DTGov Guide

O (o Ao Yo [0 o2 Ao Y o IR (o N D2 K CTo 1Y/ 1

I B =T T [N Y 4 TS J T AV =Y 4 = Vg o 1
1.2, USE CASES .euiiiuiiiiii ettt et ettt ans 1
A 1= T Lo] = (=T o 3
2.1, PrErEQUISITES ...ttt ettt ettt ettt e et e b 3
2.2. Download, Installation and Configurationccccuiveiiiiieiiiieii e, 3
2.3. Check your INSTAllAtioNiiiiiiiieii e 4
P T Al (o BT o] 4 PP 5
3. CoNTFIGUIING DTGOV ..ttt ettt e et e e et e e e 7
I I O 1= 4T U SOPPRN 7
3.2. Back-ENd ConfigUuIationioieiiioiiii e e 7
3.3. Back-End Configuration Propertiescoieiiiiiiiiiiiiiici e 7
3.4. User Interface (Ul) Configurationcoouuuiiiiiiiniiiiii et 8
3.5. Ul Configuration ProPertieSscc.uiiiiiieiiiieiii e ee e e e e e e e e e e e e e aens 9
3.6. Configuring Ul Deployment StAgEScccuuuiiiiiiiiiiiiiii e 10
3.7. Configuring Ul DeploymMeENnt TYPES ...ucevniiiiiieiii e et e e e e e e 10
4, DTGOV @Nd S-RAMP ..o e e e e e aaa 13
I @ Y= TP 13
4.2, CoNnfiguration PrOPEITIESccuuuuiiiiiii ettt et 13
G T 1 1= 101 (To%= o o PR 14
5. Governance WOIKFIOWSoouiiiiiii e e 17
LN I @ 1Y =T T P 17
5.2. Creating WOTKIIOWSouiiiiii e 17
5.3. Deploying WOTKFIOWScouuiiiiii e e e 17
5.4. DTGOV SUPPOITING SEIVICES ...ceivtniiiiiiiieeiiii ettt e e 19
5.5. QuUEry ConfIQUIAtiONiiiiiiiiii e e e e e e e e e e e 20
6. GovernanCe HUMAaN TaASKS ..o e e e e e e e an s 21
L I O A= T PO 21
6.2. Customizing the TaSK AP ... e 21
7. Deployment ManagemMENTcouuiiiiieiii et e e e e e e e et e e e et e e et eeaaaee 23
A0 O 1YY YT PP 23
7.2. Invoking the DeploymeNnt SEIVICEccuuiiiiiieiii e 23
7.3. Configuring DeploymMeENt TANQgELScocuuuuiiiiiiiieieii et 24
0 [7o [T 0] 0} V42 =T o | 25
BiDIOGIapnY ..o e e 27

Chapter 1.

Chapter 1. Introduction to DTGov

1.1. Design Time Governance

The DTGov project layers Design Time Governance functionality on top of an S-RAMP repository.
These two projects work together to provide the following:

» Store and Govern artifacts

» Custom Governance Workflows

« Integrated Governance Human Task Management

This guide will discuss the various pieces of functionality provided by DTGov and how to configure
and use them.

1.2. Use Cases

In addition to a general framework for triggering business workflows based on changes to artifacts
in the S-RAMP repository, the DTGov project focuses on the following specific Governance Use
Cases:

« Deployment Lifecycle Management

This guide will not only discuss the generic governance capabilities provided by the DTGov project,
but also the specific Use-Cases listed above.

Chapter 2.

Chapter 2. Getting Started

2.1. Prerequisites

The DTGov application is written in Java. To get started make sure your system has the following:

Java JDK 1.6 or newer
» Apache Ant 1.7 or newer to use the installer

 Maven 3.0.3 or newer

Overlord S-RAMP version 0.3.0.Final or newer

This Getting Started guide assumes you do not already have Overlord S-RAMP installed.

2.2. Download, Installation and Configuration

First, we recommend you download the following:

JBoss EAP 6.1 [http://lwww.jboss.org/jbossas/downloads]

ModeShape 3.2.0.Final [http://www.jboss.org/modeshape/downloads/downloads3-2-0-
final.html]

S-RAMP 0.3.0.Final [http://www.jboss.org/overlord/downloads/sramp]

DTGov 1.0.0.Final [http://www.jboss.org/overlord/downloads/dtgov]

Next, you must follow these steps to install and configure the application:

1. Unpack S-RAMP distribution

2. Copy the EAP download into the unpacked S-RAMP distro

3. Copy the ModeShape distribution into the unpacked S-RAMP distro

4. Run the S-RAMP installer

5. Unpack the DTGov distribution

6. Move the "target” folder from the S-RAMP distro to the unpacked DTGov distro

7. Copy the EAP download into the unpacked DTGov distro

http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/modeshape/downloads/downloads3-2-0-final.html
http://www.jboss.org/modeshape/downloads/downloads3-2-0-final.html
http://www.jboss.org/modeshape/downloads/downloads3-2-0-final.html
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/dtgov
http://www.jboss.org/overlord/downloads/dtgov

