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Chapter 1. OptaPlanner Introduction

1.1. What is OptaPlanner?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning
to do more business with less resources. This is known as Constraint Satisfaction Programming
(which is part of the Operations Research discipline).

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning
problems. It solves use cases such as:

* Employee shift rostering: timetabling nurses, repairmen, ...

» Agenda scheduling: scheduling meetings, appointments, maintenance jobs, advertisements, ...

* Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...

* Vehicle routing: planning vehicle routes (trucks, trains, boats, airplanes, ...) for moving freight
and/or passengers through multiple destinations using known mapping tools ...

* Bin packing: filling containers, trucks, ships, and storage warehouses with items, but also
packing information across computer resources, as in cloud computing ...

* Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, ...

» Cutting stock: minimizing waste while cutting paper, steel, carpet, ...

* Sport scheduling: planning games and training schedules for football leagues, baseball leagues,

» Financial optimization: investment portfolio optimization, risk spreading, ...


https://www.optaplanner.org
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What is a planning problem?

Optimize goals with limited resources under constraints

Optimize goals @ Maximize profit
(» Minimize ecological footprint
» Maximize happiness of employees / customers

With limited resources # Employees
mp Assets (machines, buildings, vehicles, ...)

(&) Time
(&) Budget

Under constraints @ vs (7) Working hours
W vs mp Skills / affinity
@ Vs (>) Logistic conflicts

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:
» Maximized profits - the optimal goal results in the highest possible profit.
* Minimized ecological footprint - the optimal goal has the least amount of environmental impact.
* Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available, such as:

* The number of people.
* Amount of time.
* Budget.
 Physical assets, for example, machinery, vehicles, computers, buildings, etc.
Specific constraints related to these resources must also be taken into account, such as the number

of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

OptaPlanner helps Java'™ programmers solve constraint satisfaction problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.



1.2.1. A planning problem is NP-complete or NP-hard
All the use cases above are probably NP-complete/NP-hard, which means in layman’s terms:

* It’s easy to verify a given solution to a problem in reasonable time.

* There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for

o every NP-complete problem.

In fact, there’s a $ 1,000,000 reward for anyone that proves if such a silver bullet
actually exists or not.

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the two common techniques won’t suffice:

* A Brute Force algorithm (even a smarter variant) will take too long.

* A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a good solution in
reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints
Usually, a planning problem has at least two levels of constraints:

* A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

* A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some basic problems (such as N queens) only have hard constraints. Some problems have three or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as Java™ code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:


https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_%3D_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem

* A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

* A feasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

* An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there are
no feasible solutions and the optimal solution isn’t feasible.

* The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time, it’s
an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it’s impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm, by changing the solver configuration in a few lines of XML or
code.

1.3. Requirements

OptaPlanner is open source software, released under the Apache License 2.0. This license is very
liberal and allows reuse for commercial purposes. Read the layman’s explanation.

OptaPlanner is 100% pure Java'" and runs on any JVM 8 or higher. It integrates very easily with
other Java'™ technologies. OptaPlanner is available in the Maven Central Repository.

OptaPlanner works on any Java Virtual Machine and is compatible with Standard Java, Enterprise
Java, and all JVM languages.


http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
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1.4. Governance

1.4.1. Status of OptaPlanner

OptaPlanner is stable, reliable and scalable. It has been heavily tested with unit, integration, and
stress tests, and is used in production throughout the world. One example handles over 50 000
variables with 5000 variables each, multiple constraint types and billions of possible constraint
matches.

1.4.2. Release notes

We release every month. Read the release notes of each release on our website.

1.4.3. Backwards compatibility
OptaPlanner separates its API and implementation:

* Public API: All classes in the package namespace org.optaplanner.core.api are 100%
backwards compatible in future releases (especially minor and hotfix releases). In rare
circumstances, if the major version number changes, a few specific classes might have a few
backwards incompatible changes, but those will be clearly documented in the upgrade recipe.

* XML configuration: The XML solver configuration is backwards compatible for all elements,
except for elements that require the use of non public API classes. The XML solver configuration


https://www.optaplanner.org/download/releaseNotes/
https://www.optaplanner.org/download/upgradeRecipe/

is defined by the classes in the package namespace org.optaplanner.core.config.

* Implementation classes: All classes in the package namespace org.optaplanner.core.impl are
not backwards compatible: they will change in future major or minor releases (but probably not
in hotfix releases). The upgrade recipe describes every such relevant change and on how to
quickly deal with it when upgrading to a newer version.

This documentation covers some impl classes too. Those documented impl classes

o are reliable and safe to use (unless explicitly marked as experimental in this
documentation), but we’re just not entirely comfortable yet to write their
signatures in stone.

1.4.4. Community and support

For news and articles, check our blog, twitter (including Geoffrey’s twitter) and facebook.
If you’re happy with OptaPlanner, make us happy by posting a tweet or blog article about it.

Public questions are welcome on here. Bugs and feature requests are welcome in our issue tracker.
Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your
improvements, you 'll benefit from our peer review and from our improvements made on top of
your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at these services.

1.4.5. Relationship with Drools and jBPM

OptaPlanner is part of the KIE group of projects. It releases regularly (often once or twice per
month) together with the Drools rule engine and the jBPM workflow engine.
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KIE functionality overview

What are the KIE projects?

Drools Drools
RuleDJnD::S Workbench Execution
and Complex Eve?ﬁt Processing , Server .
Design rules, REST/IMS service
Example: insurance rate calculation decision tables, ... for business rules
i, OptaPlanner OptaPlanner
& inpnfnﬂF:]ﬂi:ener Workbench Execution
and oplimiz%tior? solver . Server , ‘
Design solvers, REST/IMS service 5 redhat
Example: employee rostering benchmarks, ... for aptimization DM
- iBPM jBPM
\ IBPM Workbench Execution
Workflow engine Server
Design workflows, REST/IMS service " redhat
Example: morigage approval process forms, ... for workflows PAM
\ Jo J
Na Nd
Lightweight, embeddable engines (jars) Weh applications (wars)
which runin a Java VM which run on a Java Application Server

See the architecture overview to learn more about the optional integration with Drools.

1.5. Download and run the examples

1.5.1. Get the release ZIP and run the examples
To try it now:

1. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

2. Open the directory examples and run the script.

Linux or Mac:

$ cd examples
$ ./runExamples.sh

Windows:

$ cd examples
$ runExamples.bat


https://www.optaplanner.org

Distribution zip

Running the examples locally

@ Surf to www.optaplanner.org

Open the directory examples
and double click on runExamples

v optaplanner-distribution-*
@ Click on Ad Download OptaPlanner 3 binaries

v examples
> binaries
3 data
> sources

‘ = runExamples.bat]

@ Unzip [ optaplanner-distribution-*.zip

runExamples.sh
> |l javadocs

3 reference_manual
3 sources

3 webexamples

=| ReadMeOptaPlanner.txt

|:|||

UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Pick an example to try it out:



OptaPlanner examples x

Which example do you want to see?

