
JBoss Overlord CDL 1.0-M2

Getting Started Guide

by Gary Brown and Jeff Yu

ii

1. Installation ... 1

1.1. Overview ... 1

1.2. Prerequisites .. 1

1.3. Installation Instructions ... 1

1.4. Importing Samples into Eclipse .. 3

2. SOA Governance with CDL .. 6

2.1. Design Time Governance .. 6

2.1.1. Creating a Choreography .. 6

2.1.2. Design Time Governance With WS-BPEL ... 9

2.1.3. Design Time Governance With "Conversation Aware" ESB Actions 9

2.1.4. Summary .. 13

2.2. Runtime Governance using Conversation Validation ... 14

2.2.1. Service Validator Configuration .. 14

2.2.2. Deploy the TrailBlazer Example ... 15

2.2.3. Starting the pi4soa Monitor .. 16

2.2.4. Running the Example ... 17

2.2.5. Detecting a Validation Error .. 18

3. Appendix .. 19

3.1. Advanced options of installation ... 19

Chapter 1.

1

Installation

1.1. Overview

This section describes the installation procedure for the Overlord CDL based governance capabilities. These

capabilities are:

• Conversation aware ESB Actions with conformance checking against a Choreography Description

• ESB Service validation against a Choreography Description

1.2. Prerequisites

1. JBossAS (version 4.2.3.GA or higher), available from http://www.jboss.org/jbossas

2. JBossESB (version 4.5.GA or higher), should download the jbossesb-4.5.GA.zip, available from http:/

/www.jboss.org/jbossesb

3. Overlord CDL (version 1.0-M1 or higher), available from http://www.jboss.org/overlord

4. pi4soa (version 2.0.0 or higher), available from http://pi4soa.wiki.sourceforge.net/download

Note

It is recommended that a pre-packaged version is used, which includes all of the

necessary Eclipse related plugins. However the plugins can be installed separately

into an existing Eclipse environment by following the instructions on the http://

www.pi4soa.org download wiki.

5. Ant, available from http://ant.apache.org

1.3. Installation Instructions

1. Install JBossAS

Unpack the JBossAS installation into the required location.

NOTE: Before running the server, it is advisable to edit the run.sh/bat script in the bin folder to add the

following parameter to the JAVA_OPTS variable:

-XX:MaxPermSize=128M

2. Install JBossESB

Unpack the JBossESB installation into a location alongside the JBossAS installation. Then follow the

instructions in the JBossESB installation (install/readme.txt), to deploy JBossESB into the JBossAS

environment.

3. Install the Overlord CDL distribution

http://www.jboss.org/jbossas
http://www.jboss.org/jbossesb
http://www.jboss.org/jbossesb
http://www.jboss.org/overlord
http://pi4soa.wiki.sourceforge.net/download
http://www.pi4soa.org
http://www.pi4soa.org
http://ant.apache.org/

Installation Instructions

2

Unpack the Overlord CDL distribution into a location alongside the JBossAS installation.

• Edit the install/deployment.properties file to update the JBossAS and JBossESB location settings.

• From the install folder, run: ant to deploy the Overlord CDL to JBossAS.

4. Install pi4soa

Unpack the pi4soa pre-packaged Eclipse version into a location alongside the JBossAS installation. Once

unpacked, start the Eclipse environment and update the plugins using the pi4soa update site (http://

pi4soa.sourceforge.net/updates) to obtain the most recent version of the plugins. Alternatively, if you

wish to use an existing Eclipse environment, instead of the pre-packaged pi4soa Eclipse version, then

simply use the update site from your preferred Eclipse environment.

NOTE: When doing the plugin update, if it complains about unresolved dependencies, then the key

components to install/update are the core feature (in the modeller category) and the technology preview

feature (in the incubator category).

If just the service validation capabilities are being used, then no further configuration of the Eclipse

environment is necessary. However if the conversational ESB actions, with conformance checking

against a Choreography Description, will be used, then the following additional steps will be required:

• Start the Eclipse environment

• Overload CDL is currently JDK1.5 compliant. Therefore it is necessary to ensure that the Eclipse

environment also compiles classes, used by the ESB "conversation aware" actions, as 1.5 complaint.

