
DTGov Guide

iii

1. Introduction to DTGov ... 1

1.1. Design Time Governance .. 1

1.2. Use Cases ... 1

1.3. How DTGov Works ... 1

1.4. The Sample Process Workflow: "SimpleReleaseProcess" 2

2. Getting Started .. 3

2.1. Prerequisites .. 3

2.2. Download, Installation and Configuration .. 3

2.3. Check your Installation .. 4

2.4. Get to Work ... 5

3. User Management .. 7

3.1. Overview .. 7

3.2. Required Roles ... 7

3.3. Adding a User .. 7

3.3.1. JBoss EAP 6 ... 7

3.3.2. JBoss Fuse 6.1 .. 8

3.3.3. Tomcat 7 ... 9

3.3.4. Jetty 8 ... 9

4. Configuring DTGov .. 11

4.1. Overview .. 11

4.2. Back-End Configuration ... 11

4.3. Back-End Configuration (EAP) ... 11

4.4. Back-End Configuration Properties ... 12

4.5. User Interface (UI) Configuration ... 13

4.6. User Interface (UI) Configuration (EAP) .. 14

4.7. UI Configuration Properties .. 14

4.8. Configuring UI Deployment Stages .. 16

4.9. Configuring UI Deployment Types .. 16

4.10. Configuring Authentication ... 17

5. DTGov and S-RAMP .. 21

5.1. Overview .. 21

5.2. Configuration Properties .. 21

5.3. Authentication ... 24

6. Governance Workflows .. 25

6.1. Overview .. 25

6.2. Creating Workflows ... 25

6.2.1. Create Workflows using Eclipse Tooling. ... 25

6.2.2. Create Workflows using Drools web based tools. 32

6.3. Deploying Workflows ... 32

6.4. DTGov Supporting Services .. 35

6.5. Query Configuration .. 35

6.6. Managing Workflow Instances (Processes) ... 38

7. Configuring the Notification Service .. 39

7.1. Invoking the Notification Service .. 39

DTGov Guide

iv

7.2. Notification Destinations .. 39

7.3. Email Templates ... 40

7.3.1. S-RAMP Artifact Templates .. 40

7.3.2. Classpath Templates .. 41

7.3.3. Template Lookup Summary .. 41

8. Governance Human Tasks ... 43

8.1. Overview .. 43

8.2. Using Human Tasks in a Workflow .. 43

8.3. Custom Task Forms .. 43

8.4. Fail Button .. 45

8.5. Customizing the Task API ... 45

9. Managed Deployments .. 47

9.1. Overview .. 47

9.2. Invoking the Deployment Service ... 47

9.3. Configuring Deployment Targets .. 48

9.4. Undeployment ... 49

9.5. Demo ... 49

9.5.1. Summary ... 49

9.5.2. Requirements ... 50

9.5.3. How It Works ... 51

9.5.4. Artifact Deployment .. 53

9.5.5. Classify as DevTest ... 54

9.5.6. Notify Dev .. 54

9.5.7. Test Dev .. 56

9.5.8. Gateway .. 57

9.5.9. Governing Deployments .. 58

10. SOA Governance Projects and Organizational Roles .. 59

10.1. Introduction ... 59

10.2. Demo Maven Project Workflow Integration .. 61

10.2.1. Summary ... 62

10.2.2. How It Works ... 64

10.2.3. Signaling Analysis Docs Complete ... 66

10.2.4. Signaling Architecture Docs Complete ... 67

10.2.5. Signaling Service implementation Complete ... 68

Bibliography ... 69

Chapter 1.

1

Chapter 1. Introduction to DTGov

1.1. Design Time Governance

The DTGov project layers Design Time Governance functionality on top of an S-RAMP repository.

These two projects work together to provide the following:

• Store and Govern artifacts

• Custom Governance Workflows

• Integrated Governance Human Task Management

This guide will discuss the various pieces of functionality provided by DTGov and how to configure

and use them.

1.2. Use Cases

In addition to a general framework for triggering business workflows based on changes to artifacts

in the S-RAMP repository, the DTGov project focuses on the following specific Governance Use

Cases:

• Deployment Lifecycle Management

This guide will not only discuss the generic governance capabilities provided by the DTGov project,

but also the specific Use-Cases listed above.

1.3. How DTGov Works

• Workflows are created from JBoss jBPM (BPMN2) process definitions.

• A version of jBPM is embedded in the deployed dtgov.war. This version of jBPM is configured

to use the S-RAMP repository as the source for workflow definitions.

• To use a workflow with DTGov, the jBPM workflow files must be bundled into a Jar file

named "dtgov-workflows.jar" and uploaded to the DTGov S-RAMP repository. There are several

methods than can be used to deploy the workflow jar file to S-RAMP. We recommend that you

use maven.

• The embedded jBPM pulls the dtgov-workflow.jar out of S-RAMP at runtime and uses the

workflow definitions found therein.

• In this context, "runtime" refers to whenever a new workflow instance is created (typically

triggered by an artifact being added or changed in the s-ramp repository).

Chapter 1. Introduction to DTGov

2

• Any human tasks that are used in any DTGov workflow will appear in the Tasks UI included in

the DTGov UI (http://localhost:8080/dtgov-ui)

• A workflow deployment only shows up in the dtgov-ui/#deployments page once a lifecycle

management jBPM process is kicked off for it.

1.4. The Sample Process Workflow:

"SimpleReleaseProcess"

• A sample Process Workflow ("SimpleReleaseProcess") is packaged with DTGov

• OOTB SimpleReleaseProcess does "Lifecycle Management" governance on an artifact by

monitoring the S-RAMP repository periodically (60 sec default) - this monitoring takes the form

of a query on the repository.

• When an artifact matches that S-RAMP query as configured in the DTGov config file

(dtgov.properties) which is mapped to the SimpleReleaseProcess a new jBPM process instance

is created for that artifact. The process can do anything it wants at that point.

http://localhost:8080/dtgov-ui

Chapter 2.

3

Chapter 2. Getting Started

2.1. Prerequisites

The DTGov application is written in Java. To get started make sure your system has the following:

• Java JDK 1.6 or newer

• Apache Ant 1.7 or newer to use the installer

• Maven 3.0.3 or newer

• Overlord S-RAMP version 0.5.0.Final or newer

This Getting Started guide assumes you do not already have Overlord S-RAMP installed.

2.2. Download, Installation and Configuration

First, we recommend you download the following:

• JBoss EAP 6.3 [http://www.jboss.org/jbossas/downloads]

• S-RAMP 0.5.0.Final [http://www.jboss.org/overlord/downloads/sramp]

• DTGov 1.3.0.Final [http://www.jboss.org/overlord/downloads/dtgov]

Next, you must follow these steps to install and configure the application:

1. Download and install your preferred runtime platform. We currently support:

a. JBoss EAP 6.3

b. JBoss Fuse 6.1

c. Tomcat 7

d. Jetty 8

2. Download and unpack S-RAMP 0.5.0.Final

3. Download and unpack DTGov 1.3.0.Final

4. Run the S-RAMP installer, installing into your installed runtime platform

5. Run the DTGov installer, installing into your installed runtime platform

http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/dtgov
http://www.jboss.org/overlord/downloads/dtgov

Chapter 2. Getting Started

4

6. Start your application container (e.g. JBoss EAP)

7. Populate the S-RAMP repository with DTGov seed data

Some psuedo-shell code that might help

mkdir ~/overlord

cd ~/overlord

Download JBoss EAP 6.3 (e.g. jboss-eap-6.3.0.zip)

From - http://www.jboss.org/jbossas/downloads

Download S-RAMP distribution (s-ramp-0.5.0.Final.zip)

From - http://www.jboss.org/overlord/downloads/sramp

Download S-RAMP distribution (dtgov-1.3.0.Final.zip)

From - http://www.jboss.org/overlord/downloads/dtgov

unzip jboss-eap-6.3.0.zip

unzip s-ramp-0.5.0.Final.zip

unzip dtgov-1.3.0.Final.zip

cd s-ramp-0.5.0.Final

ant install

!!Follow installation instructions here!!

cd ~/overlord/dtgov-1.3.0.Final

ant install

!!Follow installation instructions here!!

Start JBoss (~/overlord/jboss-eap-6.1/bin/standalone.sh) - wait for startup

 to complete

cd ~/overlord/dtgov-1.3.0.Final

ant seed -Ds-ramp.shell.password=ADMIN_PASSWORD

The dtgov.war and dtgov-ui.war applications are deployed to the runtime platform during the

installation. The DTGov web UI (http://localhost:8080/dtgov-ui) is provided by dtgov-ui.war. You

will see references to these in the server.log at startup and when the services are invoked.

2.3. Check your Installation

Now that everything is installed and running, you should be able to verify that everything is working

by logging in to the S-RAMP Browser UI and verifying that you can see the DTGov seed data.

http://localhost:8080/s-ramp-ui (admin/overlord)

You should see something like this:

http://localhost:8080/dtgov-ui
http://localhost:8080/s-ramp-ui

Get to Work

5

Figure 2.1. Screenshot of the DTGov data in S-RAMP

2.4. Get to Work

It’s all installed, running, and checked? Now it’s time to use the software! This guide will explain

advanced configuration and usage, but you can get started by logging in to the DTGov User

Interface as admin:

http://localhost:8080/dtgov-ui

It’s likely that users will need to customize the system based on their organization’s specific

work processes. The Configuring and Governance Workflows chapters should be helpful in

describing how to customize the system.

http://localhost:8080/dtgov-ui

6

Chapter 3.

7

Chapter 3. User Management

3.1. Overview

In order to do work in the DTGov system, a valid user must first be authenticated. The specific

details regarding how to create and manage the list of allowed users will vary depending on

the runtime configuration. This guide will focus on the mechanisms supported by the DTGov

community installer.

Tip

Please note that the installer creates a single user (named admin) during the

installation process.

3.2. Required Roles

There are several roles that the user must have in order to interact with DTGov. These roles are

as follows:

• overlorduser : users must have this role in order to access the DTGov user interface

• admin.sramp : users must have this role in order to access the S-RAMP repository (both read

and write)

• dev : users with this role will be able to view and complete Dev environment and developer

human tasks

• test : users with this role will be able to view and complete Test environment human tasks

• stage : users with this role will be able to view and complete Staging environment human tasks

• prod : users with this role will be able to view and complete Production environment human

tasks

• ba : users with this role will be able to view and complete business analyst human tasks

• arch : users with this role will be able to view and complete architect human tasks

3.3. Adding a User

3.3.1. JBoss EAP 6

By default DTGov uses the standard EAP Application Realm configuration as its authentication

source. This means that adding users is a simple matter of using the existing EAP add-user script.

If you are running on Windows you can use the add-user.bat script. Otherwise run the add-user.sh

script. Both of these scripts can be found in EAP’s bin directory.

Chapter 3. User Management

8

Here is an example of how to add an S-RAMP user using the add-user.sh script:

[user@host jboss-eap-6.x]$ pwd

/home/user/FSW6/jboss-eap-6.x

[user@host jboss-eap-6.x]$./bin/add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) : ApplicationRealm

Username : fitzuser

Password : P4SSW0RD!

Re-enter Password : P4SSW0RD!

