with other Drools tech-
nologies, such as decision tables (XLS or web based), the KIE Workbench, ...

2.1.8. Beyond this Tutorial

Now that this simple example works, try going further. Enrich the domain model and add extra
constraints such as these:

» Each Process belongs to a Ser vi ce. A computer might crash, so processes running the same
service should be assigned to different computers.

« Each Conput er is located in a Bui | di ng. A building might burn down, so processes of the same
services should be assigned to computers in different buildings.

26

Chapter 3. Use Cases and

Examples

3.1. Examples Overview

Planner has several examples. In this manual we explain mainly using the n queens example and
cloud balancing example. So it's advisable to read at least those sections.

The source code of all these examples is available in the distribution zip under exanpl es/ sour ces

and also in git under opt apl anner/ opt apl anner - exanpl es.

Table 3.1. Examples Overview

Example Domain Size Competi- Special features used
tion?
N queens e« lentity < Entity<= -« Pointless None
class 256 (cheat-
able
e 1 vari- * Value <= [http://
able 256 en.wikipedia.org/
» Search wi-
space <= ki/Eight_queens_puzzle#Explicit_solut
107616
Cloud balancing e lentity < Entity<= No » Real-time planning
class 2400
Defined
e 1vari- e Value <= by us
able 800
e Search
space <=
1076967
Traveling salesman e lentity < Entity<= Unrealis- ¢ Real-time planning
class 980 tic
e 1 e Value <= TSP web
chained 980 [http://
variable www.math.uwaterloo.ca/
» Search tspl]
space <=
1072927

27

ions])

http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.math.uwaterloo.ca/tsp/
http://www.math.uwaterloo.ca/tsp/
http://www.math.uwaterloo.ca/tsp/
http://www.math.uwaterloo.ca/tsp/

Use Cases and Examples

Example Domain Size Competi- Special features used
tion?
Dinner party e« lentity < Entity<= -« Unrealis- ¢ Decision Table spread-
class 144 tic sheet (XLS) for score
constraints
e 1vari- e Value <=
able 72
e Search
space <=
107310
Tennis club scheduling « lentity « Entity<= ¢ No » Fairness score con-
class 72 straints
» Defined
e 1 vari- * Value <= by us * Immovable entities
able 7
e Search
space <=
10760
Meeting scheduling e lentity < Entity<= =« No e TimeGrain pattern
class 10
» Defined
e 2vari- e Value <= by us
ables 320 and
<=5
e Search
space <=
107320
Course timetabling e« lentity < Entity<= -« Realistic < Immovable entities
class 434
* ITC 2007
e 2vari- e Value <= track 3
ables 25and <= [http://
20 www.cs.qub.ac.uk/
itc2007/
» Search cur-
space <= riculm-
10711 course/course_curriculm_index.htm]
Machine reassignment e lentity =« Entity<= -« Nearly * Real-time planning
class 50000 realistic
e 1 vari- * Value<= + ROAD-
able 5000 EF 2012

28

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Use Cases and Examples

Example Domain Size Competi- Special features used
tion?
e Search [http://
space <= challenge.roadef.org/2012/
107184948 enl]
Vehicle routing e lentity < Entity<= « Unrealis- ¢ Shadow variable
class 134 tic
* Real-time planning
e 1 e Value<= + VRP
chained 141 web * Nearby selection
variable « Search [hitp:// * Real road distances
neo.lcc.uma.es/
e 1 shad- space <= vrp/]
ow entity 107285
class
e 1 auto-
matic
shadow
variable
Vehicle routing with time Extra on e Entity <=« Unrealis- Extra on Vehicle routing:
windows Vehicle 1000 tic
routing: . Value <= + VRP » Custom VariableListen-
1250 web er
* 1shad- [http://
owvari- + Search neo.lcc.uma.es/
able space <= vrp/]
1073000
Project job scheduling e lentity =« Entity<= -« Nearly * Bendable score
class 640 realistic
» Custom VariableListen-
e 2 vari- * Value * MISTA er
ables <=?and 2013
<=9 [http:// » ValueRangeFactory
* 1 shag- allserv.kahosl.be/
owvari- + Search mista2013challenge/
able space <=]
?
Hospital bed planning e lentity < Entity<= « Unrealis- ¢ Overconstrained plan-
class 2750 tic ning
e 1nul- e Value<= + Kaho
lable 471 PAS
variable [http://

allserv.kahosl.be/

29

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Use Cases and Examples

Example Domain Size Competi- Special features used
tion?
e Search ~pe-
space <= ter/pas/]
1076851
Exam timetabling e 2entity < Entity<= -« Realistic ¢ Custom VariableListen-
classes 1096 er
(same « ITC 2007
hierar- * Value <= track 1
chy) 80 and <= [http://
49 www.cs.qub.ac.uk/
e 2 vari- itc2007/
ables * Search exam-
space <= track/exam_track_index.htm]
1073374
Employee rostering e« lentity < Entity<= -« Realistic ¢ Continuous planning
class 752
e INRC « Real-time planning
e 1vari- e Value <= 2010
able 50 [http://
www.kuleuven-
* Search Kortrijk be/
SPace <= nrpcom-
101277 petition]
Traveling tournament e« lentity < Entity<= -« Unrealis- ¢ Custom MoveListFac-
class 1560 tic tory
e 1vari- e Value<= =« TTP
able 78 [http://
mat.gsia.cmu.edu/
e Search TOURN/]
space <=
1072951

Cheap time scheduling < lentity <« Entity<= ¢ Nearly Field annotations

class 500 realistic
« ValueRangeFactory
e 2 vari- Value<= + ICON
ables 100 and Energy
<=288 [http://
iconchallenge.insight-
* Search centre.org/
space <= chal-
10720078 lenge-en-
ergy]

30

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy

Use Cases and Examples

Example Domain Size Competi- Special features used
tion?
Investment e lentity < Entity<= < No » ValueRangeFactory
class 11
 Defined
e 1vari- e Value = by us
able 1000
e Search
space <=
1074

A realistic competition is an official, independent competition:

« that clearly defines a real-word use case

 with real-world constraints

« with multiple, real-world datasets

« that expects reproducible results within a specific time limit on specific hardware

« that has had serious participation from the academic and/or enterprise Operations Research
community

These realistic competitions provide an objective comparison of Planner with competitive software
and academic research.

3.2. Basic Examples

3.2.1. N Queens

3.2.1.1. Problem Description

Place n queens on a n sized chessboard so no 2 queens can attack each other. The most common
n queens puzzle is the 8 queens puzzle, with n = 8:

31

Use Cases and Examples

lip

i

Constraints:

» Use a chessboard of n columns and n rows.
* Place n queens on the chessboard.

» No 2 queens can attack each other. A queen can attack any other queen on the same horizontal,
vertical or diagonal line.

This documentation heavily uses the 4 queens puzzle as the primary example.

A proposed solution could be:

32

Use Cases and Examples

oy

W N = O

Figure 3.1. A Wrong Solution for the 4 Queens Puzzle

The above solution is wrong because queens Al and B0 can attack each other (so can queens B0
and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens" constraint.

Below is a correct solution:

g

Ww N H O

g

Figure 3.2. A Correct Solution for the 4 Queens Puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

3.2.1.2. Problem Size

4queens has 4 queens with
8queens has 8 queens with
16queens has 16 queens with
32queens has 32 queens with
64queens has 64 queens with
256queens has 256 queens wth

search space of 256.
search space of 1077.
search space of 10719.
search space of 10748.
search space of 107115.

L 9 D D D

search space of 107616.

The implementation of the N queens example has not been optimized because it functions as a
beginner example. Nevertheless, it can easily handle 64 queens. With a few changes it has been
shown to easily handle 5000 queens and more.

33

Use Cases and Examples

3.2.1.3. Domain Model

Use a good domain model: it will be easier to understand and solve your planning problem. This
is the domain model for the n queens example:

public class Colum {
private int index;

/1 ... getters and setters

public class Row {
private int index;

/1 ... getters and setters

public class Queen {

private Col um col um;
private Row row,

public int getAscendi ngD agonal I ndex() {...}
public int getDescendi nghi agonal I ndex() {...}

Il ... getters and setters

A Queen instance has a Col umm (for example: 0 is column A, 1 is column B, ...) and a Row (its row,
for example: O isrow O, 1 is row 1, ...). Based on the column and the row, the ascending diagonal
line as well as the descending diagonal line can be calculated. The column and row indexes start
from the upper left corner of the chessboard.

public class NQueens inplenments Sol ution<Si npl eScore> {
private int n;
private List<Colum> col ummLi st ;
private List<Row> rowlList;
private List<Queen> queenlLi st;

private SinpleScore score;

/1l ... getters and setters

34

Use Cases and Examples

A single NQueens instance contains a list of all Queen instances. Itis the Sol ut i on implementation
which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens
example, NQueens's get N() method will always return 4.

Table 3.2. A Solution for 4 Queens Shown in the Domain Model

A solution Queen columnindex rowlndex ascendingDi- descending-
agonallndex | Diagonalin-
(columnin- dex (colum-
dex + rowlin- nindex -
dex) rowindex)
A B {: D_ O 1 1(**) '1
* *%
o @ 1 0 () 1(7) 1
2 2 4 0
1
DO 3 0™ 3 3
2 L
3
\

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

3.2.2. Cloud Balancing

This example is explained in a tutorial.
3.2.3. Traveling Salesman (TSP - Traveling Salesman Problem)

3.2.3.1. Problem Description

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia [http://en.wikipedia.org/wiki/Travelling_salesman_problem].
It is one of the most intensively studied problems [http://www.math.uwaterloo.ca/tsp/] in compu-
tational mathematics. Yet, in the real world, it's often only part of a planning problem, along with
other constraints, such as employee shift rostering constraints.

3.2.3.2. Problem Size

dj 38 has 38 cities with a search space of 10758.
europed40 has 40 cities with a search space of 10"762.
st 70 has 70 cities with a search space of 107126.
pch442 has 442 cities with a search space of 1071166.
1 u980 has 980 cities with a search space of 1072927.

35

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.math.uwaterloo.ca/tsp/
http://www.math.uwaterloo.ca/tsp/

Use Cases and Examples

3.2.3.3. Problem Difficulty

Despite TSP's simple definition, the problem is surprisingly hard to solve. Because it's an NP-
hard problem (like most planning problems), the optimal solution for a specific problem dataset
can change a lot when that problem dataset is slightly altered:

TSP optimal solution volatility

How much does the optimal solution change if we add 1 new location?

No effect Side effect Snowball effect

new

new new

\ 4
< L
— ,/
/ | |
3.2.4. Dinner Party

3.2.4.1. Problem Description

Miss Manners is throwing another dinner party.

« This time she invited 144 guests and prepared 12 round tables with 12 seats each.

« Every guest should sit next to someone (left and right) of the opposite gender.

And that neighbour should have at least one hobby in common with the guest.

At every table, there should be 2 politicians, 2 doctors, 2 socialites, 2 coaches, 2 teachers and
2 programmers.

36

Use Cases and Examples

« And the 2 politicians, 2 doctors, 2 coaches and 2 programmers shouldn't be the same kind at
atable.

Drools Expert also has the normal Miss Manners example (which is much smaller) and employs
an exhaustive heuristic to solve it. Planner's implementation is far more scalable because it uses
heuristics to find the best solution and Drools Expert to calculate the score of each solution.

3.2.4.2. Problem Size

weddi ng01 has 18 jobs, 144 guests, 288 hobby practicians, 12 tables and 144 seats with a search
space of 107310.

3.2.5. Tennis Club Scheduling

3.2.5.1. Problem Description

Every week the tennis club has 4 teams playing round robin against each other. Assign those 4
spots to the teams fairly.

Hard constraints:

» Conflict: A team can only play once per day.
« Unavailability: Some teams are unavailable on some dates.

Medium constraints:

 Fair assignment: All teams should play an (almost) equal number of times.

Soft constraints:

« Evenly confrontation: Each team should play against every other team an equal number of
times.

3.2.5.2. Problem Size

muni ch-7teans has 7 teans, 18 days, 12 unavailabilityPenalties and 72 teamAssignnments with a
search space of 10760.

37

Use Cases and Examples

3.2.5.3. Domain Model

Tennis class diagram

|' UnavailabilityPenalty @~PlanningVariable

4 @PlanningEntity .
[TeamAssignment]

@PlanningEntityCollectionProperty

[TennisSolution

3.2.6. Meeting Scheduling

3.2.6.1. Problem Description
Assign each meeting to a starting time and a room. Meetings have different durations.

Hard constraints:

* Room conflict: 2 meetings must not use the same room at the same time.
* Required attendance: A person cannot have 2 required meetings at the same time.

Medium constraints:

« Preferred attendance: A person cannot have 2 preferred meetings at the same time, nor a
preferred and a required meeting at the same time.

38

Use Cases and Examples

Soft constraints:

« Sooner rather than later: Schedule all meetings as soon as possible.

3.2.6.2. Problem Size

50neet i ngs- 160t i megrai ns-5roons has 50 neetings, 160 tineGains and 5 roons with a search
space of 107145. 100neeti ngs-320ti negrai ns-5roons has 100 neetings, 320 tineGains and 5 roons
with a search space of 107320.

107145. 100neet i ngs- 320t i negrai ns-5roons has 100 neetings, 320 tineGains and 5 roons with a
search space of

3.3. Real Examples

3.3.1. Course Timetabling (ITC 2007 Track 3 - Curriculum
Course Scheduling)

3.3.1.1. Problem Description
Schedule each lecture into a timeslot and into a room.

Hard constraints:

e Teacher conflict: A teacher must not have 2 lectures in the same period.
 Curriculum conflict: A curriculum must not have 2 lectures in the same period.

» Room occupancy: 2 lectures must not be in the same room in the same period.

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

« Room capacity: A room's capacity should not be less than the number of students in its lecture.

« Minimum working days: Lectures of the same course should be spread out into a minimum
number of days.

e Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to
each other (so in consecutive periods).

* Room stability: Lectures of the same course should be assigned the same room.

39

Use Cases and Examples

The problem is defined by the International Timetabling Competition 2007 track 3 [http://
www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

3.3.1.2. Problem Size

conmp0l1 has 24 teachers, 14 curricul a, 30 courses, 160 |ectures, 30 periods, 6 roonms and
53 unavail able period constraints with a search space of 107360.conp02 has 71 teachers,
70 curricul a, 82 courses, 283 lectures, 25 periods, 16 roons and 513 unavail able period
constraints with a search space of 107736.conp03 has 61 teachers, 68 curricula, 72 courses,
251 |l ectures, 25 periods, 16 roons and 382 unavail able period constraints with a search space
of 107653. conp04 has 70 teachers, 57 curricula, 79 courses, 286 | ectures, 25 periods, 18 roons
and 396 unavail abl e period constraints with a search space of 107758. conp05 has 47 teachers,
139 curricul a, 54 courses, 152 lectures, 36 periods, 9 roons and 771 unavail able period
constraints with a search space of 107381.conp06 has 87 teachers, 70 curricula, 108 courses,
361 |l ectures, 25 periods, 18 roons and 632 unavail able period constraints with a search space
of 107957.conp07 has 99 teachers, 77 curricula, 131 courses, 434 | ectures, 25 periods, 20 roons
and 667 unavail abl e period constraints with a search space of 1071171. conp08 has 76 teachers,
61 curricula, 86 courses, 324 |ectures, 25 periods, 18 roons and 478 unavail able period
constraints with a search space of 107859.conp09 has 68 teachers, 75 curricula, 76 courses,
279 lectures, 25 periods, 18 roons and 405 unavail abl e period constraints with a search space
of 107740. conpl0 has 88 teachers, 67 curricula, 115 courses, 370 | ectures, 25 periods, 18 roons
and 694 unavail abl e period constraints with a search space of 107981.conpll has 24 teachers,
13 curricul a, 30 courses, 162 lectures, 45 periods, 5 roons and 94 unavail abl e period
constraints with a search space of 107381.conpl2 has 74 teachers, 150 curricula, 88 courses,
218 lectures, 36 periods, 11 roons and 1368 unavail abl e period constraints with a search space
of 10"566. conpl3 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19
rooms and 468 unavail able period constraints with a search space of 107824. conpl4 has 68
teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 roons and 486 unavail able
period constraints with a search space of 107722.
with a search space of 107360.conp02 has 71 teachers, 70 curricula, 82 courses, 283 |lectures,
25 periods, 16 roons and 513 unavailable period constraints
with a search space of 107736.conp03 has 61 teachers, 68 curricula, 72 courses, 251 |ectures,
25 periods, 16 roons and 382 unavailable period constraints
with a search space of 107653.conp04 has 70 teachers, 57 curricula, 79 courses, 286 |lectures,
25 periods, 18 roons and 396 unavail able period constraints
with a search space of 107758.conp05 has 47 teachers, 139 curricula, 54 courses, 152 |ectures,
36 periods, 9 roons and 771 unavail able period constraints
with a search space of 107381.conp06 has 87 teachers, 70 curricula, 108 courses, 361 |ectures,
25 periods, 18 roons and 632 unavailable period constraints
with a search space of 107957.conp07 has 99 teachers, 77 curricula, 131 courses, 434 |ectures,
25 periods, 20 roons and 667 unavail abl e period
constraints with a search space of 1071171.conp08 has 76 teachers, 61 curricula, 86 courses, 324 |ectures,
25 periods, 18 roons and 478 unavail able period constraints
with a search space of 107859.conp09 has 68 teachers, 75 curricula, 76 courses, 279 |ectures,
25 periods, 18 roons and 405 unavail able period constraints
with a search space of 107740.conpl0 has 88 teachers, 67 curricula, 115 courses, 370 | ectures,
25 periods, 18 roons and 694 unavail able period constraints
with a search space of 107981.conpll has 24 teachers, 13 curricula, 30 courses, 162 |lectures, 45
periods, 5 roons and 94 unavail abl e period constraints
with a search space of 107381.conpl2 has 74 teachers, 150 curricula, 88 courses, 218
ectures, 36 periods, 11 roons and 1368 unavail abl e period constraints
with a search space of 107566.conpl3 has 77 teachers, 66 curricula, 82 courses, 308 |ectures,
25 periods, 19 roons and 468 unavail able period constraints
with a search space of 107824.conpl4 has 68 teachers, 60 curricula, 85 courses, 275 |lectures,
25 periods, 17 roons and 486 unavail able period constraints

40

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Use Cases and Examples

3.3.1.3. Domain Model

Curriculum course class diagram

(Teacher] [Day]
1 1
[Curriculum] [Timeslot]
* 1
[Course] [Period] [Room

@~PlanningVariable

@~PlanningVariable
R @PlanningEntity s |-
[Lecture]

L

@PlanningEntityCollectionProperty

[CourseSchedule

3.3.2. Machine Reassignment (Google ROADEF 2012)

3.3.2.1. Problem Description

Assign each process to a machine. All processes already have an original (unoptimized) assign-
ment. Each process requires an amount of each resource (such as CPU, RAM, ...). Thisis a more
complex version of the Cloud Balancing example.

Hard constraints:

« Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

» Conflict: Processes of the same service must run on distinct machines.
» Spread: Processes of the same service must be spread out across locations.

« Dependency: The processes of a service depending on another service must run in the neigh-
borhood of a process of the other service.

41

Use Cases and Examples

« Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

» Load: The safety capacity for each resource for each machine should not be exceeded.

« Balance: Leave room for future assignments by balancing the available resources on each
machine.

» Process move cost: A process has a move cost.
* Service move cost: A service has a move cost.

» Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://
challenge.roadef.org/2012/en/].

3.3.2.2. Problem Size

nodel _al_1 has 2 resources, 1 nei ghbor hoods, 4 | ocations, 4 machi nes, 79 services,
100 processes and 1 bal ancePenalties with a search space of 10760. nodel _al_2 has 4
resources, 2 neighborhoods, 4 | ocations, 100 nachi nes, 980 services, 1000 processes and 0
bal ancePenal ties with a search space of 1072000. nodel _al_3 has 3 resources, 5 nei ghborhoods,
25 | ocati ons, 100 machi nes, 216 servi ces, 1000 processes and 0 bal ancePenalties with a
search space of 1072000. nodel _al_4 has 3 resources, 50 nei ghborhoods, 50 |ocations, 50
machi nes, 142 services, 1000 processes and 1 bal ancePenalties with a search space of
1071698. nodel _al_5 has 4 resources, 2 nei ghbor hoods, 4 | ocations, 12 machi nes, 981
services, 1000 processes and 1 bal ancePenalties with a search space of 1071079. nodel _a2_1 has
3 resources, 1 neighborhoods, 1 1locations, 100 nachines, 1000 services, 1000 processes and 0
bal ancePenal ties with a search space of 1072000. nodel _a2_2 has 12 resources, 5 nei ghborhoods,
25 | ocati ons, 100 machi nes, 170 services, 1000 processes and 0 bal ancePenalties with a
search space of 1072000. nodel _a2_3 has 12 resources, 5 nei ghbor hoods, 25 | ocati ons, 100
machi nes, 129 services, 1000 processes and 0 bal ancePenalties with a search space of
1072000. nodel _a2_4 has 12 resources, 5 nei ghbor hoods, 25 |l ocations, 50 machi nes, 180
services, 1000 processes and 1 bal ancePenalties with a search space of 1071698. nodel _a2_5 has
12 resources, 5 neighborhoods, 25 1ocations, 50 nmachi nes, 153 services, 1000 processes and 0
bal ancePenal ties with a search space of 1071698. nodel _b_1 has 12 resources, 5 neighborhoods,
10 | ocati ons, 100 machi nes, 2512 services, 5000 processes and 0 bal ancePenalties wth
a search space of 10710000. nodel _b_2 has 12 resources, 5 nei ghbor hoods, 10 | ocati ons,
100 nmchi nes, 2462 services, 5000 processes and 1 bal ancePenalties with a search space of
10710000. nodel _b_3 has 6 resources, 5 nei ghbor hoods, 10 | ocati ons, 100 machi nes, 15025
servi ces, 20000 processes and 0 bal ancePenalties with a search space of 10740000. nodel _b_4 has
6 resources, 5 neighborhoods, 50 |ocations, 500 machines, 1732 services, 20000 processes and 1
bal ancePenal ties with a search space of 10753979.nodel _b_5 has 6 resources, 5 neighborhoods,
10 | ocati ons, 100 machi nes, 35082 services, 40000 processes and O bal ancePenalties with a
search space of 10780000. nodel _b_6 has 6 resources, 5 nei ghbor hoods, 50 | ocati ons,
200 machi nes, 14680 services, 40000 processes and 1 bal ancePenalties with a search space of
10792041. nodel _b_7 has 6 resources, 5 nei ghbor hoods, 50 | ocations, 4000 nachi nes, 15050
servi ces, 40000 processes and 1 bal ancePenal ties with a search space of 107144082. nodel _b_8 has
3 resources, 5 neighborhoods, 10 |locations, 100 machi nes, 45030 services, 50000 processes and 0
bal ancePenal ti es with a search space of 107100000. nodel _b_9 has 3 resources, 5 neighborhoods,
100 | ocations, 1000 nmchi nes, 4609 services, 50000 processes and 1 bal ancePenalties with

42

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Use Cases and Examples

a search space of

5000 machi nes,
107184948
search space of
100 nmachi nes
a search space
100 machi nes
a search space
50 machi nes,
a search space
12 machi nes
a search space
100 nmachi nes
a search space
100 machi nes
a search space
100 machi nes
a search space
50 machi nes
a search space
50 machi nes
a search space
100 machi nes

a search space of

100 mmachi nes,

a search space of
100 nmchi nes,

| ocati ons,

a search space of
500 nmchi nes,

| ocati ons,

a search space of

| ocati ons,

a search space of
200 mmachi nes,

| ocati ons,

a search space of
4000 machi nes,
with a search space of 107144082. nodel _b_8
100 nmchi nes,

50 | ocati ons,

| ocati ons,

with a search space of
1000 machi nes,

| ocati ons,

with a search space of
5000 machi nes,

| ocati ons,

100 nachi nes,

107150000. nodel _b_10 has 3 100

4896 services,

resour ces, 5 nei ghbor hoods,

10760. nodel _al_2 has 4 resources, 2 neighborhoods
980 services, 1000 processes and O bal ancePenalties with
1072000. nodel _al_3 has 3 resources, 5 neighborhoods
216 services, 1000 processes and O bal ancePenalties with
of 1072000. nodel _al_4 has 3 resources, 50 nei ghborhoods
142 services, 1000 processes and 1 bal ancePenalties with
of 1071698. nodel _al_ 5 has 4 resources, 2 nei ghbor hoods
981 services, 1000 processes and 1 bal ancePenalties with
of 1071079. nodel _a2_1 has 3 resources, 1 neighborhoods
1000 services, 1000 processes and O bal ancePenalties with
1072000. nodel _a2_2 has 12 resources, 5 nei ghborhoods
170 services, 1000 processes and O bal ancePenalties with
1072000. nodel _a2_3 has 12 resources, 5 nei ghborhoods
129 services, 1000 processes and O bal ancePenalties with
1072000. nodel _a2_4 has 12 resources, 5 nei ghbor hoods
180 services, 1000 processes and 1 bal ancePenalties wth
of 1071698. nodel _a2_5 has 12 resources, 5 nei ghborhoods
153 services, 1000 processes and O bal ancePenalties with
of 1071698. nodel _b_1 has 12 resources, 5 nei ghborhoods
2512 services, 5000 processes and O bal ancePenalties with
10710000. model _b_2 has 12 resources, 5 neighborhoods
2462 services, 5000 processes and 1 bal ancePenalties with
10710000. nodel _b_3 has 5 nei ghborhoods, 10
15025 services, 20000 processes and 0 bal ancePenalties with
10740000. nodel _b_4 has 5 nei ghbor hoods, 50
1732 services, 20000 processes and 1 bal ancePenalties with
10753979. nodel _b_5 has 5 nei ghbor hoods, 10
40000 processes and 0 bal ancePenalties with
has 6 resources, 5 neighborhoods, 50
40000 processes and 1 bal ancePenalties with
has 5 nei ghbor hoods,
40000 processes and 1 bal ancePenal ties
has 3 resources, 5 nei ghbor hoods,
50000 processes and O bal ancePenal ties
has 3 resources, 5 nei ghbor hoods,
4609 services, 50000 processes and 1 bal ancePenal ties
107150000. nodel _b_10 has 3 resources, 5 nei ghbor hoods
4896 services, 50000 processes and 1 bal ancePenalties

4 | ocations
of 25 | ocations
50 | ocations
4 | ocations,
1 | ocations,
of 25 | ocations,
of 25 | ocations
of 25 |l ocations,
25 |l ocations,
10 | ocations
10 | ocations
6 resources,
6 resources,
6 resources,
35082 services
10780000. nodel _b_6
14680 services

10792041. nodel _b_7
15050 services,

6 resources,

10
45030 servi ces,
107100000. nodel _b_9 100

100

43

| ocati ons,
50000 processes and 1 bal ancePenalties with a search space of

Use Cases and Examples

3.3.2.3. Domain Model

Machine reassignment class diagram

. dependency
(Service e [Neighborhood |
1 1
[ProcessRequirement| | MachineCapacity | Location
* * * * 1
. 1 1 1 1 . :
| Process] [Resource] [Machine |
1 1 1
originalMachine
@~PlanningVariable
1 @PlanningEntity . .
[ProcessAssignment]
@PlanningEntityCollectionProperty
[MachineReassignment

3.3.3. Vehicle Routing

3.3.3.1. Problem Description

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

44

Use Cases and Examples

21
7 13
15 15 &
1 17
17 11
=~ :
677100 ”
89,100
15
2
87 /100
11 o7 /104l m
82100
A5 . >
o
{ P
= Customer: dermand 32 customers 742'69 fUEI

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).

Hard constraints:

* Vehicle capacity: a vehicle cannot carry more items then its capacity.
e Time windows (only in CVRPTW):
» Travel time: Traveling from one location to another takes time.

» Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

» Customer ready time: a vehicle may arrive before the customer's ready time, but it must wait
until the ready time before servicing.

45

Use Cases and Examples

» Customer due time: a vehicle must arrive on time, before the customer's due time.

Soft constraints:

« Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

The capacitated vehicle routing problem (CVRP) and its timewindowed variant (CVRPTW) are
defined by the VRP web [http://neo.lcc.uma.es/vrp/].

3.3.3.2. Problem Size

CVRP instances (without time windows):

A-n32-k5 has 1 depots, 5 vehicles and 31 custoners with a search space of 10746. A-n33-k5
has 1 depots, 5 vehicles and 32 customers with a search space of 10748.A-n33-k6 has 1
depots, 6 vehicles and 32 custoners with a search space of 10748. A-n34-k5 has 1 depots,
5 vehicles and 33 custonmers with a search space of 10750. A-n36-k5 has 1 depots, 5 vehicles
and 35 custoners with a search space of 107"54.A-n37-k5 has 1 depots, 5 vehicles and 36
custoners with a search space of 107"56.A-n37-k6 has 1 depots, 6 vehicles and 36 custoners
with a search space of 10756.A-n38-k5 has 1 depots, 5 vehicles and 37 custoners with a
search space of 107"58.A-n39-k5 has 1 depots, 5 vehicles and 38 custoners with a search
space of 10760.A-n39-k6 has 1 depots, 6 vehicles and 38 custonmers with a search space of
10760. A-n44-k7 has 1 depots, 7 vehicles and 43 custoners with a search space of 10770. A
n45-k6 has 1 depots, 6 vehicles and 44 custoners with a search space of 10772. A-n45-k7 has
1 depots, 7 vehicles and 44 custoners with a search space of 10772. A-n46-k7 has 1 depots,
7 vehicles and 45 custonmers with a search space of 10774. A-n48-k7 has 1 depots, 7 vehicles
and 47 custoners with a search space of 10778. A-n53-k7 has 1 depots, 7 vehicles and 52
custoners with a search space of 10789. A-n54-k7 has 1 depots, 7 vehicles and 53 custoners
with a search space of 10791. A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a
search space of 10793. A-n60-k9 has 1 depots, 9 vehicles and 59 custoners with a search
space of 107104. A-n61-k9 has 1 depots, 9 vehicles and 60 custonmers with a search space of
107106. A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of 107108. A
n63-k10 has 1 depots, 10 vehicles and 62 custonmers with a search space of 107111. A-n63-k9 has
1 depots, 9 vehicles and 62 custonmers with a search space of 107111. A-n64-k9 has 1 depots,
9 vehicles and 63 custonmers with a search space of 107113. A-n65-k9 has 1 depots, 9 vehicles
and 64 custoners with a search space of 107115. A-n69-k9 has 1 depots, 9 vehicles and 68
custoners with a search space of 107124. A-n80-k10 has 1 depots, 10 vehicles and 79 custoners
with a search space of 107149.F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a
search space of 107285. F-n45-k4 has 1 depots, 4 vehicles and 44 custoners with a search space
of 107"72.F-n72-k4 has 1 depots, 4 vehicles and 71 custoners with a search space of 107131.

of 10746.A-n33-k5 has 1 depots, 5 vehicles and 32 custonmers with a search space
of 10748. A-n33-k6 has 1 depots, 6 vehicles and 32 custonmers with a search space
of 10748. A-n34-k5 has 1 depots, 5 vehicles and 33 custonmers with a search space
of 10750. A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space
of 10"54. A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space
of 10756. A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space
of 10756. A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space
of 10758. A-n39-k5 has 1 depots, 5 vehicles and 38 custonmers with a search space
of 10760.A-n39-k6 has 1 depots, 6 vehicles and 38 custonmers with a search space
of 10760. A-n44-k7 has 1 depots, 7 vehicles and 43 custonmers with a search space
of 10770. A-n45-k6 has 1 depots, 6 vehicles and 44 custonmers with a search space
of 107"72. A-n45-k7 has 1 depots, 7 vehicles and 44 custonmers with a search space
of 10772. A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space
of 107"74.A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space
of 10778.A-n53-k7 has 1 depots, 7 vehicles and 52 custonmers with a search space
1 7 a

of 10789. A-n54-k7 has depot s, vehicles and 53 custoners with search space

46

http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/

Use Cases and Examples

of 10791. A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space
of 10793. A-n60-k9 has 1 depots, 9 vehicles and 59 custonmers with a search space
of 107104. A-n61-k9 has depots, 9 vehicles and 60 custonmers with
of 107106. A-n62-k8 has depots, 8 vehicles and 61 customers with
of 107108. A-n63-k10 has depots, 10 vehicles and 62 custonmers with
of 107111. A-n63-k9 has depots, 9 vehicles and 62 custonmers with
of 107111. A-n64-k9 has depots, 9 vehicles and 63 custonmers with
of 107113. A-n65-k9 has depots, 9 vehicles and 64 customers with
of 107115. A-n69-k9 has depots, 9 vehicles and 68 custonmers with
of 107124. A-n80-k10 has depots, 10 vehicles and 79 custonmers with
of 107149. F-n135-k7 has depots, 7 vehicles and 134 custonmers with
of 107285. F-n45-k4 has depots, 4 vehicles and 44 custonmers with search space
of 10"72.F-n72-k4 has 1 depots, 4 vehicles and 71 custonmers with a search space

search space
search space
search space
search space
search space
search space
search space
sear ch space
search space

N S T e = T =
L 9 9 9 2 D D D D

CVRPTW instances (with time windows):

Sol onon_025_C101 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_025_C201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_025_R101 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_025_R201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_025_RC101 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onpn_025_RC201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_100_C101 has 1 depots, 25 vehicles and 100 custoners with a search space of
107200. Sol onon_100_C201 has 1 depots, 25 vehicles and 100 custoners with a search space of
107200. Sol onon_100_R101 has 1 depots, 25 vehicles and 100 custonmers with a search space of
107200. Sol onpbn_100_R201 has 1 depots, 25 vehicles and 100 custoners with a search space of
107200. Sol onon_100_RC101 has 1 depots, 25 vehicles and 100 custoners with a search space of
107200. Sol onon_100_RC201 has 1 depots, 25 vehicles and 100 custoners with a search space of

107200. Honberger _0200_C1_2_1 has 1 depots, 50 vehicles and 200 custoners with a search space of
107460. Honber ger _0200_C2_2_1 has 1 depots, 50 vehicles and 200 custoners with a search space of
107460. Homber ger _0200_R1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
107460. Honber ger _0200_R2_2_1 has 1 depots, 50 vehicles and 200 custoners with a search space of
107460. Honber ger _0200_RC1_2_1 has 1 depots, 50 vehicles and 200 custoners with a search space of
107460. Honber ger _0200_RC2_2_1 has 1 depots, 50 vehicles and 200 custoners with a search space
of 107460. Honberger _0400_Cl1_4 1 has 1 depots, 100 vehicles and 400 custoners with a search
space of 1071040. Honberger _0400_C2_4_ 1 has 1 depots, 100 vehicles and 400 custoners with a
sear ch space of 1071040. Honberger _0400_R1_4_1 has 1 depots, 100 vehicles and 400 custonmers with
a search space of 1071040. Honberger_0400_R2_4_1 has 1 depots, 100 vehicles and 400 custoners
with a search space of 1071040. Honberger_0400_RCl1_4_1 has 1 depots, 100 vehicles and 400
custoners with a search space of 1071040. Homber ger _0400_RC2_4_1 has 1 depots, 100 vehicles and
400 custonmers with a search space of 1071040. Honberger _0600_Cl1_6_1 has 1 depots, 150 vehicles
and 600 custoners with a search space of 1071666. Honmberger_0600_C2_6_1 has 1 depots, 150
vehicles and 600 custonmers with a search space of 1071666. Honberger 0600 _R1_6_1 has 1 depots,
150 vehicles and 600 custoners with a search space of 1071666. Honberger 0600 R2_6_1 has 1
depots, 150 vehicles and 600 custonmers with a search space of 1071666. Honber ger _0600_RC1_6_1 has
1 depots, 150 vehicles and 600 custoners with a search space of 1071666. Honber ger _0600_RC2_6_1
has 1 depots, 150 vehicles and 600 custoners with a search space of 1071666. Homber ger _0800_C1_8_1
has 1 depots, 200 vehicles and 800 custoners with a search space of
1072322. Honber ger _0800_C2_8_1 has 1 depots, 200 vehicles and 800 custoners with a search space
of 1072322. Homberger _0800_R1_8_1 has 1 depots, 200 vehicles and 800 custoners with a search
space of 1072322. Honberger 0800 _R2_8 1 has 1 depots, 200 vehicles and 800 custoners with a
search space of 1072322. Honberger_0800_RC1_8 1 has 1 depots, 200 vehicles and 800 custoners
with a search space of 1072322.Honberger_0800_RC2_8 1 has 1 depots, 200 vehicles and 800
custoners with a search space of 1072322. Honberger _1000_C110_1 has 1 depots, 250 vehicles and
1000 custoners with a search space of 1073000. Honmber ger _1000_C210_1 has 1 depots, 250 vehicles
and 1000 custoners with a search space of 1073000. Honberger_1000_R110_1 has 1 depots, 250

47

Use Cases and Examples

vehi cl es and 1000 custoners with a search space of 1073000. Honber ger _1000_R210_1 has 1 depots
250 vehicles and 1000 custonmers with a search space of 1073000. Honber ger _1000_RC110_1 has 1

depots, 250 vehicles and 1000 custoners with a search space of 1073000. Homber ger _1000_RC210_1
has 1 depots, 250 vehicles and 1000 custonmers with a search space of 1073000
10734. Sol onon_025_C201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_025_R101 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onmon_025_R201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10”34. Sol onon_025_RC101 has 1 depots, 25 vehicles and 25 custonmers with a search space of
10734. Sol onon_025_RC201 has 1 depots, 25 vehicles and 25 custoners with a search space of
10734. Sol onon_100_C101 has 1 depots, 25 vehicles and 100 custoners with a search space
of 107200. Sol onon_100_C201 has 1 depots, 25 vehicles and 100 custoners with a search space
of 107200. Sol onron_100_R101 has 1 depots, 25 vehicles and 100 custoners with a search space
of 107200. Sol onron_100_R201 has 1 depots, 25 vehicles and 100 custoners with a search space
of 107200. Sol onon_100_RC101 has 1 depots, 25 vehicles and 100 custoners with a search space
of 107200. Sol onon_100_RC201 has 1 depots, 25 vehicles and 100 customers with a search space
of 107200. Honberger_0200_C1_2_1 has 1 depots, 50 vehicles and 200 custonmers with a search
space
of 107460. Honber ger _0200_C2_2_1 has 1 depots, 50 vehicles and 200 custoners with a search
space
of 107460. Honberger _0200_R1_2 1 has 1 depots, 50 vehicles and 200 custonmers with a search
space
of 107460. Honberger _0200_R2_2_1 has 1 depots, 50 vehicles and 200 custonmers with a search
space
of 107460. Honber ger _0200_RC1_2_1 has 1 depots, 50 vehicles and 200 custonmers with a search
space
of 107460. Honber ger _0200_RC2_2_1 has 1 depots, 50 vehicles and 200 custonmers with a search
space
of 107460. Honberger _0400_Cl1_4_ 1 has 1 depots, 100 vehicles and 400 custoners with a search
space
of 1071040. Honberger_0400_C2_4_1 has 1 depots, 100 vehicles and 400 custoners with a search
space
of 1071040. Hormber ger _0400_R1_4_1 has depots, 100 vehicles and 400 custoners with a search
space
of 1071040. Honber ger _0400_R2_4 1 has depots, 100 vehicles and 400 custoners with a search
space
of 1071040. Honber ger _0400_RC1_4_1 has depots, 100 vehicles and 400 custonmers with a search
space
of 1071040. Honber ger _0400_RC2_4_1 has depots, 100 vehicles and 400 custonmers with a search
space
of 1071040. Hormber ger _0600_C1_6_1 has depots, 150 vehicles and 600 custoners with a search
space
of 1071666. Homber ger _0600_C2_6_1 has depots, 150 vehicles and 600 custoners with a search
space
of 1071666. Honmberger _0600_R1_6_1 has depots, 150 vehicles and 600 custoners with a search
space
of 1071666. Honberger _0600_R2_6_1 has depots, 150 vehicles and 600 custoners with a search
space
of 1071666. Honber ger _0600_RC1_6_1 has depots, 150 vehicles and 600 custonmers with a search
space
of 1071666. Honber ger _0600_RC2_6_1 has depots, 150 vehicles and 600 custonmers with a search
space
of 1071666. Honmberger_0800_Cl1_8_ 1 has depots, 200 vehicles and 800 custoners with a search
space
of 1072322. Honberger_0800_C2_8_1 has depots, 200 vehicles and 800 custoners with a search
space
of 1072322. Homber ger _0800_R1_8_1 has depots, 200 vehicles and 800 custoners with a search
space
of 1072322. Honberger _0800_R2_8 1 has depots, 200 vehicles and 800 custoners with a search
space

48

Use Cases and Examples

10nr2322.
space
of 1072322.
space
of 1072322.
space
1073000.
space
of 1073000.
space
of 1073000.
space
of 1073000.
space
1073000.
space

of

of

of

Honmber ger _0800_RC1_8_1 has
Honber ger _0800_RC2_8_ 1 has
Honber ger _1000_C110_1 has
Honmber ger _1000_C210_1 has
Honber ger _1000_R110_1 has
Honber ger _1000_R210_1 has
Honber ger _1000_RC110_1 has

Honber ger _1000_RC210_1 has

3.3.3.3. Domain Model

Vehicle

1 depots, 200

1 depots, 200
1 depots, 250
1 depots, 250
1 depots, 250
1 depots, 250
1 depots, 250

1 depots, 250

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

vehi cl es

and

and

and

and

and

and

and

and

800

800

1000

1000

1000

1000

1000

1000

cust oners

custoners

cust oners

cust oners

cust oners

custoners

cust oners

cust oners

with a search

with a search
with a search
with a search
with a search
with a search
search

search

routing class diagram

VehicleRoutingSolution

@PlanningEntityCollectionProperty

@PlanningEntity
[Standstill K Customer
AN ; i
@PlanningVariable read;:*Tlme
'. : S dstill dueTime
previousStandstill | oo jceDuration |
nextCustomer --.. 017\ arrivalTime -
departureTime .|
vehicle —-... '
1
[Vehicle |
readyTime ‘
dueTime |} e
1 1 1
| Depot] [Location]

/
A

Shadow variables

arrivalTime =
previousS.departureTime
+ travelTime

- departureTime =

max(arrivalTime, readyTime)
+ serviceDuration

nextCustomer =
inverse of previousStandstill

vehicle =
(this instanceof Vehicle)
7 this : previousS.vehicle

The vehicle routing with timewindows domain model makes heavily use of shadow variables. This
allows it to express its constraints more naturally, because properties such as arri val Ti ne and
depart ur eTi ne, are directly available on the domain model.

49

Use Cases and Examples

3.3.3.4. Road Distances Instead of Air Distances

In the real world, vehicles can't follow a straight line from location to location: they have to use
roads and highways. From a business point of view, this matters a lot:

Vehicle routing distance type

Can we optimize for air distances, when we need road distances or driving times?

Optimized for air distance
-
& = e A o=
;
... road distance ' m :
e
_ »> >
- i
LB / » 2327.32 km 118 632 sec
... driving time ' 3.8% worse 4.0% worse
e
e | -~ ™. 224315km 115516 sec
” - ” _ ' best 1.2% worse
/ ” } : 2 300.32 km 114 105 sec
o 2.5% worse best

For the optimization algorithm, this doesn't matter much, as long as the distance between
2 points can be looked up (and are preferably precalculated). The road cost doesn't even
need to be a distance, it can also be travel time, fuel cost, or a weighted function of
those. There are several technologies available to precalculate road costs, such as Graph-
Hopper [https://graphhopper.com/] (embeddable, offline Java engine), Open MapQuest [http://
open.mapquestapi.com/directions/#matrix] (web service) and Google Maps Client API [https://
developers.google.com/maps/documentation/webservices/client-library] (web service).

50

https://graphhopper.com/
https://graphhopper.com/
https://graphhopper.com/
http://open.mapquestapi.com/directions/#matrix
http://open.mapquestapi.com/directions/#matrix
http://open.mapquestapi.com/directions/#matrix
https://developers.google.com/maps/documentation/webservices/client-library
https://developers.google.com/maps/documentation/webservices/client-library
https://developers.google.com/maps/documentation/webservices/client-library

Use Cases and Examples

Integration with real maps

Google Maps or GraphHopper (OpenStreetMap) calculate distances, OptaPlanner optimizes the trips.

Locations Fetch distance matrix
with latitude and longitude for every pair of locations

C Google Maps, .| A B CD = 40min
REST Client & | 0 50 809050 30min] o
B' LY o A |50 0 2030860) IHE"?) “?
B |8030 0 3030 ~20m g~ 30min 1500,
; -ﬂ';l GraphHopper C (903230 0 40 o ey
A REST or local D |5060 3040 0 50min
2 OptaPlanner
Render in browser Optimize trips

under hard and soft constraints

Google Maps| .| ™ A B C D e ___,/".C
JavaScript i 50 ~ 30min -'L B~ D
A 50 30 3 0min)
B 30 \‘"':'ﬂ-.hl_::\\ 30min 'L'\::D“'il'
Leaflet.js C 30 N
JavaScript D |50 A Il

S50min

There are also several technologies to render it, such as Leaflet [http://leafletjs.com] and
Google Maps for developers [https://developers.google.com/maps/]: the opt apl anner - webexam
pl es-*. war has an example which demonstrates such rendering:

51

http://leafletjs.com
http://leafletjs.com
https://developers.google.com/maps/
https://developers.google.com/maps/

Use Cases and Examples

Leaflet.js Google Maps

) , ﬁ II .
JUEANLEGEM P |7 Map | Sateliite]I-
N

/ oy,
- e E%rqe

] Vlissingen op Zoon ;
K 2 iE’t. "‘"Tgmeuzen C[a1z] _BTEK
- “Elankgberge . = {F L =Kapelle
An erp

S F e Y

O ﬁ&: E5 Eaux-
4 Vale clen s
Denain M:

Walcourl
el

,Couvin -

' Parc natu_;l-n

Map Data Terms of Usa) Repurl | ma‘p error

Cambrm Le Quesnoy . 5
Caudry Aulnoye Aymerles

It's even possible to render the actual road routes with GraphHopper or Google Map Directions,
but because of route overlaps on highways, it can become harder to see the standstill order:

52

Use Cases and Examples

MIGOBIDUrg WyEs

NP2
Vlissingen

"
U KA keteist Terneuzen
e ~ cBlankberge <"

L I'I"I'h'E
Gge1 uMQl

Beringen
ng

g oLt i] EEI
£ MNiv E| A | WIEFS . Simr oﬂra'l
Sepetle
[: i3 : | -,k hleide
ruay-la- duissiérer i e . . - F
i n atl MaITedy

il i encmn 5 pinchig
1= ¥ : et
De i Maubeu 2

levennes
o

::... Wt T Gambral Le ﬂuesnoy a
o ﬂaudr}' Aulnoye- Ayrnerles

s-Ardennes

f ’
(+) . I

Charleville-Méziere

A

T Tetgnier
3)%

Luxembaurg
) Clty-....-ﬂ'
Mayon
Saint-Jist- en- Chaussée

1 Chauny ! ., e a4 L.
C firinles 1N W 7 He'tshlel ua L
auvais - Comoieane . L Map data ©2015 GeoBasis-DE/BKG {@ZUEIQ] Google . Terms of Usé - - ‘Report &miap error

Take special care that the road costs between 2 points use the same optimization criteria as the
one used in Planner. For example, GraphHopper etc will by default return the fastest route, not
the shortest route. Don't use the km (or miles) distances of the fastest GPS routes to optimize the
shortest trip in Planner: this leads to a suboptimal solution as shown below:

53

Use Cases and Examples

Road distance triangle inequality

Routes and trips must optimize the same property to avoid suboptimal solutions.

Shortest GPS routes

C B0km
Omin

30km,
30min{ g~
ey 40km

S50km 7

S0t :'J'[-Ilju""i" 50min
o o
Pkl Tl

A 60— .
50min

Fastest GPS routes

In this example, only the A—C route
differs between shortest and fastest.
In the real world, almost all routes differ.

Goal: shortest trip

using shortest GPS routes

+A—-C—-B—~D—
60 + 50 + 30 + 30 + 40 = 210km

optima

Goal: shortest trip
using fastest GPS routes

Violates iriangle ineguality! C 60k
m

Al £ A B
80 £ 20+ 30 30km|
g Ip
A 40km

+A+B—->C—-D—
60 + 30 + 30 + 60 + 40 = 220km

suboptimal

Goal: fastest trip
using shortest GPS routes

+A+B~>C—D-—
50 + 30 + 30 + 40 + 50 = 200min

suboptimal

Goal: fastest trip
using fastest GPS routes

C

30min) g~
B

30min BOH"iI-M'ISD"iP
A - .'———____'J;ml
50min

+A—-C B D
50 + 30 + 30 + 30 + 50 = 190min

optima

Contrary to popular belief, most users don't want the shortest route: they want the fastest route
instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the
real world, the fastest and shortest route are rarely the same.

3.3.4. Project Job Scheduling

3.3.4.1. Problem Description

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a
project. A job can be executed in different ways: each way is an execution mode that implies a
different duration but also different resource usages. This is a form of flexible job shop scheduling.

54

Use Cases and Examples

Project job scheduling

For each job, choose an execution mode and a start time.

November
1 2 34 4 5 & 7T 8 9 10 11

Design
Cover

Pages (400/book)

Book 1 <

Assembly
Design
Cover

Pages (500/book)

Book 2 <

Assembly

A

1Gr_g.fdav

Resources < 1@;::33:

1 @ fday

Hard constraints:

« Job precedence: a job can only start when all its predecessor jobs are finished.
» Resource capacity: do not use more resources then available.

» Resources are local (shared between jobs of the same project) or global (shared between
all jobs)

» Resource are renewable (capacity available per day) or nonrenewable (capacity available
for all days)

Medium constraints:

» Total project delay: minimize the duration (makespan) of each project.

Soft constraints:

» Total makespan: minimize the duration of the whole multi-project schedule.

55

Use Cases and Examples

The problem is defined by the MISTA 2013 challenge [http://allserv.kahosl.be/
mista2013challenge/].

3.3.4.2. Problem Size

Schedule A-1 has 2 projects, 24 jobs, 64 execution nodes, 7 resources and 150 resource
requi renments. Schedule A-2 has 2 projects, 44 jobs, 124 execution nodes, 7 resources and
420 resource requirenents. Schedule A-3 has 2 projects, 64 jobs, 184 execution nodes,

7 resources and 630 resource requirenents. Schedule A-4 has 5 projects, 60 j obs, 160
execution nodes, 16 resources and 390 resource requirenments. Schedule A-5 has 5 projects, 110
jobs, 310 execution nodes, 16 resources and 900 resource requirenments. Schedule A-6 has 5
projects, 160 jobs, 460 execution npdes, 16 resources and 1440 resource requirenments. Schedul e
A7 has 10 projects, 120 jobs, 320 execution nodes, 22 resources and 900 resource
requi renments. Schedule A-8 has 10 projects, 220 jobs, 620 execution nodes, 22 resources and
1860 resource requirenments. Schedule A-9 has 10 projects, 320 jobs, 920 execution nodes, 31
resour ces and 2880 resource requirenents. Schedul e A-10 has 10 projects, 320 jobs, 920 execution
nodes, 31 resources and 2970 resource requirenents. Schedule B-1 has 10 projects, 120 jobs
320 execution nodes, 31 resources and 900 resource requirenents. Schedule B-2 has 10 projects
220 jobs, 620 execution nodes, 22 resources and 1740 resource requirenents. Schedul e B-3 has 10
projects, 320 jobs, 920 execution npdes, 31 resources and 3060 resource requirenents. Schedul e
B-4 has 15 projects, 180 jobs, 480 execution npdes, 46 resources and 1530 resource
requi renments. Schedule B-5 has 15 projects, 330 jobs, 930 execution nodes, 46 resources and
2760 resource requirenents. Schedule B-6 has 15 projects, 480 jobs, 1380 execution nodes, 46
resources and 4500 resource requirenents. Schedul e B-7 has 20 projects, 240 jobs, 640 execution
nodes, 61 resources and 1710 resource requi renents. Schedul e B-8 has 20 projects, 440 jobs, 1240
execution nodes, 42 resources and 3180 resource requirenents. Schedule B-9 has 20 projects, 640
jobs, 1840 execution npdes, 61 resources and 5940 resource requirenents. Schedul e B-10 has 20
projects, 460 jobs, 1300 execution nodes, 42 resources and 4260 resource requirenents
150 resource requirenments. Schedule A-2 has 2 projects, 44 jobs, 124 execution nodes, 7
resources
and 420 resource requirements. Schedule A-3 has 2 projects, 64 jobs, 184 execution nobdes
resources
and 630 resource requirenents. Schedule A-4 has 5 projects, 60 jobs, 160 execution nodes
resources
and 390 resource requirenents. Schedule A-5 has 5 projects, 110 jobs, 310 execution nodes
resources
and 900 resource requirenments. Schedule A-6 has 5 projects, 160 jobs, 460 execution nodes
resources

and 1440 resource requirenents. Schedule A-7 has 10 projects, 120 jobs, 320 execution nodes,
resources
and 900 resource requirenents. Schedule A-8 has 10 projects, 220 jobs, 620 execution nbdes
resources

and 1860 resource requirenments. Schedule A-9 has 10 projects, 320 jobs, 920 execution nodes
resources

and 2880 resource requirenents. Schedule A-10 has 10 projects, 320 jobs, 920 execution nodes
resources

and 2970 resource requirenents. Schedule B-1 has 10 projects, 120 jobs, 320 execution nodes,
resources
and 900 resource requirenents. Schedule B-2 has 10 projects, 220 jobs, 620 execution nbdes
resources

and 1740 resource requirenments. Schedule B-3 has 10 projects, 320 jobs, 920 execution nodes
resources

and 3060 resource requirenents. Schedule B-4 has 15 projects, 180 jobs, 480 execution nodes
resources

and 1530 resource requirenments. Schedule B-5 has 15 projects, 330 jobs, 930 execution nodes
resources

56

16

16

16

22

22

31

31

31

22

31

46

46

http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/

Use Cases and Examples

and 2760 resource requirenents. Schedule B-6 has 15 projects, 480 jobs, 1380 execution nodes,
resources
and 4500 resource requirenents. Schedule B-7 has 20 projects, 240 jobs, 640 execution nodes,
resources
and 1710 resource requirenents. Schedule B-8 has 20 projects, 440 jobs, 1240 execution nodes,
resources
and 3180 resource requirenments. Schedule B-9 has 20 projects, 640 jobs, 1840 execution nodes,
resources
and 5940 resource requirenents. Schedul e B-10 has 20 projects, 460 jobs, 1300 execution nodes,
resources

3.3.5. Hospital Bed Planning (PAS - Patient Admission Schedul-
ing)
3.3.5.1. Problem Description

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The
arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

This problem features overconstrained datasets.