This can be achieved by selecting the Windows->Preferences menu item, and selecting the Java-

>Compiler node, and setting the compliance level to 1.5, as shown in the following image:

Importing Samples into Eclipse

3

5. Install Overlord CDL Eclipse plugins

• Select the “Help - > Software Updates...” menu item

• From the Available Software tab, press the “Add Site...” button

• Press the “Local” button, browse to locate the tools folder in the Overlord CDL distribution, and then

press the OK button. This will cause the local Eclipse update site, bundled with the Overlord CDL

distribution, to be add to the Available Software tab.

• Select the root node of the newly added local update site, and then press the “Install” button and

follow the instructions to install the plugins.

Note

An eclipse issue occasionally causes the nodes under the checked root node to become

unchecked, resulting in the software update manager indicating that no plugins need

to be installed. If this happens, simply uncheck the root node, and then re-check the

root node and press the “Install” button again.

1.4. Importing Samples into Eclipse

Once the Overlord CDL distribution has been correctly installed, if you wish to try out any of the examples

then the following steps should be followed to import the relevant projects into the previously configured

Eclipse environment.

1. Select the 'Import...' menu item, associated with the popup menu on the background of the left panal

(Navigator or Package depending on perspective being viewed).

2. When the import dialog appears, select the General->ExistingProject from Workspace option and press

the 'Next' button.

Importing Samples into Eclipse

4

3. Ensuring that the 'Select root directory' radio button is selected, press the 'Browse' button and navigate

to the ${OverlordCDL}/samples folder, then press 'Ok'.

4. All of the Eclipse projects contained within the samples directory structure will be listed. Press the

'Finish' button to import them all.

Importing Samples into Eclipse

5

Once imported, the Eclipse navigator will list the sample projects:

Chapter 2.

6

SOA Governance with CDL
The Choreography Description Language (CDL) provides a means of describing a process, that executes

across a distributed set of services, from a global (or service independent) perspective.

SOA Governance, using CDL, is about ensuring a process is correctly implemented (as part of design-time

governance), and executes as expected (part of runtime governance).

In this chapter we will take you through a worked example associated with each of these aspects.

Note

Before proceeding, please make sure that the Overlord CDL distribution has been correctly

installed and that the samples have been imported into the Eclipse environment.

2.1. Design Time Governance

2.1.1. Creating a Choreography

When designing a system, it is necessary to capture requirements. Various approaches can be used for this,

but currently there are no mechanisms that enable the requirements to be documented in such a way to

enable an implementation to be validated back against the requirements.

The pi4soa tools provide a means of describing requirements, representing specific use cases for the

interactions between a set of cooperating services, using scenarios - which can be considered similar to

UML sequence diagrams that have been enhanced to include example messages.

In the purchasing-models Eclipse project, the SuccessfulPurchase.scn scenario looks like

this:

Creating a Choreography

7

The next step in the development process is to specific a Choreography Description to implement the

requirements described within the set of scenarios. The choreography for the Purchasing example can

be found in purchasing-models/PurchaseGoods.cdm. When the choreography editor has been

launched, by double-clicking on this file within the Eclipse environment, then navigate to the Choreography

Flows tab to see the definition of the purchasing process:

The pi4soa tools can be used to test the scenarios against the choreography description, to ensure that the

choreography correctly implements the requirements. To test the SuccessfulPurchase.scn scenario

Creating a Choreography

8

against the choreography, launch the scenario editor by double-clicking on the scenario file, and then

pressing the green play button in the toolbar. When complete, the scenario should look like the following

image, indicating that the scenario completed successfully.

To view a scenario that demonstrates a test failure, open the InvalidPurchase.scn scenario by

double-clicking on the file, and then initiate the test using the green play button in the toolbar. When

complete, the scenario should look like the following image.

Design Time Governance With WS-BPEL

9

You will notice that the Store participant has a red 'send' node, indicating that this action was not expected

behaviour when compared with the choreography description. The reason this is considered an error, is that

the Store participant should only send a BuyFailed message following an invalid credit check.

When an error is detected in a scenario, the choreography designer can then determine whether the scenario

is wrong (i.e. it does not correctly describe a business requirement), or whether the choreography is wrong

and needs to be updated to accomodate the scenario.

Once the choreography description has been successfully tested against the scenarios, and therefore is shown

to meet the business requirements, the next step is to design and implement each service involved in the

choreography. The pi4soa tools provide the means to export BPMN, UML or HTML documentation to

aid the implementation phase. However there is special support for a concept called "Conversation Aware"

ESB Actions.

2.1.2. Design Time Governance With WS-BPEL

This milestone release includes a basic capability to generate a service implementation, for a participant in

a choreography, using WS-BPEL.