* G:,O =—
Nurse rostering m Traveling salesman o Task assigning
| | (@

<3 &y -] +
Q_Q Conference scheduling Vehicle routing h Hospital bed planning i {(:Q-} Machine reassignment
| = | | @ |
-

" Cloud balancing

B &

000 o

=
Course timetabling Rock tour == Project job scheduling w N gueens
| | = | |
—

— L]
|_ [ ——] ] B
| j? Exam timetabling W Coach shuttle gathering "\ Cheap time scheduling R=he ID | Scrabble compacter
(= | KL [

)

‘ @8 Meeting scheduling ‘ ‘ \ Traveling tournament ‘ | ”ij% Investment allocation ‘ ‘ %: Dinner party ‘

‘ Tennis club scheduling ‘

Description
'y
-
I Show web examples |
www.optaplanner.org
h", I Documentation |
o OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.5.2. Run the examples in an IDE (Intelli], Eclipse, NetBeans)
To run the examples in your favorite IDE:

 In Intelli] IDEA, NetBeans or a non-vanilla Eclipse:

1. Open the file examples/sources/pom.xml as a new project, the maven integration will take
care of the rest.

2. Run the examples from the project.
* In a vanilla Eclipse (which lacks the M2Eclipse plugin):
1. Open a new project for the directory examples/sources .

2. Add all the jars to the classpath from the directory binaries and the directory
examples/binaries , except for the file examples/binaries/optaplanner-examples-*jar .

3. Add the Java source directory sr¢/main/java and the Java resources directory
src/main/resources .

4. Create a run configuration:
= Main class: org.optaplanner.examples.app.0OptaPlannerExamplesApp

= VM parameters (optional): -Xmx512M -server
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a. To run a specific example directly and skip the example selection window, run its App
class (for example CloudBalancingApp) instead of OptaPlannerExamplesApp.

5. Run that run configuration.

1.5.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr, or ANT

The OptaPlanner jars are available in the central maven repository (and the snapshots in the JBoss
maven repository).

If you use Maven, add a dependency to optaplanner-core in your pom.xml:

<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-core</artifactId>
<version>...</version>

</dependency>

Or better yet, import the optaplanner-bom in dependencyManagement to avoid duplicating version
numbers when adding other optaplanner dependencies later on:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-bom</artifactId>
<type>pom</type>
<version>...</version>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-core</artifactId>
</dependency>
<dependency>
<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-persistence-jpa</artifactld>
</dependency>

</dependencies>
</project>

If you use Gradle, add a dependency to optaplanner-core in your build.gradle:
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dependencies {
implementation 'org.optaplanner:optaplanner-core:#{site.pom.latestFinal.version}'

}

This is similar for Ivy and Buildr.

If you’re still using ANT (without Ivy), copy all the jars from the download zip’s binaries directory
in your classpath.

The download zip’s binaries directory contains far more jars then optaplanner-
core actually uses. It also contains the jars used by other modules, such as

o optaplanner-benchmark.

Check the maven repository pom.xml files to determine the minimal dependency set
of optaplanner-core etc.

1.5.4. Build OptaPlanner from source

Prerequisites

* Set up Git.
* Authenticate on GitHub using either HTTPS or SSH.

o See GitHub for more information about setting up and authenticating Git.

e Set up Maven.
Build and run the examples from source.

1. Clone optaplanner from GitHub (or alternatively, download the zipball):

$ git clone https://github.com/kiegroup/optaplanner.git

2. Build it with Maven:

$ cd optaplanner
$ mvn clean install -DskipTests

o The first time, Maven might take a long time, because it needs to download
jars.

3. Run the examples:
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$ cd optaplanner-examples
$ mvn exec:java

4. Edit the sources in your favorite IDE.

a. Optional: use a Java profiler.
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Chapter 2. Quick start

2.1. Overview

Each quick start gets you up and running with OptaPlanner quickly. Pick the quick start that best
aligns with your requirements:

* Spring Boot Java

o Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

o Spring Boot is a popular platform in the Java ecosystem.
* Java (plain Java SE)

- Build a normal Java application that uses OptaPlanner to optimize assignments of processes
to computers.

2.2. Spring Boot Java quick start

This guide walks you through the process of creating a Spring Boot application with OptaPlanner’s
constraint solving artificial intelligence (AI).

2.2.1. What you will build

You will build a REST application that optimizes a school timetable for students and teachers:

Score: DhardM8soft m By teacher By student group

Timeslot RoomA ® Room B ® RoomC &
Physics w Spanish w

Monday 08:30 - 09:30 & by M. Curie by P. Cruz
10th grade b th grade 2
Physics w Spanish w

Menday 09:30 - 10:30 & by M. Curie by P. Cruz
Gth grade 16 10th grade 3

e - -

Monday 13:30 - 14:30 W

Monday 14:30 - 15:30 W
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Your service will assign Lesson instances to Timeslot and Room instances automatically by using Al to
adhere to hard and soft scheduling constraints, such as the following examples:

* Aroom can have at most one lesson at the same time.

* Ateacher can teach at most one lesson at the same time.

* A student can attend at most one lesson at the same time.

* A teacher prefers to teach every lesson in a single room.

» A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
Mathematically speaking, school timetabling is an NP-hard problem. This means it is difficult to
scale. Simply using brute force to iterate through all possible combinations would take millions of
years for a non-trivial data set, even on a supercomputer. Luckily, Al constraint solvers such as

OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable
amount of time.

2.2.2. What yow’ll need

* JDK 8 or later
* Maven 3.2+ or Gradle4+

* An IDE, such as Intelli] IDEA, VSCode, Eclipse or NetBeans

2.2.3. The build file and the dependencies
Use Spring Initializr to generate an application with the following dependencies:

» Spring Web (spring-boot-starter-web)
* OptaPlanner (optaplanner-spring-boot-starter)

o Currently optaplanner-spring-boot-starter isn’t included in Spring Initializr yet. Add it
manually in your build file.

If you choose Maven, your pom. xml file has the following content:
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<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/PONM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.3.4.RELEASE</version>
</parent>

<groupId>com.example</groupld>

<artifactId>constraint-solving-ai-optaplanner</artifactId>

<version>0.1.0-SNAPSHOT</version>

<name>Constraint Solving AI with OptaPlanner</name>

<description>A Spring Boot OptaPlanner example to generate a school
timetable.</description>

<properties>
<java.version>1.8</java.version>
</properties>

<dependencies>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupld>org.optaplanner</groupId>
<artifactId>optaplanner-spring-boot-starter</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>



<groupId>org.optaplanner</groupId>
<artifactId>optaplanner-spring-boot-starter</artifactId>
<version>7.62.0.Final</version>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

</project>

On the other hand, in Gradle, your build.gradle file has this content:

plugins {
id "org.springframework.boot" version "2.3.4.RELEASE"
id "io.spring.dependency-management" version "1.0.9.RELEASE"
id "java"

}

group = "com.example"
version = "0.1.0-SNAPSHOT"
sourceCompatibility = "1.8"

repositories {
mavenCentral()

}

dependencies {
implementation "org.springframework.boot:spring-boot-starter-web"
implementation "org.optaplanner:optaplanner-spring-boot-starter:7.62.0.Final"
testImplementation("org.springframework.boot:spring-boot-starter-test") {
exclude group: "org.junit.vintage", module: "junit-vintage-engine"

}
}
test {
useJUnitPlatform()
}
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2.2.4. Model the domain objects

Your goal is to assign each lesson to a time slot and a room. You will create these classes:

Time table class diagram

Timeslot Lesson
dayOfWeek : DayOfWeek subject : String
startTime : LocalTime _ teacher : String
endTime : LocalTime — timeslot . studentGroup : String

Room
name : String room
0.1 *

2.2.4.1. Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. For simplicity’s sake, all time slots have the same duration and
there are no time slots during lunch or other breaks.

A time slot has no date, because a high school schedule just repeats every week. So there is no need
for continuous planning.

