DTGov Guide

O (o Ao Yo [0 o2 Ao Y o IR (o N D2 K CTo 1Y/ 1

I B =T T [N Y 4 TS J T AV =Y 4 = Vg o 1

1.2, USE CASES .euiiiuiiiiii ettt et ettt ans 1

1.3. HOW DTGOV WOTKS ...vuiiieiiiiiieiiii et sttt st e e et e e e et e e e eate e e e eetnneeeenes 1

1.4. The Sample Process Workflow: "SimpleReleaseProcess"ccoocvevviviiiiiinneeiinnnnn. 2

A 1= T Lo] = (=T o 3
2.1, PrErEQUISITESiiiiii ettt ettt ettt ettt e et e et e e 3

2.2. Download, Installation and Configurationccccuiveriiiiiiiie e, 3

2.3. Check your INSTAllAtioNiiiiiiiieii e 4

P T Al (o BT o] ¢ G PSP 5

3. USEr ManagEMENTttt et 7
I I O 1= 4T U SOPPRN 7

3.2. REQUINEA ROIESeiiii e e e 7

IR T Vo (o [o = T U 7= PN 7
3.3.1. JBOSS EAP B ..o 7

3.3.2. JB0OSS FUSE B.1 ...oeeiiiiiiii e et 8

TR J0C TR o] ¢ (o> | A PP 9

R SN 1= 1 Y TSP 9

4. CONTIGUITNG DTGOV ..ottt ettt ettt e ettt e et e e e aa e 11
I @ Y= TP 11

4.2, Back-End CONfiQUIAtIONuiiiiiiiiiiiiiiiee it e e 11

4.3. Back-End Configuration (EAP)coouiiiiiii e 11

4.4, Back-End Configuration Propertiesccouuiieiiiiiiiiiii e 12

4.5, User Interface (UI) Configurationc.ccooieiiiiiiiii i 13

4.6. User Interface (Ul) Configuration (EAP)iiiiiiiiiiiiii e 14

4.7. Ul Configuration Properti€Scouuiiiiii i e e e e e 14

4.8. Configuring Ul Deployment STAgESc.uuiiiiiiiiiiiiiiie e 16

4.9. Configuring Ul Deployment TYPES ...ccuuuiiiiiiiiiiieiiieee e e e e e e e e e s e eaaaeees 16
4.10. Configuring AUtNENTICALIONccouuiiiiiiii e 17

5. DTGOV @Nd S-RAMP ...eiiiiiii et e et e et 21
LR I O 1YY YT P 21

5.2, Configuration PrOPEITIESiiiiiiiiiii et e e e e e e e e e e aaaas 21

5.3, AULNENTICALION ... e 24

6. GOVErNaANCe WOTKFIOWSuiiiiiiiiiiiii et e e e eeeaanas 25
LR O 1YY YT 25

6.2. Creating WOTKIIOWS ..o e 25
6.2.1. Create Workflows using Eclipse TOOlNG.covviiiiiiiiiiiiiiiiiiiieeceii e 25

6.2.2. Create Workflows using Drools web based tools.ccooeeviiiiiininin, 32

6.3. Deploying WOTKIIOWSc.uuiiiiiiiii e 32

6.4. DTGOV SUPPOITING SEIVICES ...uiiiiieiiiieiie e e e e e e e e e et e e e aaens 35

6.5. QuEry CoNfIQUIALIONcc.uuiiiiii et et eeeat e eees 35

6.6. Managing Workflow InStances (ProCESSES)uiiiiuiiiiiiiiiii e 38

7. Configuring the Notification SErviCe ..o 39
7.1. Invoking the NOtIfication SEIVICEiiiiiiiiiii i 39

DTGov Guide

7.2. Notification DeSHNALIONSoiiueiiiiiiiiii e e e e e e ees 39

7.3. EMalil TEMPIALESoeviiiiiiii e 40
7.3.1. S-RAMP Artifact TEMPIALESccovviiiiiiiiii e 40

7.3.2. Classpath TEMPIAESccuuiiiiiiiii e e 41

7.3.3. Template LOOKUDP SUMMANYuiiiiiiiiieiiiiieeeeiie et 41

8. Governance HUmMan TasKScooiiiiiiiiiii et e s 43
G TR O 1YY YT P 43

8.2. Using Human Tasks in a WOrkflowccoooiiiiiiiiiii e, 43

8.3. CUSIOM TASK FOIMS ...iiiiiiiiie e e e e e e e e e eaes 43

S = V1 I =¥ |1 o] o PSP 45

8.5. Customizing the TaSK AP ... e 45

9. Managed DePlOYMENTS ...t e 47
LS TR O 1YY 4T 47

9.2. Invoking the DeploymeNnt SEIVICEccuuiiiiiiiiii e e e 47

9.3. Configuring DeploymMENt TANgELScccuuuuiiiiiiiieiiii e 48

LS I [Vo [T 0] 0) V42 =1 o | 49

.0, DBIMIO et et 49

LS IR T S 1010] 1 = T Y PP PRPRPR 49

9.5.2. REQUITEMENTS ..eitiiiiiii ettt e e e e 50

9.5.3. HOW Tt WOTKS .oeiiiiiii et 51

9.5.4. Artifact DEPIOYMENTcoovuiiiiiii e 53

9.5.5. ClasSify @S DEVTESTcuuiiiiiiiiii e 54

9.5.6. NOLTY DBV ..euiiiiiiii it 54

O.5.7. TESE DBV ot 56

O.5.8. GABWAY ...euiiriiiii ettt 57

9.5.9. Governing DEpPIOYMENLSccuuiiiii e 58

10. SOA Governance Projects and Organizational ROIESccccoiviiiiiiiiiiiiiin, 59
020 O g1 o T [T 1 o o I SR 59
10.2. Demo Maven Project Workflow Integrationcccoooiiiiiiiniiiiin e 61

J0. 2.1, SUMIMAIY ettt e et e e et e e e e e e e e et e e e e en 62

10.2.2. HOW 1t WOTKS ...ttt e e et e e e e e e 64

10.2.3. Signaling Analysis Docs COmpletecccoovviiiiiiiiiciii e, 66

10.2.4. Signaling Architecture Docs Completeccooovieiiiiiiiiiiiiin e, 67

10.2.5. Signaling Service implementation Completecoooeiiiiiiiiiiiinniii e 68
BiDIOGIapnY ..o e e 69

Chapter 1.

Chapter 1. Introduction to DTGov

1.1. Design Time Governance

The DTGov project layers Design Time Governance functionality on top of an S-RAMP repository.
These two projects work together to provide the following:

» Store and Govern artifacts

» Custom Governance Workflows

« Integrated Governance Human Task Management

This guide will discuss the various pieces of functionality provided by DTGov and how to configure
and use them.

1.2. Use Cases

In addition to a general framework for triggering business workflows based on changes to artifacts
in the S-RAMP repository, the DTGov project focuses on the following specific Governance Use
Cases:

« Deployment Lifecycle Management

This guide will not only discuss the generic governance capabilities provided by the DTGov project,
but also the specific Use-Cases listed above.

1.3. How DTGov Works

* Workflows are created from JBoss jBPM (BPMNZ2) process definitions.

« A version of jBPM is embedded in the deployed dtgov.war. This version of jBPM is configured
to use the S-RAMP repository as the source for workflow definitions.

e To use a workflow with DTGov, the jBPM workflow files must be bundled into a Jar file
named "dtgov-workflows.jar" and uploaded to the DTGov S-RAMP repository. There are several
methods than can be used to deploy the workflow jar file to S-RAMP. We recommend that you
use maven.

e The embedded jBPM pulls the dtgov-workflow.jar out of S-RAMP at runtime and uses the
workflow definitions found therein.

 In this context, "runtime" refers to whenever a new workflow instance is created (typically
triggered by an artifact being added or changed in the s-ramp repository).

Chapter 1. Introduction to DTGov

* Any human tasks that are used in any DTGov workflow will appear in the Tasks Ul included in
the DTGov Ul (http://localhost:8080/dtgov-ui)

* A workflow deployment only shows up in the dtgov-ui/#deployments page once a lifecycle
management jBPM process is kicked off for it.

1.4. The Sample Process Workflow:
"SimpleReleaseProcess”

» A sample Process Workflow ("SimpleReleaseProcess") is packaged with DTGov

« OOTB SimpleReleaseProcess does "Lifecycle Management" governance on an artifact by
monitoring the S-RAMP repository periodically (60 sec default) - this monitoring takes the form
of a query on the repository.

« When an artifact matches that S-RAMP query as configured in the DTGov config file
(dtgov.properties) which is mapped to the SimpleReleaseProcess a new jBPM process instance
is created for that artifact. The process can do anything it wants at that point.

http://localhost:8080/dtgov-ui

Chapter 2.

Chapter 2. Getting Started

2.1. Prerequisites

The DTGov application is written in Java. To get started make sure your system has the following:

e Java JDK 1.6 or newer
« Apache Ant 1.7 or newer to use the installer

 Maven 3.0.3 or newer

Overlord S-RAMP version 0.5.0.Final or newer

This Getting Started guide assumes you do not already have Overlord S-RAMP installed.

2.2. Download, Installation and Configuration

First, we recommend you download the following:

« JBoss EAP 6.3 [http://www.jboss.org/jbossas/downloads]
e S-RAMP 0.5.0.Final [http://www.jboss.org/overlord/downloads/sramp]
e DTGov 1.3.0.Final [http://www.jboss.org/overlord/downloads/dtgov]

Next, you must follow these steps to install and configure the application:

1. Download and install your preferred runtime platform. We currently support:
a. JBoss EAP 6.3
b. JBoss Fuse 6.1
c. Tomcat 7
d. Jetty 8
2. Download and unpack S-RAMP 0.5.0.Final
3. Download and unpack DTGov 1.3.0.Final
4. Run the S-RAMP installer, installing into your installed runtime platform

5. Run the DTGov installer, installing into your installed runtime platform

http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/sramp
http://www.jboss.org/overlord/downloads/dtgov
http://www.jboss.org/overlord/downloads/dtgov

Chapter 2. Getting Started

6. Start your application container (e.g. JBoss EAP)
7. Populate the S-RAMP repository with DTGov seed data

Some psuedo-shell code that might help

nkdir ~/overlord

cd ~/overlord

Downl oad JBoss EAP 6.3 (e.g. jboss-eap-6.3.0.zip)

From - http://ww. jboss. org/j bossas/ downl oads

Downl oad S-RAMP distribution (s-ranp-0.5.0.Final.zip)

From - http://ww.jboss. org/overl ord/ downl oads/ sranp
Downl oad S-RAMP di stribution (dtgov-1.3.0.Final.zip)

From - http://ww.jboss. org/overl ord/ downl oads/ dt gov
unzi p j boss-eap-6.3.0.zip

unzip s-ranp-0.5.0.Final.zip

unzi p dtgov-1.3.0.Final.zip

cd s-ranp-0.5.0. Fi nal

ant install

!1Follow installation instructions here!!

cd ~/overlord/dtgov-1. 3.0. Final

ant install
!lFollow installation instructions here!!
Start JBoss (~/overlord/jboss-eap-6.1/bin/standal one.sh) - wait for startup

to conplete
cd ~/overlord/dtgov-1. 3. 0. Final
ant seed -Ds-ranp. shell.passwor d=ADM N_PASSWORD

The dtgov.war and dtgov-ui.war applications are deployed to the runtime platform during the
installation. The DTGov web Ul (http://localhost:8080/dtgov-ui) is provided by dtgov-ui.war. You
will see references to these in the server.log at startup and when the services are invoked.

2.3. Check your Installation

Now that everything is installed and running, you should be able to verify that everything is working
by logging in to the S-RAMP Browser Ul and verifying that you can see the DTGov seed data.

http://localhost:8080/s-ramp-ui (admin/overlord)

You should see something like this:

http://localhost:8080/dtgov-ui
http://localhost:8080/s-ramp-ui

Get to Work

BECCSA _ YaHoO! -0
‘P,S-RAMP Repository Browser - Artifacts | + |

6 ¥ localhost:2080/s-ramp-ui/#artifacts U;EE" Google):'I 4+ @
| Static |) GWT | | Live n Bookmarks

* JBoss Overlord S-RAMP Repository

Design Time Repository

S5-RAMP Dashboard

Core Properties

Type

Import Artifacts

Displaying 1-6 of 6

Date Created Name Type Derived Last Modified
o digov-workflows-1.0.0-20130717.153026-1 jar KieJarArchive 07/17/2013
dtgov-workflows-1.0.0-20130717.153026-1.pom MavenPom 07M17/2013
Date Last Modified
kmodule xml KieXmlDocument 07M17/2013
1o
overlord.demo.CheckDeployment-taskform.xml XmiDocument 07M17/2013
B overlord.demo.ProjectLifeCycle.bpmn2 Document 07172013
overlord demo_SimpleReleaseProcess. bpmn Document 0717/2013

Last Modified By

origin
O Any
@® Primary
) Derived

Clear All Filters

~
(5

Figure 2.1. Screenshot of the DTGov data in S-RAMP

2.4. Get to Work

It's all installed, running, and checked? Now it's time to use the software! This guide will explain
advanced configuration and usage, but you can get started by logging in to the DTGov User
Interface as admin:

http://localhost:8080/dtgov-ui

It's likely that users will need to customize the system based on their organization’s specific
work processes. The Configuring and Governance Workflows chapters should be helpful in
describing how to customize the system.

http://localhost:8080/dtgov-ui

Chapter 3.

Chapter 3. User Management

3.1. Overview

In order to do work in the DTGov system, a valid user must first be authenticated. The specific
details regarding how to create and manage the list of allowed users will vary depending on
the runtime configuration. This guide will focus on the mechanisms supported by the DTGov
community installer.

Tip
@

Please note that the installer creates a single user (named admin) during the
installation process.