What roles do you want this user to belong to? (Please

 enter a comma separated list, or leave blank for none)[]:

 overlorduser,admin.sramp,dev,test

About to add user 'fitzuser' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Added user 'fitzuser' to file '/home/user/FSW6/jboss-eap-6.x/standalone/

configuration/application-users.properties'

Added user 'fitzuser' to file '/home/user/FSW6/jboss-eap-6.x/domain/

configuration/application-users.properties'

Added user 'fitzuser' with roles overlorduser,admin.sramp to file '/

home/user/FSW6/jboss-eap-6.x/standalone/configuration/application-

roles.properties'

Added user 'fitzuser' with roles overlorduser,admin.sramp to file '/home/

user/FSW6/jboss-eap-6.x/domain/configuration/application-roles.properties'

Is this new user going to be used for one AS process to connect to another

 AS process?

e.g. for a slave host controller connecting to the master or for a Remoting

 connection for server to server EJB calls.

yes/no? no

Tip

the above example will create a user who can view and complete Dev and Test

environment human tasks. Any other human tasks will not be visible.

3.3.2. JBoss Fuse 6.1

When running DTGov in JBoss Fuse 6.1, the user credentials are stored in a plain text properties

file in the etc directory.

etc/users.properties.

Tomcat 7

9

#user=password,role1,role2

admin=ADMIN_PASSWORD,overlorduser,admin.sramp,dev,test,stage,prod,ba,arch

Simply add users to this file and restart Fuse. Make sure you include the necessary roles of

overlorduser and admin.sramp (along with any additional optional roles the particular user might

need) in any user you create.

3.3.3. Tomcat 7

When running DTGov in Tomcat 7, the source of authentication is an XML configuration file located

in Tomcat’s conf directory named tomcat-users.xml. To add another user, simply add a user

element to this XML configuration file. For example, adding a user named fitzuser might make

the file look like this:

<?xml version="1.0" encoding="UTF-8"?>

<tomcat-users>

<!--

 NOTE: By default, no user is included in the "manager-gui" role required

 to operate the "/manager/html" web application. If you wish to use this

 app,

 you must define such a user - the username and password are arbitrary.

-->

 <role rolename="tomcat"/>

 <role rolename="overlorduser"/>

 <role rolename="admin.sramp" />

 <user username="admin" password="4dm1n!"

 roles="tomcat,overlorduser,admin.sramp,dev,test,stage,prod,ba,arch"/>

 <user username="fitzuser" password="P4SSW0RD!"

 roles="tomcat,overlorduser,admin.sramp,dev,test"/>

</tomcat-users>

3.3.4. Jetty 8

When running in Jetty 8, the users are configured in the $JETTY_HOME/etc/realm.properties file.

The format is the same as the above Fuse 6 documentation:

username=password123!,overlorduser,admin.sramp,dev,test

10

Chapter 4.

11

Chapter 4. Configuring DTGov

4.1. Overview

DTGov has two configurations that can be modified to suit a particular deployment and business.

Specifically, the back-end DTGov system (dtgov.war) has a configuration file as does the User

Interface (dtgov-ui.war). This chapter describes these two configuration files so that users can

configure DTGov for their particular deployment environment and organization’s unique business

processes.

4.2. Back-End Configuration

The configuration of the back-end system can be modified by making changes to an external

configuration file found in the application server’s configuration directory. In JBoss EAP by default

the configuration file can be found here:

jboss-eap/standalone/configuration/dtgov.properties

If the file does not exist it can be created and will be picked up by the DTGov app during startup.

The location of this file can be overridden by setting the following Java System Property to be the

full path to a properties file anywhere on the server’s file system:

governance.file.name

For example, this system property could be configured by adding the following to the script that

starts up your application server:

-Dgovernance.file.name=/home/jdoe/config/overlord/dtgov/dtgov.properties

The dtgov.properties configuration file is used to control a number of settings, listed and described

in the following section.

4.3. Back-End Configuration (EAP)

When running in JBoss EAP this same configuration information is stored in the

JBOSS/standalone/configuration/standalone.xml file under the urn:jboss:domain:overlord-

configuration:1.0 subsystem. For example:

 <subsystem xmlns="urn:jboss:domain:overlord-configuration:1.0">

 <configurations>

 <oc:configuration xmlns:oc="urn:jboss:domain:overlord-

configuration:1.0" name="dtgov">

 <oc:properties>

 <oc:property name="sramp.repo.url" value="${overlord.baseUrl}/s-

ramp-server" />

Chapter 4. Configuring DTGov

12

 <oc:property name="governance.url" value="${overlord.baseUrl}/

dtgov" />

 <oc:property name="dtgov.ui.url" value="${overlord.baseUrl}/

dtgov-ui" />

 <oc:property name="governance.query.interval" value="20000" />

 <oc:property name="dtgov.workflows.group"

 value="org.overlord.dtgov" />

 <oc:property name="dtgov.workflows.name" value="dtgov-

workflows" />

 <oc:property name="dtgov.workflows.package"

 value="SRAMPPackage" />

 <oc:property name="dtgov.workflows.version" value="1.3.0-

SNAPSHOT" />

 <oc:property name="governance.bpm.user" value="dtgovworkflow" />

 <oc:property name="governance.bpm.password"

 value="${vault:VAULT::dtgov::dtgovworkflow.password::1}" />

 <oc:property name="sramp.repo.user" value="dtgovworkflow" />

 <oc:property name="sramp.repo.password"

 value="${vault:VAULT::dtgov::dtgovworkflow.password::1}" />

 <oc:property name="governance.user" value="dtgovworkflow" />

 <oc:property name="governance.password"

 value="${vault:VAULT::dtgov::dtgovworkflow.password::1}" />

 </oc:properties>

 </oc:configuration>

 </configurations>

 </subsystem>

All of the same properties as described above are applicable to EAP - they are simply configured

in a slightly different location.

4.4. Back-End Configuration Properties

S-RAMP Connection details

sramp.repo.url

sramp.repo.auth.provider

sramp.repo.user

sramp.repo.password

sramp.repo.validating

sramp.repo.auth.saml.issuer

sramp.repo.auth.saml.service

Location of the DTGov WAR

governance.url

Frequency with which to poll S-RAMP for query matches

governance.query.interval

Location in JNDI of the email service

governance.jndi.email.reference

"From" information to use when sending email (domain and address)

governance.email.domain

User Interface (UI) Configuration

13

governance.email.from

JNDI location of the User Transaction

governance.jndi.userTx.reference

RHQ connection info

rhq.rest.user

rhq.rest.password

rhq.base.url

BPM connection info

governance.bpm.user

governance.bpm.password

governance.bpm.url

BASIC auth user used to invoke DTGov provided services

governance.user

governance.password

Deployment targets configured for the DTGov deployment service

governance.targets

Location of the DTGov UI

dtgov.ui.url

S-RAMP

s-ramp-wagon

dtgov.s-ramp-wagon.snapshots

dtgov.s-ramp-wagon.releases

DTGov Workflow maven info

dtgov.workflows.group

dtgov.workflows.name

dtgov.workflows.version

dtgov.workflows.package

In particular, the governance.targets and governance.queries configuration properties bear

additional explanation. Please see the Governance Workflows chapter for more information on

how to use these properties to configure the DTGov Deployment Service and the Governance

Workflow Queries, respectively.

4.5. User Interface (UI) Configuration

The DTGov user interface can also be configured for a specific deployment and business

environment. The configuration of the UI can be modified by making changes to an external

configuration file found in the application server’s configuration directory. In JBoss EAP the

configuration file can be found here:

jboss-eap/standalone/configuration/dtgov-ui.properties

Chapter 4. Configuring DTGov

14

The location of this file can be overridden by setting the following system property to be the full

path to a properties file anywhere on the server’s file system:

dtgov-ui.config.file.name

This configuration file is used to control a number of settings, listed and described in the following

section.

4.6. User Interface (UI) Configuration (EAP)

As mentioned above, when running in JBoss EAP the configuration properties are stored in the

standalone.xml file. See the section Back-End Configuration (EAP) above. The UI properties

are stored in a section named dtgov-ui:

 <subsystem xmlns="urn:jboss:domain:overlord-configuration:1.0">

 <configurations>

 <oc:configuration xmlns:oc="urn:jboss:domain:overlord-

configuration:1.0" name="dtgov-ui">

 <oc:properties>

 <!-- Below is not the full list of properties needed - it is

 imply illustrative of the format -->

 <oc:property name="dtgov-ui.workflows.group"

 value="org.overlord.dtgov" />

 <oc:property name="dtgov-ui.workflows.name" value="dtgov-

workflows" />

 <oc:property name="dtgov-ui.workflows.version" value="1.3.0-

SNAPSHOT" />

 </oc:properties>

 </oc:configuration>

 </configurations>

 </subsystem>

4.7. UI Configuration Properties

S-RAMP API connection endpoint

dtgov-ui.s-ramp.atom-api.endpoint

Whether to validate the S-RAMP connection

dtgov-ui.s-ramp.atom-api.validating

What kind of authentication to use (class name)

dtgov-ui.s-ramp.atom-api.authentication.provider

Only used when the provider is basic auth

dtgov-ui.s-ramp.atom-api.authentication.basic.username

dtgov-ui.s-ramp.atom-api.authentication.basic.password

Only used when the provider is SAML bearer token auth

dtgov-ui.s-ramp.atom-api.authentication.saml.issuer

dtgov-ui.s-ramp.atom-api.authentication.saml.service

dtgov-ui.s-ramp.atom-api.authentication.saml.sign-assertions

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore

UI Configuration Properties

15

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore-password

dtgov-ui.s-ramp.atom-api.authentication.saml.key-alias

dtgov-ui.s-ramp.atom-api.authentication.saml.key-password

Task API connection endpoint

dtgov-ui.task-api.endpoint

Implementation of a task client

dtgov-ui.task-client.class

Authentication to use when invoking the task API

dtgov-ui.task-api.authentication.provider

Only used when using basic auth

dtgov-ui.task-api.authentication.basic.username

dtgov-ui.task-api.authentication.basic.password

Only used when using saml bearer token auth

dtgov-ui.task-api.authentication.saml.issuer

dtgov-ui.task-api.authentication.saml.service

dtgov-ui.task-api.authentication.saml.sign-assertions

dtgov-ui.task-api.authentication.saml.keystore

dtgov-ui.task-api.authentication.saml.keystore-password

dtgov-ui.task-api.authentication.saml.key-alias

dtgov-ui.task-api.authentication.saml.key-password

Dtgov API related properties

dtgov-ui.dtgov-api.endpoint

dtgov-ui.dtgov-client.class

dtgov-ui.dtgov-api.authentication.provider

Only used when using saml bearer token auth

dtgov-ui.dtgov-api.authentication.saml.issuer

dtgov-ui.dtgov-api.authentication.saml.service

dtgov-ui.dtgov-api.authentication.saml.sign-assertions

dtgov-ui.dtgov-api.authentication.saml.keystore

dtgov-ui.dtgov-api.authentication.saml.keystore-password

dtgov-ui.dtgov-api.authentication.saml.key-alias

dtgov-ui.dtgov-api.authentication.saml.key-password

Deployment lifecycle base classifier

dtgov-ui.deployment-lifecycle.classifiers.base

dtgov-ui.deployment-lifecycle.classifiers.initial

Classifier to use when querying for all deployments

dtgov-ui.deployment-lifecycle.classifiers.all

dtgov-ui.deployment-lifecycle.classifiers.in-progress

This next one is a prefix for any property that will indicate a possible

 classifier stage that

should be displayed in the UI. In the dtgov ui configuration file,

 multiple properties would

be specified that begin with this prefix and have a value of the format

 {label}:{classifier}

dtgov-ui.deployment-lifecycle.classifiers.stage

Chapter 4. Configuring DTGov

16

And another one that is a prefix for any property that will indicate a

 possible deployment type

that should be displayed in the UI. In the dtgov ui configuration file,

 multiple properties would

be specified that begin with this prefix and have a value of the format

 {label}:{type}

dtgov-ui.deployment-lifecycle.types

S-RAMP UI integration properties

dtgov-ui.s-ramp-browser.url-base

In particular, the dtgov-ui.deployment-lifecycle.classifiers.stage and dtgov-ui.deployment-

lifecycle.types properties require further explanation. See the following sections for details.