Patient admission schedule

Assign each patient a hospital bed.

Largest admission first OptaPlanner
November November
1 2 3 4 5 6 7 1 2 3 4 5

46

61

42

61

42

General ward
Room 11 bed 1

Room 11 bed 2

Intensive care®
Room 21 bed 1

Room 22 bed 1

no space

Use Cases and Examples

Hard constraints:

« 2 patients must not be assigned to the same bed in the same night. Weight: - 1000hard *
conflictN ght Count.

« A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all. Weight: - 50hard * ni ght Count .

« A department can have a minimum or maximum age. Weight: - 100hard * ni ght Count .
« A patient can require a room with specific equipment(s). Weight: - 50hard * ni ght Count.

Medium constraints:

« Assign every patient to a bed, unless the dataset is overconstrained. Weight: - 1medi um *
ni ght Count .

Soft constraints:

A patient can prefer a maximum room size, for example if he/she wants a single room. Weight:
-8soft * night Count.

« A patient is best assigned to a department that specializes in his/her problem. Weight: - 10sof t
* ni ght Count .

« A patient is best assigned to a room that specializes in his/her problem. Weight: - 20soft *
ni ght Count .

» That room speciality should be priority 1. Weight: - 10soft * (priority - 1) * ni ght Count.
» A patient can prefer a room with specific equipment(s). Weight: - 20sof t * ni ght Count .

The problem is a variant on Kaho's Patient Scheduling [http://allserv.kahosl.be/~peter/pas/] and
the datasets come from real world hospitals.

3.3.5.2. Problem Size

testdata0l has 4 specialisnms, 2 equipnents, 4 departnments, 98 roons, 286 beds, 14 nights, 652
patients and 652 admi ssions with a search space of 1071601.testdata02 has 6 specialisnms, 2
equi pnents, 6 departnents, 151 roons, 465 beds, 14 nights, 755 patients and 755 admi ssions with
a search space of 1072013.testdata03 has 5 specialisnms, 2 equi pnments, 5 departnents, 131 roons,
395 beds, 14 nights, 708 patients and 708 admi ssions with a search space of 1071838.test dat a4
has 6 specialisns, 2 equipnents, 6 departnents, 155 roons, 471 beds, 14 nights, 746 patients
and 746 adm ssions with a search space of 1071994.testdata05 has 4 specialisns, 2 equipnents,
4 departnents, 102 roons, 325 beds, 14 nights, 587 patients and 587 adm ssions with a search
space of 1071474.testdata06 has 4 specialisns, 2 equipnents, 4 departnents, 104 roons, 313
beds, 14 nights, 685 patients and 685 admissions with a search space of 1071709.testdata07
has 6 specialisnms, 4 equipnents, 6 departnents, 162 roons, 472 beds, 14 nights, 519 patients
and 519 admi ssions with a search space of 1071387.testdata08 has 6 specialisnms, 4 equi pnents,
6 departnents, 148 roons, 441 beds, 21 nights, 895 patients and 895 admi ssions with a search
space of 1072366.testdata09 has 4 specialisns, 4 equipnents, 4 departnents, 105 roons, 310
beds, 28 nights, 1400 patients and 1400 admi ssions with a search space of 1073487.testdatall
has 4 specialisns, 4 equipnents, 4 departnents, 104 roons, 308 beds, 56 nights, 1575 patients
and 1575 admissions with a search space of 1073919.testdatall has 4 specialisns, 4 equipnents,

58

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Use Cases and Examples

4 departnents,
space of
beds,

has 5 specialisns, 4 equipnents,

107 roons, 318 beds,
1076291. testdatal2 has 4 specialisns,
84 nights,

91 nights,

4 equi pnents,

105

r oons,

2514 patients and 2514 adm ssions with a search
4 departnents,

310

2750 patients and 2750 admissions with a search space of 1076851.testdatal3

5 departnents,

and 1109 admi ssions with a search space

a search space of
beds, 14 nights,
a search space of
beds, 14 nights,
a search space of
beds, 14 nights,
a search space of
beds, 14 nights,
a search space of
beds, 14 nights,
a search space of
beds, 14 nights,
a search space of
beds, 21 nights,
a search space of
310 beds,
a search space of
308 beds,
a search space of
318 beds,
a search space of
310 beds,
a search space of
beds, 28 nights,

28 nights,

56 nights,

91 ni ghts,

84 nights,

1071601. t est dat a02
755 patients and
1072013. t est dat a03
708 patients and
1071838. t est dat a04
746 patients and
1071994. t est dat a05
587 patients and
10"1474. t est dat a06
685 patients and
1071709. t est dat a07
519 patients and
1071387. t est dat a08
895 patients and
1072366. t est dat a09

has
755
has
708
has
746
has
587
has
685
has
519
has
895
has

125 roons,
of 1072845.

6 specialisns, 2 equipnents,
admi ssions with
5 specialisns, 2
admi ssions with
6 specialisns, 2
admi ssions with
4 specialisnms, 2
admi ssions with
4 specialisnms, 2
admi ssions with
6 specialisns, 4
admi ssions with
6 specialisns, 4
admi ssions with
4 specialisms, 4 equipnents,

equi pnent s,

equi pnent s,

equi pnent s,

equi pnent s,

equi pnent s,

equi pnent's,

1400 patients and 1400 admi ssions with

1073487.testdat al0 has 4 specialisnms, 4 equipnents,

1575

patients and 1575 admi ssions with

1073919. testdat all has 4 specialisnms, 4 equipnents,

2514 patients and 2514 admi ssions with

1076291. t estdatal2 has 4 specialisns, 4 equipnents,

2750 patients and 2750 admi ssions with

1076851. testdat al3 has 5 specialisns, 4 equipnents,
907 patients and 1109 admi ssions with

368 beds,

28 nights,

6 departnents,

5 departnents,

6 departments,

4 departnents,

4 departnents,

6 departnents,

6 departments,

4 departnents,

4 departnents,

4 departnents,

4 departnents,

5 departnents,

151

131

155

102

104

162

148

105

104

107

105

125

907 patients

roons, 465
roons, 395
roons, 471
roons, 325
roons, 313
roons, 472
roons, 441
roomns,
roomns,
roomns,
r oons,

roons, 368

59

Use Cases and Examples

3.3.5.3. Domain Model

Hospital bed allocation class diagram

r ~ RequiredPE |- .
(Patient k1 PreferredPE }—f Equipment]
1 1
[Night] [Department | [RoomEquipment |
1 1 1 *
. . . . 1
[AdmissionPart | (Room]
1 1
[Bed —
1

@PlanningVariable
. @ PlanningEntity

[BedDesignation]
@PlanningEntityCollectionProperty
@PlanningSolution
[PatientAdmissionSchedule]

3.4. Difficult Examples

3.4.1. Exam Timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem Description

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

60

Use Cases and Examples

Examination Ann [History | Math |
timetabling | [B] Bobby [History | Math |
Assign each exam Carla [HiStOI’Y]
sperodand | () Dan (Math_[Chem
(E) Edna Chem| Bio | Geo]
Fred [Bio | (Eng |
Greg Geo | Eng
Most students first OptaPlanner
Room X | |RoomY Room X | |RoomY
4 seats 3 seats 4 seats 3 seats
Mon 09:00 History Chem Chem| Eng | | History
o (AlB]c] [D[E] D[E]F]
B 09:00 Math |Fr|| Bio Math Bio
o ‘AlBID]|c] [EIF) AlB|D] [E|F]
same /, ..Il'n same same /
Fri 14:00 day/ | o % day/ f:"
y /!

—

same time

Hard constraints:

Exam conflict: 2 exams that share students must not occur in the same period.
* Room capacity: A room's seating capacity must suffice at all times.

 Period duration: A period's duration must suffice for all of its exams.

Period related hard constraints (specified per dataset):

» Coincidence: 2 specified exams must use the same period (but possibly another room).
» Exclusion: 2 specified exams must not use the same period.

» After: A specified exam must occur in a period after another specified exam's period.

« Room related hard constraints (specified per dataset):

» Exclusive: 1 specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

61

Use Cases and Examples

* The same student should not have 2 exams in a row.

» The same student should not have 2 exams on the same day.

» Period spread: 2 exams that share students should be a number of periods apart.
* Mixed durations: 2 exams that share a room should not have different durations.
* Front load: Large exams should be scheduled earlier in the schedule.

 Period penalty (specified per dataset): Some periods have a penalty when used.
* Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://
www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm]. Geoffrey De Smet finished 4th in
that competition with a very early version of Planner. Many improvements have been made since
then.

3.4.1.2. Problem Size

exam conp_setl has 7883 students, 607 exans, 54 periods, 7 rooms, 12 period constraints
and 0O roomconstraints with a search space of 1071564. exam conp_set2 has 12484 students, 870
exans, 40 periods, 49 roonms, 12 period constraints and 2 roomconstraints with a search space
of 1072864. exam conp_set3 has 16365 students, 934 exanms, 36 periods, 48 roonms, 168 period
constraints and 15 room constraints with a search space of 1073023.exam conp_set4 has 4421
students, 273 exans, 21 periods, 1 roons, 40 period constraints and O roomconstraints with
a search space of 107360.examconp_set5 has 8719 students, 1018 exans, 42 periods, 3 roons,
27 period constraints and O room constraints with a search space of 1072138. exam conp_set6
has 7909 students, 242 exans, 16 periods, 8 roonms, 22 period constraints and O room
constraints with a search space of 107509. exam conp_set 7 has 13795 students, 1096 exans,
80 periods, 15 roons, 28 period constraints and 0O room constraints with a search space
of 1073374.exam conp_set8 has 7718 students, 598 exans, 80 peri ods, 8 roons, 20 period
constraints and 1 roomconstraints with a search space of 107"1678.

search space of 1071564. exam conp_set2 has 12484 students, 870 exans, 40 periods, 49 roons,
12 period constraints and 2 roomconstraints with a

search space of 1072864.exam conp_set3 has 16365 students, 934 exans, 36 periods, 48 roons,
168 period constraints and 15 room constraints with a

search space of 1073023.exam conp_set4 has 4421 students, 273 exans, 21 periods, 1 roons,
40 period constraints and 0 roomconstraints with a

search space of 107360.exam conp_set5 has 8719 students, 1018 exams, 42 periods, 3 roons,

27 period constraints and O roomconstraints with a

search space of 1072138.exam conp_set6 has 7909 students, 242 exans, 16 periods, 8 roons,
22 period constraints and 0O roomconstraints with a

search space of 107509. exam conp_set7 has 13795 students, 1096 exans, 80 periods, 15 roons,

28 period constraints and O roomconstraints with a

search space of 1073374.exam conp_set8 has 7718 students, 598 exans, 80 periods, 8 roons,
20 period constraints and 1 room constraints with a

3.4.1.3. Domain Model

Below you can see the main examination domain classes:

62

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Use Cases and Examples

=<interface>=
Solution

<<singleton==>
InstitutionParametrization

~

X - twolnARowPenality : int
— - twolnADayPenality : int
<<singieton== - periodSpreadLength : int
Examination |——3 . periodSpreadPenality : int

1 - mixedDurationPenality : int
- frontLoadLargeTopicSize : int
1 - examlList - frontLoadLastPeriodSize : int

- frontLoadPenality : int

An exam changes during

solving: 1.*
The exam.period and/or exam.
room reference change. <<@PlanningEntity ==
The exam.id and exam.topic = Exam
reference do not change.)
-id : long
- .- room
1 4 topic " |- period ™~
Calculated before solving % 0.* [N
T 1 A/ “\ 5
! A = Room
- - Period 1
TopicConflict o -id: long
T -ld:long - capacity : int
- studentSize : int - startDateTimeString : String 3 peﬁalty% int
- periodindex : int
0.+ - daylndex : int
- leftTopic 0.* - duration : int
- rightTopic - penalty : int
- frontLoadLast : boolean
1 1 .
- elA//—- RoomHardConstraint
Topic topic | -id: long
-id : long .é._--—-—--""""' PeriodHardConstraint
- duration : int - leftTopic | 4. long
- frontLoadLarge : boolean 1
1 - rightTopic
- stlidentList 1 1
O”:{:
<<enums> <<enums=:=
Student PeriodHardConstraintType RoomHardConstraintType
-id : long - COINCIDENCE : int - ROOM_EXCLUSIVE : int
- EXCLUSION : int
. - AFTER @ int
Mot asserted into the working
memaory

Figure 3.3. Examination Domain Class Diagram

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving (this is the planning entity class), when their period or room
property changes. The Topi c, Peri od and Roominstances never change during solving (these
are problem facts, just like some other classes).

63

Use Cases and Examples

3.4.2. Employee Rostering (INRC 2010 - Nurse Rostering)

3.4.2.1. Problem Description

For each shift, assign a nurse to work that shift.

Employee shift rostering

Populate each work shift with a nurse.

h Maternity nurses ‘ h Emergency nurses ‘ Basic nurses
D H

Ann . Beth . Cory Dan . Elin . Greg Hue m llse

Largest staff first OptaPlanner
Sat Sun Mon Sat Sun Mon
6 14 22| & 14 22 6 14 22 6 14 22| & 14 22| & 14
| | | | | | | | | | | | | | | | |
Maternity
nurses
Emergency
nurses
Any
nurses

Hard constraints:

« No unassigned shifts (build-in): Every shift need to be assigned to an employee.
« Shift conflict: An employee can have only 1 shift per day.

Soft constraints:

« Contract obligations. The business frequently violates these, so they decided to define these
as soft constraints instead of hard constraints.

e Minimum and maximum assignments: Each employee needs to work more than x shifts
and less than y shifts (depending on their contract).

64

Use Cases and Examples

Minimum and maximum consecutive working days: Each employee needs to work be-
tween x and y days in a row (depending on their contract).

Minimum and maximum consecutive free days: Each employee needs to be free between
x and y days in a row (depending on their contract).

Minimum and maximum consecutive working weekends: Each employee needs to work
between x and y weekends in a row (depending on their contract).

Complete weekends: Each employee needs to work every day in a weekend or not at all.

Identical shift types during weekend: Each weekend shift for the same weekend of the
same employee must be the same shift type.

Unwanted patterns: A combination of unwanted shift types in a row. For example: a late
shift followed by an early shift followed by a late shift.

Employee wishes:

Day on request: An employee wants to work on a specific day.
Day off request: An employee does not want to work on a specific day.
Shift on request: An employee wants to be assigned to a specific shift.

Shift off request: An employee does not want to be assigned to a specific shift.

Alternative skill: An employee assigned to a skill should have a proficiency in every skill re-
quired by that shift.

65

Use Cases and Examples

Employee shift rostering

Hard constraints
Wed

6 14 22

Thu

6 14 22

Fri

6 14 22

Sat

6 14 22
| | |

Mon

6 14 22

Sun

6 14 22
| | |

Mon Tue
6 14 22 6 14 22

All required shifts must be assigned

No hard constraint broken => solution is feasible

66

Use Cases and Examples

Employee shift rostering

Soft constraints
Mon Tue Wed Thu Fri Sat Sun Mon

14 221 6 14 221 & 14 22| & 14 22| 6 14 22| & 14 22 6 14 221 & 14 2

— &

|
Maximum consecutive working days for Ann:

I
5
K KSR R ﬂlllllllﬂﬂﬂﬂﬂﬂﬂ
NdEYEErEnraue T unrun -

3 B 7

EH

M

Minimum consecutive free days for Beth: 2 Day off wish for Carla: Sunday

111111111 11[1 111 (11111111111
R

1
After a night shift sequence: 2 free days Unwanted pattern: E-L

e frpafafaafrfrpafafarfrfeiafaffe
712 ol 22 [el 222 (2Bl [[7 (7 € 2 2 [[El 2 >

There are many more soft constraints...

EH
]
—

r'n

The problem is defined by the International Nurse Rostering Competition 2010 [http://
www.kuleuven-kortrijk.be/nrpcompetition].

3.4.2.2. Problem Size

There are 3 dataset types:

 sprint: must be solved in seconds.
* medium: must be solved in minutes.

« long: must be solved in hours.

toyl has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 enployees, 7 shiftDates,
35 shiftAssignnents and 0 requests with a search space of 10727.toy2 has 1
skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 enpl oyees, 28 shiftDates, 180 shiftAssignnents
and 140 requests with a search space of 107234.sprint01 has 1 skills, 4 shiftTypes, 3
patterns, 4 contracts, 10 enpl oyees, 28 shiftDates, 152 shiftAssignnents and 150 requests with
a search space of 107152.sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts,
10 enpl oyees, 28 shiftDates, 152 shiftAssignnments and 150 requests with a search space of
107152. sprint 03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28
shiftDates, 152 shiftAssignnents and 150 requests with a search space of 107152. spri nt 04

67

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Use Cases and Examples

has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enployees, 28 shiftDates, 152

shi ft Assi gnments and 150 requests with a search space of 107152.sprint05 has 1 skills,
4 shiftTypes, 3 patterns, 4 contracts, 10 enployees, 28 shiftDates, 152 shiftAssignnents and
150 requests with a search space of 107152. spri nt 06 has 1 skills, 4 shiftTypes, 3
patterns, 4 contracts, 10 enpl oyees, 28 shiftDates, 152 shiftAssignnents and 150 requests with
a search space of 107152.sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts,
10 enpl oyees, 28 shiftDates, 152 shiftAssignnments and 150 requests with a search space of

107152. sprint 08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enpl oyees, 28

shiftDates, 152 shiftAssignments and 150 requests with a search space of 107152.sprint09
has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 enployees, 28 shiftDates, 152
shi ft Assi gnments and 150 requests with a search space of 107152.sprint10 has 1 skills,
4 shiftTypes, 3 patterns, 4 contracts, 10 enployees, 28 shiftDates, 152 shiftAssignnents and
150 requests with a search space of 107152. sprint_hint01 has 1 skills, 4 shiftTypes, 8
patterns, 3 contracts, 10 enpl oyees, 28 shiftDates, 152 shiftAssignnents and 150 requests with
a search space of 107152.sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts,
10 enpl oyees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of
107152. sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enployees, 28
shiftDates, 152 shiftAssignnents and 150 requests with a search space of 107152.sprint_|ate0l
has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enployees, 28 shiftDates, 152
shift Assi gnments and 150 requests with a search space of 107152.sprint_late02 has 1 skills,
3 shiftTypes, 4 patterns, 3 contracts, 10 enpl oyees, 28 shiftDates, 144 shiftAssignments and
139 requests with a search space of 107144.sprint_late03 has 1 skills, 4 shiftTypes, 8
patterns, 3 contracts, 10 enpl oyees, 28 shiftDates, 160 shiftAssignnents and 150 requests with
a search space of 107160.sprint_|late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts,
10 enpl oyees, 28 shiftDates, 160 shiftAssignnents and 150 requests with a search space of
107160.sprint_|late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 enployees, 28
shiftDates, 152 shiftAssignnments and 150 requests with a search space of 107152.sprint_| ate06
has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 enployees, 28 shiftDates, 152
shift Assi gnments and 150 requests with a search space of 107152.sprint_late07 has 1 skills,
4 shiftTypes, 0 patterns, 3 contracts, 10 enployees, 28 shiftDates, 152 shiftAssignnents and
150 requests with a search space of 107152. sprint_late08 has 1 skills, 4 shiftTypes, O
patterns, 3 contracts, 10 enpl oyees, 28 shiftDates, 152 shiftAssignnments and 0 requests with
a search space of 107152.sprint_|late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts,
10 enpl oyees, 28 shiftDates, 152 shiftAssignnents and 0 requests with a search space of
107152.sprint_latel0 has 1 skills, 4 shiftTypes, O patterns, 3 contracts, 10 enpl oyees, 28
shiftDates, 152 shiftAssignnents and 150 requests with a search space of 107152. nedi unD1
has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 enployees, 28 shiftDates, 608
shi ft Assi gnments and 403 requests with a search space of 107906. nedi unD2 has 1 skills, 4
shift Types, 0 patterns, 4 contracts, 31 enpl oyees, 28 shiftDates, 608 shiftAssignments and 403
requests with a search space of 107906. nedi unD3 has 1 skills, 4 shiftTypes, O patterns,
4 contracts, 31 enployees, 28 shiftDates, 608 shiftAssignnents and 403 requests with a search
space of 107906. nedi und4 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 enpl oyees,
28 shiftDates, 608 shiftAssignnents and 403 requests with a search space of 107906. nedi unD5
has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 enployees, 28 shiftDates, 608
shift Assi gnments and 403 requests with a search space of 107906. nedi um hintOl has 1 skills,
4 shiftTypes, 7 patterns, 4 contracts, 30 enployees, 28 shiftDates, 428 shiftAssignnents and
390 requests with a search space of 107632. nedi um hint02 has 1 skills, 4 shiftTypes, 7
patterns, 3 contracts, 30 enployees, 28 shiftDates, 428 shiftAssignnents and 390 requests with
a search space of 107632.nmedi um hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts,
30 enpl oyees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of
107632. medium |l ate01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 enployees, 28
shiftDates, 424 shiftAssignments and 390 requests with a search space of 107626. medi um | at e02
has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 enployees, 28 shiftDates, 428
shi ft Assi gnments and 390 requests with a search space of 107632.nmedium|ate03 has 1 skills, 4
shift Types, 0 patterns, 4 contracts, 30 enpl oyees, 28 shiftDates, 428 shiftAssignments and 390
requests with a search space of 107632.nediuml|ate04 has 1 skills, 4 shiftTypes, 7 patterns,
3 contracts, 30 enpl oyees, 28 shiftDates, 416 shiftAssignments and 390 requests with a search
space of 107614. nedi um | ate05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 enpl oyees,
28 shiftDates, 452 shiftAssignnents and 390 requests with a search space of 107667.10ng01

68

Use Cases and Examples

has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
shi ft Assi gnments and 735 requests with a search space of 1071250.10ong02 has 2 skills, 5
shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees, 28 shiftDates, 740 shiftAssi gnments and 735
requests with a search space of 1071250.10ng03 has 2 skills, 5 shiftTypes, 3 patterns,
3 contracts, 49 enployees, 28 shiftDates, 740 shiftAssignnents and 735 requests with a search
space of 1071250.1 ong04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enpl oyees,
28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 1071250.10ong05
has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 enployees, 28 shiftDates, 740
shift Assignments and 735 requests with a search space of 1071250.1ong_hi nt 01 has 2 skills,
5 shiftTypes, 9 patterns, 3 contracts, 50 enployees, 28 shiftDates, 740 shiftAssignnents and
0 requests with a search space of 1071257.1ong_hi nt02 has 2 skills, 5 shiftTypes, 7
patterns, 3 contracts, 50 enpl oyees, 28 shiftDates, 740 shiftAssignnments and 0 requests with
a search space of 1071257.1ong_hi nt 03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts,
50 enployees, 28 shiftDates, 740 shiftAssignnents and 0 requests with a search space of
1071257. 1 ong_| at e01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enployees, 28
shiftDates, 752 shiftAssignnents and 0 requests with a search space of 1071277.1ong_l ate02
has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 enployees, 28 shiftDates, 752
shift Assignments and O requests with a search space of 1071277.long_|l ate03 has 2 skills, 5
shiftTypes, 9 patterns, 3 contracts, 50 enployees, 28 shiftDates, 752 shiftAssignnents and 0
requests with a search space of 1071277.1ong_| at e04 has 2 skills, 5 shiftTypes, 9 patterns,
4 contracts, 50 enployees, 28 shiftDates, 752 shiftAssignnents and 0 requests with a search
space of 1071277.long_l ate05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 enpl oyees,
28 shiftDates, 740 shiftAssignnments and 0 requests with a search space of 1071257.

28 shiftDates, 740

search space of

contracts, 20
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10

enpl oyees,

of
enpl oyees,
of 107152
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of 107152
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of 107152
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of
enpl oyees,
of 107152
enpl oyees,
of
enpl oyees,
of
enpl oyees,

10727. t oy2

10"7234.

107152.

107152.

107152.

107152.

107152.

107152.

107152.

107152.

107152.

107152.

10"144.

28 shiftDates,

sprint01
28 shiftDates,

.sprint02

28 shiftDates,
sprint03
28 shiftDates,
sprint 04
28 shiftDates,
sprint 05
28 shiftDates,

.sprint06

28 shiftDates,
sprint07
28 shiftDates,
sprint08
28 shiftDates,
sprint09
28 shiftDates,

.sprintl0

28 shiftDates,
sprint_hint01
28 shiftDates,
sprint _hi nt 02
28 shiftDates,
sprint_hint03
28 shiftDates,

.sprint_late0l

28 shiftDates,
sprint_| ate02
28 shiftDates,
sprint_| ate03
28 shiftDates,

has 1 skills,

3 shiftTypes,

3 patterns, 2

180 shiftAssignnents and 140 requests with

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

3 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

8 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shift Types,

0 patterns,

152 shiftAssignnents and 150 requests

has 1 skills,

4 shift Types,

8 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

4 shiftTypes,

8 patterns,

152 shiftAssignments and 150 requests

has 1 skills,

3 shiftTypes,

4 patterns,

144 shiftAssignnents and 139 requests

has 1 skills,

4 shift Types,

8 patterns,

4
with
4
with
4
W th
4
with
4
with
4
with
4
W th
4
with
4
with
4
with
3
W th
8
with
3
with
8
with
3
W th
8

160 shiftAssignnents and 150 requests with

69

Use Cases and Examples

of 107160.
enpl oyees,
of 107160.
enpl oyees,
of 107152
enpl oyees,
of 107152
enpl oyees,
of 107152
enpl oyees,
of 107152.
enpl oyees,
of 107152
enpl oyees,

a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10
a search space
contracts, 10

sprint_| ate04
28 shiftDates,
sprint_| ate05
28 shiftDates,
.sprint_| ate06
28 shiftDates,
sprint_| ate07
28 shiftDates,
sprint_| ate08
28 shiftDates,
sprint_| ate09
28 shiftDates,
.sprint_latel0
28 shiftDates,

of 107152
enpl oyees,
of 107906.
enpl oyees,
of 107906.
enpl oyees,
of 107906.
enpl oyees,
of 107906.
enpl oyees,
of 107906
enpl oyees,
of 107632.
enpl oyees,
of 107632.
enpl oyees,
of 107632.
enpl oyees,
of 107626
enpl oyees,
of 107632.
enpl oyees,
of 107632.
enpl oyees,
of 107614
enpl oyees,

medi unD1

28 shiftDates,
medi unD2

28 shiftDates,
medi unD3

28 shiftDates,
medi unD4

28 shiftDates,
medi unD5

28 shiftDates,
. medi um_hi nt 01
28 shiftDates,
medi um_hi nt 02
28 shiftDates,
medi um_hi nt 03
28 shiftDates,
medi um | at e01
28 shiftDates,
. medi um | at e02
28 shiftDates,
medi um | at e03
28 shiftDates,
medi um | at e04
28 shiftDates,
medi um | at e05
28 shiftDates,

a search space
contracts, 31
a search space
contracts, 31
a search space
contracts, 31
a search space
contracts, 31
a search space
contracts, 31
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30
a search space
contracts, 30

a search space of 107667.10ong01
contracts, 49 enpl oyees, 28 shiftDates,
a search space of 1071250.10ng02
contracts, 49 enpl oyees, 28 shiftDates,
a search space of 1071250.10ng03
contracts, 49 enpl oyees, 28 shiftDates,
a search space of 1071250. 1 ong04
contracts, 49 enployees, 28 shiftDates,
a search space of 1071250.10ng05
contracts, 49 enpl oyees, 28 shiftDates,
a search space of 1071250.1 ong_hi nt01
contracts, 50 enployees, 28 shiftDates,
a search space of 1071257.1ong_hi nt 02
contracts, 50 enployees, 28 shiftDates,
a search space of 1071257.1ong_hi nt 03
contracts, 50 enployees, 28 shiftDates,

has 1 skills, 4 shiftTypes, 8 patterns, 3
160 shiftAssignnents and 150 requests with
has 1 skills, 4 shiftTypes, 8 patterns, 3
152 shiftAssi gnments and 150 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 3
152 shiftAssignments and 150 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 3
152 shiftAssignnents and 150 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 3
152 shiftAssignnents and O requests with
has 1 skills, 4 shiftTypes, 0 patterns, 3
152 shiftAssi gnments and 0 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 3
152 shiftAssignments and 150 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
608 shiftAssignnents and 403 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
608 shiftAssignments and 403 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
608 shiftAssignments and 403 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
608 shiftAssignnents and 403 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
608 shiftAssignnents and 403 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 4
428 shiftAssignnments and 390 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 3
428 shiftAssignnents and 390 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 4
428 shiftAssignments and 390 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 4
424 shiftAssignments and 390 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 3
428 shiftAssignments and 390 requests with
has 1 skills, 4 shiftTypes, 0 patterns, 4
428 shiftAssignnents and 390 requests with
has 1 skills, 4 shiftTypes, 7 patterns, 3
416 shiftAssignments and 390 requests with
has 2 skills, 5 shiftTypes, 7 patterns, 4
452 shift Assi gnments and 390 requests with
has 2 skills, 5 shiftTypes, 3 patterns, 3

740 shiftAssignments and 735 requests with
has 2 skills, 5 shiftTypes, 3 patterns, 3
740 shiftAssignments and 735 requests with
has 2 skills, 5 shiftTypes, 3 patterns, 3
740 shiftAssignnents and 735 requests with
has 2 skills, 5 shiftTypes, 3 patterns, 3
740 shiftAssignnents and 735 requests with
has 2 skills, 5 shiftTypes, 3 patterns, 3
740 shiftAssignments and 735 requests with
has 2 skills, 5 shiftTypes, 9 patterns, 3
740 shiftAssignments and 0 requests with
has 2 skills, 5 shiftTypes, 7 patterns, 3
740 shiftAssignnents and O requests with
has 2 skills, 5 shiftTypes, 7 patterns, 3
740 shiftAssignnents and O requests with

70

Use Cases and Examples

a search space of 1071257.long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3
contracts, 50 enployees, 28 shiftDates, 752 shiftAssignments and 0 requests with
a search space of 1071277.1ong_| ate02 has 2 skills, 5 shiftTypes, 9 patterns, 4
contracts, 50 enployees, 28 shiftDates, 752 shiftAssignnents and 0 requests with
a search space of 1071277.1ong_| ate03 has 2 skills, 5 shiftTypes, 9 patterns, 3
contracts, 50 enployees, 28 shiftDates, 752 shiftAssignnents and 0 requests with
a search space of 1071277.1ong_| at e04 has 2 skills, 5 shiftTypes, 9 patterns, 4
contracts, 50 enployees, 28 shiftDates, 752 shiftAssignnents and 0 requests with
a search space of 1071277.long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3
contracts, 50 enployees, 28 shiftDates, 740 shiftAssignments and 0 requests with

3.4.2.3. Domain Model

Employee shift rostering class diagram

| ShiftType j——1_ SkillRequirement }— Skill
1 1
[Shiftbate | [SkillProficiency
1 . .*
' ‘ 1
| Shift] [Employee H Contract
1 1

@~PlanningVariable

N @PlanningEntity .

[ShiftAssignment] , I
P | NRParametrization |
@PlanningEntityCollectionProperty 1

[NurseRoster

3.4.3. Traveling Tournament Problem (TTP)

3.4.3.1. Problem Description

Schedule matches between n teams.

71

Use Cases and Examples

[Philadephia Phillies 30 | Traveling [Montréal Expos 0

|1 awayto tournament (1 [MON] VS 0

[2 away to m 330 Sche;rt‘ilgs:ifnzcsl?o?ﬂatch [2 [MON] VS m 0

%3 %PHI% 0 | %3 [MON] VS 929

4 | PHI 4 away to

0 MON

(5 [PHl}Vs 665 R |[5 awayto ﬁ}]] 30

(6 away to 665 (6 awayto 337
Team distance: 2.011 |

ATL
OptaPlanner

Total distance:
8.276

Hard constraints:

» Each team plays twice against every other team: once home and once away.

» Each team has exactly 1 match on each timeslot.

* No team must have more than 3 consecutive home or 3 consecutive away matches.
* No repeaters: no 2 consecutive matches of the same 2 opposing teams.

Soft constraints:

« Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains the world records too) [http://
mat.gsia.cmu.edu/TOURNY/].

3.4.3.2. Problem Size

1-nl 04 has 6 days, 4 teans and 12 matches with a search space of 1079. 1-nl 06 has
10 days, 6 teans and 30 matches with a search space of 10730. 1-nl 08 has 14 days, 8
teans and 56 matches with a search space of 10764. 1-nl 10 has 18 days, 10 teans and 90

72

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Use Cases and Examples

matches with a search space of 107112.1-nl12 has 22 days, 12 teans and 132 natches with
a search space of 107177.1-nl14 has 26 days, 14 teans and 182 matches with a search space
of 107257.1-nl 16 has 30 days, 16 teanms and 240 matches with a search space of 107354. 2-

bra24 has 46 days, 24 teans and 552 natches with a search space of 107917.3-nfl 16 has

30 days, 16 teans and 240 matches with a search space of 107354.3-nfl 18 has 34 days, 18
teans and 306 matches with a search space of 107468. 3-nfl 20 has 38 days, 20 teans and 380
mat ches with a search space of 107600. 3-nfl 22 has 42 days, 22 teans and 462 natches with
a search space of 107749. 3-nfl 24 has 46 days, 24 teanms and 552 matches with a search space
of 107917.3-nfl 26 has 50 days, 26 teans and 650 matches with a search space of 1071104. 3-
nfl 28 has 54 days, 28 teanms and 756 nmatches with a search space of 1071309. 3-nfl 30 has
58 days, 30 teans and 870 matches with a search space of 1071534. 3-nfl 32 has 62 days, 32
teans and 992 matches with a search space of 1071778. 4-super04 has 6 days, 4 teans and 12
mat ches with a search space of 1079. 4-super06 has 10 days, 6 teans and 30 nmatches with a
search space of 10730. 4- super08 has 14 days, 8 teans and 56 matches with a search space
of 10764. 4- super 10 has 18 days, 10 teans and 90 matches with a search space of 107112. 4-
super12 has 22 days, 12 teanms and 132 matches with a search space of 107177.4-superl14 has
26 days, 14 teanms and 182 matches with a search space of 107257.5-gal axy04 has 6 days, 4
teams and 12 matches with a search space of 1079. 5-gal axy06 has 10 days, 6 teans and 30
mat ches with a search space of 10730. 5- gal axy08 has 14 days, 8 teans and 56 matches with a
search space of 10764. 5- gal axy1l0 has 18 days, 10 teans and 90 matches with a search space
of 107112.5-gal axyl2 has 22 days, 12 teams and 132 matches with a search space of 107177.5-
gal axyl4 has 26 days, 14 teans and 182 matches with a search space of 107257.5-gal axyl6 has
30 days, 16 teanms and 240 matches with a search space of 107354.5-gal axyl8 has 34 days, 18
teans and 306 matches with a search space of 107468.5-gal axy20 has 38 days, 20 teanms and 380
mat ches with a search space of 107600. 5-gal axy22 has 42 days, 22 teans and 462 matches with
a search space of 107749.5-gal axy24 has 46 days, 24 teans and 552 matches with a search space
of 107917.5-gal axy26 has 50 days, 26 teans and 650 nmatches with a search space of 1071104. 5-
gal axy28 has 54 days, 28 teans and 756 matches with a search space of 1071309. 5-gal axy30 has
58 days, 30 teans and 870 matches with a search space of 1071534.5-gal axy32 has 62 days, 32
teans and 992 natches with a search space of 1071778. 5-gal axy34 has 66 days, 34 teanms and 1122
matches with a search space of 1072041.5-gal axy36 has 70 days, 36 teans and 1260 matches wth
a search space of 1072324.5-gal axy38 has 74 days, 38 teans and 1406 matches with a search space
of 1072628. 5- gal axy40 has 78 days, 40 teans and 1560 matches with a search space of 1072951.

1079. 1-nl 06 has 10 days, 6 teans and 30 matches with a search space of

10730. 1-nl 08 has 14 days, 8 teans and 56 matches with a search space of
10764. 1-nl 10 has 18 days, 10 teans and 90 matches with a search space of
107112. 1-nl 12 has 22 days, 12 teans and 132 nmatches with search space of
107177.1-nl 14 has 26 days, 14 teans and 182 matches with search space of
107257.1-nl 16 has 30 days, 16 teans and 240 natches with search space of

107354. 2- br a24 has 46 days, 24 teans and 552 matches with
107917. 3-nfl 16 has 30 days, 16 teams and 240 matches with
107354. 3-nfl 18 has 34 days, 18 teanms and 306 matches with
107468. 3-nfl 20 has 38 days, 20 teans and 380 nmatches with
107600. 3-nf | 22 has 42 days, 22 teans and 462 nmatches with
107749. 3-nfl 24 has 46 days, 24 teans and 552 nmatches with search space of
107917. 3-nfl 26 has 50 days, 26 teans and 650 nmatches with search space of
1071104. 3-nfl 28 has 54 days, 28 teanms and 756 matches with a search space of
1071309. 3-nfl 30 has 58 days, 30 teanms and 870 matches with a search space of
1071534. 3-nfl 32 has 62 days, 32 teams and 992 matches with a search space of
1071778. 4-super04 has 6 days, 4 teans and 12 matches with a search space of
1079. 4-super06 has 10 days, 6 teans and 30 matches with a search space of

10730. 4- super08 has 14 days, 8 teans and 56 matches with a search space of

10764. 4- super 10 has 18 days, 10 teans and 90 matches with a search space of

107112. 4- super 12 has 22 days, 12 teans and 132 natches with a search space of
107177. 4-super 14 has 26 days, 14 teans and 182 matches with a search space of
107257. 5- gal axy04 has 6 days, 4 teans and 12 matches with a search space of
1079. 5- gal axy06 has 10 days, 6 teans and 30 matches with a search space of

10730. 5- gal axy08 has 14 days, 8 teans and 56 matches with a search space of

10764. 5- gal axy1l0 has 18 days, 10 teans and 90 matches with a search space of

search space of
search space of
search space of
search space of
search space of

[SU DI < DI R LR < R R R B)

73

Use Cases and Examples

107112. 5-gal axy12 has 22 days, 12 teans and 132 matches with
107177. 5-gal axyl4 has 26 days, 14 teans and 182 matches with
107257. 5-gal axy1l6 has 30 days, 16 teans and 240 matches with
107354. 5-gal axy1l8 has 34 days, 18 teans and 306 matches with
107468. 5- gal axy20 has 38 days, 20 teans and 380 nmatches with
107600. 5- gal axy22 has 42 days, 22 teans and 462 natches with
107749. 5- gal axy24 has 46 days, 24 teans and 552 matches with a search space of
107917. 5- gal axy26 has 50 days, 26 teans and 650 matches with search space of
1071104. 5- gal axy28 has 54 days, 28 teans and 756 natches with a search space of
1071309. 5- gal axy30 has 58 days, 30 teans and 870 natches with a search space of
1071534. 5-gal axy32 has 62 days, 32 teans and 992 matches with a search space of
1071778. 5-gal axy34 has 66 days, 34 teans and 1122 matches with search space of
1072041. 5- gal axy36 has 70 days, 36 teans and 1260 matches with search space of
1072324. 5- gal axy38 has 74 days, 38 teans and 1406 matches with search space of
1072628. 5- gal axy40 has 78 days, 40 teans and 1560 natches with a search space of

search space of
search space of
search space of
search space of
search space of
search space of

[SURN < R < I VR R R < R)

3.4.4. Cheap Time Scheduling

3.4.4.1. Problem Description

Schedule all tasks in time and on a machine to minimize power cost. Power prices differs in time.
This is a form of job shop scheduling.

Hard constraints:

« Start time limits: each task must start between its earliest start and latest start limit.

« Maximum capacity: the maximum capacity for each resource for each machine must not be
exceeded.

 Startup and shutdown: each machine must be active in the periods during which it has assigned
tasks. Between tasks it is allowed to be idle to avoid startup and shutdown costs.

Medium constraints:

» Power cost: minimize the total power cost of the whole schedule.

» Machine power cost: Each active or idle machine consumes power, which infers a power cost
(depending on the power price during that time).

» Task power cost: Each task consumes power too, which infers a power cost (depending on
the power price during its time).

» Machine startup and shutdown cost: Every time a machine starts up or shuts down, an extra
cost is inflicted.

Soft constraints (addendum to the original problem definition):

 Start early: prefer starting a task sooner rather than later.

74

Use Cases and Examples

The problem is defined by the ICON challenge [http://iconchallenge.insight-centre.org/].

3.4.4.2. Problem Size

sanpl e01 has 3 resources, 2 nachi nes, 288 periods and 25 tasks with a search space of
10753. sanpl e02 has 3 resources, 2 machi nes, 288 periods and 50 tasks with a search space of
107114. sanpl e03 has 3 resources, 2 machi nes, 288 periods and 100 tasks with a search space
of 107226. sanpl e04 has 3 resources, 5 machi nes, 288 periods and 100 tasks with a search
space of 107266. sanpl e05 has 3 resources, 2 machi nes, 288 periods and 250 tasks with a
search space of 107584.sanpl e06 has 3 resources, 5 nachines, 288 periods and 250 tasks with
a search space of 107673. sanpl e07 has 3 resources, 2 machi nes, 288 periods and 1000 t asks
with a search space of 1072388. sanpl e08 has 3 resources, 5 machi nes, 288 periods and 1000
tasks with a search space of 1072748.sanple09 has 4 resources, 20 nachines, 288 periods and
2000 tasks with a search space of 1076668.instance00 has 1 resources, 10 machi nes, 288 peri ods
and 200 tasks with a search space of 107595. i nstance0l1 has 1 resources, 10 nachines, 288
periods and 200 tasks with a search space of 107599. i nst ance02 has 1 resources, 10 machi nes,
288 periods and 200 tasks with a search space of 107599. i nstance03 has 1 resources, 10
machi nes, 288 periods and 200 tasks with a search space of 107591. i nst ance04 has 1 resources,
10 machines, 288 periods and 200 tasks with a search space of 107590. i nstance05 has 2
resources, 25 nachines, 288 periods and 200 tasks with a search space of 107667. i nst ance06
has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
107660. i nst ance07 has 2 resources, 25 nachines, 288 periods and 200 tasks with a search space
of 107662. i nstance08 has 2 resources, 25 nachines, 288 periods and 200 tasks with a search
space of 107651. i nstance09 has 2 resources, 25 nachines, 288 periods and 200 tasks with a
search space of 107659. i nstancel0 has 2 resources, 20 nmchines, 288 periods and 500 tasks
with a search space of 1071657.instancell has 2 resources, 20 machines, 288 periods and 500
tasks with a search space of 1071644.instancel2 has 2 resources, 20 nachi nes, 288 periods and
500 tasks with a search space of 1071637.instancel3 has 2 resources, 20 nachines, 288 periods
and 500 tasks with a search space of 1071659.instancel4 has 2 resources, 20 machines, 288
periods and 500 tasks with a search space of 1071643.instancel5 has 3 resources, 40 machines,
288 periods and 500 tasks with a search space of 1071782.instancel6é has 3 resources, 40
machi nes, 288 periods and 500 tasks with a search space of 1071778.instancel7 has 3 resources,
40 machi nes, 288 periods and 500 tasks with a search space of 1071764. i nstancel8 has 3
resources, 40 nmachines, 288 periods and 500 tasks with a search space of 1071769.i nstancel9
has 3 resources, 40 nmachines, 288 periods and 500 tasks with a search space of
1071778. i nstance20 has 3 resources, 50 nmachi nes, 288 periods and 1000 tasks with a search space
of 1073689.instance2l has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 1073678.instance22 has 3 resources, 50 machines, 288 periods and 1000 tasks with a
sear ch space of 1073706.i nstance23 has 3 resources, 50 nachines, 288 periods and 1000 tasks with
a search space of 1073676.instance24 has 3 resources, 50 machines, 288 periods and 1000 tasks
with a search space of 1073681.instance25 has 3 resources, 60 nachines, 288 periods and 1000
tasks with a search space of 1073774.instance26 has 3 resources, 60 nachi nes, 288 periods and
1000 tasks with a search space of 1073737.instance27 has 3 resources, 60 machi nes, 288 peri ods
and 1000 tasks with a search space of 1073744.instance28 has 3 resources, 60 nachi nes, 288
periods and 1000 tasks with a search space of 1073731.instance29 has 3 resources, 60 machines,
288 periods and 1000 tasks with a search space of 1073746.instance30 has 4 resources, 70
nmachi nes, 288 periods and 2000 tasks with a search space of 1077718.instance31 has 4 resources,
70 machines, 288 periods and 2000 tasks with a search space of 1077740.instance32 has 4
resources, 70 machi nes, 288 peri ods and 2000 tasks with a search space of 1077686. i nstance33 has
4 resources, 70 machi nes, 288 periods and 2000 tasks with a search space of 107"7672.i nstance34
has 4 resources, 70 nmachines, 288 periods and 2000 tasks with a search space of
1077695. i nst ance35 has 4 resources, 80 nachi nes, 288 periods and 2000 tasks with a search space
of 1077807.instance36 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 1077814.instance37 has 4 resources, 80 machines, 288 periods and 2000 tasks with a
sear ch space of 1077764.instance38 has 4 resources, 80 nachines, 288 periods and 2000 tasks with
a search space of 1077736.instance39 has 4 resources, 80 machines, 288 periods and 2000 tasks
with a search space of 1077783.instance40 has 4 resources, 90 nmchi nes, 288 periods and 4000

75

http://iconchallenge.insight-centre.org/
http://iconchallenge.insight-centre.org/

Use Cases and Examples

tasks with a search space of 10715976.i nstance4l has 4 resources, 90 nachines, 288 periods and
4000 tasks with a search space of 10715935.i nstance42 has 4 resources, 90 nachi nes, 288 peri ods
and 4000 tasks with a search space of 10715887.i nstance43 has 4 resources, 90 machi nes, 288
peri ods and 4000 tasks with a search space of 10715896. i nstance44 has 4 resources, 90 nachines
288 periods and 4000 tasks with a search space of 10715885.i nstance45 has 4 resources, 100
machi nes, 288 peri ods and 5000 tasks with a search space of 10720173.i nstance46 has 4 resources
100 nmchines, 288 periods and 5000 tasks with a search space of 10720132.instance47 has 4
resources, 100 machi nes, 288 peri ods and 5000 tasks with a search space of 10720126. i nst ance48 has
4 resources, 100 machi nes, 288 periods and 5000 tasks with a search space of 10720110.i nstance49
has 4 resources, 100 machi nes, 288 periods and 5000 tasks with a search space of 10720078
10753. sanpl e02 has 3 resources, 2 machines, 288 periods and 50 tasks with a search space

of 107114.sanpl e03 has 3 resources, 2 machi nes, 288 periods and 100 tasks with a search space
of 107226.sanpl e04 has 3 resources, 5 machines, 288 periods and 100 tasks with a search space
of 107266.sanpl e05 has 3 resources, 2 machi nes, 288 periods and 250 tasks with a search space
of 107584.sanpl e06 has 3 resources, 5 machines, 288 periods and 250 tasks with a search space

of 107673. sanpl e07 has 3 resources, 2 machi nes, 288 periods and 1000 tasks with a
search space
of 1072388. sanpl e08 has 3 resources, 5 machi nes, 288 periods and 1000 tasks with a

search space

of 1072748. sanpl e09 has 4 resources, 20 nmchi nes, 288 periods and 2000 tasks with a
search space

of 1076668. i nst ance00 has 1 resources, 10 machines, 288 periods and 200 tasks with a
search space

of 107595. i nstance01 has 1 resources, 10 machines, 288 periods and 200 tasks with a
search space
of 107599. i nst ance02 has 1 resources, 10 nmchines, 288 periods and 200 tasks with a
search space
of 107599. i nst ance03 has 1 resources, 10 machines, 288 periods and 200 tasks with a
search space
of 107591. i nstance04 has 1 resources, 10 nachines, 288 periods and 200 tasks with a
search space
of 107590. i nst ance05 has 2 resources, 25 machines, 288 periods and 200 tasks with a
search space
of 107667. i nst ance06 has 2 resources, 25 machines, 288 periods and 200 tasks with a
search space
of 107660. i nst ance07 has 2 resources, 25 machines, 288 periods and 200 tasks with a
search space
of 107662. i nst ance08 has 2 resources, 25 machines, 288 periods and 200 tasks with a
search space
of 107651. i nstance09 has 2 resources, 25 machines, 288 periods and 200 tasks with a
search space
of 107659. i nst ancel0 has 2 resources, 20 machines, 288 periods and 500 tasks with a

search space

of 1071657. i nst ancell has 2 resources, 20 machines, 288 periods and 500 tasks with a
search space

of 1071644. i nst ancel2 has 2 resources, 20 nmachines, 288 periods and 500 tasks with a
search space

of 1071637.instancel3 has 2 resources, 20 machines, 288 periods and 500 tasks with a
search space

of 1071659. i nst ancel4 has 2 resources, 20 machines, 288 periods and 500 tasks with a
search space

of 1071643. i nst ancel5 has 3 resources, 40 machi nes, 288 periods and 500 tasks with a
search space

of 1071782.i nstancel6 has 3 resources, 40 machi nes, 288 periods and 500 tasks with a
search space

of 1071778.instancel7 has 3 resources, 40 machines, 288 periods and 500 tasks with a
search space

of 1071764. i nst ancel8 has 3 resources, 40 machines, 288 periods and 500 tasks with a
search space

76

Use Cases and Examples

of
sear ch space
of
search space
of
search space
of
search space
of
sear ch space
of
search space
of
search space
of
search space
of
sear ch space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space
of
search space

1071769.

1071778

1073689

1073678

1073706

1073676

10"3681.

1073774

1073737

10nr3744

10"3731.

1073746

1077718

10r7740

1077686

1077672

1017695

1077807

1077814

1077764

10r7736

nst ancel9 has

nstance20 has
nstance2l has
nstance22 has
nstance23 has
nstance24 has
nstance25 has
nstance26 has
nstance27 has
nstance28 has
nstance29 has
nstance30 has
nstance3l has
nstance32 has
nstance33 has
nst ance34 has
nstance35 has
nstance36 has
nstance37 has
nstance38 has

nst ance39 has

of 1077783.instanced40 has
sear ch
space of 10715976.i nstance4l
sear ch
space of 10715935.i nstance42
search
space of 10715887.i nstance43
sear ch
space of 10715896.i nstance44
sear ch
space of 10715885.i nstance45
sear ch
space of 10720173.i nstance46
search
space of 10720132.i nstance47
sear ch

3 resources, 40
3 resources, 50
3 resources, 50
3 resources, 50
3 resources, 50
3 resources, 50
3 resources, 60
3 resources, 60
3 resources, 60
3 resources, 60
3 resources, 60
4 resources, 70
4 resources, 70
4 resources, 70
4 resources, 70
4 resources, 70
4 resources, 80
4 resources, 80
4 resources, 80
4 resources, 80
4 resources, 80
4 resources, 90

has 4 resources

has

has

has

has

has

has

resources,

resources,

resources,

resources,

resources,

resources,

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

machi

90

90

90

90

100

100

100

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

nes,

machi

machi

mach

machi

machi

machi

nmachi

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

288

nes,

nes,

nes,

nes,

nes,

nes,

nes,

periods and

peri ods and

peri ods and

periods and

periods and

peri ods and

peri ods and

periods and

periods and

peri ods and

peri ods and

periods and

periods and

peri ods and

peri ods and

periods and

periods and

peri ods and

peri ods and

periods and

periods and

peri ods and

288 peri ods
288 peri ods
288 peri ods
288 peri ods
288 peri ods
288 peri ods

288 peri ods

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

4000

and

and

and

and

and

and

and

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

t asks

4000

4000

4000

4000

5000

5000

5000

with

wth

wth

with

wth

wth

wth

with

wth

wth

wth

with

wth

wth

wth

with

wth

wth

wth

with

wth

wth

t asks

t asks

t asks

t asks

t asks

tasks

t asks

77

Use Cases and Examples

space of 10720126.instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a
search
space of 10720110.instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a
search

3.4.5. Investment asset class allocation (portfolio optimization)

3.4.5.1. Problem Description

Decide the relative quantity to invest in each asset class.

Hard constraints:

« Risk maximum: the total standard deviation must not be higher than the standard deviation
maximum.

» Total standard deviation calculation takes asset class correlations into account by applying
Markowitz Portfolio Theory [https://en.wikipedia.org/wiki/Modern_portfolio_theory].

« Region maximum: Each region has a quantity maximum.
» Sector maximum: Each sector has a quantity maximum.

Soft constraints:

* Maximize expected return.

3.4.5.2. Problem Size

de_snet _1 has 1 regions, 3 sectors and 11 asset classes with a search space of 1074.irrinki_1
has 2 regions, 3 sectors and 6 asset classes with a search space of 1073.
of 1074.irrinki_1 has 2 regions, 3 sectors and 6 asset classes with a search space

Larger datasets have not been created or tested yet, but should not pose a problem.

78

https://en.wikipedia.org/wiki/Modern_portfolio_theory
https://en.wikipedia.org/wiki/Modern_portfolio_theory

Chapter 4. Planner Configuration

4.1. Overview

Solving a planning problem with Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Sol ut i on, for example

the class NQueens.

2. Configure a Sol ver, for example a First Fit and Tabu Search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. That is the

planning problem.

4. Solve it with Sol ver . sol ve(pl anni ngPr obl em) which retuns the best solution found.

Input/Output overview

Use 1 SolverFactory per application and 1 Solver per dataset.

Domain (java, .

Hard constraints:
- CPU power capacity

[Computer J¢—— Process)

Problem
Computers
(7)x
(6 J¥

il

Soft constraints:

- Minimize maintenance cost

JL

buildSolver() .

solve(problem)

- RAM memory capacity
- Metwork bandwidth capacity

Score function (an, ..

Solution

Each process assigned
o a computer

7 X
(2]

e)

79

Planner Configuration

4.2. Solver Configuration

4.2.1. Solver Configuration by XML

Build a Sol ver instance with the Sol verFactory. Configure the Sol verFactory with
a solver configuration XML file, provided as a classpath resource (as definied by
Cl assLoader. get Resource()):

Sol ver Fact or y<NQueens> sol ver Factory = Sol ver Fact ory. cr eat eFr omXm Resour ce(
"or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nqueensSol ver Confi g. xm ") ;
Sol ver <NQueens> sol ver = sol ver Factory. bui | dSol ver ();

In a typical project (following the Maven directory structure), that solverConfig XML file would
be located at $PRQIECT_DI R/ src/ mai n/ resour ces/ or g/ opt apl anner/ exanpl es/ nqueens/
sol ver/ nqueensSol ver Conf i g. xni . Alternatively, a Sol ver Fact or y can be created fromaFi | e,
an | nput Streamor a Reader with methods such as Sol ver Factory. creat eFromXm Fi | e().
However, for portability reasons, a classpath resource is recommended.

