Runtime Governance:
Quick Start Guide

by Gary Brown (Red Hat)

I 101 o T LU f o T o IS 1
2. POliCY ENfOIrCERMENT ..ot e e e e e e e e eeees 3
2.1. Synchronous ENfOrCEMENTuiiiiiiiieiiii e 3
0 T I 1= I = o3 PPN 3

A 1153 - = 1T o S 5

2.1.3. RUNNINg the EXamPIEcooiiiii e 5

2. 14, SUMMEIY ©eoeiieii ettt et e e et e ettt e e e e e e e e enes 6

2.2. Asynchronous ENfOrCEMENTuiiiiiiiii e e e e 6
2.2.1. THE POICY et e 6

2.2.2. INSLAHALION ..oeuuiiiiii e 10

2.2.3. RUNNING the EXAMPIEuiiiii e e 11

2.2, SUMIMATY ettt ettt e e e e et e e e et e e e e e et e e e e e eanaanns 12

R T I N 1Y/ [] 1 (o 1 PPN 15
N I @ =T o T PSP 15

B 27 1 1 = 1 =1 1o o PN 17

3.3. RUNNING the EXAMPIE ...iiiiiiic e e e e e e 17
3.3. L. REST SEIVICE .ottt e e s 18

3.3.2. IMX CONSOIE .ottt 18

3.3.3. Accessing results within a custom applicationccccooeveiiiiinieiiiiinnenen, 19

B SUMIMAIY ottt e et e e e e e et e e e e 22

Chapter 1.

Chapter 1. Introduction

This guide provides an introduction to the quickstarts that are distributed with the Overlord Runtime
Governance project.

Chapter 2.

Chapter 2. Policy Enforcement

This example, located in the sanpl es/ pol i cy folder, demonstrates one approach that can be
used to provide "policy enforcement”. This example makes uses of the example Switchyard
application located in the sanpl es/ or der ngnt folder.

2.1. Synchronous Enforcement

This example shows how a business policy can be implemented in a synchronous (or inline)
manner, where the decision is taken immediate, and can therefore be used to influence the current
business transaction. The benefit of this approach is that it can ensure only valid transactions are
permitted, as decisions can be immediately enforced, however the disadvantage is the potential
performance impact this may have on the business transaction.

This example will show how:

* activity event analysis, using the Activity Interceptor mechanism, to implement the business
policy

2.1.1. The Policy

The runtime governance infrastructure analyses the activity events generated by an executing
business transaction using one or more Activity Interceptors.

The following Activity Interceptor is deployed in the environment responsible for execution the
business transaction, and gets registered with the Activity Collector mechanism:

[{
"nane" "RestrictUsage",
"version" : "1",
"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . WELPr edi cat e",
"expression" : "event instanceof

org.overlord.rtgov. activity. nodel . soa. Request Recei ved && event. servi ceType
== \"{urn: sw tchyard-qui ckstart-deno: orders: 0. 1. 0} O der Servi ce\""

H

"event Processor" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . WELEvent Processor",
"script" : "VerifylLastUsage. nmvel ",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. ep. service.infinispan.!|nfini spanCacheManager"
}
}

}H

Chapter 2. Policy Enforcement

This Activity Interceptor receives activity events generated from the executing environment and
applies the optional predicate to determine if they are of interest to the defined event processor.
In this case, the predicate is checking for received requests for the Or der Ser vi ce service.

For events that pass this predicate, they are submitted to the business policy, defined using the
MVEL script Veri f yLast Usage. mvel , which is:

String customer=event.properties.get("custonmer");
if (custoner == null) {
return;
cm = epc. get Servi ce(" CacheManager") ;
/1 Attenpt to |ock the entry
if ('cmlock("Principals", customer)) {
epc. handl e(new j ava. | ang. Runti neExcepti on("Unable to | ock entry for
princi pal '"+custoner+"'"));
return;
/'l Access the cache of principals
principals = cm get Cache("Principal s");
princi pal = principals. get(custoner);
if (principal == null) {
princi pal = new java.util.HashMap();
java.util.Date current=principal.get(event.serviceType+"-|astaccess");
java. util.Date now=new java.util.Date();
if (current !'= null && (now.getTime()-current.getTime()) < 2000) {

epc. handl e(new j ava. | ang. Runti neExcepti on(" Cust oner '"+custoner +
cannot perform nore than one request every 2 seconds"));

return;

princi pal . put (event. servi ceType+"-| astaccess", now);
princi pal s. put (custoner, principal);

epc. | ogDebug(" Updat ed princi pal '"+custoner+"': "+principals.get(custoner));

This script uses the CacheManager service, configured within the EventProcessor component,
to obtain a cache called "Principals”. This cache is used to store information about Principals

Installation

as a map of properties. The implementation uses Infinispan, to enable the cache to be shared
between other applications, as well as in a distributed/cluster environment (based on the infinispan
configuration).