4.8. Configuring UI Deployment Stages

The DTGov user interface has a page that allows users to see a list of all deployments being

tracked. That page allows the user to filter the list of deployments based on the environments in

which the deployment is…deployed. In other words, the UI page allows the user to show only the

deployments that are currently deployed in, for example, the DEV environment. Since different

organizations have different numbers and names for these environments, the actual filter options

are configurable. An example will prove useful:

dtgov-ui.deployment-lifecycle.classifiers.stage.dev=Development:http://

www.jboss.org/overlord/deployment-status.owl#InDev

dtgov-ui.deployment-lifecycle.classifiers.stage.qa=QA:http://www.jboss.org/

overlord/deployment-status.owl#InQa

dtgov-ui.deployment-lifecycle.classifiers.stage.stage=Staging:http://

www.jboss.org/overlord/deployment-status.owl#InStage

dtgov-ui.deployment-lifecycle.classifiers.stage.prod=Production:http://

www.jboss.org/overlord/deployment-status.owl#InProd

If the above configuration is used (in the dtgov-ui.properties file) then the UI will show four

possible environments that the user can use to filter deployments (dev, qa, stage, prod). The

format for the value of each entry is:

Label : Classifier

The Label will be shown in the UI (in the filter drop-down) and the Classifier will be used when

performing the S-RAMP query to retrieve the filtered list of deployments.

4.9. Configuring UI Deployment Types

The DTGov user interface’s deployment listing page also allows users to filter by the type of

deployment (Java Web Application, SwitchYard Application, etc). Since different organizations

will likely work with varying technologies, the Deployment Type filter is configurable. For example:

Configuring Authentication

17

dtgov-ui.deployment-lifecycle.types.switchyard=SwitchYard Application:ext/

SwitchYardApplication

dtgov-ui.deployment-lifecycle.types.jar=Java Archive:ext/JavaArchive

dtgov-ui.deployment-lifecycle.types.war=Java Web Application:ext/

JavaWebApplication

In the above example, the user would be able to filter by SwitchYard Application, Java Archive,

and Java Web Application. The format for each entry is:

Label : S-RAMP Artifact Type

The Label will be shown in the UI (in the filter drop-down) and the S-RAMP Artifact Type will be

used when performing the S-RAMP query to retrieve the filtered list of deployments.

Note: the list of Deployment Types is also used in the Add Deployment dialog when adding a

new deployment. In this case, the S-RAMP Artifact Type is used when adding the deployment

to the repository.

This configuration works in conjuction with the Deployment Service described in the Deployment

Management chapter of this guide. The classifiers specified when configuring Deployment

Targets should be represented here.

4.10. Configuring Authentication

By default, the S-RAMP repository and all of the Design Time Governance REST services are

protected by BASIC and SAML Bearer Token authentication mechanisms (allowing clients to use

either). Configuring the authentication of the REST services varies depending on application

server. In JBoss the authentication is typically configured in the standalone.xml file. This section

describes how the various client components can be configured when the server authentication

mechanism is changed.

There are several Design Time Governance components that invoke protected REST services,

and each component must be configured individually. In each case an authentication provider

must be implemented and configured via either dtgov.properties or dtgov-ui.properties. The

following are the client components which can be customized in this way:

• DTGov :: S-RAMP Repository Monitoring (automated process that triggers workflows when

repository changes are detected)

• DTGov :: Governance Services Invoking the S-RAMP API (some of the Governance REST

services invoke the S-RAMP API)

• DTGov UI :: S-RAMP Invokes (the UI displays governance data that it gets from the S-RAMP

repository)

• DTGov UI :: Task Inbox Invokes (the UI queries a pluggable Task API to get human task data

for display in the Task Inbox)

Chapter 4. Configuring DTGov

18

In each case, an authentication provider can be specified that will control how authentication

information is passed to the service being invoked. The authentication provider must be a Java

class that implements a specific provider interface. The classname can be set in the relevant

configuration file. The following table provides the relevant details for each component:

Component Provider Interface Config Property Config File

DTGov :: S-RAMP

Repository Monitor

org.overlord.sramp.client.auth.AuthenticationProvidersramp.repo.auth.providerdtgov.properties

DTGov :: Governance

Services → S-RAMP

org.overlord.sramp.client.auth.AuthenticationProvidersramp.repo.auth.providerdtgov.properties

DTGov UI :: S-RAMP

Invokes

org.overlord.sramp.client.auth.AuthenticationProviderdtgov-ui.s-ramp.atom-

api.authentication.provider

dtgov-ui.properties

DTGov UI :: Task

Inbox Invokes

org.overlord.dtgov.taskclient.auth.AuthenticationProviderdtgov-ui.task-

api.authentication.provider

dtgov-ui.properties

Example

A reasonable example might be that the Task API is configured to use some alternative

authentication mechanism, in which case the DTGov UI must be configured with a different

(custom) provider. The following steps will accomplish this:

1. Create a new Java class that implements

org.overlord.dtgov.taskclient.auth.AuthenticationProvider

package org.example.auth;

import org.apache.http.HttpRequest;

import org.overlord.dtgov.taskclient.auth.AuthenticationProvider;

public class CustomAuthenticationProvider implements AuthenticationProvider

 {

 // Constructor.

 public NoAuthenticationProvider() {

 // Note, you may also choose to have a constructor that accepts an

 Apache Commons

 // Configuration object, which will allow you to access

 configuration properties

 // in the dtgov-ui.properties file:

 // org.apache.commons.configuration.Configuration

 }

 // Provide any custom authentication here.

 @Override

 public void provideAuthentication(HttpRequest request) {

 // Do custom authentication now.

 }

Configuring Authentication

19

}

1. Configure the provider in dtgov-ui.properties

dtgov-ui.task-

api.authentication.provider=org.example.auth.CustomAuthenticationProvider

Optional custom configuration properties

dtgov-ui.task-api.authentication.custom.property1=some-value

dtgov-ui.task-api.authentication.custom.property2=some-value

1. That’s it!

20

Chapter 5.

21

Chapter 5. DTGov and S-RAMP

5.1. Overview

DTGov integrates tightly with a compliant S-RAMP repository, and it is recommended that the

Overlord S-RAMP implementation is used. The S-RAMP repository is used as the storage

mechanism for all artifacts that DTGov is interested in (e.g. Deployments). This chapter describes

this integration as well as how it is configured.

DTGov is integrated with S-RAMP via the Atom based REST API that all S-RAMP repositories

expose. The repository is leveraged in a number of ways, including:

• Storage of all artifacts

• Monitor for changes to trigger business workflows (described in another chapter)

• Managing deployments

5.2. Configuration Properties

A number of configuration properties drive the integration between DTGov and S-RAMP. In

particular note that the DTGov back-end and the DTGov User Interface each have their own

separate configuration. This is because the back-end and UI are separate applications that can

be independently deployed.

Note that in addition to configuring the DTGov UI itself, the shared Overlord Header functionality

(the top header for all Overlord applications) must also be customized so that the tabs in the

header point to the right places. This is done by customizing the files installed (for example) in

$jboss_home/standalone/configuration/overlord-apps.

DTGov Back-End Configuration.

S-RAMP Connection details

sramp.repo.url

sramp.repo.auth.provider

sramp.repo.user

sramp.repo.password

sramp.repo.validating

DTGov User Interface Configuration.

S-RAMP API connection endpoint

dtgov-ui.s-ramp.atom-api.endpoint

dtgov-ui.s-ramp.atom-api.authentication.provider

Chapter 5. DTGov and S-RAMP

22

dtgov-ui.s-ramp.atom-api.authentication.saml.issuer

dtgov-ui.s-ramp.atom-api.authentication.saml.service

dtgov-ui.s-ramp.atom-api.authentication.saml.sign-assertions

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore-password

dtgov-ui.s-ramp.atom-api.authentication.saml.key-alias

dtgov-ui.s-ramp.atom-api.authentication.saml.key-password

dtgov-ui.s-ramp.atom-api.validating

dtgov-ui.s-ramp-browser.url-base

overlord-apps/*-overlordapp.properties Configuration.

overlordapp.href

Now for some examples. These examples assume that S-RAMP has been installed on server

"sramp.example.org" and DTGov has been installed on server "dtgov.example.org".

First let’s make sure the UI Headers are propertly configured. To do this, we want to make sure

that the files in overlord-apps are properly configured and copied to both servers (when running

in EAP these files are found in $jboss_home/standalone/configuration/overlord-apps). There are

two files of importance: srampui-overlordapp.properties, dtgov-overlordapp.properties

Example: srampui-overlordapp.properties.

overlordapp.app-id=s-ramp-ui

overlordapp.href=http://sramp.example.org:8080/s-ramp-ui/

overlordapp.label=Repository

overlordapp.primary-brand=JBoss Overlord

overlordapp.secondary-brand=S-RAMP Repository

Example: dtgov-overlordapp.properties.

overlordapp.app-id=dtgov

overlordapp.href=http://dtgov.example.org:8080/dtgov-ui/

overlordapp.label=Design Time

overlordapp.primary-brand=JBoss Overlord

overlordapp.secondary-brand=Governance

Now both servers should know where the appropriate UIs are located. This allows the shared

Overlord Header (at the top of all Overlord UIs) to create the appropriate tabs.

Next let’s make sure that the DTGov back-end can properly communicate with the S-RAMP

repository. This is done by editing the dtgov.properties file on the dtgov server.

Configuration Properties

23

Example: DTGov Back End Configuration.

sramp.repo.url=http://sramp.example.org:8080/s-ramp-server/

sramp.repo.auth.provider=org.overlord.sramp.governance.auth.BasicAuthenticationProvider

sramp.repo.user=dtgov

sramp.repo.password=DTG_PASSWORD

sramp.repo.validating=true

The above configuration uses BASIC authentication when connecting to the S-RAMP repository.

It will connect to S-RAMP at "sramp.example.org" (port 8080). Note that the DTGov back-end

uses BASIC authentication against the S-RAMP repository because some of the functionality in

DTGov occurs on the behalf of a workflow without the security context of an authenticated user.

Obviously you must make sure that the user credentials you list in the configuration represent

a valid S-RAMP repository user. We recommend creating a "dtgov" or "dtgovworkflow" user in

S-RAMP for this purpose. Most likely you will be sharing users/authentication between the two

servers in some way, but that is beyond the scope of this documentation.

Now that the back end is configured, we can configure the DTGov UI so it knows where the S-

RAMP repository is (as well as where the S-RAMP UI is!). This is done by editing the dtgov-

ui.properties file on the dtgov server.