Chapter 2. Getting Started

8. Run the DTGov installer

9. Start JBoss

10Populate the S-RAMP repository with DTGov seed data (ontology + workflow jar)
Some psuedo-shell code that might help

nkdir ~/overlord

cd ~/overlord
Downl oad JBoss EAP 6.1 (jboss-eap-6.1.0.zip)

From - http://ww.jboss. org/jbossas/ downl oads

Downl oad t he MbdeShape EAP di stro (nmodeshape-3. 2. 0. Fi nal -j bosseap-61-di st. zi p)
From - http://ww.jboss. or g/ nodeshape/ downl oads/ downl oads3-2-0-fi nal . ht m
Downl oad S-RAMP distribution (s-ranp-0.3.0.Final.zip)

From - http://ww.jboss. org/overl ord/ downl oads/ sranp

unzip s-ranp-0.3.0.Final.zip

cp jboss-eap-6.1.0.zip s-ranp-0.3.0. Fina

cp nodeshape- 3. 2. 0. Fi nal -j bosseap-61-dist.zip s-ranp-0.3.0.Fina
cd s-ranp-0.3.0. Fina

ant install

cd .

mv s-ranp-0.3.0. Final/target dtgov-1.0.0.Fina

cp jboss-eap-6.1.0.zip dtgov-1.0.0.Fina

cd dtgov-1.0.0. Final

ant install

Start JBoss (target/jboss-eap-6.1/bin/standal one.sh) - wait for startup to
conpl ete

ant seed

cd data

mvn package

2.3. Check your Installation

Now that everything is installed and running, you should be able to verify that everything is working
by logging in to the S-RAMP Browser Ul and verifying that you can see the DTGov seed data.

http://localhost:8080/s-ramp-ui (admin/overlord)

You should see something like this:

http://localhost:8080/s-ramp-ui

Get to Work

BECCSA _ YaHoO! -0
‘P,S-RAMP Repository Browser - Artifacts | + |

6 ¥ localhost:2080/s-ramp-ui/#artifacts U;EE" Google):'I 4+ @
| Static |) GWT | | Live n Bookmarks

* JBoss Overlord S-RAMP Repository

Design Time Repository

S5-RAMP Dashboard

Core Properties

Type

Import Artifacts

Displaying 1-6 of 6

Date Created Name Type Derived Last Modified
o digov-workflows-1.0.0-20130717.153026-1 jar KieJarArchive 07/17/2013
dtgov-workflows-1.0.0-20130717.153026-1.pom MavenPom 07M17/2013
Date Last Modified
kmodule xml KieXmlDocument 07M17/2013
1o
overlord.demo.CheckDeployment-taskform.xml XmiDocument 07M17/2013
B overlord.demo.ProjectLifeCycle.bpmn2 Document 07172013
overlord demo_SimpleReleaseProcess. bpmn Document 0717/2013

Last Modified By

origin
O Any
@® Primary
) Derived

Clear All Filters

~
(5

Figure 2.1. Screenshot of the DTGov data in S-RAMP

2.4. Get to Work

It's all installed, running, and checked? Now it's time to use the software! This guide will explain
advanced configuration and usage, but you can get started by logging in to the DTGov User
Interface:

http://localhost:8080/dtgov-ui (admin/overlord)

It's likely that users will need to customize the system based on their organization’s specific
work processes. The Configuring and Governance Workflows chapters should be helpful in
describing how to customize the system.

http://localhost:8080/dtgov-ui

Chapter 3.

Chapter 3. Configuring DTGov

3.1. Overview

DTGov has two configurations that can be modified to suit a particular deployment and business.
Specifically, the back-end DTGov system (dtgov.war) has a configuration file as does the User
Interface (dtgov-ui.war). This chapter describes these two configuration files so that users can
configure DTGov for their particular deployment environment and organization’s unique business
processes.

3.2. Back-End Configuration

The configuration of the back-end system can be modified by making changes to an external
configuration file found in the application server's configuration directory. In JBoss EAP the
configuration file can be found here:

jboss-eap/standalone/configuration/dtgov.properties

The location of this file can be overridden by setting the following system property to be the full
path to a properties file anywhere on the server’s file system:

governance.file.name

This configuration file is used to control a number of settings, listed and described in the following
section.

