
Runtime Governance:

User Guide

iii

1. Overview .. 1

2. Installation ... 3

2.1. JBoss Application Server (or JBoss EAP) ... 3

2.1.1. Install .. 3

2.1.2. Configuration ... 4

2.1.3. Uninstall .. 8

3. Reporting Activity Information ... 11

3.1. Integrated Activity Collector ... 11

3.1.1. Supported Environments ... 11

3.1.2. Information Processor ... 11

3.1.3. Activity Validation ... 21

3.2. Reporting and Querying Activity Events via REST ... 24

3.2.1. Reporting Activity Information .. 24

3.2.2. Querying Activity Events using an Expression .. 25

3.2.3. Retrieving an Activity Unit ... 26

3.2.4. Retrieve Activity Events associated with a Context Value 26

4. Analyzing Events ... 27

4.1. Configuring an Event Processor Network ... 27

4.1.1. Defining the Network .. 27

4.1.2. Registering the Network ... 32

4.1.3. Supporting Multiple Versions ... 34

4.2. Event Processors .. 34

4.2.1. Drools Event Processor .. 34

4.2.2. JPA Event Processor ... 36

4.2.3. Mail Event Processor ... 36

4.2.4. MVEL Event Processor ... 37

4.2.5. Supporting Services ... 37

4.3. Predicates .. 38

4.3.1. MVEL Predicate ... 38

5. Accessing Derived Information ... 41

5.1. Configuring Active Collections .. 41

5.1.1. Defining the Source .. 41

5.1.2. Registering the Source ... 49

5.2. Presenting Results from an Event Processor Network ... 50

5.3. Publishing Active Collection Contents as JMX Notifications 52

5.4. Querying Active Collections via REST .. 54

5.5. Pre-Defined Active Collections ... 55

5.5.1. ServiceResponseTimes .. 55

5.5.2. Situations ... 55

5.5.3. ServiceDefinitions ... 56

5.5.4. Principals ... 58

6. Available Services ... 59

6.1. Call Trace .. 59

6.2. Report Server ... 59

Runtime Governance: User Guide

iv

6.2.1. Creating and deploying a report definition .. 59

6.2.2. Generating an instance of the report ... 62

6.2.3. Providing a custom Business Calendar .. 62

6.3. Service Dependency ... 62

6.3.1. How to customize the severity levels ... 63

6.4. Situation Manager ... 64

6.4.1. Ignoring situations related to a subject ... 64

6.4.2. Observing situations related to a subject .. 65

7. Visualising the Runtime Governance Information ... 67

7.1. Accessing the Runtime Governance UI .. 67

7.2. Response Time .. 67

7.3. Situations ... 68

7.4. Call Trace .. 68

7.5. Service Overview .. 69

8. Managing The Infrastructure ... 71

8.1. Managing the Activity Collector .. 71

8.1.1. Activity Collector .. 71

8.1.2. Activity Logger ... 71

8.2. Managing the Event Processor Networks ... 72

8.2.1. Event Processor Network Manager ... 72

8.2.2. Event Processor Networks .. 73

8.3. Managing the Active Collections .. 74

8.3.1. Active Collection Manager .. 74

8.3.2. Active Collections ... 74

Chapter 1.

1

Chapter 1. Overview
This section provides an overview of the Runtime Governance architecture.

The architecture is separated into four distinct areas, with components that bridge between these

areas:

• Activity Collector - this component is optional, and can be embedded within an executing

environment to manage the collection of information

• Activity Server - this component provides a store and query API for activity information. If not

using the Activity Collector, then activity information can be reported directly to the server via

a suitable binding (e.g. REST).

• Event Processor Network - this component can be used to analyse the activity information.

Each network can be configured with a set of event processing nodes, to filter, transform and

analyse the events, to produce relevant rules.

• Active Collection - this component is responsible for maintaining an active representation of

information being collected. UI components can then access this information via REST services

to present the information to users (e.g. via gadgets)

This document will explain how a user can configure these components to work together to build

a Runtime Governance solution to realtime monitoring of executing business transactions.

2

Chapter 2.

3

Chapter 2. Installation
This section will describe how to install Overlord Runtime Governance in different environments.

2.1. JBoss Application Server (or JBoss EAP)

This section describes how to install Overlord Runtime Governance into the JBoss Application

Server.

2.1.1. Install

1. Download the JBoss EAP [http://www.jboss.org/jbossas/downloads/] distribution (version

6.1.0.Final or higher), and unpack it in a suitable location.