Example: DTGov UI Configuration.

dtgov-ui.s-ramp.atom-api.endpoint=http://sramp.example.org:8080/s-ramp-server

dtgov-ui.s-ramp.atom-

api.authentication.provider=org.overlord.dtgov.ui.server.services.sramp.SAMLBearerTokenAuthenticationProvider

dtgov-ui.s-ramp.atom-api.authentication.saml.issuer=/dtgov-ui

dtgov-ui.s-ramp.atom-api.authentication.saml.service=/s-ramp-server

dtgov-ui.s-ramp.atom-api.authentication.saml.sign-assertions=true

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore=

${sys:jboss.server.config.dir}/overlord-saml.keystore

dtgov-ui.s-ramp.atom-api.authentication.saml.keystore-

password=KEYSTORE_PASSWORD

dtgov-ui.s-ramp.atom-api.authentication.saml.key-alias=overlord

dtgov-ui.s-ramp.atom-api.authentication.saml.key-password=KEY_PASSWORD

dtgov-ui.s-ramp.atom-api.validating=true

dtgov-ui.s-ramp-browser.url-base=http://sramp.example.org:8080/s-ramp-ui

The above configuration connects to S-RAMP at "sramp.example.org" (port 8080) and uses

SAML bearer token authentication. Please note that both the S-RAMP repository and the DTGov

installation must share the same SAML keystore (the keystore contains encryption keys used to

sign and verify SAML Assertions). This can be done by making sure that overlord-saml.keystore

is the same file for both installations. Also note that the SAML Assertion used in this type of

Chapter 5. DTGov and S-RAMP

24

authentication has a time-to-live of only 10 seconds per request. This means that both of your

servers must have their system times reasonably well in sync or this time-to-live test may fail.

The configuration also sets up the URL of the S-RAMP browser (UI). This is important because the

DTGov UI occassionally creates links directly to the S-RAMP browser. Please note that this latter

functionality may be adversely affected by user authentication (if the user must re-authenticate

when navigating from the DTGov UI to S-RAMP UI then the right page may not display).

5.3. Authentication

Both the UI and the back-end support pluggable authentication mechanisms. Out of the

box DTGov provides implementations for BASIC authentication and SAML Bearer Token

authentication. If the S-RAMP repository is protected by some alternative form of authentication,

another implementation of the authentication provider can be created. In both cases, the

authentication provider must implement the following interface:

org.overlord.sramp.client.auth.AuthenticationProvider

The DTGov back-end provides the following authentication provider implementations:

1. BASIC - org.overlord.sramp.governance.auth.BasicAuthenticationProvider

2. SAML Bearer Token - not supported

The DTGov user interface provides the following authentication provider implementations:

1. BASIC - org.overlord.dtgov.ui.server.services.sramp.BasicAuthenticationProvider

2. SAML Bearer Token -

org.overlord.dtgov.ui.server.services.sramp.SAMLBearerTokenAuthenticationProvider

Chapter 6.

25

Chapter 6. Governance Workflows

6.1. Overview

One of the most important features of the Overlord: DTGov software is the ability to trigger

Governance Workflows based on changes detected in the S-RAMP repository. This chapter

discusses this functionality, including:

1. How to create a workflow

2. Using DTGov supplied supporting Governance Services

3. How to deploy a workflow

4. Configuring a workflow to execute (trigger) when repository content changes

5. Managing running Workflows (processes)

6.2. Creating Workflows

Overlord: DTGov integrates tightly with the jBPM business process management system. This

allows DTGov to utilize any business process that is compatible with jBPM 6. The tooling available

to author jBPM compatible business processes is varied and extensive (and is outside the scope

of this document). One possibility is using the Eclipse based BPM tools. Another alternative is

using the web based Drools authoring tools.

6.2.1. Create Workflows using Eclipse Tooling.

6.2.1.1. Prerequisites

You need to have installed DTGov from JBoss Overlord project or as a part of Red Hat JBoss

Fuse Service Works 6 and JBoss Developer Studio along with the Integration Stack plugins:

• JBoss Developer Studio with the Integration Stack can be installed according to Integration

Stack for JBoss Tools and Developer Studio [https://community.jboss.org/community/tools/

blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio]

• FSW can be obtained from Red Hat JBoss Fuse Service Works [http://www.jboss.org/products/

fsw.html] and DTGov from JBoss Overlord project can be found at Overlord - JBoss Community

[http://www.jboss.org/overlord/].

6.2.1.2. Create new governance workflow

At the moment DTGov only supports one KieJar for all DTGov workflows, so first thing you need

to do, after starting JBDS, is to import the default dtgov workflows into you workspace:

https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
http://www.jboss.org/products/fsw.html
http://www.jboss.org/products/fsw.html
http://www.jboss.org/products/fsw.html
http://www.jboss.org/overlord/
http://www.jboss.org/overlord/

Chapter 6. Governance Workflows

26

• In JBDS select File # Import # Maven # Existing Maven Projects and navigate to <FSW

installation>jboss-eap-6.1/data where the dtgov workflows are located. The Maven

integration in JBDS will take care of the rest.

Figure 6.1. Importing workflow as maven project into your eclipse

workspace

Create Workflows using Eclipse Tooling.

27

Figure 6.2. Importing workflow as maven project into your eclipse

workspace

• At this point you can author new governance workflows in src/main/resources/

SRAMPPackage folder. To create new BPMN2 Process Diagram select File # New # Other #

BPMN2 # Generic BPMN 2.0 Diagram # Process Diagram Type.

Chapter 6. Governance Workflows

28

Figure 6.3. Choose Generic BPMN 2.0 Diagram

Create Workflows using Eclipse Tooling.

29

Figure 6.4. Choose Generic BPMN 2.0 Diagram and enter the filename.

• Once the new process definition is opened in BPMN2 Modeler, make sure you have Custom

tasks Modeler palette. If you don’t, right click on dtgov-workflows in Project Explorer # Properties

BPMN2 # Target Runtime # select 'JBoss jBPM 5 Business Process Engine'.

Chapter 6. Governance Workflows

30

Figure 6.5. Show the custom governance tasks

• Create model a brand new BPMN2 workflow diagram of your own. You can use

overlord.demo.SimpleReleaseProcess.bpmn, which is part of the default dtgov-workflows, as

Create Workflows using Eclipse Tooling.

31

an inspiration and sample for configuring DTGov Supporting Services tasks. Official DTGov

demos can be found here: https://github.com/Governance/dtgov/tree/master/dtgov-demos

• Few tips for DTGov workflow modeling:

• at first, set appropriate process id (will be used by DTGov to pick up the definition from S-

RAMP repository) and package name:

Figure 6.6. Show and set the Workflow properties.

https://github.com/Governance/dtgov/tree/master/dtgov-demos

Chapter 6. Governance Workflows

32

• second, create DTGov-specific Process variables in Data Items tab: DeploymentUrl ,

ArtifactUuid , Response , NotificationUrl , UpdateMetaDataUrl , DTGovUrl (these are used in

DTGov Supporting Services):

Figure 6.7. Show and set the Workflow Data Items.

6.2.2. Create Workflows using Drools web based tools.

You can download the guvnor console from the Drools-jBPM project and work on the workflows

there. Once you are ready to deploy you will need to export the project and deploy to S-RAMP

using a KJar format. Our experience is that this is similar to using the eclipse tooling but there are

some differences regarding how to work with custom tasks. We therefor recommend using the

eclipse based tooling. (note: this is an opportunity for you to contribute documentation)

For additional information about how to create jBPM processes, please consult the jBPM and

Drools documentation [http://www.jboss.org/jbpm].

6.3. Deploying Workflows

All of the workflows and supporting files (images, task forms, etc) should be bundled together into

a KIE archive. A KIE archive is simply a JAR with a particular structure assumed by jBPM. For

example, your archive file structure might look something like this:

META-INF/kmodule.xml

SRAMPPackage/HttpClientWorkDefinitions.wid

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

Deploying Workflows

33

SRAMPPackage/com.mybusiness.deploy.EARLifeCycle.bpmn2

SRAMPPackage/com.mybusiness.deploy.WARLifeCycle.bpmn2

SRAMPPackage/com.mybusiness.validate.NewSchemaReview.bpmn2

SRAMPPackage/run-build-install.png

SRAMPPackage/user-properties.png

SRAMPPackage/audio-input-microphone-3.png

What are all these files?

The kmodule.xml file is a jBPM artifact (it makes this a Kie Archive rather than just a plain old

JAR file). This file should have the following content:

<?xml version="1.0" encoding="UTF-8"?>

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="https://raw.github.com/droolsjbpm/droolsjbpm-

knowledge/master/kie-api/src/main/resources/org/kie/api/kmodule.xsd"

 xmlns="http://jboss.org/kie/6.0.0/kmodule" >

 <kbase name="SRAMPPackage">

 <ksession name="ksessionSRAMP"

 scope="javax.enterprise.context.ApplicationScoped">

 <workItemHandlers>

 <workItemHandler name="HttpClientDeploy" type="new

 org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler()"/>

 <workItemHandler name="HttpClientNotify" type="new

 org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler()"/>

 <workItemHandler name="HttpClientUpdateMetaData" type="new

 org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler()"/>

 </workItemHandlers>

 </ksession>

 </kbase>

</kmodule>

Next, there is a folder in the archive that maps to the kbase element found in the kmodule.xml

file. This folder contains all of the business process resources, primarily the BPMN2 files. There

is a file called HttpClientWorkDefinitions.wid which contains the custom work items used by

Governance Workflows. It might look something like this:

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 // the HttpClient work item

 [

 "name" : "HttpClientDeploy",

 "parameters" : [

 "Url" : new StringDataType(),

 "Method" : new StringDataType(),

Chapter 6. Governance Workflows

34

 "Uuid" : new StringDataType(),

 "Target" : new StringDataType()

],

 "displayName" : "Deploy",

 "icon" : "run-build-install.png",

],

 // the HttpClient work item

 [

 "name" : "HttpClientNotify",

 "parameters" : [

 "Url" : new StringDataType(),

 "DTGovUrl" : new StringDataType(),

 "Method" : new StringDataType(),

 "Uuid" : new StringDataType(),

 "Target" : new StringDataType(),

 "Group" : new StringDataType(),

],

 "displayName" : "Notify",

 "icon" : "audio-input-microphone-3.png",

],

 // the HttpClient work item

 [

 "name" : "HttpClientUpdateMetaData",

 "parameters" : [

 "Url" : new StringDataType(),

 "Method" : new StringDataType(),

 "Name" : new StringDataType(),

 "Value" : new StringDataType(),

 "Uuid" : new StringDataType(),

],

 "displayName" : "UpdateMetaData",

 "icon" : "user-properties.png",

]

]

This file also refers to some images files (useful for BPMN editors) which are also included in

the package.

Once the workflows are built, they must be deployed into the S-RAMP repository so that the

embedded version of jBPM can find them properly. It is recommended that the S-RAMP maven

integration is used to do this. The best way is to put all of the business process resources into

a simple JAR style maven project. Then use the S-RAMP maven integration to mvn deploy

the project directly into S-RAMP. Please see the Overlord: S-RAMP documentation’s "Maven

Integration" section for details on how this works. The result should be that your Governance

workflow JAR (Kie Archive) is uploaded to the S-RAMP repository, complete with relevant maven

properties set.

DTGov Supporting Services

35

The embedded jBPM engine will pick up the Governance Workflows by pulling the Kie Archive

out of the S-RAMP repository and using the content it finds within. It’s worth noting that the

maven information of the Kie Archive can be configured in the DTGov back end configuration file

(dtgov.properties). The following properties control exactly what Kie Archive artifact the embedded

jBPM engine will grab from S-RAMP:

dtgov.workflows.group=com.mybusiness

dtgov.workflows.name=governance-workflows

dtgov.workflows.version=1.0.7

dtgov.workflows.package=SRAMPPackage

6.4. DTGov Supporting Services

In order to make it a little easier to author interesting Governance Workflows, DTGov provides a

set of useful Governance Services. A list of these services follows:

• Deployment Service - deploys a binary application artifact to a configured target

• Meta-Data Update Service - allows simple modification of an artifact’s meta-data

• Notification Service - provides a simple way to send email notifications

These services can be invoked by using the work items defined above in the

HttpClientWorkDefinitions.wid file.