Sol ver Fact or y<NQueens> sol ver Fact ory = Sol ver Fact ory. cr eat eFr onXm Resour ce(
".../nqueensSol ver Config.xm ", getC ass().getC assLoader());

Ki eServi ces ki eServices = KieServices. Factory. get();
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (

ki eServi ces. newRel easel d("org. nqueens", "nqueens", "1.0.0"));
Sol ver Fact or y<NQueens> sol ver Factory = Sol ver Fact ory. cr eat eFr onKi eCont ai ner Xm Resour ce(
ki eCont ai ner, ".../nqueensSol verConfig.xm");

80

Planner Configuration

Both a Sol ver and a Sol ver Fact ory have a generic type called Sol uti on_, which is the class
representing a planning problem and solution.

A solver configuration XML file looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<sol ver>
<l -- Define the nodel -->
<sol uti onC ass>or g. opt apl anner. exanpl es. nqueens. domai n. NQueens</ sol uti onCl ass>
<entityCl ass>org. opt apl anner. exanpl es. nqueens. domai n. Queen</entityC ass>

<!-- Define the score function -->
<scoreDi rectorFactory>
<scor eDefini ti onType>SI MPLE</ scor eDefi ni ti onType>
<scoreDr| >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </ scoreDr| >

</ scoreDirect or Fact ory>

<l-- Configure the optimzation algorithns (optional) -->
<term nati on>

</term nation>
<constructionHeuristic>

</ constructionHeuristic>
<l ocal Sear ch>

</l ocal Sear ch>
</ sol ver >

Notice the three parts in it:

+ Define the model.

» Define the score function.

» Optionally configure the optimization algorithm(s).

These various parts of a configuration are explained further in this manual.

Planner makes it relatively easy to switch optimization algorithm(s) just by changing the
configuration. There is even a Benchmarker which allows you to play out different configurations
against each other and report the most appropriate configuration for your use case.

4.2.2. Solver Configuration by Java API

A solver configuration can also be configured with the Sol ver Conf i g API. This is especially useful
to change some values dynamically at runtime. For example, to change the running time based
on user input, before building the Sol ver:

Sol ver Fact or y<NQueens> sol ver Factory = Sol ver Fact ory. creat eFr omXm Resour ce(

81

Planner Configuration

"or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nqueensSol ver Confi g. xm ") ;

Term nationConfig term nati onConfig = new Termni nati onConfig();
term nati onConfig.setM nutesSpentLimt(userlnput);
sol ver Fact ory. get Sol ver Confi g(). set Term nati onConfig(term nati onConfig);

Sol ver <NQueens> sol ver = sol verFactory. bui | dSol ver ();

Every element in the solver configuration XML is available as a * Confi g class or a property on
a *Confi g class in the package namespace or g. opt apl anner . core. confi g. These *Confi g
classes are the Java representation of the XML format. They build the runtime components (of the
package namespace or g. opt apl anner. cor e. i npl) and assemble them into an efficient Sol ver .

Important

The Sol verFactory is only multi-thread safe after its configured. So the
get Sol ver Confi g() method is not thread-safe. To configure a Sol ver Fact ory
dynamically for each user request, build a Sol ver Fact ory as base during initial-
ization and clone it with the cl oneSol ver Fact or y() method for a user request:

private Sol ver Fact or y<NQueens> base;

public void init() {
base = Sol ver Factory. creat eFr omXnl Resour ce(
"or g/ opt apl anner / exanpl es/ nqueens/ sol ver/ nqueensSol ver Confi g. xm ") ;
base. get Sol ver Confi g() . set Term nati onConfi g(new Term nati onConfig());

/Il Called concurrently fromdifferent threads
public void userRequest(..., long userlnput)
Sol ver Fact or y<NQueens> sol ver Fact ory = base. cl oneSol ver Factory();
sol ver Fact ory. get Sol ver Confi g(). get Term nati onConfig().setM nutesSpentLimt(userlnput);
Sol ver <NQueens> sol ver = sol verFactory. bui | dSol ver ();

4.2.3. Annotations Configuration

4.2.3.1. Automatic Scanning for Annotations

Instead of the declaring the classes that have a @l anni ngSol uti on or @I anni ngEnti ty man-
ually:

<sol ver>
<!-- Define the nodel -->
<sol utionCl ass>org. opt apl anner . exanpl es. nqueens. domai n. NQueens</ sol uti onCl ass>
<entityC ass>org. opt apl anner. exanpl es. nqueens. domai n. Queen</entityC ass>

82

Planner Configuration

</ sol ver>
Planner can find scan the classpath and find them automatically:

<sol ver >
<!-- Define the nodel -->
<scanAnnot at edd asses/ >

</ sol ver >

If there are multiple models in your classpath (or just to speed up scanning), specify the packages
to scan:

<sol ver>
<!-- Define the nodel -->
<scanAnnot at edCl asses>
<packagel ncl ude>or g. opt apl anner . exanpl es. cl oudbal anci ng</ packagel ncl ude>
</ scanAnnot at edCl asses>

</ sol ver >

This will find all solution and entity classes in the package or subpackages.

@ Note
If scanAnnot at edCl asses is not specified, the or g. ref | ect i ons transitive maven
dependency can be excluded.

4.2.3.2. Annotation Alternatives

Planner needs to be told which classes in your domain model are planning entities, which prop-
erties are planning variables, etc. There are several ways to deliver this information:

« Add class annotations and JavaBean property annotations on the domain model (recommend-
ed). The property annotations must be the getter method, not on the setter method. Such a
getter does not need to be public.

* Add class annotations and field annotations on the domain model. Such a field does not need
to be public.

« No annotations: externalize the domain configuration in an XML file. This is not yet supported
[https://issues.jboss.org/browse/PLANNER-151].

83

https://issues.jboss.org/browse/PLANNER-151
https://issues.jboss.org/browse/PLANNER-151

Planner Configuration

This manual focuses on the first manner, but every features supports all 3 manners, even if it's
not explicitly mentioned.

4.3. Model a Planning Problem

4.3.1. Is This Class a Problem Fact or Planning Entity?

Look at a dataset of your planning problem. You will recognize domain classes in there, each of
which can be categorized as one of the following:

» A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

« A problem fact class: used by the score constraints, but does NOT change during planning
(as long as the problem stays the same). For example: Bed, Room Shi ft, Enpl oyee, Topi c,
Peri od, ... All the properties of a problem fact class are problem properties.

« A planning entity class: used by the score constraints and changes during planning. For ex-
ample: BedDesi gnat i on, Shi ft Assi gnment , Exam ... The properties that change during plan-
ning are planning variables. The other properties are problem properties.

Ask yourself: What class changes during planning? Which class has variables that | want the
Sol ver to change for me? That class is a planning entity. Most use cases have only one planning
entity class. Most use cases also have only one planning variable per planning entity class.

@ Note
In real-time planning, even though the problem itself changes, problem facts do not
really change during planning, instead they change between planning (because
the Solver temporarily stops to apply the problem fact changes).

A good model can greatly improve the success of your planning implementation. Follow these
guidelines to design a good model:

* In a many to one relationship, it is normally the many side that is the planning entity class. The
property referencing the other side is then the planning variable. For example in employee ros-
tering: the planning entity class is Shi f t Assi gnnent , not Enpl oyee, and the planning variable
is Shi ft Assi gnnent . get Enpl oyee() because one Enpl oyee has multiple Shi ft Assi gnnent s
but one Shi f t Assi gnnent has only one Enpl oyee.

« A planning entity class should have at least one problem property. A planning entity class with
only planning variables can normally be simplified by converting one of those planning variables
into a problem property. That heavily decreases the search space size. For example in employ-
ee rostering: the Shi f t Assi gnment 's get Shift () is a problem property and the get Enpl oy-
ee() is aplanning variable. If both were a planning variable, solving it would be far less efficient.

84

Planner Configuration

» A surrogate ID does not suffice as the required minimum of one problem property. It needs
to be understandable by the business. A business key does suffice. This prevents an unas-
signed entity from being nameless (unidentifiable by the business).

» This way, there is no need to add a hard constraint to assure that two planning entities are
different: they are already different due to their problem properties.

* In some cases, multiple planning entities have the same problem property. In such cases,
it can be useful to create an extra problem property to distinguish them. For example in em-
ployee rostering: Shi ft Assi gnnent has besides the problem property Shi ft also the prob-
lem property i ndex| nShi ft.

e The number of planning entities is recommended to be fixed during planning. When unsure of
which property should be a planning variable and which should be a problem property, choose
it so the number of planning entities is fixed. For example in employee rostering: if the planning
entity class would have been Enpl oyeeAssi gnnent with a problem property get Enpl oyee()
and a planning variable get Shi ft (), than it is impossible to accurately predict how many Em
pl oyeeAssi gnment instances to make per Enpl oyee.

For inspiration, take a look at typical design patterns or how the examples modeled their domain:

Entity, variable and value examples

Use case planning entity planning variable planning value
row
N queens [Queen } - 7 { Row
computer
Cloud balancing Process = d - [Computer
: : employee
Employee rostering [ShiftAssignment }— Py 3 [Employee
eriod
Course scheduling [Lecture } - P 7 [Period
room
k _ [Room
171
iousStandstill
Vehicle routing (Customer] Oprfmus ancst - [Standstill
[Vehicle

85

Planner Configuration

Note

Vehicle routing is special, because it uses a chained planning variable.

In Planner, all problems facts and planning entities are plain old JavaBeans (POJOs). Load
them from a database, an XML file, a data repository, a REST service, a noSQL cloud, ... (see
integration): it doesn't matter.

4.3.2. Problem Fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning. Im-
plementing the interface Seri al i zabl e is recommended (but not required). For example in n
queens, the columns and rows are problem facts:

public class Colum inplenents Serializable {
private int index;

/] ... getters

public class Row inplenents Serializable {
private int index;

/1 ... getters

A problem fact can reference other problem facts of course:

public class Course inplenents Serializable {
private String code;
private Teacher teacher; // Oher problem fact
private int |ectureSize;

private int m nWrkingDaySi ze;

private List<Curriculunk curriculuniist; // Oher problemfacts
private int studentSize;

/] ... getters

A problem fact class does not require any Planner specific code. For example, you can reuse your
domain classes, which might have JPA annotations.

86

Planner Configuration

4.3.3. Planning Entity

4.3.3.1. Planning Entity Annotation

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a single
n queens problem, each Queen is a planning entity. But there is usually only one planning entity
class, for example the Queen class.

A planning entity class needs to be annotated with the @l anni ngEnt i t y annotation.

Each planning entity class has one or more planning variables. It should also have one or more
defining properties. For example in n queens, a Queen is defined by its Col unm and has a planning
variable Row. This means that a Queen's column never changes during solving, while its row does
change.

@l anni ngEntity
public class Queen {

private Colum col um;

/1 Planning variabl es: changes during planning, between score cal cul ati ons.
private Row row,

/1l ... getters and setters

A planning entity class can have multiple planning variables. For example, a Lect ur e is defined by
its Cour se and its index in that course (because one course has multiple lectures). Each Lect ur e
needs to be scheduled into a Peri od and a Roomso it has two planning variables (period and
room). For example: the course Mathematics has eight lectures per week, of which the first lecture
is Monday morning at 08:00 in room 212.

87

Planner Configuration

@l anni ngEntity
public class Lecture {

private Course course;
private int |ecturel ndexl nCourse;

/1 Planning variabl es: changes during planning, between score cal cul ations.
private Period period;

private Room room

...

Without automated scanning, the solver configuration also needs to declare each planning entity
class:

<sol ver>
<entityCd ass>or g. opt apl anner. exanpl es. nqueens. domai n. Queen</entityd ass>

</ sol ver >

Some uses cases have multiple planning entity classes. For example: route freight and trains
into railway network arcs, where each freight can use multiple trains over its journey and each
train can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.

4.3.3.2. Planning Entity Difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in

88

Planner Configuration

course scheduling lectures with more students are more difficult to schedule, and in n queens the
middle queens are more difficult to fit on the board.

Therefore, you can seta di ffi cul t yConpar at or G ass to the @l anni ngEnt i t y annotation:

@l anni ngEntity(difficultyConparatorC ass = C oudProcessDifficultyConparator.class)
public class O oudProcess {
...

}

public class C oudProcessDifficultyConparator inplenents Conparator<d oudProcess> {

public int conpare(d oudProcess a, C oudProcess b) {
return new Conpar eToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMltiplicand())
.append(a.getld(), b.getld())
.toConparison();

Alternatively, you can also set a di f fi cul t yWei ght Fact or yd ass to the @l anni ngEntity an-
notation, so that you have access to the rest of the problem facts from the Sol ut i on too:

@l anni ngEntity(difficultyWightFactoryC ass = QueenDi fficul t yWi ght Factory. cl ass)
public class Queen {
A

}

See sorted selection for more information.

Important

Difficulty should be implemented ascending: easy entities are lower, difficult enti-
ties are higher. For example, in bin packing: small item < medium item < big item.

Although most algorithms start with the more difficult entities first, they just reverse
the ordering.

None of the current planning variable states should be used to compare planning entity difficulty.
During Construction Heuristics, those variables are likely to be nul | anyway. For example, a
Queen's r ow variable should not be used.

89

Planner Configuration

4.3.4. Planning Variable

4.3.4.1. Planning Variable Annotation

A planning variable is a JavaBean property (so a getter and setter) on a planning entity. It points
to a planning value, which changes during planning. For example, a Queen's r ow property is a
planning variable. Note that even though a Queen's r ow property changes to another Row during
planning, no Row instance itself is changed.

A planning variable getter needs to be annotated with the @Il anni ngVar i abl e annotation, which
needs a non-empty val ueRangePr ovi der Ref s property.

@ anni ngEntity
public class Queen {

private Row row,

@ anni ngVari abl e(val ueRangePr ovi der Refs = {"rowRange"})
public Row get Row() {
return row

}

public void set Row(Row row) {
this.row = row,

}

The val ueRangePr ovi der Ref s property defines what are the possible planning values for this
planning variable. It references one or more @/al ueRangePr ovi der i d's.

@ Note
A @PlanningVariable annotation needs to be on a member in a class with a @Plan-
ningEntity annotation. It is ignored on parent classes or subclasses without that
annotation.

Annotating the field instead of the property works too:

@l anni ngEntity
public class Queen {

@ anni ngVari abl e(val ueRangePr ovi der Refs = {"rowRange"})
private Row row,

90

Planner Configuration

4.3.4.2. Nullable Planning Variable

By default, an initialized planning variable cannot be nul | , so an initialized solution will never use
nul | for any of its planning variables. In an over-constrained use case, this can be counterpro-
ductive. For example: in task assignment with too many tasks for the workforce, we would rather
leave low priority tasks unassigned instead of assigning them to an overloaded worker.

To allow an initialized planning variable to be nul | , set nul | abl e to t r ue:
@l anni ngVariable(..., nullable = true)

public Wrker getWrker() {
return worker;

Important

Planner will automatically add the value nul | to the value range. There is no need
to add nul | in a collection used by a Val ueRangePr ovi der .

@ Note
Using a nullable planning variable implies that your score calculation is responsible
for punishing (or even rewarding) variables with a null value.

Repeated planning (especially real-time planning) does not mix well with a nullable planning vari-
able. Every time the Solver starts or a problem fact change is made, the Construction Heuristics
will try to initialize all the nul | variables again, which can be a huge waste of time. One way to
deal with this, is to change when a planning entity should be reinitialized with anrei ni ti al i ze-
Variabl eEntityFilter:

@l anni ngVari abl e(. .., nul | abl e = true, reinitializeVariableEntityFil
ter = ReinitializeTaskFilter.class)
public Worker getWrker() {
return worker;

}

4.3.4.3. When is a Planning Variable Considered Initialized?

A planning variable is considered initialized if its value is not nul | or if the variable is nul | abl e.
So a nullable variable is always considered initialized, even when a customreiniti al i zeVari -
abl eEntityFilter triggers a reinitialization during construction heuristics.

A planning entity is initialized if all of its planning variables are initialized.

91

Planner Configuration

A Sol uti on is initialized if all of its planning entities are initialized.
4.3.5. Planning Value and Planning Value Range

4.3.5.1. Planning Value

A planning value is a possible value for a planning variable. Usually, a planning value is a problem
fact, but it can also be any object, for example a doubl e. It can even be another planning entity
or even a interface implemented by both a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set can
be a countable (for example row 1, 2, 3 or 4) or uncountable (for example any doubl e between
0.0 and 1. 0).

4.3.5.2. Planning Value Range Provider

4.3.5.2.1. Overview

The value range of a planning variable is defined with the @/al ueRangePr ovi der annotation.
A @al ueRangeProvi der annotation always has a property i d, which is referenced by the
@l anni ngVar i abl e's property val ueRangePr ovi der Ref s.

This annotation can be located on 2 types of methods:

« On the Solution: All planning entities share the same value range.

« On the planning entity: The value range differs per planning entity. This is less common.

@ Note
A @ValueRangeProvider annotation needs to be on a member in a class with a
@PlanningSolution or a @PlanningEntity annotation. It is ignored on parent class-
es or subclasses without those annotations.

The return type of that method can be 2 types:

e Col |l ecti on: The value range is defined by a Col | ect i on (usually a Li st) of its possible values.
* Val ueRange: The value range is defined by its bounds. This is less common.
4.3.5.2.2. val ueRangePr ovi der 0N the Sol uti on

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The Sol uti on implementation has method that returns a Col | ecti on (or a Val ueRange). Any
value from that Col | ect i on is a possible planning value for this planning variable.

92

Planner Configuration

@l anni ngVari abl e(val ueRangePr ovi der Refs = {"rowRange"})
public Row get Row() {
return row

@! anni ngSol uti on
public class NQueens inplenents Sol ution<Sinpl eScore> {

11
@/al ueRangeProvi der (id = "rowRange")

public List<Row> get RowList() {
return rowki st;

Important

That Col | ecti on (or Val ueRange) must not contain the value nul | , not even for
a nullable planning variable.

Annotating the field instead of the property works too:

@ anni ngSol uti on
public class NQueens inplenents Sol ution<Si npl eScore> {

@/al ueRangeProvider(id = "rowRange")
private List<Row> rowlList;

4.3.5.2.3. val ueRangeProvi der on the Planning Entity

Each planning entity has its own value range (a set of possible planning values) for the planning
variable. For example, if a teacher can never teach in a room that does not belong to his depart-
ment, lectures of that teacher can limit their room value range to the rooms of his department.

@! anni ngVari abl e(val ueRangePr ovi der Ref s = {"depart nent RoonRange"})
publi c Room get Roon() {
return room

@/al ueRangeProvi der (i d = "depart nment RoonRange")
public List<Roont get Possi bl eRoonList () {

93

Planner Configuration

return get Course().get Teacher (). get Departnent (). get RoonList();

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in
a room that does not belong to his department. In this case, the teacher should not be limited in
his room value range (because sometimes there is no other way).

@ Note

By limiting the value range specifically of one planning entity, you are effectively
creating a built-in hard constraint. This can have the benefit of severely lowering
the number of possible solutions; however, it can also away the freedom of the
optimization algorithms to temporarily break that constraint in order to escape from
a local optimum.

A planning entity should not use other planning entities to determinate its value range. That would
only try to make the planning entity solve the planning problem itself and interfere with the opti-
mization algorithms.

Every entity has its own Li st instance, unless multiple entities have the same value range. For
example, if teacher A and B belong to the same department, they use the same Li st <Roon®
instance. Furthermore, each Li st contains a subset of the same set of planning value instances.
For example, if department A and B can both use room X, then their Li st <Roon® instances contain
the same Roominstance.

@ Note

A Val ueRangePr ovi der on the planning entity consumes more memory than Val -
ueRangePr ovi der on the Solution and disables certain automatic performance op-
timizations.

Warning

A Val ueRangePr ovi der on the planning entity is not currently compatible with a
chained variable.

4.3.5.2.4. val ueRangeFact ory

Instead of a Col | ecti on, you can also return a Val ueRange or Count abl eVal ueRange, build by
the Val ueRangeFact ory:

94

Planner Configuration

@/al ueRangeProvi der (id = "del ayRange")

publ i c Count abl eVal ueRange<I nt eger > get Del ayRange() {
return Val ueRangeFact ory. creat el nt Val ueRange(0, 5000);

}

A Val ueRange uses far less memory, because it only holds the bounds. In the example above, a
Col | ecti on would need to hold all 5000 ints, instead of just the two bounds.

Furthermore, an i ncr ement Uni t can be specified, for example if you have to buy stocks in units
of 200 pieces:

@/al ueRangeProvi der (i d = "stockAmount Range")
publ i c Count abl eVal ueRange<I nt eger > get St ockAnount Range() {
/'l Range: 0, 200, 400, 600, ..., 9999600, 9999800, 10000000
return Val ueRangeFact ory. creat el nt Val ueRange(0, 10000000, 200);

@ Note
Return Count abl eVal ueRange instead of Val ueRange whenever possible (so
Planner knows that it's countable).

The Vval ueRangeFact ory has creation methods for several value class types:

i nt: A 32bit integer range.
| ong: A 64bit integer range.

doubl e: A 64bit floating point range which only supports random selection (because it does not
implement Count abl eval ueRange).

Bi gl nt eger : An arbitrary-precision integer range.

Bi gDeci mal : A decimal point range. By default, the increment unit is the lowest non-zero value
in the scale of the bounds.

4.3.5.2.5. Combine ValueRangeProviders

Value range providers can be combined, for example:

@ anni ngVari abl e(val ueRangePr ovi der Refs = {" conpanyCar Range", "personal Car Range"})
public Car getCar() {
return car;

}

95

Planner Configuration

@/al ueRangeProvi der (i d = "conpanyCar Range")
public List<ConpanyCar> get ConpanyCar Li st () {
return conpanyCarLi st;

@/al ueRangeProvi der (id = "personal Car Range")
public List<Personal Car> get Personal CarList() {
return personal CarlList;

4.3.5.3. Planning Value Strength

Some optimization algorithms work more efficiently if they have an estimation of which planning
values are stronger, which means they are more likely to satisfy a planning entity. For example: in
bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms
are less likely to break the student capacity constraint.

Therefore, you can set a st r engt hConpar at or ass to the @ anni ngVvari abl e annotation:

@ anni ngVari abl e(..., strengthConparatorC ass = O oudConput er St rengt hConpar at or. cl ass)
public C oudConputer getConmputer() {
/1

public class Cl oudConputer Strengt hConparator inplenents Conparator<C oudConput er> {

public int conpare(d oudConputer a, C oudConputer b) {
return new Conpar eToBui | der ()
.append(a.getMil tiplicand(), b.getMiltiplicand())
.append(b. getCost (), a.getCost()) // Descending (but this is debatable)
.append(a.getld(), b.getld())
.toConparison();

Note

If you have multiple planning value classes in the same value range, the st r engt h-
Conpar at or Cl ass needs to implement a Conpar at or of a common superclass
(for example Conpar at or <Qbj ect >) and be able to handle comparing instances
of those different classes.

Alternatively, you can also set a st r engt hWei ght Fact or yd ass to the @l anni ngVari abl e an-
notation, so you have access to the rest of the problem facts from the solution too:

96

Planner Configuration

@l anni ngVari abl e(..., strengthWei ght Factoryd ass = RowStrengt hWi ght Factory. cl ass)
public Row get Row() {
...

}

See sorted selection for more information.

Important

Strength should be implemented ascending: weaker values are lower, stronger
values are higher. For example in bin packing: small container < medium container
< big container.

None of the current planning variable state in any of the planning entities should be used to com-
pare planning values. During construction heuristics, those variables are likely to be nul I . For
example, none of the r owvariables of any Queen may be used to determine the strength of a Row.

4.3.5.4. Chained Planning Variable (TSP, VRP, ...

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning
entities point to each other and form a chain. By modeling the problem as a set of chains (instead
of a set of trees/loops), the search space is heavily reduced.

A planning variable that is chained either:

« Directly points to a problem fact (or planning entity), which is called an anchor.

» Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some example of valid and invalid chains:

97

Planner Configuration

Chain principles

Multiple Anchor without Initialized Multiple direct Loop
chains trailing entity entity without trailing entities

OK NOT OK NOT OK NOT OK

anchor (anchor]

entity | entity entity

anchor| [entity | [EH

tity |

anchor] [entity |
[entity |

anchor

|
1

]

:
i

A
:

N

entity |

i

entity entity

Every initialized planning entity is part of an open-ended chain that begins from an anchor.
A valid model means that:

« A chain is never a loop. The tail is always open.

« Every chain always has exactly one anchor. The anchor is a problem fact, never a planning
entity.

« A chain is never a tree, it is always a line. Every anchor or planning entity has at most one
trailing planning entity.

» Every initialized planning entity is part of a chain.

« An anchor with no planning entities pointing to it, is also considered a chain.

A Warning

A planning problem instance given to the Sol ver must be valid.

98

Planner Configuration

@ Note

If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and built-in Moves do chain correction to guarantee that the model
stays valid:

Chain correction

Before After
lanchor| [anchor] [anchor| [anchor] (anchor| [anchor]
[entity | [entity | entity | [entity] _entity | [entity]

(entity’] -éﬁtity Centity |

Changing 1 planning variable may inflict up to 2 chain corrections.

A Warning

A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Dori ci | e (in vehicle routing it is Vehi cl e):

public class Domicile ... inplenents Standstill {

99

Planner Configuration

public Gty getCty() {...}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP's St andstil | :

public interface Standstill {

Gty getGity();

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP's Vi si t (in vehicle routing it is Cust orer):

@ anni ngEntity
public class Visit ... inplenents Standstill {

public Gty getCty() {...}

@l anni ngVari abl e(graphType = Pl anni ngVari abl eG aphType. CHAlI NED,
val ueRangeProvi der Refs = {"doni ci | eRange", "visitRange"})

public Standstill getPreviousStandstill() {

return previousStandstill;

}

public void setPreviousStandstill(Standstill previousStandstill) {
this.previousStandstill = previousStandstill;

}

Notice how two value range providers are usually combined:

« The value range provider that holds the anchors, for example donmi ci | eLi st .

« The value range provider that holds the initialized planning entities, for example vi si t Li st .

4.3.6. Shadow Variable

4.3.6.1. Introduction

A shadow variable is a variable whose correct value can be deduced from the state of the genuine
planning variables. Even though such a variable violates the principle of normalization by defini-

100

Planner Configuration

tion, in some use cases it can be very practical to use a shadow variable, especially to express
the constraints more naturally. For example in vehicle routing with time windows: the arrival time
at a customer for a vehicle can be calculated based on the previously visited customers of that
vehicle (and the known travel times between two locations).

Planning Variable Listener

When a Customer's assignment changes,
the arrival time of that customer (and of its trailing customers) change too.

.
- o "

previous arrival time previous arrival time
genuine shadow genuing shadow
variable variable variable variable

6:30

6:30
Brus. | Start 7:00 m Start 7:00

ra

Brus. 9:30

Bonn | Brus. 9:00

Amst. 900 12:00

m Bonn 14:00 m Bonn 1400 17:00

When a genuine planning variable changes,
then the Listener(s) change the shadow variable(s) accordingly.

When the customers for a vehicle change, the arrival time for each customer is automatically
adjusted. For more information, see the vehicle routing domain model.

From a score calculation perspective, a shadow variable is like any other planning variable. From
an optimization perspective, Planner effectively only optimizes the genuine variables (and mostly
ignores the shadow variables): it just assures that when a genuine variable changes, any depen-
dent shadow variables are changed accordingly.

There are several build-in shadow variables:
4.3.6.2. Bi-directional Variable (Inverse Relation Shadow Variable)

Two variables are bi-directional if their instances always point to each other (unless one side points
to nul | and the other side does not exist). So if A references B, then B references A.

101

Planner Configuration

Bi-directional variable

One side of a bi-directional relationship is a genuine planning variable, the other side is a shadow variable.

Genuine Genuine Shadow Shadow
planning entity planning variable planning variable planning entity
(inverse relation)

Cloud balancing

] = T r F o et e b L
@PlanningVariable

)

computer
([Process | L [Computer
@InverseRelationShadow\Variable
processList
0.*
Vehicle routing
@ PlanningVariable
previousStandstill :
[Customer] L [Standstill
@inverseRelationShadowVariable
nextCustomer
0..1

When the genuine planning variable changes,
then the inverse relationship variable changes accordingly.

For a non-chained planning variable, the bi-directional relationship must be a many to one rela-
tionship. To map a bi-directional relationship between two planning variables, annotate the master
side (which is the genuine side) as a normal planning variable:

@l anni ngEntity
public class C oudProcess {

@ anni ngVariable(...)
public d oudConputer getConputer() {
return conputer;

}
public void set Conputer(C oudConputer conputer) {...}

And then annotate the other side (which is the shadow side) with a @ nver seRel at i onShadow

Var i abl e annotation on a Col | ecti on (usually a Set or Li st) property:

@) anni ngEntity
public class C oudConputer {

102

Planner Configuration

@ nver seRel ati onShadowVar i abl e(sour ceVari abl eName = "conputer")
public List<C oudProcess> getProcesslList() {
return processList;

The sour ceVari abl eName property is the name of the genuine planning variable on the return
type of the getter (so the name of the genuine planning variable on the other side).

For a chained planning variable, the bi-directional relationship must be a one to one relationship.
In that case, the genuine side looks like this:

@ anni ngEntity
public class Customer ... {

@ anni ngVari abl e(graphType = Pl anni ngVari abl eG aphType. CHAI NED, ...)
public Standstill getPreviousStandstill () {
return previousStandstill;

}

public void setPreviousStandstill(Standstill previousStandstill) {...}

And the shadow side looks like this:

@l anni ngEntity
public class Standstill {

@ nver seRel ati onShadowvar i abl e(sour ceVari abl eName = "previ ousStandstill")
public Custonmer getNext Customrer() {
return next Custormer;

}

public void set Next Cust omer (Cust omer next Customer) {...}

103

Planner Configuration

Warning

The input planning problem of a Sol ver must not violate bi-directional relation-
ships. If A points to B, then B must point to A. Planner will not violate that principle
during planning, but the input must not violate it.

4.3.6.3. Anchor Shadow Variable

An anchor shadow variable is the anchor of a chained variable.

Annotate the anchor property as a @nchor Shadowvar i abl e annotation:

@ anni ngEntity
public class Custoner {

@\nchor ShadowVar i abl e(sour ceVari abl eNane = "previousStandstill")
public Vehicle getVehicle() {...}
public void setVehicle(Vehicle vehicle) {...}

The sour ceVari abl eName property is the name of the chained variable on the same entity class.

4.3.6.4. Custom vari abl eLi st ener

To update a shadow variable, Planner uses a Vari abl eLi st ener . To define a custom shadow
variable, write a custom Var i abl eLi st ener : implement the interface and annotate it on the shad-
ow variable that needs to change.

@ anni ngVari able(...)
public Standstill getPreviousStandstill () {
return previousStandstill;

}

@cust onShadowVar i abl e(vari abl eLi st ener C ass = Vehi cl eUpdat i ngVari abl eLi st ener. cl ass,
sources = {@ust onShadowVvari abl e. Sour ce(vari abl eName = "previousStandstill")})
public Vehicle getVehicle() {
return vehicle;

}

The vari abl eNane is the variable that triggers changes in the shadow variable(s).

@ Note
If the class of the trigger variable is different than the shadow variable, also specify
the entityC ass on @ust onShadowvari abl e. Sour ce. In that case, make sure

104

Planner Configuration

that that ent i t yCl ass is also properly configured as a planning entity class in the
solver config, or the Vari abl eLi st ener will simply never trigger.

Any class that has at least one shadow variable, is a planning entity class, even
it has no genuine planning variables.

For example, the Vehi cl eUpdat i ngVari abl eLi st ener assures that every Cust omer in a chain
has the same Vehi cl e, namely the chain's anchor.

public class VehicleUpdatingVari abl eLi stener inplenents Vari abl eLi st ener <Cust ormer > {

public void afterEntityAdded(ScoreDirector scorebDirector, Customer customer) {
updat eVehi cl e(scoreDi rector, customner);

public void afterVariabl eChanged(ScoreDi rector scoreDirector, Custoner custoner) {
updat eVehi cl e(scoreDirector, custoner);

protected voi d updat eVehi cl e(ScoreDirector scoreDirector, Custoner sourceCustoner) {
Standstill previousStandstill = sourceCustoner.getPreviousStandstill();
Vehicl e vehicle = previousStandstill == null ? null : previousStandstill.getVehicle();
Cust oner shadowCust omer = sour ceCust oner;
whi | e (shadowCustomer != null && shadowCustoner. getVehicle() != vehicle) {
scoreDi rect or. bef oreVari abl eChanged(shadowCust oner, "vehicle");
shadowCust oner . set Vehi cl e(vehicl e);
scoreDirector. after Vari abl eChanged(shadowCust oner, "vehicle");
shadowCust omer = shadowCust oner. get Next Cust oner () ;

Warning

A Var i abl eLi st ener can only change shadow variables. It must never change a
genuine planning variable or a problem fact.

Warning

Any change of a shadow variable must be told to the Scor eDi r ect or .

If one Vari abl eLi st ener changes two shadow variables (because having two separate Vari -
abl eLi st ener s would be inefficient), then annotate only the first shadow variable with the vari -
abl eLi st ener O ass and let the other shadow variable(s) reference the first shadow variable:

105

Planner Configuration

@l anni ngVariable(...)
public Standstill getPreviousStandstill () {
return previousStandstill;

}

@ust onShadowvar i abl e(vari abl eLi stener O ass = Transport Ti meAndCapaci t yUpdat i ngVari abl eLi st ener. cl ass,

sources = {@ust onShadowVari abl e. Sour ce(vari abl eName =

public Integer getTransportTinme() {
return transportTi ne;

}

"previousStandstill")})

@ust onShadowvar i abl e(vari abl eLi st ener Ref = @Pl anni ngVari abl eRef erence(vari abl eName = "transportTi ne"))

public Integer getCapacity() {
return capacity;

}

4.3.6.5. VariableListener triggering order

All shadow variables are triggered by a Var i abl eLi st ener , regardless if it's a build-in or a custom
shadow variable. The genuine and shadow variables form a graph, that determines the order in
which the aft er Enti t yAdded(), af t er Var i abl eChanged() and aft er Enti t yRenoved() meth-

ods are called:

Shadow variable order

The shadow variable dependencies determine the order in which their after*() methods are called.

@CustomShadowVariable
(sources = {C})

@CustomShadowVariable
@PVariabla() (sources = {A})
=
Dependenc @PVariable() -- —
graph impligs __
the trigger order 1 2

[@CustomShadowVariable
{sources = (B, C})

3

@CustomShadow\Variable
{sources = {E})

4

| EVarListener | | FG\J’arL|stener|

| CVarListener | | DVarlistener |

__{ e e The first VariableListener

— afterVariableChanged(’’) o, triggers after the last genuine
afterVariableChanged(C1) : variable has Changed_

I afterVariableChanged(C2) | !
e ;r IIIIIIIIIIIIIIII e'n lf'lt;rl";.'l‘;alrlahleﬁhanged{ } i i
I o afierariabloChanged(C 1)
I o afierariabloChanged(C2)
o T S !

J E—— i

106

Planner Configuration

@ Note
In the example above, D could have also been ordered after E (or F) because there
is no direct or indirect dependency between D and E (or F).

Planner guarantees that:

e The first Vari abl eLi st ener's af t er*() methods trigger after the last genuine variable has
changed. Therefore the genuine variables (A and B in the example above) are guaranteed to be
in a consistent state across all its instances (with values A1, A2 and B1 in the example above)
because the entire Move has been applied.

« The second Vari abl eLi st ener's af t er *() methods trigger after the last first shadow variable
has changed. Therefore the first shadow variable (C in the example above) are guaranteed to
be in consistent state across all its instances (with values C1 and C2 in the example above).
And of course the genuine variables too.

* And so forth.

Planner does not guarantee the order in which the aft er *() methods are called for the same
Vari abl eLi st ener with different parameters (such as A1 and A2 in the example above), although
they are likely to be in the order in which they were affected.

4.3.7. Planning Problem and Planning Solution

4.3.7.1. Planning Problem Instance

A dataset for a planning problem needs to be wrapped in a class for the Sol ver to solve. You
must implement this class. For example in n queens, this in the NQueens class, which contains a
Col umm list, a Row list, and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized
Sol ut i on. Therefore, that wrapping class must implement the Sol ut i on interface. For example
in n queens, that NQueens class implements Sol ut i on, yet every Queen in a fresh NQueens class
is not yet assigned to a Row (their r ow property is nul I). This is not a feasible solution. It's not
even a possible solution. It's an uninitialized solution.

4.3.7.2. sol ution Interface

You need to present the problem as a Sol ut i on instance to the Sol ver. So your class needs to
implement the Sol uti on interface:

public interface Sol ution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> getProbl enfFacts();

107

Planner Configuration

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

@ anni ngSol uti on
public class NQueens inplenments Sol uti on<Si npl eScore> {

private int n;
/| Problemfacts
private List<Colum> col ummLi st;

private List<Row> rowlist;

/1 Planning entities
private List<Queen> queenlLi st;

/1

A planning solution class also needs to be annotated with the @l anni ngSol ut i on annotation.
Without automated scanning, the solver configuration also needs to declare the planning solution
class:

<sol ver>
<sol uti ond ass>or g. opt apl anner . exanpl es. nqueens. domai n. NQueens</ sol uti onCl ass>

</ sol ver >

4.3.7.3. Extract the entities from the sol ution

Planner needs to extract the entity instances from the Sol ution instance. It gets those
collection(s) by calling every getter (or field) that is annotated with @ anni ngEnti t yCol | ecti on-
Property:

@ anni ngSol uti on
public class NQueens inplenments Sol ution<Si npl eScore> {

private List<Queen> queenLi st;
@) anni ngEntityCol | ecti onProperty

public List<Queen> get QueenList() {
return queenLi st;

108

Planner Configuration

There can be multiple @Il anni ngEnti tyCol | ecti onProperty annotated members. Those can
even return a Col | ect i on with the same entity class type.

In rare cases, a planning entity might be a singleton: use @! anni ngEnt i t yPr operty on its getter
(or field) instead.

4.3.7.4. The get score() and setscore() Methods

A Sol uti on requires a score property. The score property is nul | if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The scor e property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

@l anni ngSol uti on
public class NQueens inplenents Sol ution<Sinpl eScore> {

private SinpleScore score;
public SinpleScore getScore() {

return score;

public void setScore(SinpleScore score) {
this.score = score;

...

Most use cases use a Har dSof t Scor e instead:

@l anni ngSol uti on
public class CourseSchedul e i npl enents Sol uti on<Har dSoft Score> {

private HardSoft Score score;
publ i c HardSoft Score getScore() {

return score;

public void set Score(HardSoft Score score) {
this.score = score;

109

Planner Configuration

...

See the Score calculation section for more information on the Scor e implementations.
4.3.7.5. The get Probl enfFact s() Method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the get Pr obl enFact s() method will be asserted into the Drools working
memory, so the score rules can access them. For example, NQueens just returns all Col unm and
Row instances.

public Collection<? extends Cbject> getProbl enfFacts() {
Li st <Ooj ect> facts = new Arrayli st <Cbj ect>();
facts. addAl | (col ummLi st);
facts. addAl | (rowLi st);
/1 Do not add the planning entity's (queenList) because that will be done automatically
return facts;

All planning entities are automatically inserted into the Drools working memory. Do not add them
in the method get Pr obl enfFact s() .

@ Note

A common mistake is to use f act s. add(...) instead of fact. addAl | (...) fora
Col | ecti on, which leads to score rules failing to match because the elements of
that Col | ect i on are not in the Drools working memory.

The get Pr obl enfact s() method is not called often: at most only once per solver phase per solver
thread.

4.3.7.5.1. Cached Problem Fact

A cached problem fact is a problem fact that does not exist in the real domain model, but is cal-
culated before the Sol ver really starts solving. The get Pr obl enfact s() method has the chance
to enrich the domain model with such cached problem facts, which can lead to simpler and faster
score constraints.

For example in examination, a cached problem fact Topi cConf | i ct is created for every two Top-

i ¢s which share at least one St udent .

public Collection<? extends Cbject> getProbl enfacts() {
Li st<Ohj ect> facts = new ArrayLi st <Obj ect>();

110

Planner Configuration

/11

facts. addAl | (cal cul at eTopi cConflictList());
11

return facts;

private List<TopicConflict> calcul ateTopicConflictList() {
Li st <Topi cConflict> topicConflictList = new ArraylList<TopicConflict>();
for (Topic leftTopic : topicList) {
for (Topic rightTopic : topicList) {
if (leftTopic.getld() < rightTopic.getld()) {
int studentSize = 0;
for (Student student : |eftTopic.getStudentList()) {
if (rightTopic.getStudentList().contains(student)) {
st udent Si ze++;

}
if (studentSize > 0) {

t opi cConflictList.add(new Topi cConflict(leftTopic, rightTopic, studentSize));
}

}
return topicConflictList;

Where a score constraint needs to check that no two exams with a topic that shares a student
are scheduled close together (depending on the constraint: at the same time, in a row, or in the
same day), the Topi cConfl i ct instance can be used as a problem fact, rather than having to
combine every two St udent instances.

4.3.7.6. Cloning a sol ution

Most (if not all) optimization algorithms clone the solution each time they encounter a new best
solution (so they can recall it later) or to work with multiple solutions in parallel.

Note

There are many ways to clone, such as a shallow clone, deep clone, ... This context
focuses on a planning clone.

A planning clone of a Sol ut i on must fulfill these requirements:

» The clone must represent the same planning problem. Usually it reuses the same instances of
the problem facts and problem fact collections as the original.

» The clone must use different, cloned instances of the entities and entity collections. Changes
to an original Sol ut i on entity's variables must not affect its clone.

111

Planner Configuration

Solution cloning

@PlanningVariable
Original solution

[Computer h : [Process] @PlanningEntity

List<Process>]

W

@PlanningEntityCollectionProperty

CloudBalance] @~PlanningSolution

Cloned solution

Process]

*

List<Process> J

CloudBalance]

Implementing a planning clone method is hard, therefore you do not need to implement it.
4.3.7.6.1. Fi el dAccessi ngSol uti ond oner

This Sol uti onC oner is used by default. It works well for most use cases.

Warning

When the Fi el dAccessi ngSol uti onCl oner clones your entity collection, it may

not recognize the implementation and replace it with ArrayLi st, Li nkedHashSet
or Tr eeSet (whichever is more applicable). It recognizes most of the common JDK
Col | ect i on implementations.

The Fi el dAccessi ngSol uti onCl oner does not clone problem facts by default. If any of your
problem facts needs to be deep cloned for a planning clone, for example if the problem fact refer-
ences a planning entity or the planning solution, mark it with a @eepPl anni ngC one annotation:

@eepPl anni ngC one

112

Planner Configuration

public class SeatDesi gnati onDependency {
private SeatDesignation |eftSeatDesignation; // planning entity
private SeatDesignation rightSeatDesignation; // planning entity

In the example above, because Seat Desi gnati on is a planning entity (which is deep planning
cloned automatically), Seat Desi gnat i onDependency must also be deep planning cloned.

Alternatively, the @eepPl anni ngCl one annotation can also be used on a getter method.
4.3.7.6.2. Custom Cloning: Make sol uti on Implement Pl anni ngd oneabl e

If your Sol uti on implements Pl anni ngCl oneabl e, Planner will automatically choose to clone it
by calling the pl anni ngd one() method.

public interface Planni ngC oneabl e<T> {

T pl anni ngC one() ;

For example: If NQueens implements Pl anni ngCl oneabl e, it would only deep clone all Queen
instances. When the original solution is changed during planning, by changing a Queen, the clone
stays the same.

public class NQueens inplenments Solution<...> Planni ngd oneabl e<NQueens> {

/**
* Clone will only deep copy the { #queenLi st}.
*/
publ i c NQueens pl anni ngC one() {
NQueens cl one = new NQueens();
clone.id =id;
clone.n = n;
cl one. col umLi st = col umLi st;
clone.rowLi st = rowLi st ;
Li st <Queen> cl onedQueenLi st = new Arrayli st <Queen>(queenLi st. size());
for (Queen queen : queenList) {
cl onedQueenlLi st . add(queen. pl anni ngC one());
}
cl one. queenLi st = cl onedQueenLi st ;
cl one. score = score;
return clone;

The pl anni ngd one() method should only deep clone the planning entities. Notice that the prob-
lem facts, such as Col unn and Row are not normally cloned: even their Li st instances are not

113

Planner Configuration

cloned. If you were to clone the problem facts too, then you would have to make sure that the
new planning entity clones also refer to the new problem facts clones used by the solution. For
example, if you were to clone all Row instances, then each Queen clone and the NQueens clone
itself should refer to those new Row clones.

Warning

Cloning an entity with a chained variable is devious: a variable of an entity A might
point to another entity B. If A is cloned, then its variable must point to the clone
of B, not the original B.

4.3.7.7. Create an Uninitialized Solution

Create a Sol uti on instance to represent your planning problem's dataset, so it can be set on
the Sol ver as the planning problem to solve. For example in n queens, an NQueens instance is
created with the required Col unn and Row instances and every Queen set to a different col umm
and every rowset to nul | .

private NQueens createNQueens(int n) {
NQueens nQueens = new NQueens();
nQueens. set | d(0L);
nQueens. set N(n) ;
nQueens. set Col umLi st (cr eat eCol unmLi st (nQueens));
nQueens. set RowLi st (cr eat eRowLi st (nQueens));
nQueens. set QueenLi st (creat eQueenLi st (nQueens));
return nQueens;

}

private List<Queen> createQueenLi st (NQueens nQueens) {
int n = nQueens.getN();
Li st <Queen> queenLi st = new ArrayLi st <Queen>(n);
long id = OL;
for (Colum colum : nQueens. get Col umList()) {
Queen queen = new Queen();
queen. set1d(id);
i d++;
queen. set Col uim(col um) ;
/1 Notice that we | eave the Pl anningVariable properties on null
queenLi st . add(queen) ;
}

return queenLi st;

114

Planner Configuration

A°B C D

Ww N ¥+ ©

Figure 4.1. Uninitialized Solution for the 4 Queens Puzzle

Usually, most of this data comes from your data layer, and your Sol uti on implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

private void createlLecturelist(CourseSchedul e schedul e) {
Li st <Cour se> courseLi st = schedul e. get Cour seLi st ();
Li st<Lecture> | ecturelList = new ArraylLi st <Lecture>(courseList.size());

long id = OL;
for (Course course : courseList) {
for (int i =0; i < course.getlLectureSize(); i++) {

Lecture |l ecture = new Lecture();
| ecture.setld(id);
i d++;
| ecture. set Course(course);
| ecture. setlLecturel ndexl nCourse(i);
/1 Notice that we | eave the Pl anni ngVari abl e properties (period and roon) on null
| ecturelList.add(l ecture);

}

schedul e. set Lect urelLi st (Il ecturelList);

4.4. Use the sol ver

4.4.1. The solver Interface

A Sol ver implementation will solve your planning problem.

public interface Sol ver<S extends Sol ution> {

S sol ve(S pl anni ngProbl em) ;

115

Planner Configuration

A Sol ver can only solve one planning problem instance at a time. A Sol ver should only be ac-
cessed from a single thread, except for the methods that are specifically javadocced as being
thread-safe. It is built with a Sol ver Fact ory, there is no need to implement it yourself.

4.4.2. Solving a Problem

Solving a problem is quite easy once you have:

* A Sol ver built from a solver configuration
« A Sol uti on that represents the planning problem instance
Just provide the planning problem as argument to the sol ve() method and it will return the best

solution found:

NQueens best Sol uti on = sol ver. sol ve(pl anni ngPr obl en) ;

For example in n queens, the sol ve() method will return an NQueens instance with every Queen
assigned to a Row.

A°B C D

g

g

i

Ww N H O

g

Figure 4.2. Best Solution for the 4 Queens Puzzle in 8ms (Also an Optimal
Solution)

The sol ve(Sol uti on) method can take a long time (depending on the problem size and the solver
configuration). The Sol ver intelligently wades through the search space of possible solutions
and remembers the best solution it encounters during solving. Depending on a number factors
(including problem size, how much time the Sol ver has, the solver configuration, ...), that best
solution might or might not be an optimal solution.

@ Note

The Sol ut i on instance given to the method sol ve(Sol uti on) is changed by the
Sol ver, but do not mistake it for the best solution.

116

Planner Configuration

4.4.3. Environment Mode: Are There Bugs in my Code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<sol ver>
<envi r onnent Mode>FAST_ASSERT</ envi r onnment Mbde>

</ sol ver>

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example Simulated Annealing depends highly on random numbers, while
Tabu Search only depends on it to deal with score ties. The environment mode influences the
seed of that Randominstance.

These are the environment modes:

4.4.3.1. FULL_ASSERT

The FULL_ASSERT mode turns on all assertions (such as assert that the incremental score cal-
culation is uncorrupted for each move) to fail-fast on a bug in a Move implementation, a score
rule, the rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method cal cul at eScor e() more frequently than a non-assert mode.

The FULL_ASSERT mode is horribly slow (because it does not rely on incremental score calcu-
lation).

4.4.3.2. NON_INTRUSIVE_FULL_ASSERT

The NON_INTRUSIVE_FULL_ASSERT turns on several assertions to fail-fast on a bug in a Move
implementation, a score rule, the rule engine itself, ...

117

Planner Configuration

This mode is reproducible (see the reproducible mode). It is non-intrusive because it does not call
the method cal cul at eScor e() more frequently than a non assert mode.

The NON_INTRUSIVE_FULL_ASSERT mode is horribly slow (because it does not rely on incre-
mental score calculation).

4.4.3.3. FAST_ASSERT

The FAST_ASSERT mode turns on most assertions (such as assert that an undoMove's score
is the same as before the Move) to fail-fast on a bug in a Move implementation, a score rule, the
rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method cal cul at eScor e() more frequently than a non assert mode.

The FAST_ASSERT mode is slow.

It is recommended to write a test case that does a short run of your planning problem with the
FAST_ASSERT mode on.

4.4.3.4. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, two runs in the same Planner version will execute the same code in the same order.
Those two runs will have the same result at every step, except if the note below applies. This
enables you to reproduce bugs consistently. It also allows you to benchmark certain refactorings
(such as a score constraint performance optimization) fairly across runs.

The reproducible mode is slightly slower than the production mode. If your production environment
requires reproducibility, use this mode in production too.

118

Planner Configuration

In practice, this mode uses the default, fixed random seed if no seed is specified, and it also
disables certain concurrency optimizations (such as work stealing).

4.4.3.5. PRODUCTION

The production mode is the fastest, but it is not reproducible. It is recommended for a production
environment, unless reproducibility is required.

In practice, this mode uses no fixed random seed if no seed is specified.

4.4.4. Logging Level: What is the soiver DoOiNg?

The best way to illuminate the black box that is a Sol ver, is to play with the logging level:

 error: Log errors, except those that are thrown to the calling code as a Runt i meExcepti on.

* warn: Log suspicious circumstances.
» info: Log every phase and the solver itself. See scope overview.
« debug: Log every step of every phase. See scope overview.

« trace: Log every move of every step of every phase. See scope overview.

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

119

Planner Configuration

INFO Solving started: time spent (3), best score (uninitialized/0), random (JDK with seed
0) . DEBUG CH step (0), tinme spent (5), score (0), selected nove count (1), picked nove
(Queen-2 {null -> Row 0}).DEBUG CH step (1), time spent (7), score (0), selected nove count
(3), picked nmove (Queen-1 {null -> Row 2}).DEBUG CH step (2), time spent (10), score (0)
sel ected nmove count (4), picked nove (Queen-3 {null -> Row 3}).DEBUG CH step (3), tine
spent (12), score (-1), selected nobve count (4), picked nove (Queen-0 {null -> Row 1}).INFO
Construction Heuristic phase (0) ended: step total (4), tine spent (12), best score (-1).DEBUG

LS step (0), tine spent (19), score (-1), best score (-1), accepted/sel ected nove count
(12/12), picked nove (Queen-1 {Row2 -> Row 3}).DEBUG LS step (1), tinme spent (24), score
(0), new best score (0), accepted/selected nove count (9/12), picked nove (Queen-3 {Row3 ->
Row 2}). 1 NFO Local Search phase (1) ended: step total (2), tine spent (24), best score (0).I|NFO

Sol ving ended: tine spent (24), best score (0), average cal cul ate count per second (1625)

with seed 0).DEBUG CH step (0), tinme spent (5), score (0), selected nove count (1)
pi cked nove (Queen-2
{null -> Row 0}).DEBUG CH step (1), tine spent (7), score (0), selected nove count (3)

pi cked nove (Queen-1

{null -> Row 2}).DEBUG CH step (2), tine spent (10), score (0), selected nove count (4),

pi cked nove (Queen-3

{null -> Row 3}).DEBUG CH step (3), time spent (12), score (-1), selected nove count
(4), picked nove (Queen-0

{null -> Row1}).INFO Construction Heuristic phase (0) ended: step total (4), time spent (12)

best score (-1).DEBUG LS step (0), time spent (19), score (-1), best score
(-1), accepted/selected nove count (12/12), picked nove (Queen-1
{Row2 -> Row 3}).DEBUG LS step (1), tine spent (24), score (0), new best score

(0), accepted/sel ected nove count (9/12), picked nove (Queen-3
{Row-3 -> Row2}).INFO Local Search phase (1) ended: step total (2), tinme spent (24)
best score (0).INFO Solving ended: tinme spent (24), best score (0), average cal cul ate count

All time spent values are in milliseconds.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade which del-
egates every log message to Logback, Apache Commons Logging, Log4j or java.util.logging. Add
a dependency to the logging adaptor for your logging framework of choice.

If you are not using any logging framework yet, use Logback by adding this Maven dependency
(there is no need to add an extra bridge dependency):

<dependency>
<gr oupl d>ch. gos. | ogback</ gr oupl d>
<artifact!|d>l ogback-classic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

Configure the logging level on the or g. opt apl anner package in your | ogback. xm file:

<configuration>

<l ogger nane="org. optapl anner" | evel ="debug"/>

120

http://www.slf4j.org/
http://www.slf4j.org/

Planner Configuration

<configuration>

If instead, you are still using Log4J 1.x (and you do not want to switch to its faster successor,
Logback), add the bridge dependency:

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
<versi on>1. x</ ver si on>

</ dependency>

And configure the logging level on the package or g. opt apl anner in your | og4j . xni file:

<l og4j :configuration xm ns:|og4j="http://jakarta. apache. org/log4j/">
<cat egory name="org. opt apl anner">

<priority val ue="debug" />
</ cat egory>

</l og4j : configuration>

MDC. put ("t enant . name", t enant Nane) ;
Sol ution best Sol ution = sol ver. sol ve(pl anni ngProbl em ;
MDC. r enove("t enant . nane") ;

<appen
der nane="fil eAppender" cl ass="ch. qos. | ogback. cl assic.sift.SiftingAppender">

<di scri m nat or >

<key>t enant . nane</ key>

<def aul t Val ue>unknown</ def aul t Val ue>
</ di scri m nat or >
<sift>

<appender name="fil eAppender. ${tenant.nane}" class="...Fil eAppender">

<file>local /| og/ optapl anner-${tenant. nane}. | og</file>

121

http://logback.qos.ch/manual/mdc.html
http://logback.qos.ch/manual/mdc.html

Planner Configuration

</ appender >
</sift>
</ appender >

4.4.5. Random Number Generator

Many heuristics and metaheuristics depend on a pseudorandom number generator for move se-
lection, to resolve score ties, probability based move acceptance, ... During solving, the same
Randominstance is reused to improve reproducibility, performance and uniform distribution of ran-
dom values.