3.3. Back-End Configuration Properties

S-RAMP Connection details
sranp. r epo. url

sranp. r epo. aut h. provi der
Sranp. r epo. user

sranp. r epo. passwor d

sranp. repo. val i dati ng

sranp. repo. aut h. sanl . i ssuer
sranp. r epo. aut h. sam . servi ce

Location of the DTGov WAR

gover nance. ur |

Frequency with which to poll S-RAMP for query matches

gover nance. query. i nt erval

Location in JNDI of the email service

gover nance. j ndi . enai | . ref erence

"From information to use when sending enail (domain and address)
gover nance. enai | . donai n

gover nance. enai | . from

Chapter 3. Configuring DTGov

RHQ connection info
rhq. rest. user
rhq. rest. password
rhg. base. url

BPM connection info
gover nance. bpm user
gover nance. bpm passwor d
gover nance. bpm ur |

JAAS user used to invoke DTGov provided services
gover nance. user
gover nance. password

Depl oynent targets configured for the DTGov depl oynment service
gover nance. targets

Mappi ng of S-RAMP query to governance workfl ow
gover nance. queri es

Location of the DIGov Ul

dt gov.

ui . url

S- RAMP
S-ranp- wagon
dt gov. s-r anp- wagon. snapshot s
dt gov. s-ranp-wagon. r el eases

DTGov Wor kfl ow maven i nfo

dt gov.
dt gov.
dt gov.
dt gov.

wor kf | ows

wor kf | ows.

wor kf | ows
wor kf | ows

. group
nanme

.version
. package

In particular, the governance.targets and governance.queries configuration properties bear
additional explanation. Please see the Governance Workflows chapter for more information on
how to use these properties to configure the DTGov Deployment Service and the Governance
Workflow Queries, respectively.

3.4. User Interface (Ul) Configuration

The DTGov user interface can also be configured for a specific deployment and business
environment. The configuration of the Ul can be modified by making changes to an external
configuration file found in the application server's configuration directory. In JBoss EAP the
configuration file can be found here:

jboss-eap/standalone/configuration/dtgov-ui.properties

Ul Configuration Properties

The location of this file can be overridden by setting the following system property to be the full
path to a properties file anywhere on the server’s file system:

dtgov-ui.config.file.name

This configuration file is used to control a number of settings, listed and described in the following
section.

3.5. Ul Configuration Properties

S-RAMP APl connection endpoi nt

dt gov-ui . s-ranp. at om api . endpoi nt

What kind of authentication to use (class nane)

dt gov-ui . s-ranp. at om api . aut henti cati on. provi der

Only used when the provider is basic auth

dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. user nanme
dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. passwor d
Only used when the provider is SAML bearer token auth
dt gov-ui . s-ranp. at om api . aut henti cati on. sam . i ssuer

dt gov-ui . s-ranp. at om api . aut henti cati on. sam . servi ce

Whether to validate the S-RAMP connection

dt gov-ui.s-ranp. at om api . val i dati ng

Task APl connection endpoi nt

dt gov- ui . t ask- api . endpoi nt

| npl enentation of a task client

dt gov-ui.task-client.class

Aut hentication to use when invoking the task AP
dt gov-ui . t ask- api . aut henti cati on. provi der

Only used when using basic auth

dt gov-ui . t ask- api . aut henti cati on. basi c. user nane
dt gov-ui . t ask- api . aut henti cati on. basi c. password
Only used when using saml bearer token auth
dt gov-ui . t ask-api . aut henti cati on. san . i ssuer

dt gov-ui . t ask- api . aut henti cati on. sanl . servi ce

Depl oynent |ifecycle base classifier

dt gov-ui . depl oynent-1ifecycl e.classifiers. base

dt gov-ui . depl oynent-lifecycle.classifiers.initial

Classifier to use when querying for all deploynents
dt gov-ui . depl oynent-1ifecycle.classifiers.al

dt gov-ui . depl oynent-1ifecycle.classifiers.in-progress

This next one is a prefix for any property that will indicate a possible
classifier stage that
shoul d be displayed in the U. In the dtgov ui configuration file,

mul tiple properties woul d
be specified that begin with this prefix and have a value of the format
{l abel }: {cl assifier}
dt gov-ui . depl oynent-1ifecycle.classifiers.stage

Chapter 3. Configuring DTGov

And another one that is a prefix for any property that will indicate a
possi bl e depl oynent type
that should be displayed in the U. In the dtgov ui configuration file,

mul tiple properties woul d
be specified that begin with this prefix and have a val ue of the format

{l abel }: {type}
dt gov-ui . depl oynent-1ifecycl e.types

S-RAMP U integration properties
dt gov-ui . s-ranp- browser. url - base

In particular, the dtgov-ui.deployment-lifecycle.classifiers.stage and dtgov-ui.deployment-
lifecycle.types properties require further explanation. See the following sections for details.