3.2. Required Roles

There are several roles that the user must have in order to interact with DTGov. These roles are
as follows:

« overlorduser : users must have this role in order to access the DTGov user interface

e admin.sramp : users must have this role in order to access the S-RAMP repository (both read
and write)

» dev : users with this role will be able to view and complete Dev environment and developer
human tasks

* test : users with this role will be able to view and complete Test environment human tasks
« stage : users with this role will be able to view and complete Staging environment human tasks

* prod : users with this role will be able to view and complete Production environment human
tasks

» ba: users with this role will be able to view and complete business analyst human tasks

« arch : users with this role will be able to view and complete architect human tasks

3.3. Adding a User

3.3.1. JBoss EAP 6

By default DTGov uses the standard EAP Application Realm configuration as its authentication
source. This means that adding users is a simple matter of using the existing EAP add-user script.
If you are running on Windows you can use the add-user.bat script. Otherwise run the add-user.sh
script. Both of these scripts can be found in EAP’s bin directory.

Chapter 3. User Management

Here is an example of how to add an S-RAMP user using the add-user.sh script:

[user @ost jboss-eap-6.x]$ pwd
/ hone/ user/ FSW6/ j boss- eap- 6. x
[user @ost jboss-eap-6.x]$./bin/add-user. sh

What type of user do you wi sh to add?

a) Managenent User (ngnt-users.properties)

b) Application User (application-users.properties)
(a): b

Enter the details of the new user to add.
Real m (ApplicationReal m) : Applicati onReal m
Usernanme : fitzuser
Password : P4SSWRD!
Re-enter Password : PASSWRD!
What roles do you want this user to belong to? (Please
enter a conma separated list, or |eave blank for none)[]:
over | orduser, adm n. sranp, dev, t est
About to add user 'fitzuser' for realm'ApplicationReal n
Is this correct yes/no? yes
Added user 'fitzuser' to file '/home/user/FSWs/jboss-eap- 6. x/ st andal one/
configuration/application-users. properties'
Added user 'fitzuser' to file '/hone/user/FSWb/|jboss-eap-6.x/ domai n/
configuration/application-users. properties'
Added user 'fitzuser' with roles overlorduser,adm n.sranp to file '/
hone/ user/ FSW5/ j boss- eap- 6. x/ st andal one/ confi gurati on/ appl i cati on-
rol es. properties'
Added user 'fitzuser' with roles overlorduser,adnmn.sranp to file '/home/
user/ FSWb/ j boss- eap- 6. x/ domai n/ conf i gurati on/ application-rol es. properties'
Is this new user going to be used for one AS process to connect to anot her
AS process?
e.g. for a slave host controller connecting to the master or for a Renpting
connection for server to server EJB calls.
yes/ no? no

Tip
@

the above example will create a user who can view and complete Dev and Test
environment human tasks. Any other human tasks will not be visible.

3.3.2. JBoss Fuse 6.1

When running DTGov in JBoss Fuse 6.1, the user credentials are stored in a plain text properties
file in the et ¢ directory.

etc/users.properties.

Tomcat 7

#user =password, rol el, rol e2
adm n=ADM N_PASSWORD, over | or duser, adm n. sr anp, dev, t est, st age, prod, ba, arch

Simply add users to this file and restart Fuse. Make sure you include the necessary roles of
over | orduser and admi n. sr anp (along with any additional optional roles the particular user might
need) in any user you create.

3.3.3. Tomcat 7

When running DTGov in Tomcat 7, the source of authentication is an XML configuration file located
in Tomcat's conf directory named tomcat-users.xml. To add another user, simply add a user
element to this XML configuration file. For example, adding a user named fitzuser might make
the file look like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t ontat - user s>
<l ==
NOTE: By default, no user is included in the "manager-gui" role required

to operate the "/manager/htm " web application. |f you wish to use this
app,

you nust define such a user - the usernane and password are arbitrary.
=3

<rol e rol enane="t ontat"/ >
<rol e rol enane="over| or duser"/ >
<rol e rol enane="adm n. sranp" />
<user usernane="adm n" password="4dnln!"

rol es="t ontat, overl orduser, adm n. sranp, dev, t est, st age, prod, ba, arch"/>
<user usernanme="fitzuser" password="P4SSWRD! "

rol es="t ontat, overl orduser, adm n. sranp, dev, test"/>

</tontat - user s>

3.3.4. Jetty 8

When running in Jetty 8, the users are configured in the $JETTY_HOME/etc/realm.properties file.
The format is the same as the above Fuse 6 documentation:

user nane=passwor d123!, over| or duser, adni n. sr anp, dev, t est

10

Chapter 4.

Chapter 4. Configuring DTGov

4.1. Overview

DTGov has two configurations that can be modified to suit a particular deployment and business.
Specifically, the back-end DTGov system (dtgov.war) has a configuration file as does the User
Interface (dtgov-ui.war). This chapter describes these two configuration files so that users can
configure DTGov for their particular deployment environment and organization’s unique business
processes.

4.2. Back-End Configuration

The configuration of the back-end system can be modified by making changes to an external
configuration file found in the application server’s configuration directory. In JBoss EAP by default
the configuration file can be found here:

jboss-eap/standalone/configuration/dtgov.properties

If the file does not exist it can be created and will be picked up by the DTGov app during startup.
The location of this file can be overridden by setting the following Java System Property to be the
full path to a properties file anywhere on the server’s file system:

governance.file.name

For example, this system property could be configured by adding the following to the script that
starts up your application server:

- Dgover nance. fi | e. nane=/ hone/ j doe/ confi g/ over| or d/ dt gov/ dt gov. properties

The dtgov.properties configuration file is used to control a number of settings, listed and described
in the following section.

4.3. Back-End Configuration (EAP)

When running in JBoss EAP this same configuration information is stored in the
JBOSS/standalone/configuration/standalone.xml file under the urn:jboss:domain:overlord-
configuration:1.0 subsystem. For example:

<subsyst em xm ns="ur n: j boss: domai n: over| ord-confi guration: 1. 0">
<confi gurati ons>
<oc: configuration xn ns: oc="urn:jboss: domai n: over| or d-
configuration:1.0" nane="dtgov">
<oc: properties>
<oc: property nanme="sranp.repo.url" val ue="${overl ord. baseUrl}/s-
ranp-server" />

11

Chapter 4. Configuring DTGov

<oc: property nanme="governance.url" val ue="${overl ord. baseUrl }/
dt gov" />
<oc: property name="dtgov.ui.url" val ue="${overl ord. baseUrl}/
dtgov-ui" />
<oc: property nanme="governance. query.interval" val ue="20000" />
<oc: property nane="dt gov. wor kf | ows. gr oup”
val ue="org. overl ord. dt gov" />
<oc: property name="dt gov. wor kfl ows. name" val ue="dt gov-
wor kf | ows" />
<oc: property nane="dt gov. wor kf | ows. package"
val ue=" SRAMPPackage" />
<oc: property name="dt gov. wor kfl ows. versi on" val ue="1. 3. 0-
SNAPSHOT" />
<oc: property nane="gover nance. bpm user" val ue="dt govwor kf | ow' />
<oc: property nanme="gover nance. bpm passwor d"
val ue="${vaul t: VAULT: : dt gov: : dt govwor kf | ow. password: : 1}" />
<oc: property nanme="sranp. repo. user" val ue="dt govwor kfl ow' />
<oc: property nanme="sranp.repo. password"
val ue="${vaul t: VAULT: : dt gov: : dt govwor kf | ow. password: : 1}" />
<oc: property name="governance. user" val ue="dt govwor kfl ow' />
<oc: property nanme="gover nance. passwor d"
val ue="${vaul t: VAULT: : dt gov: : dt govwor kf | ow. passwor d: : 1}" />
</ oc: properties>
</ oc: confi guration>
</ confi gurations>
</ subsyst en®

All of the same properties as described above are applicable to EAP - they are simply configured
in a slightly different location.

4.4. Back-End Configuration Properties

S-RAMP Connection details
sranp. r epo. ur

sranp. r epo. aut h. provi der
sranp. r epo. user
sranp. r epo. passwor d
sranp. repo. val i dati ng

sranp. r epo. aut h. sam . i ssuer
sranp. repo. aut h. sam . servi ce

Location of the DTGov WAR

gover nance. ur |

Frequency with which to poll S-RAMP for query matches

gover nance. query. i nterva

Location in JNDI of the enmil service

gover nance. j ndi . emai | . ref erence

"From' information to use when sending enmail (domain and address)
gover nance. enui | . donai n

12

User Interface (Ul) Configuration

gover nance. enai | . from

JNDI | ocation of the User Transaction
gover nance. j ndi . user Tx. r ef er ence

RHQ connection info
rhq. rest. user

rhq. rest. password
rhg. base. url

BPM connection info
gover nance. bpm user
gover nance. bpm passwor d
gover nance. bpm ur |

BASI C auth user used to invoke DTGov provi ded services
gover nance. user
gover nance. password

Depl oynent targets configured for the DTGov depl oynment service
gover nance. targets

Location of the DTGov Ul
dt gov. ui . url

S- RAMP

S-ranp- wagon

dt gov. s-ranp- wagon. snapshot s
dt gov. s-ranp-wagon. r el eases

DTGov Wor kfl ow maven info
dt gov. wor kf | ows. gr oup

dt gov. wor kf | ows. nane

dt gov. wor kf | ows. ver si on

dt gov. wor kf | ows. package

In particular, the governance.targets and governance.queries configuration properties bear
additional explanation. Please see the Governance Workflows chapter for more information on
how to use these properties to configure the DTGov Deployment Service and the Governance
Workflow Queries, respectively.

4.5. User Interface (Ul) Configuration

The DTGov user interface can also be configured for a specific deployment and business
environment. The configuration of the Ul can be modified by making changes to an external
configuration file found in the application server's configuration directory. In JBoss EAP the
configuration file can be found here:

jboss-eap/standalone/configuration/dtgov-ui.properties

13

Chapter 4. Configuring DTGov

The location of this file can be overridden by setting the following system property to be the full
path to a properties file anywhere on the server’s file system:

dtgov-ui.config.file.name

This configuration file is used to control a number of settings, listed and described in the following
section.

4.6. User Interface (Ul) Configuration (EAP)

As mentioned above, when running in JBoss EAP the configuration properties are stored in the
standalone.xml file. See the section Back-End Configuration (EAP) above. The Ul properties
are stored in a section named dtgov-ui:

<subsyst em xm ns="ur n: j boss: donai n: over| ord- confi guration: 1. 0" >
<confi gurati ons>
<oc: configuration xm ns: oc="urn:jboss: domai n: over| or d-
configuration:1.0" name="dtgov-ui">
<oc: properties>
<I-- Belowis not the full list of properties needed - it is
imply illustrative of the format -->
<oc: property name="dt gov-ui.workfl ows. gr oup"
val ue="org. overl ord. dt gov" />
<oc: property nane="dt gov-ui.workfl ows. nane" val ue="dt gov-
wor kf | ows" />
<oc: property name="dt gov-ui.workfl ows. version" val ue="1. 3. 0-
SNAPSHOT" />
</ oc: properties>
</ oc: configuration>
</ configurations>
</ subsyst en®

4.7. Ul Configuration Properties

S-RAMP APl connection endpoi nt

dt gov- ui . s-ranp. at om api . endpoi nt

Whether to validate the S-RAMP connection

dt gov-ui.s-ranp. at om api . val i dati ng

What kind of authentication to use (class nane)

dt gov-ui . s-ranp. at om api . aut henti cati on. provi der

Only used when the provider is basic auth

dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. user name
dt gov-ui . s-ranp. at om api . aut henti cati on. basi c. passwor d
Only used when the provider is SAML bearer token auth
dt gov-ui . s-ranp. at om api . aut henti cati on. sanl . i ssuer

dt gov-ui . s-ranp. at om api . aut henti cati on. sam . servi ce

dt gov-ui . s-ranp. at om api . aut henti cati on. sam . si gn- asserti ons
dt gov-ui . s-ranp. at om api . aut henti cati on. sam . keyst ore

14

Ul Configuration Properties

dt gov-ui . s-ranp. at om api . aut henti cati on. san . keyst or e- passwor d
dt gov-ui . s-ranp. at om api . aut henti cati on. sanl . key-al i as
dt gov-ui . s-ranp. at om api . aut henti cati on. sam . key- password

Task APl connection endpoi nt

dt gov-ui . t ask- api . endpoi nt

|l npl enentation of a task client

dt gov-ui.task-client.class

Aut hentication to use when invoking the task API

dt gov-ui . t ask- api . aut henti cati on. provi der

Only used when using basic auth

dt gov-ui . t ask- api . aut henti cati on. basi c. user nane

dt gov-ui . t ask- api . aut henti cati on. basi c. password

Only used when using saml bearer token auth

dt gov-ui . t ask- api . aut henti cati on. san . i ssuer

dt gov-ui . t ask- api . aut henti cati on. sanl . servi ce

dt gov-ui . t ask-api . aut henti cati on. sanl . si gn- asserti ons
dt gov-ui . t ask-api . aut henti cati on. sanl . keystore

dt gov-ui . t ask- api . aut henti cati on. sam . keyst or e- passwor d
dt gov-ui . t ask- api . aut henti cati on. sanl . key-al i as

dt gov- ui . t ask- api . aut henti cati on. sanl . key- password

Dtgov APl related properties

dt gov- ui . dt gov- api . endpoi nt

dt gov-ui . dtgov-client.cl ass

dt gov-ui . dt gov- api . aut henti cati on. provi der

Only used when using saml bearer token auth

dt gov-ui . dt gov- api . aut henti cati on. sam . i ssuer

dt gov-ui . dt gov- api . aut henti cati on. sanl . servi ce

dt gov-ui . dt gov- api . aut henti cati on. sanl . si gn-asserti ons
dt gov-ui . dt gov- api . aut henti cati on. sanl . keyst or e

dt gov-ui . dt gov- api . aut henti cati on. sanl . keyst or e- passwor d
dt gov-ui . dt gov- api . aut henti cati on. sanl . key-al i as

dt gov-ui . dt gov- api . aut henti cati on. sanl . key- passwor d

Depl oynent |ifecycle base classifier

dt gov-ui . depl oynent-1ifecycl e.cl assifiers. base

dt gov-ui . depl oynent-lifecycle.classifiers.initial

Classifier to use when querying for all deploynents
dt gov-ui . depl oynent-1ifecycle.classifiers.al

dt gov-ui . depl oynent-1ifecycle.classifiers.in-progress

This next one is a prefix for any property that will indicate a possible
cl assifier stage that
shoul d be displayed in the U. |In the dtgov ui configuration file

mul tiple properties would

be specified that begin with this prefix and have a val ue of the format
{l abel }: {cl assifier}

dt gov-ui . depl oynent-1ifecycl e.classifiers. stage

15

Chapter 4. Configuring DTGov

And another one that is a prefix for any property that will indicate a
possi bl e depl oynent type
that should be displayed in the U. In the dtgov ui configuration file,

mul tiple properties woul d
be specified that begin with this prefix and have a val ue of the format

{l abel }: {type}
dt gov-ui . depl oynent-1ifecycl e.types

S-RAMP U integration properties
dt gov-ui . s-ranp- browser. url - base

In particular, the dtgov-ui.deployment-lifecycle.classifiers.stage and dtgov-ui.deployment-
lifecycle.types properties require further explanation. See the following sections for details.