E-mail templates for notifications can be modified at:

dtgov.war/WEB-INF/classes/governance-email-templates/

Note: more information about the Deployment Service can be found in the Deployment

Management chapter of this guide.

6.5. Query Configuration

Currently the only way to trigger the execution of a Governance Workflow is by configuring an S-

RAMP query that will be used to monitor the S-RAMP repository for interesting changes. When

changes are discovered, a new instance of the configured workflow is created and invoked. This

section of the guide describes how to configure these query triggers.

All query triggers are defined as artifacts in the S-RAMP repository. These artifacts can be created

and managed using the Workflow Trigger Query administrative UI found in DTGov. Simply log

into the dtgov-ui web application and click on "Manage Workflow Queries" from the dashboard.

You should see a screen like this:

Chapter 6. Governance Workflows

36

Figure 6.8. Screenshot of the DTGov data in S-RAMP

Use this page to manage the list of workflow trigger queries configured in DTGov.

Tip

You must be an Overlord Admin to access the DTGov Workflow Trigger Query UI

page

You can add new queries or edit existing queries (either by clicking Add Query or by clicking one

of the queries in the list). The resulting UI page will look like this:

Query Configuration

37

Figure 6.9. Screenshot of the DTGov data in S-RAMP

All Workflow Trigger Queries must have a name and description. In addition a valid S-RAMP query

must be specified. All artifacts that are returned by the query will be processed and a new workflow

instance created. The specific workflow that will be triggered must be chosen in the "Workflow"

drop-down.

Finally, an optional set of properties can be specified to pass to the workflow. This is primarily

useful in passing the various DTGov service URLs to the workflow, although arbitrary property

mappings can be made. The following standard properties are supported and can be easily

configured (with default values):

• UpdateMetaDataUrl - the URL to the "Update Meta-Data" DTGov service

• NotificationUrl - the URL to the "Notification" DTGov service

• DeploymentUrl - the URL to the "Deployment" DTGov service

When the new process is created, the set of properties specified in the UI will be passed to the

process. Additionally, the following standard properties will always be passed to the new process

instance upon creation:

• ArtifactUuid

• ArtifactName

Chapter 6. Governance Workflows

38

• ArtifactVersion

• ArtifactCreatedBy

• ArtifactCreatedTimestamp

• ArtifactLastModifiedBy

• ArtifactLastModifiedTimestamp

• ArtifactType

6.6. Managing Workflow Instances (Processes)

Once a new workflow instance is triggered for an artifact in the S-RAMP repository, the DTGov

system will track the existence and status of that instance. This allows you to see how many

workflow instances have been created and how many are currently running. There is a simple UI

available in DTGov that provides this functionality. Simply log in to the DTGov UI and navigate to

the "Workflows" section (linked off of the DTGov UI Dashboard page).

Tip

You must be an Overlord Admin to access the DTGov Workflows UI page

Chapter 7.

39

Chapter 7. Configuring the

Notification Service
The Notification Service is a service included by DTGov to make it easy to send out email

notifications to users directly from the workflow. However, it can easily be used to send email

notifications by any client that can perform a simple REST API call. This chapter describes how

to enable and configure the Notification Service.

7.1. Invoking the Notification Service

Invoking the Notification Service is a simple matter of sending a POST request to the proper dtgov

service endpoint. For example:

http://localhost:8080/dtgov/notify/email/{group}/{template}/{target}/{uuid}

The path is made up of the following segments (see above):

• group: a logical group name - maps to a "Notification Destination" (see below)

• template: a logical name of a Template - maps to a Template (see below)

• target: string passed to the Template

• uuid: the UUID of an artifact - the name of the artifact can be used in the template

7.2. Notification Destinations

First, DTGov must either be configured with an "email" notification destination in the

dtgov.properties file or the destination configuration must be left blank so that the default email

settings are used. To configure explicit destination settings, the following can be set in the

dtgov.properties file:

governance.email=<group1>|<fromAddress>|<toAddresses>

governance.email=<group2>|<fromAddress>|<toAddresses>

governance.email=<groupn>|<fromAddress>|<toAddresses>

This allows a mapping of logical group names to real destination email addresses. Note that

the toAddresses value is a colon-separated list of real email addresses. Therefore an example

configuration might be:

governance.email=DEV|overlord@mycompany.com|

developers@mycompany.com:qa@mycompany.com

Chapter 7. Configuring the No...

40

governance.email=PROD|overlord@mycompany.com|sysops@mycompany.com

If the governance.email property information is missing from dtgov.properties, then an implicit

mapping will be used based on the group name passed to the Notification Service when it is

invoked and the following global email settings configured in dtgov.properties:

governance.email.domain

governance.email.from

When these default settings are used, the Notification Service will send the email from the

configured from address specified above to the following email address:

${groupName}@${governance.email.domain}

The group name is whatever is passed to the notification service and the domain comes from the

governance.email.from property in dtgov.properties.

7.3. Email Templates

When sending an email notification, the subject and body of the email are generating by leveraging

a template. When invoking the Notification Service, the template name is passed as one of the

REST path segments. This logical name is used to look up the email template either from the

classpath or from the S-RAMP repository.

The resulting template is then processed so that any Ant-style properties found in the template

are resolved. A typical email body template might look like this:

Artifact ${uuid} with name '${name}' has been deployed to target ${target}.

Please claim this task, test this deployment and set a pass/fail status at

 the taskform at

${dtgovurl}/#taskInbox

--Overlord

There are two types of templates: one for the email body and one for the email subject. These

template files can be located either on the classpath or in the S-RAMP repository.

7.3.1. S-RAMP Artifact Templates

When discovering the email template to use, DTGov will first look in the S-RAMP repository.

DTGov will search for an artifact using the following query (for the email body template):

/s-ramp/ext/DtgovEmailTemplate[@template = '<templateName>' and @template-

type = 'body']

Classpath Templates

41

Similarly, when looking for the email subject template, this query will be used:

/s-ramp/ext/DtgovEmailTemplate[@template = '<templateName>' and @template-

type = 'subject']

7.3.2. Classpath Templates

When discovering the email template to use, DTGov will search the classpath for the body template

here:

/governance-email-templates/<templateName>.body.tmpl

And for the subject it will look here:

/governance-email-templates/<templateName>.subject.tmpl

7.3.3. Template Lookup Summary

As a result, if the Notification Service is invoked with the following URL:

http://localhost:8080/dtgov/notify/email/DEV/invoiceReady/foo/12345

DTGov will look for email templates in the following places (in this order):

/s-ramp/ext/DtgovEmailTemplate[@template = 'invoiceReady' and @template-type

 = 'body']

/s-ramp/ext/DtgovEmailTemplate[@template = 'invoiceReady' and @template-type

 = 'subject']

/governance-email-templates/invoiceReady.body.tmpl

/governance-email-templates/invoiceReady.subject.tmpl

42

Chapter 8.

43

Chapter 8. Governance Human

Tasks

8.1. Overview

Overlord: DTgov uses an embedded version of jBPM by default. However, human tasks can

easily be included in Governance Workflows because the Task Inbox is integrated directly into

the DTGov User Interface.

Out of the box, Human Task functionality should work seamlessly. However, it is also possible to

integrate a separate task system by providing an alternative (custom) Task API implementation.

8.2. Using Human Tasks in a Workflow

To use a human task in a Governance workflow, you can simply drop a human task activity onto

the canvas (when you are authoring your workflow using, for example, the Eclipse BPMN editor).

Please see the documentation for your BPMN editor for more details on using jBPM human task

activities. Note that, by default, a human task that executes in a Governance workflow will create a

task instance that will appear in the Governance Task Inbox user interface provided with DTGov.

8.3. Custom Task Forms

Whenever a task is created in a governance workflow (using a human task activity as discussed

above), the Task Inbox is responsible for presenting the details of the task to relevant users. The

Task Inbox allows users to perform human task related actions such as claiming, starting, and

completing the tasks assigned to them.

It is important to understand that the Task Inbox must have access to a Form for each type of

task it is expected to display. This is accomplished by creating a Task Form XML file for each type

of task used in your Governance workflow(s). A Task Form XML file is simply an HTML5 snippet

with the presentation markup specific to a task type. The Task Form XML file must be added to

the S-RAMP repository that the DTGov system is connected to, so that it can be looked up when

DTGov is presenting the task instance to a user.

An example Task Form XML file follows:

<form>

 <fieldset>

 <label>Notification</label>

 <p>

 You are hereby notified that a new Schema artifact named

 Unknown has

 been added to the repository. Please review it.

 </p>

Chapter 8. Governance Human Tasks

44

 <label>Validation</label>

 <label class="radio">

 <input type="radio" name="Status" value="pass"></input>

 Schema accepted as valid

 </label>

 <label class="radio">

 <input type="radio" name="Status" value="fail"></input>

 Schema not accepted

 </label>

 </fieldset>

</form>

Custom task forms in DTGov will be pulled from the S-RAMP repository when needed and

displayed dynamically in the user interface. Any input variables configured in the human task

activity (in the governance workflow) will be used as inputs to the form. Inputs can be substituted

into the following HTML elements:

• input type="text"

• input type="hidden"

• textarea

• input type="checkbox"

• input type="radio"

• select

• div

• span

• label

For HTML elements with name attributes (e.g. input, select, textarea), the name of the element

must match the input variable name. For all other HTML elements the name must be specified

in a data-name attribute.

When the user completes or fails a task, the data they entered in the task form is gathered up and

submitted to the task engine (and is consequently sent back to the governance workflow).

Once the Task Form XML file is written, it must be added to the S-RAMP repository. The name of

the file (and thus the name of the artifact in the S-RAMP repository) must be of the form:

<taskName>-taskform.xml

The taskName can be identified and configured when setting up the human task activity

in your workflow. For example, if you configure the task name in your workflow to be

Fail Button

45

mycompany.appx.VerifySchema then the Task Form XML file should be added to S-RAMP with

a name of mycompany.appx.VerifySchema-taskform.xml.

8.4. Fail Button

For code newer than version 1.2 the Fail button in the TaskDetail form next to the Complete button

is no longer visible. However in certain cases it may make sense to have a Fail button . To make

this button visible you need to open the edit user task screen in your workflow editor and add an

Input Parameter Mapping:

From: true (use expression and no language)

To: FailButtonIsVisible (type String)

8.5. Customizing the Task API

Simply put, the Task API system used by the DTGov user interface can be swapped out by setting

the following property in the DTGov UI configuration file (dtgov-ui.properties):

dtgov-ui.task-client.class

This property must point to a fully qualified Java class that implements the following interface:

org.overlord.dtgov.ui.server.services.tasks.ITaskClient

Of course, any Governance Workflows that create Human Task instances must also point to the

alternate task system. That configuration is out of the scope of this guide.

46

Chapter 9.

47

Chapter 9. Managed Deployments
9.1. Overview

One of the most useful services provided by the Overlord: DTGov system is the Deployment

Service. This is a service that makes it possible to deploy a binary artifact stored in the S-RAMP

repository into a target runtime environment such as JBoss EAP. This Deployment Service can

easily be invoked from a Governance Workflow and is often included as part of a Deployment

Lifecycle business process.