2. The next step is to download SwitchYard [http://www.jboss.org/switchyard/downloads] (version

1.0.0.Final or higher) and install it into the JBoss AS/EAP environment. We recommend using

the switchyard installer, which can be unpacked in a temporary location, and run ant in the root

folder to be prompted for the location of the JBoss AS/EAP environment.

3. Download the latest release from the Overlord Runtime Governance website [http://

www.jboss.org/overlord/downloads/rtgov], selecting the distribution specific to JBoss AS/EAP.

Then unpack the distribution into a suitable location.

4. Make sure that the JBOSS_HOME environment variable is set to the root folder of the JBoss

AS/EAP environment.

5. The final step is to perform the installation of Overlord Runtime Governance using maven. (You

will need maven 3.0.4 or higher, and can be downloaded from here: http://maven.apache.org/

download.html). To do the installation, use the following command from the root folder of the

installation:

mvn install [-Dtype=<installation-type>]

The installation-type value can be:

Value Description

server This will result in the full server configuration

being installed into the server, including

activity collector (for obtaining activities

generated within that server), activity server

(for receiving activity information whether

from a remote client or internal activity

collector), event processor network (to

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/overlord/downloads/rtgov
http://www.jboss.org/overlord/downloads/rtgov
http://www.jboss.org/overlord/downloads/rtgov
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 2. Installation

4

Value Description

analyse the events), active collections (to

maintain result information) and a collection

of REST services to support remote access to

the information. This is the default value.

client This will result in only the activity collector

functionality being installed, using a RESTful

client to communicate with a remote Runtime

Governance server.

2.1.2. Configuration

2.1.2.1. Users

The usernames and passwords are defined within the file $JBOSS_HOME/standalone/

configuration/overlord-idp-users.properties.

The default user for the Runtime Governance UI, and direct access to any of the REST services,

is admin with password overlord.

2.1.2.2. Properties

The configuration properties for the Runtime Governance capability within a JBoss AS/EAP

environment can be found in the file $JBOSS_HOME/standalone/configuration/overlord-

rtgov.properties. Although there will be some properties that are independent of the installation

type, some will be specific and therefore are listed in separate sections below.

Common

The common properties available across all installation types are:

Property Description

collectionEnabled This property will determine whether activity

information is collected when the server is

initially started. This value can be changed

at runtime using the ActivityCollector

MBean (see the chapter on Managing the

Infrastructure).

ActivityServerLogger.maxThreads This property is an integer that represents the

maximum number of threads that should be

used to report activity events to the server

(whether remote or embedded).

Server

Configuration

5

Property Description

MVELSeverityAnalyzer.scriptLocation Optional location of a MVEL script used to

determine severity levels for nodes and links

within the service overview diagram.

When installing the full Runtime Governance server, modification to the configuration will generally

only be necessary if running in a clustered environment and/or wishing to use a particular database

(described below).

However, specific technologies used in the Activity Server, Event Processor Network or Active

Collection modules may need to use different configuration properties to work correctly within a

clustered environment. More details will be provided in sections discussing those technologies,

however here we will present the common changes that may be required.

Client

This installation type is used to configure an execution environment that will be sending its activity

information to a remote Runtime Governance server using REST. The relevant properties are:

Property Description

RESTActivityServer.serverURL This is the URL of the activity server

collecting the activity events.

RESTActivityServer.serverUsername The username used to access the REST

service.

RESTActivityServer.serverPassword The password used to access the REST

service.

2.1.2.3. Database

The database is defined by the datasource configuration located here: $JBOSS_HOME/

standalone/deployment/overlord-rtgov/rtgov-ds.xml as part of the server installation type.

The default "out of the box" H2 file based database is created during the installation of the server

type.

Note

The following sections discuss changes to the standalone-full.xml

configuration file. If using a clustered environment, then these changes should be

applied to the standalone-full-ha.xml instead.

MySQL

• Create the folder $JBossAS/modules/mysql/main.

Chapter 2. Installation

6

• Put the MySQL driver jar in the $JBossAS/modules/mysql/main folder, e.g. mysql-connector-

java-5.1.12.jar.

• Create a module.xml file, within the $JBossAS/modules/mysql/main folder, with the contents:

<module xmlns="urn:jboss:module:1.1" name="mysql">

 <resources>

 <resource-root path="mysql-connector-java-5.1.12.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.transaction.api"/>

 </dependencies>

</module>

• Edit the $JBossAS/standalone/configuration/standalone-full.xml file to include the

MySQL driver:

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <drivers>

 ...