To change the random seed of that Randominstance, specify a r andontSeed:

<sol ver >
<r andonBeed>0</ r andonfSeed>

</ sol ver >

To change the pseudorandom number generator implementation, specify a r andonilype:

<sol ver >
<r andoniType>MERSENNE_TW STER</ r andonType>

</ sol ver >

The following types are supported:

¢ JDK (default): Standard implementation (j ava. uti | . Random).

e MERSENNE_TW STER: Implementation by Commons Math [http://commons.apache.org/prop-
er/commons-math/userguide/random.html].

e WELL512A, VELL1024A, WELL19937A, WELL19937C, WELL44497A and WELL44497B:. Im-
plementation by Commons Math [http://commons.apache.org/proper/commons-math/user-
guide/random.html].

For most use cases, the randomType has no significant impact on the average quality of the best
solution on multiple datasets. If you want to confirm this on your use case, use the benchmarker.

122

http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html

Chapter 5. Score Calculation

5.1. Score Terminology

5.1.1. What is a Score?

Every initialized Sol uti on has a score. The score is an objective way to compare two solutions.
The solution with the higher score is better. The Sol ver aims to find the Sol ut i on with the highest
Scor e of all possible solutions. The best solution is the Sol uti on with the highest Scor e that
Sol ver has encountered during solving, which might be the optimal solution.

Planner cannot automatically know which Sol ut i on is best for your business, so you need to tell
it how to calculate the score of a given Sol ut i on according to your business needs. If you forget
or are unable to implement an important business constraint, the solution is probably useless:

Optimal with incomplete constraints

The optimal solution for a problem that misses a constraint is probably useless.

Optimal solution
with missing constraint

Nuclear cargo requires
special vehicle 30 30

(A
S
40
)
BO/L00_4 40
100/100
.ﬁ
Y
\ 40
40
2.5 ‘ 100/100
Ea
30 30
Not feasible

Optimal solution
with all constraints

Patched solution
for missing constraint

30 30 30 30
.\
S]
40 60/100 |
=
| 8000 4 40
m .'_'_-::_-t:-‘r.
Tl
e
40 Q
F X s I| ‘scumu
30 30

Highest feasible score

Note

Immaovable (locked) entities can sometimes offer a temporary workaround for an end-user.

Defining constraints in Planner is very flexible through the following score techniques:

e Score signum (positive or negative): maximize or minimize a constraint type

123

Score Calculation

« Score weight: put a cost/profit on a constraint type
« Score level (hard, soft, ...): prioritize a group of constraint types

» Pareto scoring

5.1.2. Score Constraint Signum (Positive or Negative)

All score techniques are based on constraints. A constraint can be a simple pattern (such as
Maximize the apple harvest in the solution) or a more complex pattern. A positive constraint is a
constraint you want to maximize. A negative constraint is a constraint you want to minimize.

Positive and negative constraints

Pick the solution which maximizes apples and minimizes fuel usage

Maximize Cj = ‘{j 1
Nt 4 \t 4 '
Minimizefl = & I

R < R <

L N f :

Maximize () and minimize® == () =1 & B
~ < AL
=SS, ! e

The image above illustrates that the optimal solution always has the highest score, regardless
if the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In
that case, the score is the sum of the weight of the negative constraints being broken, with a
perfect score of 0. This explains why the score of a solution of four queens is the negative of the
number of queen pairs which can attack each other.

Negative and positive constraints can be combined, even in the same score level.

124

Optimal solution

Optimal solutien

Optimal solution

Score Calculation

@ Note
Do not presume that your business knows all its score constraints in advance.
Expect score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint
is fulfilled) on a certain planning entity set, it is called a constraint match.

5.1.3. Score Constraint Weight

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking
another constraint x times, then those two constraints have a different weight (but they are in the
same score level). For example in vehicle routing, you can make one "unhappy driver" constraint
match count as much as two "fuel tank usage" constraint matches:

Score weighting

W o= \!
T=20 Minimize driver unhappiness
= @ 2 Minimize fuel usage
\
B] e
1 unhappy driver is as bad o=\
as 2 fuel usages —
=g
Eol™) ™) ")
® PR ® PR < pE
—_— 7 _— _E TN
et / (R : (R

—

Optimal solution

Score weighting is often used in use cases where you can put a price tag on everything. In that
case, the positive constraints maximize revenue and the negative constraints minimize expenses,
so together they maximize profit. Alternatively, score weighting is also often used to create social

125

Score Calculation

fairness. For example, a nurse, who requests a free day, pays a higher weight on New Years eve

than on a normal day.

Putting a good weight on a constraint can be a difficult analytical decision, because it is about
making choices and tradeoffs with other constraints. However, a non-accurate weight is less dam-

aging than mediocre algorithms:

Score tradeoff in perspective

Picking the right tradeoff is less impaortant than using better algorithms.

(&) Profit

Maximize
Uniform focus Profit focus
with traditional algo's with traditional algo's

Profit focus gain

® ®@ & @

®

(s Ecology

Employee happiness

Algorithms gain =

@ @

The weight of a constraint match can be dynamically based on the planning entities involved. For
example in cloud balance, the weight of the soft constraint match for an active Conput er is the
cost of that Conput er (which differs per computer).

Uniform focus
with OptaPlanner algo's

®

Profit focus gain

I Ioss

@ @

FProfit focus
with OptaPlanner algo's

®

@ @

126

Score Calculation

5.1.4. Score Constraint Level (hard, soft, ...)

Sometimes a score constraint outranks another score constraint, no matter how many times the
other is broken. In that case, those score constraints are in different levels. For example, a nurse
cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks all
nurse happiness constraints.

Most use cases have only two score levels, hard and soft. Two scores are compared lexicograph-
ically. The first score level gets compared first. If those differ, the others score levels are ignored.
For example, a score that breaks 0 hard constraints and 1000000 soft constraints is better than a
score that breaks 1 hard constraint and 0 soft constraints.

Score levels

First minimize overloaded truck axles,
then minimize fuel usage

=R A,
1 overloaded axle is worse pEEREE
than any number of fuel usages ———
a2l 7
A A V
esen

RER "=

Optimal solution

A A

eoen L
- T -2 - TN
L i P 0 S i SRS

If there are two (or more) score levels, for example a hard and soft level, then a score is feasible
if no hard constraints are broken.

E] Note

By default, Planner will always assign all planning variables a planning value. If
there is no feasible solution, this means the best solution will be unfeasible. To in-

127

Score Calculation

For each constraint, you need to pick a score level, a score weight and a score signum. For
example: - 1soft which has score level of sof t, a weight of 1 and a negative signum. Do not
use a big constraint weight when your business actually wants different score levels. That hack,
known as score folding, is broken:

Score folding is broken

Don't mix score levels
CPU Folded score Good score
(hard * 1 000 000} + soft hard and soft separated

500 000 $

800000 % -1 500 000 -1 hard / -500 000 soft

Highest score

I-L
=

ey
—
-

[] Z 800000%
[X 500000 $
Y 8000008 -2 100 000 [c- hard / -2 100 000 saﬂ]
Highest score
Z 800000$

Score folding also stimulates overflow

W 100000 % 1294 867 296 -3 000 hard / -100 000 soft

128

Score Calculation

Furthermore, it will likely create a score trap. For example in cloud balance if a
Conmput er has seven CPU too little for its Processes, then it must be weighted
seven times as much as if it had only one CPU too little.

Three or more score levels are supported. For example: a company might decide that profit out-
ranks employee satisfaction (or visa versa), while both are outranked by the constraints of phys-
ical reality.

@ Note

To model fairness or load balancing, there is no need to use lots of score levels
(even though Planner can handle many score levels).

5.1.5. Pareto Scoring (AKA Multi-objective Optimization Scor-
ing)

Far less common is the use case of pareto optimization, which is also known under the more
confusing term multi-objective optimization. In pareto scoring, score constraints are in the same
score level, yet they are not weighted against each other. When two scores are compared, each
of the score constraints are compared individually and the score with the most dominating score
constraints wins. Pareto scoring can even be combined with score levels and score constraint
weighting.

Consider this example with positive constraints, where we want to get the most apples and or-
anges. Since it is impossible to compare apples and oranges, we can not weight them against
each other. Yet, despite that we can not compare them, we can state that two apples are better
then one apple. Similarly, we can state that two apples and one orange are better than just one
orange. So despite our inability to compare some Scores conclusively (at which point we declare
them equal), we can find a set of optimal scores. Those are called pareto optimal.

129

Score Calculation

Pareto optimization scoring

é — 7. Maximize apples and oranges harvest
’ Don't compare apples and oranges
-°@

1 apple is worth an unknown
number of oranges

1 orange is worth an unknown
number of apples

Optimal solution B

—

///
<

Optimal solution A Only pareto optimal solutions
are shown to the user

User decides between A and B

Scores are considered equal far more often. It is left up to a human to choose the better out
of a set of best solutions (with equal scores) found by Planner. In the example above, the user
must choose between solution A (three apples and one orange) and solution B (one apple and
six oranges). It is guaranteed that Planner has not found another solution which has more apples
or more oranges or even a better combination of both (such as two apples and three oranges).

To implement pareto scoring in Planner, implement a custom Scor eDef i ni ti on and Scor e (and
replace the Best Sol ut i onRecal | er). Future versions will provide out-of-the-box support.

130

Score Calculation

5.1.6. Combining Score Techniques

All the score techniques mentioned above, can be combined seamlessly:

Score composition

How are the score techniques combined?

Constraint 0 Constraint 0 Constraint 0
Overloaded axle Fuel cost CO? emissions

Constraint 1 Constraint 1 Constraint 1
Sleep-deprived driver Happy driver Methane emissions

(-34 / -170 : -1004 /..)

Score for 1 solution

5.1.7. score interface

A score is represented by the Scor e interface, which naturally extends Conpar abl e:

public interface Score<...> extends Conparable<...> {

}

The Scor e implementation to use depends on your use case. Your score might not efficiently fit in
a single | ong value. Planner has several built-in Scor e implementations, but you can implement
a custom Scor e too. Most use cases tend to use the built-in Har dSof t Scor e.

131

Score Calculation

Score class diagram

Choose a Score implementation or write a custom one

<<interface>> - <<interface>>
‘ Score ‘ | Comparable ‘
5

l SimpleScore S‘impIeLongScore SirﬁpleBigDecimalScore
.| score : int score : long score : BigDecimal
S
HardSoftScore HeirdSoftLongScore HarﬂSoﬂBigDecimalScore
' | hardScore : int hardScore : long hardScore : BigDecimal
softScore : int softScore : long softScore : BigDecimal

HardMediumSoftScore

hardScore : int

mediumScore: int

softScore : int

The Scor e implementation (for example Har dSof t Scor e) must be the same throughout a Sol ver
runtime. The Scor e implementation is configured in the solver configuration as a ScoreDefinition:

<scoreDi rect or Fact or y>
<scor eDefini ti onType>HARD SOFT</ scor eDefi ni ti onType>

</scoreDi rectorFactory>

5.1.8. Avoid Floating Point Numbers in Score Calculation

Avoid the use of f | oat and doubl e for score calculation. Use Bi gDeci mal instead.

Floating point numbers (f | oat and doubl e) cannot represent a decimal number correctly. For ex-
ample: a doubl e cannot hold the value 0. 05 correctly. Instead, it holds the nearest representable
value. Arithmetic (including addition and subtraction) with floating point numbers, especially for
planning problems, leads to incorrect decisions:

132

Score Calculation

Score weight type

W =0.01 $ Use the correct number type
Fuel usage double BigDecimal
double-precision 64-bit IEEE 754 arbitrary-precision signed
floating point decimal number
Vehicle X EEE 0.03 0.03
@ Vehicle Y EEE 0.03 0.03
Total 0.06 [0.06]
Highest score
Vehicle X "1 0.01 0.01
@ Vehicle Y EEEREE 0.05 0.05
Total [ﬂ.nsmunnmunnmuuns] [0.06]
Highest score Highest score

[SimpleDoubleScore | [SimpleBigDecimalScore |
Lsmre:double J Lsoﬂre:BigDecimal J

Additionally, floating point number addition is not associative:

Systemout.println(((0.01 + 0.02) + 0.03) == (0.01 + (0.02 + 0.03))); // returns false

This leads to score corruption.

Decimal numbers (Bi gDeci mal) have none of these problems.

133

Score Calculation

5.2. Choose a Score Definition

Each Scor e implementation also has a Scor eDefi ni ti on implementation. For example: Si m
pl eScor e is defined by Si npl eScor eDef i ni ti on.

@ Note
To properly write a Scor e to database (with JPA/Hibernate) or to XML/JSON (with
XStream/JAXB), see the integration chapter.

5.2.1. SimpleScore

A Si npl eScor e has a single i nt value, for example - 123. It has a single score level.

<scoreDi rect or Fact ory>
<scoreDefini ti onType>S|I MPLE</ scor eDefi ni ti onType>

</ scoreDirectorFact ory>

Variants of this scor eDef i ni ti onType:

e SIMPLE_LONG Uses Si npl eLongScor e which has a | ong value instead of an i nt value.

e SI MPLE_DOUBLE: Uses Si npl eDoubl eScor e which has a doubl e value instead of an i nt value.
Not recommended to use.

e SI MPLE_BI G _DECI MAL: Uses Si npl eBi gDeci mal Scor e which has a Bi gDeci mal value instead
of ani nt value.

5.2.2. HardSoftScore (Recommended)

A Har dSof t Scor e has a hard i nt value and a soft i nt value, for example - 123har d/ - 456soft .
It has 2 score levels (hard and soft).

<scoreDirector Fact ory>
<scor eDefini ti onType>HARD SOFT</ scor eDefi niti onType>

</ scoreDi rect or Fact or y>

Variants of this scor eDef i ni ti onType:

e HARD SOFT_LONG Uses Har dSof t LongScor e which has | ong values instead of i nt values.

134

Score Calculation

e HARD SOFT_DOUBLE: Uses Har dSof t Doubl eScor e which has doubl e values instead of i nt val-
ues. Not recommended to use.

e HARD SOFT_BI G _DECI MAL: Uses Har dSof t Bi gDeci nal Scor e which has Bi gDeci nal values in-
stead of i nt values.

5.2.3. HardMediumSoftScore

A Har dMedi unsof t Scor e which has a hard i nt value, a medium i nt value and a softi nt value,
for example - 123har d/ - 456medi uni - 789sof t . It has 3 score levels (hard, medium and soft).

<scoreDi rect or Fact or y>
<scoreDefini ti onType>HARD_MEDI UM SOFT</ scor eDefi ni ti onType>

</ scoreDirector Fact ory>

Variants of this scor eDef i ni ti onType:

e HARD MEDI UM SOFT_LONG Uses Har dMedi untof t LongScor e which has | ong values instead of
i nt values.

5.2.4. BendableScore

A Bendabl eScor e has a configurable number of score levels. It has an array of hard i nt values
and an array of soft i nt value, for example with 2 hard levels and 3 soft levels, the score can be
-123/- 456/ -789/ - 012/ - 345.

<scoreDi rect or Fact or y>
<scor eDefi ni ti onType>BENDABLE</ scor eDefi niti onType>
<bendabl eHar dLevel sSi ze>2</ bendabl eHar dLevel sSi ze>
<bendabl eSof t Level sSi ze>3</ bendabl eSof t Level sSi ze>

</ scoreDirectorFactory>

The number of hard and soft score levels needs to be set at configuration time. It is not flexible
to change during solving.

Variants of this scor eDef i ni ti onType:

e BENDABLE_Long: Uses Bendabl eLongScor e which has | ong values instead of i nt values.

* BENDABLE_BI G DECI MAL: Uses Bendabl eBi gDeci mal Scor e which has Bi gDeci mal values in-
stead of i nt values.

5.2.5. Implementing a Custom Score

The Scor eDefi ni ti on interface defines the score representation.

135

Score Calculation

To implement a custom Scor e, you will also need to implement a custom Scor eDefi ni ti on.
Extend Abst r act Scor eDef i ni ti on (preferably by copy pasting Har dSof t Scor eDef i ni ti on) and
start from there.

Then hook your custom Scor eDef i ni ti on in your Sol ver Confi g. xni :

<scor eDi rect or Fact or y>
<scoreDefinitionC ass>...MScoreDefinition</scoreDefinitionC ass>

</ scoreDi rect or Fact ory>

To have it integrate seamlessly with JPA/Hibernate, XStream, ... you might need to write some
glue code.

5.3. Calculate the score

5.3.1. Score Calculation Types

There are several ways to calculate the Scor e of a Sol uti on:

« Easy Java score calculation: implement a single Java method
* Incremental Java score calculation: implement multiple Java methods
» Drools score calculation (recommended): implement score rules

Every score calculation type can use any Score definition. For example, easy Java score calcu-
lation can output a Har dSof t Scor e.

All score calculation types are Object Oriented and can reuse existing Java code.

Important

The score calculation must be read-only. It must not change the planning entities
or the problem facts in any way. For example, it must not call a setter method on
a planning entity in a Drools score rule's RHS. This does not apply to logically
inserted objects, which can be changed by the score rules that logically inserted
them in the first place.

Planner will not recalculate the score of a Sol ut i on if it can predict it (unless an
environmentMode assertion is enabled). For example, after a winning step is done,
there is no need to calculate the score because that move was done and undone
earlier. As a result, there is no guarantee that such changes applied during score
calculation are actually done.

136

Score Calculation

5.3.2. Easy Java Score Calculation

An easy way to implement your score calculation in Java.

» Advantages:
 Plain old Java: no learning curve
» Opportunity to delegate score calculation to an existing code base or legacy system
« Disadvantages:
» Slower and less scalable
» Because there is no incremental score calculation

Just implement one method of the interface EasyScor eCal cul at or :

public interface EasyScoreCal cul at or<Sol extends Sol ution> {

Score cal cul at eScore(Sol sol ution);

For example in n queens:

public class NQueensEasyScoreCal cul ator inplenents EasyScoreCal cul at or <NQueens> {

public SinpleScore cal cul at eScor e(NQueens nQueens) {
int n = nQueens. getN();
Li st <Queen> queenLi st = nQueens. get QueenLi st();

int score = O;
for (int i =0; i <n; i++) {
for (int j =i +1; j <n; j++) {
Queen | eft Queen = queenlList.get(i);
Queen rightQueen = queenList.get(j);
if (leftQueen.getRow() != null && rightQueen.getRow) != null) {
if (leftQueen.get Rowl ndex() == rightQueen. get Row ndex()) {
score--;
}
if (leftQueen.getAscendi ngDi agonal | ndex() == ri ght Queen. get Ascendi ngDi agonal | ndex()) {
score--;
}
if (leftQueen. get Descendi nghi agonal | ndex() == ri ght Queen. get Descendi ngDi agonal | ndex()) {
score--;

}

return SinpleScore.val uet (score);

137

Score Calculation

Configure it in your solver configuration:

<scorebDi rectorFactory>
<scoreDefinitionType>...</scoreDefinitionType>

<easyScoreCal cul at or Cl ass>or g. opt apl anner . exanpl es. nqueens. sol ver. scor e. NQueensEasyScor eCal cul at or </
easyScor eCal cul at or Gl ass>
</ scoreDirector Fact ory>

Alternatively, build a EasyScor eCal cul at or instance at runtime and set it with the programmatic
API:

sol ver Fact ory. get Sol ver Confi g() . get ScoreDi rect or Fact or yConfi g. set EasyScor eCal cul at or (easyScor eCal cul ator);

5.3.3. Incremental Java Score Calculation

A way to implement your score calculation incrementally in Java.

« Advantages:
» Very fast and scalable
« Currently the fastest if implemented correctly
 Disadvantages:
» Hard to write

» A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine
can do for you)

« You have to learn, design, write and improve all these performance optimizations yourself
* Hard to read
* Regular score constraint changes can lead to a high maintenance cost

Implement all the methods of the interface I ncr enent al Scor eCal cul at or and extend the class
Abstract | ncrement al Scor eCal cul at or:

public interface Incremental ScoreCal cul ator<Sol extends Sol ution> {

voi d reset Wor ki ngSol uti on(Sol worki ngSol ution);

138

Score Calculation

voi d beforeEntityAdded(bject entity);

void afterEntityAdded(Object entity);

voi d bef oreVari abl eChanged(Obj ect entity, String variabl eNane)

voi d afterVariabl eChanged(Obj ect entity, String variabl eNane);

voi d beforeEntityRenpved(bject entity);

void afterEntityRenpved(Chject entity);

Score cal cul ateScore();

IncrementalScoreCalculator
sequence diagram

A B C D
] OptaPlanner Queen \ IncrementalScoreCalculator

o
it 1 — resetWorkingSolution(...)
2 calculateScore() -, |
T
ChangeMove
A B C D doMove(...) } beforeVariableChanged(; , "row")
o]
F i .setRow(2)
I =
” > aftervariableChanged(, "row")
3 T
‘@; L ' calculateScore() -~ |
SwapMove
doMove(...) : befareVariableChanged(. row")
.setRow(3)
A B C D
w fo) afterVariableChanged(. row")
1]
eforeVariableChange L row” :
53| 1 bef iable Changed()~
7= 1]
i .setRow(1
@ > »
afterVariableChanged(, "row")
calculateScore() - |
For example in n queens:
public cl ass NQueensAdvanced! ncr enent al Scor eCal cul at or ex

tends Abstract!| ncremnmental Scor eCal cul at or <NQueens> {

private Map<lnteger, List<Queen>> row ndexMap;

139

Score Calculation

private Map<I|nteger, List<Queen>> ascendi ngDi agonal | ndexMap;
private Map<Integer, List<Queen>> descendi ngDi agonal | ndexMap;

private int score;

public void resetWrkingSol uti on(NQueens nQueens) {
int n = nQueens. getN();
rowl ndexMap = new HashMap<l nteger, List<Queen>>(n);
ascendi ngDi agonal | ndexMap = new HashMap<| nt eger, List<Queen>>(n * 2);
descendi ngDi agonal | ndexMap = new HashMap<I nt eger, List<Queen>>(n * 2);
for (int i =0; i <n; i++) {
rowl ndexMap. put (i, new ArraylLi st <Queen>(n));
ascendi ngDi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));
descendi ngDi agonal | ndexMap. put (i, new ArrayLi st <Queen>(n));

if (i '=0) {
ascendi ngDi agonal | ndexMap. put(n - 1 + i, new Arrayli st <Queen>(n));
descendi ngDi agonal | ndexMap. put ((-i), new ArrayLi st<Queen>(n));
}
}
score = 0;

for (Queen queen : nQueens. get QueenList()) {
insert(queen);

public void beforeEntityAdded(Object entity) {
/1 Do not hi ng

public void afterEntityAdded(Cbject entity) {
insert((Queen) entity);

public void beforeVari abl eChanged(Obj ect entity, String variabl eNane) {
retract ((Queen) entity);

public void afterVariabl eChanged(Obj ect entity, String variabl eNane) {
insert((Queen) entity);

public void beforeEntityRenoved(Cbject entity) {
retract ((Queen) entity);

public void afterEntityRenoved(Object entity) {
/1 Do not hi ng

private void insert(Queen queen) {

Row row = queen. get Row() ;

if (row!=null) {
int row ndex = queen. get Row ndex();
Li st <Queen> row ndexLi st = row ndexMap. get (r ow ndex) ;
score -= row ndexLi st. size();
row ndexLi st. add(queen);
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Ascendi ngDi agonal | nde:
score -= ascendi ngDi agonal | ndexLi st . si ze();
ascendi ngDi agonal | ndexLi st . add(queen) ;

140

Score Calculation

Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get Descendi ngDi agonal | |
score -= descendi ngDi agonal | ndexLi st . si ze();
descendi ngDi agonal | ndexLi st. add(queen) ;

private void retract(Qeen queen) {

Row row = queen. get Row() ;

if (row!=null) {
Li st <Queen> row ndexLi st = row ndexMap. get (queen. get Row ndex());
row ndexLi st. renove(queen);
score += row ndexLi st. size();
Li st <Queen> ascendi ngDi agonal | ndexLi st = ascendi ngDi agonal | ndexMap. get (queen. get Ascendi ngDi agonal | nde»
ascendi ngDi agonal | ndexLi st. renove(queen);
score += ascendi ngDi agonal | ndexLi st. si ze();
Li st <Queen> descendi ngDi agonal | ndexLi st = descendi ngDi agonal | ndexMap. get (queen. get Descendi ngDi agonal | 1
descendi ngDi agonal | ndexLi st. renpve(queen);
score += descendi ngDi agonal | ndexLi st . si ze();

public SinpleScore cal cul ateScore() {
return Sinpl eScore. val uef (score);

Configure it in your solver configuration:

<scoreDi rectorFactory>
<scoreDefinitionType>...</scoreDefinitionType>

pt apl anner . exanpl es. nqueens. sol ver. scor e. NQueensAdvanced! ncrenent al Scor eCal cul at or </

i ncrement al Scor eCal cul at or Cl ass>
</ scoreDirector Fact ory>

Optionally, to explain a score with Scor eDi r ect or . get Const r ai nt Mat chTot al s() or to get bet-
ter output when the | ncr enent al Scor eCal cul at or is corrupted in FAST_ASSERT or FULL_ASSERT
envi ronnent Mbde, implement also the Const r ai nt Mat chAwar el ncr ement al Scor eCal cul at or
interface:

public interface Constraint Mat chAwar el ncr enent al Scor eCal cul at or <Sol ext ends Sol ution> {
voi d reset Wor ki ngSol uti on(Sol worki ngSol ution, bool ean constrai nt Mat chEnabl ed) ;

Col | ecti on<Constrai nt Mat chTot al > get Constrai nt Mat chTot al s() ;

141

Score Calculation

5.3.4. Drools Score Calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written
as one or more score rules.

» Advantages:
» Incremental score calculation for free

« Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

» Score constraints are isolated as separate rules
< Easy to add or edit existing score rules
* Flexibility to augment your score constraints by
» Defining them in decision tables
* Excel (XLS) spreadsheet
» KIE Workbench WebUI
e Translate them into natural language with DSL
« Store and release in the KIE Workbench repository
» Performance optimizations in future versions for free
* In every release, the Drools rule engine tends to become faster
« Disadvantages:
e DRL learning curve
» Usage of DRL

« Polyglot fear can prohibit the use of a new language such as DRL in some organizations
5.3.4.2. Drools Score Rules Configuration
There are several ways to define where your score rules live.
5.3.4.2.1. A scoreDrl Resource on the Classpath

This is the easy way. The score rules live in a DRL file which is provided as a classpath resource.
Just add the score rules DRL file in the solver configuration as a <scor eDr | > element:

142

Score Calculation

<scor eDi rect or Fact or y>

<scoreDefinitionType>...</scoreDefinitionType>

<scor eDr| >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </ scoreDr| >
</ scoreDirect or Fact ory>

In a typical project (following the Maven directory structure), that DRL file would be locat-
ed at $PRQIECT_DI R/ src/ mai n/ resources/ or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. dr| (even for a war project).

Note

The <scoreDrl> element expects a classpath resource, as defined by
Cl assLoader . get Resour ce(Stri ng), it does not accept a Fi | e, nor an URL, nor
a webapp resource. See below to use a Fi | e instead.

Add multiple <scor eDr | > elements if the score rules are split across multiple DRL files.

Optionally, you can also set drools configuration properties (but be careful of backwards compat-
ibility issues):

<scor eDi rect or Fact or y>

<scor eDr| >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </ scoreDr| >
<ki eBaseConfi gurati onProperties>
<dr ool s. equal i t yBehavi or>. .. </ drool s. equal i t yBehavi or >
</ ki eBaseConfi gurati onProperties>
</ scoreDirector Fact ory>

5.3.4.2.2. A scoreDrlFile

To use Fi | e on the local file system, instead of a classpath resource, add the score rules DRL
file in the solver configuration as a <scor eDr| Fi | e> element:

<scoreDi rect or Fact ory>

<scoreDefinitionType>...</scoreDefinitionType>

<scoreDr| Fi | e>/ hone/ geOf f rey/ t np/ nQueensScor eRul es. drl </ scoreDr| Fi | e>
</ scoreDirectorFact ory>

A Warning

For portability reasons, a classpath resource is recommended over a File. An ap-
plication build on one computer, but used on another computer, might not find the

143

Score Calculation

file on the same location. Worse, if they use a different Operating System, it is hard

to choose a portable file path.

Add multiple <scor eDr | Fi | e> elements if the score rules are split across multiple DRL files.
5.3.4.2.3. A ksessionName in a Kjar from a Maven repository

This way allows you to use score rules defined by the Workbench or build a kjar and deploy it to
the Execution Server. Both the score rules and the solver configuration are resources in a kjar.
Clients can obtain that kjar either from the local classpath, from a local Maven repository or even
from a remote Maven repository.

The score rules still live in a DRL file, but the Ki eCont ai ner finds it through the META- I NF/
knmodul e. xm file:

<kmodul e xm ns="http://ww. dr ool s. or g/ xsd/ knodul e" >
<kbase name="nQueensKbase" packages="org. optapl anner. exanpl es. nqueens. sol ver">
<ksessi on nanme="nQueensKsessi on"/>
</ kbase>
</ knmodul e>

The kmodule above will pick up all the DRL files in the package
or g. opt apl anner . exanpl es. nqueens. sol ver . A kbase can even extend another kbase.

Add the ksession name in the solver configuration as a <ksessi onNane> element:

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<ksessi onNanme>nQueensKsessi on</ ksessi onNane>
</ scoreDirectorFact ory>

When using this approach, it's required to use a
Sol ver Fact ory. cr eat eFr onKi eCont ai ner Xm Resour ce(...) method to build the Sol ver Fac-
tory.

5.3.4.3. Implementing a Score Rule

Here is an example of a score constraint implemented as a score rule in a DRL file:

rule "mul tipl eQueensHori zontal " when Queen($id : id, row!=null, $i : row ndex)
Queen(id > $id, row ndex == $i) then scor eHol der . addConstrai nt Mat ch(kcontext, -1);end
ti pl eQueensHor i
zontal " when Queen($id : id, row!=
null, $i : row ndex) Queen(id >
$id, row ndex ==
$i) t hen

144

Score Calculation

This score rule will fire once for every 2 queens with the same r owl ndex. The (i d > $i d) condition
is needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A)
or (B, B). Let us take a closer look at this score rule on this solution of 4 queens:

A B C D

8 8

Ww N +H O

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),
(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal
line, this solution will have a score of - 6. An optimal solution of 4 queens has a score of 0.

5.3.4.4. Weighing Score Rules

A Scor eHol der instance is asserted into the Ki eSessi on as a global called scor eHol der. The
score rules need to (directly or indirectly) update that instance.

gl obal Si npl eScor eHol der scoreHol der; rul e "mul ti pl eQueensHori zontal " when Queen($id :
id, row != null, $i : row ndex) Queen(id > $id, row ndex == $i) then
scor eHol der. addConst rai nt Mat ch(kcontext, -1);end// nmultipl eQueensVertical is obsol ete because
it is always Orule "multipl eQueensAscendi ngDi agonal " when Queen($id : id, row!=null,
$i : ascendi nghi agonal | ndex) Queen(id > $id, ascendi nghi agonal | ndex == $i) then

145

Score Calculation

scor eHol der. addConst r ai nt Mat ch(kcontext, -1);endrule "nultipl eQueensDescendi ngDi agonal "

when Queen($id : id, row!= null, $i : descendi ngD agonal | ndex) Queen(id > $id,
descendi ngDi agonal | ndex == $i) then scor eHol der. addConst r ai nt Mat ch(kcont ext, -1);end
cor eHol der
scor eHol der;rul e
"mul ti pl eQueensHori zontal " when Queen($id : id, row!=
null, $i : row ndex) Queen(id >
$id, row ndex ==
$i) t hen

scor eHol der. addConst rai nt Mat ch(kcontext, -1);end// multipl eQueensVertical is obsol ete because

itis

al ways Orul e

"mul tipl eQueensAscendi ngDi agonal " when Queen($id : id, row!=
null, $i : ascendi ngDi agonal | ndex) Queen(id >
$i d, ascendi nghDi agonal | ndex ==

$i) t hen

scor eHol der . addConst r ai nt Mat ch(kcontext, -1);endrule

"mul ti pl eQueensDescendi ngDi agonal " when Queen($id : id, row!=
null, $i : descendi nghDi agonal | ndex) Queen(id >
$i d, descendi ngDi agonal | ndex ==
$i) t hen
Note

To learn more about the Drools rule language (DRL), consult the Drools documen-
tation [http://drools.org/learn/documentation.html].

Most use cases also weigh their constraint types or even their matches differently, by using a
specific weight for each constraint match. For example in course scheduling, assigning a Lect ur e
to a Roomthat is lacking two seats is weighted equally bad as having one isolated Lect ure in a
Curricul um

gl obal Har dSof t Scor eHol der scoreHol der;// RoonCapacity: For each | ecture, the nunber of students
that attend the course nust be less or equal// than the nunber of seats of all the roons
that host its lectures.rule "roonCapacity" when $room : Roon($capacity
capacity) $lecture : Lecture(room == $room studentSize > S$capacity, $studentSize :
st udent Si ze) t hen /!l Each student above the capacity counts as 1 point of
penal ty. scor eHol der. addSof t Const r ai nt Mat ch(kcont ext, ($capacity - $studentSize)); end//
Curri cul unConpact ness: Lectures belonging to a curriculum should be adjacent// to each other
(i.e., in consecutive periods).// For a given curriculum we account for a violation every
tinme there is one lecture not adjacent// to any other lecture within the sanme day.rule
"curricul unConpact ness" when L t hen /1 Each isolated | ecture in a curriculum
counts as 2 points of penalty. scor eHol der . addSof t Const r ai nt Mat ch(kcontext, -2);end

146

http://drools.org/learn/documentation.html
http://drools.org/learn/documentation.html
http://drools.org/learn/documentation.html

Score Calculation

Hol der scoreHol der;// RoonCapacity: For each lecture, the nunber of students that attend the course
must be

less or equal// than the nunber of seats of all the roons that

host

its lectures.rule

"roonCapaci ty" when $room :

Room($capacity : capacity) $l ecture : Lecture(room == $room studentSize > $capacity,

$st udent Si ze :

student Si ze) t hen /1 Each student above the capacity counts as 1

poi nt of penalty. scor eHol der . addSof t Const r ai nt Mat ch(kcont ext,

($capacity - $studentSize));end// Curricul unConpactness: Lectures belonging to a curriculum
shoul d be adjacent// to each other (i.e.,
in consecutive periods).// For a given curriculumwe account for a violation every tine there is one
| ecture not adjacent// to any other lecture within
t he
sanme day.rule
"curricul unConpact ness" when

t hen /] Each isolated lecture in a curriculumcounts as 2
poi nts of penalty.

5.3.5. InitializingScoreTrend

The I nitializingScoreTrend specifies how the Score will change as more and more variables
are initialized (while the already initialized variables do not change). Some optimization algorithms
(such Construction Heuristics and Exhaustive Search) run faster if they have such information.

For for the Score (or each score level separately), specify a trend:

* ANY (default): Initializing an extra variable can change the score positively or negatively. Gives
no performance gain.

* ONLY_UP (rare): Initializing an extra variable can only change the score positively. Implies that:
* There are only positive constraints

» And initializing the next variable can not unmatch a positive constraint that was matched by
a previous initialized variable.

« ONLY_DOWN: Initializing an extra variable can only change the score negatively. Implies that:
e There are only negative constraints

» And initializing the next variable can not unmatch a negative constraint that was matched by
a previous initialized variable.

Most use cases only have negative constraints. Many of those have an i ni ti al i zi ngScor eTr end
that only goes down:

<scoreDirect or Fact ory>

147

Score Calculation

<scoreDefini ti onType>HARD_SCFT</ scor eDef i ni ti onType>

<scoreDr|>.../cl oudBal anci ngScor eRul es. drl </ scoreDr| >

<initializingScoreTrend>ONLY_DOMN/initializingScoreTrend>
</ scoreDirectorFactory>

Alternatively, you can also specify the trend for each score level separately:

<scoreDi rect or Fact or y>
<scor eDefini ti onType>HARD _SOFT</ scor eDefiniti onType>
<scoreDr| >.../cl oudBal anci ngScor eRul es. drl </ scoreDr| >
<initializingScoreTrend>ONLY_DOM ONLY_DOMN</initializingScoreTrend>
</ scoreDirectorFactory>

5.3.6. Invalid Score Detection

Put the envi r onment Mode in FULL_ASSERT (or FAST_ASSERT) to detect corruption in the incremen-
tal score calculation. For more information, see the section about envi r onment Mode. However,
that will not verify that your score calculator implements your score constraints as your business
actually desires.

A piece of incremental score calculator code can be difficult to write and to review. Assert its
correctness by using a different implementation (for example a EasyScor eCal cul at or) to do the
assertions triggered by the envi r onment Mode. Just configure the different implementation as a
assertionScoreDirectorFactory:

<envi r onment Mode>FAST_ASSERT</ envi r onment Mbde>

<scoreDi rect or Fact ory>
<scoreDefinitionType>...</scoreDefinitionType>
<scor eDr | >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </ scoreDr| >
<assertionScoreDirectorFact ory>

<easyScor eCal cul at or Cl ass>or g. opt apl anner . exanpl es. nqueens. sol ver. scor e. NQueensEasyScor eCal cul at or </
easyScor eCal cul at or Cl ass>

</ assertionScoreDirectorFactory>
</ scoreDirector Fact ory>

This way, the scor eDr | will be validated by the EasyScor eCal cul at or.

5.4. Score Calculation Performance Tricks

5.4.1. Overview

The Sol ver will normally spend most of its execution time running the score calculation (which is
called in its deepest loops). Faster score calculation will return the same solution in less time with
the same algorithm, which normally means a better solution in equal time.

148

Score Calculation

5.4.2. Average Calculation Count Per Second

After solving a problem, the Sol ver will log the average calculation count per second. This is
a good measurement of Score calculation performance, despite that it is affected by non score
calculation execution time. It depends on the problem scale of the problem dataset. Normally, even
for high scale problems, it is higher than 1000, except when you are using EasyScor eCal cul at or .

Important

When improving your score calculation, focus on maximizing the average calcula-
tion count per second, instead of maximizing the best score. A big improvement
in score calculation can sometimes yield little or no best score improvement, for
example when the algorithm is stuck in a local or global optima. If you are watching
the calculation count instead, score calculation improvements are far more visible.

Furthermore, watching the calculation count, allows you to remove or add score
constraints, and still compare it with the original calculation count. Comparing the
best score with the original would be wrong, because it is comparing apples and
oranges.

5.4.3. Incremental Score Calculation (with Deltas)

When a Sol uti on changes, incremental score calculation (AKA delta based score calculation),
will calculate the delta with the previous state to find the new Scor e, instead of recalculating the
entire score on every solution evaluation.

For example, if a single queen A moves from row 1 to 2, it will not bother to check if queen B and
C can attack each other, since neither of them changed.

149

Score Calculation

Incremental score calculation

Incremental score calculation is much more scalable because only the delta is calculated.

A B C D A B C D
\ gw : ?ﬁ j@a The rul i
1 1 e rule engine
N . "f/ (with forward chaining)
2 r\[;:‘ \-\\\ 2 —_— only recalculates dirty tuples.
E W s[]| [Tl

m queens dirty total speedup
dirty 4 3 of 6 time/ 2
A o A o oo Lo Asimel d
16 15 of 120 time/ 8
B cJ B C 32 31 of 496 time/ 16
dirty n n-1 of n*n-1)/2 time ! {n/2)

B

Figure 5.1. Incremental Score Calculation for the 4 Queens Puzzle

This is a huge performance and scalability gain. Drools score calculation gives you this huge
scalability gain without forcing you to write a complicated incremental score calculation
algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making incre-
mental score calculation far more scalable.

5.4.4. Avoid Calling Remote Services During Score Calculation

Do not call remote services in your score calculation (except if you are bridging EasyScor eCal -
cul at or to a legacy system). The network latency will kill your score calculation performance.
Cache the results of those remote services if possible.

If some parts of a constraint can be calculated once, when the Sol ver starts, and never change
during solving, then turn them into cached problem facts.

150

Score Calculation

5.4.5. Pointless Constraints

If you know a certain constraint can never be broken (or it is always broken), you need not write
a score constraint for it. For example in n queens, the score calculation does not check if multiple
gueens occupy the same column, because a Queen's col unm never changes and every Sol ut i on
starts with each Queen on a different col um.

@ Note
Do not go overboard with this. If some datasets do not use a specific constraint but
others do, just return out of the constraint as soon as you can. There is no need to
dynamically change your score calculation based on the dataset.

5.4.6. Built-in Hard Constraint

Instead of implementing a hard constraint, it can sometimes be built in. For example, If Lecture A
should never be assigned to RoomX, but it uses Val ueRangePr ovi der on Solution, so the Sol ver
will often try to assign it to Room X too (only to find out that it breaks a hard constraint). Use a
ValueRangeProvider on the planning entity or filtered selection to define that Course A should
only be assigned a Roomdifferent than X.

This can give a good performance gain in some use cases, not just because the score calculation is
faster, but mainly because most optimization algorithms will spend less time evaluating unfeasible
solutions. However, usually this not a good idea because there is a real risk of trading short term
benefits for long term harm:

« Many optimization algorithms rely on the freedom to break hard constraints when changing
planning entities, to get out of local optima.

< Both implementation approaches have limitations (feature compatibility, disabling automatic
performance optimizations), as explained in their documentation.

5.4.7. Other Score Calculation Performance Tricks

Verify that your score calculation happens in the correct Nunber type. If you are making the sum
of i nt values, do not let Drools sum it in a doubl e which takes longer.

» Foroptimal performance, always use server mode (j ava - ser ver). We have seen performance
increases of 50% by turning on server mode.

» For optimal performance, use the latest Java version. For example, in the past we have seen
performance increases of 30% by switching from java 1.5 to 1.6.

« Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

151

Score Calculation

5.4.8. Score Trap

Make sure that none of your score constraints cause a score trap. A trapped score constraint
uses the same weight for different constraint matches, when it could just as easily use a different
weight. It effectively lumps its constraint matches together, which creates a flatlined score function
for that constraint. This can cause a solution state in which several moves need to be done to
resolve or lower the weight of that single constraint. Some examples of score traps:

* You need two doctors at each table, but you are only moving one doctor at a time. So the solver
has no incentive to move a doctor to a table with no doctors. Punish a table with no doctors
more then a table with only one doctor in that score constraint in the score function.

« Two exams need to be conducted at the same time, but you are only moving one exam at a
time. So the solver has to move one of those exams to another timeslot without moving the
other in the same move. Add a coarse-grained move that moves both exams at the same time.

For example, consider this score trap. If the blue item moves from an overloaded computer to an
empty computer, the hard score should improve. The trapped score implementation fails to do that:

Score trap

There are degrees of infeasibility

CPU Trapped score Good score
-1hard if any missing CPU -Thard per missing CPU

W
wn
!
>

500 %
[[3] Y 1000 % -1hard [-1500soft -5hard / -1500soft
‘ | z 10005
2
[[3] Y 1000% -1hard [-2500s0ft -2hard / -2500soft
Highest score
Z 1000%
5 N V
‘ / | ¥ 10008 [-thard / -1500soft] -Shard / -1500soft
I Highest score
[%[3] Z 100§

152

Score Calculation

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there
are even more processes on the overloaded computer). Before they do that, they might actually
start moving more processes into that overloaded computer, as there is no penalty for doing so.

E] Note

Avoiding score traps does not mean that your score function should be smart
enough to avoid local optima. Leave it to the optimization algorithms to deal with
the local optima.

Avoiding score traps means to avoid, for each score constraint individually, a flat-
lined score function.

Important

Always specify the degree of infeasibility. The business will often say "if the solu-
tion is infeasible, it does not matter how infeasible it is." While that is true for the
business, it is not true for score calculation as it benefits from knowing how infea-
sible itis. In practice, soft constraints usually do this naturally and it is just a matter
of doing it for the hard constraints too.

There are several ways to deal with a score trap:

« Improve the score constraint to make a distinction in the score weight. For example, penalize
- 1har d for every missing CPU, instead of just - 1har d if any CPU is missing.

* If changing the score constraint is not allowed from the business perspective, add a lower score
level with a score constraint that makes such a distinction. For example, penalize - 1subsoft for
every missing CPU, on top of - 1har d if any CPU is missing. The business ignores the subsoft
score level.

» Add coarse-grained moves and union select them with the existing fine-grained moves. A
coarse-grained move effectively does multiple moves to directly get out of a score trap with a
single move. For example, move multiple items from the same container to another container.

5.4.9. stepLimit Benchmark

Not all score constraints have the same performance cost. Sometimes one score constraint can
kill the score calculation performance outright. Use the Benchmarker to do a one minute run and
check what happens to the average calculation count per second if you comment out all but one
of the score constraints.

153

Score Calculation

5.4.10. Fairness Score Constraints

Some use cases have a business requirement to provide a fair schedule (usually as a soft score
constraint), for example:

* Fairly distribute the workload amongst the employees, to avoid envy.
« Evenly distribute the workload amongst assets, to improve reliability.

Implementing such a constraint can seem difficult (especially because there are different ways
to formalize fairness), but usually the squared workload implementation behaves most desirable.
For each employee/asset, count the workload wand subtract w2 from the score.

Fairness score constraint

Distribute the shift workload fairly across all employees by squaring the number of their shifts.

Employee X Employee Y Employee Z Score Ul visualization
score += entities®/values

BECEE FOHD @
= sc0re += 33

5 shifts 4 shifts 1 shift
- 5% = - 25 soft - 4% =- 16 soft -12=-1 soft 25-16-1=-42 soft -42 +33=-9
5 shifts 3 shifts 2 shifts
- 5% =-25 soft - 3* =-9 soft - 2% = -4 soft -25-9-4=-38 soft 38+33=-5
4 shifts 4 shifts 2 shifts
-4*=-16 soft -4*=-16 soft -2%=-4 soft -16-16 - 4 = - 36 soft -36+33=-3
4 shifts 3 shifts 3 shifts o X
- 47 =~ 16 soft -3 =- 9 soft -3 =- 9 soft -16-9-9=-34soft | | -34+33=-1 |
Highest score Highest score

As shown above, the squared workload implementation guarantees that if you select two employ-
ees from a given solution and make their distribution between those two employees fairer, then
the resulting new solution will have a better overall score. Don not just use the difference from the
average workload, as that can lead to unfairness, as demonstrated below.

154

Score Calculation

Fairness score constraint pitfall

Don't use the difference from the average. Use the workload squared, variance or standard deviation.

15 shifts for 5 employees: average workload is 3
Employee Employee Employee Employee Employee Bad score Good score
v w X Y Zz - sum{avgDifference) - sum({workload?)

« -sum(|workload - 3[)

6 shifts 5 shifts 2 shifts 1 shifts 1 shift -3-2-1-2-2=-10 -36-25-4-1-1=-67

FLL l . (9
A A
H

Highest score

5 shifts 5 shifts 2 shifts 2 shifts 1 shift -2-2-1-1-2=-8 [—25—25—4—4—12—58]
. I I Highest score
6 shifts 3 shifts 3 shifts 2 shifts 1 shift [-3—0-0-1-2=-8] -36-9-9-4-1=-59

When the workload is perfect balanced, the user often likes to see a 0 score, instead of the dis-
tracting - 34sof t in the image above (for the last solution which is almost perfectly balanced). To
nullify this, either add the average multiplied by the number of entities to the score or instead show
the variance or standard deviation in the Ul.

155

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation

Score Calculation

5.5. Explaining the Score: Using Score Calculation Out-
side the soiver

Other parts of your application, for example your webUI, might need to calculate the score too.
Do that by reusing the Scor eDi r ect or Fact or y of the Sol ver to build a separate Scor eDi r ect or
for that webUI:

ScoreDirectorFactory scoreDirectorFactory = sol ver. get ScorebDirectorFactory();
ScoreDirector gui ScorebDirector = scoreDirectorFactory. buil dScoreDirector();

Then use it when you need to calculate the Scor e of a Sol uti on:

gui ScoreDi rect or. set Wr ki ngSol uti on(sol ution);
Score score = gui ScoreDirector. cal cul ateScore();

To explain in the GUI what entities are causing which part of the Scor e, get the Const r ai nt Mat ch
objects from the ScoreDirector:

for (ConstraintMatchTotal constraintMatchTotal : gui ScoreDirector.getConstraintMatchTotal s()) {
String constrai nt Name = constrai nt Mat chTot al . get Constrai nt Nanme() ;
Nunmber wei ght Total = constrai nt Mat chTot al . get Wei ght Tot al AsNunber () ;
for (ConstraintMatch constrai ntMatch : constrai nt MatchTot al . get Constrai nt Mat chSet ()) {
Li st <Ooj ect> justificationList = constraintMatch. getJustificationList();
Nurmber wei ght = constrai nt Mat ch. get Wi ght AsNunber () ;

156

Chapter 6. Optimization Algorithms

6.1. Search Space Size in the Real World

The number of possible solutions for a planning problem can be mind blowing. For example:

* 4 queens has 256 possible solutions (4*4) and 2 optimal solutions.
» 5 queens has 3125 possible solutions (5”5) and 1 optimal solution.
e 8 queens has 16777216 possible solutions (828) and 92 optimal solutions.

* 64 queens has more than 107115 possible solutions (6464).

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10"80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning
entity or planning value can heavily multiply the running time of some algorithms.

What is the size of the search space?

How big is the haystack?

CPU CPU One combination (feasible)
En o 7)+ [(IEnEs-
mm: o (6) [=

(1o : :

100 computers Another combination (infeasible)

300 processes [] X

[127
In how many combinations can 300 processes ‘j[:- z

be assigned to 100 computers?

IVaIueSet| |variableSet| — 1 00300
=10 % = 1000000000000000000000...

157

Optimization Algorithms

Calculating the number of possible solutions depends on the design of the domain model:

Calculate the size of the search space

Given a Solution model, how many different combinations can it represent?

Cloud balancing Traveling salesman (TSP) Course scheduling
CPU C Room
<[[ANBl~ :
w Period 1
o | c | o Period 2
A
Model: (Gamputer)é——{Process) Model: linked list Model: e Lecture
@ ® © p times (B Eimes ® ® oo ‘Lo
D 0 I) 1 3" oI X T
g o,
X X @ K 1Ay
xe *(pxs)
x @ x s %X
x 0 ® X 1x @
wg 4 x(pxr)
B ® = A X |
Y o x ¥ oA Ay |
Y ¥ X 10 . X 1Y & i
Y ¥y v 1]] :]
Search space: cP Search space: n! Search space: (pxr)*
computers # processes search space # customers search space # periods # rooms # leclures space
2 3 E 4 24 2 2 3 64
100 300 10 100 10! 36 B 100 107
200 600 10t 1000 107 36 18 400 11
400 1200 105957 10000 1p7E 36 36 800 1p74%

An algorithm that checks every possible solution (even with pruning such as in Branch And Bound)
can easily run for billions of years on a single real-life planning problem. What we really want
is to find the best solution in the limited time at our disposal. Planning competitions (such

158

Optimization Algorithms

as the International Timetabling Competition) show that Local Search variations (Tabu Search,
Simulated Annealing, Late Acceptance, ...) usually perform best for real-world problems given
real-world time limitations.

6.2. Does Planner Find the Optimal Solution?

The business wants the optimal solution, but they also have other requirements:

Scale out: Large production datasets must not crash and have good results too.

« Optimize the right problem: The constraints must match the actual business needs.

Available time: The solution must be found in time, before it becomes useless to execute.

Reliability: Every dataset must have at least a decent result (better than a human planner).

Given these requirements, and despite the promises of some salesmen, it's usually impossible
for anyone or anything to find the optimal solution. Therefore, Planner focuses on finding the best
solution in available time. In realistic, independent competitions, it often comes out as the best
reusable software.

The nature of NP-complete problems make scaling a prime concern. The result quality of asmall
dataset guarantees nothing about the result quality of a large dataset. Scaling issues cannot
be mitigated by hardware purchases later on. Start testing with a production sized dataset as
soon as possible. Don't assess quality on small datasets (unless production encounters only such
datasets). Instead, solve a production sized dataset and compare the results of longer executions,
different algorithms and - if available - the human planner.

6.3. Architecture Overview

Planner is the first framework to combine optimization algorithms (metaheuristics, ...) with score
calculation by a rule engine (such as Drools Expert). This combination turns out to be a very
efficient, because:

« Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It makes it easy and scalable to add additional soft or hard constraints such as "a
teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without
any extra code. However it tends to be not suitable to actually find new solutions.

« An optimization algorithm is great at finding new improving solutions for a planning problem,
without necessarily brute-forcing every possibility. However it needs to know the score of a
solution and offers no support in calculating that score efficiently.

159

Optimization Algorithms

Architecture overview

The Solver wades through the search space of solutions efficiently.
The ScoreDirector calculates the score of every solution under evaluation.

Drools
(rule engine)

calculateScore()

- =

many times per ms

Find a better solution Calculate the score
of a solution

6.4. Optimization Algorithms Overview

Planner supports 3 families of optimization algorithms: Exhaustive Search, Construction Heuristics
and Metaheuristics. In practice, Metaheuristics (in combination with Construction Heuristics to
initialize) are the recommended choice:

160

Optimization Algorithms

Scalability of optimization algorithms

When scaling out, metaheuristics deliver the best solution in reasonable time on realistic hardware.

How much time is needed?

Time (lower is better)
Brute | |EB
Force
available _ | .I Mataheuristics L
time | N
I I I] |]
10 100 1k 10k 100k 1m
of variables!"
How good is the solution quality?
Score (higher is better)
optimal _ Exhaustive Search

| | | | | |
10 100 1k 10k 100k 1m
of variables!"

How much RAM memory is needed?
RAM | {lower is better)

super- _|
computer

commodity _| _' ielies e
computer /

Brule Force

]]]]]]
10 100 1k 10k 100k 1m
of variables!"

Effects of scaling out:

Exhaustive Search delivers the optimal solution
but takes forever.

Construction Heuristics (including greedy
algorithms) deliver poor quality in time.
Metaheuristics deliver good quality in time.
MNote: Metaheuristics include a CH to initialize.