3.6. Configuring Ul Deployment Stages

The DTGov user interface has a page that allows users to see a list of all deployments being
tracked. That page allows the user to filter the list of deployments based on the environments in
which the deployment is...deployed. In other words, the Ul page allows the user to show only the
deployments that are currently deployed in, for example, the DEV environment. Since different
organizations have different numbers and names for these environments, the actual filter options
are configurable. An example will prove useful:

dt gov-ui . depl oynent -1 ifecycl e.cl assifiers. stage. dev=Devel opnent: http://
www. j boss. or g/ over | or d/ depl oynent - st at us. ow #l nDev

dt gov-ui . depl oynent-1ifecycle.classifiers.stage.qa=QA: http://ww.]jboss. org/
over| or d/ depl oynent - st at us. oM #l nQa

dt gov-ui . depl oynent-1ifecycle.classifiers.stage. stage=Stagi ng: http://

www. j boss. or g/ over | or d/ depl oynent - st at us. owl #l nSt age

dt gov-ui . depl oynent-1ifecycle.classifiers.stage. prod=Production: http://
www. | boss. or g/ over | or d/ depl oynent - st at us. owl #l nPr od

If the above configuration is used (in the dtgov-ui.properties file) then the Ul will show four
possible environments that the user can use to filter deployments (dev, ga, stage, prod). The
format for the value of each entry is:

Label : Classifier

The Label will be shown in the Ul (in the filter drop-down) and the Classifier will be used when
performing the S-RAMP query to retrieve the filtered list of deployments.

3.7. Configuring Ul Deployment Types

The DTGov user interface’s deployment listing page also allows users to filter by the type of
deployment (Java Web Application, SwitchYard Application, etc). Since different organizations
will likely work with varying technologies, the Deployment Type filter is configurable. For example:

10

Configuring Ul Deployment Types

dt gov-ui . depl oynent-1ifecycl e.types. swi tchyard=Swi tchYard Application: ext/
Swi t chYar dAppl i cati on

dt gov-ui . depl oynent-1ifecycl e.types.jar=Java Archive: ext/JavaArchive

dt gov-ui . depl oynent-1ifecycl e. types. war=Java Web Applicati on: ext/
JavaVWebAppl i cati on

In the above example, the user would be able to filter by SwitchYard Application, Java Archive,
and Java Web Application. The format for each entry is:

Label : S-RAMP Artifact Type

The Label will be shown in the Ul (in the filter drop-down) and the S-RAMP Artifact Type will be
used when performing the S-RAMP query to retrieve the filtered list of deployments.

Note: the list of Deployment Types is also used in the Add Deployment dialog when adding a
new deployment. In this case, the S-RAMP Artifact Type is used when adding the deployment
to the repository.

This configuration works in conjuction with the Deployment Service described in the Deployment
Management chapter of this guide. The classifiers specified when configuring Deployment
Targets should be represented here.

11

12

Chapter 4.

Chapter 4. DTGov and S-RAMP

4.1. Overview

DTGov integrates tightly with a compliant S-RAMP repository, and it is recommended that the
Overlord S-RAMP implementation is used. The S-RAMP repository is used as the storage
mechanism for all artifacts that DTGov is interested in (e.g. Deployments). This chapter describes
this integration as well as how it is configured.

DTGov is integrated with S-RAMP via the Atom based REST API that all S-RAMP repositories
expose. The repository is leveraged in a number of ways, including:

« Storage of all artifacts
» Monitor for changes to trigger business workflows (described in another chapter)

* Managing deployments
4.2. Configuration Properties

A number of configuration properties drive the integration between DTGov and S-RAMP. In
particular note that the DTGov back-end and the DTGov User Interface each have their own
separate configuration. This is because the back-end and Ul are separate applications that can
be independently deployed.

DTGov Back-End Configuration.

S-RAMP Connection details
sranp. repo. url

sranp. r epo. aut h. provi der
sranp. r epo. user

sranp. repo. password

sranp. repo. val i dati ng

sranp. repo. aut h. sam . i ssuer
sranp. repo. aut h. sani . service

DTGov User Interface Configuration.

S-RAMP APl connection endpoi nt

dt gov-ui . s-ranp. at om api . endpoi nt

dt gov-ui . s-ranp. at om api . aut henti cati on. provi der

dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. user nane
dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. password
dt gov-ui . s-ranp. atom api . aut henti cati on. san . i ssuer

13

Chapter 4. DTGov and S-RAMP

dt gov-ui.s-ranp. atom api . aut henti cati on. sanl . service
dt gov-ui .s-ranp. atom api . val i dating

Here is an example of how the back-end configuration might look:

sranp. repo. url =http://1 ocal host: 8080/ s-ranp-server/

sranp. r epo. aut h. provi der =or g. over | ord. sranp. gover nance. aut h. Basi cAut henti cati onProvi der
sranp. r epo. user =dt gov

sranp. r epo. passwor d=DTG_PASSWORD

sranp. repo. val i dati ng=true

The above configuration uses BASIC authentication when connecting to the S-RAMP repository.
It will connect to S-RAMP on localhost (port 8080).