 <driver name="mysql" module="mysql">

 <xa-datasource-

class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

• Update the rtgov datasource file, $JBossAS/standalone/deployments/overlord-rtgov/

rtgov-ds.xml, the contents should be:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <datasource jndi-name="java:jboss/datasource/OverlordRTGov" pool-

name="OverlordRTGov" enabled="true" use-java-context="true">

 <connection-url>jdbc:mysql://localhost:3306/rtgov</connection-url>

 <driver>mysql</driver>

 <security>

 <user-name>root</user-name>

 <password></password>

 </security>

Configuration

7

 </datasource>

</datasources>

Postgres

• Create the $JBossAS/modules/org/postgresql/main folder.

• Put the postgresql driver jar in the $JBossAS/modules/org/postgresql/main folder, e.g.

postgresql-9.1-902.jdbc4.jar.

• Create a module.xml file, within the $JBossAS/modules/org/postgresql/main folder, with the

contents:

<module xmlns="urn:jboss:module:1.1" name="org.postgresql">

 <resources>

 <resource-root path="postgresql-9.1-902.jdbc4.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.transaction.api"/>

 </dependencies>

</module>

• Edit the $JBossAS/standalone/configuration/standalone-full.xml file to include the

PostgresSQL driver:

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <drivers>

 ...

 <driver name="postgresql" module="org.postgresql">

 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-

datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

• Update the rtgov datasource file, $JBossAS/standalone/deployments/overlord-rtgov/

rtgov-ds.xml, the contents should be:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

Chapter 2. Installation

8

 <datasource jndi-name="java:jboss/datasource/OverlordRTGov" pool-

name="OverlordRTGov" enabled="true" use-java-context="true">

 <connection-url>jdbc:postgresql://localhost:5432/rtgov</connection-

url>

 <driver>postgresql</driver>

 <security>

 <user-name>....</user-name>

 <password>....</password>

 </security>

 </datasource>

</datasources>

2.1.2.4. Caching

The EPN and Active Collection mechanisms both have the ability to make use of caching

provided by infinispan. When running the server in clustered mode (i.e. with standalone-full-

ha.xml), the server provides a default clustered cache container, which is referenced in the

infinispan.container property in the overlord-rtgov.properties file. Simply uncomment this

property to enable the EPN and Active Collection Source configurations that do not explicitly

provide a container JNDI name, to make use of this default clustered cache container.

However, to make sure the individual named caches are clustered correctly, it is necessary to

add an entry for each cache into the standalone-full-ha.xml file. As an example, the following

cache entry for the "Principals" cache has been defined, for use with the Policy Enforcement

example:

 <cache-container name="cluster" aliases="ha-partition" default-

cache="default">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC"

 batching="true">

 <locking isolation="REPEATABLE_READ"/>

 </replicated-cache>

 <!-- Configuration for Runtime Governance caches -->

 <replicated-cache name="Principals" mode="SYNC">

 <locking isolation="REPEATABLE_READ"/>

 <transaction mode="FULL_XA" locking="PESSIMISTIC"/>

 </replicated-cache>

 </cache-container>

2.1.3. Uninstall

To uninstall, simply perform the following command in the root folder of the installation, ensuring

that the JBOSS_HOME environment variable refers to the root location of the JBoss AS/EAP

environment:

Uninstall

9

mvn clean

10

Chapter 3.

11

Chapter 3. Reporting Activity

Information
There are two ways in which activity information can be collected for further processing by the

Runtime Governance server.

1. Integrating an activity collector into the execution environment. This will intercept activities and

automatically report them to the Runtime Governance server.

2. Manually report the activity information to the Runtime Governance server through a publicly

available API (e.g. REST service)

This section will explain how to use both approaches.

3.1. Integrated Activity Collector

This section will discuss how an integrated activity collector can be used to automatically collect,

pre-process and optionally validate activity events before finally reporting them to the server.

3.1.1. Supported Environments

The current version of Runtime Governance only supports the SwitchYard open source SOA

platform. To collect activity events from this environment, simply install either the full server (if

the execution and governance server are running co-located) or the client installation profile (if

reporting events to another server).