This is a rough generalization, based on years of experience
and a large number of benchmarks on realistic use cases.

Results may differ per use case and per solver configuration.

[1] Vars with a large value range (binary vars scale much more)

Each of these families of algorithms has multiple optimization algorithms:

Table 6.1. Optimization Algorithms Overview

Algorithm Scal- Opti- Easy Tweak- Requires
able? mal? | touse? | able? CH?
Exhaustive Search (ES)
Brute Force 0/5 5/5 5/5 0/5 No
Branch And Bound 0/5 5/5 4/5 2/5 No
Construction heuristics (CH)
First Fit 5/5 1/5 5/5 1/5 No
First Fit Decreasing 5/5 2/5 4/5 2/5 No
Weakest Fit 5/5 2/5 4/5 2/5 No
Weakest Fit Decreasing 5/5 2/5 4/5 2/5 No
Strongest Fit 5/5 2/5 4/5 2/5 No
Strongest Fit Decreasing 5/5 2/5 4/5 2/5 No

161

Optimization Algorithms

Algorithm Scal- Opti- Easy Tweak- Requires
able? mal? | touse? @ able? CH?
Cheapest Insertion 3/5 2/5 5/5 2/5 No
Regret Insertion 3/5 2/5 5/5 2/5 No

Metaheuristics (MH)

Local Search

Hill Climbing 5/5 2/5 4/5 3/5 Yes
Tabu Search 5/5 4/5 3/5 5/5 Yes
Simulated Annealing 5/5 4/5 2/5 5/5 Yes
Late Acceptance 5/5 4/5 3/5 5/5 Yes
Step Counting Hill Climbing 5/5 4/5 3/5 5/5 Yes

Evolutionary Algorithms

Evolutionary Strategies 4/5 3/5 2/5 5/5 Yes
Genetic Algorithms 4/5 3/5 2/5 5/5 Yes

If you want to learn more about metaheuristics, read the free books Essentials of Meta-
heuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://
www.cleveralgorithms.com/].

6.5. Which Optimization Algorithms Should | Use?

The best optimization algorithms configuration for your use case depends heavily on your use
case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,
probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

1. First Fit Decreasing

Next, add Late Acceptance behind it:

1. First Fit Decreasing
2. Late Acceptance. A Late Acceptance size of 400 usually works well.

At this point the free lunch is over. The return on invested time lowers. The result is probably
already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a
couple of different Tabu Search, Simulated Annealing and Late Acceptance configurations, for
example:

162

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Optimization Algorithms

1. First Fit Decreasing
2. Tabu Search. An entity tabu size of 7 usually works well.
Use the Benchmarker to improve the values for those size parameters.

If it's worth your time, continue experimenting further. For example, try combining multiple algo-
rithms together:

1. First Fit Decreasing
2. Late Acceptance (relatively long time)

3. Tabu Search (relatively short time)

6.6. Power tweaking or default parameter values

Many optimization algorithms have parameters which affect results and scalability. Planner applies
configuration by exception, so all optimization algorithms have default parameter values. This is
very similar to the Garbage Collection parameters in a JVM: most users have no need to tweak
them, but power users do tweak them.

The default parameter values are good enough for many cases (and especially for prototypes),
but if development time allows, it can be well worth to power tweak them with the benchmarker
for better results and scalability on a specific use case. The documentation for each optimization
algorithm also declares its advanced configuration for power tweaking.

Warning

The default value of parameters will change between minor versions, to improve
them for most users (but not necessary for you). To shield yourself from these
changes, for better or worse, always use the advanced configuration. This is not
recommended.

6.7. Solver Phase

A Sol ver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by a solver Phase. There is never more than 1 Phase solving at the same time.

@ Note
Some Phase implementations can combine techniques from multiple optimization
algorithms, but it is still just 1 Phase. For example: a Local Search Phase can do
Simulated Annealing with entity Tabu.

Here's a configuration that runs 3 phases in sequence:

163

Optimization Algorithms

<sol ver >

<constructionHeuristic>
. <I-- First phase: First Fit Decreasing -->
</constructionHeuristic>
<l ocal Sear ch>
. <!l-- Second phase: Late Acceptance -->
</ | ocal Sear ch>
<l ocal Sear ch>
. <l-- Third phase: Tabu Search -->
</ | ocal Sear ch>
</ sol ver >

The solver phases are run in the order defined by solver configuration. When the first Phase
terminates, the second Phase starts, and so on. When the last Phase terminates, the Sol ver
terminates. Usually, a Sol ver will first run a construction heuristic and then run 1 or multiple
metaheuristics:

General phase sequence

First a construction heuristic,
then metaheuristics

—
L

Construction heuristic

First Fit Decreasing

Metaheuristic

Tabu Search

g

If no phases are configured, Planner will default to a Construction Heuristic phase followed by a
Local Search phase.

164

Optimization Algorithms

Some phases (especially construction heuristics) will terminate automatically. Other phases (es-
pecially metaheuristics) will only terminate if the Phase is configured to terminate:

<sol ver >

<termnation><!-- Solver termnation -->

<secondsSpent Li m t >90</ secondsSpent Li nmi t >
</term nation>
<l ocal Sear ch>

<term nation><!-- Phase term nation -->

<secondsSpent Li m t >60</ secondsSpentLimit><!-- G ve the next phase a chance to run too

before the Solver term nates -->

</term nation>

</l ocal Sear ch>
<l ocal Sear ch>

</ | ocal Sear ch>
</ sol ver>

If the Sol ver terminates (before the last Phase terminates itself), the current phase is terminated
and all subsequent phases won't run.

6.8. Scope Overview

A solver will iteratively run phases. Each phase will usually iteratively run steps. Each step, in turn,
usually iteratively runs moves. These form 4 nested scopes: solver, phase, step and move.

165

Optimization Algorithms

Scope overview

Each scope triggers lifecycle events

stepStarted()

stepEnded() queen B to row 3
stepStarted()

stepEnded() queen C to row 0

Configure logging to display the log messages of each scope.

6.9. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.
A Sol ver can be terminated synchronously by up-front configuration or asynchronously from an-
other thread.

Especially metaheuristic phases will need to be told when to stop solving. This can be because of
a number of reasons: the time is up, the perfect score has been reached, just before its solution
is used, ... The only thing you can't depend on, is on finding the optimal solution (unless you know
the optimal score), because a metaheuristic algorithm generally doesn't know it when it finds the
optimal solution. For real-life problems this doesn't turn out to be much of a problem, because
finding the optimal solution could take years, so you'll want to terminate sooner anyway. The only
thing that matters is finding the best solution in the available time.

166

Optimization Algorithms

Important

If no termination is configured (and a metaheuristic algorithm is used), the Sol ver
will run forever, until terminateEarly() is called from another thread. This is espe-
cially common during real-time planning.

For synchronous termination, configure a Ter ni nati on on a Sol ver or a Phase when it needs to
stop. You can implement your own Ter mi nat i on, but the built-in implementations should suffice
for most needs. Every Ter ni nat i on can calculate a time gradient (needed for some optimization
algorithms), which is a ratio between the time already spent solving and the estimated entire
solving time of the Sol ver or Phase.

6.9.1. TimeMillisSpentTermination

Terminates when an amount of time has been used.

<term nation>
<m | | i secondsSpent Li m t>500</mi||isecondsSpentLimnt>
</term nation>

<term nation>
<secondsSpent Li m t >10</ secondsSpent Li nmi t >
</term nation>

<term nation>
<mi nut esSpent Li m t >5</ m nut esSpent Li m t >
</term nation>

<t erm nati on>
<hour sSpent Li m t >1</ hour sSpent Li m t >
</term nation>

<t erm nation>
<daysSpent Li m t >2</ daysSpent Li m t >
</term nation>

Multiple time types can be used together, for example to configure 150 minutes, either configure
it directly:

<term nation>

167

Optimization Algorithms

<m nut esSpent Li m t >150</ ni nut esSpent Li m t>
</term nati on>

Or use a combination that sums up to 150 minutes:

<term nation>

<hour sSpent Li ni t >2</ hour sSpent Li ni t >

<mi nut esSpent Li m t >30</ m nut esSpent Li ni t>
</term nati on>

6.9.2. Unimproved TimeMillisSpentTermination

Terminates when the best score hasn't improved in an amount of time.

<l ocal Sear ch>
<term nation>
<uni nprovedM | | i secondsSpent Li m t >500</ uni nprovedM | | i secondsSpent Li mi t >
</term nati on>
</l ocal Sear ch>

<l ocal Sear ch>
<term nati on>
<uni npr ovedSecondsSpent Li m t >10</ uni npr ovedSecondsSpent Li m t >
</term nati on>
</l ocal Sear ch>

<l ocal Sear ch>
<term nation>
<uni nprovedM nut esSpent Li mi t >5</ uni npr ovedM nut esSpent Li m t >
</term nati on>

168

Optimization Algorithms

</l ocal Sear ch>

<l ocal Sear ch>
<term nati on>
<uni npr ovedHour sSpent Li m t >1</ uni npr ovedHour sSpent Li m t >
</term nati on>
</l ocal Sear ch>

<l ocal Sear ch>
<term nati on>
<uni npr ovedDaysSpent Li mi t >1</ uni npr ovedDaysSpent Li ni t >
</term nati on>
</l ocal Sear ch>

This termination should not be applied to Construction Heuristics, because they only update the
best solution at the end. Therefore it might be better to configure it on a specific Phase (such as
<l ocal Sear ch>), instead of on the Sol ver itself.

6.9.3. BestScoreTermination

Terminates when a certain score has been reached. Use this Ter ni nat i on if you know the perfect
score, for example for 4 queens (which uses a SimpleScore):

<t erm nati on>
<best Scor eLi ni t >0</ best Scor eLi mi t >
</term nation>

For a planning problem with a HardSoftScore, it could look like this:

169

Optimization Algorithms

<t erm nation>
<best Scor eLi m t >Ohar d/ - 5000sof t </ best ScoreLi m t >
</term nation>

For a planning problem with a BendableScore with 3 hard levels and 1 soft level, it could look
like this:

<term nation>
<best Scor eLi m t >0/ 0/ 0/ - 5000</ best ScoreLi m t >
</term nation>

Toterminate once a feasible solution has been reached, this Ter mi nat i on isn't practical because it
requires a best Scor eLi m t such as Ohard/ - 2147483648sof t . Instead, use the next termination.

6.9.4. BestScoreFeasibleTermination

Terminates when a certain score is feasible. Requires that the Scor e implementation implements
Feasi bi l i tyScore.

<t erm nation>
<best Scor eFeasi bl e>t r ue</ best Scor eFeasi bl e>
</term nation>

This Ter mi nat i on is usually combined with other terminations.

6.9.5. StepCountTermination

Terminates when a number of steps has been reached. This is useful for hardware performance
independent runs.

<l ocal Sear ch>
<term nati on>
<st epCount Li m t >100</ st epCount Li m t >
</term nation>
</ | ocal Sear ch>

This Ter m nati on can only be used for a Phase (such as <l ocal Sear ch>), not for the Sol ver
itself.

6.9.6. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps. This is useful for hardware
performance independent runs.

170

Optimization Algorithms

<l ocal Sear ch>
<term nation>
<uni npr ovedSt epCount Li m t >100</ uni npr ovedSt epCount Li mi t >
</term nation>
</l ocal Sear ch>

If the score hasn't improved recently, it's probably not going to improve soon anyway and it's not
worth the effort to continue. We have observed that once a new best solution is found (even after
a long time of no improvement on the best solution), the next few steps tend to improve the best
solution too.

This Ter m nat i on can only be used for a Phase (such as <l ocal Sear ch>), not for the Sol ver
itself.

6.9.7. CalculateCountTermination

Terminates when a number of score calculations (which is usually the sum of the number of moves
and the number of steps) have been reached. This is useful for benchmarking.

<t erm nation>
<cal cul at eCount Li m t >100000</ cal cul at eCount Li mi t >
</term nation>

Switching EnvironmentMode can heavily impact when this termination ends.

6.9.8. Combining Multiple Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nation>
<t erm nati onConposi tionStyl e>OR</t ern nati onConposi ti onStyl e>
<st epCount Li m t >100</ st epCount Li m t >
<best Scor eLi m t >0</ best Scor eLi m t >

</term nation>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
- 100 and no improvements in 5 steps:

<t erm nation>
<t erm nati onConposi tionStyl e>AND</t er m nati onConposi ti onStyl e>
<uni nprovedSt epCount Li m t >5</ uni npr ovedSt epCount Li mi t >
<best Scor eLi ni t >- 100</ best Scor eLi m t >

</term nati on>

171

Optimization Algorithms

This example ensures it doesn't just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

6.9.9. Asynchronous Termination from Another Thread

Sometimes you'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. This cannot be configured by a Ter mi nat i on as it's impossible to
predict when and if it will occur. Therefore the Sol ver interface has these 2 thread-safe methods:

public interface Sol ver<S extends Sol ution> {

...

bool ean term nateEarly();
bool ean i sTerninateEarly();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve(Sol uti on) method will return (in the original Sol ver thread).

6.10. SolverEventListener

Each time a new best solution is found, the Sol ver fires a Best Sol uti onChangedEvent, in the
solver's thread.

To listen to such events, add a Sol ver Event Li st ener to the Sol ver:

public interface Sol ver<S extends Sol ution> {

...

voi d addEvent Li st ener (Sol ver Event Li st ener <S> event Li st ener) ;
voi d renpveEvent Li st ener (Sol ver Event Li st ener <S> event Li st ener) ;

172

Optimization Algorithms

The Best Sol ut i onChangedEvent 's newBest Sol uti on might not be initialized or feasible. Use the
methods on Best Sol ut i onChangedEvent to detect such cases:

sol ver. addEvent Li st ener (new Sol ver Event Li st ener <C oudBal ance>() {
public void best Sol uti onChanged(Best Sol uti onChangedEvent <O oudBal ance> event) {
/1 1gnore invalid solutions
if (event.isNewBestSolutionlnitialized()
&& event . get NewBest Sol uti on().get Score().isFeasible()) {

5)s

A Warning

The best Sol uti onChanged() method is called in the solver's thread, as part of
Sol ver . sol ve() . So it should return quickly to avoid slowing down the solving.

6.11. Custom Solver Phase

Between phases or before the first phase, you might want to run a custom optmization algorithm to
initialize the Sol ut i on or to take some low hanging fruit to get a better score quickly. Yet you'll still
want to reuse the score calculation. For example, to implement a custom Construction Heuristic
without implementing an entire Phase.

@ Note

Most of the time, a custom solver phase is not worth the hassle. The supported
Constructions Heuristics are configurable (use the Benchmarker to tweak them),
Ter mi nat i on aware and support partially initialized solutions too.

The Cust onPhaseCommand interface looks like this:

public interface CustonPhaseComand {
voi d appl yCust onProperti es(Map<String, String> custonPropertyMap);

voi d changeWr ki ngSol uti on(ScoreDirector scoreDirector);

For example, extend Abst r act Cust onPhaseCommand and implement the changeWr ki ngSol u-
tion() method:

173

Optimization Algorithms

public class ToOrigi nal Machi neSol utionlnitializer extends AbstractCust onPhaseComand {

public void changeWr ki ngSol uti on(ScorebDirector scoreDirector) {
Machi neReassi gnment nmachi neReassi gnment = (Machi neReassi gnnent) scoreDirector. get Wr ki ngSol ution();
for (M ProcessAssignnent processAssignment : nachi neReassi gnnent. get ProcessAssignnentList()) {
scoreDirector. bef oreVari abl eChanged(processAssi gnnent, "machine");
processAssi gnnent . set Machi ne(processAssi gnnent . get Ori gi nal Machi ne());
scoreDirector. afterVari abl eChanged(processAssi gnnent, "nachi ne");
scoreDirector.triggerVari abl eLi steners();

Warning

Any change on the planning entities in a Cust onPhaseCommand must be notified
to the Scor eDi r ect or.

Warning

Do not change any of the problem facts in a Cust onPhaseConmand. That will corrupt
the Sol ver because any previous score or solution was for a different problem. To
do that, read about repeated planning and do it with a ProblemFactChange instead.

Configure your Cust onPhaseCommand like this:

<sol ver >
<cust onPhase>
ent . sol ver.solution.initializer. ToOiginal Machi neSol utionlnitializer</
cust onPhaseComandd ass>
</ cust onPhase>

<l-- Other phases -->
</ sol ver >

Configure multiple cust onPhaseCommandd ass instances to run them in sequence.

Important

If the changes of a Cust onPhaseConmand don't result in a better score, the best
solution won't be changed (so effectively nothing will have changed for the next

174

Optimization Algorithms

Phase or Cust onPhaseConmand). To force such changes anyway, use f or ceUp-
dat eBest Sol ut i on:

<cust onPhase>
<cust onPhaseComrandd ass>. .. MyUni niti al i zer </ cust onPhaseConmandCl ass>
<f or ceUpdat eBest Sol uti on>t rue</ f or ceUpdat eBest Sol uti on>

</ cust onPhase>

Note

If the Sol ver or a Phase wants to terminate while a Cust onPhaseConmand is still
running, it will wait to terminate until the Cust onPhaseCommand is done, however
long that takes. The build-in solver phases don't suffer from this problem.

To configure values of your Cust onPhaseConmand dynamically in the solver configuration (so you
can tweak those parameters with the Benchmarker), use the cust onPr operti es element:

<cust onPhase>
<cust onProperties>
<nySel ecti onSi ze>5</ nySel ecti onSi ze>
</ cust onProperties>
</ cust onPhase>

Then override the appl yCust onProperti es() method to parse and apply them when a Sol ver
is build.

public class MySolutionlnitializer extends AbstractCust onPhaseCommand {
private int nmySel ectionSi ze;

public void appl yCust onProperti es(Map<String, String> custonPropertyMap) {
String nySel ectionSizeString = custonPropertyMap. get ("nySel ecti onSize");
if (nySelectionSizeString == null) {
throw new Il egal Argument Excepti on("A custonProperty (mnmySel ectionSize) is mssing
fromthe solver configuration.");
}
sol ver Factory = Sol ver Fact ory. creat eFr omXnl Resour ce(partitionSol ver Confi gResource);
if (custonPropertyMap.size() !'= 1) {
throw new Il egal Argunment Exception("The custonPropertyMap's size
(" + custonPropertyMap.size() + ") is not 1.");
}
nySel ectionSi ze = | nteger. parselnt(nmySel ectionSi zeString);

175

Chapter 7. . and Neighborhood
Selection

7.1. wve and Neighborhood Introduction

7.1.1. What is a mwve?

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move
below changes queen C from row 0 to row 2:

A B C D A B C D

R g

w8

Ww N ¥+ ©

L

Ww N H O

The new solution is called a neighbor of the original solution, because it can be reached in a single
Move. Although a single move can change multiple queens, the neighbors of a solution should
always be a very small subset of all possible solutions. For example, on that original solution,
these are all possible changeMove's:

A B C D

A

a3
IR TR
[0 Doable move

[l Mot doable move
[no change)

Ww N H O

If we ignore the 4 changeMove's that have not impact and are therefore not doable, we can see
that number of movesisn * (n - 1) = 12. Thisis far less than the number of possible solutions,
whichisn ~ n = 256. As the problem scales out, the number of possible moves increases far
less than the number of possible solutions.

Yet, in 4 changeMve's or less we can reach any solution. For example we can reach a very
different solution in 3 changeMove's:

176

Move and Neigh-
borhood Selection

C D A B C D A B

A B D A B
R gy

b

e

[
W

L

Ww N H O
Ww N H ©
Ww N H ©
Ww N H ©

@ Note
There are many other types of moves besides changeMyve's. Many move types
are included out-of-the-box, but you can also implement custom moves.

A Mbve can affect multiple entities or even create/delete entities. But it must not
change the problem facts.

All optimization algorithms use Move's to transition from one solution to a neighbor solution. There-
fore, all the optimization algorithms are confronted with Move selection: the craft of creating and
iterating moves efficiently and the art of finding the most promising subset of random moves to
evaluate first.

7.1.2. What IS a mvesel ector ?

A MoveSel ect or's main function is to create It er at or <Move> when needed. An optimization
algorithm will iterate through a subset of those moves.

Here's an example how to configure a changeMoveSel ect or for the optimization algorithm Local
Search:

<l ocal Sear ch>
<changeMbveSel ect or/ >

</l ocal Sear ch>

Out of the box, this works and all properties of the changeMoveSel ect or are defaulted sensibly
(unless that fails fast due to ambiguity). On the other hand, the configuration can be customized
significantly for specific use cases. For example: you might want to configure a filter to discard
pointless moves.

7.1.3. Subselecting of Entities, Values and Other Moves

To create a Move, a MoveSel ect or needs to select 1 or more planning entities and/or planning
values to move. Just like MoveSel ect or s, Enti t ySel ect or s and Val ueSel ect or s need to sup-

177

Move and Neigh-
borhood Selection

port a similar feature set (such as scalable just-in-time selection). Therefore, they all implement a
common interface Sel ect or and they are configured similarly.

A MoveSelector is often composed out of EntitySel ectors, Val ueSel ectors or even other
MoveSel ect or s, which can be configured individually if desired:

<uni onMoveSel ect or >
<changeMoveSel ect or >
<entitySel ector>

</ entitySel ector>
<val ueSel ect or >

</ val ueSel ect or >

</ changeMoveSel ect or >
<swapMbveSel ect or >

</ swapMbveSel ect or >
</ uni onMbveSel ect or >

Together, this structure forms a Sel ect or tree:

Selector tree

A MoveSelector can be composed out of other MoveSelectors, EntitySelectors and/or ValueSelectors.

A0, A1,A2, ..., BO, B1, B2, ..., CO, C1, C2, ...
AB, AC,AD, ..., BC,BD, .., CD, ...

A0, A1, A2, ... AB, AC, AD, ...
BO, B1, B2, ... BC, BD, ...
C0,C1,C2, ... CD, ...

A B, C,D,.. 0,1, 2, .. A B CD,.. ABCD,..
(entitySelector] (valueSelector| (entitySelector] [entitySelector)

178

Move and Neigh-
borhood Selection

The root of this tree is a MoveSel ect or which is injected into the optimization algorithm imple-
mentation to be (partially) iterated in every step.

7.2. Generic MoveSelectors

7.2.1. changeMoveSel ect or

For 1 planning variable, the ChangeMove selects 1 planning entity and 1 planning value and assigns
the entity's variable to that value.

ChangeMove

Change 1 variable of 1 entity

N queens Cloud balance Vehicle routing
(chained variable)

A B C D
o ‘@ Q@a [.-:5‘4[2 I 3 } X
L e o2l
2 | -
3 (S -
A B C D

F—
w
J
>

Ww N H O

Simplest configuration:

<changeMbveSel ect or/ >

If there are multiple entity classes or multiple planning variables for 1 entity class, a simple config-
uration will automatically unfold into a union of ChangeMve selectors for every planning variable.

Advanced configuration:

Move and Neigh-
borhood Selection

<changeMbveSel ect or >
<I-- Nornmal selector properties -->
<entitySel ector>
<entityC ass>...Lecture</entityC ass>

</entitySel ector>
<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNanme>

<near bySel ecti on>. .. </ near bySel ecti on>

</ val ueSel ect or >
</ changeMbveSel ect or >

A ChangeMove is the finest grained move.

Important

Almost every noveSel ect or configuration injected into a metaheuristic algorithm
should include a changeMoveSelector or a custom implementation. This guaran-
tees that every possible Sol uti on can be reached through applying a number of
moves in sequence (not taking score traps into account). Of course, normally it is
unioned with other, more coarse grained move selectors.

7.2.2. swapMoveSelector

The SwapMve selects 2 different planning entities and swaps the planning values of all their plan-
ning variables.

180

Move and Neigh-
borhood Selection

SwapMove

Swap all variables of 2 entities

N queens Cloud balance Vehicle routing
(chained variable)

A B C D A~
o) iy 28)«
BEET ,
2
3 z

A B C D

W

Brus. | [Paris

Y

Ww N K O
&
E
»
T l|w
< x

M
—y
E_}

Amst.

Although a SwapMove on a single variable is essentially just 2 ChangeMoves, it's often the winning
step where the first of the 2 ChangeMves would not be the winning step because it leaves the
solution in a state with broken hard constraints. For example: swapping the room of 2 lectures
doesn't bring the solution in a intermediate state where both lectures are in the same room which
breaks a hard constraint.

Simplest configuration:

<swapMoveSel ect or/ >

If there are multiple entity classes, a simple configuration will automatically unfold into a union of
SwapMbve selectors for every entity class.

Advanced configuration:

<swapMbveSel ect or >
. <!'-- Nornul selector properties -->

<entitySel ector>
<entityCd ass>...Lecture</entityCd ass>

181

Move and Neigh-
borhood Selection

</entitySel ector>
<secondar yEnti t ySel ect or >
<entityd ass>...Lecture</entityd ass>

<near bySel ecti on>. .. </ near bySel ecti on>
</ secondar yEntitySel ect or >
<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>
<vari abl eNanel ncl ude>. .. </ vari abl eNanel ncl ude>
</ swapMoveSel ect or >

The secondar yEntitySel ect or is rarely needed: if it is not specified, entities from the same
entitySel ector are swapped.

If one or more vari abl eNamel ncl ude properties are specified, not all planning variables will be
swapped, but only those specified. For example for course scheduling, specifying only vari abl e-
Nanel ncl ude room will make it only swap room, not period.

7.2.3. pillarChangeMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for their planning
variable(s). The Pi | | ar ChangeMve selects 1 entity pillar (or subset of those) and changes the
value of 1 variable (which is the same for all entities) to another value.

182

Move and Neigh-
borhood Selection

PillarChangeMove

Change 1 variable of each entity in 1 pillar. A pillar is a set of entities with the same value(s).

N queens Cloud balance

L N 1

wWw N H O
S

N(%I—'O
E
E

In the example above, queen A and C have the same value (row 0) and are moved to row 2. Also
the yellow and blue process have the same value (computer Y) and are moved to computer X.

Simplest configuration:

<pi | | ar ChangeMoveSel ect or/ >

Advanced configuration:

<pi | | ar SwapMveSel ect or >
<I-- Nornmal selector properties -->
<pi | | ar Sel ect or >
<entitySel ector>
<entityCd ass>...Lecture</entityd ass>

</ entitySel ector>

<subPi | | ar Enabl ed>t rue</ subPi | | ar Enabl ed>

<m ni nunBubPi | | ar Si ze>1</ m ni nunBubPi | | ar Si ze>

<maxi munBubPi | | ar Si ze>1000</ maxi nunBSubPi | | ar Si ze>
</ pillarSel ector>

183

Move and Neigh-
borhood Selection

<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNanme>

</ val ueSel ect or >
</ pi || ar SwapMoveSel ect or >

A sub pillar is a subset of entities that share the same value(s) for their variable(s). For example if
gueen A, B, C and D are all located on row 0, they are a pillar and [A, D] is one of the many sub
pillars. If subPi | | ar Enabl ed (defaults to t r ue) is false, no sub pillars are selected. If sub pillars
are enabled, the pillar itself is also included and the properties i ni nunSubPi | | ar Si ze (defaults
to 1) and naxi munSubPi | | ar Si ze (defaults to i nfi ni ty) limit the size of the selected (sub) pillar.

The other properties are explained in changeMoveSelector.

7.2.4. pillarSwapMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for their planning
variable(s). The Pi | | ar SwapMve selects 2 different entity pillars and swaps the values of all their
variables for all their entities.

184

Move and Neigh-
borhood Selection

PillarSwapMove

Swap all variables of 2 pillars. A pillar is a set of entities with the same value(s).

N queens Cloud balance

A B C D
1 ﬁ ff:!'ll Y
2 [[
3 Z

A B C D
o| [ir X
1 iy v
2 (il [

Z

3

Simplest configuration:

<pi | | ar SwapMoveSel ect or/ >

Advanced configuration:

<pi | | ar SwapMoveSel ect or >
<I'-- Normal selector properties -->
<pi | I ar Sel ect or >
<entitySel ector>
<entityC ass>...Lecture</entityd ass>

</ entitySel ector>
<subPi | | ar Enabl ed>t rue</ subPi | | ar Enabl ed>
<mi ni nunSubPi | | ar Si ze>1</ mi ni nunSubPi | | ar Si ze>
<maxi munBSubPi | | ar Si ze>1000</ maxi munBSubPi | | ar Si ze>
</ pillarSel ector>
<secondaryPi | | ar Sel ect or >
<entitySel ector>

</ entitySel ector>

185

Move and Neigh-
borhood Selection

</ secondaryPi | | ar Sel ect or >

<vari abl eNanel ncl ude>r oonx/ vari abl eNanel ncl ude>

<vari abl eNanel ncl ude>. .. </ vari abl eNanel ncl ude>
</ pi | I ar SwapMveSel ect or >

The secondaryPi | | ar Sel ect or is rarely needed: if it is not specified, entities from the same
pi | | ar Sel ect or are swapped.

The other properties are explained in swapMoveSelector and pillarChangeMoveSelector.

7.2.5. tailChainSwapMoveSelector or 2-opt (chained variables
only)

A tailChain is a set of planning entities with a chained planning variable which form a last part of
a chain. The t ai | Chai nSwapMve selects a tail chain and swaps it with the tail chain of another
planning value (in a different or the same anchor chain). If the targeted planning value, doesn't
have a tail chain, it swaps with nothing (resulting in a change like move). If it occurs within the same
anchor chain, a partial chain reverse occurs. In academic papers, this is often called a 2-opt move.

Simplest configuration:

<t ai | Chai nSwapMoveSel ect or/ >

Advanced configuration:

<subChai nChangeMbveSel ect or >
. <!'-- Nornul selector properties -->
<entitySel ector>
<entityC ass>...Custoner</entityd ass>

</entitySel ector>
<val ueSel ect or >
<vari abl eName>pr evi ousSt andsti | | </ vari abl eNane>

<near bySel ecti on>. .. </ near bySel ecti on>
</ val ueSel ect or >
</ subChai nChangeMoveSel ect or >

The enti tySel ect or selects the start of the tail chain that is being moved. The valueSelector
selects to where that tail chain is moved. If it has a tail chain itself, that is moved to the location
of the original tail chain. It uses a val ueSel ect or instead of a secondar yEnti t ySel ect or to be
able to include all possible 2opt moves (such as moving to the end of a tail) and to work correctly
with nearby selection (because of asymmetric distances and also swapped entity distance gives
an incorrect selection probability).

186

Move and Neigh-
borhood Selection

7.2.6. subChainChangeMoveSelector (chained variables only)

A subChain is a set of planning entities with a chained planning variable which form part of a
chain. The subChai nChangeMyveSel ect or selects a subChain and moves it to another place (in
a different or the same anchor chain).

Simplest configuration:

<subChai nChangeMveSel ect or/ >

Advanced configuration:

<subChai nChangeMveSel ect or >
<!'-- Nornmal selector properties -->
<entityC ass>...Customer</entityC ass>
<subChai nSel ect or >
<val ueSel ect or >
<vari abl eName>previ ousSt andsti | | </ vari abl eNane>

</ val ueSel ect or >
<mi ni mnunmBubChai nSi ze>2</ ni ni nunBubChai nSi ze>
<maxi munmBubChai nSi ze>40</ maxi nunSubChai nSi ze>
</ subChai nSel ect or >
<val ueSel ect or >
<vari abl eNanme>previ ousSt andsti | | </ vari abl eNanme>

</ val ueSel ect or >
<sel ect Rever si ngMbveToo>t rue</ sel ect Rever si ngMbveToo>
</ subChai nChangeMboveSel ect or >

The subChai nSel ect or selects a number of entities, no less than ni ni munSubChai nSi ze (de-
faults to 1) and no more than naxi nunSubChai nSi ze (defaults to i nfi ni ty).

187

Move and Neigh-
borhood Selection

The sel ect Rever si ngMoveToo property (defaults to true) enables selecting the reverse of every
subchain too.

7.2.7. subChainSwapMoveSelector (chained variables only)

The subChai nSwapMoveSel ect or selects 2 different subChains and moves them to another place
in a different or the same anchor chain.

Simplest configuration:

<subChai nSwapMoveSel ect or/ >

Advanced configuration:

<subChai nSwapMoveSel ect or >
<l-- Nornmal selector properties -->
<entityCl ass>...Custonmer</entityC ass>
<subChai nSel ect or >
<val ueSel ect or >
<vari abl eNane>pr evi ousSt andsti | | </ vari abl eNane>

</ val ueSel ect or >
<m ni munBSubChai nSi ze>2</ m ni nunSubChai nSi ze>
<maxi munSubChai nSi ze>40</ maxi nunSubChai nSi ze>
</ subChai nSel ect or >
<secondar ySubChai nSel ect or >
<val ueSel ect or >
<vari abl eNane>pr evi ousSt andsti | | </ vari abl eNane>

</ val ueSel ect or >
<m ni nunBSubChai nSi ze>2</ m ni nunSubChai nSi ze>
<maxi munSubChai nSi ze>40</ maxi nunSubChai nSi ze>
</ secondar ySubChai nSel ect or >
<sel ect Rever si ngMbveToo>t rue</ sel ect Rever si ngMoveToo>
</ subChai nSwapMoveSel ect or >

The secondar ySubChai nSel ect or is rarely needed: if it is not specified, entities from the same
subChai nSel ect or are swapped.

The other properties are explained in subChainChangeMoveSelector.

188

Move and Neigh-
borhood Selection

7.3. Combining MUltlple MoveSel ector S

7.3.1. unionMoveSelector

A uni onMoveSel ect or selects a Move by selecting 1 of its MoveSel ect or children to supply the
next Move.

Simplest configuration:

<uni onMbveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/>
<...MoveSel ector/>

</ uni onMbveSel ect or >

Advanced configuration:

<uni onMoveSel ect or >
<I-- Nornmal selector properties -->
<sel ect or Probabi | i t yWei ght Fact oryCl ass>. .. Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryd ass>
<changeMoveSel ect or >
<fi xedProbabi | ityWei ght>...</fixedProbabilityWi ght>

</ changeMbveSel ect or >
<swapMbveSel ect or >
<fi xedProbabi |l ityWight>...</fixedProbabilityWeight>

</ swapMoveSel ect or >
<...MveSel ect or >
<fi xedProbabi | ityWei ght>...</fixedProbabilityWight>

</...MveSel ector>

</ uni onMoveSel ect or >

The sel ect or Probabi | i t yWei ght Fact ory determines in sel ecti onOr der RANDOMhow often a
MoveSel ect or child is selected to supply the next Move. By default, each MoveSel ect or child
has the same chance of being selected.

189

Move and Neigh-
borhood Selection

Selector probability in union p(x) Probabilty

A random Selector can favor some selections over others.
to select x

A0, A1, B0, B1, C0, C1, D0, D1, AB, AC, AD, BC, BD, CD
P(A0)=1/16, ..., P(AB)=1/12, ...

1/2 probabilityWeight 1/2

8 moves (default) 6 moves
A0, A1, BO, B1, €O, C1, DO, D1 AB, AC, AD, BC, BD, CD
P(AQ0)=1/8, ... P(AB)=1/6, ...

AQ, A1, BO, B1, CO, C1, DO, D1, AB, AC, AD, BC, BD, CD
P(A0)=1/14, ..., P(AB)=1/14, ...

8/14 probabilityWeight 6/14

8 moves 6 moves
A0, A1, BO, B1, CO, C1, DO, D1 AB, AC, AD, BC, BD, CD
P(AQ)=1/8, ... P(AB)=1/6, ...

Change the fi xedPr obabi | i t ywei ght of such a child to select it more often. For example, the
uni onMoveSel ect or can return a SwapMve twice as often as a ChangeMove:

<uni onMoveSel ect or >
<changeMveSel ect or >
<fi xedProbabi | i t yWei ght >1. 0</ f i xedPr obabi I i t yWei ght >

</ changeMoveSel ect or >
<swapMbveSel ect or >
<fi xedProbabi | i t yWei ght >2. 0</ f i xedPr obabi | i t yWei ght >

</ swapMWbveSel ect or >
</ uni onMbveSel ect or >

The number of possible ChangeMves is very different from the number of possible SwapMves
and furthermore it's problem dependent. To give each individual Move the same selection chance
(as opposed to each MoveSel ect or), use the Fai r Sel ect or Probabi | i t yWei ght Factory:

<uni onMbveSel ect or >

190

Move and Neigh-
borhood Selection

i c. sel ector. common. decor at or. Fai r Sel ect or Probabi | i t yWei ght Fact ory</
sel ect or Probabi | i t yWei ght Fact oryd ass>
<changeMveSel ect or/ >
<swapMbveSel ect or/ >
</ uni onMoveSel ect or >

7.3.2. cartesianProductMoveSelector

Acartesi anProduct MoveSel ect or selects a new Conposi t eMove. It builds that Conposi t eMove
by selecting 1 Move per MoveSel ect or child and adding it to the Conposi t eMove.

Simplest configuration:

<cartesi anProduct MoveSel ect or >
<...MoveSel ector/>
<...MoveSel ector/>
<...MoveSel ector/>

</ cart esi anProduct MoveSel ect or >

Advanced configuration:

<cartesi anProduct MoveSel ect or >
<!-- Normal selector properties -->
<i gnor eEnpt yChi | dl t er at or s>t rue</ i gnor eEnpt yChi | dl t er at or s>
<changeMoveSel ect or >

</ changeMbveSel ect or >
<swapMbveSel ect or >

</ swapMbveSel ect or >
<...MveSel ect or >

</...MveSel ect or >

</ cart esi anProduct MoveSel ect or >

Thei gnor eEnpt yChi | di t er at or s property (true by default) will ignore every empty chi | dMbveS-
el ect or to avoid returning no moves. For example: a cartesian product of changeMoveSel ec-
tor A and B, for which B is empty (because all it's entities are immovable) returns no move if
i gnor eEnptyChi l diterators is f al se and the moves of A if i gnoreEnpt yChil dliterators is
true.

To enforce that 2 child selectors use the same entity or value efficiently, use mimic selection, not
move filtering.

191

Move and Neigh-
borhood Selection

7.4. EntitySelector

Simplest configuration:

<entitySel ector/>

Advanced configuration:

<entitySel ect or>
<I'-- Nornal selector properties -->
<entityC ass>org. opt apl anner. exanpl es. curri cul uncour se. donai n. Lecture</entityCl ass>
</entitySel ector>

The enti tyd ass property is only required if it cannot be deduced automatically because there
are multiple entity classes.

7.5. ValueSelector

Simplest configuration:

<val ueSel ector/>

Advanced configuration:

<val ueSel ect or >
<I-- Normal selector properties -->
<vari abl eName>r oonx/ vari abl eNanme>
</ val ueSel ect or >

The vari abl eNane property is only required if it cannot be deduced automatically because there
are multiple variables (for the related entity class).

In exotic Construction Heuristic configurations, the ent i t yd ass from the Ent i t ySel ect or some-
times needs to be downcasted, which can be done with the property downcast Entit yC ass:

<val ueSel ect or >
<downcast Enti tyC ass>. .. Leadi ngExanx/ downcast Enti tyCl ass>
<vari abl eName>peri od</ vari abl eNane>

</ val ueSel ect or >

If a selected entity cannot be downcasted, the Val ueSel ect or is empty for that entity.

192

Move and Neigh-
borhood Selection

7.6. General selector FEatures

7.6.1. cachetype: Create Moves Ahead of Time or Just In Time

A Sel ector's cacheType determines when a selection (such as a Move, an entity, a value, ...) is
created and how long it lives.

Almost every Sel ect or supports setting a cacheType:

<changeMbveSel ect or >
<cacheType>PHASE</ cacheType>

</ changeMbveSel ect or >

The following cacheTypes are supported:

e JUST_I N_TI ME (default): Not cached. Construct each selection (Move, ...) just before it's used.
This scales up well in memory footprint.

« STEP: Cached. Create each selection (Move, ...) at the beginning of a step and cache them in a
list for the remainder of the step. This scales up badly in memory footprint.

* PHASE: Cached. Create each selection (Move, ...) at the beginning of a solver phase and cache
them in a list for the remainder of the phase. Some selections cannot be phase cached because
the list changes every step. This scales up badly in memory footprint, but has a slight perfor-
mance gain.

e SOLVER: Cached. Create each selection (Move, ...) at the beginning of a Sol ver and cache them
in a list for the remainder of the Sol ver . Some selections cannot be solver cached because the
list changes every step. This scales up badly in memory footprint, but has a slight performance
gain.

A cacheType can be set on composite selectors too:

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<changeMoveSel ect or/ >
<swapMoveSel ect or/ >

</ uni onMoveSel ect or >

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it's
a higher cacheType. For example: a STEP cached uni onMoveSel ect or can hold a PHASE cached
changeMoveSel ect or, but not a STEP cached changeMbveSel ect or .

193

Move and Neigh-
borhood Selection

7.6.2. SelectionOrder: Original, Sorted, Random, Shuffled or
Probabilistic

A Sel ector's sel ecti onOrder determines the order in which the selections (such as Mves, en-
tities, values, ...) are iterated. An optimization algorithm will usually only iterate through a subset of

its MoveSel ect or 's selections, starting from the start, so the sel ecti onOr der is critical to decide

which Moves are actually evaluated.

Almost every Sel ect or supports setting a sel ecti onQOr der :

<changeMbveSel ect or >
<sel ecti onOr der >RANDOWK/ sel ecti onOr der >

</ changeMoveSel ect or >

The following sel ecti onOr der s are supported:

ORI G NAL: Select the selections (Moves, entities, values, ...) in default order. Each selection will
be selected only once.

» For example: AQ, Al, A2, A3, ..., BO, B1, B2, B3, ..., C0O, C1, C2, C3, ...

SORTED: Select the selections (Moves, entities, values, ...) in sorted order. Each selection will
be selected only once. Requires cacheType >= STEP. Mostly used on an entitySel ector or
val ueSel ect or for construction heuristics. See sorted selection.

» For example: AOQ, BO, CO, ..., A2,B2,C2, ..., A1, B1, C1, ...

RANDOM (default): Select the selections (Moves, entities, values, ...) in non-shuffled random
order. A selection might be selected multiple times. This scales up well in performance because
it does not require caching.

» For example: C2, A3, B1, C2, A0, CO, ...

SHUFFLED: Select the selections (Moves, entities, values, ...) in shuffled random order. Each
selection will be selected only once. Requires cacheType >= STEP. This scales up badly in
performance, not just because it requires caching, but also because a random number is gen-
erated for each element, even if it's not selected (which is the grand majority when scaling up).

» For example: C2, A3, B1, A0, CO, ...

PROBABILISTIC: Select the selections (Moves, entities, values, ...) in random order, based on
the selection probability of each element. A selection with a higher probability has a higher
chance to be selected than elements with a lower probability. A selection might be selected
multiple times. Requires cacheType >= STEP. Mostly used on anentitySel ector or val ueS-
el ect or. See probabilistic selection.

194

Move and Neigh-
borhood Selection

» For example: B1, B1, Al, B2, B1, C2, B1, B1, ...

A sel ecti onOrder can be set on composite selectors too.

7.6.3. Recommended Combinations of cacheType and sel ecti onor der

7.6.3.1. Just in Time Random Selection (default)

This combination is great for big use cases (10 000 entities or more), as it scales up well in memory
footprint and performance. Other combinations are often not even viable on such sizes. It works for
smaller use cases too, so it's a good way to start out. It's the default, so this explicit configuration
of cacheType and sel ecti onOr der is actually obsolete:

<uni onMoveSel ect or >
<cacheType>JUST_I N_TI ME</ cacheType>
<sel ecti onOr der >RANDOVK/ sel ect i onOr der >

<changeMbveSel ect or/ >
<swapMbveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works. When | t er at or <Move>. next () is called, a child MoveSel ect or is randomly
selected (1), which creates a random Move (2, 3, 4) and is then returned (5):

195

Move and Neigh-
borhood Selection

Just in time random selection

Create a random Move just before it's needed and no sooner
Move C2 is never cached

C2

Select ChangeMove C2 .
Randomly select child
changeMoveSelector

C2

Create new ChangeMove C2
just in time and select it

[changeMoveSelector] | swapMoveSelector
C 2
cocrontyc| @ e

(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Notice that it never creates a list of Moves and it generates random numbers only for Moves that
are actually selected.

7.6.3.2. Cached Shuffled Selection

This combination often wins for small and medium use cases (5000 entities or less). Beyond that
size, it scales up badly in memory footprint and performance.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMveSel ect or/ >
<swapMboveSel ect or/ >
</ uni onMoveSel ect or >

Here's how it works: At the start of the phase (or step depending on the cacheType), all moves are
created (1) and cached (2). When MoveSel ector.iterator () is called, the moves are shuffled
(3). When I ter at or <Mbve>. next () is called, the next element in the shuffled list is returned (4):

196

Move and Neigh-
borhood Selection

Cached shuffled selection

Cache all possible moves. Shuffle them when a Move Iterator is created

rom i snitea move 1ot @) C2
C2, BC, C0, A2, B2, AB, C1, BD,

CD, A1,AC, B0, B1,AD, A0, ... @ Shuffle all moves

@ Cache all moves

Move C2 is only selected once

AO, A1, A2, ... AB, AC, AD, ...

B0, B1, B2, ... BC, BD, ...
Create all

CO,C1,C2, .. @ el moume GEs e

A, B, C,D, .. A, B, C, D, .. A, B, C,D, ..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Notice that each Move will only be selected once, even though they are selected in random order.

Use cacheType PHASE if none of the (possibly nested) Selectors require STEP. Otherwise, do
something like this:

<uni onMoveSel ect or >
<cacheType>STEP</ cacheType>
<sel ecti onOr der >SHUFFLED</ sel ecti onOr der >

<changeMveSel ect or >
<cacheType>PHASE</ cacheType>
</ changeMbveSel ect or >
<swapMoveSel ect or/>
<cacheType>PHASE</ cacheType>
</ swapMbveSel ect or >
<pi | I ar SwapMoveSel ector/ ><!-- Does not support cacheType PHASE -->
</ uni onMoveSel ect or >

197

Move and Neigh-
borhood Selection

7.6.3.3. Cached Random Selection

This combination is often a worthy competitor for medium use cases, especially with fast stepping
optimization algorithms (such as Simulated Annealing). Unlike cached shuffled selection, it doesn't
waste time shuffling the moves list at the beginning of every step.

<uni onMoveSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >RANDOMK/ sel ect i onOr der >

<changeMbveSel ector/>
<swapMbveSel ect or/ >
</ uni onMoveSel ect or >

7.6.4. Filtered Selection
There can be certain moves that you don't want to select, because:
« The move is pointless and would only waste CPU time. For example, swapping 2 lectures of

the same course will result in the same score and the same schedule because all lectures of 1
course are interchangeable (same teacher, same students, same topic).

» Doing the move would break a built-in hard constraint, so the solution would be infeasible but
the score function doesn't check built-in hard constraints (for performance gain). For example,
don't change a gym lecture to a room which is not a gym room.

Filtered selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or or Val ueSel ect or . It works with any cacheType and sel ecti onOr der .

198

Move and Neigh-
borhood Selection

Filtered selection

The output of any Selector can be filtered with one or more SelectionFilters

A0, A1,A2, ..., CO, C1, C2, ..
AB, AD, ..., BC, ..., CD, ...

AB, AC, AD, ...

BC, BD, ...
A0, A1, A2, ... CD, ...

Co, C1, C2, ...
swathJveSelectionFilter

[entitySelectionFilter | 0,1,2, .. A B,C,D,.. AMBVC,D,..

A B CH, ..
(entitySelector] (valueSelector] (entitySelector] [(entitySelector)

Filtering uses the interface Sel ecti onFilter:

public interface SelectionFilter<T> {

bool ean accept (ScoreDirector scoreDirector, T selection);

Implement the accept method to return f al se on a discarded sel ect i on. Unaccepted moves will
not be selected and will therefore never have their doMove method called.

public class DifferentCourseSwapMWoveFilter inplenents Sel ectionFilter<SwapMve> {

publ i c bool ean accept (ScoreDirector scoreDirector, SwapMove nove) {
Lecture leftlLecture = (Lecture) nove.getLeftEntity();
Lecture rightlLecture = (Lecture) npve.getRightEntity();
return !l eftlLecture. get Course().equal s(rightLecture.getCourse());

-

199

Move and Neigh-
borhood Selection

Apply the filter on the lowest level possible. In most cases, you'll need to know both the entity and
the value involved and you'll have to apply afil ter d ass on the noveSel ect or :

<swapMbveSel ect or >

<filterC ass>org. optapl anner. exanpl es. curri cul untour se. sol ver. nove. Di f f er ent Cour seSwapMoveFi | t er </
filterd ass>
</ swapMoveSel ect or >

But if possible, apply it on a lower levels, such as a filterC ass on the entitySel ector or
val ueSel ector:

<changeMbveSel ect or >
<entitySel ect or>
<filterdass> ..EntityFilter</filterC ass>
</entitySel ector>
</ changeMoveSel ect or >

You can configure multiple fi | t er d ass elements on a single selector.

7.6.5. Sorted Selection

Sorted selection can happen on any Selector in the selector tree, including any MoveSel ect or,
EntitySel ect or or Val ueSel ect or . It does not work with cacheType JUST_I N_TI ME and it only
works with sel ecti onOrder SORTED.

It's mostly used in construction heuristics.

7.6.5.1. Sorted Selection by sorter Manner
Some Sel ect or types implement a Sor t er Manner out of the box:

e EntitySel ector supports:

» DECREASI NG DI FFI CULTY: Sorts the planning entities according to decreasing planning entity
difficulty. Requires that planning entity difficulty is annotated on the domain model.

200

Move and Neigh-
borhood Selection

<entitySel ector>

<cacheType>PHASE</ cacheType>

<sel ecti onOr der >SORTED</ sel ecti onOr der >

<sorter Manner >DECREASI NG_DI FFI CULTY</ sort er Manner >
</entitySel ector>

* Val ueSel ect or supports:

* | NCREASI NG_STRENGTH: Sorts the planning values according to increasing planning value
strength. Requires that planning value strength is annotated on the domain model.

<val ueSel ect or >

<cacheType>PHASE</ cacheType>

<sel ecti onOr der >SORTED</ sel ecti onOr der >

<sorter Manner >l NCREASI NG_STRENGTH</ sort er Manner >
</ val ueSel ect or >

7.6.5.2. Sorted Selection by conparat or

An easy way to sort a Sel ect or is with a plain old Conpar at or :

public class C oudProcessDifficultyConparator inplenents Conparator<d oudProcess> {

public int conpare(d oudProcess a, C oudProcess b) {
return new Conpar eToBui | der ()
. append(a. get Requi redMul ti plicand(), b.getRequiredMultiplicand())
.append(a.getld(), b.getld())
.toConparison();

You 'll also need to configure it (unless it's annotated on the domain model and automatically
applied by the optimization algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Conpar at or Cl ass>. .. Cl oudProcessDi ffi cul t yConparat or </ sort er Conpar at or Cl ass>
<sort er Or der >DESCENDI NG</ sor t er Or der >
</ entitySel ector>

7.6.5.3. Sorted Selection by sel ectionSorterwei ght Factory

If you need the entire Sol uti on to sort a Sel ect or, use a Sel ecti onSort er Wi ght Factory
instead:

201

Move and Neigh-
borhood Selection

public interface Sel ecti onSorterWi ght Fact ory<Sol extends Solution, T> {

Conpar abl e createSorterWight(Sol solution, T selection);

public cl ass QueenDi f fi cul t ywei ght Factory i npl e
nments Sel ectionSorter Wi ght Fact or y<NQueens, Queen> {

publ i c Conparabl e createSorterWight (NQueens nQueens, Queen queen) {
int distanceFromM ddl e = cal cul at eDi st anceFronM ddl e(nQueens. get N(), queen. get Col uml ndex());
return new QueenDi fficul t yWei ght (queen, distanceFronmM ddle);

/1
public static class QueenDifficultyWight inplenents Conparabl e<QueenDi fficultyWight> {

private final Queen queen;
private final int distanceFronM ddle;

public QueenDifficultyWight(Queen queen, int distanceFronM ddle) {
thi s.queen = queen;
t hi s. di stanceFronM ddl e = di st anceFronM ddl e;

public int conpareTo(QueenDi fficultyWight other) {
return new Conpar eToBui | der ()
/1 The nore difficult queens have a |ower distance to the mddle
. append(ot her. di stanceFronM ddl e, di stanceFromM ddle) // Decreasing
/] Tie breaker
. append(queen. get Col utml ndex(), other. queen. get Col uml ndex())
.toConparison();

You 'll also need to configure it (unless it's annotated on the domain model and automatically
applied by the optimization algorithm):

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Wi ght Fact oryC ass>. .. QueenDi ffi cul t yWei ght Fact ory</ sort er Wi ght Fact oryCd ass>
<sorter Or der >DESCENDI NG</ sort er Or der >
</ entitySel ector>

202

Move and Neigh-
borhood Selection

7.6.5.4. Sorted Selection by selectionsorter

Alternatively, you can also use the interface Sel ecti onSorter directly:

public interface SelectionSorter<T> {

voi d sort(ScoreDirector scoreDirector, List<T> selectionList);

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorterCl ass>... MEntitySorter</sorterd ass>
</entitySel ector>

7.6.6. Probabilistic Selection

Probabilistic selection can happen on any Selector in the selector tree, including any MoveSel ec-
tor, EntitySel ector orVal ueSel ect or. It does not work with cacheType JUST I N_TI ME and it
only works with sel ecti onOr der PROBABI LI STI C.

203

Move and Neigh-
borhood Selection

Probabilistic selection By Probabilty

A cached Selector can favor some selections over others. () to select x

P(A0)=0.0250, P(A1)=0.0250, P(AB)=0.0690,
P(B0)=0.1000, P(B1)=0.1000, P(AC)=0.0862,
P(C0)=0.1250, P(C1)=0.1250, P(BC)=0.3448

P(A0)=0.05, P(A1)=0.05, P(AB)=4/29=0.1379,
P(B0)=0.20, P(B1)=0.20, P(AC)=5/20=0.1724,
P(C0)=0.25, P(C1)=0.25 P(BC)=20/29=0.6897
P(A)=0.1, P(A)=0.1, P(A)=0.1,
P(B)=0.4, P(C)=0.5 P(0)=0.5, P(B)=0.4, P(C)<0.5 P(B)=0.4, P(C)=0.5
[entityWeightFactory | P(1)=0.5 [entityWeightFactory | | entityWeightFactory |
(entitySelector] (valueSelector] (entitySelector] [(entitySelector|

Each selection has a probabi I i t yWei ght, which determines the chance that selection will be
selected:

public interface Sel ecti onProbabilityWi ghtFactory<T> {

doubl e creat eProbabi | ityWight(ScorebDirector scorebDirector, T selection);

<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >PROBABI LI STI C</ sel ecti onOr der >
<probabi |'i t yWei ght Fact oryCl ass>. .. MWEnti tyProbabilityWight Fact oryd ass</
probabi | 'i t yWei ght Fact oryCl ass>
</ entitySel ector>

204

Move and Neigh-
borhood Selection

For example, if there are 3 entities: process A (probabilityWeight 2.0), process B (probability-
Weight 0.5) and process C (probabilityWeight 0.5), then process A will be selected 4 times more
than B and C.