Create the src/main/java/com/example/domain/Timeslot. java class:
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package com.example.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {

private DayOfWeek dayOfWeek;
private LocalTime startTime;
private LocalTime endTime;

private Timeslot() {
}

public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
this.dayOfWeek = dayOfWeek;
this.startTime = startTime;
this.endTime = endTime;

public String toString() {

return dayOfWleek + " " + startTime.toString();

}

// kkhkhkrkrrrkkkkhkhkhhhrkkkkkhkhkhkhrkkrkhkhikrkkx

// Getters and setters

// kkkkkkkkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkkkk

public DayOfWeek getDayOfWeek() {
return dayOfWeek;
}

public LocalTime getStartTime() {
return startTime;

}

public LocalTime getEndTime() {
return endTime;

}

Because no Timeslot instances change during solving, a Timeslot is called a problem fact. Such
classes do not require any OptaPlanner specific annotations.

Notice the toString() method keeps the output short, so it is easier to read OptaPlanner’s DEBUG or
TRACE log, as shown later.
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2.2.4.2. Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. For
simplicity’s sake, all rooms are without capacity limits and they can accommodate all lessons.

Create the src/main/java/com/example/domain/Room. java class:

package com.example.domain;
public class Room {
private String name;

private Room() {
}

public Room(String name) {
this.name = name;

}

public String toString() {
return name;

}

// kkkkkkkkkhkkhkkkhkkhkhkkhkkhkkkhkkhkkkkkk

// Getters and setters

// kkkkhkhkhkkkkhkhkhhhkkkkkhkhhhkkkkkhkhkhkhkkx

public String getName() {
return name;

}

Room instances do not change during solving, so Room is also a problem fact.

2.2.4.3. Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students,
for example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times per week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons
a week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class, to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning
entity:

20



Time table class diagram

The timeslot and room fields are
normally null before solving
and non-null after solving

@PlanningEntity

Timeslot Lesson
dayOfWeek : DayOfWeek @PlanningVariable subject : String
startTime : LocalTime ] , | teacher : String
endTime : LocalTime LG studentGroup : String

0.1 *

| Room @PlanningVariable
name : String ree AL

0.1 *

Most of the fields in the previous diagram contain input data, except for the orange fields: A
lesson’s timeslot and room fields are unassigned (null) in the input data and assigned (not null) in
the output data. OptaPlanner changes these fields during solving. Such fields are called planning
variables. In order for OptaPlanner to recognize them, both the timeslot and room fields require an
@PlanningVariable annotation. Their containing class, Lesson, requires an @PlanningEntity
annotation.

Create the src/main/java/com/example/domain/Lesson. java class:
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package com.example.domain;

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

@PlanningEntity
public class Lesson {

private Long 1id;
private String subject;

private String teacher;
private String studentGroup;

@PlanningVariable(valueRangeProviderRefs
private Timeslot timeslot;

"timeslotRange")

@PlanningVariable(valueRangeProviderRefs = "roomRange")
private Room room;

private Lesson() {

}

public Lesson(Long id, String subject, String teacher, String studentGroup) {
this.id = id;
this.subject = subject;
this.teacher = teacher;
this.studentGroup = studentGroup;

}

@0verride
public String toString() {
return subject + "(" + id + ")";

}

// kkhkhkhrrhrkkkkhkhkhhhrkkkkkhkhkhhrhkkrkrkhkikhrkkx

// Getters and setters

// kkhkhrkrrrkkkkhkhkhkhrhrkkkkkhkhkhhrkkrkhkhikrkkx

public Long getId() {
return 1id;

}

public String getSubject() {
return subject;

}

public String getTeacher() {
return teacher;



public String getStudentGroup() {
return studentGroup;

}

public Timeslot getTimeslot() {
return timeslot;

}

public void setTimeslot(Timeslot timeslot) {
this.timeslot = timeslot;

}

public Room getRoom() {
return room;

}

public void setRoom(Room room) {
this.room = room;

}

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class changes
during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can change its
value. In order to find potential Timeslot instances to assign to this field, OptaPlanner uses the
valueRangeProviderRefs property to connect to a value range provider (explained later) that
provides a List<Timeslot> to pick from.

The room field also has an @PlanningVariable annotation, for the same reasons.

Determining the @PlanningVariable fields for an arbitrary constraint solving use
o case is often challenging the first time. Read the domain modeling guidelines to
avoid common pitfalls.

2.2.5. Define the constraints and calculate the score

A score represents the quality of a specific solution. The higher the better. OptaPlanner looks for the
best solution, which is the solution with the highest score found in the available time. It might be
the optimal solution.

Because this use case has hard and soft constraints, use the HardSoftScore class to represent the
score:

* Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.
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 Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted too,
against other soft constraints. Hard constraints always outweigh soft constraints, regardless of
their respective weights.

To calculate the score, you could implement an EasyScoreCalculator class:

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<
TimeTable, HardSoftScore> {

@0verride
public HardSoftScore calculateScore(TimeTable timeTable) {
List<Lesson> lessonlList = timeTable.getlLessonList();
int hardScore = 0;
for (Lesson a : lessonlist) {
for (Lesson b : lessonlList) {
if (a.getTimeslot() != null && a.getTimeslot().equals(b

.getTimeslot())

&& a.getId() < b.getId()) {

// A room can accommodate at most one lesson at the same time.

if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
hardScore--;

}

// A teacher can teach at most one lesson at the same time.

if (a.getTeacher().equals(b.getTeacher())) {
hardScore--;

}

// A student can attend at most one lesson at the same time.

if (a.getStudentGroup().equals(b.getStudentGroup())) {
hardScore--;

}

}
}
}

int softScore = 0;
// Soft constraints are only implemented in the "complete" implementation
return HardSoftScore.of(hardScore, softScore);

Unfortunately that does not scale well, because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

Instead, create a src/main/java/com/example/solver/TimeTableConstraintProvider.java class to
perform incremental score calculation. It uses OptaPlanner’s ConstraintStream API which is
inspired by Java 8 Streams and SQL:
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package com.example.solver;

import com.example.domain.Lesson;

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.score.stream.Constraint;

import org.optaplanner.core.api.score.stream.ConstraintFactory;
import org.optaplanner.core.api.score.stream.ConstraintProvider;
import org.optaplanner.core.api.score.stream.Joiners;

public class TimeTableConstraintProvider implements ConstraintProvider {

@0verride
public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
return new Constraint[] {
// Hard constraints
roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),
// Soft constraints are only implemented in the "complete"
implementation
iy
}

private Constraint roomConflict(ConstraintFactory constraintFactory) {
// A room can accommodate at most one lesson at the same time.

// Select a lesson ...
return constraintFactory.from(Lesson.class)
// ... and pair it with another lesson ...
.join(Lesson.class,
// ... in the same timeslot ...
Joiners.equal(Lesson::getTimeslot),
// ... in the same room ...
Joiners.equal(Lesson::getRoom),
// ... and the pair is unique (different id, no reverse
pairs)
Joiners.lessThan(Lesson::getId))
// then penalize each pair with a hard weight.
.penalize("Room conflict", HardSoftScore.ONE_HARD);
}

private Constraint teacherConflict(ConstraintFactory constraintFactory) {
// A teacher can teach at most one lesson at the same time.
return constraintFactory.from(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getTeacher),
Joiners.lessThan(Lesson::getld))
.penalize("Teacher conflict", HardSoftScore.ONE_HARD);
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private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
// A student can attend at most one lesson at the same time.
return constraintFactory.from(Lesson.class)
.join(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getStudentGroup),
Joiners.lessThan(Lesson::getld))
.penalize("Student group conflict", HardSoftScore.ONE_HARD);

The ConstraintProvider scales an order of magnitude better than the EasyScoreCalculator: O(n)
instead of O(n2).