4.8. Configuring Ul Deployment Stages

The DTGov user interface has a page that allows users to see a list of all deployments being
tracked. That page allows the user to filter the list of deployments based on the environments in
which the deployment is...deployed. In other words, the Ul page allows the user to show only the
deployments that are currently deployed in, for example, the DEV environment. Since different
organizations have different numbers and names for these environments, the actual filter options
are configurable. An example will prove useful:

dt gov-ui . depl oynent -1 ifecycl e.cl assifiers. stage. dev=Devel opnent: http://
www. j boss. or g/ over | or d/ depl oynent - st at us. ow #l nDev

dt gov-ui . depl oynent-1ifecycle.classifiers.stage.qa=QA: http://ww.]jboss. org/
over| or d/ depl oynent - st at us. oM #l nQa

dt gov-ui . depl oynent-1ifecycle.classifiers.stage. stage=Stagi ng: http://

www. j boss. or g/ over | or d/ depl oynent - st at us. owl #l nSt age

dt gov-ui . depl oynent-1ifecycle.classifiers.stage. prod=Production: http://
www. | boss. or g/ over | or d/ depl oynent - st at us. owl #l nPr od

If the above configuration is used (in the dtgov-ui.properties file) then the Ul will show four
possible environments that the user can use to filter deployments (dev, ga, stage, prod). The
format for the value of each entry is:

Label : Classifier

The Label will be shown in the Ul (in the filter drop-down) and the Classifier will be used when
performing the S-RAMP query to retrieve the filtered list of deployments.

4.9. Configuring Ul Deployment Types

The DTGov user interface’s deployment listing page also allows users to filter by the type of
deployment (Java Web Application, SwitchYard Application, etc). Since different organizations
will likely work with varying technologies, the Deployment Type filter is configurable. For example:

16

Configuring Authentication

dt gov-ui . depl oynent-1ifecycl e.types. swi tchyard=Swi tchYard Application: ext/
Swi t chYar dAppl i cati on

dt gov-ui . depl oynent-1ifecycl e.types.jar=Java Archive: ext/JavaArchive

dt gov-ui . depl oynent-1ifecycl e. types. war=Java Web Applicati on: ext/
JavaVWebAppl i cati on

In the above example, the user would be able to filter by SwitchYard Application, Java Archive,
and Java Web Application. The format for each entry is:

Label : S-RAMP Artifact Type

The Label will be shown in the Ul (in the filter drop-down) and the S-RAMP Artifact Type will be
used when performing the S-RAMP query to retrieve the filtered list of deployments.

Note: the list of Deployment Types is also used in the Add Deployment dialog when adding a
new deployment. In this case, the S-RAMP Artifact Type is used when adding the deployment
to the repository.

This configuration works in conjuction with the Deployment Service described in the Deployment
Management chapter of this guide. The classifiers specified when configuring Deployment
Targets should be represented here.

4.10. Configuring Authentication

By default, the S-RAMP repository and all of the Design Time Governance REST services are
protected by BASIC and SAML Bearer Token authentication mechanisms (allowing clients to use
either). Configuring the authentication of the REST services varies depending on application
server. In JBoss the authentication is typically configured in the standalone.xml file. This section
describes how the various client components can be configured when the server authentication
mechanism is changed.

There are several Design Time Governance components that invoke protected REST services,
and each component must be configured individually. In each case an authentication provider
must be implemented and configured via either dtgov.properties or dtgov-ui.properties. The
following are the client components which can be customized in this way:

 DTGov :: S-RAMP Repository Monitoring (automated process that triggers workflows when
repository changes are detected)

* DTGov :: Governance Services Invoking the S-RAMP API (some of the Governance REST
services invoke the S-RAMP API)

« DTGov Ul :: S-RAMP Invokes (the Ul displays governance data that it gets from the S-RAMP
repository)

e DTGov Ul :: Task Inbox Invokes (the Ul queries a pluggable Task API to get human task data
for display in the Task Inbox)

17

Chapter 4. Configuring DTGov

In each case, an authentication provider can be specified that will control how authentication
information is passed to the service being invoked. The authentication provider must be a Java
class that implements a specific provider interface. The classname can be set in the relevant
configuration file. The following table provides the relevant details for each component:

Component Provider Interface Config Property Config File

DTGov :: S-RAMP org.overlord.sramp.cIiem:muﬂpﬁembmmittaﬁm\FPdeﬁgev.properties
Repository Monitor

DTGov :: Governance | org.overlord.sramp.cliensiauntip Aeploestitaiomfdetdigev.properties
Services _, S-RAMP

DTGov Ul :: S-RAMP | org.overlord.sramp.clientigatb-dighrantigationProdigev-ui.properties

Invokes api.authentication.provider
DTGov Ul :: Task org.overlord.dtgov.taskctitgmauthiasithenticationdtgmweldtproperties
Inbox Invokes api.authentication.provider

Example

A reasonable example might be that the Task API is configured to use some alternative
authentication mechanism, in which case the DTGov Ul must be configured with a different
(custom) provider. The following steps will accomplish this:

1. Create a new Java class that implements
org.overlord.dtgov.taskclient.auth.AuthenticationProvider

package org. exanpl e. aut h;

i mport org.apache. http. Htt pRequest ;
i mport org.overlord. dt gov. taskclient. aut h. Aut henti cati onProvi der;

public class CustomAut henticati onProvi der inplenments AuthenticationProvider
{
/| Constructor.
publ i ¢ NoAut henti cati onProvider() {
/1 Note, you may al so choose to have a constructor that accepts an
Apache Conmons
/1 Configuration object, which will allow you to access
configuration properties
/1 in the dtgov-ui.properties file:
/'l org.apache. conmons. confi guration. Confi guration

/1 Provide any custom aut hentication here.

@verride

public void provi deAut henti cati on(Htt pRequest request) {
/1 Do custom aut hentication now.

18

Configuring Authentication

1. Configure the provider in dtgov-ui.properties

dt gov-ui . t ask-

api . aut henti cati on. provi der =or g. exanpl e. aut h. Cust omAut hent i cati onProvi der
Optional custom configuration properties

dt gov- ui . t ask- api . aut henti cati on. cust om propertyl=sone-val ue

dt gov-ui . t ask- api . aut henti cati on. cust om property2=somne- val ue

1. That's it!

19

20

Chapter 5.

Chapter 5. DTGov and S-RAMP

5.1. Overview

DTGov integrates tightly with a compliant S-RAMP repository, and it is recommended that the
Overlord S-RAMP implementation is used. The S-RAMP repository is used as the storage
mechanism for all artifacts that DTGov is interested in (e.g. Deployments). This chapter describes
this integration as well as how it is configured.

DTGov is integrated with S-RAMP via the Atom based REST API that all S-RAMP repositories
expose. The repository is leveraged in a number of ways, including:

» Storage of all artifacts
» Monitor for changes to trigger business workflows (described in another chapter)

* Managing deployments
5.2. Configuration Properties

A number of configuration properties drive the integration between DTGov and S-RAMP. In
particular note that the DTGov back-end and the DTGov User Interface each have their own
separate configuration. This is because the back-end and Ul are separate applications that can
be independently deployed.

Note that in addition to configuring the DTGov Ul itself, the shared Overlord Header functionality
(the top header for all Overlord applications) must also be customized so that the tabs in the
header point to the right places. This is done by customizing the files installed (for example) in
$jboss_home/standalone/configuration/overlord-apps.

DTGov Back-End Configuration.

S-RAMP Connection details
sranp. repo. url

sranp. r epo. aut h. provi der
Sranp. r epo. user

sranp. r epo. password
sranp. repo. val i dati ng

DTGov User Interface Configuration.

S-RAMP APl connection endpoi nt
dt gov-ui . s-ranp. at om api . endpoi nt
dt gov-ui . s-ranp. at om api . aut henti cati on. provi der

21

Chapter 5. DTGov and S-RAMP

dt gov-ui . s-ranp. at om api . aut henti cati on. san . i ssuer

dt gov-ui . s-ranp. at om api . aut henti cati on. sanl . service

dt gov-ui .s-ranp. at om api . aut henti cati on. sanl . si gn-assertions
dt gov-ui . s-ranp. at om api . aut henti cati on. sanl . keystore

dt gov-ui . s-ranp. at om api . aut henti cati on. sam . keyst or e- passwor d
dt gov-ui . s-ranp. atom api . aut henti cati on. sanl . key-al i as

dt gov-ui .s-ranp. at om api . aut henti cati on. san . key- password

dt gov-ui .s-ranp. atom api . val i dati ng

dt gov-ui . s-ranp- browser. url - base

overlord-apps/*-overlordapp.properties Configuration.

over | ordapp. hr ef

Now for some examples. These examples assume that S-RAMP has been installed on server
"sramp.example.org" and DTGov has been installed on server "dtgov.example.org".

First let's make sure the Ul Headers are propertly configured. To do this, we want to make sure
that the files in overlord-apps are properly configured and copied to both servers (when running
in EAP these files are found in $jboss_home/standalone/configuration/overlord-apps). There are
two files of importance: srampui-overlordapp.properties, dtgov-overlordapp.properties

Example: srampui-overlordapp.properties.

over | or dapp. app- i d=s-r anp- ui

over | ordapp. href =htt p: // sranp. exanpl e. or g: 8080/ s-r anp- ui /
over | or dapp. | abel =Reposi tory

over | ordapp. pri mary- brand=JBoss Overl ord

over | or dapp. secondar y- br and=S- RAMP Reposi tory

Example: dtgov-overlordapp.properties.

over | or dapp. app- i d=dt gov

over | ordapp. href =ht t p: / / dt gov. exanpl e. or g: 8080/ dt gov- ui /
over | or dapp. | abel =Desi gn Ti ne

over | or dapp. pri mary- brand=JBoss Overlord

over | or dapp. secondar y- br and=Gover nance

Now both servers should know where the appropriate Uls are located. This allows the shared
Overlord Header (at the top of all Overlord Uls) to create the appropriate tabs.

Next let's make sure that the DTGov back-end can properly communicate with the S-RAMP
repository. This is done by editing the dtgov.properties file on the dtgov server.

22

Configuration Properties

Example: DTGov Back End Configuration.

sranp. repo. url =http://sranp. exanpl e. org: 8080/ s-r anp- server/

sranp. repo. aut h. provi der =or g. over | ord. sranp. gover nance. aut h. Basi cAut henti cati onProvi der

Ssranp. r epo. user =dt gov
sranp. r epo. passwor d=DTG_PASSWORD
sranp. repo. val i dati ng=true

The above configuration uses BASIC authentication when connecting to the S-RAMP repository.
It will connect to S-RAMP at "sramp.example.org" (port 8080). Note that the DTGov back-end
uses BASIC authentication against the S-RAMP repository because some of the functionality in
DTGov occurs on the behalf of a workflow without the security context of an authenticated user.
Obviously you must make sure that the user credentials you list in the configuration represent
a valid S-RAMP repository user. We recommend creating a "dtgov" or "dtgovworkflow" user in
S-RAMP for this purpose. Most likely you will be sharing users/authentication between the two
servers in some way, but that is beyond the scope of this documentation.

Now that the back end is configured, we can configure the DTGov Ul so it knows where the S-
RAMP repository is (as well as where the S-RAMP Ul is!). This is done by editing the dtgov-
ui.properties file on the dtgov server.

Example: DTGov Ul Configuration.

dt gov-ui . s-ranp. at om api . endpoi nt =ht t p: / / sr anp. exanpl e. or g: 8080/ s- r anp- ser ver
dt gov-ui .s-ranp. atom

api . aut henti cati on. provi der=org. over| ord. dt gov. ui . server. servi ces. sranp. SAM_Bear er TokenAut hent i

dt gov-ui .s-ranp. atom api . aut henti cati on. sanl . i ssuer =/ dt gov- ui

dt gov-ui . s-ranp. at om api . aut henti cati on. sanm . servi ce=/s-ranp- server

dt gov-ui . s-ranp. atom api . aut henti cati on. sanl . si gn-assertions=true

dt gov-ui .s-ranp. atom api . aut henti cati on. sam . keyst ore=
${sys:jboss.server.config.dir}/overlord-samn . keystore

dt gov-ui . s-ranp. at om api . aut henti cati on. sanl . keyst or e-

passwor d=KEYSTORE_PASSWORD

dt gov-ui .s-ranp. atom api . aut henti cati on. sam . key-al i as=over| ord

dt gov-ui . s-ranp. at om api . aut henti cati on. sanm . key- passwor d=KEY_PASSWORD
dt gov-ui . s-ranp. at om api . val i dati ng=true

dt gov-ui . s-ranp- browser. url - base=http://sranp. exanpl e. org: 8080/ s-r anp- ui

The above configuration connects to S-RAMP at "sramp.example.org" (port 8080) and uses
SAML bearer token authentication. Please note that both the S-RAMP repository and the DTGov
installation must share the same SAML keystore (the keystore contains encryption keys used to
sign and verify SAML Assertions). This can be done by making sure that overlord-saml.keystore
is the same file for both installations. Also note that the SAML Assertion used in this type of

23

Chapter 5. DTGov and S-RAMP

authentication has a time-to-live of only 10 seconds per request. This means that both of your
servers must have their system times reasonably well in sync or this time-to-live test may fail.