9.2. Invoking the Deployment Service

Invoking the Deployment Service from a Governance Workflow should be a simple matter of using

the HttpClientDeploy task defined in the HttpClientWorkDefinitions.wid file as described in the

Governance Workflows chapter of this guide. Within a BPMN2 process, the XML markup might

look something like this:

<bpmn2:task id="Task_1" drools:taskName="HttpClientDeploy"

 drools:displayName="Deploy" drools:icon="run-build-install.png"

 name="Deploy to DEV">

 <bpmn2:incoming>bpmn20:SequenceFlow_9</bpmn2:incoming>

 <bpmn2:outgoing>bpmn20:SequenceFlow_10</bpmn2:outgoing>

 <bpmn2:ioSpecification id="_InputOutputSpecification_10">

 <bpmn2:dataInput id="_DataInput_47" itemSubjectRef="__NameInputItem"

 name="Url"/>

 <bpmn2:dataInput id="_DataInput_48" itemSubjectRef="__NameInputItem"

 name="Method"/>

 <bpmn2:dataInput id="_DataInput_49" itemSubjectRef="__NameInputItem"

 name="Uuid"/>

 <bpmn2:dataInput id="_DataInput_50" itemSubjectRef="__NameInputItem"

 name="Target"/>

 <bpmn2:inputSet id="_InputSet_10" name="Input Set 10">

 <bpmn2:dataInputRefs>_DataInput_47</bpmn2:dataInputRefs>

 <bpmn2:dataInputRefs>_DataInput_48</bpmn2:dataInputRefs>

 <bpmn2:dataInputRefs>_DataInput_49</bpmn2:dataInputRefs>

 <bpmn2:dataInputRefs>_DataInput_50</bpmn2:dataInputRefs>

 </bpmn2:inputSet>

 </bpmn2:ioSpecification>

 <bpmn2:dataInputAssociation id="_DataInputAssociation_47">

 <bpmn2:sourceRef>DeploymentUrl</bpmn2:sourceRef>

 <bpmn2:targetRef>_DataInput_47</bpmn2:targetRef>

 </bpmn2:dataInputAssociation>

 <bpmn2:dataInputAssociation id="_DataInputAssociation_48">

 <bpmn2:targetRef>_DataInput_48</bpmn2:targetRef>

 <bpmn2:assignment id="Assignment_1">

 <bpmn2:from xsi:type="bpmn2:tFormalExpression"

 id="FormalExpression_16">POST</bpmn2:from>

Chapter 9. Managed Deployments

48

 <bpmn2:to xsi:type="bpmn2:tFormalExpression"

 id="FormalExpression_17">_DataInput_48</bpmn2:to>

 </bpmn2:assignment>

 </bpmn2:dataInputAssociation>

 <bpmn2:dataInputAssociation id="_DataInputAssociation_49">

 <bpmn2:sourceRef>ArtifactUuid</bpmn2:sourceRef>

 <bpmn2:targetRef>_DataInput_49</bpmn2:targetRef>

 </bpmn2:dataInputAssociation>

 <bpmn2:dataInputAssociation id="_DataInputAssociation_50">

 <bpmn2:targetRef>_DataInput_50</bpmn2:targetRef>

 <bpmn2:assignment id="Assignment_14">

 <bpmn2:from xsi:type="bpmn2:tFormalExpression"

 id="FormalExpression_17">dev</bpmn2:from>

 <bpmn2:to xsi:type="bpmn2:tFormalExpression"

 id="FormalExpression_18">_DataInput_50</bpmn2:to>

 </bpmn2:assignment>

 </bpmn2:dataInputAssociation>

</bpmn2:task>

The above task uses the DeploymentUrl and ArtifactUuid parameters that were passed in to

the business process when it was invoked. It populates the inputs required by HttpClientDeploy

including an input parameter named Target. The Target parameter maps to a configured

Deployment Target. The target is a logical name and corresponds to a physical runtime

environment configured in the DTGov configuration file (dtgov.properties). See the next section

for details.

9.3. Configuring Deployment Targets

In order to make logical Deployment Targets available they must be configured in the DTGov

Deployment Targets user interface. To access this UI simply log into the DTGov UI and navigate

to the "Deployment Targets" section which is linked off of the main Dashboard.

Tip

You must be an Overlord Admin to access the DTGov Deployment Targets UI page

This UI allows you to create and manage your logical Deployment Targets. Each deployment

target contains the following information:

• Name - a logical name, such as "DEV" or "PROJ_A_1"

• Type - one of the supported deployment types, such as Copy or RHQ

• Description - a friendly explanation of what the target represents

• Target Classifier(s) - the set of S-RAMP classifiers applied to the target artifact when it is

deployed successfully

Undeployment

49

Additionally, there are type-specific information that must be configured for each deployment

target depending on the type selected above. For example, if the Copy type is selected, then a

valid server file path must be configured.

9.4. Undeployment

Whenever the Deployment Service is used to deploy an artifact from the repository, it also

annotates that artifact with relevant undeployment information. This annotation takes the form of

another artifact in the repository of type ext/UndeploymentInformation. The annotation artifact

will have a relationship named describesDeployment pointing from it back to the deployment

artifact it annotates.

This undeployment information is used whenever an artifact needs to be undeployed. Undeploy

of an artifact happens when a new version of that artifact is being deployed to a particular

environment (deployment target). When this happens, the old version (whichever version is

currently deployed in that environment) is undeployed in preparation of the new deployment.

Once the artifact is undeployed, its undeployment information artifact is deleted from the repository

and any relevant classifier associated with the target environment is removed from the deployment

artifact.

Note: please see the Configuring DTGov chapter for information about how to coordinate the

configuration of the Deployment Service with the configuration of the DTGov User Interface (the

Deployment Management UI).

9.5. Demo

For a short video see: http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-

dtgov.html

9.5.1. Summary

This demo shows how DTGov can start a Project Workflow via a simple Maven build. This demo

contains two projects:

• project: a very simple maven module with artifactId of "project".

• service: a maven module containing the Hello World Service API, expressed in WSDL.

The goal is to show that an upload of a pom.xml with artifactId of "project" kicks of a workflow of

type overlord.demo.SimpleReleaseProcess.png.

http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-dtgov.html
http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-dtgov.html

Chapter 9. Managed Deployments

50

Figure 9.1. Release Process Workflow

9.5.2. Requirements

9.5.2.1. Email Server

To receive email notifications you need a running email server. The connection settings can be

provided in the dtgov.properties file. It uses a mail session bound to JNDI to send the email. For

example, in JBoss EAP it uses the mail-smtp settings defined in the standalone/configuration/

standalone.xml

<outbound-socket-binding name="mail-smtp">

 <remote-destination host="localhost" port="25"/>

</outbound-socket-binding>

The easiest way to fulfill this requirements is to run the FakeSMTP server (http://nilhcem.github.io/

FakeSMTP/), since this will list emails send to all email addresses. Just download it and run:

sudo java -jar fakeSMTP-1.0.jar

9.5.2.2. Users and Roles

This demo uses the roles dev, qa, stage and prod. By default the admin user has all of these roles,

see the standalone/configuration/application_roles.properties

admin=overlorduser,admin.sramp,dev,qa,stage,prod

http://nilhcem.github.io/FakeSMTP/
http://nilhcem.github.io/FakeSMTP/

How It Works

51

which means that the admin will see tasks for all roles in this example. Follow the instructions

in the application-users.properties to add users. Note that a new new user needs at least the

overlorduser role.

9.5.2.3. Authentication Settings

Be aware that you must supply the maven build with credentials for your S-RAMP repository. This

can be done by adding a section to your settings.xml file (or by providing a custom settings.xml

on the mvn command line using the -s argument).

For more information see: http://maven.apache.org/settings.html

Your settings.xml file should contain two additional server entries in the servers section:

 <server>

 <id>local-sramp-repo</id>

 <username>admin</username>

 <password>YOUR-PASSWORD</password>

 </server>

 <server>

 <id>local-sramp-repo-snapshots</id>

 <username>admin</username>

 <password>YOUR-PASSWORD</password>

 </server>

9.5.3. How It Works

9.5.3.1. Deploying the artifacts JAR to S-RAMP

To get this demo working you must be running the DTGov server and the S-RAMP repository (see

documentation for the DTGov and S-RAMP projects to learn how to run the S-RAMP repository).

The first step is to build and deploy all artifacts to S-RAMP using Maven. The demo is configured

to run against the default security settings found in the distribution.

Important

Authentication settings in your .m2/settings.xml are required.

$ mvn -Pdemo clean deploy

The -Pdemo flag will enable the demo profile, which tells the Maven distributionManagement to

point to your local S-RAMP repository (http://localhost:8080/s-ramp-server/). Therefore you need

to be running S-RAMP on port 8080 and deployed as the s-ramp-atom context.

The build should complete successfully and on the server you should see logging along the lines of

http://maven.apache.org/settings.html
http://localhost:8080/s-ramp-server/

Chapter 9. Managed Deployments

52

09:04:10,929 INFO [org.overlord.sramp.governance.QueryExecutor] (EJB

 default - 5) Starting workflow overlord.demo.SimpleReleaseProcess for

 artifact 44021610-f85e-48bf-9a1c-9adcdbe485b6

At this point there should be a number of artifacts stored in the S-RAMP repository. You can verify

that by deploying the "s-ramp-ui" project and then navigating to http://localhost:8080/s-ramp-ui (or

the appropriate URL for you).

You should see the following primary artifacts in the S-RAMP repository:

• dtgov-demos-switchyard-VERSION.jar

• dtgov-demos-switchyard-VERSION.pom

• OrderService.wsdl

• beans.xml

• orders

• org.overlord.sramp.demos.switchyard.service.InventoryService

• org.overlord.sramp.demos.switchyard.service.InventoryServiceBean

• org.overlord.sramp.demos.switchyard.service.Order

• org.overlord.sramp.demos.switchyard.service.OrderAck

• org.overlord.sramp.demos.switchyard.service.OrderService

• org.overlord.sramp.demos.switchyard.service.OrderServiceBean

• org.overlord.sramp.demos.switchyard.service.Transformers

Where the OrderService.wsdl, beans.xml, orders as well as some class With the query defined

in the dtgov.properties:

governance.queries=/s-ramp/ext/SwitchYardApplication|

overlord.demo.SimpleReleaseProcess|DeploymentUrl={governance.url}/rest/

deploy/{target}/{uuid}::NotificationUrl={governance.url}/rest/notify/email/

{group}/deployed/{target}/{uuid}::UpdateMetaDataUrl={governance.url}/rest/

update/{name}/{value}/{uuid}....

it will start a SimpleReleaseProcess workflow when a SwitchYardApplication lands in the

repository. You should see a custom property getting created which should look similar to

workflowProcessId=overlord.demo.SimpleReleaseProcess_0:workflowParameters=DeploymentUrl=http://

localhost:8080/dtgov/res...

Note that the definition of the overlord.demo.SimpleReleaseProcess lives in the SRAMPPackage

in the dtgov-workflows-VERSION.jar. If you want to update the workflow you need to use eclipse

http://localhost:8080/s-ramp-ui

Artifact Deployment

53

tooling to modify the bpmn, build and upload a new dtgov-worflow.jar to S-RAMP. The GAV

settings are defined in the dtgov.properties file.