2.2.6. Gather the domain objects in a planning solution

A TimeTable wraps all Timeslot, Room, and Lesson instances of a single dataset. Furthermore, because
it contains all lessons, each with a specific planning variable state, it is a planning solution and it
has a score:

* If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with
the score -4init/0@hard/0soft.

o If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

« If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score Qhard/-7soft.

Create the src/main/java/com/example/domain/TimeTable.java class
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package com.example.domain;

import

import
import
import
import
import
import

java.util.List;

org.optaplanner.core.
org.optaplanner.core.
org.optaplanner.core.
org.optaplanner.core.
org.optaplanner.core.
org.optaplanner.core.

@PlanningSolution

public

class TimeTable {

api
api
api
api
api
api

.domain.solution.PlanningEntityCollectionProperty;
.domain.solution.PlanningScore;
.domain.solution.PlanningSolution;
.domain.solution.ProblemFactCollectionProperty;
.domain.valuerange.ValueRangeProvider;
.score.buildin.hardsoft.HardSoftScore;

@ValueRangeProvider(id = "timeslotRange")
@ProblemFactCollectionProperty
private List<Timeslot> timeslotList;

@ValueRangeProvider(id = "roomRange")
@ProblemFactCollectionProperty

private List<Room> roomList;

@PlanningEntityCollectionProperty
private List<Lesson> lessonlList;

@PlanningScore

private HardSoftScore score;

private TimeTable() {

}

public TimeTable(List<Timeslot> timeslotlList, List<Room> roomlList,
List<Lesson> lessonlList) {

this.timeslotlList = timeslotlList;

this.roomList = roomList;

this.lessonlList = lessonlList;

}

// kkkhkhkhrhrkkkkkhkhhhrkkkkkhkhkhhrhkkkikikikhrkkx

// Getters and setters

// kkhkhkhrhrhrkkkkhkhkhhhkkkkkhkhhhrhkkkrkhkikhrkkx

public List<Timeslot> getTimeslotList() {

}

return timeslotList;

public List<Room> getRoomList() {

}

return roomList;
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public List<Lesson> getlLessonList() {
return lessonlist;

}

public HardSoftScore getScore() {
return score;

}

The TimeTable class has an @PlanningSolution annotation, so OptaPlanner knows that this class
contains all of the input and output data.

Specifically, this class is the input of the problem:

* A timeslotlist field with all time slots

o This is a list of problem facts, because they do not change during solving.
* AroomlList field with all rooms

o This is a list of problem facts, because they do not change during solving.
* A lessonlist field with all lessons

o This is a list of planning entities, because they change during solving.

o Of each Lesson:

= The values of the timeslot and room fields are typically still null, so unassigned. They are
planning variables.

= The other fields, such as subject, teacher and studentGroup, are filled in. These fields are
problem properties.
However, this class is also the output of the solution:
e A lessonlist field for which each Lesson instance has non-null timeslot and room fields after
solving

* A score field that represents the quality of the output solution, for example, @hard/-5soft

2.2.6.1. The value range providers

The timeslotlList field is a value range provider. It holds the Timeslot instances which OptaPlanner
can pick from to assign to the timeslot field of Lesson instances. The timeslotList field has an
@ValueRangeProvider annotation to connect the @PlanningVariable with the @ValueRangeProvider, by
matching the value of the id property with the value of the valueRangeProviderRefs property of the
@PlanningVariable annotation in the Lesson class.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.
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2.2.6.2. The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances wused for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

2.2.7. Create the solver service

Now you are ready to put everything together and create a REST service. But solving planning
problems on REST threads causes HTTP timeout issues. Therefore, the Spring Boot starter injects a
SolverManager instance, which runs solvers in a separate thread pool and can solve multiple
datasets in parallel.

Create the src/main/java/com/example/solver/TimeTableController.java class:

29



package com.example.solver;

import java.util.UUID;
import java.util.concurrent.ExecutionException;

import com.example.domain.TimeTable;

import org.optaplanner.core.api.solver.SolverJob;

import org.optaplanner.core.api.solver.SolverManager;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

("/timeTable")
public class TimeTableController {

private SolverManager<TimeTable, UUID> solverManager;

("/solve")
public TimeTable solve( TimeTable problem) {
UUID problemId = UUID.randomUUID();
// Submit the problem to start solving
SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemld,
problem);
TimeTable solution;
try {
// Wait until the solving ends
solution = solverJob.getFinalBestSolution();
} catch (InterruptedException | ExecutionException e) {
throw new I1legalStateException("Solving failed.", e);
}

return solution;

For simplicity’s sake, this initial implementation waits for the solver to finish, which can still cause
an HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.

2.2.8. Set the termination time

Without a termination setting or a termination event, the solver runs forever. To avoid that, limit
the solving time to five seconds. That is short enough to avoid the HTTP timeout.

Create the src/main/resources/application.properties file:
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# The solver runs only for 5 seconds to avoid a HTTP timeout in this simple
implementation.

# It's recommended to run for at least 5 minutes ("5m") otherwise.
optaplanner.solver.termination.spent-limit=5s

2.2.9. Make the application executable
Package everything into a single executable JAR file driven by a standard Java main() method:

Replace the DemoApplication.java class created by Spring Initializr with
src/main/java/com/example/TimeTableSpringBootApp.java class:

package com.example;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
public class TimeTableSpringBootApp {
public static void main(String[] args) {

SpringApplication.run(TimeTableSpringBootApp.class, args);
}

Run that class as the main class of a normal Java application.

2.2.9.1. Try the application

the

Now that the application is running, you can test the REST service. You can use any REST client you

wish. The following example uses the Linux command curl to send a POST request:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-
Type:application/json" -d

"{"timeslotList":[{"dayOfWeek": "MONDAY","startTime":"08:30:00","endTime":"09:30:00"}, {

"dayOfWeek": "MONDAY", "startTime":"09:30:00","endTime":"10:30:00"}], "roomList":[{"name"
:"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math", "teacher":"A.
Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th grade"},{"id":3,"subject":"French", "teacher":"M.
Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I.

Jones", "studentGroup":"10th grade"}]}'

After about five seconds, according to the termination spent time defined in your
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ap

plication.properties, the service returns an output similar to the following example:

HTTP/1.1 200
Content-Type: application/json

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math", "teacher":"A
. Turing","studentGroup":"9th

grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"08:30:00", "endTime":"09:30:00"},"
room":{"name":"Room A"}},{"id":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th

grade","timeslot":{"dayOfWeek": "MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"
room":{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th
grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"
room":{"name":"Room B"}},{"id":4,"subject": "History
Jones", "studentGroup":"10th
grade","timeslot":{"dayOfWeek":"MONDAY", "startTime":"09:30:00", "endTime":"10:30:00"},"

room":{"name":"Room B"}}],"score":"@hard/0@soft"}

,"teacher":"I.

Notice that your application assigned all four lessons to one of the two time slots and one of the two

ro
in

oms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are
different time slots.

On the server side, the info log show what OptaPlanner did in those five seconds:

. Solving started: time spent (33), best score (-8init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (@) ended: time spent (73), best score (@hard/@soft),
score calculation speed (459/sec), step total (4).

. Local Search phase (1) ended: time spent (5000), best score (@hard/@soft), score
calculation speed (28949/sec), step total (28398).

. Solving ended: time spent (5000), best score (@hard/@soft), score calculation
speed (28524/sec), phase total (2), environment mode (REPRODUCIBLE).

2.2.9.2. Test the application

A good application includes test coverage. In a JUnit test, generate a test dataset and send it to the
TimeTableController to solve.