Subsequent milestone releases will include more capabilities as part of the service generation, including

the generation of WSDL, as well as supporting conformance checking back against the choreography

description.

More information about how to use this feature can be found in the User Guide.

2.1.3. Design Time Governance With "Conversation Aware" ESB

Actions

2.1.3.1. What are "Conversation Aware" ESB Actions?

Conversation aware ESB actions refer to a set of pre-defined ESB actions that enable the structure (or

behaviour) of a service to be inferred.

For example, there are actions that explicitly define the sending and receiving of messages. These actions

define a property that declares the type of the message being sent or received. Other actions describe

grouping constructs such as if/else, parallel and while loop.

The benefit of making these concepts explicit within the ESB service configuration, is that it makes it

possible to check the implementation correctly matches the expected behaviour as defined within the

choreography. This will be demonstrated in the following sub-section discussing conformance checking.

2.1.3.2. Generating an ESB Service using "Conversation Aware" ESB

Actions

Once we have a choreography description, it is possible to generate an ESB Service (with conversation

aware ESB actions), for each of the participants defined within the choreography. To try this out,

select the Overlord->Generate->JBossESB Services menu item from the popup menu associated with the

PurchaseGoods.cdm.

Design Time Governance With "Conversation

Aware" ESB Actions

10

This will display a dialog listing the possible services that can be generated from this choreography, with

a proposed Eclipse project name.

To test out this feature, uncheck the Buyer and CreditAgency participants, leave the build system as Ant,

select the messaging system appropriate for your target environment and press the 'Ok' button. This will

create a single new project for the Store participant.

Depending upon the value of the 'stateless' checkbox, the generated ESB service artefact (jboss-esb.xml)

will either use a stateful or stateless approach for encoding the behaviour of the service. The difference

relates to whether the Overlord infrastructure explicitly maintains state information about session instances,

to help police the behaviour of individual transactions, or whether this is implicitly performed using other

capabilities (such as the Conversation Validation mechanism described in the following section, which can

be used as an external monitor to ensure the service behaves as expected).

Design Time Governance With "Conversation

Aware" ESB Actions

11

The generated project includes the ESB configuration file (in the src/conf folder) and the relevant Java

classes in the src/java folder. The contents of this project represents a template of the service. Before

it can be executed, the ESB configuration file will need to be enhanced to include internal implementation

details for the service. The contents of this generated project should be compared to the completed version

in the purchasing-store project.

Note

When the project is generated, if errors are reported against the jboss-esb.xml, then

simply double-click on the error to launch the ESB configuration file. Then make a minor

change, such as adding a new line and then removing it, and save the file again (to force

re-validation). This should cause the errors to be cleared. This occurs because the Eclipse

tasks that validate the jboss-esb.xml file and compiling the new Java classes in the

project sometimes gets confused, causing the classes not to be present when the validation

rules attempt to access them. This issue is being investigated.

2.1.3.3. Conformance Checking "Conversation Aware" ESB Services

To demonstrate the conformance checking mechanism, where the behaviour of the ESB service is verifed

against its responsiblities as defined within the choreography description, open the src/conf/jboss-

esb.xml in the PurchaseGoodsProcess-Store generated in the previous sub-section.

When the ESB configuration has been loaded into an editor, locate the first ReceiveMessageAction

ESB action, which should have a property called messageType with a value of BuyRequest. To cause a

conformance checking error, simply append an 'X' to the end of the message type value, as shown in the

following screenshot:

This results in an error message being reported:

To fix conformance issues, some of the error messages will provide Quick Fix solutions. These can be

access using the popup menu associated with the error message:

Design Time Governance With "Conversation

Aware" ESB Actions

12

This will display the Quick Fix dialog listing the available resolutions.

If the Show Referenced Description resolution is selected, then it will cause the choreography description

to be launched and the specific interaction to be focused.

If the Update from Referenced Description is selected, then the jboss-esb.xml will be automatically

updated to remove the appended 'X' from the message type.

Summary

13

2.1.3.4. Running "Conversation Aware" ESB Services

The purchasing example describes the interactions between a Buyer, Store and Credit Agency. The flow

for this example would be:

• Buyer send a 'buy' request to Store

• Store send a 'credit check' request to the Credit Agency.

• If the Credit Agency returns a successful message, then the Store will send a 'BuyConfirmed' to user.