The configuration also sets up the URL of the S-RAMP browser (Ul). This is important because the
DTGov Ul occassionally creates links directly to the S-RAMP browser. Please note that this latter
functionality may be adversely affected by user authentication (if the user must re-authenticate
when navigating from the DTGov Ul to S-RAMP Ul then the right page may not display).

5.3. Authentication

Both the Ul and the back-end support pluggable authentication mechanisms. Out of the
box DTGov provides implementations for BASIC authentication and SAML Bearer Token
authentication. If the S-RAMP repository is protected by some alternative form of authentication,
another implementation of the authentication provider can be created. In both cases, the
authentication provider must implement the following interface:

org.overlord.sramp.client.auth.AuthenticationProvider

The DTGov back-end provides the following authentication provider implementations:

1. BASIC - org.overlord.sramp.governance.auth.BasicAuthenticationProvider
2. SAML Bearer Token - not supported

The DTGov user interface provides the following authentication provider implementations:

1. BASIC - org.overlord.dtgov.ui.server.services.sramp.BasicAuthenticationProvider

2. SAML Bearer Token -
org.overlord.dtgov.ui.server.services.sramp.SAMLBearerTokenAuthenticationProvider

24

Chapter 6.

Chapter 6. Governance Workflows

6.1. Overview

One of the most important features of the Overlord: DTGov software is the ability to trigger
Governance Workflows based on changes detected in the S-RAMP repository. This chapter
discusses this functionality, including:

1. How to create a workflow

2. Using DTGov supplied supporting Governance Services

3. How to deploy a workflow

4. Configuring a workflow to execute (trigger) when repository content changes

5. Managing running Workflows (processes)

6.2. Creating Workflows

Overlord: DTGov integrates tightly with the jBPM business process management system. This
allows DTGov to utilize any business process that is compatible with jBPM 6. The tooling available
to author jBPM compatible business processes is varied and extensive (and is outside the scope
of this document). One possibility is using the Eclipse based BPM tools. Another alternative is
using the web based Drools authoring tools.

6.2.1. Create Workflows using Eclipse Tooling.

6.2.1.1. Prerequisites

You need to have installed DTGov from JBoss Overlord project or as a part of Red Hat JBoss
Fuse Service Works 6 and JBoss Developer Studio along with the Integration Stack plugins:

» JBoss Developer Studio with the Integration Stack can be installed according to Integration
Stack for JBoss Tools and Developer Studio [https://community.jboss.org/community/tools/
blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio]

* FSW can be obtained from Red Hat JBoss Fuse Service Works [http://www.jboss.org/products/
fsw.html] and DTGov from JBoss Overlord project can be found at Overlord - JBoss Community
[http://www.jboss.org/overlord/].

6.2.1.2. Create new governance workflow

At the moment DTGov only supports one KieJar for all DTGov workflows, so first thing you need
to do, after starting JBDS, is to import the default dtgov workflows into you workspace:

25

https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
https://community.jboss.org/community/tools/blog/2013/10/11/integration-stack-for-jboss-tools-and-developer-studio
http://www.jboss.org/products/fsw.html
http://www.jboss.org/products/fsw.html
http://www.jboss.org/products/fsw.html
http://www.jboss.org/overlord/
http://www.jboss.org/overlord/

Chapter 6. Governance Workflows

* In JBDS select File # Import # Maven # Existing Maven Projects and navigate to <FSW
i nstal | ati on>j boss- eap- 6. 1/ data where the dtgov workflows are located. The Maven
integration in JBDS will take care of the rest.

Select

" . E“u 7]
Import Existing Mawen Projects

Select an import source:

type filter text %

b = General =

b = CVS

b = E|B

b= Git

b = Guwnor

P = Install

b = Java EE

= [= Maven
Wl Check out Maven Projects from SCM
w, Existing Maven Projects

[, Install or deploy an artifact to a Maven repository
ud Materialize Maven Projects from SCM
P = Onenshift [~

@ < Back Next = | | Cancel | | Einish

Figure 6.1. Importing workflow as maven project into your eclipse
workspace

26

Create Workflows using Eclipse Tooling.

Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: fhome/sbunciakjruntimes/fsw-6.0.0-Beta/jboss-eap-6.1/data |3| Browse...

Frojects:

Wl fpomxml org.overlord.dtgovidtgov-workflows:1.0.1 Final-redhat-4:jar Select All
Deselect All
Select Tree

Deselect Tree

il

Refresh

[| Add project(s) to working set

Working set: | | = || More...
b Advanced
® < Back | [ext = | | Cancel | | Einish

Figure 6.2. Importing workflow as maven project into your eclipse
workspace

e At this point you can author new governance workflows in src/ main/resources/
SRAMPPackage folder. To create new BPMN2 Process Diagram select File # New # Other #
BPMN2 # Generic BPMN 2.0 Diagram # Process Diagram Type.

27

Chapter 6. Governance Workflows

Select a wizard —

Wizards:

type filter text %

| »

b = General
B = Arquillian
b = BPEL 2.0
¥ = BPMMZ
L& BPMN2 Model
|2) Generic BPMN 2.0 Diagram
= JBPM Process Diagram
b (= CDI (Context and Dependency Injection)
b = Connection Profiles

P = CVS
b 7o Piemmde E

@ = Back MNext = | | Cancel | | Finish

Figure 6.3. Choose Generic BPMN 2.0 Diagram

28

Create Workflows using Eclipse Tooling.

BPMN2 Diagram File

Enter a file name for the new Process Diagram

Location: fdtgnv—wnrkﬂDwsfsrcfmainfresnurcesfSRAMPPackage | |Bmwse...

File name: sample_process_1.bpmn

Target Namespace: | http:fsample bpmn2.org/bpmn2/sample/process|

@ < Back

i
k]
=]
]
[15]

Next = Finish

Figure 6.4. Choose Generic BPMN 2.0 Diagram and enter the filename.

* Once the new process definition is opened in BPMN2 Modeler, make sure you have Custom
tasks Modeler palette. If you don't, right click on dtgov-workflows in Project Explorer # Properties
BPMN2 # Target Runtime # select 'JBoss jBPM 5 Business Process Engine'.

29

Chapter 6. Governance Workflows

0= Qutline 5@ Palette 3% = g
[Select

r-

' Marquee
= Profiles
= Activities
= Artifacts
(= Boundary Events
(= Connections
(= Data Objects
= End Ewvents
= Gateways
= Intermediate Catch Events
= Intermediate Throw Events
= Start Events
= Swimlanes
= Workflow Patterns
= Custom Tasks 40
g HttpClientDeploy
4 HttpClientMNotify
s HttpClientUpdateMetaData

Figure 6.5. Show the custom governance tasks

e Create model a brand new BPMN2 workflow diagram of your own. You can use
overlord.demo.SimpleReleaseProcess.bpmn, which is part of the default dtgov-workflows, as

30

Create Workflows using Eclipse Tooling.

an inspiration and sample for configuring DTGov Supporting Services tasks. Official DTGov
demos can be found here: https://github.com/Governance/dtgov/tree/master/dtgov-demos

» Few tips for DTGov workflow modeling:

« at first, set appropriate process id (will be used by DTGov to pick up the definition from S-
RAMP repository) and package name:

sample_process 1 |2 org.jposs.soa.process sample &2

‘9 v 1
Deploy to FSW Lpdate Moftify prod
MetaData

4] i

. Problems = Properties 822 | 4 Servers £3 OpenShift Explorer

O Sample Process

Description ~ AAttributes
Process .
Id org.jboss.soa.process_sample
Interfaces
Definitions Mame | SOA Sample Process
Data lterns varsion | 1

Package Mame SRAMPPackage
Ad Hoc

|s Executable w

Figure 6.6. Show and set the Workflow properties.

31

https://github.com/Governance/dtgov/tree/master/dtgov-demos

Chapter 6. Governance Workflows

» second, create DTGov-specific Process variables in Data Items tab: DeploymentUrl |,
ArtifactUuid , Response , NotificationUrl , UpdateMetaDataUrl , DTGovUrl (these are used in
DTGov Supporting Services):

sample_process_1 [org.jboss.soa.process_sample 52

==

¥

hid]
Deploy to FSW Update Finish task

MetaData

Motify prod

4

5. Problems | E Properties &2 | 4 Servers £3 OpenShift Explorer

£ Sample Process

Description » Global List for Process "Sample Process'

Process

Interfaces . .

— ~ Wariable List for Process "Sample Process"
Definitions
Data It
ata ltems MName Data Type

DeploymentUrl String
ArtifactUuid String
Response String
MotificationUrl String

[T TN PN R HE=TYS P,

Figure 6.7. Show and set the Workflow Data Items.

6.2.2. Create Workflows using Drools web based tools.

You can download the guvnor console from the Drools-jBPM project and work on the workflows
there. Once you are ready to deploy you will need to export the project and deploy to S-RAMP
using a KJar format. Our experience is that this is similar to using the eclipse tooling but there are
some differences regarding how to work with custom tasks. We therefor recommend using the
eclipse based tooling. (note: this is an opportunity for you to contribute documentation)

For additional information about how to create jBPM processes, please consult the BPM and
Drools documentation [http://www.jboss.org/jbpm].

6.3. Deploying Workflows

All of the workflows and supporting files (images, task forms, etc) should be bundled together into
a KIE archive. A KIE archive is simply a JAR with a particular structure assumed by jBPM. For
example, your archive file structure might look something like this:

VETA- | NF/ knodul e. xm
SRAMPPackage/ Ht t pCl i ent Wor kDef i ni tions. w d

32

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm

Deploying Workflows

SRAMPPackage/ com nmybusi ness. depl oy. EARLi f eCycl e. bprm2
SRAMPPackage/ com nybusi ness. depl oy. WARLi f eCycl e. bprm2
SRAMPPackage/ com nybusi ness. val i dat e. NewSchenmaRevi ew. bpmm?2
SRAMPPackage/ run- bui | d-i nstal | . png

SRAMPPackage/ user - properti es. png

SRAMPPackage/ audi o- i nput - m cr ophone- 3. png

What are all these files?

The kmodule.xml file is a jBPM artifact (it makes this a Kie Archive rather than just a plain old

JAR

file). This file should have the following content:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<krmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"

k

xsi : schemalLocati on="https://raw. github. conl drool sj bpni dr ool sj bpm
nowl edge/ mast er/ ki e- api / src/ mai n/ r esour ces/ or g/ ki e/ api / knodul e. xsd"
xm ns="http://jboss. org/kie/6.0.0/ knodul e" >

<kbase nane="SRAMPPackage" >
<ksessi on name="ksessi onSRAVP"
scope="j avax. enterpri se. cont ext. Appl i cati onScoped" >
<wor kI t enrHandl er s>
<wor kI t enHandl er nane="Htt pC i ent Depl oy" type="new
org.overlord.dtgov.jbpmutil.HtpdientWrkltenHandl er()"/>
<wor kI t emHandl er nanme="Htt pCl i entNotify" type="new
org.overlord. dtgov. jbpmutil.HtpdientWrkltemHandl er()"/>
<wor kI t emHandl er nanme="Htt pd i ent Updat eMet aDat a" type="new
org.overlord.dtgov.jbpmutil.HtpdientWrkltenHandl er()"/>
</ wor kI t enHandl er s>
</ ksessi on>
</ kbase>

</ knodul e>

Next, there is a folder in the archive that maps to the kbase element found in the kmodule.xml
file. This folder contains all of the business process resources, primarily the BPMN2 files. There
is a file called HttpClientWorkDefinitions.wid which contains the custom work items used by
Governance Workflows. It might look something like this:

[

nport org.drool s. process. core. datatype.inpl.type. StringDat aType;

/1 the HtpCient work item
[

"nane" : "HtpdientDepl oy",
"paraneters" : [
"Ul" : new StringDataType(),

"Met hod" : new StringDataType(),

33

Chapter 6. Governance Workflows

"Uui d* : new StringDataType(),

"Target" : new StringDataType()
I«
"di spl ayNane" : "Depl oy",
"icon" : "run-build-install.png",

1.

/1 the HtpCient work item
[
"nane" : "HtpdientNotify",
"paraneters" : [
“Url"™ : new StringDataType(),
"DTGovUrl" : new StringDataType(),
"Met hod" : new StringDataType(),
"Uui d* : new StringDataType(),
“"Target" : new StringDataType(),
"Group" : new StringDataType(),
I
"di spl ayNanme" : "Notify",
"“icon" : "audio-input-m crophone-3. png",

1.

/1l the HtpCient work item
[

"nanme" : "HtpdientUpdat eMet aDat a",
"paraneters" : [
"Ul" : new StringDataType(),

“Met hod" : new StringDat aType(),
"Nanme" : new StringDataType(),
"Val ue" : new StringDataType(),
"Uui d* : new StringDataType(),

Il <
"di spl ayNane" : "Updat eMet aDat a",
"icon" : "user-properties.png",

This file also refers to some images files (useful for BPMN editors) which are also included in
the package.

Once the workflows are built, they must be deployed into the S-RAMP repository so that the
embedded version of jBPM can find them properly. It is recommended that the S-RAMP maven
integration is used to do this. The best way is to put all of the business process resources into
a simple JAR style maven project. Then use the S-RAMP maven integration to mvn deploy
the project directly into S-RAMP. Please see the Overlord: S-RAMP documentation’s "Maven
Integration" section for details on how this works. The result should be that your Governance
workflow JAR (Kie Archive) is uploaded to the S-RAMP repository, complete with relevant maven
properties set.