Create the src/test/java/com/example/solver/TimeTableControllerTest.java class:
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package com.example.solver;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.Arraylist;
import java.util.List;

import com.example.domain.Lesson;

import com.example.domain.Room;

import com.example.domain.TimeTable;

import com.example.domain.Timeslot;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.Timeout;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

(properties = {
"optaplanner.solver.termination.spent-limit=1h", // Effectively disable
this termination in favor of the best-score-limit
"optaplanner.solver.termination.best-score-limit=0hard/*soft"})
public class TimeTableControllerTest {

private TimeTableController timeTableController;

(600_000)
public void solve() {

TimeTable problem = generateProblem();

TimeTable solution = timeTableController.solve(problem);

assertFalse(solution.getlLessonList().isEmpty());

for (Lesson lesson : solution.getlessonlList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());

}

assertTrue(solution.getScore().isFeasible());

}

private TimeTable generateProblem() {
List<Timeslot> timeslotlList = new ArraylList<>();
timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30),
LocalTime.of(9, 30)));
timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30),
LocalTime.of(10, 30)));
timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30),
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LocalTime.of (11, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30),
LocalTime.of (14, 30)));

timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30),
LocalTime.of (15, 30)));

List<Room> roomList = new ArraylList<>();
roomList.add(new Room("Room A"));
roomList.add(new Room("Room B"));
roomList.add(new Room("Room C"));

List<Lesson> lessonlList = new ArraylList<>();

lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade"));
lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade"));
lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade"));
lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade"));
lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade"));

lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade"));
lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade"));
lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade"));
lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade"));
lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade"));
return new TimeTable(timeslotlList, roomList, lessonList);

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies
that it found a feasible solution (no hard constraints broken).

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
@SpringBootTest annotation’s properties property overwrites the solver termination to terminate as
soon as a feasible solution (@hard/*soft) is found. This avoids hard coding a solver time, because the
unit test might run on arbitrary hardware. This approach ensures that the test runs long enough to
find a feasible solution, even on slow machines. But it does not run a millisecond longer than it
strictly must, even on fast machines.

2.2.9.3. Logging

When adding constraints in your ConstraintProvider, keep an eye on the score calculation speed in
the info log, after solving for the same amount of time, to assess the performance impact:

... Solving ended: ..., score calculation speed (29455/sec), ...
To understand how OptaPlanner is solving your problem internally, change the logging in the

application.properties file or with a -D system property:
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logging.level.org.optaplanner=debug

Use debug logging to show every step:

. Solving started: time spent (67), best score (-20init/@hard/@soft), environment
mode (REPRODUCIBLE), random (JDK with seed 0).
. CH step (@), time spent (128), score (-18init/@hard/@soft), selected move
count (15), picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY
08:30}1).
. CH step (1), time spent (145), score (-16init/@hard/@soft), selected move
count (15), picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY
09:30}1).

Use trace logging to show every step and every move per step.

2.2.10. Summary

Congratulations! You have just developed a Spring application with OptaPlanner!

2.2.11. Further improvements: Database and Ul integration
Now try adding database and Ul integration:

1. Create JPA repositories for Timeslot, Room, and Lesson.
2. Expose them through REST.

3. Build a TimeTableRepository facade to read and write a TimeTable instance in a single
transaction.

4. Adjust the TimeTableController accordingly:
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package com.example.solver;

import com.example.domain.TimeTable;

import com.example.persistence.TimeTableRepository;

import org.optaplanner.core.api.score.ScoreManager;

import org.optaplanner.core.api.solver.SolverManager;

import org.optaplanner.core.api.solver.SolverStatus;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/timeTable")
public class TimeTableController {

@Autowired

private TimeTableRepository timeTableRepository;
@Autowired

private SolverManager<TimeTable, Long> solverManager;
@Autowired

private ScoreManager<TimeTable> scoreManager;

// To try, GET http://localhost:8080/timeTable
@GetMapping()
public TimeTable getTimeTable() {
// Get the solver status before loading the solution
// to avoid the race condition that the solver terminates between them
SolverStatus solverStatus = getSolverStatus();
TimeTable solution = timeTableRepository.findById(TimeTableRepository
.SINGLETON_TIME TABLE_ID);
scoreManager .updateScore(solution); // Sets the score
solution.setSolverStatus(solverStatus);
return solution;

}

@PostMapping("/solve")
public void solve() {
solverManager.solveAndListen(TimeTableRepository
.SINGLETON_TIME_TABLE_ID,
timeTableRepository::findById,
timeTableRepository::save);

}

public SolverStatus getSolverStatus() {
return solverManager.getSolverStatus(TimeTableRepository
.SINGLETON_TIME_TABLE_ID);

}



("/stopSolving")
public void stopSolving() {
solverManager.terminateEarly(TimeTableRepository
.SINGLETON_TIME_TABLE_ID);
}

For simplicity’s sake, this code handles only one TimeTable instance, but it is straightforward to
enable multi-tenancy and handle multiple TimeTable instances of different high schools in
parallel.

The getTimeTable() method returns the latest timetable from the database. It uses the
ScoreManager (which is automatically injected) to calculate the score of that timetable, so the UI
can show the score.

The solve() method starts a job to solve the current timetable and store the time slot and room
assignments in the database. It uses the SolverManager.solveAndListen() method to listen to
intermediate best solutions and update the database accordingly. This enables the UI to show
progress while the backend is still solving.

5. Adjust the TimeTableControllerTest instance accordingly, now that the solve() method returns
immediately. Poll for the latest solution until the solver finishes solving:

37



package com.example.solver;

import
import
import
import
import
import
import

import
import
import

com.example.domain.Lesson;
com.example.domain.TimeTable;
org.junit.jupiter.api.Test;
org.junit.jupiter.api.Timeout;
org.optaplanner.core.api.solver.SolverStatus;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.boot.test.context.SpringBootTest;

static org.junit.jupiter.api.Assertions.assertFalse;
static org.junit.jupiter.api.Assertions.assertNotNull;
static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(properties = {

"optaplanner.solver.termination.spent-limit=1h", // Effectively disable

this termination in favor of the best-score-limit

public

"optaplanner.solver.termination.best-score-limit=0hard/*soft"})
class TimeTableControllerTest {

@Autowired
private TimeTableController timeTableController;

@Test
@Timeout(600_000)
public void solveDemoDataUntilFeasible() throws InterruptedException {

timeTableController.solve();
TimeTable timeTable = timeTableController.getTimeTable();
while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) {
// Quick polling (not a Test Thread Sleep anti-pattern)
// Test is still fast on fast machines and doesn't randomly fail on

slow machines.

Thread.sleep(20L);
timeTable = timeTableController.getTimeTable();
}
assertFalse(timeTable.getlLessonList().isEmpty());
for (Lesson lesson : timeTable.getlLessonList()) {
assertNotNull(lesson.getTimeslot());
assertNotNull(lesson.getRoom());
}

assertTrue(timeTable.getScore().isFeasible());

6. Build an attractive web UI on top of these REST methods to visualize the timetable.

Take a look at the example’s source code to see how this all turns out.
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2.3. Java quick start

2.3.1. Cloud balancing tutorial

2.3.1.1. Problem description

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer.

The following hard constraints must be fulfilled:
* Every computer must be able to handle the minimum hardware requirements of the sum of its

processes:

o CPU capacity: The CPU power of a computer must be at least the sum of the CPU power
required by the processes assigned to that computer.

o Memory capacity: The RAM memory of a computer must be at least the sum of the RAM
memory required by the processes assigned to that computer.

- Network capacity: The network bandwidth of a computer must be at least the sum of the
network bandwidth required by the processes assigned to that computer.