7.6.7. Limited Selection

Selecting all possible moves sometimes does not scale well enough, especially for construction
heuristics (which don't support acceptedCountLimit).

To limit the number of selected selection per step, apply a sel ect edCount Li ni t on the selector:

<changeMbveSel ect or >
<sel ect edCount Li m t >100</ sel ect edCount Li m t >
</ changeMbveSel ect or >

@ Note
To scale Local Search, setting acceptedCountLimit is usually better than using
sel ectedCount Limt.

7.6.8. Mimic Selection (Record/Replay)

During mimic selection, 1 normal selector records its selection and 1 or multiple other special
selectors replay that selection. The recording selector acts as a normal selector and supports all
other configuration properties. A replaying selector mimics the recording selection and support no
other configuration properties.

The recording selector needs an i d. A replaying selector must reference a recorder's id with a
m m cSel ect or Ref :

<cart esi anPr oduct MbveSel ect or >
<changeMbveSel ect or >
<entitySelector id="entitySelector"/>
<val ueSel ect or >
<vari abl eName>peri od</ vari abl eNanme>
</ val ueSel ect or >
</ changeMbveSel ect or >
<changeMbveSel ect or >
<entitySel ector mi m cSel ectorRef="entitySel ector"/>
<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNane>
</ val ueSel ect or >
</ changeMoveSel ect or >
</ cart esi anProduct MbveSel ect or >

Mimic selection is useful to create a composite move from 2 moves that affect the same entity.

205

Move and Neigh-
borhood Selection

7.6.9. Nearby Selection

In some use cases (such as TSP and VRP, but also in non-chained variable cases), changing
entities to nearby values or swapping nearby entities can heavily increase scalability and im-
prove solution quality.

Nearby selection motivation

2 customers not near each other are unlikely to be visited sequentially.

Before moving A

AT,
B
F
Move A to B (nearby) Move A to E (nearby) Move A to Z (not nearby)
a7 Py oz
- > T e P 2

| =]
{ . A - A \ - /
/ C N —C
‘\ e
~ B Might not be feasible \‘ﬁ \'-:// B Probably not usefull

F (time windows, ...}

to investigate

Nearby selection increases the probability of selecting an entity or value which is nearby to the
first entity being moved in that move.

206

Move and Neigh-
borhood Selection

Nearby selection random distribution

What is the selection probability with normal selection, partitioning and nearby selection?

Normal selection Partitioning Nearby selection
W7 ! W7 4
D . . D | B . =D .
\ g : . EF N\ S
. e ————— * = oo o
A C Al cC . 7A C
B B . B
F F ' F
AT

2 0.30| The selection probability 20.30 Location C is 20.30 inearDistr. size 10
3 of location Z 3 never selected B
= pos = pas . S 25 - -
2020 is the same as 2020 despite that 8020 - BlockDistr. size 10
2= that of location B a - it's nearer than D a - T
S o at of locat S o s nearer the 5 o1 ~a_
2 010 2 0.10 8010 ————
]] o |
@ 005 @ 005 \/V\ w005 .

S — \ N

B CDEF .Y Z B CDEF .Y 2Z B CDEF .Y Z7

previousStandstill for A previousStandstill for A previousStandstill for A

The distance between 2 entities or values is domain specific. Therefore, implement the Near by-
Di st anceMet er interface:

public interface NearbyDi stanceMeter<O D> {

doubl e get Near byDi st ance(O origin, D destination);

It returns a doubl e which represents the distance:

public class Custoner Near byD stanceMeter inpl enments NearbyDi stanceMet er <Custoner, Standstill> {

publ i c doubl e get Near byDi st ance(Custoner origin, Standstill destination) {
return origin.getDi stanceTo(destination);

207

Move and Neigh-
borhood Selection

To configure nearby selection, add a near bySel ecti on element in the entitySel ect or orval -
ueSel ect or and use mimic selection to specify which entity should be near by the selection.

<uni onMoveSel ect or >
<changeMveSel ect or >
<entitySel ector id="entitySel ector1"/>
<val ueSel ect or >
<near bySel ecti on>
<origi nEntitySel ector m mi cSel ector Ref ="entitySel ector1"/>
<near byDi st anceMet er Cl ass>. .. Cust oner Near byDi st anceMet er </ near byDi st anceMet er Cl ass>
<par abol i cDi stri buti onSi zeMaxi mun»40</ par abol i cDi stri buti onSi zeMaxi nun®
</ near bySel ecti on>
</ val ueSel ect or >
</ changeMbveSel ect or >
<swapMbveSel ect or >
<entitySel ector id="entitySel ector2"/>
<secondar yEntitySel ect or >
<near bySel ecti on>
<origi nEntitySel ector m micSel ect or Ref ="entitySel ector2"/>
<near byDi st anceMet er C ass>. .. Cust oner Near byDi st anceMet er </ near byDi st anceMet er J ass>
<par abol i cDi stri buti onSi zeMaxi nun»40</ par abol i cDi stri buti onSi zeMaxi nun®
</ near bySel ecti on>
</ secondaryEntitySel ect or>
</ swapMoveSel ect or >
<t ai | Chai nSwapMoveSel ect or >
<entitySel ector id="entitySel ector3"/>
<val ueSel ect or >
<near bySel ecti on>
<originEntitySel ector m m cSel ect or Ref ="entitySel ector3"/>
<near byDi st anceMet er Cl ass>. .. Cust omer Near byDi st anceMet er </ near byDi st anceMet er ass>
<par abol i cDi stri buti onSi zeMaxi nun>40</ par abol i cDi stri buti onSi zeMaxi nun»
</ near bySel ecti on>
</ val ueSel ect or >
</ tail Chai nSwapMbveSel ect or >
</ uni onMoveSel ect or >

A di stributionSi zeMaxi numparameter should not be 1 because if the nearest is already the
planning value of the current entity, then the only move that is selectable is not doable.

To allow every element to be selected, regardless of the number of entities, only set the distribution
type (so without a di st ri buti onSi zeMaxi mumparameter):

<near bySel ecti on>
<near bySel ecti onDi stri buti onType>PARABCOLI C_DI STRI BUTI ON</ near bySel ecti onDi stri buti onType>
</ near bySel ecti on>

The following Near bySel ecti onDi stri buti onTypes are supported:

e BLOCK_DI STRI BUTI ON: Only the n nearest are selected, with an equal probability. For example,
select the 20 nearest:

208

Move and Neigh-
borhood Selection

<near bySel ecti on>
<bl ockDi stri buti onSi zeMaxi munm>20</ bl ockDi stri buti onSi zeMaxi nun®
</ near bySel ecti on>

e LI NEAR DI STRI BUTI ON: Nearest elements are selected with a higher probability. The probability
decreases linearly.

<near bySel ecti on>
<linearDistributionSi zeMaxi mum>40</ i nearDi stri buti onSi zeMaxi mune
</ near bySel ecti on>

e PARABOLI C DI STRI BUTI ON (recommended): Nearest elements are selected with a higher prob-
ability.

<near bySel ecti on>
<par abol i cDi stri buti onSi zeMaxi mun»80</ par abol i cDi st ri buti onSi zeMaxi nun®
</ near bySel ecti on>

e BETA_DI STRI BUTI ON: Selection according to a beta distribution. Slows down the solver signif-
icantly.

<near bySel ecti on>
<bet aDi stri buti onAl pha>1</bet abDi stri buti onAl pha>
<bet aDi stri buti onBet a>5</ bet abDi stri buti onBet a>
</ near bySel ecti on>

As always, use the Benchmarker to tweak values if desired.

7.7. Custom Moves

7.7.1. Which Move Types Might be Missing in my Implementa-
tion?

To determine which move types might be missing in your implementation, run a Benchmarker for
a short amount of time and configure it to write the best solutions to disk. Take a look at such a
best solution: it will likely be a local optima. Try to figure out if there's a move that could get out
of that local optima faster.

If you find one, implement that coarse-grained move, mix it with the existing moves and benchmark
it against the previous configurations to see if you want to keep it.

209

Move and Neigh-
borhood Selection

7.7.2. Custom Moves Introduction

Instead of reusing the generic Moves (such as ChangeMbve) you can also implement your own
Moves. Generic and custom MoveSel ect or s can be combined as desired.

A custom Move can be tailored to work to the advantage of your constraints. For example, in
examination scheduling, changing the period of an exam A also changes the period of all the
exams that need to coincide with exam A.

A custom Move is also slightly faster than a generic Move. However, it's far more work to imple-
ment and much harder to avoid bugs. After implementing a custom Move, make sure to turn on
envi ronnment Mode FULL_ASSERT to check for score corruptions.

7.7.3. The Interface mve

Your custom moves must implement the Move interface:

public interface Mve {
bool ean i sMoveDoabl e(ScoreDirector scoreDirector);

Move creat eUndoMove(ScoreDirector scoreDirector);
voi d doMove(ScoreDirector scoreDirector);

Col | ecti on<? extends Object> getPlanningEntities();
Col | ecti on<? extends Qbject> get Pl anni ngVal ues();

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMyve extends Abstract Move {

private Queen queen;
private Row toRow,

publ i c RowChangeMove(Qeen queen, Row toRow) {

t hi s. queen = queen;
this.toRow = t oRow;

/'l ... see bel ow

An instance of RowChangeMove moves a queen from its current row to a different row.

Planner calls the doMve(ScoreDirector) method to do a move, which calls
doMoveOnGenui neVari abl es(ScoreDirector). The Mve implementation must notify the
Scor eDi r ect or of any changes it makes to planning entity's variables:

210

Move and Neigh-
borhood Selection

public void doMoveOnGenui neVari abl es(ScoreDirector scoreDirector) {
scoreDirector. beforeVari abl eChanged(queen, "row'); // before changes are nade to the
queen. r ow
gueen. set Row(t oRow) ;
scoreDirector. afterVari abl eChanged(queen, "row'); // after changes are nmde to the
queen. r ow

}

You need to call the scoreDirector. beforeVari abl eChanged(Qbj ect, String) and
scoreDirector. afterVari abl eChanged(Obj ect, String) methods directly before and after
modifying the entity.

Note

You can alter multiple entities in a single move and effectively create a big move
(also known as a coarse-grained move).

Warning

A Move can only change/add/remove planning entities, it must not change any of
the problem facts.

Planner automatically filters out non doable moves by calling the i sMoveDoabl e(Scor eDi r ect or)
method on a move. A non doable move is:

« A move that changes nothing on the current solution. For example, moving queen BO to row 0
is not doable, because it is already there.

« A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

public bool ean i sMoveDoabl e(ScoreDirector scoreDirector) {
return ! GbjectUtils. equal s(queen. get Row(), toRow);
}

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable could become doable on the working Sol u-
ti on of a later step.

211

Move and Neigh-
borhood Selection

Each move has an undo move: a move (normally of the same type) which does the exact opposite.
In the example above the undo move of CO to C2 would be the move C2 to C0. An undo move is
created from a Move, before the Move has been done on the current solution.

public Myve createUndoMove(ScoreDirector scoreDirector) {
return new RowChangeMoyve(queen, queen.getRow());
}

Notice that if CO would have already been moved to C2, the undo move would create the move
C2to C2, instead of the move C2 to CO.

A solver phase might do and undo the same Move more than once. In fact, many solver phases
will iteratively do and undo a number of moves to evaluate them, before selecting one of those
and doing that move again (without undoing it this time).

A Move must implement the get Pl anni ngEnti ti es() and get Pl anni ngVal ues() methods. They
are used by entity tabu and value tabu respectively. When they are called, the Move has already
been done.

public List<? extends Object> getPlanningEntities() {
return Col |l ections. singletonList(queen);

public Collection<? extends Cbject> getPl anni ngVal ues() {
return Col | ections. singletonList(toRow);

}

If your Move changes multiple planning entities, return all of them in get Pl anni ngEnti ti es() and
return all their values (to which they are changing) in get Pl anni ngVal ues().

public Collection<? extends Object> getPlanningEntities() {
return Arrays. asList(leftd oudProcess, rightC oudProcess);

}

public Collection<? extends Cbject> getPl anni ngVal ues() {
return Arrays. asLi st (Il eftd oudProcess. get Computer (), rightC oudProcess. get Conputer());

A Move must implement the equal s() and hashCode() methods. 2 moves which make the same
change on a solution, should be equal.

public bool ean equal s(Obj ect 0) {
if (this == 0) {
return true;
} else if (o instanceof RowChangeMove) {
RowChangeMbve ot her = (RowChangeMove) o;

212

Move and Neigh-
borhood Selection

return new Equal sBuil der ()
. append(queen, other.queen)
. append(t oRow, ot her.toRow)
.i sEqual s();
} else {
return false;

public int hashCode() {
return new HashCodeBui | der ()
. append(queen)
. append(t oRow)
.toHashCode() ;

Notice that it checks if the other move is an instance of the same move type. This i nst anceof
check is important because a move will be compared to a move with another move type if you're
using more than 1 move type.

Implement the t oSt ri ng() method to keep Planner's logs readable:

public String toString() {
return queen + " {" + queen.getRow() + " ->" + toRow + "}";

Now that we can implement a single custom Mve, let's take a look at generating such custom
moves.

7.7.4. wvelistractory: the Easy Way to Generate Custom Moves

The easiest way to generate custom moves is by implementing the interface Moveli st Fact ory:

public interface MvelistFactory<S extends Sol ution> {

Li st <Move> creat eMoveli st (S sol ution);

For example:

public class RowChangeMoveFactory inplenments Mpveli st Fact or y<NQueens> {

public List<Mve> createMveli st (NQueens nQueens) {
Li st <Move> noveLi st = new ArrayLi st <Move>();
for (Queen queen : nQueens. get QueenList()) {
for (Row toRow : nQueens. get RowList()) {
noveli st . add(new RowChangeMove(queen, toRow));

213

<noveLi

<noveLi

Move and Neigh-
borhood Selection

}

return noveli st;

Simple configuration (which can be nested in a uni onMoveSel ect or just like any other MoveS-
el ector):

<novelLi st Fact ory>
st Fact or yCl ass>or g. opt apl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMyveFact ory</

noveli st Fact oryd ass>
</ novelLi st Fact ory>

Advanced configuration:

<novelLi st Fact ory>
<!-- Nornel noveSel ector properties -->

st Fact oryCl ass>or g. opt apl anner . exanpl es. nqueens. sol ver. nove. f act ory. RowChangeMyveFact or y</

noveli st Fact oryd ass>
</ movelLi st Fact ory>

Because the MovelLi st Fact ory generates all moves at once in a Li st <Mbve>, it does not support
cacheType JUST_I N_TI ME. Therefore, novelLi st Fact ory uses cacheType STEP by default and it
scales badly in memory footprint.

7.7.5. movelteratorFactory: Generate Custom Moves Justin Time

Use this advanced form to generate custom moves by implementing the Movel t er at or Fact ory
interface:

public interface MovelteratorFactory {
| ong get Si ze(ScoreDirector scoreDirector);
I terator<Move> createOrigi nal Movel terator(ScoreDirector scoreDirector);

It erat or <Move> creat eRandomiVbvel t er at or (ScoreDi rect or scorebDirector, Random wor ki ngRandom) ;

The get Si ze() method must give an estimation of the size. It doesn't need to be correct. The cr e-
ateri gi nal Movel t er at or method is called if the sel ecti onOrder is ORI G NAL or if it is cached.

214

Move and Neigh-
borhood Selection

The creat eRandonivbvel t er at or method is called for sel ecti onOr der RANDOM combined with
cacheType JUST_I N_TI ME.

Important

Don't create a collection (list, array, map, set) of Moves when creating the
I t er at or <Move>: the whole purpose of Movel t er at or Fact ory over Moveli st -
Fact ory is giving you the ability to create a Move just in time in the Iterator's
method next () .

Simple configuration (which can be nested in a uni onMbveSel ect or just like any other MoveS-
el ector):

<novel t er at or Fact ory>
<novel t erat or Fact oryCl ass>. .. </ novel t er at or Fact oryCl ass>
</ movel t er at or Fact ory>

Advanced configuration:

<novel t er at or Fact or y>
<I-- Nornmal noveSel ector properties -->
<novel t erat or Fact oryCl ass>. .. </ novel t er at or Fact oryCl ass>
</ nmovel t er at or Fact ory>

215

Chapter 8. Exhaustive Search

8.1. Overview

Exhaustive Search will always find the global optimum and recognize it too. That being said, it
doesn't scale (not even beyond toy data sets) and is therefore mostly useless.

8.2. Brute Force

8.2.1. Algorithm Description

The Brute Force algorithm creates and evaluates every possible solution.

A B C D
; n: <= n" iterations
i 4: 4% = 256
> Brute Force 8: 8% = 16777216 ~ 107
> N queens (n = 4) 64: 645 ~10115
e RS -
ity

\\

e
\\

il RN
e 64_|nfeasijle
: solutions
iy
1
L iy
75@,@‘@, B & & — & & ‘@’ —E®
L g 8|
1| juzg i
p Ly i

o = R = N S)
feasible 1 feasible 2

Notice that it creates a search tree that explodes exponentially as the problem size increases, so
it hits a scalability wall.

216

Exhaustive Search

Important

Brute Force is mostly unusable for a real-world problem due to time limita-
tions, as shown in scalability of Exhaustive Search.

8.2.2. Configuration

Simplest configuration of Brute Force:

<sol ver >

<exhaust i veSear ch>
<exhaust i veSear chType>BRUTE_FORCE</ exhaust i veSear chType>
</ exhaust i veSear ch>
</ sol ver>

8.3. Branch And Bound

8.3.1. Algorithm Description

Branch And Bound also explores nodes in an exponential search tree, but it investigates more
promising nodes first and prunes away worthless nodes.

For each node, Branch And Bound calculates the optimistic bound: the best possible score to
which that node can lead to. If the optimistic bound of a node is lower or equal to the global
pessimistic bound, then it prunes away that node (including the entire branch of all its subnodes).

@ Note

Academic papers use the term lower bound instead of optimistic bound (and the
term upper bound instead of pessimistic bound), because they minimize the score.

Planner maximizes the score (because it supports combining negative and positive
constraints). Therefore, for clarity, it uses different terms, as it would be confusing
to use the term lower bound for a bound which is always higher.

For example: atindex 15, it can prune away all unvisited solutions with queen A on row 0, because
none will be better than the solution of index 14 with a score of - 1.

217

Exhaustive Search

A B C D

© Depth First n: <= n"7 iterations

1

> Branch And Bound

3 N queens (n = 4)
(o) —— I
w e ——

1|
g
@ ﬁt?:h%_?::—_f—i_,__f__—f——f___i 2 @ Pruned 3 @ Pruned 4
wl@ el el T w TY
iy i
ity
Pruned 5 Pruned 0 — “‘if.:f_-:]_:ﬁ_i___i__i
]|]]
]
g o g i
|
9 -1 10 Pruned 11 -1 12
i w el e w
L i
i iy i iz
iz i il

First bound 13 New bound 14 bDLIHd -

@ New bound 43

feasible 1

Notice that Branch And Bound (much like Brute Force) creates a search tree that explodes expo-
nentially as the problem size increases. So it hits the same scalability wall, only a little bit later.

Important

Branch And Bound is mostly unusable for a real-world problem due to time
limitations, as shown in scalability of Exhaustive Search.

8.3.2. Configuration

Simplest configuration of Branch And Bound:

<sol ver >

<exhaust i veSear ch>
<exhaust i veSear chType>BRANCH_AND BOUND</ exhaust i veSear chType>
</ exhausti veSear ch>
</ sol ver>

218

Exhaustive Search

Important

For the pruning to work with the default Scor eBounder , the InitializingScoreTrend
should be set. Especially an InitializingScoreTrend of ONLY_DOWN (or at least has
ONLY_DOWN in the leading score levels) prunes a lot.

Advanced configuration:

<exhaust i veSear ch>
<exhaust i veSear chType>BRANCH_AND_ BOUND</ exhaust i veSear chType>
<nodeExpl or ati onType>DEPTH_FI RST</ nodeExpl or ati onType>
<entitySorter Manner >DECREASI NG_DI FFI CULTY_| F_AVAI LABLE</ ent i t ySort er Manner >
<val ueSort er Manner >l NCREASI NG_STRENGTH | F_AVAI LABLE</ val ueSor t er Manner >
</ exhaust i veSear ch>

The nodeExpl or ati onType options are:

» DEPTH_FI RST (default): Explore deeper nodes first (and then a better score and then a better
optimistic bound). Deeper nodes (especially leaf nodes) often improve the pessimistic bound.
A better pessimistic bound allows pruning more nodes to reduce the search space.

<exhaust i veSear ch>
<exhaust i veSear chType>BRANCH AND BOUND</ exhausti veSear chType>
<nodeExpl or ati onType>DEPTH_FI RST</ nodeExpl or ati onType>

</ exhausti veSear ch>

» BREADTH_FI RST (not recommended): Explore nodes layer by layer (and then a better score and
then a better optimistic bound). Scales terribly in memory (and usually in performance too).

<exhausti veSear ch>
<exhausti veSear chType>BRANCH_AND_BOUND</ exhaust i veSear chType>
<nodeExpl or ati onType>BREADTH_FI RST</ nodeExpl or ati onType>

</ exhausti veSear ch>

e SCORE_FI RST: Explore nodes with a better score first (and then a better optimistic bound and
then deeper nodes first). Might scale as terribly as BREADTH_FI RST in some cases.

<exhausti veSear ch>
<exhaust i veSear chType>BRANCH AND_BOUND</ exhaust i veSear chType>
<nodeExpl or ati onType>SCORE_FI| RST</ nodeExpl or ati onType>

</ exhausti veSear ch>

e OPTI M STI C_BOUND_FI RST: Explore nodes with a better optimistic bound first (and then a better
score and then deeper nodes first). Might scale as terribly as BREADTH_FI RST in some cases.

219

Exhaustive Search

<exhausti veSear ch>
<exhaust i veSear chType>BRANCH AND_BOUND</ exhausti veSear chType>
<nodeExpl or ati onType>0OPTlI M STI C_BOUND_FI RST</ nodeExpl or ati onType>
</ exhausti veSear ch>

The enti t ySort er Manner options are:

DECREASI NG_DI FFI CULTY: Initialize the more difficult planning entities first. This usually increas-
es pruning (and therefore improves scalability). Requires the model to support planning entity
difficulty comparison.

DECREASI NG DI FFI CULTY_I F_AVAI LABLE (default): If the model supports planning entity diffi-
culty comparison, behave like DECREASI NG _DI FFI CULTY, else like NONE.

NONE: Initialize the planning entities in original order.

The val ueSor t er Manner options are:

I NCREASI NG_STRENGTH: Evaluate the planning values in increasing strength. Requires the mod-
el to support planning value strength comparison.

I NCREASI NG_STRENGTH | F_AVAI LABLE (default): If the model supports planning value strength
comparison, behave like | NCREASI NG_STRENGTH, else like NONE.

DECREASI NG_STRENGTH: Evaluate the planning values in decreasing strength. Requires the
model to support planning value strength comparison.

DECREASI NG_STRENGTH_| F_AVAI LABLE: If the model supports planning value strength compar-
ison, behave like DECREASI NG_STRENGTH, else like NONE.

NONE: Try the planning values in original order.

8.4. Scalability of Exhaustive Search

Exhaustive Search variants suffer from 2 big scalability issues:

* They scale terribly memory wise.

» They scale horribly performance wise.

As shown in these time spent graphs from the Benchmarker, Brute Force and Branch And Bound
both hit a performance scalability wall. For example, on N queens it hits wall at a few dozen queens:

220

Exhaustive Search

Time spent summary (lower time is better)

1hlm40s ? ?
1h
5Bm20s

56m40s
55m
53m20s
51m40s
50m

50m33s321

48m20s
45m40s

34s5385ms

45m
43m20s
41m40s
40m
3Bm20s
36m40s
35m
33m20s

Exhaustive Search
hits the scalability wall...

31m40s
30m

Time spent

2Bm20s
26mA40s
25m
23m20s
21m40s
20m
18m20s
16m40s
e 15m4slem:|
13m20s
11m40s
10m
B8m20s

Em40s Srml6s488

3rm20s 2rn20s742rr)
1m40s

2m3s8THFREo 22T

1ml14s876ms
ms 57ms 63ms103ms93ms 44msl 26ns 5028w 65TsR05HRBI5asE 0TS - 2031 75ms 775351 ms

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
of queens

18mis 40rms261mEe3rkas 7 46ms

|l Brute Force M Branch And Bound|

In most use cases, such as Cloud Balancing, the wall appears out of thin air:

221

Exhaustive Search

Time spent summary (lower time is better)

1hlm40s

B B B
1h - —_— —_— —
=mz0s | Exhaustive Search
S6mM40s . g
==, hits the scalability wall...
53m20s
51m40s
50m
48m20s
45m40s
45m
43m20s
41m40s
40m
3Bm20s
36m40s
35m
33m20s
31m40s
30m
= 28ma20s
26m40s
25m
23m20s
21m40s
20m
18m20s
16m40s
15m
13m20s
11m40s
10m
B8m20s
Em40s
= 3m55s116ms
3m20s
1m40s |.
o 21lms 1lms 537ms 32ms 51lms 585ms 1s227ms 4s5512ms

-
-

Time spent

2 computers 3 computers 4 computers 5 computers 6 computers 7 computers 8 computers
6 processes 9 processes 12 processes 15 processes 18 processes 21 processes 24 processes
|l Brute Force M Branch and bound|

Exhaustive Search hits this wall on small datasets already, so in production these opti-
mizations algorithms are mostly useless. Use Construction Heuristics with Local Search in-
stead: those can handle thousands of queens/computers easily.

222

Chapter 9. Construction Heuristics

9.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution
isn't always feasible, but it finds it fast so metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a Ter mi -
nat i on on the construction heuristic phase specifically.

9.2. First Fit

9.2.1. Algorithm Description

The First Fit algorithm cycles through all the planning entities (in default order), initializing 1 plan-
ning entity at a time. It assigns the planning entity to the best available planning value, taking the
already initialized planning entities into account. It terminates when all planning entities have been
initialized. It never changes a planning entity after it has been assigned.

A B C D
1 entity o Construction Heuristic: n: <= n"n iterations
per step 1 . . 4:4'4=16
ordered > FII‘St Flt 8:8"8 = 64
arbitrary 3 N queens (n = 4) 64: 64*64 = 4096
0
F Step 0 0
“momlC
by [
i [
0 KN
ftep 1
i iy 0y iy b
%
m_mRT
i
2 Jop—tc—
Stepg T
i g 7 A ity g
i
B julig iy g julig
i iy
8
Step3 4
] e 1|
¥
g g
|
The end ’ " ! N

infeasible

223

Construction Heuristics

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible to reach the optimal solution. Suffixing this construction heuristic with metaheuristics
can remedy that.

9.2.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuristi cType>FI RST_FI T</ constructi onHeuri sti cType>
</ constructionHeuristic>

For advanced configuration, see Allocate Entity From Queue.

9.3. First Fit Decreasing

9.3.1. Algorithm Description

Like First Fit, but assigns the more difficult planning entities first, because they are less likely to
fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

224

Construction Heuristics

A
1 entity H Construction Heuristic: n: <= n'n iterations
per step . . . 4:4*4 =16
orderedin | [| First Fit Decreasing 8:8'8 = 64
dzpf;gaslting N queens (n = 4) 64: 6464 = 4096
ifficulty
Step 0 m
15| Middle queens are
B i more difficult to place,
ity so we place them first
0 a B
.';.i,;' llllll L. c@,

HEE
&
/Am_m

&
g CE |-

.....

.....

(%]

i
g
infeasible

i

The end

9.3.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructi onHeuri sti cType>FI RST_FI T_DECREASI NG</ const ructi onHeuri sti cType>
</ constructionHeuristic>

225

Construction Heuristics

.

For advanced configuration, see Allocate Entity From Queue.

9.4. Weakest Fit

9.4.1. Algorithm Description

Like First Fit, but uses the weaker planning values first, because the strong planning values are
more likely to be able to accommodate later planning entities. So it sorts the planning values on
increasing strength.

Requires the model to support planning value strength comparison.

9.4.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuri sti cType>WEAKEST_FI T</ constructi onHeuri sti cType>
</ constructi onHeuristic>

-

For advanced configuration, see Allocate Entity From Queue.

226

Construction Heuristics

9.5. Weakest Fit Decreasing

9.5.1. Algorithm Description

Combines First Fit Decreasing and Weakest Fit. So it sorts the planning entities on decreasing
difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

9.5.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuri sti cType>WEAKEST_FI T_DECREASI NG</ const r uct i onHeuri sti cType>
</ constructionHeuristic>

For advanced configuration, see Allocate Entity From Queue.

9.6. Strongest Fit

9.6.1. Algorithm Description

Like First Fit, but uses the strong planning values first, because the strong planning values are
more likely to have a lower soft cost to use. So it sorts the planning values on decreasing strength.

Requires the model to support planning value strength comparison.

227

Construction Heuristics

.

9.6.2. Configuration

Configure this solver phase:

<constructionHeuristic>
<constructionHeuri sticType>STRONGEST_FI T</ constructi onHeuri sti cType>
</ constructionHeuristic>

™

For advanced configuration, see Allocate Entity From Queue.

9.7. Strongest Fit Decreasing

9.7.1. Algorithm Description

Combines First Fit Decreasing and Strongest Fit. So it sorts the planning entities on decreasing
difficulty and the planning values on decreasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

-

9.7.2. Configuration

Configure this solver phase:

228

Construction Heuristics

<constructionHeuristic>
<constructionHeuri sti cType>STRONGEST_FI T_DECREASI NG</ constructi onHeuri sti cType>
</ constructionHeuristic>

For advanced configuration, see Allocate Entity From Queue.

9.8. Allocate Entity From Queue

9.8.1. Algorithm Description
Allocate Entity From Queue is a versatile, generic form of First Fit, First Fit Decreasing, Weakest

Fit and Weakest Fit Decreasing. It works like this:

1. Put all entities in a queue.

2. Assign the first entity (from that queue) to the best value.
3. Repeat until all entities are assigned.

9.8.2. Configuration

Simple configuration:

<constructionHeuristic>
<constructionHeuri sticType>ALLOCATE_ENTI TY_FROM QUEUE</ constructi onHeuri sti cType>
</ constructionHeuristic>

Verbose simple configuration:

<constructionHeuristic>
<constructionHeuri sticType>ALLOCATE _ENTI TY_FROM QUEUE</ constructi onHeuri sti cType>
<entitySorter Manner >DECREASI NG DI FFI CULTY_I F_AVAI LABLE</ enti t ySor t er Manner >
<val ueSort er Manner >l NCREASI NG_STRENGTH_| F_AVAI LABLE</ val ueSort er Manner >
</constructionHeuristic>

The enti t ySort er Manner options are:

229

Construction Heuristics

» DECREASI NG_DI FFI CULTY: Initialize the more difficult planning entities first. This usually increas-
es pruning (and therefore improves scalability). Requires the model to support planning entity
difficulty comparison.

» DECREASI NG DI FFI CULTY_I F_AVAI LABLE (default): If the model supports planning entity diffi-
culty comparison, behave like DECREASI NG DI FFI CULTY, else like NONE.

* NONE: Initialize the planning entities in original order.

The val ueSor t er Manner options are:

e | NCREASI NG_STRENGTH: Evaluate the planning values in increasing strength. Requires the mod-
el to support planning value strength comparison.

* | NCREASI NG_STRENGTH_| F_AVAI LABLE (default): If the model supports planning value strength
comparison, behave like | NCREASI NG_STRENGTH, else like NONE.

» DECREASI NG _STRENGTH: Evaluate the planning values in decreasing strength. Requires the
model to support planning value strength comparison.

* DECREASI NG_STRENGTH_I F_AVAI LABLE: If the model supports planning value strength compar-
ison, behave like DECREASI NG_STRENGTH, else like NONE.

* NONE: Try the planning values in original order.

Advanced detailed configuration. For example, a Weakest Fit Decreasing configuration for a single
entity class with a single variable:

<constructionHeuristic>
<queuedEntityPl acer >
<entitySel ector id="placerEntitySel ector">
<cacheType>PHASE</ cacheType>
<sel ect i onOr der >SORTED</ sel ecti onOr der >
<sorter Manner >DECREASI NG _DI FFI CULTY</ sort er Manner >
</entitySel ector>
<changeMveSel ect or >
<entitySel ector m m cSel ectorRef ="pl acerEntitySel ector"/>
<val ueSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Manner > NCREASI NG_STRENGTH</ sor t er Manner >
</val ueSel ect or >
</ changeMoveSel ect or >
</ queuedEnti tyPl acer >
</ constructionHeuristic>

Per step, the QueuedEnt i t yPl acer selects 1 uninitialized entity from the EntitySel ect or and
applies the winning Move (out of all the moves for that entity generated by the MoveSel ect or).
The mimic selection ensures that the winning Move changes (only) the selected entity.

To customize the entity or value sorting, see sorted selection. Other Sel ect or customization (such
as filtering and limiting) is supported too.

230

Construction Heuristics

9.8.3. Multiple Variables

There are 2 ways to deal with multiple variables, depending on how their ChangeMves are com-
bined:

« Cartesian product of the ChangeMoves (default): All variables of the selected entity are assigned
together. Has far better results (especially for timetabling use cases).

« Sequential ChangeMoves: One variable is assigned at a time. Scales much better, especially
for 3 or more variables.

For example, presume a course scheduling example with 200 rooms and 40 periods.

This First Fit configuration for a single entity class with 2 variables, using a cartesian product of
their ChangeMbves, will select 8000 moves per entity:

<constructionHeuristic>
<queuedEntityPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
</entitySel ector>
<cart esi anPr oduct MoveSel ect or >
<changeMbveSel ect or >
<entitySel ector m m cSel ectorRef="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eNanme>r oonx/ vari abl eNane>
</ val ueSel ect or >
</ changeMbveSel ect or >
<changeMbveSel ect or >
<entitySel ector mim cSel ectorRef="placerEntitySel ector"/>
<val ueSel ect or >
<vari abl eName>peri od</ vari abl eNarme>
</ val ueSel ect or >
</ changeMbveSel ect or >
</ cartesi anProduct MoveSel ect or >
</ queuedEnti tyPl acer >

</constructionHeuristic>

Warning

With 3 variables of 1000 values each, a cartesian product selects 1000000000
values per entity, which will take far too long.

This First Fit configuration for a single entity class with 2 variables, using sequential ChangeMoves,
will select 240 moves per entity:

<constructionHeuristic>

231

Construction Heuristics

<queuedEntityPl acer>
<entitySel ector id="placerEntitySel ector">
<cacheType>PHASE</ cacheType>
</entitySel ector>
<changeMbveSel ect or >
<entitySel ector m mi cSel ectorRef="placerEntitySelector"/>
<val ueSel ect or >
<vari abl eNane>peri od</ vari abl eNane>
</ val ueSel ect or >
</ changeMbveSel ect or >
<changeMbveSel ect or >
<entitySel ector m m cSel ectorRef ="pl acerEntitySel ector"/>
<val ueSel ect or >
<vari abl eName>r oonx/ vari abl eNane>
</ val ueSel ect or >
</ changeMoveSel ect or >
</ queuedEnti tyPl acer >

</ constructionHeuristic>

Important

Especially for sequential ChangeMves, the order of the variables is important. In
the example above, it's better to select the period first (instead of the other way
around), because there are more hard constraints that do not involve the room
(for example: no teacher should teach 2 lectures at the same time). Let the Bench-
marker guide you.

With 3 or more variables, it's possible to combine the cartesian product and sequential techniques:

<constructionHeuristic>
<queuedEntityPl acer >

<cartesi anProduct MbveSel ect or >
<changeMveSel ect or>. . . </ changeMbveSel ect or >
<changeMoveSel ect or >. . . </ changeMoveSel ect or >
</ cartesi anProduct MbveSel ect or >
<changeMveSel ect or >. . . </ changeMoveSel ect or >
</ queuedEnti tyPl acer >

</ constructionHeuristic>

9.8.4. Multiple Entity Classes

The easiest way to deal with multiple entity classes is to run a separate construction heuristic for
each entity class:

<constructionHeuristic>
<queuedEntityPl acer>

232

Construction Heuristics

<entitySel ector id="placerEntitySel ector">
<cacheType>PHASE</ cacheType>
<entityC ass>...DogEntity</entityC ass>

</entitySel ector>

<changeMbveSel ect or >
<entitySel ector m mi cSel ectorRef="placerEntitySelector"/>

</ changeMveSel ect or >

</ queuedEnti tyPl acer>

</ constructionHeuristic>
<constructionHeuristic>
<queuedEntityPl acer >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
<entityCd ass>...CatEntity</entityd ass>
</entitySel ector>
<changeMoveSel ect or >
<entitySel ector mi m cSel ectorRef="pl acerEntitySel ector"/>
</ changeMbveSel ect or >
</ queuedEnti t yPl acer >

</ constructionHeuristic>

9.8.5. Pick Early Type

There are several pick early types for Construction Heuristics:

e NEVER: Evaluate all the selected moves to initialize the variable(s). This is the default if the
InitializingScoreTrend is not ONLY_DOWN.

<constructionHeuristic>

<f orager>
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</ constructionHeuristic>

* FI RST_NON_DETERI ORATI NG_SCORE: Initialize the variable(s) with the first move that doesn't de-
teriorate the score, ignore the remaining selected moves. This is the default if the InitializingS-
coreTrend is ONLY_DOWN.

<constructionHeuristic>
<f or ager >
<pi ckEar| yType>FI RST_NON_DETERI ORATI NG_SCORE</ pi ckEar | yType>

</ f orager >
</ constructionHeuristic>

233

Construction Heuristics

* FI RST_FEASI BLE_SCORE: Initialize the variable(s) with the first move that has a feasible score.

<constructionHeuristic>
<f orager >
<pi ckEar | yType>FI RST_FEASI BLE_SCORE</ pi ckEar | yType>

</ forager >
</ constructionHeuristic>

If the InitializingScoreTrend is ONLY_DOWN, use
FI RST_FEASI BLE_SCORE_CR_NON_DETERI ORATI NG_HARD instead, because that's faster without
any disadvantages.

e FI RST_FEASI BLE_SCORE_OR_NON_DETERI ORATI NG_HARD: Initialize the variable(s) with the first
move that doesn't deteriorate the feasibility of the score any further.

<constructionHeuristic>
<f or ager >
<pi ckEar| yType>FI RST_FEASI BLE_SCORE_OR_NON_DETERI ORATI NG_HARD</ pi ckEar | yType>

</ forager >
</ constructionHeuristic>

9.9. Allocate To Value From Queue
9.9.1. Algorithm Description
Allocate To Value From Queue works like this:

1. Put all values in a round-robin queue.
2. Assign the best entity to the first value (from that queue).
3. Repeat until all entities are assigned.

9.9.2. Configuration

Simple configuration:

234

Construction Heuristics

<constructionHeuristic>
<constructionHeuri sticType>ALLOCATE_TO VALUE_FROM QUEUE</ constructi onHeuri sticType>
</ constructionHeuristic>

Verbose simple configuration:

<constructi onHeuristic>
<constructionHeuri sticType>ALLOCATE_TO VALUE FROM QUEUE</ constructi onHeuri sticType>
<entitySorter Manner >DECREASI NG DI FFI CULTY_I F_AVAI LABLE</ enti t ySor t er Manner >
<val ueSort er Manner >l NCREASI NG_STRENGTH_| F_AVAI LABLE</ val ueSort er Manner >
</constructionHeuristic>

Advanced detailed configuration. For example, a configuration for a single entity class with a single
variable:

<constructionHeuristic>
<queuedVal uePl acer >
<val ueSel ect or id="pl acerVal ueSel ector">
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sor t er Manner >I NCREASI NG_STRENGTH</ sor t er Manner >
</ val ueSel ect or >
<changeMveSel ect or >
<entitySel ector>
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sort er Manner >DECREASI NG _DI FFI CULTY</ sor t er Manner >
</ entitySel ector>
<val ueSel ect or m m cSel ect or Ref =" pl acer Val ueSel ector"/ >
</ changeMbveSel ect or >
</ queuedVal uePl acer >
</constructionHeuristic>

9.10. Cheapest Insertion

9.10.1. Algorithm Description

The Cheapest Insertion algorithm cycles through all the planning values for all the planning enti-
ties, initializing 1 planning entity at a time. It assigns a planning entity to the best available planning
value (out of all the planning entities and values), taking the already initialized planning entities
into account. It terminates when all planning entities have been initialized. It never changes a
planning entity after it has been assigned.

235

Construction Heuristics

A C
~all HEN Construction Heuristic: n: <= n'n*(n+1)/2
uninitialized . iterations
entities T Cheapest Insertion 4: 4°4 = 40
per step N queens (n = 4) 8:8"8 = 288
m - 64: 64*64 = 133120
w1 L 1 [
Tl
-
7 =y b < 7 = (‘&ﬁf
0] GG a
B il
B RN
T (2]

E| (2]
E| =[] |

nnnnnnnnnnnnnnn

1
=y

E| (&]
<

.....

(%)

The end infeasible

9.10.2. Configuration

Simplest configuration of Cheapest Insertion:

<constructionHeuristic>
<constructi onHeuri sti cType>CHEAPEST_| NSERTI ON</ const ructi onHeuri sti cType>
</ constructionHeuristic>

236

Construction Heuristics

For advanced configuration, see Allocate from pool.

9.11. Regret Insertion

9.11.1. Algorithm Description

The Regret Insertion algorithm behaves like the Cheapest Insertion algorithm. It also cycles
through all the planning values for all the planning entities, initializing 1 planning entity at a time.
But instead of picking the entity-value combination with the best score, it picks the entity which
has the largest score loss between its best and second best value assignment. It then assigns
that entity to its best value, to avoid regretting not having done that.

9.11.2. Configuration

This algorithm has not been implemented yet.

9.12. Allocate From Pool

9.12.1. Algorithm Description

Allocate From Pool is a versatile, generic form of Cheapest Insertion and Regret Insertion. It works
like this:

1. Put all entity-value combinations in a pool.
2. Assign the best entity to best value.

3. Repeat until all entities are assigned.
9.12.2. Configuration

Simple configuration:

<constructionHeuristic>
<constructi onHeuri sti cType>ALLOCATE_FROM POOL</ constructi onHeuri sti cType>
</ constructionHeuristic>

Verbose simple configuration:

237

Construction Heuristics

<constructionHeuristic>
<constructionHeuri sticType>ALLOCATE_FROM POOL</ constructi onHeuri sticType>
<entitySorter Manner >DECREASI NG_DI FFI CULTY_| F_AVAI LABLE</ ent i t ySort er Manner >
<val ueSor t er Manner >l NCREASI NG_STRENGTH_| F_AVAI LABLE</ val ueSor t er Manner >

</ constructionHeuristic>

TheentitySorterManner andval ueSort er Manner options are described in Allocate Entity From
Queue.

Advanced detailed configuration. For example, a Cheapest Insertion configuration for a single
entity class with a single variable:

<constructionHeuristic>
<pool edEnti tyPl acer >
<changeMveSel ect or >
<entitySel ector id="placerEntitySelector">
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sort er Manner >DECREASI NG _DI FFI CULTY</ sor t er Manner >
</ entitySel ector>
<val ueSel ect or >
<cacheType>PHASE</ cacheType>
<sel ecti onOr der >SORTED</ sel ecti onOr der >
<sorter Manner >l NCREASI NG_STRENGTH</ sor t er Manner >
</val ueSel ect or >
</ changeMoveSel ect or >
</ pool edEnti tyPl acer >
</ constructionHeuristic>

Per step, the Pool edEnt i t yPl acer applies the winning Move (out of all the moves for that entity
generated by the MoveSel ect or).

To customize the entity or value sorting, see sorted selection. Other Sel ect or customization (such
as filtering and limiting) is supported too.

238

Chapter 10. Local Search

10.1. Overview

Local Search starts from an initial solution and evolves that single solution into a mostly better
and better solution. It uses a single search path of solutions, not a search tree. At each solution
in this path it evaluates a number of moves on the solution and applies the most suitable move to
take the step to the next solution. It does that for a high number of iterations until it's terminated
(usually because its time has run out).

Local Search acts a lot like a human planner: it uses a single search path and moves facts around
to find a good feasible solution. Therefore it's pretty natural to implement.

Local Search usually needs to start from an initialized solution, therefore it's usually required
to configure a construction heuristic solver phase before it.

10.2. Local Search Concepts

10.2.1. Step by Step

A step is the winning Move. Local Search tries a number of moves on the current solution and
picks the best accepted move as the step:

A B C D
Y 8 8

Score -6

Ww N H O

i

Score -4 Score -4 Score -3 Score -4

Figure 10.1. Decide the next step at step 0 (4 queens example)

239

Local Search

Because the move BO to B3 has the highest score (- 3), it is picked as the next step. If multiple
moves have the same highest score, one is picked randomly, in this case BO to B3. Note that CO
to C3 (not shown) could also have been picked because it also has the score - 3.

The step is applied on the solution. From that new solution, Local Search tries every move again,
to decide the next step after that. It continually does this in a loop, and we get something like this:

Step 0

Step 1

Step 2

Step 3

A B C D

oo

0o

Score -6

Ww N B O

Wi

Score -4

Score -4

Score -3

Score -4

iy

if

iy

Score -1

Score -1

Score -4

i

i

Score 0

Score -3

Figure 10.2. All steps (4 queens example)

Score -3

Score -4

240

Local Search

Notice that Local Search doesn't use a search tree, but a search path. The search path is highlight-
ed by the green arrows. At each step it tries all selected moves, but unless it's the step, it doesn't
investigate that solution further. This is one of the reasons why Local Search is very scalable.

As shown above, Local Search solves the 4 queens problem by starting with the starting solution
and make the following steps sequentially:

1. BOto B3
2. DO to B2
3. A0toB1

Turn on debug logging for the category or g. opt apl anner to show those steps in the log:

INFO Solving started: tine spent (0), best score (-6), random (JDK with seed 0).DEBUG

LS step (0), tinme spent (20), score (-3), new best score (-3), accepted/selected nove count
(12/12), picked nove (Queen-1 {Row0 -> Row 3}).DEBUG LS step (1), time spent (31), score
(-1), new best score (-1), accepted/selected nove count (12/12), picked nove (Queen-3 {Row 0
-> Row- 2}). DEBUG LS step (2), tine spent (40), score (0), new best score (0), accepted/
sel ected nove count (12/12), picked nove (Queen-0 {Row-0 -> Row1}).INFO Local Search phase (0)
ended: step total (3), tine spent (41), best score (0).INFO Solving ended: tine spent (41),
best score (0), average cal cul ate count per second (1780).

seed 0). DEBUG LS step (0), tinme spent (20), score (-3), new best score (-3),

accept ed/ sel ected nove count (12/12), picked nove (Queen-1 {Row 0

-> Row 3}) . DEBUG LS step (1), tine spent (31), score (-1), new best score (-1),

accept ed/ sel ected nove count (12/12), picked nove (Queen-3 {Row 0

-> Row 2}). DEBUG LS step (2), tine spent (40), score (0), new best score (0),

accept ed/ sel ected nove count (12/12), picked nove (Queen-0 {Row 0

-> Row1}).INFO Local Search phase (0) ended: step total (3), tine spent (41), best

score (0).INFO Solving ended: time spent (41), best score (0), average cal cul ate count per

Notice that a log message includes the t oSt ri ng() method of the Move implementation which
returns for example "Queen-1 {Row 0 -> Row 3}".

A naive Local Search configuration solves the 4 queens problem in 3 steps, by evaluating only
37 possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. By using a Construction Heuristics phase first, it's
even a lot more efficient.

10.2.2. Decide the Next Step

Local Search decides the next step with the aid of 3 configurable components:

« A MoveSel ect or which selects the possible moves of the current solution. See the chapter
move and neighborhood selection.

241

Local Search

« An Accept or which filters out unacceptable moves.
« A For ager which gathers accepted moves and picks the next step from them.

The solver phase configuration looks like this:

<l ocal Sear ch>
<uni onMbveSel ect or >

</ uni onMoveSel ect or >
<accept or >

</ accept or >
<f or ager >

</ f orager >
</l ocal Search>

In the example below, the MoveSel ect or generated the moves shown with the blue lines, the
Accept or accepted all of them and the For ager picked the move BO to B3.

A B C D

g R

Score -6

Ww N H O

i

Score -4 Score -4 Score -3 Score -4

Turn on tr ace logging to show the decision making in the log:

INFO Solver started: tine spent (0), score (-6), new best score (-6), random (JDK with seed
0) . TRACE Move index (0) not doable, ignoring nove (Queen-0 {Row0 -> Row 0}).TRACE
Move index (1), score (-4), accepted (true), nove (Queen-0 {Row0 -> Row 1}).TRACE
Move index (2), score (-4), accepted (true), nove (Queen-0 {Row0 -> Row 2}).TRACE
Move index (3), score (-4), accepted (true), nove (Queen-0 {Row0 -> Row 3})....TRACE
Move index (6), score (-3), accepted (true), nove (Queen-1 {Row0 -> Row 3})....TRACE

242

Local Search

Move index (9), score (-3), accepted (true), nove (Queen-2 {Row0 -> Row 3})....TRACE
Move index (12), score (-4), accepted (true), nove (Queen-3 {Row0 -> Row 3}).DEBUG
LS step (0), tinme spent (6), score (-3), new best score (-3), accepted/selected nove count
(12/12), picked nmove (Queen-1 {Row0 -> Row3})....

seed 0). TRACE Move index (0) not doable, ignoring nove (Queen-0 {RowO0 -

> Row 0}) . TRACE Move index (1), score (-4), accepted (true), nove (Queen-0 {Row0 -
> Row 1}) . TRACE Move index (2), score (-4), accepted (true), nove (Queen-0 {Row0 -
> Row 2}). TRACE Move index (3), score (-4), accepted (true), nove (Queen-0 {Row0 -
>

Row3}).... TRACE Move index (6), score (-3), accepted (true), nove (Queen-1 {RowO0 -
>

Row 3}).... TRACE Move index (9), score (-3), accepted (true), nove (Queen-2 {Row0 -
>

Row 3}). ... TRACE Move index (12), score (-4), accepted (true), nove (Queen-3 {RowO0 -
> Row- 3}) . DEBUG LS step (0), tine spent (6), score (-3), new best score (-3), accepted/
sel ected nove count (12/12), picked nove (Queen-1 {Row0 -

>

Because the last solution can degrade (for example in Tabu Search), the Sol ver remembers the
best solution it has encountered through the entire search path. Each time the current solution is
better than the last best solution, the current solution is cloned and referenced as the new best
solution.

Local Search score over time

In 1 Local Search run, do not confuse starting initialized score, best score, step score and move score.

termination
Score (out of time)
global best score
optimum | (score of best solution)

local optimum

return best solution
which got cloned
from the working solution
some time ago

ocal oplmu
ng deteriorating step

In each step. a number of moves ar

Each such move has a move score

starting
initialized
score

Construction ! Local Search I
Heuristic Time

243

Local Search

10.2.3. Acceptor

An Accept or is used (together with a For ager) to active Tabu Search, Simulated Annealing, Late
Acceptance, ... For each move it checks whether it is accepted or not.

By changing a few lines of configuration, you can easily switch from Tabu Search to Simulated
Annealing or Late Acceptance and back.

You can implement your own Accept or, but the build-in acceptors should suffice for most needs.
You can also combine multiple acceptors.

10.2.4. Forager

A For ager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly to break the tie. Breaking ties randomly leads to better results.

10.2.4.1. Accepted Count Limit

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

* An accept edCount Li mi t integer, which specifies how many accepted moves should be eval-
uated during each step. By default, all accepted moves are evaluated at every step.

<f orager >
<accept edCount Li m t >1000</ accept edCount Li mi t >
</ forager>

Unlike the n queens problem, real world problems require the use of accept edCount Li mi t . Start
from an accept edCount Li ni t that takes a step in less then 2 seconds. Turn on INFO logging to
see the step times. Use the Benchmarker to tweak the value.

244

Local Search

Important

With a low accept edCount Li mi t (S0 a fast stepping algorithm), it is recommended
to avoid using sel ecti onOrder SHUFFLED because the shuffling generates a
random number for every element in the selector, taking up a lot of time, but only
a few elements are actually selected.

10.2.4.2. Pick Early Type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types for Local Search:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >

e FI RST_BEST_SCORE_| MPROVI NG: Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar| yType>FI RST_BEST_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager >

e FIRST_LAST_ STEP_SCORE | MPROVI NG Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar| yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>
</ f orager >

10.3. Hill Climbing (Simple Local Search)

10.3.1. Algorithm Description

Hill Climbing tries all selected moves and then takes the best move, which is the move which
leads to the solution with the highest score. That best move is called the step move. From that
new solution, it again tries all selected moves and takes the best move and continues like that
iteratively. If multiple selected moves tie for the best move, one of them is randomly chosen as
the best move.

245

Local Search

A B C D
Selected <8Ry e 4880e] o Local Search: n: <= s * n"2 iterations
moves 1]) .
for each 2 Hill Cllmb|ng
step 3 N queens (n = 4)
Step 0 —
tep — - _
k[| g Tl [y
213 314 o
54 |69 | [[[E0 g
» i g i
Step 1 - — T T
P iy 0y e [g O O
3B 31 i
b2 Ci A4 ([Rk iy
2 iy 1| g P)
1) losttie 18 14 58] —— 2 24
Step 2 - ::—_—::—_‘_j_f:f7 —*"’_'__7_1_ _,
5 p iy I g My O 4 L
JEI3E! i)
a3 W | o] W
. il iy R il
0] perfect 25 26 27 (4 28 29 36

Uses a search path, not a search tree

= highly scalable

Notice that once a queen has moved, it can be moved again later. This is a good thing, because
in an NP-complete problem it's impossible to predict what will be the optimal final value for a

planning variable.