The user interface configuration might look something like this:

dt gov- ui . s-ranp. at om api . endpoi nt =http://I ocal host: 8080/ s-r anp- server

dt gov-ui . s-ranp. at om

api . aut henti cati on. provi der=or g. over| ord. dt gov. ui . server. servi ces. sranp. SAM_Bear er TokenAut he
dt gov-ui . s-ranp. at om api . aut henti cati on. sam . i ssuer =/ dt gov- ui

dt gov- ui . s-ranp. at om api . aut henti cati on. san . servi ce=/ s-ranp- server

dt gov-ui . s-ranp. at om api . val i dati ng=true

The above configuration connects to S-RAMP on localhost (port 8080) and uses SAML bearer
token authentication.

4.3. Authentication

Both the Ul and the back-end support pluggable authentication mechanisms. Out of the
box DTGov provides implementations for BASIC authentication and SAML Bearer Token
authentication. If the S-RAMP repository is protected by some alternative form of authentication,
another implementation of the authentication provider can be created. In both cases, the
authentication provider must implement the following interface:

org.overlord.sramp.client.auth.AuthenticationProvider

The DTGov back-end provides the following authentication provider implementations:

1. BASIC - org.overlord.sramp.governance.auth.BasicAuthenticationProvider

2. SAML Bearer Token -
org.overlord.sramp.governance.auth. SAMLBearerTokenAuthenticationProvider

The DTGov user interface provides the following authentication provider implementations:

1. BASIC - org.overlord.dtgov.ui.server.services.sramp.BasicAuthenticationProvider

14

Authentication

2. SAML Bearer Token -
org.overlord.dtgov.ui.server.services.sramp.SAMLBearerTokenAuthenticationProvider

15

16

Chapter 5.

Chapter 5. Governance Workflows

5.1. Overview

One of the most important features of the Overlord: DTGov software is the ability to trigger
Governance Workflows based on changes detected in the S-RAMP repository. This chapter
discusses this functionality, including:

1. How to create a workflow
2. Using DTGov supplied supporting Governance Services
3. How to deploy a workflow

4. Configuring a workflow to execute (trigger) when repository content changes

5.2. Creating Workflows

Overlord: DTGov integrates tightly with the jBPM business process management system. This
allows DTGov to utilize any business process that is compatible with jBPM 6. The tooling available
to author jBPM compatible business processes is varied and extensive (and is outside the scope
of this document). One possibility is using the Eclipse based BPM tools. Another alternative is
using the web based Drools authoring tools.

For additional information about how to create jBPM processes, please consult the BPM and
Drools documentation [http://www.jboss.org/jbpm].

5.3. Deploying Workflows

All of the workflows and supporting files (images, task forms, etc) should be bundled together into
a KIE archive. A KIE archive is simply a JAR with a particular structure assumed by jBPM. For
example, your archive file structure might look something like this:

VETA- | NF/ knodul e. xn

SRAMPPackage/ Ht t pCl i ent Wor kDef i ni tions. w d

SRAMPPackage/ com nybusi ness. depl oy. EARLi f eCycl e. bprm2
SRAMPPackage/ com nybusi ness. depl oy. WARLi f eCycl e. bprm2
SRAMPPackage/ com nybusi ness. val i dat e. NewSchermaRevi ew. bpmm?2
SRAMPPackage/ run- bui | d-instal | . png
SRAMPPackage/ user - properti es. png
SRAMPPackage/ audi o- i nput - m cr ophone- 3. png

What are all these files?

The kmodule.xml file is a jBPM artifact (it makes this a Kie Archive rather than just a plain old
JAR file). This file should have the following content:

<?xm version="1.0" encodi ng="UTF- 8" ?>

17

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

Chapter 5. Governance Workflows

<knmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="https://raw. github. conl drool sj bpni dr ool sj bpm
know edge/ mast er/ ki e-api / src/ mai n/ r esour ces/ or g/ ki e/ api / knodul e. xsd"
xm ns="http://jboss. org/ ki e/6.0.0/ knodul e" >
<kbase nane="SRAMPPackage" >
<ksessi on nane="ksessi onSRAMP"/ >
</ kbase>
</ knodul e>

Next, there is a folder in the archive that maps to the kbase element found in the kmodule.xml
file. This folder contains all of the business process resources, primarily the BPMN2 files. There
is a file called HttpClientWorkDefinitions.wid which contains the custom work items used by
Governance Workflows. 1t might look something like this:

i mport org.drools. process. core. datatype.inpl.type. StringDataType;

[
/1 the Htpdient work item

[

"name" : "HtpdientDeploy",
"paraneters" : [
"Ul" : new StringDataType(),

"Met hod" : new StringDataType(),
"Uuid* : new StringDataType(),

"Target" : new StringDataType()
Il
"di spl ayNane" : "Depl oy",
"icon" : "run-build-install.png”,

1.