The following soft constraints should be optimized:

* Each computer that has one or more processes assigned, incurs a maintenance cost (which is
fixed per computer).

o Cost: Minimize the total maintenance cost.

This problem is a form of bin packing. The following is a simplified example, in which we assign
four processes to two computers with two constraints (CPU and RAM) with a simple algorithm:
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Optimal solution

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it is not
optimal, as it does not leave enough room to assign the yellow process D.

OptaPlanner does find the more optimal solution by using additional, smarter algorithms. It also
scales: both in data (more processes, more computers) and constraints (more hardware
requirements, other constraints). So let’s see how OptaPlanner can be used in this scenario.

Here’s an executive summary of this example and an advanced implementation with more
constraints:
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CloudBalancing benchmark Average Min/Max # datasets Biggest dataset

Cloud hosting cost -18% %% 5 800 pocecees

OptaPlanner versus traditional algorithm with domain knowledge 5 mins Simulated Annealing vs First Fit Decreasing
MachineReassignment benchmark Average Min/Max # datasets Biggest dataset
1 0/ -25% 50k machines

Hardware congestion -63% &5 = Lo
OptaPlanner versus arbitrary feasible assignments 5 mins Tabu Search vs First Feasible Fit

Dan't believe us? Run our open benchmarks yourself: hitps:/fww.optaplanner.org/code/benchmarks. htmi

2.3.1.2. Problem size

Table 1. Cloud Balancing Problem Size

Problem Size Computers Processes Search Space
2computers-6processes 2 6 64
3computers-9processes 3 9 1004
4computers- 4 12 1017
012processes

100computers- 100 300 107600
300processes

200computers- 200 600 1071380
600processes

400computers- 400 1200 1073122
1200processes

800computers- 800 2400 1076967
2400processes

2.3.2. Using the domain model
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2.3.2.1. Domain model design

Using a domain model helps determine which classes are planning entities and which of their
properties are planning variables. It also helps to simplify constraints, improve performance, and
increase flexibility for future needs.

To create a domain model, define all the objects that represent the input data for the problem. In
this simple example, the objects are processes and computers.

A separate object in the domain model must represent a full data set of problem, which contains
the input data as well as a solution. In this example, this object holds a list of computers and a list of
processes. Each process is assigned to a computer; the distribution of processes between computers
is the solution.

1. Draw a class diagram of your domain model.

2. Normalize it to remove duplicate data.

3. Write down some sample instances for each class.

o Computer: represents a computer with certain hardware and maintenance costs.

In this example, the sample instances for the Computer class are: cpuPower, memory,
networkBandwidth, cost.

Process: represents a process with a demand. Needs to be assigned to a Computer by
OptaPlanner.

Sample instances for Process are: requiredCpuPower, requiredMemory, and
requiredNetworkBandwidth.

(loudBalance: represents a problem. Contains every Computer and Process for a certain data
set.

For an object representing the full data set and solution, a sample instance holding the score
must be present. OptaPlanner can calculate and compare the scores for different solutions;
the solution with the highest score is the optimal solution. Therefore, the sample instance
for CloudBalance is score.

4. Determine which relationships (or fields) change during planning.

o Planning entity: The class (or classes) that OptaPlanner can change during solving. In this

example, it is the class Process, because OptaPlanner can assign processes to computers.

o Problem fact: A class representing input data that OptaPlanner can not change.

o Planning variable: The property (or properties) of a planning entity class that changes

during solving. In this example, it is the property computer on the class Process.

o Planning solution: The class that represents a solution to the problem. This class must

represent the full data set and contain all planning entities. In this example that is the class
(loudBalance.

In the UML class diagram below, the OptaPlanner concepts are already annotated:
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Cloud balance class diagram

@PlanningEntity
Computer . . Process
cpuPower @°Flanningvanabie requiredCpuPower
memory computer | requiredMemory
networkBandwidth 1 * | requiredNetworkBandwidth
cost
@PlanningSolution
CloudBalance
score
computerList processList
@ PlanningEntityCollectionProperty

2.3.2.2. Domain model implementation

2.3.2.2.1. The Computer class

The Computer class is a POJO (Plain Old Java Object). Usually, you will have more of this kind of
classes with input data.

Example 1. CloudComputer.java

public class CloudComputer ... {
private int cpuPower;
private int memory;
private int networkBandwidth;

private int cost;

... // getters

2.3.2.2.2. The Process class

The Process class is particularly important. It is the class that is modified during solving.
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We need to tell OptaPlanner that it can change the property computer. To do this: . Annotate the class
with @PlanningEntity.. Annotate the getter getComputer () with @PlanningVariable.

Of course, the property computer needs a setter too, so OptaPlanner can change it during solving.

Example 2. CloudProcess.java

@PlanningEntity(...)
public class CloudProcess ... {

private int requiredCpuPower;
private int requiredMemory;
private int requiredNetworkBandwidth;

private CloudComputer computer;
... // getters

@PlanningVariable(valueRangeProviderRefs = {"computerRange"})
public CloudComputer getComputer() {
return computer;

}

public void setComputer(CloudComputer computer) {
computer = computer;

}

// kkhkhkhrrhrkkkkhkhkhrhhrhkkkkhkhhhrhkkhkhrrrhrhrhkkkhkhhhrhkkhkkhkhhhrhrhkhkkhkhrhrhrhrhkkkhkhkhhhrhrkkkhkikhkhrkkx

// Complex methods

// khkhkrrrrkkkkhkhrhrhrkhkkkhrhrhrhhkhkhhrrhrhrhkkkhkhhhrhrhkhkkkhkhhrhhkhkhhkhrrhrhrkkkhkhrhhrkkkkhkhkhkrkkx

» OptaPlanner needs to know which values it can choose from to assign to the property computer.
Those values are retrieved from the method (loudBalance.getComputerList() on the planning
solution, which returns a list of all computers in the current data set.

* The @PlanningVariable's valueRangeProviderRefs parameter on CloudProcess.getComputer() needs
to match with the @ValueRangeProvider's id on CloudBalance.getComputerList().

o Instead of getter annotations, it is also possible to use field annotations.

2.3.2.2.3. The CloudBalance class

The CloudBalance class has a @PlanningSolution annotation.

* It holds a list of all computers and a list of all processes.
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* It represents both the planning problem and (if it is initialized) the planning solution.
» To save a solution, OptaPlanner initializes a new instance of the class.

1. The processlList property holds a list of processes. OptaPlanner can change the processes,
allocating them to different computers. Therefore, a process is a planning entity and the list
of processes is a collection of planning entities. We annotate the getter getProcessList() with
@PlanningEntityCollectionProperty.

2. The computerlList property holds a list of computers. OptaPlanner can not change the
computers. Therefore, a computer is a problem fact. Especially for score calculation with
Drools, the  property computerList needs to be annotated with a
@ProblemFactCollectionProperty so that OptaPlanner can retrieve the list of computers
(problem facts) and make it available to the Drools engine.

3. The CloudBalance class also has a @PlanningScore annotated property score, which is the Score
of that solution in its current state. OptaPlanner automatically updates it when it calculates
a Score for a solution instance. Therefore, this property needs a setter.
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Example 3. CloudBalance.java

@PlanningSolution
public class CloudBalance ... {

private List<CloudComputer> computerlist;
private List<CloudProcess> processList;
private HardSoftScore score;

@ValueRangeProvider(id = "computerRange")

@ProblemFactCollectionProperty

public List<CloudComputer> getComputerList() {
return computerlList;

}

@PlanningEntityCollectionProperty
public List<CloudProcess> getProcessList() {
return processlist;

}

@PlanningScore
public HardSoftScore getScore() {
return score;

}

public void setScore(HardSoftScore score) {
this.score = score;

}

2.3.3. Run the cloud balancing Hello World

1. Download and configure the examples in your preferred IDE.

2. Create a run configuration with the following main

org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld

By default, the Cloud Balancing Hello World is configured to run for 120 seconds.