• If the Credit Agency returns a failed message, then the Store will send a 'BuyFailed' to user.

There are two alternate implementations of the services involved in the purchasing example, demonstrating

both the stateful and stateless "conversation aware" ESB actions. The $Overlord/samples contains a

sub-folder for each variation.

To run the purchasing example, firstly ensure that the JBoss Application Server has been fully configured

as described in the Installation chapter, and then do the following:

1. In a command window, go to the $Overlord/samples/stateful (or $Overlord/samples/

stateless if using the stateless approach) folder and execute ant deploy-purchasing

2. In a command window, go to the $Overlord/samples/client folder and execute ant

runPurchasingClient (or ant runStatelessPurchasingClient if using the stateless services), which will

send a 'BuyRequest' message to the Store, which will then perform the credit check before returning a

response to the client.

In this example, the conversation ESB actions will do the validation in the runtime. As we've said, the

client send the 'buyRequest' message to the store, firstly the store service will check the received message

based on its messageType attribute. and then send another message to the 'credit agency' service it goes

through its validation. If the messageType that store service received is not as same as the one defined in

the conversational esb actions, it will throw out the exception and ends its flow.

2.1.4. Summary

This section has provided a brief introduction to the design-time SOA governance features provided within

the Overlord CDL distribution.

The aim of these capabilities is to enable verification of an implementation, defined using conversation

aware ESB actions in this example, against a choreography, which in turn has been verified against business

requirements defined using scenarios. Therefore this helps to ensure that the implemented system meets the

original business requirements.

Being able to statically check that the implementation should send or receive messages in the correct order is

important, as it will reduce the amount of testing required to ensure the service behaves correctly. However

Runtime Governance using Conversation Validation

14

it does not enable the internal implementation details to be verified, which may result in invalid decisions

being made at runtime, resulting in unexpected paths being taken. Therefore, to ensure this situation does

not occur, we also need runtime governance, which is discussed in the following section.

2.2. Runtime Governance using Conversation Validation

Once services have been deployed, as mentioned in the previous section, we still need to be able to verify that

the services continue to conform to the choreography description. The Conversation Validation capability

within the Overlord CDL distribution can be used to validate the behaviour of each service.

In this section, we will use the Trailblazer example found in the $Overlord/samples/trailblazer

folder and the trailblazer-models Eclipse project.

2.2.1. Service Validator Configuration

The JBossESB service validator configuration is defined using jbossesb specific annotations, that are

associated with the 'exchange details' components (contained within interactions), within the choreography

description.

To view the pre-configured service validator configuration defined for the Trailblazer example, edit the

TrailBlazer.cdm file, navigate to the Choreography Flows tab and then select the Choreography-

>Edit Annotations menu item associated with the first 'exchange details' component (as shown below).

This will display the annotation editor, with the single configured annotation called 'jbossesb'. This

annotation defines the information required for the Service Validator to monitor this specific message

exchange (i.e. the JMS destination on which the message will be passed).

Once an annotation has been defined, it will also be displayed as part of the tooltip for the associated model

component, for example:

Deploy the TrailBlazer Example

15

One the jbossesb annotations have been defined for all relevant 'exchange details' components in the

choreography description, the choreography file can be copied to the $JBossAS/server/default/

deploy/overlord-cdl-validator.esb/models folder in the JBossAS environment. The

service validator configuration for the trailblazer example has been preconfigured to be deployed as part

of the installation procedure.

Note

If the overlord-cdl-validator.esb/validator-config.xml within the

JBossAS environment is modified, or choreography description files added, removed or

updated within the overlord-cdl-validator.esb/models sub-folder, then the

changes will automatically be detected and used to re-configure the service validators

without having to restart the JBossESB server.

2.2.2. Deploy the TrailBlazer Example

The first step to deploying the Trailblazer example is to configure the JBossAS environment:

1. Update the $JBossAS/server/default/deploy/jbossesb.sar/jbossesb-

properties.xml file, in the section entitled "transports" and specify all of the SMTP mail server

settings for your environment.

2. Update the trailblazer/trailblazer.properties

Update the file.bank.monitored.directory and file.output.directory properties. These are folders used by

the File Based Bank, and are set to /tmp/input and /tmp/output by default.

3. Update the trailblazer/esb/conf/jboss-esb.xml

There is a fs-provider block, update the directory attribute value to be the same as the file.output.directory

value in trailblazer.properties file.