If a policy violation is detected, the script returns an exception using the handle() method on
the EventProcessor context. This results in the exception being thrown back to the execution
environment, interrupting the execution of the business transaction.

2.1.2. Installation

To install the example, simply set the JBOSS_HOVE environment variable to the location of your
switchyard installation (download from the latest switchyard-as7 zip from [https://www.jboss.org/
switchyard/downloads]).

Then open a command window, set the current working directory to the ${rtgov}/sanpl es/
or der ngnt folder, and run:

mvn cl ean install

Then change to the ${rt gov}/ sanpl es/ pol i cy/ sync folder and run the same command again.

2.1.3. Running the Example

To run the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

./ standal one. sh --server-confi g=standal one-ful | .xnl

Once the server has fully started, then send the following message (using SOAP-UI or an
equivalent SOAP client) twice in less than 2 seconds to: http://localhost:8080/demo-orders/
OrderService

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soap: Envel ope xml ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<soap: Body>
<orders: subm t Order xm ns:orders="urn: switchyard-qui ckstart -
deno: orders: 1. 0">
<or der >
<or der | d>PO- 19838- XYZ</ or der | d>
<item d>BUTTER</item d>
<quant i ty>100</quantity>
<cust oner >Fr ed</ cust oner >
</ or der >
</ orders: submi t O der >
</ soap: Body>
</ soap: Envel ope>

https://www.jboss.org/switchyard/downloads
https://www.jboss.org/switchyard/downloads
http://localhost:8080/demo-orders/OrderService
http://localhost:8080/demo-orders/OrderService

Chapter 2. Policy Enforcement

If the two requests are received within two seconds of each other, this will result in the following
response:

<soap: Envel ope xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<soap: Faul t >
<f aul t code>soap: Server </faul t code>
<faul tstring>org.sw tchyard. exception. Swi tchYar dExcepti on: Custoner
'Fred' cannot perform nore than one request every 2 seconds</faultstring>
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

2.1.4. Summary

This quickstart example demonstrates how a policy enforcement mechanism can be provided
using the Activity Interceptor mechanism, to immediately evaluate the business policy and (if
appropriate) block the business transaction.

2.2. Asynchronous Enforcement

This example shows how a business policy can be implemented in an asynchronous (or out-
of-band) manner, where the decision is taken after the fact, and can therefore only be used to
influence future business transactions. The benefit of this approach is that the decision making
process does not have to occur immediately and therefore avoids potentially impacting the
performance of the business transaction. The disadvantage is that it does not permit any decision
that is made to be enforced immediately.

This example will show how:

 activity event analysis, using the Event Processor Network mechanism, can be used to
implement business policies

* results from the business policies can be cached for reference by other applications

« platform specific interceptors can reference the results to impact the behavior of the business
transaction (e.g. prevent suspended customers purchasing further items)

2.2.1. The Policy
There are three components that comprise the policy within this example.

2.2.1.1. Event analysis

The runtime governance infrastructure analyses the activity events generated by an executing
business transaction using one or more Event Processor Networks (or EPN).

The Policy

A standard EPN is deployed within the infrastructure to isolate the SOA events (e.g. request/
responses being sent or received). This quickstart deploys another EPN:

"name" : "AssessCreditPolicyEPN',
"version" : "1",
"subscriptions" : [{
"nodeNane" : "AssessCredit",
"subject" : "SOAEvents"
}In
"nodes" : [
{
"name" : "AssessCredit",
"sourceNodes" : [1,
"destinationSubjects" : [],
"maxRetri es" : 3,
"retrylnterval" : O
"predicate" : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELPr edi cat e"
"expression" : "event.serviceProvider & !event.request
&& event.serviceType == \"{urn: swtchyard-qui ckstart -
deno: orders: 0.1. 0} Order Service\""
b
"event Processor” : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELEvent Processor",
"script" : "AssessCredit.mel",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. ep. service.infinispan.|nfini spanCacheManager "