9.5.4. Artifact Deployment

The workflow (and the deployment ontology) specifies four different environments:

• dev - development: machine hosting deployed released artifact before they go to QA.

Developers can do a quick test to make sure things work on more then just their desk.

• qa - quality assurance: machine hosting deployed released artifacts so that they can go through

the testing process.

• stage - staging: an environment identical to production where qa’ed artifacts can be tested on

the real hardware and with interactions with other systems.

• prod - production: the final place where the artifacts are deployed and run

When the _SimpleReleaseProcess_ is instantiated it deploy the artifact to

 the _dev_ environment.

The workflow makes a POST call to DeploymentUrl={governance.url}/rest/

deploy/{target}/{uuid}

where

* {governance.url} is location where the DTGov REST API is hosted; this

 defaults to 'http://localhost:8080/dtgov'

and can be overridden in the dtgov.properties.

* {target} is the name of the deployment target which defined in the

 dtgov.properties and is

referenced in the 'Deploy to Dev' task.

* {uuid} is the UUID of the artifact which is set as a process parameter

 in the _SimpleReleaseProcess_

instance at creation time.

In this case, we assume the dev target is defined as

governance.targets= dev|http://www.jboss.org/overlord/deployment-

status.owl#InDev|copy|/tmp/dev/jbossas7/standalone/deployments

where * dev: name of the target * http://www.jboss.org/overlord/deployment-status.owl#InDev:

classification when deployed to Dev * copy: use file copy * /tmp/dev/jbossas7/standalone/

deployments: deploy directory

We assume there is jbossas7 server running in /tmp/dev/jbossas7, and thus it uses a simple file

copy to place the artifact in /tmp/dev/jbossas7/standalone/deployments. The appserver will take

of deploying the artifact and on the server we should see logging along the lines of

09:04:11,168 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) Calling POST TO: http://localhost:8080/dtgov/rest/deploy/

dev/44021610-f85e-48bf-9a1c-9adcdbe485b6

http://www.jboss.org/overlord/deployment-status.owl#InDev:

Chapter 9. Managed Deployments

54

09:04:11,274 INFO [org.jboss.resteasy.cdi.CdiInjectorFactory]

 (http-/127.0.0.1:8080-13) Found BeanManager at java:comp/BeanManager

09:04:11,300 INFO [org.jboss.resteasy.spi.ResteasyDeployment]

 (http-/127.0.0.1:8080-13) Deploying javax.ws.rs.core.Application: class

 org.overlord.sramp.governance.services.GovernanceApplication$Proxy$_$

$_WeldClientProxy

09:04:12,170 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) reply={status=success, target=COPY:/tmp/dev/jbossas7/

standalone/deployments/dtgov-demos-switchyard-2.0.0-SNAPSHOT.jar}

9.5.5. Classify as DevTest

The next task Classify #DevTest calls a REST service in DTGov using endpoint using a PUT to:

where * {governance.url} is location where the DTGov REST API is hosted; this defaults to http://

localhost:8080/dtgov and can be overridden in the dtgov.properties. instance at creation time.

which adds the #DevTest classification onto the artifact. You can verify by navigating to this details

of this artifact in the s-ramp-ui or by using the s-ramp.sh cli. The logging on the server should read

09:04:12,202 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) Calling PUT TO: http://localhost:8080/dtgov/rest/update/

classification/http%3A*2F*2Fwww.jboss.org*2Foverlord*2Fdeployment-status.owl

%23DevTest/44021610-f85e-48bf-9a1c-9adcdbe485b6

09:04:12,414 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) reply={artifactName=dtgov-demos-

switchyard-2.0.0-20131107.140403-1.jar, artifactCreatedBy=admin,

 status=success}

9.5.6. Notify Dev

The next task in the SimpleReleaseProcess is an email notification. The "Notification Task" calls

a REST service in DTGov using a POST to:

where * {governance.url} is location where the DTGov REST API is hosted; this defaults to http://

localhost:8080/dtgov and can be overridden in the dtgov.properties. is is set to dev the first go-

around. * deployed is the name of the notification template. referenced in the Deploy to Dev task.

This info is construct the notification message. instance at creation time.

On the server we should see the following logging

09:04:12,419 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) Calling POST TO: http://localhost:8080/dtgov/rest/notify/

email/dev/deployed/dev/44021610-f85e-48bf-9a1c-9adcdbe485b6

09:04:12,862 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (EJB default - 5) reply={status=success}

http://localhost:8080/dtgov
http://localhost:8080/dtgov
http://localhost:8080/dtgov
http://localhost:8080/dtgov

Notify Dev

55

By default an email is sent the server localhost at port 25. By default the TO address used is

overlord@example.com. If you don’t want to use example.com then this can be overridden in the

dtgov.properties using key governance.email.domain and governance.email.from for the FROM

address. It is recommended to use an email alias or group to tie the group email to actual email

addresses.

The email contains the following info:

Subject: [Overlord-dev] dtgov-demos-switchyard-2.0.0-20131106.145057-1.jar

 is deployed

Artifact 6eccc2f4-b687-4882-9a05-fc446bbb8a44 with name 'dtgov-demos-

switchyard-2.0.0-20131106.145057-1.jar' has been deployed to target dev.

Please claim this task, test this deployment and set a pass/fail status at

 the taskform at

http://localhost:8080/dtgov-ui/#taskInbox

--Overlord

and Figure Figure 9.2, “Notification Email in FakeSMTP” shows displays the email in the

FakeSMTP UI.

Chapter 9. Managed Deployments

56

Figure 9.2. Notification Email in FakeSMTP

Email templates are deployed in the dtgov.war/WEB-INF/classes/governance-email-templates

directory. in this case are deployed.subject.tmpl and deployed.subject.tmpl.

9.5.7. Test Dev

Any user in the dev group can now navigate to the taks list, and the user should see at least

one entry

Figure 9.3. Dev Task List.

The user can click on this task to arrive at the detail screen:

Gateway

57

Figure 9.4. Dev Task Detail

The dev user should claim and start the task and then mark as Pass/Fail and Complete. The

artifact will get classified as #DevPass and you should see the following logging on the server:

09:17:21,161 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (http-/127.0.0.1:8080-39) Calling PUT TO: http://localhost:8080/dtgov/rest/

update/classification/http%3A*2F*2Fwww.jboss.org*2Foverlord*2Fdeployment-

status.owl%23DevPass/44021610-f85e-48bf-9a1c-9adcdbe485b6

09:17:21,359 INFO [org.overlord.dtgov.jbpm.util.HttpClientWorkItemHandler]

 (http-/127.0.0.1:8080-39) reply={artifactName=dtgov-demos-

switchyard-2.0.0-20131107.140403-1.jar, artifactCreatedBy=admin,

 status=success}

9.5.8. Gateway

Based on the user input during the Test Dev task, a Gateway will now determine where to go next:

* PASS - mark as passed in Dev, and send the artifact to QA * FAIL - mark as failed in Dev and Stop

A PASS will basically rerun the same tasks we just discussed but now in for qa, followed by stage

and prod. So proceed Classify as DevTest, but you need to pretend it reads Classify as QaTest

and so on.

When you navigate to the detail screen of the dtgov-demos-switchyard-VERSION.jar you should

see the #DevPass, #InQA and #QaTest classifiers set on this artifact.

Chapter 9. Managed Deployments

58

Figure 9.5. Classifiers.

9.5.9. Governing Deployments

The DTGov console has a screens specifically designed to govern deployment like these.

Navigate to http://localhost:8080/dtgov-ui/#deployments and select your deployment from the list.

Figure 9.6. Deployments

From here you can look at the deployment history, the interesting content of the artifact.

This completes this demo.

http://localhost:8080/dtgov-ui/#deployments

Chapter 10.

59

Chapter 10. SOA Governance

Projects and Organizational Roles

10.1. Introduction

In large organizations building and maintaining services is not a one man job, instead it is a process

that touches many people in the organization. Figure 10.1, “SOA Governance Roles” is a copy of

figure 5.6 on page 95 of the SOA Governance book by Thomas Erl et al.

Chapter 10. SOA Governance Pr...

60

Figure 10.1. SOA Governance Roles

Demo Maven Project Workflow Integration

61

With this many people and roles involved, how to you manage a project like this? Especially since

in a large organization you will have many of these project running simultaneously. We would

have loved to implement a full project workflow based on the figure 1 process, but two things are

currently standing in our way: time and real world input. Who is going to pick up the challenge?

To get you started we created a Simplied Project Lifecycle Workflow demo that implements just

3 boxes; Requirements gathering, Service Design and Service Implementation, with one role

responsible for each stage, which are a Business Analyst, SOA Architect and SOA Developer.

Each role can be fulfilled by more then one person. In the demo we assigned all three roles to

the admin user so we don’t have to log in and out as different users all time. The demo uses the

workflow shown in Figure 10.3, “Project Workflow”. Each column represents one of the phases.

The first phase being Business Analysis. The hope is this demo provides you with the building

blocks to create the real world implementation we talked about earlier.

Some benefits of using this workflow are:

• Helps your organization with adoption of SOA by following proven processes. It is clear who

is responsible for approval.

• Provides insight in where your projects are.

• Helps your organization work together in different teams.

• Audit features allow full history tracking.

• Released artifacts are in the repository, the artifact is automatically in escrow this way, and

documentation and sources are stored along side the binaries all in one place.

Some optional benefits:

It is possible to send a BPMN event at the end of the workflow (or

 from anywhere else), which can kick off a release workflow to automate

 deployment. Though one could also write a governance query looking for a

 service implementation artifact with classification #ImplPass.

Easy integration with other systems (think bug track systems, or time

 management systems)

If you want to follow along with the demo you should

1. Have DTGov running; see http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-

governance-getting-started.html.

2. Install the Eclipse BPMN2 Modeler into your Eclipse IDE, or you can try the early access JBoss

Developer Studio.

10.2. Demo Maven Project Workflow Integration

For a short video see: http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-

and.html

http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-governance-getting-started.html
http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-governance-getting-started.html
http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-and.html
http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-and.html

Chapter 10. SOA Governance Pr...

62

10.2.1. Summary

This demo shows how teams can collaborate using a ProjectLifeCycle Workflow. In this example

we have a simplified Project workflow with only three phases with their respective teams. Each

team delivers a set of deliverables which are uploaded to the repository. Each upload triggers a

review of the artifacts. The artifacts are groupedBy an ArtifactGrouping which is represented as

a parent in S-RAMP.

This demo contains three submodules:

• project-requirements: a requirements doc created a Business Analyst.

• project-service-api: a service design created by a SOA-Architect.

• project-service-impl: the service implementation created by a SOA Developer.

The overlord.demo.ProjectLifeCycle.bpmn resides in the dtgov-workflow.jar in the

SRAMPPackage and this should already be deployed. Also the classification ontologies should

already have been installed as part of the data seeding process during install of DTGov. In the

s-ramp-ui artifacts screen you can click on Classifiers to check that the Project Review Status

is present.

Summary

63

Figure 10.2. Project Review Status Ontology

These classifications will be applied by the Classify nodes in the workflow as the project moves

through its lifecycle.

Chapter 10. SOA Governance Pr...

64

Figure 10.3. Project Workflow

You can create and update workflows using the Eclipse BPMN Editor, which can be installed from

http://download.eclipse.org/bpmn2-modeler/updates/kepler/ (1.0 or newer). The project starts with

a business analyst creating a requirements document, which is then reviewed and approved. On a

successful approval a SOA-Architect creates a design, followed with another review meeting and

finally a SOA-Developer creates an implementation of the design. When the implementation is

reviewed the Service Implementation can be released into a formal QA process. The Deployment

Process of an Artifact is covered in the dtgov-switchard demo.