4. Start the JBossAS server

One the server has been started, the next step is to deploy the relevant components into the JBossAS

environment. This is achieved by:

1. From the trailblazer folder, execute the following command to deploy the example to the ESB:

ant deploy

this should deploy the ESB and WAR files to your JBoss AS server/default.

2. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runJMSBank.

Starting the pi4soa Monitor

16

3. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runFileBank.

2.2.3. Starting the pi4soa Monitor

The pi4soa Monitor is used to observe a correlated view of the executing business transactions. Each service

validator can be configured to report activites (i.e. sent and received messages) that it validates, to enable

the correlator to reconstitute a global interpretation of each transaction.

This correlated view of each transaction can be used to understand where each transaction is within the

process. It can also be used to report out of sequence, unexpected messages and more general errors in the

context of the business process.

A simple monitoring tool is currently provided with the pi4soa tools, to enable the correlated global

view of the transactions to be observed. Once the Trailblazer example has been deployed to the JBossAS

environment, and the server is running, then the monitoring tool can be launched from the Eclipse

environment by selecting the Choreography->Monitor menu item from the popup menu associated with

the TrailBlazer.cdm file.

Wait for the monitor window to start, and indicate that the choreography is being monitored, shown in the

status line at the bottom of the window.

Running the Example

17

2.2.4. Running the Example

To run the example, you need to start a browser and select the URL localhost:8080/trailblazer. This will

show the following page, if the server has been configured correctly and the TrailBlazer example deployed:

Now you can submit quotes, You will see either a loan request rejected (single email) because the score

is less than 4, or two emails (one from JMS bank and one from FileBased bank) with valid quotes. When

entering subsequent quotes, make sure that the quote reference is updated, so that each session has a unique

id.

http://localhost:8080/trailblazer

Detecting a Validation Error

18

2.2.5. Detecting a Validation Error

To demonstrate the detection of validation errors, there is an alternative implementation of the trailblazer

modules that behaviour differently to the choreography that is being monitored. Specifically, the credit score

threshold used to determine whether a loan request should be issued to the banks, is raised from 4 to 7.

To deploy the version of the TrailBlazer example that results in validation errors, then:

• From the $Overlord/samples/trailblazer folder, execute the following command to deploy

the example to the ESB: ant deploy-error-client.

The next step is to issue more transactions, until a credit check score occurs that is between 4 and 6 inclusive.

This will result in a insufficientCredit interaction being reported, which would be unexpected in terms of

the choreography.

When errors, such as unexpected messages, are detected by the service validators and reported to the

Choreography Monitor, they are displayed in red.

Chapter 3.

19

Appendix

3.1. Advanced options of installation

The Overlord CDL has two separate modules. One is Validator module, which is used from management

perspective; The other is the Runtime module, which is used for execution of flow/interaction sections of

CDL file.

You can deploy each of them separately in the Install folder. From the install folder.

• Run: ant deploy-overlord-cdl-runtime to deploy just the conversational ESB actions

support. Or

• Run: ant deploy-overlord-cdl-validator to to deploy just the service validation capability.

By default, when you run ant or ant deploy, it will deploy both of two modules.

Also, you can undeploy modules by running ant undeploy. Or remove them module by module

through running: ant undeploy-overlord-cdl-runtime and ant undeploy-overlord-

cdl-validator

	JBoss Overlord CDL 1.0-M2
	Table of Contents
	Chapter 1. Installation
	1.1. Overview
	1.2. Prerequisites
	1.3. Installation Instructions
	1.4. Importing Samples into Eclipse

	Chapter 2. SOA Governance with CDL
	2.1. Design Time Governance
	2.1.1. Creating a Choreography
	2.1.2. Design Time Governance With WS-BPEL
	2.1.3. Design Time Governance With "Conversation Aware" ESB Actions
	2.1.3.1. What are "Conversation Aware" ESB Actions?
	2.1.3.2. Generating an ESB Service using "Conversation Aware" ESB Actions
	2.1.3.3. Conformance Checking "Conversation Aware" ESB Services
	2.1.3.4. Running "Conversation Aware" ESB Services

	2.1.4. Summary

	2.2. Runtime Governance using Conversation Validation
	2.2.1. Service Validator Configuration
	2.2.2. Deploy the TrailBlazer Example
	2.2.3. Starting the pi4soa Monitor
	2.2.4. Running the Example
	2.2.5. Detecting a Validation Error

	Chapter 3. Appendix
	3.1. Advanced options of installation