34

DTGov Supporting Services

The embedded jBPM engine will pick up the Governance Workflows by pulling the Kie Archive
out of the S-RAMP repository and using the content it finds within. It's worth noting that the
maven information of the Kie Archive can be configured in the DTGov back end configuration file
(dtgov.properties). The following properties control exactly what Kie Archive artifact the embedded
jBPM engine will grab from S-RAMP:

dt gov. wor kf | ows. gr oup=com nybusi ness

dt gov. wor kf | ows. nanme=gover nance- wor kf | ows
dt gov. wor kf | ows. versi on=1. 0. 7

dt gov. wor kf | ows. package=SRAMPPackage

6.4. DTGov Supporting Services

In order to make it a little easier to author interesting Governance Workflows, DTGov provides a
set of useful Governance Services. A list of these services follows:

« Deployment Service - deploys a binary application artifact to a configured target
* Meta-Data Update Service - allows simple modification of an artifact's meta-data
* Notification Service - provides a simple way to send email notifications

These services can be invoked by using the work items defined above in the
HttpClientWorkDefinitions.wid file.

E-mail templates for notifications can be modified at:

dt gov. war / VEB- | NF/ cl asses/ gover nance- enai | -t enpl at es/

Note: more information about the Deployment Service can be found in the Deployment
Management chapter of this guide.

6.5. Query Configuration

Currently the only way to trigger the execution of a Governance Workflow is by configuring an S-
RAMP query that will be used to monitor the S-RAMP repository for interesting changes. When
changes are discovered, a new instance of the configured workflow is created and invoked. This
section of the guide describes how to configure these query triggers.

All guery triggers are defined as artifacts in the S-RAMP repository. These artifacts can be created
and managed using the Workflow Trigger Query administrative Ul found in DTGov. Simply log
into the dtgov-ui web application and click on "Manage Workflow Queries" from the dashboard.
You should see a screen like this:

35

Chapter 6. Governance Workflows

* JBoss Overlord Governance

Design Time Rep

3 admin v~

DTGov Dashboard ' Workilow Queries

Query Filters

Name
Any
Workflow

Any E

Clear All Filters

JBoss Overlord 2014

Add Query

Name

Java Enterprise
Application Lifecycle

Java Web Application
Lifecycle

Project Lifecycle

Switchyard Application
Lifecycle

>

Workflow

overlord.demo.SimpleReleaseProcess

overlord.demo_SimpleReleaseProcess

overiord.demo.SimplifiedProjeciLifeCycle /s-ramp/exvArtifaciGroupingxp2 matches(@name, [Tl

overlord.demo.SimpleReleaseProcess

Figure 6.8. Screenshot of the DTGov data in S-RAMP

Trigger Query

Is-ramp/ext/JavaEnterpriseApplication

Is-ramp/ext/JavalWebApplication

‘Project.”)]
Is-ramplext/SwitchardApplication

Use this page to manage the list of workflow trigger queries configured in DTGov.

Displaying 1-4 of4 2%

Actions

& w
& w

& w

You must be an Overlord Admin to access the DTGov Workflow Trigger Query Ul
page

You can add new queries or edit existing queries (either by clicking Add Query or by clicking one
of the queries in the list). The resulting Ul page will look like this:

36

Query Configuration

* JBoss Overlord Governance

Design Time Repository

2 admin v

DTGov Dashboard =~ Workflow Queries

Workflow Trigger Query Details
Make changes 1o this workflow trigger query hy using the form below, then click the Save button to commit your changes

Name: Java Enterprise Application Lifecycle

Trigger Query: | /s-ramp/ext/JavaEnterpriseApplication

Description: Triggers a new Deployment Lifecycle Management workilow whenever a Java Enterprise
Application (EAR) is added to the repository.

Workflow: overlord demo SimpleReleaseProcess v
Workflow Properties: ~ Name Value Actions

UpdateMetaDataUrl {governance urli/rest/update/{name}/{value}/{uuid} TT
NotificationUr! {governance urlyrestnotify/email{groupy/deployed/{targe il

=
DeploymentUrl {governance.urll/rest/deploy/{target}/{uuid} | T

Add Property

Save Rese

Figure 6.9. Screenshot of the DTGov data in S-RAMP

All Workflow Trigger Queries must have a name and description. In addition a valid S-RAMP query
must be specified. All artifacts that are returned by the query will be processed and a new workflow
instance created. The specific workflow that will be triggered must be chosen in the "Workflow"
drop-down.

Finally, an optional set of properties can be specified to pass to the workflow. This is primarily
useful in passing the various DTGov service URLs to the workflow, although arbitrary property
mappings can be made. The following standard properties are supported and can be easily
configured (with default values):

» UpdateMetaDataUrl - the URL to the "Update Meta-Data" DTGov service
* NotificationUrl - the URL to the "Notification" DTGov service
» DeploymentUrl - the URL to the "Deployment” DTGov service

When the new process is created, the set of properties specified in the Ul will be passed to the
process. Additionally, the following standard properties will always be passed to the new process
instance upon creation:

« ArtifactUuid

* ArtifactName

37

Chapter 6. Governance Workflows

* ArtifactVersion

« ArtifactCreatedBy

« ArtifactCreatedTimestamp

« ArtifactLastModifiedBy

* ArtifactLastModifiedTimestamp

* ArtifactType

6.6. Managing Workflow Instances (Processes)

Once a new workflow instance is triggered for an artifact in the S-RAMP repository, the DTGov
system will track the existence and status of that instance. This allows you to see how many
workflow instances have been created and how many are currently running. There is a simple Ul
available in DTGov that provides this functionality. Simply log in to the DTGov Ul and navigate to
the "Workflows" section (linked off of the DTGov Ul Dashboard page).

Tip
@

You must be an Overlord Admin to access the DTGov Workflows Ul page

38

Chapter 7.

Chapter 7. Configuring the
Notification Service

The Notification Service is a service included by DTGov to make it easy to send out email
notifications to users directly from the workflow. However, it can easily be used to send email
notifications by any client that can perform a simple REST API call. This chapter describes how
to enable and configure the Notification Service.

7.1. Invoking the Notification Service

Invoking the Notification Service is a simple matter of sending a POST request to the proper dtgov
service endpoint. For example:

http://1 ocal host: 8080/ dt gov/ notify/email/{group}/{tenplate}/{target}/{uuid}

The path is made up of the following segments (see above):

» group: a logical group name - maps to a "Notification Destination" (see below)

template: a logical name of a Template - maps to a Template (see below)

target: string passed to the Template

uuid: the UUID of an artifact - the name of the artifact can be used in the template

7.2. Notification Destinations

First, DTGov must either be configured with an "email" notification destination in the
dtgov.properties file or the destination configuration must be left blank so that the default email
settings are used. To configure explicit destination settings, the following can be set in the
dtgov.properties file:

gover nance. enai | =<gr oup1>| <f r omAddr ess>| <t oAddr esses>
gover nance. emai | =<gr oup2>| <f r omAddr ess>| <t oAddr esses>
gover nance. enai | =<gr oupn>| <f r omAddr ess>| <t oAddr esses>

This allows a mapping of logical group names to real destination email addresses. Note that
the toAddresses value is a colon-separated list of real email addresses. Therefore an example
configuration might be:

gover nance. enai | =DEV| over | or d@yconpany. conj
devel oper s@ryconpany. com ga@ryconpany. com

39

Chapter 7. Configuring the No...

gover nance. emai | =PROD| over | or d@nyconpany. con| sysops@ryconpany. com

If the governance.email property information is missing from dtgov.properties, then an implicit
mapping will be used based on the group name passed to the Notification Service when it is
invoked and the following global email settings configured in dtgov.properties:

gover nance. enai | . donai n
gover nance. enai | . from

When these default settings are used, the Notification Service will send the email from the
configured from address specified above to the following email address:

${ gr oupNane} @f{ gover nance. enai | . dormai n}

The group name is whatever is passed to the notification service and the domain comes from the
governance.email.from property in dtgov.properties.

7.3. Email Templates

When sending an email notification, the subject and body of the email are generating by leveraging
a template. When invoking the Notification Service, the template name is passed as one of the
REST path segments. This logical name is used to look up the email template either from the
classpath or from the S-RAMP repository.

The resulting template is then processed so that any Ant-style properties found in the template
are resolved. A typical email body template might look like this:

Artifact ${uuid} with nane '${name}' has been deployed to target ${target}.
Pl ease claimthis task, test this deploynent and set a pass/fail status at
t he taskform at

${ dt govur| }/ #t askl nbox

--OQverlord

There are two types of templates: one for the email body and one for the email subject. These
template files can be located either on the classpath or in the S-RAMP repository.

7.3.1. S-RAMP Artifact Templates

When discovering the email template to use, DTGov will first look in the S-RAMP repository.
DTGov will search for an artifact using the following query (for the email body template):

/ s-ranp/ ext/ Dt govEnai | Tenpl ate[@enpl ate = ' <t enpl at eNane>' and @ enpl at e-
type = 'body']

40

Classpath Templates

Similarly, when looking for the email subject template, this query will be used:

/' s-ranp/ ext/ Dt govEmai | Tenpl ate[@enpl ate = ' <tenpl at eName>'" and @ enpl at e-
type = 'subject']

7.3.2. Classpath Templates

When discovering the email template to use, DTGov will search the classpath for the body template
here:

/ gover nance-enai | -t enpl at es/ <t enpl at eNane>. body. t npl
And for the subject it will look here:

/ gover nance- emui | -t enpl at es/ <t enpl at eNane>. subj ect . t npl
7.3.3. Template Lookup Summary
As a result, if the Notification Service is invoked with the following URL:

http://1 ocal host: 8080/ dt gov/ noti fy/ emai |l / DEV/ i nvoi ceReady/ f oo/ 12345

DTGov will look for email templates in the following places (in this order):

/ s-ranp/ ext/ Dt govEnai | Tenpl ate[@enpl ate = 'invoi ceReady' and @enpl at e-type
= 'body']

/ s-ranp/ ext/ Dt govEnai | Tenpl ate[@enpl ate = 'invoi ceReady' and @enpl ate-type
= 'subject']

/ gover nance-enai | -t enpl at es/ i nvoi ceReady. body. t npl
/ gover nance-enai | -t enpl at es/ i nvoi ceReady. subj ect . t npl

41

42

Chapter 8.

Chapter 8. Governance Human
Tasks

8.1. Overview

Overlord: DTgov uses an embedded version of jBPM by default. However, human tasks can
easily be included in Governance Workflows because the Task Inbox is integrated directly into
the DTGov User Interface.

Out of the box, Human Task functionality should work seamlessly. However, it is also possible to
integrate a separate task system by providing an alternative (custom) Task APl implementation.

8.2. Using Human Tasks in a Workflow

To use a human task in a Governance workflow, you can simply drop a human task activity onto
the canvas (when you are authoring your workflow using, for example, the Eclipse BPMN editor).
Please see the documentation for your BPMN editor for more details on using jBPM human task
activities. Note that, by default, a human task that executes in a Governance workflow will create a
task instance that will appear in the Governance Task Inbox user interface provided with DTGov.

8.3. Custom Task Forms

Whenever a task is created in a governance workflow (using a human task activity as discussed
above), the Task Inbox is responsible for presenting the details of the task to relevant users. The
Task Inbox allows users to perform human task related actions such as claiming, starting, and
completing the tasks assigned to them.

It is important to understand that the Task Inbox must have access to a Form for each type of
task it is expected to display. This is accomplished by creating a Task Form XML file for each type
of task used in your Governance workflow(s). A Task Form XML file is simply an HTML5 snippet
with the presentation markup specific to a task type. The Task Form XML file must be added to
the S-RAMP repository that the DTGov system is connected to, so that it can be looked up when
DTGov is presenting the task instance to a user.

An example Task Form XML file follows:

<fornp
<fiel dset>

<l abel >Not i fi cati on</| abel >

<p>
You are hereby notified that a new Schema artifact nanmed
Unknown</ span></ b> has
been added to the repository. Please reviewit.

</ p>

43

Chapter 8. Governance Human Tasks

<l abel >Val i dati on</ | abel >

<| abel class="radio0">
<i nput type="radi 0" nanme="Status" val ue="pass"></input >
Scherma accepted as valid

</ | abel >

<| abel class="radi0">
<i nput type="radi 0" name="Status" value="fail"></input>
Schema <enpnot </ en> accept ed

</ | abel >

</fieldset>
</ fornr

Custom task forms in DTGov will be pulled from the S-RAMP repository when needed and
displayed dynamically in the user interface. Any input variables configured in the human task
activity (in the governance workflow) will be used as inputs to the form. Inputs can be substituted
into the following HTML elements:

* input type="text"

* input type="hidden"

* textarea

* input type="checkbox"
e input type="radio"

* select

o div

¢ span

* label

For HTML elements with name attributes (e.g. input, select, textarea), the name of the element
must match the input variable name. For all other HTML elements the name must be specified
in a data-name attribute.

When the user completes or fails a task, the data they entered in the task form is gathered up and
submitted to the task engine (and is consequently sent back to the governance workflow).

Once the Task Form XML file is written, it must be added to the S-RAMP repository. The name of
the file (and thus the name of the artifact in the S-RAMP repository) must be of the form:

<t askNanme>-t askf or m xnl

The taskName can be identified and configured when setting up the human task activity
in your workflow. For example, if you configure the task name in your workflow to be

44

Fail Button

mycompany.appx.VerifySchema then the Task Form XML file should be added to S-RAMP with
a name of mycompany.appx.VerifySchema-taskform.xml.

8.4. Fail Button

For code newer than version 1.2 the Fail button in the TaskDetail form next to the Complete button
is no longer visible. However in certain cases it may make sense to have a Fail button . To make
this button visible you need to open the edit user task screen in your workflow editor and add an
Input Parameter Mapping:

From true (use expression and no | anguage)
To: FailButtonlsVisible (type String)

8.5. Customizing the Task API

Simply put, the Task API system used by the DTGov user interface can be swapped out by setting
the following property in the DTGov Ul configuration file (dtgov-ui.properties):

dtgov-ui.task-client.class
This property must point to a fully qualified Java class that implements the following interface:
org.overlord.dtgov.ui.server.services.tasks.ITaskClient

Of course, any Governance Workflows that create Human Task instances must also point to the
alternate task system. That configuration is out of the scope of this guide.

45

46

Chapter 9.