This EPN subscribes to the published SOA events and applies the predicate which ensures that
only events from a service provider interface, that are responses and are associated with the
Or der Ser vi ce service, will be processed. Events that pass this predicate are then submitted to
the business policy (defined in the MVEL script AssessCredit.mvel), which is:

String custoner=event.properties.get("custoner");

if (custonmer == null) {
return;

Chapter 2. Policy Enforcement

cm = epc. get Servi ce(" CacheManager") ;
/1l Attenpt to |ock the entry
if ('cmlock("Principals", customer)) {
epc. handl e(new Exception("Unable to |ock entry for principal
""+custonmer+"'"));
return;
/'l Access the cache of principals
princi pals = cm get Cache("Pri nci pal s");
princi pal = principals.get(custoner);
if (principal == null) {
principal = new java.util.HashMap();
int current=principal.get("exposure");
if (current == null) {
current = 0;
if (event.operation == "submtOrder") {
doubl e total =event. properties.get("total");
i nt newt ot al =current +total ;
if (newtotal > 150 && current <= 150) ({
princi pal . put ("suspended", Bool ean. TRUE);
princi pal . put ("exposure", newtotal);
} else if (event.operation == "nmakePaynent") {
doubl e anpunt =event . properties. get ("anount");
i nt newanount =curr ent - anount ;
i f (newarmount <= 150 && current > 150) ({

princi pal . put ("suspended", Bool ean. FALSE);

princi pal . put ("exposure", newanount);

The Policy

princi pal s. put (custoner, principal);

epc. | ogDebug(" Updat ed princi pal '"+custonmer+"': "+principal s. get (custoner));

This script uses the CacheManager service, configured within the EPN node, to obtain a cache
called "Principals". This cache is used to store information about Principals as a map of properties.
The implementation uses Infinispan, to enable the cache to be shared between other applications,
as well as in a distributed/cluster environment (based on the infinispan configuration).

2.2.1.2. Result management

As mentioned in the previous section, the results derived from the previous policy are stored in an
Infinispan implemented cache called "Principals”. To make this information available to runtime
governance clients, we use the Active Collection mechanism - more specifically we define an
Active Collection that wraps the Infinispan cache.

The configuration of the Active Collection Source is:

{
A
"@l| ass"
"org.overlord. rtgov. active. col | ection. ActiveCol | ecti onSource",
"nanme" : "Principals",
“type" : "Map",
"visibility" : "Private",
"factory" : {
"@l ass"
"org.overlord.rtgov. active. col | ection.infinispan.InfinispanActiveCol | ectionFactory",
“cache" : "Principals"
}
}

The visibility is marked as private to ensure that exposure information regarding customers is not
publicly available via the Active Collection REST API.

2.2.1.3. The enforcer

The enforcement is provided by a specific Switchyard ExchangeHandler implementation
(PolicyEnforcer) that is included with the order management application. The main part of this
handler is:

public void handl eMessage(Exchange exchange) throws Handl er Exception {

Chapter 2. Policy Enforcement

if (_principals !'= null) {
String content Type=nul | ;

for (Property p : exchange. get Cont ext (). getProperties(

org. switchyard. Scope. val ue (exchange. get Phase().toString()))) {
if (p.getNanme().equal s("org.sw tchyard. contentType")) {
cont ent Type = ((Q\ane) p. get Val ue()).toString();

i f (exchange. get Phase() == ExchangePhase.|N
&& content Type != nul |
&& cont ent Type. equal s("{urn: switchyard- qui ckstart -
deno: orders: 1. 0} submi tOrder™)) ({

String custoner =get Cust oner (exchange) ;
if (custoner != null && _principals.containsKey(custoner)) {
java.util.Mp<String,java.io.Serializabl e> props=

(java.util.Map<String,java.io. Serializabl e>)
_principal s. get (custoner);

/1 Check if custoner is suspended
i f (props.containsKey("suspended")
&&
props. get ("suspended") . equal s(Bool ean. TRUE)) {
t hr ow new Handl er Excepti on(" Cust oner '"+cust oner
+"' has been suspended");

The variable _principals refers to an Active Map used to maintain information about the principal
(i.e. the customer in this case). This information is updated using the policy rule defined in the
previous section.