It will execute the following code:
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Example 4. CloudBalancingHelloWorld.java

public class CloudBalancingHelloWorld {

public static void main(String[] args) {
// Build the Solver
SolverFactory<CloudBalance> solverFactory = SolverFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
Solver<CloudBalance> solver = solverFactory.buildSolver();

// Load a problem with 400 computers and 1200 processes
CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance (400, 1200);

// Solve the problem
CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

// Display the result
System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
+ toDisplayString(solvedCloudBalance));
}

The code example does the following:

1. Build the Solver based on a solver configuration (in this case an XML file,
cloudBalancingSolverConfig.xml, from the classpath).

Building the Solver is the most complicated part of this procedure. For more detail, see Solver
Configuration.

SolverFactory<CloudBalance> solverFactory = SolverFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
Solver<CloudBalance> solver = solverFactory.buildSolver();

2. Load the problem.

(loudBalancingGenerator generates a random problem: you will replace this with a class that
loads a real problem, for example from a database.
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CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance (400, 1200);

3. Solve the problem.
CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);
4. Display the result.

System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
+ toDisplayString(solvedCloudBalance));

2.3.4. Solver configuration

The solver configuration file determines how the solving process works; it is considered a part of
the code. The file is named cloudBalancingSolverConfig.xml.
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Example 5. cloudBalancingSolverConfig.xml

<?xml version="1.0" encoding="UTF-8"?>

<solver>
<!-- Domain model configuration -->
<solutionClass>
org.optaplanner.examples.cloudbalancing.domain.CloudBalance</solutionClass>
<entityClass>

org.optaplanner.examples.cloudbalancing.domain.CloudProcess</entityClass>

<!-- Score configuration -->
<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.C
loudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
<I--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingConstraints
.drl</scoreDr1>-->
</scoreDirectorFactory>

<!-- Optimization algorithms configuration -->
<termination>
<secondsSpentLimit>30</secondsSpentLimit>
</termination>
</solver>

This solver configuration consists of three parts:
1. Domain model configuration: What can OptaPlanner change?

We need to make OptaPlanner aware of our domain classes, annotated with @PlanningEntity
and @PlanningSolution annotations:

<solutionClass>
org.optaplanner.examples.cloudbalancing.domain.CloudBalance</solutionClass>

<entityClass>
org.optaplanner.examples.cloudbalancing.domain.CloudProcess</entityClass>

2. Score configuration: How should OptaPlanner optimize the planning variables? What is our
goal?

Since we have hard and soft constraints, we use a HardSoftScore. But we need to tell
OptaPlanner how to calculate the score, depending on our business requirements. Further
down, we will look into two alternatives to calculate the score: using an easy Java
implementation, or using Drools DRL.
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<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(Cl
oudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
gll==
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingConstraints.
drl</scoreDrl>-->
</scoreDirectorFactory>

3. Optimization algorithms configuration: How should OptaPlanner optimize it?

In this case, we use the default optimization algorithms (because no explicit optimization
algorithms are configured) for 30 seconds:

<termination>
<secondsSpentLimit>30</secondsSpentLimit>
</termination>

OptaPlanner should get a good result in seconds (and even in less than 15 milliseconds with
real-time planning), but the more time it has, the better the result will be. Advanced use cases
might use different termination criteria than a hard time limit.

The default algorithms will already easily surpass human planners and most in-house

implementations. Use the Benchmarker to power tweak to get even better results.

2.3.5. Score configuration

OptaPlanner searches for the solution with the highest Score. This example uses a HardSoftScore,
which means OptaPlanner looks for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).
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Of course, OptaPlanner needs to be told about these domain-specific score constraints. There are
several ways to implement such a score function:

» Easy Java
* Incremental Java

* Drools
2.3.5.1. Easy Java score configuration

One way to define a score function is to implement the interface EasyScore(Calculator in plain Java.

<scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.(Cloud
BalancingEasyScoreCalculator</easyScoreCalculatorClass>
</scoreDirectorFactory>

Just implement the calculateScore(Solution) method to return a HardSoftScore instance.

31



Example 6. CloudBalancingEasyScoreCalculator.java

public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator
<CloudBalance, HardSoftScore> {

/7\‘7\‘

* A very simple implementation. The double loop can easily be removed by
using Maps as shown in
* {@link
CloudBalancingMapBasedEasyScoreCalculator#calculateScore(CloudBalance)}.
*/
@0verride
public HardSoftScore calculateScore(CloudBalance cloudBalance) {
int hardScore = 0;
int softScore = 0;
for (CloudComputer computer : cloudBalance.getComputerList()) {
int cpuPowerUsage = 0;
int memoryUsage = 0;
int networkBandwidthUsage = 0;
boolean used = false;

// Calculate usage
for (CloudProcess process : cloudBalance.getProcessList()) {
if (computer.equals(process.getComputer())) {
cpuPowerUsage += process.getRequiredCpuPower();
memoryUsage += process.getRequiredMemory();
networkBandwidthUsage += process.getRequiredNetworkBandwidth(

used = true;

}

// Hard constraints
int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;
if (cpuPowerAvailable < 0) {
hardScore += cpuPowerAvailable;
}
int memoryAvailable = computer.getMemory() - memoryUsage;
if (memoryAvailable < 0) {
hardScore += memoryAvailable;
}
int networkBandwidthAvailable = computer.getNetworkBandwidth() -
networkBandwidthUsage;
if (networkBandwidthAvailable < 0) {
hardScore += networkBandwidthAvailable;

}

// Soft constraints
if (used) {
softScore -= computer.getCost();
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}

return HardSoftScore.valueOf(hardScore, softScore);

Even if we optimize the code above to use Maps to iterate through the processList only once, it is still
slow because it does not do incremental score calculation. To fix that, either use incremental Java
score calculation or Drools score calculation.

2.3.5.2. Drools score configuration

Drools score calculation uses incremental calculation, where every score constraint is written as
one or more score rules.

Using the Drools rule engine for score calculation, allows you to integrate with other Drools
technologies, such as decision tables (XLS or web based), the KIE Workbench, ...

Prerequisite To use the Drools rule engine as a score function, simply add a scoreDr1 resource in
the classpath:

<scoreDirectorFactory>
<scoreDr1>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingConstraints.drl

</scoreDr1>
</scoreDirectorFactory>

1. We want to make sure that all computers have enough CPU, RAM and network bandwidth to
support all their processes, so we make these hard constraints:
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Example 7. cloudBalancingConstraints.drl - Hard Constraints

import org.optaplanner.examples.cloudbalancing.domain.CloudBalance;
import org.optaplanner.examples.cloudbalancing.domain.CloudComputer;
import org.optaplanner.examples.cloudbalancing.domain.CloudProcess;

global HardSoftScoreHolder scoreHolder;
VUAR S isdisitisidisidinbindininnpn sy isiisifigiizifizifi
// Hard constraints

[/ HHHHEHH R R R R R R

rule "requiredCpuPowerTotal"

when
$computer : CloudComputer($cpuPower : cpuPower)
accumulate(
CloudProcess(
computer == $computer,
$requiredCpuPower : requiredCpuPower);
$requiredCpuPowerTotal : sum($requiredCpuPower);
$requiredCpuPowerTotal > $cpuPower
)
then

scoreHolder.addHardConstraintMatch(kcontext, $cpuPower -
$requiredCpuPowerTotal);
end
rule "requiredMemoryTotal"
end

rule "requiredNetworkBandwidthTotal"

end

If those constraints are met, we want to minimize the maintenance cost, so we add that as a soft

constraint:



Example 8. cloudBalancingConstraints.drl - Soft Constraints

// Rttt R R Y
// Soft constraints
// HERRt A R R R R R R R AR AR R H

rule "computerCost"
when
$computer : CloudComputer($cost : cost)
exists CloudProcess(computer == $computer)
then
scoreHolder.addSoftConstraintMatch(kcontext, - $cost);
end

2.3.6. Beyond this tutorial

Now that this simple example works, you can try going further. For example, you can enrich the
domain model and add extra constraints such as these:

* Each Process belongs to a Service. A computer might crash, so processes running the same
service must be assigned to different computers.