Chapter 9. Managed Deployments

9.1. Overview

One of the most useful services provided by the Overlord: DTGov system is the Deployment
Service. This is a service that makes it possible to deploy a binary artifact stored in the S-RAMP
repository into a target runtime environment such as JBoss EAP. This Deployment Service can
easily be invoked from a Governance Workflow and is often included as part of a Deployment
Lifecycle business process.

9.2. Invoking the Deployment Service

Invoking the Deployment Service from a Governance Workflow should be a simple matter of using
the HttpClientDeploy task defined in the HttpClientWorkDefinitions.wid file as described in the
Governance Workflows chapter of this guide. Within a BPMN2 process, the XML markup might
look something like this:

<bpmm2:task id="Task_1" drool s:taskNanme="Htt pC i ent Depl oy"
dr ool s: di spl ayNane="Depl oy" drool s:icon="run-build-install.png"
nane="Depl oy to DEV'>
<bpmm2: i ncom ng>bpm?20: SequenceFl ow_9</ bpm?2: i ncom ng>
<bpmm2: out goi hg>bpm20: SequenceFl ow_10</ bpmm2: out goi ng>
<bpmm2: i oSpeci fication id="_I nput Qut put Speci fication_10">

<bpmm2: dat al nput i d="_Dat al nput _47" itenSubj ect Ref="__Nanel nput |t ent
name="Url"/>

<bpmm2: dat al nput i d="_Dat al nput _48" itenBubj ect Ref="__Nanel nput|tent
name="Met hod"/ >

<bpmm2: dat al nput i d="_Dat al nput _49" itenBSubj ect Ref="__Nanel nput |t ent
nanme="Uui d"/ >

<bpmm2: dat al nput i d="_Dat al nput _50" itenBubj ect Ref="__Nanel nput |t ent

nane="Target"/>
<bpmm2: i nput Set id="_|nputSet_10" nane="I|nput Set 10">
<bpmm2: dat al nput Ref s>_Dat al nput _47</ bpmm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _48</ bpmm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _49</ bpm2: dat al nput Ref s>
<bpmm2: dat al nput Ref s>_Dat al nput _50</ bpm2: dat al nput Ref s>
</ bpm2: i nput Set >
</ bpm2: i oSpeci fi cati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_47">
<bpmm2: sour ceRef >Depl oynent Ur | </ bpm2: sour ceRef >
<bpmm2: t ar get Ref >_Dat al nput _47</ bpmm2: t ar get Ref >
</ bpm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_48">
<bpmm2: t ar get Ref >_Dat al nput _48</ bpm?2: t ar get Ref >
<bpmm2: assi gnnent i d="Assi gnnent _1">
<bpmm2: f rom xsi : t ype="bpmm?2: t For mal Expr essi on"
i d="For mal Expr essi on_16" >POST</ bprm2: f r o>

47

Chapter 9. Managed Deployments

<bpmm2:to xsi:type="bpm2:t Fornal Expressi on"
i d="For mal Expr essi on_17">_Dat al nput _48</ bpmm2: t 0>
</ bpm2: assi gnnent >
</ bpmm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_49">
<bpmm2: sour ceRef >Arti f act Uui d</ bpmm2: sour ceRef >
<bpm2: t ar get Ref >_Dat al nput _49</ bpnm2: t ar get Ref >
</ bpmm2: dat al nput Associ ati on>
<bpmm2: dat al nput Associ ati on i d="_Dat al nput Associ ati on_50">
<bpm2: t ar get Ref >_Dat al nput _50</ bpnm2: t ar get Ref >
<bpm2: assi gnnent i d="Assi gnnent_14">
<bpm2: from xsi : t ype="bpm2: t For mal Expr essi on"
i d=" For mal Expressi on_17">dev</ bpm2: f r on>
<bpm2:to xsi:type="bpmm2:t For mal Expressi on"
i d="For mal Expr essi on_18">_ Dat al nput _50</ bprm2: t 0>
</ bpm2: assi gnment >
</ bpmm2: dat al nput Associ ati on>
</ bpm2: t ask>

The above task uses the DeploymentUrl and ArtifactUuid parameters that were passed in to
the business process when it was invoked. It populates the inputs required by HttpClientDeploy
including an input parameter named Target. The Target parameter maps to a configured
Deployment Target. The target is a logical name and corresponds to a physical runtime
environment configured in the DTGov configuration file (dtgov.properties). See the next section
for details.

9.3. Configuring Deployment Targets

In order to make logical Deployment Targets available they must be configured in the DTGov
Deployment Targets user interface. To access this Ul simply log into the DTGov Ul and navigate
to the "Deployment Targets" section which is linked off of the main Dashboard.

Tip
@

You must be an Overlord Admin to access the DTGov Deployment Targets Ul page

This Ul allows you to create and manage your logical Deployment Targets. Each deployment
target contains the following information:

* Name - a logical name, such as "DEV" or "PROJ_A_1"
* Type - one of the supported deployment types, such as Copy or RHQ

» Description - a friendly explanation of what the target represents

Target Classifier(s) - the set of S-RAMP classifiers applied to the target artifact when it is
deployed successfully

48

Undeployment

Additionally, there are type-specific information that must be configured for each deployment
target depending on the type selected above. For example, if the Copy type is selected, then a
valid server file path must be configured.

9.4. Undeployment

Whenever the Deployment Service is used to deploy an artifact from the repository, it also
annotates that artifact with relevant undeployment information. This annotation takes the form of
another artifact in the repository of type ext/Undeploymentinformation. The annotation artifact
will have a relationship named describesDeployment pointing from it back to the deployment
artifact it annotates.

This undeployment information is used whenever an artifact needs to be undeployed. Undeploy
of an artifact happens when a new version of that artifact is being deployed to a particular
environment (deployment target). When this happens, the old version (whichever version is
currently deployed in that environment) is undeployed in preparation of the new deployment.

Once the artifact is undeployed, its undeployment information artifact is deleted from the repository
and any relevant classifier associated with the target environment is removed from the deployment
artifact.

Note: please see the Configuring DTGov chapter for information about how to coordinate the
configuration of the Deployment Service with the configuration of the DTGov User Interface (the
Deployment Management Ul).

9.5. Demo

For a short video see: http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-
dtgov.html

9.5.1. Summary

This demo shows how DTGov can start a Project Workflow via a simple Maven build. This demo
contains two projects:

 project: a very simple maven module with artifactld of "project".
* service: a maven module containing the Hello World Service API, expressed in WSDL.

The goal is to show that an upload of a pom.xml with artifactld of "project" kicks of a workflow of
type overlord.demo.SimpleReleaseProcess.png.

49

http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-dtgov.html
http://jboss-overlord.blogspot.com/2013/11/managed-deployments-using-dtgov.html

Chapter 9. Managed Deployments

7
UpdateMetaData (ProdPass)

(i) ol”] ¥ I ol”
UpdateMetaData (DevPass) UpdateMetaData (@aPass) UpdateMetaData (StagePass)

R | E | B || F |
Deploy to Dev Deploy to QA Deploy to Stage Deploy to Prod

" | [| B || [|
UpdateMetaDat UpdateMetaDat UpdateMetaData UpdateMetaData

| | 3 pass | @

l Notify Dew I [hss Notify QA] Notify Stage I pass Notify Prod] Fass

)ﬂ\ 4"\ ,ﬂ‘ ,ﬂ\

s Test Dav I s Test QA] s Test Stage I s Test Prod]

}AIL L&\L

))
7 7
UpdateMetaData UpdateMetaData

#4\\.
UpdateMetaData

Figure 9.1. Release Process Workflow

9.5.2. Requirements

9.5.2.1. Email Server

To receive email notifications you need a running email server. The connection settings can be
provided in the dtgov.properties file. It uses a mail session bound to JNDI to send the email. For
example, in JBoss EAP it uses the mail-smtp settings defined in the standalone/configuration/
standalone.xml

<out bound- socket - bi ndi ng nane="nai | - snt p" >
<renot e- desti nati on host="I ocal host" port="25"/>
</ out bound- socket - bi ndi ng>

The easiest way to fulfill this requirements is to run the FakeSMTP server (http://nilhcem.github.io/
FakeSMTPY/), since this will list emails send to all email addresses. Just download it and run:

sudo java -jar fakeSMIP-1.0.jar

9.5.2.2. Users and Roles

This demo uses the roles dev, ga, stage and prod. By default the admin user has all of these roles,
see the standalone/configuration/application_roles.properties

adm n=over | orduser, adm n. sranp, dev, ga, st age, pr od

50

http://nilhcem.github.io/FakeSMTP/
http://nilhcem.github.io/FakeSMTP/

How It Works

which means that the admin will see tasks for all roles in this example. Follow the instructions
in the application-users.properties to add users. Note that a new new user needs at least the
overlorduser role.

9.5.2.3. Authentication Settings

Be aware that you must supply the maven build with credentials for your S-RAMP repository. This
can be done by adding a section to your settings.xml file (or by providing a custom settings.xml
on the mvn command line using the -s argument).

For more information see: http://maven.apache.org/settings.html

Your settings.xml file should contain two additional server entries in the servers section:

<server >
<i d>| ocal - sranp-repo</i d>
<user nanme>adni n</ user nanme>
<passwor d>YOUR- PASSWORD</ passwor d>
</ server >
<server >
<i d>| ocal - sranp-r epo- snapshot s</i d>
<user nane>adnm n</ user nane>
<passwor d>YOUR- PASSWORD</ passwor d>
</ server >

9.5.3. How It Works

9.5.3.1. Deploying the artifacts JAR to S-RAMP

To get this demo working you must be running the DTGov server and the S-RAMP repository (see
documentation for the DTGov and S-RAMP projects to learn how to run the S-RAMP repository).

The first step is to build and deploy all artifacts to S-RAMP using Maven. The demo is configured
to run against the default security settings found in the distribution.

Important

Authentication settings in your .m2/settings.xml are required.

$ nvn -Pdeno cl ean depl oy

The -Pdemo flag will enable the demo profile, which tells the Maven distributionManagement to
point to your local S-RAMP repository (http://localhost:8080/s-ramp-server/). Therefore you need
to be running S-RAMP on port 8080 and deployed as the s-ramp-atom context.

The build should complete successfully and on the server you should see logging along the lines of

51

http://maven.apache.org/settings.html
http://localhost:8080/s-ramp-server/

Chapter 9. Managed Deployments

09: 04: 10,929 INFO [org.overlord. sranp. gover nance. Quer yExecutor] (EJB
default - 5) Starting workflow overl ord. deno. Si npl eRel easeProcess for
artifact 44021610-f 85e-48bf-9alc- 9adcdbe485b6

At this point there should be a number of artifacts stored in the S-RAMP repository. You can verify
that by deploying the "s-ramp-ui" project and then navigating to http://localhost:8080/s-ramp-ui (or
the appropriate URL for you).

You should see the following primary artifacts in the S-RAMP repository:

* dtgov-demos-switchyard-VERSION.jar

« dtgov-demos-switchyard-VERSION.pom

* OrderService.wsdl

* beans.xml

* orders

« org.overlord.sramp.demos.switchyard.service.lnventoryService
 org.overlord.sramp.demos.switchyard.service.lnventoryServiceBean
« org.overlord.sramp.demos.switchyard.service.Order

« org.overlord.sramp.demos.switchyard.service.OrderAck
 org.overlord.sramp.demos.switchyard.service.OrderService
 org.overlord.sramp.demos.switchyard.service.OrderServiceBean
« org.overlord.sramp.demos.switchyard.service. Transformers

Where the OrderService.wsdl, beans.xml, orders as well as some class With the query defined
in the dtgov.properties:

gover nance. queri es=/ s-ranp/ ext/ Sw t chYar dAppl i cati on]|

over | ord. denp. Si npl eRel easePr ocess| Depl oynent Ur | ={ gover nance. url}/rest/
depl oy/{target}/{uuid}::NotificationUl={governance.url}/rest/notify/email/
{group}/depl oyed/{target}/{uuid}::Updat eMet aDat aUr | ={ gover nance. url }/rest/
updat e/ { nane}/ {val ue}/{uuid}....

it will start a SimpleReleaseProcess workflow when a SwitchYardApplication lands in the
repository. You should see a custom property getting created which should look similar to

wor kf | owPr ocessl d=over | or d. denp. Si npl eRel easeProcess_0: wor kf | owPar anet er s=Depl oynent Ur |l =htt p
| ocal host : 8080/ dt gov/res. ..

Note that the definition of the overlord.demo.SimpleReleaseProcess lives in the SRAMPPackage
in the dtgov-workflows-VERSION.jar. If you want to update the workflow you need to use eclipse

52

http://localhost:8080/s-ramp-ui

Artifact Deployment

tooling to modify the bpmn, build and upload a new dtgov-worflow.jar to S-RAMP. The GAV
settings are defined in the dtgov.properties file.

9.5.4. Artifact Deployment

The workflow (and the deployment ontology) specifies four different environments:

e dev - development: machine hosting deployed released artifact before they go to QA.
Developers can do a quick test to make sure things work on more then just their desk.

* ga- quality assurance: machine hosting deployed released artifacts so that they can go through
the testing process.

 stage - staging: an environment identical to production where ga’ed artifacts can be tested on
the real hardware and with interactions with other systems.

« prod - production: the final place where the artifacts are deployed and run

Wien the _Sinpl eRel easeProcess_is instantiated it deploy the artifact to
the _dev_ environnent.

The wor kfl ow makes a POST call to Depl oynment Url ={governance. url}/rest/
depl oy/{target}/ {uui d}

wher e

* {governance.url} is location where the DTGov REST APl is hosted; this
defaults to 'http://Ilocal host: 8080/ dt gov'

and can be overridden in the dtgov. properties.

* {target} is the nanme of the deploynent target which defined in the

dt gov. properties and is

referenced in the 'Deploy to Dev' task.

* {uuid} is the UUID of the artifact which is set as a process paraneter
in the _Sinpl eRel easeProcess_

i nstance at creation tine.