2.2.2. Installation

To install the example, simply set the JBOSS_HOVE environment variable to the location of your
switchyard installation (download from the latest switchyard-as7 zip from [https://www.jboss.org/
switchyard/downloads])).

Then open a command window, set the current working directory to the ${rtgov}/sanpl es/
order ngnt folder, and run:

10

https://www.jboss.org/switchyard/downloads
https://www.jboss.org/switchyard/downloads

Running the Example

mvn cl ean i nst al

Then change to the ${rt gov}/ sanpl es/ pol i cy/ async folder and run the same command again.

2.2.3. Running the Example

To run the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

./ standal one. sh --server-confi g=standal one-ful | . xmni

Once the server has fully started, then send the following message (using SOAP-UI or an
equivalent SOAP client) to: http://localhost:8080/demo-orders/OrderService

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soap: Envel ope xm ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<orders: subm t Order xm ns:orders="urn: switchyard-qui ckstart-
deno: orders: 1. 0" >
<or der >
<or der | d>PO- 19838- XYZ</ or der | d>
<item d>BUTTER</item d>
<quantity>100</ quantity>
<cust oner >Fr ed</ cust omer >
</ or der >
</ orders: submit O der >
</ soap: Body>
</ soap: Envel ope>

This will result in the following response, indicating that the purchase was successful, as well as
identifying the total cost of the purchase (i.e. 125).

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xml soap. or g/ soap/
envel ope/ " >
<SOAP- ENV: Header / >
<SOAP- ENV: Body>
<orders: subm t Or der Response xml ns: order s="urn: sw t chyar d- qui ckstart -
deno: orders: 1. 0">
<or der Ack>
<or der | d>PO- 19838- XYZ</ or der | d>
<accept ed>t rue</ accept ed>
<stat us>Order Accept ed</ st at us>
<cust oner >Fr ed</ cust oner >
<t ot al >125. 0</tot al >
</ or der Ack>
</ orders: subm t Or der Response>
</ SOAP- ENV: Body>

11

http://localhost:8080/demo-orders/OrderService

Chapter 2. Policy Enforcement

</ SCAP- ENV: Envel ope>

You may recall from the overview above that the threshold if 150, the customer would be
suspended. Therefore if the same request is issued again, resulting in another total of 125, then
the overall exposure regarding this customer is now 250.

If we then attempt to issue the same request a third time, this time we will receive a SOAP fault
from the server. This is due to the fact that the PolicyEnforcer handler has intercepted the request,
and detected that the customer is now suspended.

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="htt p: // schemas. xml soap. or g/ soap/
envel ope/ ">
<SOAP- ENV: Header / >
<SQAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Custoner 'Fred" has been suspended</faultstring>
</ SCAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If we now send a "makePayment" request as follows to the same URL:

<soapenv: Envel ope xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: urn="urn: swi t chyard-qui ckstart - denpo: orders: 1. 0">
<soapenv: Header/ >
<soapenv: Body>
<ur n: makePaynment >
<paynent >
<cust oner >Fr ed</ cust oner >
<anount >200</ anount >
</ paynent >
</ ur n: makePaynent >
</ soapenv: Body>
</ soapenv: Envel ope>

this will result in the customer being unsuspended, as it removes 200 from their current exposure
(leaving 50). To confirm this, try sending the "submitOrder" request again.

2.2.4. Summary

This quickstart example demonstrates how a policy enforcement mechanism can be provided
using a combination of the Runtime Governance infrastructure and platform specific interceptors.

This particular example uses an asynchronous approach to evaluate the business policies, only
enforcing the policy based on a summary result from the decision making process. The benefit of
this approach is that it can be more efficient, and reduce the performance impact on the business

12

Summary

transaction being policed. The disadvantage is that decisions are made after the fact, so leaves
a tiny window of opportunity for invalid transactions to be performed.

13

14

Chapter 3.

Chapter 3. SLA Monitor

This example, located in the sanpl es/ sl anoni t or folder, demonstrates an approach to provide
"Service Level Agreement" monitoring. This example makes uses of the example Switchyard
application located in the sanpl es/ or der ngnt folder.