/1 the HitpClient work item
[
"name" : "HtpdientNotify",
"paraneters" : [
"Ul" : new StringDataType(),
"DIGovUrl ™ : new StringDataType(),
"Met hod" : new StringDataType(),
"Uui d* : new StringDataType(),
"Target" : new StringDataType(),
"G oup” : new StringDataType(),
1.
"di spl ayNane" : "Notify",
"icon" : "audi o-input-m crophone-3. png",

1.

/1 the Htpdient work item
[

"name" : "Htpd ientUpdat eMet aDat a",
"paraneters" : [
"Ul" : new StringDataType(),

18

DTGov Supporting Services

"Met hod" : new StringDataType(),
"Nane" : new StringDataType(),
"Val ue" : new StringDataType(),
“Uui d" : new StringDataType(),

Il
"di spl ayNane" : "UpdateMet aData",
"icon" : "user-properties.png"

This file also refers to some images files (useful for BPMN editors) which are also included in
the package.

Once the workflows are built, they must be deployed into the S-RAMP repository so that the
embedded version of jBPM can find them properly. It is recommended that the S-RAMP maven
integration is used to do this. The best way is to put all of the business process resouces into
a simple JAR style maven project. Then use the S-RAMP maven integration to mvn deploy the
project directly into S-RAMP. Please see the Overlord: S-RAMP documentation for details on how
this works. The result should be that your Governance workflow JAR (Kie Archive) is uploaded to
the S-RAMP repository, complete with relevant maven properties set.

The embedded jBPM engine will pick up the Governance Workflows by pulling the Kie Archive
out of the S-RAMP repository and using the content it finds within. It's worth noting that the
maven information of the Kie Archive can be configured in the DTGov back end configuration file
(dtgov.properties). The following properties control exactly what Kie Archive artifact the embedded
jBPM engine will grab from S-RAMP:

dt gov. wor kf | ows. gr oup=com nybusi ness

dt gov. wor kf | ows. name=gover nance- wor kf | ows
dt gov. wor kf | ows. versi on=1. 0.7

dt gov. wor kf | ows. package=SRAMPPackage

5.4. DTGov Supporting Services

In order to make it a little easier to author interesting Governance Workflows, DTGov provides a
set of useful Governance Services. A list of these services follows:

» Deployment Service - deploys a binary application artifact to a configured target
» Meta-Data Update Service - allows simple modification of an artifact's meta-data
« Notification Service - provides a simple way to send email naotifications

These services can be invoked by using the work items defined above in the
HttpClientWorkDefinitions.wid file.

Note: more information about the Deployment Service can be found in the Deployment
Management chapter of this guide.

19

Chapter 5. Governance Workflows

5.5. Query Configuration

Currently the only way to trigger the execution of a Governance Workflow is by configuring an S-
RAMP query that will be used to monitor the S-RAMP repository for interesting changes. When
changes are discovered, a new instance of the configured workflow is created and invoked. This
section of the guide describes how to configure these query triggers.

All query triggers are defined in the Governance configuration file (dtgov.properties). The following
is an example of this configuration:

gover nance. queri es=/ s-ranp/ ext/ JavaEnt er pri seAppl i cati on[@maven. artifact!d]|
com nmybusi ness. depl oy. EARLI f eCycl e. bprm2| Depl oynment Ur | ={ gover nance. url }/
rest/depl oy/{target}/{uuid}::NotificationUrl={governance.url}/rest/notify/
emai | / {group}/ depl oyed/ {target }/ {uui d}

gover nance. queri es=/ s-ranp/ xsd/ XsdDocunent |

com nybusi ness. val i dat e. NewSchemaRevi ew. bpmm2|

Noti ficationUr |l ={governance.url}/rest/notify/email/{group}/depl oyed/
{target}/{uui d}:: Updat eMet aDat aUr | ={ gover nance. url }/rest/ updat e/ { nane}/

{val ue}/ {uui d}

In the above example, two queries have been configured. The first is a query that will trigger the
EARLifeCycle process whenever an EAR artifact is added to the repository. Note that only EAR
artifacts added from Maven are targetted. The process will be passed two parameters:

1. DeploymentUrl

2. NotificationUrl

The second query will trigger the NewSchemaReview process whenever a new XML Schema
document is added to the repository. This process will be passed two parameters:

1. NotificationUrl

2. UpdateMetaDataUrl

20

Chapter 6.

Chapter 6. Governance Human
Tasks

6.1. Overview

Overlord: DTgov uses an embedded version of jBPM by default. However, human tasks can
easily be included in Governance Workflows because the Task Inbox is integrated directly into
the DTGov User Interface. Out of the box, this functionality should work seamlessly. However,
it is possible to integrate a separate task system by providing an alternative (custom) Task API
implementation.