10.2.2. How It Works

10.2.2.1. Starting the Simplified ProjectLifeCycle Workflow

To get this demo working you must be running the DTGov server and the S-RAMP repository (see

documentation for the DTGov and S-RAMP projects to learn how to run the S-RAMP repository).

When the Business Analyst finishes the requirement doc project-requirments/src/main/resources/

requirements-doc.txt. The next step is to build and deploy the requirements archive to S-RAMP

using Maven:

http://download.eclipse.org/bpmn2-modeler/updates/kepler/

How It Works

65

 $ cd project-requirements

 $ mvn -Pdemo clean deploy

Important

Be aware that you must supply the maven build with credentials for your S-RAMP

repository. This can be done by adding a section to your settings.xml file (or by

providing a custom settings.xml on the mvn command line using the -s argument).

For more information see: http://maven.apache.org/settings.html

Your settings.xml file should contain two additional server entries in the servers section:

 <server>

 <id>local-sramp-repo</id>

 <username>admin</username>

 <password>PASSWORD</password>

 </server>

 <server>

 <id>local-sramp-repo-snapshots</id>

 <username>admin</username>

 <password>PASSWORD</password>

 </server>

10.2.2.2. Results of the Deploy

That will enable the demo profile, which will configure the Maven distributionManagement to

point to a local S-RAMP repository (http://localhost:8080/s-ramp-server/). Therefore you need to

be running S-RAMP on port 8080 and deployed as the s-ramp-atom context.

The build should complete successfully.

At this point there should be a number of artifacts stored in the S-RAMP repository. You can verify

that by deploying the "s-ramp-ui" project and then navigating to http://localhost:8080/s-ramp-ui (or

the appropriate URL for you).

You should see the following artifacts in the S-RAMP repository:

• project-requirements-<version>.jar

• project-requirements-<version>.pom

• Project-org.overlord.dtgov.demos.project.<version>

The requirements-doc.txt is shipped in the requirements-<version>.jar. Note that you can use

other formats if you like. You may have expected the jar and the pom, but what created the

http://maven.apache.org/settings.html
http://localhost:8080/s-ramp-server/
http://localhost:8080/s-ramp-ui

Chapter 10. SOA Governance Pr...

66

Project-org.overlord.dtgov.demos.project.<version> artifact? In the dtgov-demos-project/pom.xml

you may have noticed the following section:

 <distributionManagement>

 <repository>

 <id>local-sramp-repo</id>

 <name>S-RAMP Releases Repository</name>

 <url>sramp://localhost:8080/s-ramp-server/?artifactGrouping=Project-

${project.groupId}.${project.version}</url>

 </repository>

 <snapshotRepository>

 <id>local-sramp-repo-snapshots</id>

 <name>S-RAMP Snapshots Repository</name>

 <url>sramp://localhost:8080/s-ramp-server/?artifactGrouping=Project-

${project.groupId}.${project.version}</url>

 </snapshotRepository>

 </distributionManagement>

This section is active when using the demo profile, and in it we specified an artifact

grouping artifactGrouping=Project-${project.groupId}.${project.version}. During the upload this

ArtifactGrouping artifact is created along with groupBy relationships to this parent artifacts. The

dtgov.properties file defines the following :

governance.queries=/s-ramp/ext/ArtifactGrouping[xp2:matches(@name

\, 'Project.*')]|overlord.demo.SimplifiedProjectLifeCycle|

UpdateMetaDataUrl={governance.url}/rest/update/{name}/{value}/{uuid}

This starts a overlord.demo.SimplifiedProjectLifeCycle workflow when a ArtifactGrouping with a

name that starts with Project lands in the repository. When the workflow is created you should see

a new custom property on this artifact which should look like

workflowProcessId=overlord.demo.SimplifiedProjectLifeCycle_0:4_workflowParameters=UpdateMetaDataUrl=http://

localhost:8080/dtgov/rest/update/{name}/{value}/{uuid}

If you where to delete this property then a new workflow will be started, and a new property will

be recreated.

10.2.3. Signaling Analysis Docs Complete

The upload of the requirements also triggered an AnalysisArtifactsComplete signal to the newly

created workflow, to signal the workflow that the requirements docs are ready for review. This

signal was triggered by upload of the project-requirements/pom.xml. Note that in this pom we have

the following properties section

<properties>

 <signal>AnalysisArtifactsComplete</signal>

Signaling Architecture Docs Complete

67

</properties>

During a MavenPom upload all properties are extracted and added as custom properties,

prefixed with maven.property.; so the signal property end up as maven.property.signal

with value AnalysisArtifactsComplete. When DTGov discovers this signal property it looks

up the accompanying workflow referenced in the Project* ApplicationGroup artifact signals

this process instance. After sending the signal the name of the property changes to

_maven.property.signal.sent. When the signal is caught by the workflow, it will classify the Project*

ApplicationGroup artifact with the #BaInReview classification, and start a Business Analysis

Review Meeting task. This task is assigned to the ba role. You can defined roles in the standalone/

configuration/overlord-idp-roles.properties. These roles can be referenced in the human task

definition as the groupId.

By default the standalone/configuration/overlord-idp-roles.properties looks like

admin=overlorduser,admin.sramp,dev,qa,stage,prod,ba,arch

The admin user has all roles. So when logged in as admin you can work on ALL tasks. For this

example the ba, arch, and dev roles in use. More roles can be created as needed.

You can work on your tasks by navigating to http://localhost:8080/dtgov-ui#taskInbox. After you’ve

reviewed the requirements documents with all stakeholders, you go here to Claim, Start and record

the Pass/Fail verdict. For the Business Analysis Review Meeting task you will need the ba role.

On a Fail the workflow records the fail and loops back so that a new version can be submitted. On

a Pass the workflow records the pass and enters the waiting for architecture docs complete state.

10.2.4. Signaling Architecture Docs Complete

The architect can now take the detailed and approved requirements:

Requirements Document

We have a pressing need for an Hello World Service.

Please develop one that can print "Hello World" when invoked.

and turn them into a design. At a minimum, for this webservice an annotated interface or a WSDL

should be created. Both of these can be found in the project-service-api module. Since these are

ready to go, proceed with deploying them to S-RAMP using:

 $ cd project-service-api

 $ mvn -Pdemo clean deploy

10.2.4.1. Results of the Deploy

The build should complete successfully.

You should see the following newly created artifacts in the S-RAMP repository:

http://localhost:8080/dtgov-ui#taskInbox

Chapter 10. SOA Governance Pr...

68

• project-service-api-<version>.jar

• project-service-api-<version>.pom

In this pom the signal property

<properties>

 <signal>ArchitectureArtifactsComplete</signal>

</properties>

will cause a ArchitectureArtifactsComplete signal to be send to the project workflow signalling

that the design documents are ready for review. A review meeting should be called and someone

with the arch role can pick up the Design Review Meeting task in the http://localhost:8080/dtgov-

ui#taskInbox.

10.2.5. Signaling Service implementation Complete

Finally, when the SOA-Developer has finished the implementation, it can be uploaded to the

repository using

 $ cd project-service-impl

 $ mvn -Pdemo clean deploy

10.2.5.1. Results of the Service Deploy

The build should complete successfully.

You should see the following newly created artifacts in the S-RAMP repository:

• project-service-impl-<version>.jar

• project-service-impl-<version>.pom

In this pom the signal property

<properties>

 <signal>ServiceImplArtifactComplete</signal>

</properties>

will cause a ServiceImplArtifactComplete signal to be send to the project workflow signalling that

the design documents are ready for review. A review meeting should be called and someone

with the dev role can pick up the Service Implementation Review Meeting task in the http://

localhost:8080/dtgov-ui#taskInbox.

This completes this demo.

http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox

69

Bibliography

Books
[erl-bennet-etall] .Thomas Erl et all. SOA Governance. Prentice Hall, 2011.

70

	DTGov Guide
	Table of Contents
	Chapter 1. Introduction to DTGov
	1.1. Design Time Governance
	1.2. Use Cases
	1.3. How DTGov Works
	1.4. The Sample Process Workflow: "SimpleReleaseProcess"

	Chapter 2. Getting Started
	2.1. Prerequisites
	2.2. Download, Installation and Configuration
	2.3. Check your Installation
	2.4. Get to Work

	Chapter 3. User Management
	3.1. Overview
	3.2. Required Roles
	3.3. Adding a User
	3.3.1. JBoss EAP 6
	3.3.2. JBoss Fuse 6.1
	3.3.3. Tomcat 7
	3.3.4. Jetty 8

	Chapter 4. Configuring DTGov
	4.1. Overview
	4.2. Back-End Configuration
	4.3. Back-End Configuration (EAP)
	4.4. Back-End Configuration Properties
	4.5. User Interface (UI) Configuration
	4.6. User Interface (UI) Configuration (EAP)
	4.7. UI Configuration Properties
	4.8. Configuring UI Deployment Stages
	4.9. Configuring UI Deployment Types
	4.10. Configuring Authentication

	Chapter 5. DTGov and S-RAMP
	5.1. Overview
	5.2. Configuration Properties
	5.3. Authentication

	Chapter 6. Governance Workflows
	6.1. Overview
	6.2. Creating Workflows
	6.2.1. Create Workflows using Eclipse Tooling.
	6.2.1.1. Prerequisites
	6.2.1.2. Create new governance workflow

	6.2.2. Create Workflows using Drools web based tools.

	6.3. Deploying Workflows
	6.4. DTGov Supporting Services
	6.5. Query Configuration
	6.6. Managing Workflow Instances (Processes)

	Chapter 7. Configuring the Notification Service
	7.1. Invoking the Notification Service
	7.2. Notification Destinations
	7.3. Email Templates
	7.3.1. S-RAMP Artifact Templates
	7.3.2. Classpath Templates
	7.3.3. Template Lookup Summary

	Chapter 8. Governance Human Tasks
	8.1. Overview
	8.2. Using Human Tasks in a Workflow
	8.3. Custom Task Forms
	8.4. Fail Button
	8.5. Customizing the Task API

	Chapter 9. Managed Deployments
	9.1. Overview
	9.2. Invoking the Deployment Service
	9.3. Configuring Deployment Targets
	9.4. Undeployment
	9.5. Demo
	9.5.1. Summary
	9.5.2. Requirements
	9.5.2.1. Email Server
	9.5.2.2. Users and Roles
	9.5.2.3. Authentication Settings

	9.5.3. How It Works
	9.5.3.1. Deploying the artifacts JAR to S-RAMP

	9.5.4. Artifact Deployment
	9.5.5. Classify as DevTest
	9.5.6. Notify Dev
	9.5.7. Test Dev
	9.5.8. Gateway
	9.5.9. Governing Deployments

	Chapter 10. SOA Governance Projects and Organizational Roles
	10.1. Introduction
	10.2. Demo Maven Project Workflow Integration
	10.2.1. Summary
	10.2.2. How It Works
	10.2.2.1. Starting the Simplified ProjectLifeCycle Workflow
	10.2.2.2. Results of the Deploy

	10.2.3. Signaling Analysis Docs Complete
	10.2.4. Signaling Architecture Docs Complete
	10.2.4.1. Results of the Deploy

	10.2.5. Signaling Service implementation Complete
	10.2.5.1. Results of the Service Deploy

	Bibliography