3.1. Overview

This example will show how:

 activity event analysis, using the Event Processor Network mechanism, can be used to
implement Service Level Agreements

» uses the Complex Event Processing (CEP) based event processor (using Drools Fusion)
« impending or actual SLA violations can be reported for the attention of end users, via

* JMX notifications

* REST service
« to build a custom application to access the analysis results (see child page)

This example shows a simple Service Level Agreement that checks whether a service response
time exceeds expected levels. The CEP rule detects whether a situation of interest has occurred,
and if so, creates aorg. overl ord. rtgov. anal yti cs. Si t uati on object and initializes it with the
appropriate description/severity information, before forwarding it back into the EPN. This results
in the "Situation" object being published as a naotification on the "Situations" subject.

The CEP rule is:

i mport org.overlord.rtgov. anal ytics. servi ce. ResponseTi ne
i mport org.overlord.rtgov.anal ytics. Situation

gl obal org.overlord.rtgov. ep. EPCont ext epc

decl are ResponseTi ne
@ol e(event)
end

rule "check for SLA violations"
when

$rt : ResponseTinme() fromentry-point "Servi ceResponseTi nmes
t hen

if ($rt.getAverage() > 200) {
epc. logError ("\r\n\r\n**** RESPONSE TIME "+
$rt.get Average() +"ns EXCEEDED SLA FOR "+$rt. get Servi ceType()+" ****\r\n");

15

Chapter 3. SLA Monitor

Situation situati on=new Situation();

situation. set Type("SLA Viol ation");

situation. set Subj ect ($rt. get Servi ceType()+"/"+
$rt.get Operation());

situation. set Ti nestanp(SystemcurrentTimneM I lis());

situation.getProperties().putAll ($rt.getProperties());

if ($rt.getRequestld() !'= null) {

situation.getActivityTypelds().add($rt.get Requestid());

}
if ($rt.getResponseld() !'= null) {

situation.getActivityTypelds().add($rt.get Responseld());
}

si tuati on. get Context ().addAl | ($rt.get Context());
String serviceNane=$rt . get Servi ceType();

if (serviceNane.startsWth("{")) {
servi ceNane =
j avax. xm . namespace. QNane. val ueO (servi ceNane) . get Local Part () ;

}

if ($rt.getAverage() > 400) {
situation.setDescription(servi ceNane+" exceeded
maxi mum response tine of 400 ns");
situation. setSeverity(Situation.Severity.Critical);
} else if ($rt.getAverage() > 320) {
situation.setDescription(servi ceNane+" exceeded
response tinme of 320 ns");
situation.setSeverity(Situation. Severity.H gh);
} else if ($rt.getAverage() > 260) {
situation.setDescription(servi ceNane+" exceeded
response tinme of 260 ns");
situation. set Severity(Situation. Severity. Medium;
} else {
situation.setDescription(servi ceNane+" exceeded
response tinme of 200 ns");
situation.setSeverity(Situation. Severity.Low);

epc. handl e(situation);

end

16

Installation

The "out of the box" active collection configuration is pre-initialized with a collection for the
org.overlord.rtgov. anal ytics. Si tuation objects, subscribing to the "Situations" subject
from the Event Processor Network. Therefore any detected SLA violations will automatically be
stored in this collection (accessible via a RESTful service), and reported to the associated JMX
notifier.

3.2. Installation

To install the example, simply set the JBOSS_HOVE environment variable to the location of your
switchyard installation (download from the latest switchyard-as7 zip from https://www.jboss.org/
switchyard/downloads).

Then open a command window, set the current working directory to the ${rtgov}/sanpl es/
order ngnt folder, and run:

mvn cl ean i nst al

Then change to the ${rt gov}/ sanpl es/ sl anoni t or folder and run the same command again.

3.3. Running the Example

To run the example, the first step is to start the Switchyard server using the following command
from the bi n folder:

./ standal one. sh --server-config=standal one-ful | .xm

Once the server has fully started, then send the following message (using SOAP-UI or an
equivalent SOAP client) to: http://localhost:8080/demo-orders/OrderService

<soap: Envel ope xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<orders: subm t Order xml ns:orders="urn: sw tchyard-qui ckstart-
deno: orders: 1. 0">
<or der >
<or der | d>PO 19838- XYZ</ or der | d>
<item d>JAWK/item d>
<quant it y>400</ quant it y>
<cust oner >Fr ed</ cust oner >
</ or der >
</ orders: submi t O der >
</ soap: Body>
</ soap: Envel ope>

The itemld of "JAM" causes a delay to be introduced in the service, resulting in a SLA violation
being detected. This violation can be viewed using two approaches:

17

https://www.jboss.org/switchyard/downloads
https://www.jboss.org/switchyard/downloads
http://localhost:8080/demo-orders/OrderService

Chapter 3. SLA Monitor

3.3.1. REST Service

Using a suitable REST client, sent the following POST to: http://localhost:8080/overlord-rtgov/
acm/query (using content-type of "application/json")

"collection" : "Situations"

This will result in the following response:

3 Extensions %/ A simple REST Client X
& [a e A
(A simple REST Client
— Pequest
UREL: |httpiflocalhost:8080/overlord-hamfacmiquery
Method: © GET @ FOST ©PUT ODELETE ©OHEAD © OPTIONS
Headers: |content-type: application/json p
Data { "collection" : "Situations" } P
Clear, |Send
— Pesponse
Status: 200 OK
. |Date: Mon, 17 Sep 2012 15:52:21 GMT
Headers; Content-Length: 243
Server: Apache-Coyote/1.1
Content-Type: application/json 4
Data: l1;{"t),rEt_a“ V"SLA Violation”, "timestamp': 1347897132083, "description”:"Service exceeded maximum response time of 400 ms
ala. subject":"{urn:switchyard-quickstart-demo:orders:0.1.0}0rderService/submitOrder"”, "severity": "Critical", "activit
yTypeRefs": []1}]

Copyright @ 2010 Jeremy Selier - Source code licensed under the Apache License - icon by Jason Bayner

3.3.2. JMX Console

The Situations active collection source also generates JMX notifications that can be subscribed
to using a suitable JMX management application. For example, using JConsole we can view the
SLA violation:

18

http://localhost:8080/overlord-rtgov/acm/query
http://localhost:8080/overlord-rtgov/acm/query

Accessing results within a custom application

Connection Window Help

Java Monitoring & Management Console

Overview | Memaory | Threads | Classes

VM Summary

MBeans ‘ ==

P IMImplementation
P com.sun.management
P java.lang
P java.util.logging
P jboss as
P jboss jsr77
P jboss jta
P jboss.modules
P jboss.msc
P jboss . ws
P net.sf.ehcache
P org.drools
P org.drools.kbases
~ overlord.bam

~ @ Sjtuations

P Attributes
Motifications[1]

P overlord.bam.collections
P overlord.bam.collector
P overlord.bam.networks

rMNotification buffer

TimeStamp ”T\.rpe

16:52:13:147 [SLA Violation

l[][Sequ][Message
[T1 [Service exceeded maximum response time of 400 ms

[gubscribel [Qnsubscribel [Qlearl

[Iﬁ»lpid: 23453 jboss-modules.jar -mp fhome/gbrown/testing/overlor... l

3.3.3. Accessing results within a custom application

As well as having access to the information via REST or JMX, it may also be desirable to have
more direct access to the active collection results. This section describes the custom app defined
in the ${rt gov}/ sanpl es/ sl amoni t or/ moni t or folder.

The following code shows how the custom application initializes access to the relevant active

collections:

@at h("/nonitor")

@\ppl i cati onScoped
public class SLAMbni tor {

private static final

" Servi ceResponseTi nes";

private static final

private static final

Logger

String SERVI CE_RESPONSE_TI MES =

String SITUATIONS = "Situations";

LOG=Logger . get Logger (SLAMoni t or . cl ass. get Nane()) ;

private static final

Acti veCol | ecti onManager";

String ACM MANAGER = "j ava: gl obal / over|l ord-rt gov/

19

Chapter 3. SLA Monitor

private ActiveCol | ecti onManager _acniVanager=nul | ;
private Activelist _serviceResponseTi ne=null;
private Activelist _situations=null;

/**

* This is the default constructor.
=

public SLAMonitor() {

try {
Initial Context ctx=new |Initial Context();

_acmvanager = (ActiveCol | ecti onManager) ct x. | ookup(ACM_MANAGER) ;

_servi ceResponseTi ne = (Acti veli st)
_acnivanager . get Acti veCol | ecti on(SERVI CE_RESPONSE _TI MES) ;

_situations = (Activelist)
_acnmvanager . get Acti veCol | ecti on(SI TUATI ONS) ;

} catch (Exception e) {
LOG | og(Level . SEVERE, "Failed to initialize active collection
manager", e);