In this case, we assume the dev target is defined as

governance. targets= dev|http://ww.jboss. org/overl ord/ depl oynent -
st at us. owl #l nDev| copy| /t np/ dev/ j bossas7/ st andal one/ depl oynment s

where * dev: name of the target * http://www.jboss.org/overlord/deployment-status.owl#InDev:
classification when deployed to Dev * copy: use file copy * /tmp/dev/jbossas7/standalone/
deployments: deploy directory

We assume there is jbossas? server running in /tmp/dev/jbossas?, and thus it uses a simple file
copy to place the artifact in /tmp/dev/jbossas7/standalone/deployments. The appserver will take
of deploying the artifact and on the server we should see logging along the lines of

09:04: 11,168 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(EJB default - 5) Calling POST TG http://|ocal host: 8080/ dt gov/rest/depl oy/
dev/ 44021610- f 85e- 48bf - 9alc- 9adcdbe485h6

53

http://www.jboss.org/overlord/deployment-status.owl#InDev:

Chapter 9. Managed Deployments

09:04: 11,274 INFO [org.jboss.resteasy. cdi.CdilnjectorFactory]
(http-/127.0.0.1: 8080-13) Found BeanManager at java: conp/ BeanManager

09: 04: 11,300 I NFO [org.|boss.resteasy. spi.ResteasyDepl oynent]
(http-/127.0.0.1: 8080-13) Depl oyi ng javax.ws.rs.core. Application: class
org.overl ord. sranp. gover nance. servi ces. Gover nanceAppl i cat i on$Pr oxy$_$

$_\el dd i ent Proxy

09:04: 12,170 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(EJB default - 5) reply={status=success, target=COPY:/tnp/dev/jbossas7/

st andal one/ depl oynent s/ dt gov- denps- swi t chyar d- 2. 0. 0- SNAPSHOT. j ar }

9.5.5. Classify as DevTest

The next task Classify #DevTest calls a REST service in DTGov using endpoint using a PUT to:

where * {governance.url} is location where the DTGov REST API is hosted; this defaults to http://
localhost:8080/dtgov and can be overridden in the dtgov.properties. instance at creation time.

which adds the #DevTest classification onto the artifact. You can verify by navigating to this details
of this artifact in the s-ramp-ui or by using the s-ramp.sh cli. The logging on the server should read

09:04: 12,202 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(EJB default - 5) Calling PUT TO. http://Iocal host: 8080/ dt gov/rest/updat e/
cl assification/http¥3A*2F* 2Fwwv. | boss. or g* 2Fover | or d* 2Fdepl oynent - st at us. ow

%23DevTest / 44021610- f 85e- 48bf - 9alc- 9adcdbe485b6

09:04: 12,414 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(EJB default - 5) reply={artifact Nane=dt gov- denos-

swi t chyard-2. 0. 0-20131107. 140403-1.jar, artifactCreatedBy=adm n,
st at us=success}

9.5.6. Notify Dev

The next task in the SimpleReleaseProcess is an email notification. The "Notification Task" calls
a REST service in DTGov using a POST to:

where * {governance.url} is location where the DTGov REST API is hosted; this defaults to http://
localhost:8080/dtgov and can be overridden in the dtgov.properties. is is set to dev the first go-
around. * deployed is the name of the notification template. referenced in the Deploy to Dev task.
This info is construct the notification message. instance at creation time.

On the server we should see the following logging

09: 04: 12,419 INFO [org.overlord.dtgov.jbpmutil.HtpdientWrkltenHandl er]
(EJB default - 5) Calling POST TG http://|ocal host: 8080/ dtgov/rest/ notify/

enmuai | / dev/ depl oyed/ dev/ 44021610- f 85e- 48bf - 9alc- 9adcdbe485hb6

09:04: 12,862 INFO [org.overlord.dtgov.jbpmutil.HtpdientWrkltenHandl er]
(EJB default - 5) reply={status=success}

54

http://localhost:8080/dtgov
http://localhost:8080/dtgov
http://localhost:8080/dtgov
http://localhost:8080/dtgov

Notify Dev

By default an email is sent the server localhost at port 25. By default the TO address used is
overlord@example.com. If you don’t want to use example.com then this can be overridden in the
dtgov.properties using key governance.email.domain and governance.email.from for the FROM
address. It is recommended to use an email alias or group to tie the group email to actual email
addresses.

The email contains the following info:

Subj ect: [Overl ord-dev] dtgov-denps-swi tchyard-2.0.0-20131106.145057-1.j ar
i s depl oyed

Artifact 6eccc2f4-b687-4882-9a05-fc446bbb8a44 with nane ' dt gov- denps-
swi t chyard- 2. 0. 0- 20131106. 145057-1.j ar' has been depl oyed to target dev.

Pl ease claimthis task, test this deploynment and set a pass/fail status at
the taskform at

http://1 ocal host: 8080/ dt gov- ui / #t askl nbox

--Overlord

and Figure Figure 9.2, “Notification Email in FakeSMTP” shows displays the email in the
FakeSMTP UI.

55

Chapter 9. Managed Deployments

®00 Fake SMTP Server
Listening port: 25 | Stop server |
Save message(s) to: received-emails

Message(s) received: 102

| Mails list | SMTP log
To: deviexample.com

Message-1D: <530638453.101.1383751489974 JavaMail.kstam@workhorse.local>
Subject: [Overlord-dev] dtgov-demos-switchyard-2.0.0-20131106.145057-1 jar
is deployed

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Artifact 6eccc2f4-bbBE7-4882-9a05-fc446bbb8ad4 with name 'digov-demos-switchyard-
Please claim this task, test this deployment and set a pass/fail status at the taskform at

http://localhost: 8080/ dtgov-ui/#taskinbox

| Clearall |

Figure 9.2. Notification Email in FakeSMTP

Email templates are deployed in the dtgov.war/WEB-INF/classes/governance-email-templates
directory. in this case are deployed.subject.tmpl and deployed.subject.tmpl.

9.5.7. Test Dev

Any user in the dev group can now navigate to the taks list, and the user should see at least
one entry

Design Time Repository

DTGov Dashboard Task Inbox

Task Filters Displaying 1-200f20 2

Owner

B Name Priority + Owner Status Due On
@ Any

Test Dev 3 Ready

) My Tasks

O Active Tasks Test Dev 3 Ready

Figure 9.3. Dev Task List.

The user can click on this task to arrive at the detail screen:

56

Gateway

* JBoss Overlord Governance

Design Time Repository

DTGov Dashboard = Task Inbox

Test Dev Claim = Release Start Stop
Task Properties Description
ID: 419 Please Claim & Start this Task, then check the deployment and mark as
Status: Ready Pass/Fail
Owner:
Priority: 3
Due Date:
Artifact

Unknown (UUID: Beccc2f4-b687-4882-9a05-fc446bbbBadd)
Deployed to Target

Unknown
Please record your findings

() Pass
() Fail

Complete Fail

Figure 9.4. Dev Task Detail

The dev user should claim and start the task and then mark as Pass/Fail and Complete. The
artifact will get classified as #DevPass and you should see the following logging on the server:

09:17: 21,161 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(http-/127.0.0.1:8080-39) Calling PUT TG http://I| ocal host: 8080/ dtgov/rest/

updat e/ cl assi fi cati on/ htt p%8A* 2F* 2Fwww. j boss. or g* 2Fover | or d* 2Fdepl oynent -

st at us. oM ¥23DevPass/ 44021610- f 85e- 48bf - 9alc- 9adcdbe485hb6

09:17: 21,359 INFO [org.overlord.dtgov.jbpmutil.Htpd ientWrkltenHandl er]
(http-/127.0.0.1: 8080-39) reply={artifactNanme=dt gov- denps-

swi t chyard-2. 0. 0-20131107. 140403-1.jar, artifactCreat edBy=adni n,
st at us=success}

9.5.8. Gateway

Based on the user input during the Test Dev task, a Gateway will now determine where to go next:
*PASS - mark as passed in Dev, and send the artifact to QA * FAIL - mark as failed in Dev and Stop

A PASS will basically rerun the same tasks we just discussed but now in for gqa, followed by stage
and prod. So proceed Classify as DevTest, but you need to pretend it reads Classify as QaTest
and so on.

When you navigate to the detail screen of the dtgov-demos-switchyard-VERSION.jar you should
see the #DevPass, #InQA and #QaTest classifiers set on this artifact.

57

Chapter 9. Managed Deployments

Classifiers
http://www.jboss.org/overiord/deployment-status.owl#DevPass
http://www.jboss.org/overlord/deployment-status.owl#inQa
http://www.jboss.org/overiord/deployment-status.owl#QaTest

Modify Classifiers

Figure 9.5. Classifiers.

9.5.9. Governing Deployments

The DTGov console has a screens specifically designed to govern deployment like these.
Navigate to http://localhost:8080/dtgov-ui/#deployments and select your deployment from the list.

* JBoss Overlord Governance

Design Time Repository

DTGov Dashboard

Deployments / Deployment Details

dtgov-demos-switchyard-2.0.0-20131107.140403-1.jar (SwitchYardApplication)

Deployment Properties Description
UuID: 44021610-fB5e-48bf-9a1c-9adedbe485b6 <no value>
Deployment Status: InQa

Version: 2.0.0-SNAPSHOT

Type: SwitchYardApplication

Initiated: 11/07/2013 by admin

Maven Group: org.overlord.dtgov.demos.switchyard

Maven Id: dtgov-demos-switchyard

Maven Version:

2.0.0-SNAPSHOT

Click to see the history of this Here you can view a list of the
'Iﬁ deployment, from the time it was added interesting artifacts that the system
to the system until now. The history located within the deployment. This
includes its transitions within the Deployment often includes artifacts such as XML files,
Lifecycle. WSDLs, and Schemas.

Deployment History

Deployment Contents

Figure 9.6. Deployments

X admin v~

(2.0.0-SNAPSHOT)

Click here to browse this deployment

artifact in the S-RAMP browser

interface. This may allow you to view
and modify all aspects of the artifact.

Browse in S-RAMP

From here you can look at the deployment history, the interesting content of the artifact.

This completes this demo.

58

http://localhost:8080/dtgov-ui/#deployments

Chapter 10.

Chapter 10. SOA Governance
Projects and Organizational Roles

10.1. Introduction

In large organizations building and maintaining services is not a one man job, instead it is a process
that touches many people in the organization. Figure 10.1, “SOA Governance Roles” is a copy of
figure 5.6 on page 95 of the SOA Governance book by Thomas Erl et al.

59

Chapter 10. SOA Governance Pr...

SOA
Adoption
Planning

%

Service
'nventary
Analysis

;

Service-Oriented
Analysis
{Servica Modeling)

:

Service-Oriented
Design
{Service Contract)

:

Service
Logic
Design

:

Service
Development

:

Service
Testing

:

Service
Deployment
and
Maintenance

%

Service
Usage
and
Manitoring

:

Service
Discovery

:

Service
Versioning
and
Retirememt

Service
Analyst

]

R
i ‘r'_ 5
\ I
A . ,’
Service
Developer
LR
N W
) e
Y | ¢
R
Service
Architect
.
, &% ™
i JIR E
' ol
\\h.|’,a - _]..\\
Service . LI
Custodian = | !
— Servica
Administrator

Figure 10.1. SOA Governanceé Roles

et

! [y
- Al
i %
"N
\,'__:'
Enterprise
Architect
Pt
l(Jf’- ‘.. \; ot
1 il Y
« Mo (. T
i i N
Schema B |
Custodian pE g
Techrical
Commurications
Speacialist
r"r:\
ey %
' | I
% | "‘
Palicy
Custodiar
et
¥ W |
. |
CToud
Resource
Administrator

.7 -r_ 3y
% N
n I ’,-
SOA

Governance
Specialist

/r.'r“

¥ W

" | ”

Emterprise | _

— Design i T
Standards | /| L
Custodian | '

SOA
Security
Specialist
P
N
N K
SCA
Quaiity
Agsurance
Specialist
f’-;_‘ ‘\
i ‘,l" \
A | J.-'
Service
Registry
Custodiar

[e2]

0

Demo Maven Project Workflow Integration

With this many people and roles involved, how to you manage a project like this? Especially since
in a large organization you will have many of these project running simultaneously. We would
have loved to implement a full project workflow based on the figure 1 process, but two things are
currently standing in our way: time and real world input. Who is going to pick up the challenge?

To get you started we created a Simplied Project Lifecycle Workflow demo that implements just
3 boxes; Requirements gathering, Service Design and Service Implementation, with one role
responsible for each stage, which are a Business Analyst, SOA Architect and SOA Developer.
Each role can be fulfilled by more then one person. In the demo we assigned all three roles to
the admin user so we don’t have to log in and out as different users all time. The demo uses the
workflow shown in Figure 10.3, “Project Workflow”. Each column represents one of the phases.
The first phase being Business Analysis. The hope is this demo provides you with the building
blocks to create the real world implementation we talked about earlier.

Some benefits of using this workflow are:

» Helps your organization with adoption of SOA by following proven processes. It is clear who
is responsible for approval.

« Provides insight in where your projects are.
* Helps your organization work together in different teams.
 Audit features allow full history tracking.

* Released artifacts are in the repository, the artifact is automatically in escrow this way, and
documentation and sources are stored along side the binaries all in one place.

Some optional benefits:

It is possible to send a BPMN event at the end of the workflow (or

from anywhere el se), which can kick off a rel ease workflow to automate
depl oynent. Though one could also wite a governance query |ooking for a
service inplenentation artifact with classification #l npl Pass.

Easy integration with other systens (think bug track systenms, or tine
managenent systens)

If you want to follow along with the demo you should

1. Have DTGov running; see http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-
governance-getting-started.html.

2. Install the Eclipse BPMN2 Modeler into your Eclipse IDE, or you can try the early access JBoss
Developer Studio.

10.2. Demo Maven Project Workflow Integration

For a short video see: http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-
and.html

61

http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-governance-getting-started.html
http://jboss-overlord.blogspot.com/2013/11/bleeding-edge-governance-getting-started.html
http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-and.html
http://jboss-overlord.blogspot.com/2013/11/soa-governance-projects-and.html

Chapter 10. SOA Governance Pr...