10.3.2. Stuck in Local Optima

Hill Climbing always takes improving moves. This may seem like a good thing, but it's not: Hill
Climbing can easily get stuck in a local optimum. This happens when it reaches a solution for
which all the moves deteriorate the score. Even if it picks one of those moves, the next step might
go back to the original solution and which case chasing its own tail:

246

Local Search

A B C D
Selected s o H||| C||mb|ng gets StUCk n: <= s * n"2 iterations
moves Wi |1] .
for each @ . in local optima
step 3 N queens (n = 4)
_
Step 0 — _-7—_:_:_"*-——7__:____7__*———7__,__
d 95| R 8y i i L L
E | 8 W W | i R o Al
A | mle [e e meme B (BN
) iy e iy
1 i ___,_——__—5,__ Tﬂ_’"“'——'—-“?:_'}'ﬂ}_@ 7 losttie 11
Step 1 ——— — —

7 | 0| i | i i) [ty
Bl W | | v W b iy
s 4l - % % i

¥ g iy L 1| jg

-2 lost tie 12 16 17 18 lost tie 21 lost tie 22
Step 2
| Solution already encountered:

same as starting solution
=> possibly stuck

Rl |5
ST
[B3
E]

]
EN

28
Step 3
7 |6 iy
JE ﬂ@% L
s 4l iy %
) |
39

Improvements upon Hill Climbing (such as Tabu Search, Simulated Annealing and Late Accep-
tance) address the problem of being stuck in local optima. Therefore, it's recommend to never use
Hill Climbing, unless you're absolutely sure there are no local optima in your planning problem.

10.3.3. Configuration

Simplest configuration:

<l ocal Search>
<l ocal Sear chType>HI LL_CLI MBI NG</ | ocal Sear chType>
</ | ocal Sear ch>

Advanced configuration:

<l ocal Sear ch>

<accept or >
<accept or Type>H LL_CLI MBI NG</ accept or Type>
</ accept or >

247

Local Search

<f orager >
<accept edCount Li mi t >1</ accept edCount Li mi t >

</ f orager >
</ | ocal Sear ch>

10.4. Tabu Search

10.4.1. Algorithm Description

Tabu Search works like Hill Climbing, but it maintains a tabu list to avoid getting stuck in local
optima. The tabu list holds recently used objects that are taboo to use for now. Moves that involve
an object in the tabu list, are not accepted. The tabu list objects can be anything related to the
move, such as the planning entity, planning value, move, solution, ... Here's an example with entity
tabu for 4 queens, so the queens are put in the tabu list:

A B C D
Selected iy o Tabu Search: n: <= s * n’2 iterations
moves W |1 .
foreach Tabu F, 2 entlty tabu
3 N queens (n = 4, entityTabuSize = 2)

step list]

Step 0 S
A 1 |
@ % @
b [l | ity
3 u
-2| losttie 1

B

i

%

\,Ci—ﬁ__‘

@ Note
It's called Tabu Search, not Taboo Search. There is no spelling error.

248

Local Search

Scientific paper: Tabu Search - Part 1 and Part 2 by Fred Glover (1989 - 1990)

10.4.2. Configuration

Simplest configuration:

<l ocal Sear ch>
<l ocal Sear chType>TABU_SEARCH</ | ocal Sear chType>
</ | ocal Sear ch>

When Tabu Search takes steps it creates one or more tabu's. For a number of steps, it does
not accept a move if that move breaks tabu. That number of steps is the tabu size. Advanced
configuration:

<l ocal Sear ch>

<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or >
<f orager >
<accept edCount Li m t >1000</ accept edCount Li mi t >
</ f orager>
</ | ocal Search>

Important

A Tabu Search acceptor should be combined with a high accept edCount Li mi t,
such as 1000.

Planner implements several tabu types:

» Planning entity tabu (recommended) makes the planning entities of recent steps tabu. For ex-
ample, for N queens it makes the recently moved queens tabu. It's recommended to start with
this tabu type.

<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or >

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of entities,
for example 2%:

<accept or>

249

Local Search

<entityTabuRati 0>0.02</entityTabuRati o>
</ accept or>

« Planning value tabu makes the planning values of recent steps tabu. For example, for N queens
it makes the recently moved to rows tabu.

<accept or >
<val ueTabuSi ze>7</ val ueTabuSi ze>
</ accept or >

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of values, for
example 2%:

<accept or >
<val ueTabuRat i 0>0. 02</ val ueTabuRat i 0>
</ accept or >

* Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or >
<noveTabuSi ze>7</ noveTabuSi ze>
</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or >
<undoMbveTabuSi ze>7</ undoMoveTabuSi ze>
</ accept or >

« Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to
one of those solutions. It requires that the Sol uti on implements equal s() and hashCode()
properly. If you can spare the memory, don't be cheap on the tabu size.

<accept or >
<sol uti onTabuSi ze>1000</ sol uti onTabuSi ze>
</ accept or>

For non-trivial cases, solution tabu is usually useless because the search space size makes
it statistically highly unlikely to reach the same solution twice. Therefore its use is not recom-
mended, except for small datasets.

Sometimes it's useful to combine tabu types:

250

Local Search

<accept or>

<entityTabuSi ze>7</entityTabuSi ze>

<val ueTabuSi ze>3</ val ueTabuSi ze>

</ accept or >

If the tabu size is too small, the solver can still get stuck in a local optimum. On the other hand, if the
tabu size is too large, the solver can be inefficient by bouncing of the walls. Use the Benchmarker
to fine tweak your configuration.

10.5. Simulated Annealing

10.5.1. Algorithm Description

Simulated Annealing evaluates only a few moves per step, so it steps quickly. In the classic imple-
mentation, the first accepted move is the winning step. A move is accepted if it doesn't decrease

the score or - in case it does decrease the score -

it passes a random check. The chance that a

decreasing move passes the random check decreases relative to the size of the score decrement
and the time the phase has been running (which is represented as the temperature).

Simulated Annealing
(Time Gradiant aware)

N queens (n = 4, startingTemperature = 2)

A B C D
Temperature (1l o
decreases W (1
for each step g >
]
Step 0
(e[[]
20| any i | [y
1| 0.61] !
2| 037 i YR R
3] 022 1 2
B ?ﬂju_u > 037 ?ﬂgu_;_g___ 0,61
Step 1 g}
]| [max@] | iy 88 , B
20| any i W ||| |
1| 054 8]
2| o028 T ' iy
3| 045 3 4 5
4| oos A=-1 A=-2 A=+2
@-vss >o054 (=031 >029 g na| <any
Step 2 B - - "'7' -
e] [T3 =
| e o |
1| 043 iy iy /}
2| o019 i iy .
B 7776 777?
4| 0.04 a=-1 A=-2
@@-072 >043 {=014 =019

n: <= s * m iterations

I
i
w

251

max @ = &2/
Step 3
A [max g w W
20| any 2
1| oz20 L |';:a
2| oo0s
3| o0z §
4| 001 Lo +2
D: nla _'7=_::iia”‘:v'
Step 4 e
A |max (G 0] i |
0 any (;:f il @G
1| o.08 iy | iy
T oo] b
Slow | (B °F2 ®) |
4| 000 ?02097 = 0.01 ?ﬂ 1011 >0.08 ?ﬂﬂrﬂa < any

Local Search

Simulated Annealing does not always pick the move with the highest score, neither does it eval-
uate many moves per step. At least at first. Instead, it gives non improving moves also a chance
to be picked, depending on its score and the time gradient of the Ter ni nati on. In the end, it
gradually turns into Hill Climbing, only accepting improving moves.

10.5.2. Configuration

Start with a si nul at edAnneal i ngSt art i ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmarker to tweak the value. Advanced configuration:

<l ocal Sear ch>

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f orager >
<accept edCount Li m t >1</ accept edCount Li nmi t >
</ forager>
</l ocal Search>

Simulated Annealing should use a low accept edCount Li mi t . The classic algorithm uses an ac-
cept edCount Li mi t of 1, but often 4 performs better.

Simulated Annealing can be combined with a tabu acceptor at the same time. That gives Simulated
Annealing salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

<l ocal Sear ch>

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
<entityTabuSi ze>5</entityTabuSi ze>
</ accept or >
<f orager >
<accept edCount Li mi t >1</ accept edCount Li mi t >
</ f orager >
</l ocal Sear ch>

10.6. Late Acceptance

10.6.1. Algorithm Description

Late Acceptance (also known as Late Acceptance Hill Climbing) also evaluates only a few moves
per step. A move is accepted if it does not decrease the score, or if it leads to a score that is at
least the late score (which is the winning score of a fixed number of steps ago).

252

Local Search

A B C D

Late o Late Accepta nce n: <= s * m iterations
acceptance W |1

list g >

il LE N queens (n = 4, lateAcceptanceSize = 3)

4]

Step 0 D

kL]

P

Step 1 Step 4

g (o

)

=L

L]

&
’RE)Q)

B

@
g @

Step 2 — Step 5 T
- L i § whey ||, [
4 / <] il
e i g f: ! W |6
1 988 R <
< 4 3 D».; : < 5 9 - 0
Step 3 - — Step 6
N || fefi | [l .))]
S £ < |l e W
B iy] < peeheT] o] s,
< 488 a5 il < i L5
{_2 5 {_2 6 D,_Z 7 {_1 1 {_1 12 D,_1 13

Scientific paper: The Late Acceptance Hill-Climbing Heuristic by Edmund K. Burke, Yuri Bykov
(2012) [http://www.cs.stir.ac.uk/research/publications/techreps/pdf/ TR192.pdf]

10.6.2. Configuration

Simplest configuration:

<l ocal Sear ch>
<l ocal Sear chType>LATE_ACCEPTANCE</ | ocal Sear chType>
</ | ocal Sear ch>

Late Acceptance accepts any move that has a score which is higher than the best score of a
number of steps ago. That number of steps is the | at eAccept anceSi ze. Advanced configuration:

<l ocal Sear ch>

<accept or >
<| at eAccept anceSi ze>400</ | at eAccept anceSi ze>
</ accept or >

253

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf
http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf
http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR192.pdf

Local Search

<f orager >
<accept edCount Li mi t >1</ accept edCount Li mi t >
</ f orager >
</l ocal Sear ch>

Late Acceptance should use a low accept edCount Li mi t.

Late Acceptance can be combined with a tabu acceptor at the same time. That gives Late Accep-
tance salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

<l ocal Sear ch>

<accept or >
<| at eAccept anceSi ze>400</ | at eAccept anceSi ze>
<entityTabuSi ze>5</entityTabuSi ze>

</ accept or >

<f orager >
<accept edCount Li m t >1</ accept edCount Li nmi t >

</ f or ager >

</ | ocal Sear ch>

10.7. Step Counting Hill Climbing

10.7.1. Algorithm Description

Step Counting Hill Climbing also evaluates only a few moves per step. For a number of steps, it
keeps the step score as a threshold. A move is accepted if it does not decrease the score, or if
it leads to a score that is at least the threshold score.

Scientific paper: An initial study of a novel Step Counting Hill Climbing heuristic applied to
timetabling problems by Yuri Bykov, Sanja Petrovic (2013) [https://www.cs.nott.ac.uk/~yxb/SCHC/
SCHC_mista2013_79.pdf]

10.7.2. Configuration

Step Counting Hill Climbing accepts any move that has a score which is higher than a thresh-
old score. Every number of steps (specified by st epCount i ngHi I | A i nbi ngSi ze), the threshold
score is set to the step score.

<l ocal Sear ch>

<accept or >
<stepCountingHi | |1 C i nbi ngSi ze>400</ st epCount i ngHi | | C i nbi ngSi ze>
</ accept or >
<f orager >
<accept edCount Li mi t >1</ accept edCount Li ni t >
</ f or ager >
</ | ocal Sear ch>

254

Local Search

Step Counting Hill Climbing should use a low accept edCount Li i t .

Step Counting Hill Climbing can be combined with a tabu acceptor at the same time, similar as
shown in the Late Acceptance section.

10.8. Strategic Oscillation

10.8.1. Algorithm Description

Strategic Oscillation is an add-on, which works especially well with Tabu Search. Instead of pick-
ing the accepted move with the highest score, it employs a different mechanism: If there's an
improving move, it picks it. If there's no improving move however, it prefers moves which improve
a softer score level, over moves which break a harder score level less.

10.8.2. Configuration

Configure a fi nal i st Podi unilype, for example in a Tabu Search configuration:

<l ocal Sear ch>

<accept or >
<entityTabuSi ze>7</entityTabuSi ze>
</ accept or>
<f orager >
<accept edCount Li m t >1000</ accept edCount Li m t >
<finali st Podi unifype>STRATEG C_OSCI LLATI ON</ f i nal i st Podi umrype>
</ f orager >
</l ocal Sear ch>

The following fi nal i st Podi unilypes are supported:

e HI GHEST_SCORE (default): Pick the accepted move with the highest score.
* STRATEG C_GSCI LLATI ON: Alias for the default strategic oscillation variant.

e STRATEGQ C_OSCI LLATI ON_BY_LEVEL: If there is an accepted improving move, pick it. If no such
move exists, prefer an accepted move which improves a softer score level over one that doesn't
(even if it has a better harder score level). A move is improving if it's better than the last com-
pleted step score.

e STRATEG C_OSCI LLATI ON_BY_LEVEL_ON_BEST_SCORE: Like
STRATEG C_OSCI LLATI ON_BY_LEVEL, but define improving as better than the best score (in-
stead of the last completed step score).

255

Local Search

10.9. Using a Custom Termination, MoveSelector, Enti-
tySelector, ValueSelector or Acceptor

You can plug in a custom Ter i nati on, MoveSel ect or, EntitySel ect or, Val ueSel ector or
Accept or by extending the abstract class and also the related * Conf i g class.

For example, to use a custom MoveSel ect or, extend the Abst r act MoveSel ect or class, extend
the MoveSel ect or Confi g class and configure it in the solver configuration.

If you build a better implementation that's not domain specific, consider contributing it back as a
pull request on github: we'll optimize it and take it along in future refactorings.

256

Chapter 11. Evolutionary
Algorithms

11.1. Overview

Evolutionary Algorithms work on a population of solutions and evolve that population.

11.2. Evolutionary Strategies

This algorithm has not been implemented yet.

11.3. Genetic Algorithms

This algorithm has not been implemented yet.

257

Chapter 12. Hyperheuristics

12.1. Overview

A hyperheuristic automates the decision which heuristic(s) to use on a specific data set.

A future version of Planner will have native support for hyperheuristics. Meanwhile, it's pretty easy
to implement it yourself: Based on the size or difficulty of a data set (which is a criterion), use a
different Solver configuration (or adjust the default configuration using the Solver configuration
API). The Benchmarker can help to identify such criteria.

258

Chapter 13. Partitioned Search

13.1. Overview

For very big datasets, it is sometimes worthwhile to partition the datasets into smaller pieces.

However, partitioning leads to suboptimal results, even if the pieces are solved optimally:

MapReduce is terrible for TSP

Why do MapReduce, Divide&Conquer and partitioning perform badly on NP-hard problems?

..-.: # ': '.,' *

-706

1) Partition
Divide into n pieces

2) g‘:ﬁgeach piece P T - = E\; = >\/\5 XJ\/&

Optimal solution

(not always possible)

3) Reduce — / o f

Merge piece solutions
-674

4) Result ’
Not (near) optimal
Woarse when scaling

A future version of Planner will have native support for several forms of partitioning. Meanwhile,
you can implement it yourself as shown in the image above. Use an Sol ver to solve each piece.

259

Chapter 14. Benchmarking And
Tweaking

14.1. Find The Best soiver Configuration

Planner supports several optimization algorithms, so you're probably wondering which is the best
one? Although some optimization algorithms generally perform better than others, it really de-
pends on your problem domain. Most solver phases have parameters which can be tweaked.
Those parameters can influence the results a lot, even though most solver phases work pretty
well out-of-the-box.

Luckily, Planner includes a benchmarker, which allows you to play out different solver phases with
different settings against each other in development, so you can use the best configuration for
your planning problem in production.

Benchmark overview

What optimization algorithm should we configure in production? The Benchmarker will tell us.

Problem datasets

dataset A dataset B dataset C dataset D

100 computars 200 computers 400 computars 800 computars

Solver mnfiguralions 300 pr B00 pr 1200 processes 2400 processes

anlityTabuSize: 7

Tabu Search ‘

JL

[Simulated Annealing J
startingTemperature: Ohard/d M0soft

:{> Benchmarker

JL

A B [D

Favorite: Late Acceptance

260

Benchmarking And Tweaking

14.2. Benchmark Configuration

14.2.1. Add Dependency On opt apl anner - benchmar k

The benchmarker is in a separate artifact called opt apl anner - benchnar k.

If you use Maven, add a dependency in your pom xmi file:

<dependency>
<gr oupl d>or g. opt apl anner </ gr oupl d>
<artifact!|d>optapl anner-benchmark</artifactl|d>
</ dependency>

This is similar for Gradle, vy and Buildr. The version must be exactly the same as the opt apl an-
ner - cor e version used (which is automatically the case if you import opt apl anner - bom).

If you use ANT, you've probably already copied the required jars from the download zip's bi nari es
directory.

14.2.2. Build And Run A pl anner Benchnar k

Build a Pl anner Benchnar k instance with a Pl anner Benchmar kFact or y. Configure it with a bench-
mark configuration XML file, provided as a classpath resource:

Pl anner Benchnar kFact ory pl anner Benchmar kFact o
ry = PlannerBenchnar kFact ory. cr eat eFr omXm Resour ce(
"or g/ opt apl anner / exanpl es/ nqueens/ benchnar k/ nqueensBenchmar kConf i g. xm ") ;
Pl anner Benchnar k pl anner Benchmar k = pl anner Benchnar kFact ory. bui | dPl anner Benchmar k() ;
pl anner Benchmar k. benchmar k() ;

A benchmark configuration file looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<pl anner Benchmar k>
<benchnmar kDi r ect or y>l ocal / dat a/ nqueens</ benchmar kDi r ect ory>

<i nherit edSol ver Benchmar k>
<pr obl enBenchmar ks>

<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 32queens. xm </ i nput Sol uti onFi | e>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 64queens. xm </ i nput Sol uti onFi | e>
</ pr obl enBenchmar ks>
<sol ver>
...<l-- Comon solver configuration -->
</ sol ver>
</inheritedSol ver Benchmar k>

<sol ver Benchmar k>

261

Benchmarking And Tweaking

<nane>Tabu Sear ch</ nanme>
<sol ver>
...<l-- Tabu Search specific solver configuration -->
</ sol ver>
</ sol ver Benchmar k>
<sol ver Benchmar k>
<nane>Si mul at ed Anneal i ng</ nane>
<sol ver>
...<!-- Sinul ated Annealing specific solver configuration -->
</ sol ver>
</ sol ver Benchmar k>
<sol ver Benchmar k>
<nane>Lat e Acceptance</ nane>
<sol ver >
...<!-- Late Acceptance specific solver configuration -->
</ sol ver >
</ sol ver Benchmar k>
</ pl anner Benchnar k>

This Pl anner Benchmar k will try 3 configurations (Tabu Search, Simulated Annealing and Late
Acceptance) on 2 data sets (32queens and 64queens), so it will run 6 solvers.

Every <sol ver Benchmar k> element contains a solver configuration and one or more <i nput So-
I uti onFi | e> elements. It will run the solver configuration on each of those unsolved solution files.
The element nane is optional, because it is generated if absent. The i nput Sol uti onFi | e is read
by a SolutionFilelO (relative to the working directory).

The benchmark report will be written in the directory specified the <benchmar kDi r ect or y> ele-
ment (relative to the working directory).

If an Excepti on or Error occurs in a single benchmark, the entire Benchmarker will not fail-fast
(unlike everything else in Planner). Instead, the Benchmarker will continue to run all other bench-

262

Benchmarking And Tweaking

marks, write the benchmark report and then fail (if there is at least 1 failing single benchmark).
The failing benchmarks will be clearly marked as such in the benchmark report.

14.2.2.1. Inherited solver benchmark

To lower verbosity, the common parts of multiple <sol ver Benchmar k> elements are extracted to
the <i nheri t edSol ver Benchnar k> element. Every property can still be overwritten per <sol ver -
Benchmar k> element. Note that inherited solver phases such as <const ructi onHeuri stic> or
<l ocal Sear ch> are not overwritten but instead are added to the tail of the solver phases list.

14.2.3. SolutionFilelO: Input And Output Of Solution Files

14.2.3.1. sol utionFil el 0 Interface

The benchmarker needs to be able to read the input files to load a Sol uti on. Also, it might need
to write the best Sol uti on of each benchmark to an output file. For that it uses a class that
implements the Sol uti onFi | el Ointerface:

public interface SolutionFilelO {
String getlnputFileExtension();
String getQut put Fi | eExtension();
Sol ution read(File inputSolutionFile);

void wite(Solution solution, File outputSolutionFile);

The Sol uti onFi | el Ointerface is in the opt apl anner - per si st ence- conmon jar (which is a de-
pendency of the opt apl anner - benchnar k jar).

14.2.3.2. xstreansol utionFilel 0. The Default sol utionFilel O

By default, a benchmarker uses a XSt r eanfol ut i onFi | el Oinstance to read and write solutions.

It's required to tell the benchmarker about your Sol ut i on class which is annotated with XStream
annotations:

<pr obl enBenchmar ks>
<xStreamAnnot at edCl ass>or g. opt apl anner . exanpl es. nqueens. domai n. NQueens</
xSt r eamAnnot at edd ass>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 32queens. xm </ i nput Sol uti onFi | e>

</ pr obl enBenchnmar ks>

263

Benchmarking And Tweaking

Those input files need to have been written with a XSt r eanSol ut i onFi | el Oinstance, not just any
XSt r eaminstance, because the XSt r eanSol ut i onFi | el Ouses a customized XSt r eaminstance.

Warning

XStream (and XML in general) is a very verbose format. Reading or writing very
large datasets in this format can cause an Qut O Menor yError and performance
degradation.

14.2.3.3. Custom sol utionFilel O

Alternatively, implement your own Sol ut i onFi | el Oimplementation and configure it with the so-
| utionFil el OJ ass element:

<pr obl emBenchmar ks>
ut i onFi | el OCl ass>or g. opt apl anner . exanpl es. machi ner eassi gnnent . per si st ence. Machi neReassi gnnent Fi | el O</
sol utionFil el OO ass>

<i nput Sol uti onFi | e>dat a/ machi ner eassi gnment /i nport/nodel _al_1.txt </i nput Sol uti onFi | e>

</ pr obl enBenchmar ks>

It's recommended that output files can be read as input files, which also implies that get | nput -
Fi | eExt ensi on() and get Qut put Fi | eExt ensi on() return the same value.

A Warning

A Sol uti onFi | el Oimplementation must be thread-safe.

14.2.3.4. Reading An Input Solution From A Database (Or Other
Repository)

The benchmark configuration currently expects an <i nput Sol uti onFi | e> element for each
dataset. There are 2 ways to deal with this if your dataset is in a database or another type of
repository:

« Extract the datasets from the database and serialize them to a local file (for example as XML
with XSt r eanSol ut i onFi | el O). Then use those files an <i nput Sol uti onFi | e> elements.

» For each dataset, create a txt file that holds the unique id of the dataset. Write a custom Sol u-
ti onFi | el Othat reads that identifier, connects to the database and extract the problem identi-
fied by that id. Configure those txt files as <i nput Sol ut i onFi | e> elements.

264

Benchmarking And Tweaking

14.2.4. Warming Up The HotSpot Compiler

Without awarm up, the results of the first (or first few) benchmarks are not reliable, because
they will have lost CPU time on HotSpot JIT compilation (and possibly DRL compilation too).

To avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount
of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<pl anner Benchmar k>
<war mpSecondsSpent Li m t >30</ war nlJpSecondsSpent Li m t >

</ pl anner Benchnar k>

14.2.5. Benchmark Blueprint: A Predefined Configuration

To quickly configure and run a benchmark for typical solver configs, use a sol ver Benchmar k-
Bl uePri nt instead of sol ver Benchmar ks:

<?xm version="1.0" encodi ng="UTF-8"?>

<pl anner Benchmar k>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens</ benchmar kDi r ect ory>
<war mpSecondsSpent Li mi t >30</ war mpSecondsSpent Li mi t >

<i nheri t edSol ver Benchmar k>
<pr obl emBenchmar ks>
<xSt reamAnnot at edCl ass>or g. opt apl anner . exanpl es. nqueens. donai n. NQueens</
xSt r eamAnnot at edCl ass>

<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 32queens. xnl </ i nput Sol uti onFi | e>
<i nput Sol uti onFi | e>dat a/ nqueens/ unsol ved/ 64queens. xm </ i nput Sol uti onFi | e>
<probl enBt ati sti cType>BEST_SCORE</ pr obl enfst ati sti cType>

</ pr obl enBenchnar ks>

<sol ver>
<scanAnnot at edCl asses/ >
<scoreDi rect or Fact ory>

<scoreDefini ti onType>SI MPLE</ scor eDefi ni ti onType>

265

Benchmarking And Tweaking

<scoreDr| >or g/ opt apl anner/ exanpl es/ nqueens/ sol ver/ nQueensScor eRul es. drl </ scoreDr| >
<initializingScoreTrend>ONLY_DOMK/initializingScoreTrend>

</ scoreDirectorFact ory>

<term nation>
<m nut esSpent Li m t >1</ m nut esSpent Li m t >

</term nation>

</ sol ver>
</inheritedSol ver Benchmar k>

<sol ver Benchmar kBl uePri nt >
<sol ver Benchmar kBl uePr i nt Type>EVERY_CONSTRUCTI ON_HEURI STI C_TYPE_W TH_EVERY_LOCAL_SEARCH TYPE</
sol ver Benchmar kBl uePri nt Type>

</ sol ver Benchmar kBl uePri nt >
</ pl anner Benchmar k>

The following Sol ver Benchnar kBl uePri nt Types are supported:

e EVERY_CONSTRUCTI ON_HEURI STI C_TYPE: Run every Construction Heuristic type (First Fit, First
Fit Decreasing, Cheapest Insertion, ...).

e EVERY_LOCAL_SEARCH TYPE: Run every Local Search type (Tabu Search, Late Acceptance, ...)
with the default Construction Heuristic.

* EVERY_CONSTRUCTI ON_HEURI STI C_TYPE_W TH_EVERY_LOCAL_SEARCH TYPE: Run every Con-
struction Heuristic type with every Local Search type.

14.2.6. Write The Output Solution Of Benchmark Runs

The best solution of each benchmark run can be written in the benchmar kDi r ect or y. By default,
this is disabled, because the files are rarely used and considered bloat. Also, on large datasets,
writing the best solution of each single benchmark can take quite some time and memory (causing
an Qut OF Menor yEr r or), especially in a verbose format like XStream XML.

To write those solutions in the benchmar kDi r ect ory, enable wr i t eQut put Sol ut i onEnabl ed:

<pr obl emBenchmar ks>
<wr i t eQut put Sol ut i onEnabl ed>t rue</ wri t eQut put Sol uti onEnabl ed>

</ pr obl enBenchmar ks>

14.2.7. Benchmark Logging

Benchmark logging is configured like the Sol ver logging.

266

Benchmarking And Tweaking

To separate the log messages of each single benchmark run into a separate file, use the MDC
[http://logback.gos.ch/manual/mdc.html] with key si ngl eBenchmar k. name in a sifting appender.
For example with Logback in | ogback. xm :

<appender nane="fil eAppender" class="ch. qos. | ogback. classic.sift.SiftingAppender">
<di scri m nat or >
<key>si ngl eBenchmar k. nane</ key>
<def aul t Val ue>app</ def aul t Val ue>
</ di scri m nator>
<sift>
<appender nane="fil eAppender. ${si ngl eBenchmar k. nane}" class="...Fil eAppender">
<file>l ocal /| og/ opt apl anner Benchmar k- ${ si ngl eBenchmar k. nane}. | og</fil e>

</ appender >
</sift>
</ appender >

14.3. Benchmark Report

14.3.1. HTML Report

After running a benchmark, an HTML report will be written in the benchmar kDi r ect or y with the
i ndex. ht m filename. Open itin your browser. It has a nice overview of your benchmark including:

e Summary statistics: graphs and tables
» Problem statistics per i nput Sol ut i onFi | e: graphs and CSV
» Each solver configuration (ranked): Handy to copy and paste

e Benchmark information: settings, hardware, ...

@ Note
Graphs are generated by the excellent JFreeChart [http://www.jfree.org/jfreechart/]
library.

The HTML report will use your default locale to format numbers. If you share the benchmark report
with people from another country, consider overwriting the | ocal e accordingly:

<pl anner Benchmar k>

<benchmar kReport >
<l ocal e>en_US</ | ocal e>
</ benchnmar kRepor t >

267

http://logback.qos.ch/manual/mdc.html
http://logback.qos.ch/manual/mdc.html
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

Benchmarking And Tweaking

</ pl anner Benchnmar k>

14.3.2. Ranking The solvers

The benchmark report automatically ranks the solvers. The Sol ver with rank 0 is called the favorite
Sol ver : it performs best overall, but it might not be the best on every problem. It's recommended
to use that favorite Sol ver in production.

However, there are different ways of ranking the solvers. Configure it like this:

<pl anner Benchmar k>
<benchmar kReport >
<sol ver Ranki ngType>TOTAL_SCORE</ sol ver Ranki ngType>

</ benchnar kRepor t >

</ pl anner Benchmar k>

The following sol ver Ranki ngTypes are supported:

e TOTAL_SCORE (default): Maximize the overall score, so minimize the overall cost if all solutions
would be executed.

* WORST_SCORE: Minimize the worst case scenario.

« TOTAL_RANKI NG Maximize the overall ranking. Use this if your datasets differ greatly in size or
difficulty, producing a difference in Scor e magnitude.

Sol ver s with at least one failed single benchmark do not get a ranking. Sol ver s with not fully
initialized solutions are ranked worse.

You can also use a custom ranking, by implementing a Conpar at or :

<benchmar kReport >
<sol ver Ranki ngConpar at or Cl ass>. .. Tot al Scor eSol ver Ranki ngConpar at or </
sol ver Ranki ngConpar at or Cl ass>
</ benchmar kRepor t >

Or by implementing a weight factory:

<benchmar kReport >
<sol ver Ranki ng\\éi ght Fact or yCl ass>. .. Tot al RankSol ver Ranki ng\W\éi ght Fact or y</
sol ver Ranki ngWei ght Fact oryd ass>
</ benchmar kRepor t >

268

Benchmarking And Tweaking

14.4. Summary Statistics

14.4.1. Best Score Summary (Graph And Table)

Shows the best score per i nput Sol uti onFi | e for each solver configuration.

Useful for visualizing the best solver configuration.

Best score summary (higher score is better)

Score

medium0l.xml medium02,xml mediurn_hint01.xml medium_hint02.xml
Data

|l tabuSearch-moveTabu mtabuSearch-propertyTabu m simulatedannealing (winner)

Figure 14.1. Best Score Summary Statistic

14.4.2. Best Score Scalability Summary (Graph)

Shows the best score per problem scale for each solver configuration.

Useful for visualizing the scalability of each solver configuration.

269

Benchmarking And Tweaking

14.4.3. Best Score Distribution Summary (Graph)

Shows the best score distribution per i nput Sol uti onFi | e for each solver configuration.

Useful for visualizing the reliability of each solver configuration.

Best score distribution level 1 summary (higher is better)

ook 0o

12
14
-16
-18
-20
22
24
-26
-28
-30
32
34
-36
-38
-40
42
-44
-46
-48
50
52
54
56

man T et F

=70

72
74
76

-78

Score level 1

sprint0l sprint02 sprint03 sprint04 sprint0s sprint0s sprint07 sprint0s sprint0s sprint10
Data

|I Tabu Search (favorite) M Late Acceptance|

Figure 14.2. Best Score Distribution Summary Statistic

Enable statistical benchmarking to use this summary.

270

Benchmarking And Tweaking

14.4.4. Winning Score Difference Summary (Graph And Table)

Shows the winning score difference per i nput Sol uti onFi | e for each solver configuration. The
winning score difference is the score difference with the score of the winning solver configuration
for that particular i nput Sol uti onFi |l e.

Useful for zooming in on the results of the best score summary.

14.4.5. Worst Score Difference Percentage (ROI) Summary
(Graph and Table)

Shows the return on investment (ROI) per i nput Sol uti onFi | e for each solver configuration if
you'd upgrade from the worst solver configuration for that particular i nput Sol uti onFi | e.

Useful for visualizing the return on investment (ROI) to decision makers.

14.4.6. Average Calculation Count Summary (Graph and Table)

Shows the score calculation speed: the average calculation count per second per problem scale
for each solver configuration.

Useful for comparing different score calculators and/or score rule implementations (presuming
that the solver configurations do not differ otherwise). Also useful to measure the scalability cost
of an extra constraint.

14.4.7. Time Spent Summary (Graph And Table)

Shows the time spent per i nput Sol ut i onFi | e for each solver configuration. This is pointless if
it's benchmarking against a fixed time limit.

Useful for visualizing the performance of construction heuristics (presuming that no other solver
phases are configured).

14.4.8. Time Spent Scalability Summary (Graph)

Shows the time spent per problem scale for each solver configuration. This is pointless if it's
benchmarking against a fixed time limit.

Useful for extrapolating the scalability of construction heuristics (presuming that no other solver
phases are configured).

14.4.9. Best Score Per Time Spent Summary (Graph)

Shows the best score per time spent for each solver configuration. This is pointless if it's bench-
marking against a fixed time limit.

Useful for visualizing trade-off between the best score versus the time spent for construction
heuristics (presuming that no other solver phases are configured).

271

Benchmarking And Tweaking

14.5. Statistic Per Dataset (Graph And CSV)

14.5.1. Enable A Problem Statistic

The benchmarker supports outputting problem statistics as graphs and CSV (comma separated
values) files to the benchmar kDi r ect ory. To configure one, add a pr obl entt ati sti cType line:

<pl anner Benchnar k>
<benchnar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchmar kDi r ect or y>
<i nheri t edSol ver Benchmar k>
<pr obl enBenchmar ks>

<probl enfSt ati sti cType>BEST_SCORE</ pr obl enfSt ati sti cType>
<probl enBt ati sti cType>CALCULATE_COUNT_PER_SECOND</ pr obl enfst ati sti cType>
</ probl enBenchnar ks>

</inheritedSol ver Benchmar k>

</ pl anner Benchmar k>

Multiple pr obl enft at i sti cType elements are allowed.

The following types are supported:

14.5.2. Best Score Over Time Statistic (Graph And CSV)

To see how the best score evolves over time, add:

<pr obl enBenchnar ks>

<probl enBt ati sti cType>BEST_SCORE</ probl enfSt ati sti cType>
</ pr obl enBenchmar ks>

272

Benchmarking And Tweaking

100computers-300processes best score level 1 statistic

-110,000

-111,000

I '—'_'—'_,—,4

-112,000

-1132,000

-114,000

-115,000

-116,000

-117.000

-118,000

-113,000

-120,000

-121,000

-122,000

-123,000

Best score level 1

-124,000

-125,000

-126,000

-127.000

-128,000

-1239,000

-130,000

-131,000

-132,000

-133,000

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spent

|— Tabu Search — Simulated Annealing (favorite) — Late acceptance

Figure 14.3. Best Score Over Time Statistic

The best score over time statistic is very useful to detect abnormalities, such as a potential
score trap which gets the solver temporarily stuck in a local optima.

273

Benchmarking And Tweaking

Score

Let the best score statistic guide you

Where should we focus our energy to improve solution quality?

Performance
is the bottleneck

Best score over time

Time

Observations:

- Heavily improving every step
- No deminishing returns yet

- Solution not near optimal

Recommendations:

- Improve score calculation
speed. Check the average
calculation count per second.
- Use better hardware.

- Give it more time.

Score

Local optima

This (meta)heuristic

are the problem is depleted
5
— [} [
— / 7} If Best score over time
f
(__ |
BE!.‘Et score over time
Time Time
Observations: Observations:
- Some moves are lucky - Law of deminishing returns
because they stray away from - Solution likely near optimal
a local optima.
Recommendations: Recommendations:

- Add more moveSelectors

- Use constraint match statistic
- Add a course-grained custom
move

- In score calculation, add a
softer guiding constraint

- Benchmark other algorithms
- Power tweak parameters

14.5.3. Step Score Over Time Statistic (Graph And CSV)

To see how the step score evolves over time, add:

<pr obl enBenchmar ks>

<probl enBt ati sti cType>STEP_SCORE</ pr obl enfSt ati sti cType>
</ pr obl enBenchmar ks>

274

Benchmarking And Tweaking

100computers-300processes step score level 1 statistic
-110,000

-111,000 e
R

-112,000

-1132,000

-114,000

-115,000

-116,000

-117.000

-118,000

-113,000

-120,000

-121,000

-122,000

-123,000

Step score level 1

-124,000

-125,000

-126,000

-127.000

-128,000

-1239,000

-130,000

-131,000

-132,000

-133,000

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s
Time spent

|— Tabu Search — Simulated Annealing (favorite) — Late acceptance

Figure 14.4. Step Score Over Time Statistic

Compare the step score statistic with the best score statistic (especially on parts for which the
best score flatlines). If it hits a local optima, the solver should take deteriorating steps to escape
it. But it shouldn't deteriorate too much either.

Warning

The step score statistic has been seen to slow down the solver noticeably due to
GC stress, especially for fast stepping algorithms (such as Simulated Annealing
and Late Acceptance).

4m35s

14.5.4. Calculate Count Per Second Statistic (Graph And CSV)

To see how fast the scores are calculated, add:

<pr obl emBenchmar ks>

275

Benchmarking And Tweaking

<probl enBt ati sti cType>CALCULATE_COUNT_PER_SECOND</ pr obl enfSt ati sti cType>
</ pr obl enBenchnar ks>

46,000
45,500
45,000
44,500
44,000
43,500
43,000
42,500
42,000
41,500
41,000
40,500
40,000
35,500
35,000
38,500
38,000

37,500

Calculate count per second

37,000
36,500
36,000

35,500

35,000 4}

34,500

34,000

33,500
33,000
32,500

32,000

100computers-300processes calculate count statistic

4] 255 50s 1ml5s 1m40s 2mS5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spent

|-I— Tabu Search -e- Simulated Annealing (favorite) -+ Late acceptance

Figure 14.5. Calculate Count Per Second Statistic

276

Benchmarking And Tweaking

14.5.5. Best Solution Mutation Over Time Statistic (Graph And
CSV)

To see how much each new best solution differs from the previous best solution, by counting the
number of planning variables which have a different value (not including the variables that have
changed multiple times but still end up with the same value), add:

<pr obl enBenchmar ks>

<probl enfSt ati sti cType>BEST_SCLUTI ON_MJTATI ON</ pr obl enfSt ati sti cType>
</ pr obl enBenchmar ks>

100computers-300processes best solution mutation statistic

300
290
280
270
260
250
240
230 1 L

220

210 v
200
150
180
170
160
150
140

130

120

Best solution mutation count

110

50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s
Time spent

|l Tabu Search m Simulated Annealing (favorite) = Late acceptance

Figure 14.6. Best Solution Mutation Over Time Statistic

Use Tabu Search - an algorithm that behaves like a human - to get an estimation on how difficult
it would be for a human to improve the previous best solution to that new best solution.

277

5m

Benchmarking And Tweaking

14.5.6. Move Count Per Step Statistic (Graph And CSV)

To see how the selected and accepted move count per step evolves over time, add:

<pr obl enBenchmar ks>

<probl enfSt ati sti cType>ME_COUNT_PER_STEP</ pr obl entSt ati sti cType>
</ pr obl enBenchmar ks>

100computers-300processes move count per step statistic

1,350

1,200

1,250

1,200

1,150

1,100

1,050

1,000 I
50
200
850
800
750
F00
650
00
550

500

Accepted/selected moves per step

450

400

Time spent

— Tabu Search accepted - - Tabu Search selected — Simulated Annealing (favorite) accepted - - Simulated Annealing (favorite) selected
Late acceptance accepted - - Late acceptance selected

Figure 14.7. Move Count Per Step Statistic

Warning

This statistic has been seen to slow down the solver noticeably due to GC stress,
especially for fast stepping algorithms (such as Simulated Annealing and Late Ac-
ceptance).

278

Benchmarking And Tweaking

14.5.7. Memory Use Statistic (Graph And CSV)

To see how much memory is used, add:

<pr obl enBenchmar ks>

<probl enfst ati sti cType>MEMORY_USE</ pr obl enfSt ati sti cType>
</ pr obl enBenchmar ks>

100computers-300processes memory use statistic

130,000,000
185,000,000
180,000,000
175,000,000
170,000,000
165,000,000
160,000,000
155,000,000
150,000,000
145,000,000
140,000,000
135,000,000
130,000,000
125,000,000
120,000,000
115,000,000
110,000,000
105,000,000

£* 100,000,000

95,000,000

90,000,000

85,000,000

20,000,000

75,000,000

70,000,000

£5,000,000

60,000,000

55,000,000

50,000,000

45,000,000

40,000,000

35,000,000

30,000,000

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000
0

Memol

i

4] 25s 50s 1ml5s 1m40s 2rmSs 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spent

|—I—Tabu Search used -e-Simulated Annealing (favorite) used -+ Late acceptance used

Figure 14.8. Memory Use Statistic

A Warning

The memory use statistic has been seen to affect the solver noticeably.

279

Benchmarking And Tweaking

14.6. Statistic Per Single Benchmark (Graph And CSV)

14.6.1. Enable A Single Statistic

A single statistic is a statics for 1 dataset for 1 solver configuration. Unlike a problem statistic, it
does not aggregate over solver configurations.

The benchmarker supports outputting single statistics as graphs and CSV (comma separated
values) files to the benchmar kDi r ect ory. To configure one, add a si ngl eSt ati sti cType line:

<pl anner Benchnar k>
<benchnar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchmar kDi r ect or y>
<i nheri t edSol ver Benchmar k>
<pr obl enBenchmar ks>

<probl enft ati sticType>...</probl enStatisticType>
<singl eStatisticType>Pl CKED_MOVE_TYPE_BEST_SCORE_DI FF</ si ngl eSt ati sti cType>
</ probl enBenchnar ks>

</inheritedSol ver Benchmar k>

</ pl anner Benchmar k>

Multiple si ngl eSt ati sti cType elements are allowed.

The following types are supported:

14.6.2. Constraint Match Total Best Score Over Time Statistic
(Graph And CSV)

To see which constraints are matched in the best score (and how much) over time, add:

<pr obl enBenchmar ks>

<singl eStatisticType>CONSTRAI NT_MATCH TOTAL_BEST_SCORE</ si ngl eSt ati sti cType>
</ probl enBenchnar ks>

280

Benchmarking And Tweaking

medlum h|nt02 tabuSearch-entltyTabu constraint match total best score diff Ievel 1 statlstlc

ly \\%’

o]

-100 | h

1104

-130 |
-l40
-150 |

-160 |

Constraint match total weight level 1

-170

4] 20s 40s 1m 1m20s 1m40s 2m 2m20s 2m40s
Time spent

maximumTotal&ssignments weight — minimumConsecutiveWorkingDays weight — maximumConsecutiveWorkingDays weight

minimumConsecutiveFreeDays weight —— minimumConsecutiveWorkingWeekends weight dayOffRequest weight shiftOffRequest weight
unwantedPatternFreeBefore2DaysWithaAWorkDayPattern weight — unwantedPatternShiftType2DaysPattern weight — maximumConsecutiveFreeDays weight
startOnMotFirstDayOfWeekend weight - endOnMotLastDayOfWeekend weight — identicalShiftTypesDuringWeekend weight
unwantedPatternshiftType3DaysPattern weight — maximumConsecutiveWorkingWeekends weight

Figure 14.9. Constraint Match Total Best Score Diff Over Time Statistic

Requires the score calculation to support constraint matches. Drools score calculation supports
constraint matches automatically, but incremental Java score calculation requires more work.

A Warning

The constraint match total statistics has been seen to affect the solver noticeably.

14.6.3. Constraint Match Total Step Score Over Time Statistic
(Graph And CSV)

To see which constraints are matched in the step score (and how much) over time, add:

<pr obl enBenchmar ks>

<singl eStatisticType>CONSTRAI NT_MATCH_TOTAL_STEP_SCORE</ si ngl eSt ati sti cType>

281

Benchmarking And Tweaking

</ pr obl enBenchmar ks>

medium hint02 tabuSearch-entityTabu constraint match total step score diff level 1 statistic
R R e AT
| v i ‘I | ﬁ w 1 1 IWH(J I-I i hll ..n 1 : i\ 'I _| -Iil_ i Ir_1

i,'l Vh

L
\ Wit i Sl vw*www

J |
230 | il |

iﬂ

::: i\'

Constraint match total weight level 1

4] 10s 20s 30s 40s 50s 1m 1ml0s 1m20s 1m30s 1m40s 1mS0s 2m 2ml0s 2m20s 2m30s 2m40s 2mS0s 3m
Time spent

maximumTotal&ssignments weight — minimumConsecutiveWorkingDays weight — maximumConsecutiveWorkingDays weight

minimumConsecutiveFreeDays weight —— minimumConsecutiveWorkingWeekends weight dayOffRequest weight shiftOffRequest weight
unwantedPatternFreeBefore2DaysWithaAWorkDayPattern weight — unwantedPatternShiftType2DaysPattern weight — maximumConsecutiveFreeDays weight
startOnMotFirstDayOfWeekend weight - endOnMotLastDayOfWeekend weight — identicalShiftTypesDuringWeekend weight
unwantedPatternshiftType3DaysPattern weight — maximumConsecutiveWorkingWeekends weight

Figure 14.10. Constraint Match Total Step Score Diff Over Time Statistic

Requires the score calculation to support constraint matches. Drools score calculation supports
constraint matches automatically, but incremental Java score calculation requires more work.

A Warning

The constraint match total statistics has been seen to affect the solver noticeably.

14.6.4. Picked Move Type Best Score Diff Over Time Statistic
(Graph And CSV)

To see which move types improve the best score (and how much) over time, add:

<pr obl enBenchmar ks>

282

Benchmarking And Tweaking

<singl eStatisticType>Pl CKED_MOVE_TYPE_BEST_SCORE_DI FF</ si ngl eSt ati sti cType>
</ pr obl enBenchmar ks>

100computers-300processes_Late acceptance picked move type best score diff level 1 statistic

1,100
1,050
1,000
50
200
850
800
750
F00
650
00
550

500

Best score diff level 1

450

400

350

300

250

200

150

100

50

0]

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spent

|l PillarChangeMove(CloudProcess.computer] m ChangeMove(CIoudProcess.computer)|

Figure 14.11. Picked Move Type Best Score Diff Over Time Statistic

14.6.5. Picked Move Type Step Score Diff Over Time Statistic
(Graph And CSV)

To see how much each winning step affects the step score over time, add:

<pr obl enBenchmar ks>

<singl eStatisticType>Pl CKED_MOVE_TYPE_STEP_SCORE_DI FF</ si ngl eSt ati sti cType>
</ pr obl enBenchmar ks>

283

Benchmarking And Tweaking

100computers-300processes_Late acceptance picked move type step score diff level 1 statistic
1,150

1,100
1,050
1,000
50
200
850
800
750
F00
650
00 -
550
500
450 -
400
350
300
250
200
150
100
50
4]
-50
-100
-150
-200
-250
-300
-350 4
-400
-430
-500
-550
-600
-650

Step score diff level 1

4] 255 50s 1ml5s 1m40s 2m5s 2m30s 2m55s 3m20s 3m45s 4ml0s 4m35s 5m
Time spent

m SwapMove(CloudProcess.computer) M PillarSwapMove(CloudProcess.computer) = PillarChangeMove(CloudProcess. computer)
ChangeMove(CloudProcess.computer)

Figure 14.12. Picked Move Type Step Score Diff Over Time Statistic
14.7. Advanced Benchmarking

14.7.1. Benchmarking Performance Tricks

14.7.1.1. Parallel Benchmarking On Multiple Threads

If you have multiple processors available on your computer, you can run multiple benchmarks in
parallel on multiple threads to get your benchmarks results faster:

<pl anner Benchmar k>
<par al | el Benchmar kCount >AUTO</ par al | el Benchnmar kCount >

</ pl anner Benchmar k>

284

Benchmarking And Tweaking

Warning

Running too many benchmarks in parallel will affect the results of benchmarks neg-
atively. Leave some processors unused for garbage collection and other process-
es.

We tweak par al | el Benchmar kCount AUTOto maximize the reliability and efficien-
cy of the benchmark results.

The following par al | el Benchmar kCount s are supported:

1 (default): Run all benchmarks sequentially.

e AUTO Let Planner decide how many benchmarks to run in parallel. This formula is based on
experience. It's recommended to prefer this over the other parallel enabling options.

 Static number: The number of benchmarks to run in parallel.

<par al | el Benchmar kCount >2</ par al | el Benchmar kCount >

» JavaScript formula: Formula for the number of benchmarks to run in parallel. It can use the
variable avai | abl ePr ocessor Count . For example:

<par al | el Benchmar kCount >(avai | abl eProcessor Count / 2) + 1</parall el Benchnar kCount >

@ Note

The par al | el Benchmar kCount is always limited to the number of available proces-
sors. If it's higher, it will be automatically decreased.

@ Note

If you have a computer with slow or unreliable cooling, increasing the par al | el -
Benchmar kCount above 1 (even on AUTO) may overheat your CPU.

The sensor s command can help you detect if this is the case. It is available in the
package | m sensors or | m sensor s in most Linux distributions. There are several
freeware tools available for Windows too.

285

Benchmarking And Tweaking

14.7.2. Statistical Benchmarking

To minimize the influence of your environment and the Random Number Generator on the bench-
mark results, configure the number of times each single benchmark run is repeated. The results
of those runs are statistically aggregated. Each individual result is also visible in the report, as
well as plotted in the best score distribution summary.

Just add a <subSi ngl eCount > element to an <i nherit edSol ver Benchmar k> element or in a
<sol ver Benchmar k> element:

<?xm version="1.0" encodi ng="UTF-8"?>
<pl anner Benchmar k>

<i nheri t edSol ver Benchmar k>
<sol ver >
</ sol ver>
<subSi ngl eCount >10<subSi ngl eCount >

</inheritedSol ver Benchmar k>

</ pl anner Benchnar k>

The subSi ngl eCount defaults to 1 (so no statistical benchmarking).

14.7.3. Template Based Benchmarking And Matrix Benchmark-
ing

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark 4
entityTabuSi ze values (5, 7, 11 and 13) combined with 3 accept edCount Li mi t values (500,
1000 and 2000), resulting in 12 solver configurations.

286

https://issues.jboss.org/browse/PLANNER-76
https://issues.jboss.org/browse/PLANNER-76

Benchmarking And Tweaking

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker [http://
freemarker.org//] template for the benchmark configuration instead:

<pl anner Benchmar k>

<i nheritedSol ver Benchmar k>
</inheritedSol ver Benchmar k>

<#list [5, 7, 11, 13] as entityTabuSi ze>
<#list [500, 1000, 2000] as acceptedCountLimt>
<sol ver Benchmar k>
<nane>entityTabuSi ze ${entityTabuSi ze} acceptedCountLimt ${acceptedCountLint}</nanme>
<sol ver >
<l ocal Sear ch>
<uni onMoveSel ect or >
<changeMveSel ect or/ >
<swapMbveSel ect or/ >
</ uni onMbveSel ect or >
<accept or >
<entityTabuSi ze>${entityTabuSi ze}</entityTabuSi ze>
</ accept or >
<f orager >
<accept edCount Li m t >${ accept edCount Li mi t } </ accept edCount Li mi t >
</ f orager >
</l ocal Search>
</ sol ver >
</ sol ver Benchmar k>
</ #list>
</#list>
</ pl anner Benchnar k>

And build it with the class Pl anner Benchmar kFact ory:

Pl anner Benchnar kFact ory pl anner Benchmar kFact o
ry = Pl anner Benchnar kFact ory. cr eat eFr onfFr eenar ker Xm Resour ce(
"or g/ opt apl anner/ exanpl es/ cl oudbal anci ng/ benchmar k/
cl oudBal anci ngBenchmar kConfi gTenpl ate. xm . ftl");
Pl anner Benchnar k pl anner Benchnark = pl anner Benchmar kFact ory. bui | dPl anner Benchnar k() ;

14.7.4. Benchmark Report Aggregation

The Benchmar kAggr egat or takes 1 or more existing benchmarks and merges them into new
benchmark report, without actually running the benchmarks again.

287

http://freemarker.org//
http://freemarker.org//
http://freemarker.org//

Benchmarking And Tweaking

Benchmark aggregator

Merge multiple benchmark reports (run with different codebases) into 1 report.

Report A Report B
last month with java 7 last night with java 8
Score |—I H Score ‘ ﬂ
|_AI I—BI |_cI D A I_BI I-::I D
Tabu Search, Late Acceptance Tabu Search, Late Acceptance

JL

Aggregated report

last month vs last night

A

Tabu Search (Java 7)
Tabu Search (Java 8)
Late Acceptance (Java 7)
Late Acceptance (Java 8)

This is useful to:

* Report on the impact of code changes: Run the same benchmark configuration before and
after the code changes, then aggregate a report.

« Report on the impact of dependency upgrades: Run the same benchmark configuration
before and after upgrading the dependency, then aggregate a report.

e Condense a too verbose report: Select only the interesting solver benchmarks from the ex-
isting report. This especially useful on template reports to make the graphs readable.

» Partially rerun a benchmark: Rerun part of an existing report (for example only the failed or
invalid solvers), then recreate the original intended report with the new values.

To use it, provide a Pl anner Benchmar kFact ory to the Benchmar kAggr egat or Fr ame to display
the GUI:

public static void main(String[] args) {
Pl anner Benchnmar kFact ory pl anner Benchmar kFact ory = Pl anner Benchmar kFact ory. cr eat eFr omXnl Resour ce(
"or g/ opt apl anner/ exanpl es/ nqueens/ benchmar k/ nqueensBenchnmar kConfi g. xm ") ;

288

Benchmarking And Tweaking

Benchmar kAggr egat or Fr ane. cr eat eAndDi spl ay(pl anner Benchmar kFact ory) ;

Warning

Despite that it uses a benchmark configuration as input, it ignores all elements of
that configuration, except for the elements <benchmar kDi r ect or y> and <bench-

mar kReport >.

In the GUI, select the interesting benchmarks and click the button to generate the report.

E] Note
All the input reports which are being merged should have been generated with the
same Planner version (excluding hotfix differences) as the Benchnar kAggr egat or .
Using reports from different Planner major or minor versions are not guaranteed
to succeed and deliver correct information, because the benchmark report data
structure often changes.

289

Chapter 15. Repeated Planning

15.1. Introduction to Repeated Planning

The world constantly changes. The problem facts used to create a solution, might change before
or during the execution of that solution. There are different situations (which can be combined):

» Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane
scheduled to take off has a technical delay, one of the machines or vehicles break down, ...
Use backup planning.

» Impossible to assign all entities now: Leave some unassigned. For example: there are 10 shifts
at the same time to assign but only 9 employees to handle shifts. Use overconstrained plan-
ning.

» Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are
reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth
planning yet. Use continuous planning.

« Constantly changing problem facts: Use real-time planning.

Waiting to start planning - to lower the risk of problem facts changing - usually isn't a good way
to deal with that. More CPU time means a better planning solution. An incomplete plan is better
than no plan.

Luckily, the optimization algorithms support planning a solution that's already (partially) planned,
known as repeated planning.