6.2. Customizing the Task API

Simply put, the Task API system used by the DTGov user interface can be swapped out by setting
the following property in the DTGov Ul configuration file (dtgov-ui.properties):

dtgov-ui.task-client.class
This property must point to a fully qualified Java class that implements the following interface:
org.overlord.dtgov.ui.server.services.tasks.ITaskClient

Of course, any Governance Workflows that create Human Task instances must also point to the
alternate task system. That configuration is out of the scope of this guide.

21

22

Chapter 7.

Chapter 7. Deployment
Management

7.1. Overview

One of the most useful services provided by the Overlord: DTGov system is the Deployment
Service. This is a service that makes it possible to deploy a binary artifact stored in the S-RAMP
repository into a target runtime environment such as JBoss EAP. This Deployment Service can
easily be invoked from a Governance Workflow and is often included as part of a Deployment
Lifecycle business process.

7.2. Invoking the Deployment Service

Invoking the Deployment Service from a Governance Workflow should be a simple matter of using
the HttpClientDeploy task defined in the HttpClientWorkDefinitions.wid file as described in the
Governance Workflows chapter of this guide. Within a BPMN2 process, the XML markup might
look something like this:

<bpmm2:task id="Task_1" drool s:taskNanme="Htt pC i ent Depl oy"
dr ool s: di spl ayNane="Depl oy" drool s:icon="run-build-install.png"
nane="Depl oy to DEV'>
<bpmm2: i ncom ng>bpm20: SequenceFl ow_9</ bpm?2: i nconi ng>
<bpmm2: out goi ng>bpm20: SequenceFl ow_10</ bpmm2: out goi ng>
<bpmm2: i oSpeci fication id="_Input Qut put Speci fication_10">

<bpmm2: dat al nput i d="_Dat al nput _47" itenBSubj ect Ref="__Nanel nput |t ent
name="Url"/>

<bpmm2: dat al nput i d="_Dat al nput _48" itenBubj ect Ref="__Nanel nput |t ent
nanme="Met hod"/ >

<bpmm2: dat al nput i d="_Dat al nput _49" itenBSubj ect Ref="__Nanel nput |t ent
nanme="Uui d"/ >

<bpmm2: dat al nput i d="_Dat al nput _50" itenBubj ect Ref ="__Nanel nput |t ent

name="Tar get"/>
<bpmm2: i nput Set id="_|nput Set_10" nanme="I| nput Set 10">
<bpmm2: dat al nput Ref s>_Dat al nput _47</ bpm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _48</ bpnm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _49</ bpmm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _50</ bpm2: dat al nput Ref s>
</ bpmm2: i nput Set >
</ bpmm2: i oSpeci fi cati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_47">
<bpmm2: sour ceRef >Depl oynent Ur | </ bpm2: sour ceRef >
<bpmm2: t ar get Ref >_Dat al nput _47</ bpm?2: t ar get Ref >
</ bpmm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_48">
<bpmm2:t ar get Ref >_Dat al nput _48</ bpm?2: t ar get Ref >

23

Chapter 7. Deployment Management

<bpm2: assi gnnent i d="Assi gnnent_1">
<bpmm2: from xsi : t ype="bpmm?2: t For mal Expr essi on"
i d="For mal Expr essi on_16" >POST</ bpmm2: f r on>
<bpmm2:to xsi:type="bpm2:t Formal Expressi on"
i d="For mal Expressi on_17">_Dat al nput _48</ bpm2: t 0>
</ bpm2: assi gnnent >
</ bpm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_49">
<bpm2: sour ceRef >Ar ti f act Uui d</ bpm2: sour ceRef >
<bpmm2: t ar get Ref >_Dat al nput _49</ bpm?2: t ar get Ref >
</ bpm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_50">
<bpm2: t ar get Ref >_Dat al nput _50</ bpm2: t ar get Ref >
<bpmm2: assi gnnent i d="Assi gnnent _14">
<bpmm2: f rom xsi : t ype="bpmm2: t For mal Expr essi on"
i d="For mal Expr essi on_17">dev</ bpmm?2: f r on®>
<bpm2:to xsi:type="bpmm2:t For mal Expressi on"
i d="For mal Expr essi on_18">_Dat al nput _50</ bpm2: t 0>
</ bpm2: assi gnnment >
</ bpmm2: dat al nput Associ ati on>
</ bpm2: t ask>

The above task uses the DeploymentUrl and ArtifactUuid parameters that were passed in to
the business process when it was invoked. It populates the inputs required by HttpClientDeploy
including an input parameter named Target. The Target parameter maps to a configured
Deployment Target. The target is a logical name and corresponds to a physical runtime
environment configured in the DTGov configuration file (dtgov.properties). See the next section
for details.