3.1.2. Information Processor

To enable the Runtime Governance infrastructure, and the user policies/rules that are defined

within it, to make the most effective use of the activities that are reported, it is necessary to process

certain events to extract relevant information for use in:

• correlating activity events to a particular business transaction instance

• highlighting important properties that may need to be used in business policies

It is also important to control what information is distributed with the actvity events, for both size

(i.e. performance) and security reasons. By default information content should not be distributed,

unless an information processor has been defined to explicitly indicate how that information should

be represented (if at all) within the activity event.

This section explains how information processors can be configured and deployed along side the

business applications they are monitoring.

Chapter 3. Reporting Activity...

12

3.1.2.1. Defining the Information Processors

The Information Processor can be defined as an object model or specified as a JSON

representation for packaging in a suitable form, and subsequently de-serialized when deployed

to the governed execution environment.

The following is an example of the JSON representation of a list of Information Processors. This

particular example accompanies the Order Management sample:

[{

 "name":"OrderManagementIP",

 "version":"1",

 "typeProcessors":{

 "{urn:switchyard-quickstart-demo:orders:1.0}submitOrder":{

 "contexts":[{

 "type":"Conversation",

 "evaluator":{

 "type":"xpath",

 "expression":"order/orderId"

 }

 }],

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"xpath",

 "expression":"order/customer"

 }

 },{

 "name":"item",

 "evaluator":{

 "type":"xpath",

 "expression":"order/itemId"

 }

 }]

 },

 "{urn:switchyard-quickstart-

demo:orders:1.0}submitOrderResponse":{

 "contexts":[{

 "type":"Conversation",

 "evaluator":{

 "type":"xpath",

 "expression":"orderAck/orderId"

 }

 }],

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"xpath",

 "expression":"orderAck/customer"

Information Processor

13

 }

 },{

 "name":"total",

 "evaluator":{

 "type":"xpath",

 "expression":"orderAck/total"

 }

 }]

 },

 "java:org.switchyard.quickstarts.demos.orders.Order":{

 "contexts":[{

 "type":"Conversation",

 "evaluator":{

 "type":"mvel",

 "expression":"orderId"

 }

 }],

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"mvel",

 "expression":"customer"

 }

 },{

 "name":"itemId",

 "evaluator":{

 "type":"mvel",

 "expression":"itemId"

 }

 }]

 },

 "java:org.switchyard.quickstarts.demos.orders.OrderAck":{

 "contexts":[{

 "type":"Conversation",

 "evaluator":{

 "type":"mvel",

 "expression":"orderId"

 }

 }],

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"mvel",

 "expression":"customer"

 }

 },{

 "name":"total",

 "evaluator":{

 "type":"mvel",

Chapter 3. Reporting Activity...

14

 "expression":"total"

 }

 }]

 },

 "{urn:switchyard-quickstart-demo:orders:1.0}makePayment":{

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"xpath",

 "expression":"payment/customer"

 }

 },{

 "name":"amount",

 "evaluator":{

 "type":"xpath",

 "expression":"payment/amount"

 }

 }]

 },

 "{urn:switchyard-quickstart-

demo:orders:1.0}makePaymentResponse":{

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"xpath",

 "expression":"receipt/customer"

 }

 },{

 "name":"amount",

 "evaluator":{

 "type":"xpath",

 "expression":"receipt/amount"

 }

 }]

 },

 "java:org.switchyard.quickstarts.demos.orders.Receipt":{

 "properties":[{

 "name":"customer",

 "evaluator":{

 "type":"mvel",

 "expression":"customer"

 }

 },{

 "name":"amount",

 "evaluator":{

 "type":"mvel",

 "expression":"amount"

 }

 }]

Information Processor

15

 },

 "java:org.switchyard.quickstarts.demos.orders.ItemNotFoundException":{

 "script":{

 "type":"mvel",

 "expression":"activity.fault =

 \"ItemNotFound\""

 }

 }

 }

}]

This example illustrates the configuration of a single Information Processor with the top level

elements:

Field Description

name The name of the Information Processor.

version The version of the Information Processor.

If multiple versions of the same named

Information Processor are installed, only the

newest version will be used. Versions can be

expressed using three schemes:

Numeric - i.e. simply define the version as a

number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

typeProcesors The map of type processors - one per type,

with the type name being the map key.

When comparing versions, for example when determining whether a newly deployed Information

Processor has a higher version than an existing one with the same name, then initially the versions

will be compared as numeric values. If either are not numeric, then they will be compared using

dot format, with each field being compared first as numeric values, and if not based on lexical

comparison. If both fields don’t have a dot, then they will just be compared lexically.