15.2. Backup Planning

Backup planning is the technique of adding extra score constraints to create space in the planning
for when things go wrong. That creates a backup plan in the plan. For example: try to assign an
employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed
open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the problem facts on
the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the
planning, starting from that solution, which has a different score now. The construction heuristics
will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will
even improve it further.

15.3. Overconstrained Planning

When there is no feasible solution to assign all planning entities, it's often desired to assign as
many entities as possible without breaking hard constraints. This is called overconstrained plan-
ning.

290

Repeated Planning

Overconstrained planning

If there is no feasible solution that assigns everything, then assign as many as possible.

CPU HardSoftScore HardMediumSoftScore
@PVariable() @PVariable{nullable = true)
Assign all entities Penalize unassigned
entities

|2 A
=<

300% -2hard f -500s0ft -2hard / Omedium / -500soft

Highest score

N

B
pd

[[200 %
Y 300% Mot a solution Ohard f -3medium / -500soft
Highest score

To implement this:

1. Add a additional score level (usually a medium level between the hard and soft level) by switch-
ing ScoreDefinition.

2. Make the planning variable nullable.

3. Add a score constraint on the new level (so usually a medium constraint) to penalize the number
of unassigned entities (or a weighted sum of them).

15.4. Continuous Planning (Windowed Planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the
same time and repeating that process monthly, weekly, daily or hourly. Because time is infinite,
there are infinite future windows, so planning all future windows is impossible. Instead, plan only
a fixed number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable
(unlikely to change), while later upcoming planning windows are considered draft (likely to change
during the next planning effort). Distant future planning windows are not planned at all.

291

Repeated Planning

Past planning windows have only immovable planning entities: the planning entities can no longer
be changed (they are unable to move), but some of them are still needed in the score calculation,
as they might affect some of the score constraints that apply on the upcoming planning entities.
For example: when an employee should not work more than 5 days in a row, he shouldn't work
today and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-immovable: they can be changed, but occur a certain
score penalty if they differ from their original place. For example: avoid rescheduling hospital beds
less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane
gate during the 2 hours before boarding (unless there is no alternative), ...

November 1th
Room 11 bed 1

Room 11 bed 2

Room 21 bed 1

November 5th
Room 11 bed 1

Room 11 bed 2

Room 21 bed 1

Continuous planning

November
1 2 3 4 5 6 7 8 g9
| | | | | | | |
stable ‘ draft
C E
2-4 4-7
|
backup planning: empty bed
—cancelled

stable

& immovable

Notice the difference between the original planning of November 1th and the new planning of
November 5th: some problem facts (F, H, I, J, K) changed, which results in unrelated planning

entities (G) changing too.

15.4.1. Immovable Planning Entities

To make some planning entities immovable, simply add an entity Sel ecti onFi | t er that returns
t rue if an entity is movable and f al se if it is immovable.

292

Repeated Planning

public cl ass Movabl eShi ft Assi gnment Sel ecti onFilter i npl enents Sel ecti onFilter<ShiftAssignment> {
publ i c bool ean accept (ScorebDirector scoreDirector, ShiftAssignment shiftAssignment) {
ShiftDate shiftDate = shiftAssignment.getShift().getShiftDate();

Nur seRost er nurseRoster = (NurseRoster) scorebDirector.getWrkingSol ution();
return nurseRoster. get NurseRosterlnfo().islnPlanni ngW ndow(shiftDate);

And configure it like this:

@ anni ngEntity(novabl eEntitySel ecti onFilter = Muvabl eShiftAssi gnnent Sel ecti onFilter.cl ass)
public class ShiftAssignment {

}

A Warning

Custom Moveli st Factory and Movel t erat or Fact ory implementations must
make sure that they don't move immovable entities.

15.4.2. Nonvolatile Replanning to minimize disruption (Se-
mi-movable Planning Entities)

Replanning an existing plan can be very disruptive on the plan. If the plan affects humans (such as
employees, drivers, ...), very disruptive changes are often undesirable. In such cases, nonvolatile
replanning helps: the gain of changing a plan must be higher than the disruption it causes.

293

Repeated Planning

Nonvolatile replanning

Real-time planning must not distort the entire plan to deal with a real-time change.

Original solution Volatile solution Nonvolatile solution

3
computer X i .) .
breaks down - X100 3 / ! [I] A0S [I] AA00E
\J | X200 $ 7 J- X200 $ o
|' | vas0s ”:fE 4 ((m Y 350 | | vas0s

[4 I 2]zams | A b :|14u::-u5 [4 I 2]zams

X200%

Mormal score

-3hard f -500soft [Ohard f -550soft] Ohard f/ -600soft

Highest score

Adjusted score (-100 per moved process)

no moved processes: Osoft 4 moved processes; -400soft 2 moved processes: -200soft

-3hard f -500soft Ohard f -950soft Ohard f -BOOsoft

Highest score

For example, in the Machine Reassignment example, the entity has both the planning variable
machi ne and its original value ori gi nal Machi ne:

@l anni ngEntity(...)
public class ProcessAssi gnment {

private M Process process;
private Machine ori gi nal Machi ne;
private Machi ne nachi ne;

public Machi ne getOriginal Machine() {...}

@l anni ngVariable(...)
public Machi ne get Machine() {...}

publ i c bool ean i sMoved() {
return original Machine !'= null && original Machi ne ! = nachi ne;

294

Repeated Planning

During planning, the planning variable machi ne changes. By comparing it with the originalMa-
chine, a change in plan can be penalized:

rule "processMved" when ProcessAssi gnnent (noved == true) t hen
scor eHol der . addSof t Const r ai nt Mat ch(kcont ext, -1000);end

Moved"

when ProcessAssi gnnent (nmoved ==

true)

t hen scor eHol der . addSof t Const r ai nt Mat ch(kcont ext ,

-1000) ;

The soft penalty of - 1000 means that a better solution is only accepted if it improves the soft score
for at least 1000 points per variable changed (or if it improves the hard score).

15.5. Real-time Planning

To do real-time planning, first combine backup planning and continuous planning with short
planning windows to lower the burden of real-time planning. As time passes, the problem itself
changes:

Real-time planning

When the problem changes in real-time, the plan is adjusted in real-time.

Nightly planning Customer visit Vehicles depart Customer visit Yellow vehicle Customer visit
added from depot added visits customer added
2 > & . & . & &
. | | P &
Time
| | |
| | I
a7:30 08:00 08:30

295

Repeated Planning

In the example above, 3 customers are added at different times (07: 56, 08: 02 and 08: 45), after
the original customer set finished solving at 07: 55 and in some cases after the vehicles already
left. Planner can handle such scenario's with Pr obl enfact Change (in combination with immovable
planning entities).

15.5.1. probl enFact Change

While the Sol ver is solving, an outside event might want to change one of the problem facts,
for example an airplane is delayed and needs the runway at a later time. Do not change the
problem fact instances used by the Sol ver while it is solving (from another thread or even in the
same thread), as that will corrupt it. Instead, add a Pr obl enfFact Change to the Sol ver which it
will execute in the solver thread as soon as possible.

public interface Solver {

bool ean addPr obl enfFact Change(Pr obl enfFact Change probl enfact Change) ;

bool ean i sEveryProbl enfact ChangePr ocessed() ;

public interface Probl enfFact Change {

voi d doChange(ScoreDi rector scoreDirector);

Here's an example:

public void del eteConputer(final C oudConputer conputer) {
sol ver. addPr obl enfFact Change(new Probl enfFact Change() {
public void doChange(ScoreDirector scorebDirector) {

Cl oudBal ance cl oudBal ance = (C oudBal ance) scoreDirector.getWrkingSol ution();

/'l First remove the problemfact fromall planning entities that use it

for (C oudProcess process : cloudBal ance. getProcessList()) {

if (QbjectUils.equal s(process. getConputer(), conputer)) {

scoreDi rector. bef oreVari abl eChanged(process, "conputer");
process. set Conputer(null);
scoreDirector. afterVari abl eChanged(process, "conputer");

}

/1 A Sol utionC oner does not clone problemfact lists (such as conputerList)
/1 Shallow clone the conputerList so only workingSolution is affected, not
best Sol uti on or gui Sol ution

cl oudBal ance. set Conput er Li st (new ArrayLi st <O oudConput er >(cl oudBal ance. get ConputerList()));

/1 Next renove it the problemfact itself

296

Repeated Planning

for (lterator<C oudConputer> it = cloudBal ance. get ConputerList().iterator(); it.hasNext();) {
Cl oudConput er wor ki ngConputer = it.next();
if (ObjectUils.equal s(workingConputer, conputer)) {
scoreDi rect or. bef or ePr obl enfFact Renoved(wor ki ngConput er) ;
it.remove(); // renove fromlist
scoreDirector. aft er Probl enfFact Renoved(wor ki ngConput er) ;
br eak;

5)s

Warning

Any change on the problem facts or planning entities in a Probl enfact Change
must be told to the Scor eDi rect or .

Important

To write a Pr obl enfact Change correctly, it's important to understand the behaviour
of a planning clone:

* Any change in a Pr obl enfact Change must be done on the Sol ut i on instance of
scor eDi r ect or . get Wor ki ngSol uti on() . The wor ki ngSol uti on is a planning
clone of the Best Sol ut i onChangedEvent 's best Sol ut i on. So the wor ki ngSo-
| ution in the Sol ver is never the same instance as the Sol uti on in the rest
of your application.

» A planning clone also clones the planning entities and planning entity collections.
So any change on the planning entities must happen on the instances hold by
scoreDi rect or. get Wr ki ngSol uti on() .

» A planning clone does not clone the problem facts, nor the problem fact collec-
tions. Therefore the wor ki ngSol ut i on and the best Sol uti on share the same
problem fact instances and the same problem fact list instances.

Any problem fact or problem fact list changed by a Pr obl enfact Change must
be problem cloned first (which can imply rerouting references in other problem
facts and planning entities). Otherwise, if the wor ki ngSol ut i on and best Sol u-
ti on are used in different threads (for example a solver thread and a GUI event
thread), a race condition can occur.

297

Repeated Planning

@ Note

Many types of changes can leave a planning entity uninitialized, resulting in a par-
tially initialized solution. That's fine, as long as the first solver phase can handle it.
All construction heuristics solver phases can handle that, so it's recommended to
configure such a solver phase as the first phase.

In essence, the Sol ver stops, runs the Probl enfact Change and restarts. This is a warm start
because its initial solution is the adjusted best solution of the previous run. Each solver phase
runs again. This implies the construction heuristic runs again, but because little or no planning
variables are uninitialized (unless you have a nullable planning variable), it finishes much quicker
than in a cold start.

Each configured Ter mi nat i on resets (both in solver and phase configuration), but a previous call
to term nat eEar | y() is not undone. Normally however, you won't configure any Ter ni nati on
(except in daemon mode), just call Sol ver . t er mi nat eEar | y() when the results are needed. Al-
ternatively, do configure a Ter i nat i on and use the daemon mode in combination with Best So-
| uti onChangedEvent as described below.

15.5.2. Daemon: sol ve() Does Not Return

In real-time planning, it's often useful to have a solver thread wait when it runs out of work, and
immediately resume solving a problem once new problem fact changes are added. Putting the
Sol ver in daemon mode has these effects:

 If the Sol ver's Ter ni nat i on terminates, it does not return from sol ve() but blocks its thread
instead (which frees up CPU power).

» Except for term nat eEar | y(), which does make it return from sol ve(), freeing up system
resources and allowing an application to shutdown gracefully.

 Ifa Sol ver starts with an empty planning entity collection, it waits in the blocked state imme-
diately.

« If a Probl enfFact Change is added, it goes into the running state, applies the Probl em
Fact Change and runs the Sol ver again.

To configure the daemon mode:

<sol ver >
<daenon>t r ue</ daenon>

</ sol ver>

298

Repeated Planning

Warning

Don't forget to call Sol ver.termni nat eEarly() when your application needs to
shutdown to avoid killing the solver thread unnaturally.

Subscribe to the Best Sol uti onChangedEvent to process new best solutions found by the solver
thread. A Best Sol uti onChangedEvent doesn't guarantee that every Probl enfFact Change has
been processed already, nor that the solution is initialized and feasible. To ignore Best Sol ut i on-
ChangedEvent s with such invalid solutions, do this:

public voi d best Sol uti onChanged(Best Sol uti onChangedEvent <O oudBal ance> event) {
/1 lgnore invalid solutions
if (event.isEveryProbl enfact ChangePr ocessed()
&& event.i sNewBest Sol utionlnitialized()
&& event. get NewBest Sol uti on().getScore().isFeasible()) {

299

Chapter 16. Integration

16.1. Overview

Planner's input and output data (the planning problem and the best solution) are plain old Jav-
aBeans (POJO's), so integration with other Java technologies is straightforward. For example:

« To read a planning problem from the database (and store the best solution in it), annotate the
domain POJO's with JPA annotations.

e To read a planning problem from an XML file (and store the best solution in it), annotate the
domain POJO's with XStream or JAXB annotations.

« To expose the Solver as a REST Service that reads the planning problem and responds with
the best solution, annotate the domain POJO's with XStream or JAXB annotations and hook
the Sol ver in Camel or RESTEasy.

Integration overview

OptaPlanner combines easily with other Java and JEE technologies.

7 XML file
OptaPlanner@
xstream <cloudBalance>
@Planning Entity <computerList>
class Process { <computer id="1">__ <lcomputer=
@XStreamAlias(...)

class Process { <icomputerList=
<processlist=

<process®

@PlanningVariable
Computer getComputer() {...}
}

<name=A<hname=
Computer getComputer() {...} <computer raf="1"t>

} <lprocesss

<iprocesslists

Java beans /!9[JAXB]%;_'l/ff—\i

N ProcessB)
.->‘::--_
t Computer } Process D

"~ ProcessE)

JPA Relational Database
¥, HIBER —

(Computerz) ProcessF) —~— 0@ —
e @Entity Table PROCESS
clasa Proress { process id| process name | computer id
1 A 1 (%)

. . @ManyToOne 2 B
Inflnlspan ' JAX'R’S: Computer getComputer() {...} i E .1.
Hadoop, ... Camel, ...) s =

ar [F 3 (z)
. T G 3z
Data Grid REST/SOAP JDBC]
-—

300

Integration

16.2. Persistent Storage

16.2.1. Database: JPA and Hibernate

Enrich the domain POJO's (solution, entities and problem facts) with JPA annotations to store
them in a database.

@ Note
Do not confuse JPA's @nt i t y annotation with Planner's @Il anni ngEnt i t y anno-
tation. They can appear both on the same class:

@l anni ngEntity // OptaPl anner annotation
@ntity // JPA annotation
public class Talk {...}

Add a dependency to the opt apl anner - per si st ence-j pa jar to take advantage of these extra
integration features:

16.2.1.1. JPA and Hibernate: Persisting a score

When a Scor e is persisted into a relational database, JPA and Hibernate will default to Java
serializing it to a BLOB column. This has several disadvantages:

« The Java serialization format of Scor e classes is currently not backwards compatible. Upgrading
to a newer Planner version can break reading an existing database.

« The score is not easily readable for a query executed in the database console. This is annoying
during development.

» The score cannot be used in a SQL or JPA-QL query to filter the results: for example to query
all infeasible schedules.

To avoid these issues, configure it to use 2 | NTEGER columns instead by using the appropriate
*Scor eHi ber nat eType for your Scor e type, for example for a Har dSof t Scor e:

@! anni ngSol uti on

@ntity

@vypeDef (def aul t For Type = HardSoft Score. cl ass, typeC ass = HardSoft Scor eH ber nat eType. cl ass)
public class C oudBal ance inplenents Sol uti on<HardSoft Score> {

@ol ums(col ums = {@ol um(name = "hardScore"), @ol um(name = "softScore")})
protected HardSoft Score score;

301

Integration

In this case, the DDL will look like this:

CREATE TABLE C oudBal ance(. har dScor e | NTEGER, soft Score | NTEGER);
Cl oudBal ance(

har dScor e | NTEGER,

When using a Bi gDeci mal based Scor e, specify the precision and scale of the columns to avoid
silent rounding:

@l anni ngSol uti on

@ntity

@ypeDef (def aul t For Type = Har dSof t Bi gDeci nal Score. cl ass, typeC ass = Har dSof t Bi gDeci mal Scor eHi ber
public class C oudBal ance inpl enents Sol uti on<Har dSoft Bi gDeci nal Score> {

@Col ums(col ums = {
@Col um(name = "hardScore", precision = 10, scale
@ol um(nanme = "softScore", precision = 10, scale
protected HardSoft Bi gDeci mal Score score;

5),
5)1)

When using any type of bendable Scor e, specify the hard and soft level sizes as parameters:

@ anni ngSol uti on

@ntity

@ypeDef (def aul t For Type = Bendabl eScore. cl ass, typeC ass = Bendabl eScor eH ber nat eType. cl ass, paral
@ar anet er (nanme = "hardLevel sSi ze", value = "3"),
@Par anet er (nanme = "softlLevel sSize", value = "2")})

public class Schedul e i npl ements Sol uti on<Bendabl eScore> {

@ol ums(col ums = {
@ol um(name = "hardOScore"),
@ol um(name = "hardlScore"),
@ol um(name = "hard2Score"),
@ol um(name = "soft0Score"),
@Col um(nane = "soft1Score")})
prot ected Bendabl eScore score;

302

et ers

nat eType. cl ass)

{

Integration

All this support is Hibernate specific because currently JPA 2.1's converters do not support con-
verting to multiple columns.

16.2.1.2. JPA and Hibernate: Planning Cloning

In JPA and Hibernate, there is usually a @/anyToOne relationship from most problem fact classes
to the planning solution class. Therefore, the problem fact classes reference the planning solution
class, which implies that when the solution is planning cloned, they need to be cloned too. Use
an @eepPl anni ngC one on each such problem fact class to enforce that:

@l anni ngSol ution // OptaPlanner annotation
@ntity // JPA annotation
public class Conference {

@neToMany(mappedBy="conf er ence")
private List<Roon®> roonlist;

@xeepPl anni ngC one // OptaPl anner annotation: Force the default planning cloner to planning
clone this class too

@ntity // JPA annotation

public class Room {

@manyToOne

private Conference conference; // Because of this reference, this problem fact needs to
be pl anning cloned too

Neglecting to do this can lead to persisting duplicate solutions, JPA exceptions or other side
effects.

16.2.2. XML or JSON: XStream

Enrich the domain POJO's (solution, entities and problem facts) with XStream annotations to
serialize them to/from XML or JSON.

Add a dependency to the opt apl anner - per si st ence- xst reamjar to take advantage of these
extra integration features:

303

Integration

16.2.2.1. XStream: Marshalling a score

When a Scor e is marshalled to XML or JSON by the default XStream configuration, it's verbose
and ugly. To fix that, configure the XSt r eanScor eConvert er and provide the Scor eDefi ni ti on

as a parameter:

@ anni ngSol ut i on
@XSt reamAl i as(" C oudBal ance")
public class O oudBal ance inpl enents Sol uti on<HardSoft Score> {

@xStreanConverter(val ue = XStreanScoreConverter.class, types = {HardSoft ScoreDefinition.class})

private HardSoft Score score;

For example, this will generate pretty XML:

<Cl oudBal ance>

<scor e>0har d/ - 200sof t </ scor e>
</ Cl oudBal ance>

To use this for any type of bendable score, also provide 2 i nt parameters to define har dLevel -

sSi ze and soft Level sSi ze:

@ anni ngSol uti on
@XSt reamAl i as(" Schedul e")
public class Schedul e inplenents Sol uti on<Bendabl eScore> {

@xStreanConverter(val ue = XStreanScoreConverter.class, types = {Bendabl eScoreDefinition.class},

private Bendabl eScore score;

For example, this will generate:

<Schedul e>

<score>0/0/-100/ - 20/ - 3</ scor e>
</ Schedul e>

304

ints = {2, 3})

Integration

16.2.3. XML or JSON: JAXB

Enrich the domain POJO's (solution, entities and problem facts) with JAXB annotations to serialize
them to/from XML or JSON.

16.3. SOA and ESB

16.3.1. Camel and Karaf

Camel [http://camel.apache.org/] is an enterprise integration framework which includes support
for Planner (starting from Camel 2.13). It can expose a use case as a REST service, a SOAP
service, a JMS service, ...

Read the documentation for the camel-optaplanner component. [http://camel.apache.org/

optaplanner.html] That component works in Karaf too.

16.4. Other Environments

16.4.1. JBoss Modules, WildFly and JBoss EAP

To deploy an Planner web application on WildFly, simply include the optaplanner dependency
jars in the war file's VEB- | NF/ | i b directory (just like any other dependency) as shown in the
opt apl anner - webexanpl es- *. war . However, in this approach the war file can easily grow to
several MB in size, which is fine for a one-time deployment, but too heavyweight for frequent
redeployments (especially over a slow network connection).

The remedy is to use deliver the optaplanner jars in a JBoss module to WildFly and create a skinny
war. Let's create an module called org.optaplanner:

1. Navigate to the directory ${ W LDFLY_HOME}/ nodul es/ syst eni | ayer s/ base/ . This directory
contains the JBoss modules of WildFly. Create directory structure or g/ opt apl anner / mai n for
our new module.

a. Copy opt apl anner - cor e- ${versi on}. j ar and all its direct and transitive dependency jars
into that new directory. Use "mvn dependency:tree" on each optaplanner artifact to discover
all dependencies.

b. Create the file nodul e. xnl in that new directory. Give it this content:

<?xm version="1.0" encodi ng="UTF-8"?>
<nmodul e xm ns="urn:j boss: nodul e: 1. 3" nanme="or g. opt apl anner" >
<r esour ces>
<resource-root path="kie-api-${version}.jar"/>

<resource-root path="optaplanner-core-${version}.jar"/>

<resource-root path="."/>

305

http://camel.apache.org/
http://camel.apache.org/
http://camel.apache.org/optaplanner.html
http://camel.apache.org/optaplanner.html
http://camel.apache.org/optaplanner.html

Integration

</ resources>
<dependenci es>
<nodul e nane="j avaee. api "/ >
</ dependenci es>
</ nodul e>

2. Navigate to the deployed war file.

a. Remove opt apl anner - core- ${ versi on} . j ar and all its direct and transitive dependency
jars from the VEEB- | NF/ | i b directory in the war file.

b. Create the file j boss- depl oynent - st ruct ure. xnl in the WEB- I NF/ | i b directory. Give it
this content:

<?xm version="1.0" encodi ng="UTF-8" ?>
<j boss-depl oynent - st ruct ure>
<depl oynent >
<dependenci es>
<nodul e nane="org. opt apl anner” export="true"/>
</ dependenci es>
</ depl oynent >
</ j boss-depl oynment - st ruct ur e>

Because of JBoss Modules' O assLoader magic, you'll likely need to provide the O assLoader
of your classes during the SolverFactory creation, so it can find the classpath resources (such as
the solver config, score DRL's and domain classes) in your jars.

16.4.2. OSGi

The opt apl anner - cor e jar includes OSGi metadata in its MANI FEST. MF file to function properly in
an OSGi environment too. Furthermore, the maven artifact dr ool s- kar af - f eat ur es (which will
be renamed to ki e- kar af - f eat ur es) contains a f eat ures. xni file that supports the OSGi-fea-
ture opt apl anner - engi ne.

Because of the OSGi's O assLoader magic, you'll likely need to provide the C assLoader of your
classes during the SolverFactory creation, so it can find the classpath resources (such as the
solver config, score DRL's and domain classes) in your jars.

@ Note
Planner does not require OSGi. It works perfectly fine in a normal Java environment
too.

16.4.3. Android

Android is not a complete JVM (because some JDK libraries are missing), but Planner works on
Android with easy Java or incremental Java score calculation. The Drools rule engine does not

306

Integration

work on Android yet, so Drools score calculation doesn't work on Android and its dependencies
need to be excluded.

Workaround to use Planner on Android:

1. Add a dependency to the bui | d. gr adl e file in your Android project to exclude org. drool s
and xm pul I dependencies:

dependenci es { L conpi | e("' org. opt apl anner: opt apl anner-core:...") { excl ude
group: 'xmpul |’ excl ude group: 'org.drools' } Lo}
cies {
conpi | e(" org. opt apl anner: opt apl anner -
core:...") { excl ude
group: 'xmpull’ excl ude

group: 'org.drools'

}

16.5. Integration with Human Planners (Politics)

A good Planner implementation beats any good human planner for non-trivial datasets. Many
human planners fail to accept this, often because they feel threatened by an automated system.

But despite that, both can benefit if the human planner acts as supervisor to Planner:

e The human planner defines and validates the score function.

» Some examples expose a * Par anet ri zat i on object, which defines the weight for each score
constraint. The human planner can then tweak those weights at runtime.

» When the business changes, the score function often needs to change too. The human plan-
ner can notify the developers to add, change or remove score constraints.

e The human planner is always in control of Planner.

* As shown in the course scheduling example, the human planner can lock 1 or more planning
variables to a specific planning value and make those immovable. Because they are immov-
able, Planner does not change them: it optimizes the planning around the enforcements made
by the human. If the human planner locks all planning variables, he/she sidelines Planner
completely.

* In a prototype implementation, the human planner might use this occasionally. But as the
implementation matures, it must become obsolete. But do keep the feature alive: as a reas-
surance for the humans. Or in case that one day the business changes dramatically before
the score constraints can be adjusted.

Therefore, it's often a good idea to involve the human planner in your project.

307

Chapter 17. Design Patterns

17.1. Design Patterns Introduction

These design patterns list and solve common design challenges.

17.2. Assigning Time to Planning Entities

Dealing with time and dates in planning problems may be problematic because it is dependent
on the needs of your use case.

There are several representations of timestamps, dates, durations and periods in Java. Choose
the right representation type for your use case:
e java. util . Dat e (deprecated): a slow, error-prone way to represent timestamps. Do not use.

* javax.tine. Local Dat eTi ne, Local Dat e, DayOf Week, Dur at i on, Peri od, ...: an accurate way
to represent and calculate with timestamps, dates, ...

» Supports timezones and DST (Daylight Saving Time).
* Requires Java 8 or higher.
¢ On Java 7 use its backport called ThreeTen Backport instead.
e On Java 6 or lower, use its predecessor called Joda Time instead.

e int orlong: Caches atimestamp as a simplified number of coarse-grained time units (such as
minutes) from the start of the global planning time window or the epoch.

» Forexample: aLocal Dat eTi ne of 1- JAN 08: 00: 00 becomes ani nt of 400 minutes. Similarly
1- JAN 09: 00: 00 becomes 460 minutes.

« It often represents an extra field in a class, alongside the Local Dat eTi ne field from which
it was calculated. The Local Dat eTi ne is used for user visualization, but the i nt is used in
the score constraints.

* Itis faster in calculations, which is especially useful in the TimeGrain pattern.
» Do not use if timezones or DST affect the score constraints.

There are also several designs for assigning a planning entity to a starting time (or date):

» The starting time is fixed beforehand. It is not a planning variable (in such solver).

» For example, in the hospital bed planning example, the arrival day of each patient is fixed
beforehand.

308

Design Patterns

» This is common in multi stage planning, when the starting time has been decided already in
an earlier planning stage.

» The starting time is not fixed, it is a planning variable (genuine or shadow).
« If all planning entities have the same duration, use the Timeslot pattern.

« For example in course scheduling, all lectures take 1 hour. Therefore, each timeslot is 1
hour.

« If the duration differs and time is rounded to a specifc time granularity (for example 5 minutes)
use the TimeGrain pattern.

« For example in meeting scheduling, all meetings start at 15 minute intervals. All meetings
take 15, 30, 45, 60, 90 or 120 minutes.

« If the duration differs and one task starts immediately after the previous task (assigned to the
same executor) finishes, use the Chained Through Time pattern.

* For example in time windowed vehicle routing, each vehicle departs immediately to the
next customer when the delivery for the previous customer finishes.

Choose the right pattern depending on the use case:

309

Design Patterns

Assigning time to planning entities

There are several design patterns to deal with time, depending on your use case.

: ; 10: 11
800 8:15 830 845 9:00 %15 930 945 0:00 1015 10:30 10:45 00 11:15
I]]] |]]] |]]] |]
Timeslot Same duration for all planning entities
Room A ' Spanish
Room B Geography
1 h:aur 1 hbur 1 hbur
TimeGrain Course grained time granularity (15 minutes here)
pattern grain UTgllain 1Tglain ZTglain 3| grain 4 | grain 5 | grain & | grain 7 | grain & | grain 9 |grain 10|grain 11]grain 12
Room A % Sales meeting
T i g
Room B | | Architects meeting | _cocnination |
15 mins 1 hour 30 mins 30 mins
Chained through
time pattern No gaps to decide
Ann SP taxes |
Beth NL taxes DE taxes |

52 mins ' 74 mins 63 mins

17.2.1. Timeslot Pattern: Assign to a Fixed-Length Timeslot

If all planning entities have the same duration (or can be inflated to the same duration), the
Timeslot pattern is useful. The planning entities are assigned to a timeslot rather than time. For
example in course timetabling, all lectures take 1 hour.

The timeslots can start at any time. For example, the timeslots start at 8:00, 9:00, 10:15 (after a
15-minute break), 11:15, ... They can even overlap, but that is unusual.

It is also usable if all planning entities can be inflated to the same duration. For example in exam
timetabling, some exams take 90 minutes and others 120 minutes, but all timeslots are 120 min-
utes. When an exam of 90 minutes is assigned to a timeslot, for the remaining 30 minutes, its
seats are occupied too and cannot be used by another exam.

Usually there is a second planning variable, for example the room. In course timetabling, two
lectures are in conflict if they share the same room at the same timeslot. However, in exam
timetabling, that is allowed, if there is enough seating capacity in the room (although mixed exam
durations in the same room do inflict a soft score penalty).

310

Design Patterns

17.2.2. TimeGrain Pattern: Assign to a Starting TimeGrain

Assigning humans to start a meeting at 4 seconds after 9 o'clock is pointless because most human
activities have a time granularity of 5 minutes or 15 minutes. Therefore it is not necessary to allow
a planning entity to be assigned subsecond, second or even 1 minute accuracy. The 5 minute or
15 minutes accuracy suffices. The TimeGrain pattern models such time accuracy by partitioning
time as time grains. For example in meeting scheduling, all meetings start/end in hour, half hour,
or 15-minute intervals before or after each hour, therefore the optimal settings for time grains is
15 minutes.

Each planning entity is assigned to a start time grain. The end time grain is calculated by adding
the duration in grains to the starting time grain. Overlap of two entities is determined by comparing
their start and end time grains.

This pattern also works well with a coarser time granularity (such as days, half days, hours, ...).
With a finer time granularity (such as seconds, milliseconds, ...) and a long time window, the
value range (and therefore the search space) can become too high, which reduces efficiency and
scalability. However, such solution is not impossible, as shown in cheap time scheduling.

17.2.3. Chained Through Time Pattern: Assign in a Chain that
Determines Starting Time

If a person or a machine continuously works on 1 task at a time in sequence, which means
starting a task when the previous is finished (or with a deterministic delay), the Chained Through
Time pattern is useful. For example, in the vehicle routing with time windows example, a vehicle
drives from customer to customer (thus it handles one customer at a time).

In this pattern, the planning entities are chained. The anchor determines the starting time of its
first planning entity. The second entity's starting time is calculated based on the starting time and
duration of the first entity. For example, in task assignment, Beth (the anchor) starts working at
8:00, thus her first task starts at 8:00. It lasts 52 mins, therefore her second task starts at 8:52.
The starting time of an entity is usually a shadow variable.

An anchor has only one chain. Although it is possible to split up the anchor into two separate
anchors, for example split up Beth into Beth's left hand and Beth's right hand (because she can
do two tasks at the same time), this model makes pooling resources difficult. Consequently, using
this model in the exam scheduling example to allow two or more exams to use the same room
at the same time is problematic.

Between planning entities, there are three ways to create gaps:
« No gaps: This is common when the anchor is a machine. For example, a build server always
starts the next job when the previous finishes, without a break.

» Only deterministic gaps: This is common for humans. For example, any task that crosses the
10:00 barrier gets an extra 15 minutes duration so the human can take a break.

311

Design Patterns

» A deterministic gap can be subjected to complex business logic. For example in vehicle rout-
ing, a cross-continent truck driver needs to rest 15 minutes after 2 hours of driving (which
may also occur during loading or unloading time at a customer location) and also needs to
rest 10 hours after 14 hours of work.

» Planning variable gaps: This is uncommon, because an extra planning variable (which impacts
the search space) reduces efficiency and scalability.

17.3. Multi-stage planning

For practical or organizational reasons (such as Conway's law), complex planning problems are
often broken down in multiple stages. A typical example is train scheduling, where one depart-
ment decides where and when a train will arrive or depart, and another departments assigns the
operators to the actual train cars/locomotives.

Each stage has its own solver configuration (and therefore its own Sol ver Fact or y). Do not con-
fuse it with multi-phase solving which uses a one-solver configuration.

Similarly to Partitioned Search, multi-stage planning leads to suboptimal results. Nevertheless, it
may be beneficial in order to simplify the maintenance, ownership, and help to start a project.

312

Chapter 18. Development

18.1. Methodology Overview

The diagram below explains the overall structure of the OptaPlanner source code:

Methodology overview

Relation between code, examples, unit tests, integration tests, stress tests, documentation and slides

benchmark

Benchmarkers, stastistics
Generates HTML report.
See SingleBench...Result

Slides

Reveal.js html slides

Website

Source for optaplanner.org
Awestruct: AsciiDoc, HAML
See download. adoc

See index.htm/

POMs: optaplanner-core optaplanner-benchmark optaplanner-examples optaplanner-webexamples optaplanner-docs

In the diagram above, it's important to understand the clear separation between the configuration
and runtime classes.

The development philosophy includes:

* Reuse: The examples are reused as integration tests, stress tests and demo's. The documen-
tation images are reused as slides.

» Consistent terminology: Each example has a class App (executable class), Dao (Data Access
Object) and Panel (swing Ul).

« Consistent structure: Each example has the same packages: domai n, persi st ence, app,
sol ver and swi ngui .

313

Development

* Real world usefulness: Every feature is used in an example. Most examples are real world
use cases with real world constraints, often with real world data.

« Automated testing: There are unit tests, integration tests, performance regressions tests and
stress tests. The test coverage is high.

« Fail fast with an understandable error message: Invalid states are checked as early as pos-
sible.

18.2. Development guidelines

1. Fail fast. There are several levels of fail fast, from better to worse:

a.

Fail Fast at compile time. For example: Don't accept an Qbj ect as parameter if it needs
tobeasStringoraninteger.

. Fail Fast at startup time. For example: if the configuration parameter needs to be a positive

i nt and it's negative, fail fast

. Fail Fast at runtime. For example: if the request needs to contain a double between 0. 0

and 1. 0 and it's bigger than 1. 0, fail fast.

. Fail Fast at runtime in assertion mode if the detection performance cost is high. For exam-

ple: If, after every low level iteration, the variable A needs to be equal to the square root of B,
check itif and only if an assert flag is set to true (usually controlled by the EnvironmentMode).

2. Except i on messages

a. The Excepti on message must include the name and state of each relevant variable. For

example:

if (fooSize < 0) {
throw new I |11 egal Argunent Exception("The fooSi ze (" + fooSize + ") of bar (" + this + ")
must be positive.");

}

Notice that the output clearly explains what's wrong:

Exception in thread "main" java.lang.|l|egal Argunent Exception: The fooSize (-5) of bar (ny
Bar) nust be positive.
at ...

. Whenever possible, the Except i on message must include context.

. Whenever the fix is not obvious, the Excepti on message should include advice. Advice

normally starts with the word maybe on a new line:

314

Development

Exception in thread "nai n" java.l ang. ||| egal Stat eException: The val ueRangeDescri ptor (fooR
ange) is nullable, but not countable (false).
Maybe the nenber (get FooRange) should return Countabl eVal ueRange.

at

The word maybe is to indicate that the advice is not guaranteed to be right in all cases.

3. Generics. The Sol ut i on class is often passed as a generic type parameter to subsystems. The
Pl anni ngEnti ty class(es) are rarely passed as a generic type parameter.

315

	OptaPlanner User Guide
	Table of Contents
	Chapter 1. OptaPlanner Introduction
	1.1. What is OptaPlanner?
	1.2. Requirements
	1.3. What is a Planning Problem?
	1.3.1. A Planning Problem is NP-complete or NP-hard
	1.3.2. A Planning Problem Has (Hard and Soft) Constraints
	1.3.3. A Planning Problem Has a Huge Search Space

	1.4. Download and Run the Examples
	1.4.1. Get the Release .zip and Run the Examples
	1.4.2. Run the Examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.4.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT
	1.4.4. Build OptaPlanner from Source

	1.5. Governance
	1.5.1. Status of OptaPlanner
	1.5.2. Backwards Compatibility
	1.5.3. Community and Support
	1.5.4. Relationship with Drools and jBPM

	Chapter 2. Quick Start
	2.1. Cloud Balancing Tutorial
	2.1.1. Problem Description
	2.1.2. Problem Size
	2.1.3. Domain Model Design
	2.1.4. Main Method
	2.1.5. Solver Configuration
	2.1.6. Domain Model Implementation
	2.1.6.1. The Computer Class
	2.1.6.2. The Process Class
	2.1.6.3. The CloudBalance Class

	2.1.7. Score Configuration
	2.1.7.1. Easy Java Score Configuration
	2.1.7.2. Drools Score Configuration

	2.1.8. Beyond this Tutorial

	Chapter 3. Use Cases and Examples
	3.1. Examples Overview
	3.2. Basic Examples
	3.2.1. N Queens
	3.2.1.1. Problem Description
	3.2.1.2. Problem Size
	3.2.1.3. Domain Model

	3.2.2. Cloud Balancing
	3.2.3. Traveling Salesman (TSP - Traveling Salesman Problem)
	3.2.3.1. Problem Description
	3.2.3.2. Problem Size
	3.2.3.3. Problem Difficulty

	3.2.4. Dinner Party
	3.2.4.1. Problem Description
	3.2.4.2. Problem Size

	3.2.5. Tennis Club Scheduling
	3.2.5.1. Problem Description
	3.2.5.2. Problem Size
	3.2.5.3. Domain Model

	3.2.6. Meeting Scheduling
	3.2.6.1. Problem Description
	3.2.6.2. Problem Size

	3.3. Real Examples
	3.3.1. Course Timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)
	3.3.1.1. Problem Description
	3.3.1.2. Problem Size
	3.3.1.3. Domain Model

	3.3.2. Machine Reassignment (Google ROADEF 2012)
	3.3.2.1. Problem Description
	3.3.2.2. Problem Size
	3.3.2.3. Domain Model

	3.3.3. Vehicle Routing
	3.3.3.1. Problem Description
	3.3.3.2. Problem Size
	3.3.3.3. Domain Model
	3.3.3.4. Road Distances Instead of Air Distances

	3.3.4. Project Job Scheduling
	3.3.4.1. Problem Description
	3.3.4.2. Problem Size

	3.3.5. Hospital Bed Planning (PAS - Patient Admission Scheduling)
	3.3.5.1. Problem Description
	3.3.5.2. Problem Size
	3.3.5.3. Domain Model

	3.4. Difficult Examples
	3.4.1. Exam Timetabling (ITC 2007 track 1 - Examination)
	3.4.1.1. Problem Description
	3.4.1.2. Problem Size
	3.4.1.3. Domain Model

	3.4.2. Employee Rostering (INRC 2010 - Nurse Rostering)
	3.4.2.1. Problem Description
	3.4.2.2. Problem Size
	3.4.2.3. Domain Model

	3.4.3. Traveling Tournament Problem (TTP)
	3.4.3.1. Problem Description
	3.4.3.2. Problem Size

	3.4.4. Cheap Time Scheduling
	3.4.4.1. Problem Description
	3.4.4.2. Problem Size

	3.4.5. Investment asset class allocation (portfolio optimization)
	3.4.5.1. Problem Description
	3.4.5.2. Problem Size

	Chapter 4. Planner Configuration
	4.1. Overview
	4.2. Solver Configuration
	4.2.1. Solver Configuration by XML
	4.2.2. Solver Configuration by Java API
	4.2.3. Annotations Configuration
	4.2.3.1. Automatic Scanning for Annotations
	4.2.3.2. Annotation Alternatives

	4.3. Model a Planning Problem
	4.3.1. Is This Class a Problem Fact or Planning Entity?
	4.3.2. Problem Fact
	4.3.3. Planning Entity
	4.3.3.1. Planning Entity Annotation
	4.3.3.2. Planning Entity Difficulty

	4.3.4. Planning Variable
	4.3.4.1. Planning Variable Annotation
	4.3.4.2. Nullable Planning Variable
	4.3.4.3. When is a Planning Variable Considered Initialized?

	4.3.5. Planning Value and Planning Value Range
	4.3.5.1. Planning Value
	4.3.5.2. Planning Value Range Provider
	4.3.5.2.1. Overview
	4.3.5.2.2. ValueRangeProvider on the Solution
	4.3.5.2.3. ValueRangeProvider on the Planning Entity
	4.3.5.2.4. ValueRangeFactory
	4.3.5.2.5. Combine ValueRangeProviders

	4.3.5.3. Planning Value Strength
	4.3.5.4. Chained Planning Variable (TSP, VRP, ...)

	4.3.6. Shadow Variable
	4.3.6.1. Introduction
	4.3.6.2. Bi-directional Variable (Inverse Relation Shadow Variable)
	4.3.6.3. Anchor Shadow Variable
	4.3.6.4. Custom VariableListener
	4.3.6.5. VariableListener triggering order

	4.3.7. Planning Problem and Planning Solution
	4.3.7.1. Planning Problem Instance
	4.3.7.2. Solution Interface
	4.3.7.3. Extract the entities from the Solution
	4.3.7.4. The getScore() and setScore() Methods
	4.3.7.5. The getProblemFacts() Method
	4.3.7.5.1. Cached Problem Fact

	4.3.7.6. Cloning a Solution
	4.3.7.6.1. FieldAccessingSolutionCloner
	4.3.7.6.2. Custom Cloning: Make Solution Implement PlanningCloneable

	4.3.7.7. Create an Uninitialized Solution

	4.4. Use the Solver
	4.4.1. The Solver Interface
	4.4.2. Solving a Problem
	4.4.3. Environment Mode: Are There Bugs in my Code?
	4.4.3.1. FULL_ASSERT
	4.4.3.2. NON_INTRUSIVE_FULL_ASSERT
	4.4.3.3. FAST_ASSERT
	4.4.3.4. REPRODUCIBLE (default)
	4.4.3.5. PRODUCTION

	4.4.4. Logging Level: What is the Solver Doing?
	4.4.5. Random Number Generator

	Chapter 5. Score Calculation
	5.1. Score Terminology
	5.1.1. What is a Score?
	5.1.2. Score Constraint Signum (Positive or Negative)
	5.1.3. Score Constraint Weight
	5.1.4. Score Constraint Level (hard, soft, ...)
	5.1.5. Pareto Scoring (AKA Multi-objective Optimization Scoring)
	5.1.6. Combining Score Techniques
	5.1.7. Score interface
	5.1.8. Avoid Floating Point Numbers in Score Calculation

	5.2. Choose a Score Definition
	5.2.1. SimpleScore
	5.2.2. HardSoftScore (Recommended)
	5.2.3. HardMediumSoftScore
	5.2.4. BendableScore
	5.2.5. Implementing a Custom Score

	5.3. Calculate the Score
	5.3.1. Score Calculation Types
	5.3.2. Easy Java Score Calculation
	5.3.3. Incremental Java Score Calculation
	5.3.4. Drools Score Calculation
	5.3.4.1. Overview
	5.3.4.2. Drools Score Rules Configuration
	5.3.4.2.1. A scoreDrl Resource on the Classpath
	5.3.4.2.2. A scoreDrlFile
	5.3.4.2.3. A ksessionName in a Kjar from a Maven repository

	5.3.4.3. Implementing a Score Rule
	5.3.4.4. Weighing Score Rules

	5.3.5. InitializingScoreTrend
	5.3.6. Invalid Score Detection

	5.4. Score Calculation Performance Tricks
	5.4.1. Overview
	5.4.2. Average Calculation Count Per Second
	5.4.3. Incremental Score Calculation (with Deltas)
	5.4.4. Avoid Calling Remote Services During Score Calculation
	5.4.5. Pointless Constraints
	5.4.6. Built-in Hard Constraint
	5.4.7. Other Score Calculation Performance Tricks
	5.4.8. Score Trap
	5.4.9. stepLimit Benchmark
	5.4.10. Fairness Score Constraints

	5.5. Explaining the Score: Using Score Calculation Outside the Solver

	Chapter 6. Optimization Algorithms
	6.1. Search Space Size in the Real World
	6.2. Does Planner Find the Optimal Solution?
	6.3. Architecture Overview
	6.4. Optimization Algorithms Overview
	6.5. Which Optimization Algorithms Should I Use?
	6.6. Power tweaking or default parameter values
	6.7. Solver Phase
	6.8. Scope Overview
	6.9. Termination
	6.9.1. TimeMillisSpentTermination
	6.9.2. UnimprovedTimeMillisSpentTermination
	6.9.3. BestScoreTermination
	6.9.4. BestScoreFeasibleTermination
	6.9.5. StepCountTermination
	6.9.6. UnimprovedStepCountTermination
	6.9.7. CalculateCountTermination
	6.9.8. Combining Multiple Terminations
	6.9.9. Asynchronous Termination from Another Thread

	6.10. SolverEventListener
	6.11. Custom Solver Phase

	Chapter 7. Move and Neighborhood Selection
	7.1. Move and Neighborhood Introduction
	7.1.1. What is a Move?
	7.1.2. What is a MoveSelector?
	7.1.3. Subselecting of Entities, Values and Other Moves

	7.2. Generic MoveSelectors
	7.2.1. changeMoveSelector
	7.2.2. swapMoveSelector
	7.2.3. pillarChangeMoveSelector
	7.2.4. pillarSwapMoveSelector
	7.2.5. tailChainSwapMoveSelector or 2-opt (chained variables only)
	7.2.6. subChainChangeMoveSelector (chained variables only)
	7.2.7. subChainSwapMoveSelector (chained variables only)

	7.3. Combining Multiple MoveSelectors
	7.3.1. unionMoveSelector
	7.3.2. cartesianProductMoveSelector

	7.4. EntitySelector
	7.5. ValueSelector
	7.6. General Selector Features
	7.6.1. CacheType: Create Moves Ahead of Time or Just In Time
	7.6.2. SelectionOrder: Original, Sorted, Random, Shuffled or Probabilistic
	7.6.3. Recommended Combinations of CacheType and SelectionOrder
	7.6.3.1. Just in Time Random Selection (default)
	7.6.3.2. Cached Shuffled Selection
	7.6.3.3. Cached Random Selection

	7.6.4. Filtered Selection
	7.6.5. Sorted Selection
	7.6.5.1. Sorted Selection by SorterManner
	7.6.5.2. Sorted Selection by Comparator
	7.6.5.3. Sorted Selection by SelectionSorterWeightFactory
	7.6.5.4. Sorted Selection by SelectionSorter

	7.6.6. Probabilistic Selection
	7.6.7. Limited Selection
	7.6.8. Mimic Selection (Record/Replay)
	7.6.9. Nearby Selection

	7.7. Custom Moves
	7.7.1. Which Move Types Might be Missing in my Implementation?
	7.7.2. Custom Moves Introduction
	7.7.3. The Interface Move
	7.7.4. MoveListFactory: the Easy Way to Generate Custom Moves
	7.7.5. MoveIteratorFactory: Generate Custom Moves Just in Time

	Chapter 8. Exhaustive Search
	8.1. Overview
	8.2. Brute Force
	8.2.1. Algorithm Description
	8.2.2. Configuration

	8.3. Branch And Bound
	8.3.1. Algorithm Description
	8.3.2. Configuration

	8.4. Scalability of Exhaustive Search

	Chapter 9. Construction Heuristics
	9.1. Overview
	9.2. First Fit
	9.2.1. Algorithm Description
	9.2.2. Configuration

	9.3. First Fit Decreasing
	9.3.1. Algorithm Description
	9.3.2. Configuration

	9.4. Weakest Fit
	9.4.1. Algorithm Description
	9.4.2. Configuration

	9.5. Weakest Fit Decreasing
	9.5.1. Algorithm Description
	9.5.2. Configuration

	9.6. Strongest Fit
	9.6.1. Algorithm Description
	9.6.2. Configuration

	9.7. Strongest Fit Decreasing
	9.7.1. Algorithm Description
	9.7.2. Configuration

	9.8. Allocate Entity From Queue
	9.8.1. Algorithm Description
	9.8.2. Configuration
	9.8.3. Multiple Variables
	9.8.4. Multiple Entity Classes
	9.8.5. Pick Early Type

	9.9. Allocate To Value From Queue
	9.9.1. Algorithm Description
	9.9.2. Configuration

	9.10. Cheapest Insertion
	9.10.1. Algorithm Description
	9.10.2. Configuration

	9.11. Regret Insertion
	9.11.1. Algorithm Description
	9.11.2. Configuration

	9.12. Allocate From Pool
	9.12.1. Algorithm Description
	9.12.2. Configuration

	Chapter 10. Local Search
	10.1. Overview
	10.2. Local Search Concepts
	10.2.1. Step by Step
	10.2.2. Decide the Next Step
	10.2.3. Acceptor
	10.2.4. Forager
	10.2.4.1. Accepted Count Limit
	10.2.4.2. Pick Early Type

	10.3. Hill Climbing (Simple Local Search)
	10.3.1. Algorithm Description
	10.3.2. Stuck in Local Optima
	10.3.3. Configuration

	10.4. Tabu Search
	10.4.1. Algorithm Description
	10.4.2. Configuration

	10.5. Simulated Annealing
	10.5.1. Algorithm Description
	10.5.2. Configuration

	10.6. Late Acceptance
	10.6.1. Algorithm Description
	10.6.2. Configuration

	10.7. Step Counting Hill Climbing
	10.7.1. Algorithm Description
	10.7.2. Configuration

	10.8. Strategic Oscillation
	10.8.1. Algorithm Description
	10.8.2. Configuration

	10.9. Using a Custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

	Chapter 11. Evolutionary Algorithms
	11.1. Overview
	11.2. Evolutionary Strategies
	11.3. Genetic Algorithms

	Chapter 12. Hyperheuristics
	12.1. Overview

	Chapter 13. Partitioned Search
	13.1. Overview

	Chapter 14. Benchmarking And Tweaking
	14.1. Find The Best Solver Configuration
	14.2. Benchmark Configuration
	14.2.1. Add Dependency On optaplanner-benchmark
	14.2.2. Build And Run A PlannerBenchmark
	14.2.2.1. Inherited solver benchmark

	14.2.3. SolutionFileIO: Input And Output Of Solution Files
	14.2.3.1. SolutionFileIO Interface
	14.2.3.2. XStreamSolutionFileIO: The Default SolutionFileIO
	14.2.3.3. Custom SolutionFileIO
	14.2.3.4. Reading An Input Solution From A Database (Or Other Repository)

	14.2.4. Warming Up The HotSpot Compiler
	14.2.5. Benchmark Blueprint: A Predefined Configuration
	14.2.6. Write The Output Solution Of Benchmark Runs
	14.2.7. Benchmark Logging

	14.3. Benchmark Report
	14.3.1. HTML Report
	14.3.2. Ranking The Solvers

	14.4. Summary Statistics
	14.4.1. Best Score Summary (Graph And Table)
	14.4.2. Best Score Scalability Summary (Graph)
	14.4.3. Best Score Distribution Summary (Graph)
	14.4.4. Winning Score Difference Summary (Graph And Table)
	14.4.5. Worst Score Difference Percentage (ROI) Summary (Graph and Table)
	14.4.6. Average Calculation Count Summary (Graph and Table)
	14.4.7. Time Spent Summary (Graph And Table)
	14.4.8. Time Spent Scalability Summary (Graph)
	14.4.9. Best Score Per Time Spent Summary (Graph)

	14.5. Statistic Per Dataset (Graph And CSV)
	14.5.1. Enable A Problem Statistic
	14.5.2. Best Score Over Time Statistic (Graph And CSV)
	14.5.3. Step Score Over Time Statistic (Graph And CSV)
	14.5.4. Calculate Count Per Second Statistic (Graph And CSV)
	14.5.5. Best Solution Mutation Over Time Statistic (Graph And CSV)
	14.5.6. Move Count Per Step Statistic (Graph And CSV)
	14.5.7. Memory Use Statistic (Graph And CSV)

	14.6. Statistic Per Single Benchmark (Graph And CSV)
	14.6.1. Enable A Single Statistic
	14.6.2. Constraint Match Total Best Score Over Time Statistic (Graph And CSV)
	14.6.3. Constraint Match Total Step Score Over Time Statistic (Graph And CSV)
	14.6.4. Picked Move Type Best Score Diff Over Time Statistic (Graph And CSV)
	14.6.5. Picked Move Type Step Score Diff Over Time Statistic (Graph And CSV)

	14.7. Advanced Benchmarking
	14.7.1. Benchmarking Performance Tricks
	14.7.1.1. Parallel Benchmarking On Multiple Threads

	14.7.2. Statistical Benchmarking
	14.7.3. Template Based Benchmarking And Matrix Benchmarking
	14.7.4. Benchmark Report Aggregation

	Chapter 15. Repeated Planning
	15.1. Introduction to Repeated Planning
	15.2. Backup Planning
	15.3. Overconstrained Planning
	15.4. Continuous Planning (Windowed Planning)
	15.4.1. Immovable Planning Entities
	15.4.2. Nonvolatile Replanning to minimize disruption (Semi-movable Planning Entities)

	15.5. Real-time Planning
	15.5.1. ProblemFactChange
	15.5.2. Daemon: solve() Does Not Return

	Chapter 16. Integration
	16.1. Overview
	16.2. Persistent Storage
	16.2.1. Database: JPA and Hibernate
	16.2.1.1. JPA and Hibernate: Persisting a Score
	16.2.1.2. JPA and Hibernate: Planning Cloning

	16.2.2. XML or JSON: XStream
	16.2.2.1. XStream: Marshalling a Score

	16.2.3. XML or JSON: JAXB

	16.3. SOA and ESB
	16.3.1. Camel and Karaf

	16.4. Other Environments
	16.4.1. JBoss Modules, WildFly and JBoss EAP
	16.4.2. OSGi
	16.4.3. Android

	16.5. Integration with Human Planners (Politics)

	Chapter 17. Design Patterns
	17.1. Design Patterns Introduction
	17.2. Assigning Time to Planning Entities
	17.2.1. Timeslot Pattern: Assign to a Fixed-Length Timeslot
	17.2.2. TimeGrain Pattern: Assign to a Starting TimeGrain
	17.2.3. Chained Through Time Pattern: Assign in a Chain that Determines Starting Time

	17.3. Multi-stage planning

	Chapter 18. Development
	18.1. Methodology Overview
	18.2. Development guidelines