7.3. Configuring Deployment Targets

In order to make logical Deployment Targets available they must be configured in the DTGov
configuration file. Typically an organization would configure three or four Deployment Targets,
including:

* dev - the development environment

* ga - the test environment

» stage - the staging environment

« prod - the final production environment

Of course, any number of targets can be configured. Here is an example of how to configure the
above four targets in the DTGov configuration file:

gover nance. targets= dev| http://ww. j boss. org/ overl ord/ depl oyrment -
st at us. owl #l nDev| copy| /t np/ dev/ j bossas7/ st andal one/ depl oynent s

24

Undeployment

gover nance. t ar get s= gal http://ww. j boss. or g/ over | ord/ depl oynent -
st at us. ow #l nQa| copy| / t np/ qa/ j bossas7/ st andal one/ depl oynent s

gover nance. t ar get s=st age| htt p: / / ww. j boss. or g/ over | or d/ depl oynent -
st at us. owl #l nSt age| copy| / t np/ st age/ j bossas7/ st andal one/ depl oynment s
gover nance. t arget s= prod| http://ww. j boss. or g/ over| or d/ depl oynent -
st at us. owl #l nPr od| copy| / t np/ pr od/ j bossas7/ st andal one/ depl oynment s

The format of each target is as follows:

LogicalName|Classifier|DeploymentType|TypeSpecificParams

» LogicalName : used in the BPMN process as described in the previous section as the value
of Target

» Classifier : a classifier that should get added to the binary deployment artifact when deployed
to the target environment (and removed when undeployed)

» DeploymentType : how to deploy to the environment. Valid values as of this writing include
copy, rhq, as_cli, maven

Depending on the type of the deployment, additional parameters may be required. In the example
above, the copy deployment type requires a folder on the server, which is where it will copy the
deployment artifact.

Here are some examples of how to use the other deployment types:

gover nance. t arget s= rhqg_exanpl e | #Exanpl e| rhq| {rhqg. user}::{rhqg. password}::
{rhqg. baseUr |}

governance. targets= cli_exanple |#Exanple|as_cli|

asuser: : aspasswor d: : ashost: : asport

gover nance. t ar get s= maven_exanpl e| #Exanpl e| maven| scp: / / n2. exanpl e. com n2/
shapshot -reposi tory: :fal se::true

7.4. Undeployment

Whenever the Deployment Service is used to deploy an artifact from the repository, it also
annotates that artifact with relevant undeployment information. This annotation takes the form of
another artifact in the repository of type ext/Undeploymentinformation. The annotation artifact
will have a relationship named describesDeployment pointing from it back to the deployment
artifact it annotates.

This undeployment information is used whenever an artifact needs to be undeployed. Undeploy
of an artifact happens when a new version of that artifact is being deployed to a particular
environment (deployment target). When this happens, the old version (whichever version is
currently deployed in that environment) is undeployed in preparation of the new deployment.

Once the artifact is undeployed, its undeployment information artifact is deleted from the repository
and any relevant classifier associated with the target environment is removed from the deployment
artifact.

25

Chapter 7. Deployment Management

Note: please see the Configuring DTGov chapter for information about how to coordinate the
configuration of the Deployment Service with the configuration of the DTGov User Interface (the
Deployment Management Ul).

26

Bibliography

Books

[walsh-muellner] Norman Walsh & Leonard Muellner. DocBook - The Definitive Guide. O'Reilly &
Associates. 1999. ISBN 1-56592-580-7.

27

28

	DTGov Guide
	Table of Contents
	Chapter 1. Introduction to DTGov
	1.1. Design Time Governance
	1.2. Use Cases

	Chapter 2. Getting Started
	2.1. Prerequisites
	2.2. Download, Installation and Configuration
	2.3. Check your Installation
	2.4. Get to Work

	Chapter 3. Configuring DTGov
	3.1. Overview
	3.2. Back-End Configuration
	3.3. Back-End Configuration Properties
	3.4. User Interface (UI) Configuration
	3.5. UI Configuration Properties
	3.6. Configuring UI Deployment Stages
	3.7. Configuring UI Deployment Types

	Chapter 4. DTGov and S-RAMP
	4.1. Overview
	4.2. Configuration Properties
	4.3. Authentication

	Chapter 5. Governance Workflows
	5.1. Overview
	5.2. Creating Workflows
	5.3. Deploying Workflows
	5.4. DTGov Supporting Services
	5.5. Query Configuration

	Chapter 6. Governance Human Tasks
	6.1. Overview
	6.2. Customizing the Task API

	Chapter 7. Deployment Management
	7.1. Overview
	7.2. Invoking the Deployment Service
	7.3. Configuring Deployment Targets
	7.4. Undeployment

	Bibliography