10.2.1. Summary

This demo shows how teams can collaborate using a ProjectLifeCycle Workflow. In this example
we have a simplified Project workflow with only three phases with their respective teams. Each
team delivers a set of deliverables which are uploaded to the repository. Each upload triggers a
review of the artifacts. The artifacts are groupedBy an ArtifactGrouping which is represented as
a parent in S-RAMP.

This demo contains three submodules:

 project-requirements: a requirements doc created a Business Analyst.
* project-service-api: a service design created by a SOA-Architect.
 project-service-impl: the service implementation created by a SOA Developer.

The overlord.demo.ProjectLifeCycle.bpmn resides in the dtgov-workflow.jar in the
SRAMPPackage and this should already be deployed. Also the classification ontologies should
already have been installed as part of the data seeding process during install of DTGov. In the
s-ramp-ui artifacts screen you can click on Classifiers to check that the Project Review Status
is present.

62

Summary

Project Review Status

Select... * Expand... *

— [_| project review lifecycle
- [ba
| ba_inreview
|| ba_reviewpass
| ba_reviewfall
— |_| design
|| design_inreview
|_| design_reviewpass
| design_reviewfalil
= [impl
L impl_inreview
L impl_reviewpass
L impl_reviewfalil

Cancel (8] 4

Figure 10.2. Project Review Status Ontology

These classifications will be applied by the Classify nodes in the workflow as the project moves
through its lifecycle.

63

Chapter 10. SOA Governance Pr...

Classify
#BaReviewFail

Classify #DasignFail Classify #lmplFail

StartProcess

analysis dofs complete amchitecture docs complate sarvice implemegtation completE

[2] N N
Classify #BalnReview | [Classify frail Classify frail
#DesigninReview #lmplinReview
P X o
el Y - L
Business Analysis Design Reviaw Implamentation
Review Meeting Meaeting Review Meeting

>
-

BA Reviewy Passed? Sprvice Implemantajon Review Passed?

#BaReviewPass

(2] (2]
4 4
Classify #DesignPass Classify #lmplPass

Figure 10.3. Project Workflow

You can create and update workflows using the Eclipse BPMN Editor, which can be installed from
http://download.eclipse.org/bpmn2-modeler/updates/kepler/ (1.0 or newer). The project starts with
a business analyst creating a requirements document, which is then reviewed and approved. On a
successful approval a SOA-Architect creates a design, followed with another review meeting and
finally a SOA-Developer creates an implementation of the design. When the implementation is
reviewed the Service Implementation can be released into a formal QA process. The Deployment
Process of an Artifact is covered in the dtgov-switchard demo.

10.2.2. How It Works

10.2.2.1. Starting the Simplified ProjectLifeCycle Workflow

To get this demo working you must be running the DTGov server and the S-RAMP repository (see
documentation for the DTGov and S-RAMP projects to learn how to run the S-RAMP repository).

When the Business Analyst finishes the requirement doc project-requirments/src/main/resources/
requirements-doc.txt. The next step is to build and deploy the requirements archive to S-RAMP
using Maven:

64

http://download.eclipse.org/bpmn2-modeler/updates/kepler/

How It Works

$ cd project-requirenents
$ nvn -Pdenp cl ean depl oy

Important

Be aware that you must supply the maven build with credentials for your S-RAMP
repository. This can be done by adding a section to your settings.xml file (or by
providing a custom settings.xml on the mvn command line using the -s argument).

For more information see: http://maven.apache.org/settings.html

Your settings.xml file should contain two additional server entries in the servers section:

<server>
<i d>| ocal - sranp-repo</id>
<user name>admi n</ user nane>
<passwor d>PASSWORD</ passwor d>

</ server >

<server >
<i d>| ocal - sr anp-r epo- snapshot s</i d>
<user name>adm n</ user nane>
<passwor d>PASSWORD</ passwor d>

</ server >

10.2.2.2. Results of the Deploy

That will enable the demo profile, which will configure the Maven distributionManagement to
point to a local S-RAMP repository (http://localhost:8080/s-ramp-server/). Therefore you need to
be running S-RAMP on port 8080 and deployed as the s-ramp-atom context.

The build should complete successfully.

At this point there should be a number of artifacts stored in the S-RAMP repository. You can verify
that by deploying the "s-ramp-ui" project and then navigating to http://localhost:8080/s-ramp-ui (or
the appropriate URL for you).

You should see the following artifacts in the S-RAMP repository:

* project-requirements-<version>.jar
* project-requirements-<version>.pom
» Project-org.overlord.dtgov.demos.project.<version>

The requirements-doc.txt is shipped in the requirements-<version>.jar. Note that you can use
other formats if you like. You may have expected the jar and the pom, but what created the

65

http://maven.apache.org/settings.html
http://localhost:8080/s-ramp-server/
http://localhost:8080/s-ramp-ui

Chapter 10. SOA Governance Pr...

Project-org.overlord.dtgov.demos.project.<version> artifact? In the dtgov-demos-project/pom.xml
you may have noticed the following section:

<di stri buti onManagenent >
<reposi tory>
<i d>| ocal - sranp-repo</id>
<name>S- RAMP Rel eases Repository</ nanme>
<url >sranp:/ /| ocal host: 8080/ s-ranp-server/?artifact G oupi ng=Proj ect -
${project.groupld}.${project.version}</url>
</repository>
<snapshot Reposi t ory>
<i d>| ocal - sr anp-r epo- snapshot s</i d>
<nane>S- RAMP Snapshots Repository</nanme>
<url >sranp:/ /| ocal host: 8080/ s-ranp-server/?artifact G oupi ng=Proj ect -
${proj ect.groupld}.${project.version}</url>
</ snapshot Reposi t ory>
</ di stri buti onManagenent >

This section is active when using the demo profile, and in it we specified an artifact
grouping artifactGrouping=Project-${project.groupld}.${project.version}. During the upload this
ArtifactGrouping artifact is created along with groupBy relationships to this parent artifacts. The
dtgov.properties file defines the following :

gover nance. queri es=/s-ranp/ ext/ Artifact G oupi ng[xp2: mat ches(@ane
\, "Project.*")]|overlord.deno. SinplifiedProjectlLifeCycle|
Updat eMet aDat aUr | ={ gover nance. url }/rest/updat e/ { nane}/ {val ue}/ {uui d}

This starts a overlord.demo.SimplifiedProjectLifeCycle workflow when a ArtifactGrouping with a
name that starts with Project lands in the repository. When the workflow is created you should see
a new custom property on this artifact which should look like

wor kf | owPr ocessl d=over | ord. deno. Si npl i fi edProj ect Li feCycl e_0: 4_wor kf | owPar anet er s=Updat eMet a
| ocal host : 8080/ dt gov/ r est / updat e/ { nanme}/ { val ue}/{ uui d}

If you where to delete this property then a new workflow will be started, and a new property will
be recreated.

10.2.3. Signaling Analysis Docs Complete

The upload of the requirements also triggered an AnalysisArtifactsComplete signal to the newly
created workflow, to signal the workflow that the requirements docs are ready for review. This
signal was triggered by upload of the project-requirements/pom.xml. Note that in this pom we have
the following properties section

<properties>
<si gnal >Anal ysi sArti f act sConpl et e</ si gnal >

66

Signaling Architecture Docs Complete

</ properties>

During a MavenPom upload all properties are extracted and added as custom properties,
prefixed with maven.property.; so the signal property end up as maven.property.signal
with value AnalysisArtifactsComplete. When DTGov discovers this signal property it looks
up the accompanying workflow referenced in the Project* ApplicationGroup artifact signals
this process instance. After sending the signal the name of the property changes to
_maven.property.signal.sent. When the signal is caught by the workflow, it will classify the Project*
ApplicationGroup artifact with the #BalnReview classification, and start a Business Analysis
Review Meeting task. This task is assigned to the ba role. You can defined roles in the standalone/
configuration/overlord-idp-roles.properties. These roles can be referenced in the human task
definition as the groupld.

By default the standalone/configuration/overlord-idp-roles.properties looks like

adm n=over | orduser, adm n. sranp, dev, ga, st age, prod, ba, arch

The admin user has all roles. So when logged in as admin you can work on ALL tasks. For this
example the ba, arch, and dev roles in use. More roles can be created as needed.

You can work on your tasks by navigating to http://localhost:8080/dtgov-ui#taskinbox. After you've
reviewed the requirements documents with all stakeholders, you go here to Claim, Start and record
the Pass/Fail verdict. For the Business Analysis Review Meeting task you will need the ba role.
On a Fail the workflow records the fail and loops back so that a new version can be submitted. On
a Pass the workflow records the pass and enters the waiting for architecture docs complete state.

10.2.4. Signaling Architecture Docs Complete

The architect can now take the detailed and approved requirements:

Requi renent s Docunent

W have a pressing need for an Hello World Service.
Pl ease devel op one that can print "Hello Wrld" when invoked.

and turn them into a design. At a minimum, for this webservice an annotated interface or a WSDL
should be created. Both of these can be found in the project-service-api module. Since these are
ready to go, proceed with deploying them to S-RAMP using:

$ cd project-service-api
$ nvn -Pdeno cl ean depl oy

10.2.4.1. Results of the Deploy

The build should complete successfully.

You should see the following newly created artifacts in the S-RAMP repository:

67

http://localhost:8080/dtgov-ui#taskInbox

Chapter 10. SOA Governance Pr...

* project-service-api-<version>.jar
* project-service-api-<version>.pom

In this pom the signal property

<properties>
<si gnal >Archi tectureArtifact sConpl et e</ si gnal >
</ properties>

will cause a ArchitectureArtifactsComplete signal to be send to the project workflow signalling
that the design documents are ready for review. A review meeting should be called and someone
with the arch role can pick up the Design Review Meeting task in the http://localhost:8080/dtgov-
ui#taskinbox.

10.2.5. Signaling Service implementation Complete

Finally, when the SOA-Developer has finished the implementation, it can be uploaded to the
repository using

$ cd project-service-inpl
$ nvn -Pdenp cl ean depl oy

10.2.5.1. Results of the Service Deploy

The build should complete successfully.

You should see the following newly created artifacts in the S-RAMP repository:

* project-service-impl-<version>.jar
 project-service-impl-<version>.pom

In this pom the signal property

<properties>
<si gnal >Servi cel npl Arti fact Conpl et e</ si gnal >
</ properties>

will cause a ServicelmplArtifactComplete signal to be send to the project workflow signalling that
the design documents are ready for review. A review meeting should be called and someone
with the dev role can pick up the Service Implementation Review Meeting task in the http://
localhost:8080/dtgov-ui#taskinbox.

This completes this demo.

68

http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox
http://localhost:8080/dtgov-ui#taskInbox

Bibliography

Books

[erl-bennet-etall] .Thomas Erl et all. SOA Governance. Prentice Hall, 2011.

69

70

	DTGov Guide
	Table of Contents
	Chapter 1. Introduction to DTGov
	1.1. Design Time Governance
	1.2. Use Cases
	1.3. How DTGov Works
	1.4. The Sample Process Workflow: "SimpleReleaseProcess"

	Chapter 2. Getting Started
	2.1. Prerequisites
	2.2. Download, Installation and Configuration
	2.3. Check your Installation
	2.4. Get to Work

	Chapter 3. User Management
	3.1. Overview
	3.2. Required Roles
	3.3. Adding a User
	3.3.1. JBoss EAP 6
	3.3.2. JBoss Fuse 6.1
	3.3.3. Tomcat 7
	3.3.4. Jetty 8

	Chapter 4. Configuring DTGov
	4.1. Overview
	4.2. Back-End Configuration
	4.3. Back-End Configuration (EAP)
	4.4. Back-End Configuration Properties
	4.5. User Interface (UI) Configuration
	4.6. User Interface (UI) Configuration (EAP)
	4.7. UI Configuration Properties
	4.8. Configuring UI Deployment Stages
	4.9. Configuring UI Deployment Types
	4.10. Configuring Authentication

	Chapter 5. DTGov and S-RAMP
	5.1. Overview
	5.2. Configuration Properties
	5.3. Authentication

	Chapter 6. Governance Workflows
	6.1. Overview
	6.2. Creating Workflows
	6.2.1. Create Workflows using Eclipse Tooling.
	6.2.1.1. Prerequisites
	6.2.1.2. Create new governance workflow

	6.2.2. Create Workflows using Drools web based tools.

	6.3. Deploying Workflows
	6.4. DTGov Supporting Services
	6.5. Query Configuration
	6.6. Managing Workflow Instances (Processes)

	Chapter 7. Configuring the Notification Service
	7.1. Invoking the Notification Service
	7.2. Notification Destinations
	7.3. Email Templates
	7.3.1. S-RAMP Artifact Templates
	7.3.2. Classpath Templates
	7.3.3. Template Lookup Summary

	Chapter 8. Governance Human Tasks
	8.1. Overview
	8.2. Using Human Tasks in a Workflow
	8.3. Custom Task Forms
	8.4. Fail Button
	8.5. Customizing the Task API

	Chapter 9. Managed Deployments
	9.1. Overview
	9.2. Invoking the Deployment Service
	9.3. Configuring Deployment Targets
	9.4. Undeployment
	9.5. Demo
	9.5.1. Summary
	9.5.2. Requirements
	9.5.2.1. Email Server
	9.5.2.2. Users and Roles
	9.5.2.3. Authentication Settings

	9.5.3. How It Works
	9.5.3.1. Deploying the artifacts JAR to S-RAMP

	9.5.4. Artifact Deployment
	9.5.5. Classify as DevTest
	9.5.6. Notify Dev
	9.5.7. Test Dev
	9.5.8. Gateway
	9.5.9. Governing Deployments

	Chapter 10. SOA Governance Projects and Organizational Roles
	10.1. Introduction
	10.2. Demo Maven Project Workflow Integration
	10.2.1. Summary
	10.2.2. How It Works
	10.2.2.1. Starting the Simplified ProjectLifeCycle Workflow
	10.2.2.2. Results of the Deploy

	10.2.3. Signaling Analysis Docs Complete
	10.2.4. Signaling Architecture Docs Complete
	10.2.4.1. Results of the Deploy

	10.2.5. Signaling Service implementation Complete
	10.2.5.1. Results of the Service Deploy

	Bibliography