* Each Computer is located in a Building. A building might burn down, so processes of the same
services should (or must) be assigned to computers in different buildings.
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Chapter 3. Use cases and examples

3.1. Examples overview

OptaPlanner has several examples. In this manual we explain mainly using the n queens example
and cloud balancing example. So it is advisable to read at least those sections.

Some of the examples solve problems that are presented in academic contests. The Contest column
in the following table lists the contests. It also identifies an example as being either realistic or
unrealistic for the purpose of a contest. A realistic contest is an official, independent contest:

* that clearly defines a real-world use case.

e with real-world constraints.

» with multiple, real-world datasets.

* that expects reproducible results within a specific time limit on specific hardware.

 that has had serious participation from the academic and/or enterprise Operations Research

community.

Realistic contests provide an objective comparison of OptaPlanner with competitive software and

academic research.

The source code of all these examples is available in the distribution zip under examples/sources
and also in git under optaplanner/optaplanner-examples.

Table 2. Examples overview

Example

N queens

Cloud balancing

Traveling
salesman
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Domain

* 1 entity class

o 1 variable

* 1 entity class

o 1 variable

* 1 entity class

o 1 chained
variable

Size Contest
* Entity < 256 » Pointless
. Value < 256 (cheatable)
» Search space
< 10616
* Entity < 2400 * No
» Value « 800 * Defined by us
» Search space
< 1016967
* Entity < 980 * Unrealistic
» Value < 980 » TSP web

» Search space

< 1012504

Special features
used

None

* Real-time
planning

* Real-time
planning


https://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.math.uwaterloo.ca/tsp/

Example

Dinner party

Tennis club
scheduling

Meeting
scheduling

Course
timetabling

Machine
reassignment

Vehicle routing

Domain

1 entity class

o 1 variable

1 entity class

o 1 variable

1 entity class

o 2 variables

1 entity class

o 2 variables

1 entity class

o 1 variable

1 entity class

o1 chained
variable
1 shadow

entity class

o 1
automatic
shadow
variable

Size

Entity < 144

Value < 72
Search space
< 107310
Entity < 72
Value < 7
Search space
< 10760

Entity < 10
Value < 320
and < 5
Search space
< 107320

Entity < 434

Value <« 25
and < 20

Search space
< 10M171

Entity < 50000
Value < 5000

Search space
< 107184948

Entity < 2740
Value < 2795

Search space
< 10"8380

Contest

Unrealistic

No

Defined by us

No

Defined by us

Realistic

ITC 2007 track
3

Nearly
realistic

ROADEF 2012

Unrealistic

VRP web

Special features
used

Decision Table
spreadsheet
(XLS) for score
constraints

Fairness score
constraints

Pinned entities

TimeGrain
pattern

Pinned entities

Real-time
planning

Shadow
variable

Real-time
planning

Nearby
selection

Real
distances

road
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http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
http://neo.lcc.uma.es/vrp/

Example

Vehicle routing
with time
windows

Project job
scheduling

Hospital bed
planning

Task assigning

Exam timetabling
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Domain

¢ All of Vehicle

routing

1 shadow
variable

1 entity class
o 2 variables

o1 shadow
variable

1 entity class

o 1 nullable
variable

1 entity class

o 1 chained
variable

o1 shadow
variable

1 shadow
entity class

o 1
automatic
shadow
variable

2 entity classes
(same
hierarchy)

o 2 variables

Size

Entity < 2740
Value < 2795

Search space
< 1078380

Entity < 640

Value < ? and
&7

Search
<7

space

Entity < 2750
Value < 471

Search space
< 1016851

Entity < 500
Value < 520

Search space
< 10M168

Entity < 1096

Value <« 80
and < 49
Search space
< 1073374

Contest

* Unrealistic

VRP web

* Nearly
realistic

* MISTA 2013

* Unrealistic

* Kaho PAS

* No

* Defined by us

* Realistic

* ITC 2007 track

1

Special features
used

All of Vehicle
routing

Custom
VariableListen
er

Bendable
score

Custom
VariableListen
er

ValueRangeFa
ctory

Overconstrain
ed planning

Bendable
score

Chained
through
pattern

time

Custom
VariableListen
er

Continuous
planning

Real-time
planning

Custom
VariableListen
er


http://neo.lcc.uma.es/vrp/
http://gent.cs.kuleuven.be/mista2013challenge/
https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Example

Nurse rostering

Traveling

tournament

Cheap time

scheduling

Investment

Conference
scheduling

Rock tour

Domain

1 entity class

o 1 variable

1 entity class

o 1 variable

1 entity class

o 2 variables

1 entity class

1 variable

1 entity class

o 2 variables

1 entity class

o1 chained
variable

o 4 shadow
variables

1 shadow
entity class

o 1
automatic
shadow
variable

Size

Entity < 752
Value < 50

Search space
< 10M277

Entity < 1560
Value < 78

Search space
< 1012301

Entity < 500

Value < 100

and < 288

Search space
< 10120078

Entity < 11
Value = 1000

Search
&< 10M

space

Entity < 216

Value <« 18
and < 20

Search
& 107552

space

Entity < 47
Value < 48

Search
< 10759

space

Contest

Realistic

INRC 2010

Unrealistic

TTP

Nearly
realistic

ICON
challenge 2014

No

Defined by us

No

Defined by us

No

Defined by us

Special features
used

Continuous
planning

Real-time
planning

Custom
MovelListFacto

ry

Field
annotations

ValueRangeFa
ctory

ValueRangeFa
ctory
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https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/nrpcompetition_description.pdf
http://mat.tepper.cmu.edu/TOURN/

Example Domain Size Contest Special features

used
Flight crew * 1 entity class * Entity < 4375 * No
scheduling o 1 variable » Value < 750 * Defined by us
o1 shadow « Search space
entity class < 10M 2578
o1

automatic

shadow

variable

3.2. N queens

3.2.1. Problem description

Place n queens on a n sized chessboard so that no two queens can attack each other. The most
common n queens puzzle is the eight queens puzzle, with n = 8:

wir
iy

W

Constraints:

» Use a chessboard of n columns and n rows.
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» Place n queens on the chessboard.

* No two queens can attack each other. A queen can attack any other queen on the same
horizontal, vertical or diagonal line.

This documentation heavily uses the four queens puzzle as the primary example.
A proposed solution could be:

A B C D

R

Ww N H ©

Figure 1. A Wrong Solution for the Four Queens Puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0 and
D0). Removing queen B@ would respect the "no two queens can attack each other" constraint, but
would break the "place n queens" constraint.

Below is a correct solution:

Ww N B ©

L

Figure 2. A Correct Solution for the Four Queens Puzzle

All the constraints have been met, so the solution is correct.

Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single
correct solution for a given n, not on finding the number of possible correct solutions for a given n.

3.2.2. Problem size