}

Then when the REST request is received (e.g. for SLA violations defined as Situations),

@ZET

@Pat h("/situations")

@°r oduces("application/json")

public java.util.List<Situation> getSituations() {
java.util.List<Situation> ret=new java.util.ArrayList<Situation>();

for (Object obj : _situations) {

if (obj instanceof Situation) {
ret.add((Situation)obj);

return (ret);

To see the SLA violations, send a REST GET request to: http://localhost:8080/slamonitor-monitor/
monitor/situations

This will return the following information:

20

http://localhost:8080/slamonitor-monitor/monitor/situations
http://localhost:8080/slamonitor-monitor/monitor/situations

Accessing results within a custom application

3 Extensions %/ A simple REST Client *
(A simple REST Client
— Request
UEL: |httpi/flocalhost:8080/slamonitor-monitor/monitor/situations

Method: @ GET ©FOST ©PUT ODELETE ©OHEAD © OPTIONS

Headers: content-type: application/json

e

— Response

Status; 200 OK

Headers: Date: Mon, 17 Sep 2012 16:18:20 GMT
Transfer-Encoding: chunked
Server: Apache-Coyote/1.1
Content-Type: application/json

P

Data: |[;{"t).rgt_e“:”SLA Wiolation", "timestamp": 1247898697358, "description”: "Service exceeded maximum response time of 400 ms
atar negy ject":"f{urn:switchyard-quickstart-demo:orders: 0,1, 0}0rderService/submitOrder
yTyperefs": [1}]

", "severity":"Critical", "activit

Copyright @ 2010 Jeremy Selier - Source code licensed under the Apache License - icon by Jason Bayne

It is also possible to request the list of response time information from the same

custom service, using the URL: http://localhost:8080/slamonitor-monitor/monitor/responseTimes?
operation=submitOrder

21

http://localhost:8080/slamonitor-monitor/monitor/responseTimes?operation=submitOrder
http://localhost:8080/slamonitor-monitor/monitor/responseTimes?operation=submitOrder

Chapter 3. SLA Monitor

@ simple REST Client x

> @ [a @ A

(A simple REST Client

— Request

URL: | http /flocalhost:8080/slamonitor-monitor/monitor/responseTimes?operation=submitOrder

Method: @ GET ©FOST ©PUT ODELETE ©OHEAD © OPTIONS

Headers: |content-type: application/json A|

— Fesponse

Status; 200 OK

Headers: Date: Mon, 17 Sep 2012 16:19:36 GMT

Transfer-Encoding: chunked

Server: Apache-Coyote/1.1

Content-Type: application/json y

Data: [{“tlmestamp”:134?89?133605.”max”:55?.“m1n“:557.”operatlcn”:”subm;torder“.“serv1ceType”:“iurn:swltchyard—qu1ck5tar
ata t—demo:orders:o.l.GEOrderSeFVJCe“,“fault”:null,”average“:SE?},{“tlmestamp“:134?89869?602, max'":518, "min":518, "oper
at%on”:;?ubmitorder ,'serviceType":"{urn:switchyard-guickstart-demo:orders: 0.1, 0}0rderService”, "fault":null, "avera

ge': 518

Copyright @ 2010 Jeremy Selier - Source code licensed under the Apache License - icon by Jason Payner

*

3.4. Summary

This quickstart demonstrates how Service Level Agreements can be policed using rules defined
in an Event Processor Network, and reporting to end users using the pre-configured "Situations"
active collection.

The rule used in this example is simple, detecting whether the response time associated with an
operation on a service exceeds a particular level. However more complex temporal rules could
be defined to identify the latency between any two points in a business transaction flow.

22

	Runtime Governance: Quick Start Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Policy Enforcement
	2.1. Synchronous Enforcement
	2.1.1. The Policy
	2.1.2. Installation
	2.1.3. Running the Example
	2.1.4. Summary

	2.2. Asynchronous Enforcement
	2.2.1. The Policy
	2.2.1.1. Event analysis
	2.2.1.2. Result management
	2.2.1.3. The enforcer

	2.2.2. Installation
	2.2.3. Running the Example
	2.2.4. Summary

	Chapter 3. SLA Monitor
	3.1. Overview
	3.2. Installation
	3.3. Running the Example
	3.3.1. REST Service
	3.3.2. JMX Console
	3.3.3. Accessing results within a custom application

	3.4. Summary