Type Processor

The type processor element is associated with a particular information type (i.e. as its key). The

fields associated with this component are:

Field Description

contexts The list of context evaluators.

properties The list of property evaluators.

Chapter 3. Reporting Activity...

16

Field Description

script An optional script evaluator that is used to do

any other processing that may be required,

such as setting additional properties in the

activity event that are not necessarily derived

from message content information.

transformer An optional transformer that determines how

this information type will be represented

within an activity event.

Context Evaluator

The fields associated with the Context Evaluator component are:

Field Description

type The context type, e.g. Conversation,

Endpoint, Message or Link. These types are

explained below.

timeframe The number of milliseconds associated with

a Link context type. If not specified, then

the context is assumed to represent the

destination of the link, so the source of the

link must define the timeframe.

header The optional header name. If not defined,

then the expression will be applied to the

information content to obtain the context

value.

expression The expression evaluator used to derived the

context value. See further down for details.

The context types represent different ways in which the activity events can be related to each other

or to a logical grouping (e.g. business transaction). Not all activity events need to be associated

directly with a global business transaction id. They can be indirectly associated based on transitive

correlation - e.g. activity 1 is associated with the global business transaction id, activity 2 is

associated with activity 1 by a message context type, and activity 3 is associated with activity 2

based on an endpoint correlation id. All three activity events will be collectively correlated to the

business transaction id.

An explanation of the different context types is,

Context Type Explanation

Conversation A conversation identifier can be used to

correlate activity events to a business

Information Processor

17

Context Type Explanation

transaction associated with a globally unique

identifer (e.g. an order id).

Endpoint A globally unique identifier associated with

one endpoint in a business transaction. For

example, a process instance id associated

with the business process executing within

a service playing a particular role in the

business transaction.

Message The globally unique identify of a message

being sent from one party to another.

Link A temporal link between a source and

destination activity. The temporal nature of

the association is intended to enable non-

globally unique details to be used to correlate

activities, where the id is considered unique

within the defined timeframe.

Property Evaluator

The fields associated with the Property Evaluator component are:

Field Description

name The property name being initialized.

header The optional header name. If not defined,

then the expression will be applied to the

information content to obtain the property

value.

expression The expression evaluator used to derive the

property value. See further down for details.

Expression Evaluator

In the context and property evaluator components, they reference an expression evaluator that is

used to derive their value. The expression evaluator has the following fields:

Field Description

type The type of expression evaluator to use.

Currently only support mvel or xpath.

expression The expression to evaluate.

optional Optional field that indicates whether the value

being extracted by the expression is optional.

The default is false. If a value is not optional,

Chapter 3. Reporting Activity...

18

Field Description

but the expression fails to locate a value, then

an error will be reported

These expressions operate on the information being processed, to return a string value to be

applied to the appropriate context or property.

Script

The script field of the Type Processor has the following fields:

Field Description

type The type of script evaluator to use. Currently

only support mvel.

expression The expression to evaluate.

The MVEL script evaluator is supplied two variables for its use:

• information - The information being processed

• activity - The activity event

An example of how this script can be used is shown in the example above, associated with the

ItemNotFoundException. In this case, the message on the wire does not carry the fault name, so

the information processor is used to set the fault field on the activity event.

Transformer

The transformer field of the Type Processor has the following fields:

Field Description

type The type of transformer to use. Currently

support serialize and mvel.

The serialize transformer does not take any other properties. It simply attempts to convert the

representation of the information into a textual form for inclusion in the activity event. So this

transformer type can be used where the complete information content is required.

The mvel transformer takes the following additional fields:

The MVEL transformer script is supplied the following variable for its use:

Field Description

expression The mvel expression to transform the

supplied information.

The MVEL transformer is supplied the following variable for its use:

Information Processor

19

• information - The information being processed

For example, to include the content of the submitOrder message:

 "typeProcessors":{

 "{urn:switchyard-quickstart-demo:orders:1.0}submitOrder":{

 "transformer":{

 "type":"serialize"

 }

 },

3.1.2.2. Registering the Information Processors

JEE Container

The Information Processors are deployed within the JEE container as a WAR file with the following

structure:

warfile

|

|-META-INF

| |- beans.xml

|

|-WEB-INF

| |-classes

| | |-ip.json

| | |-<custom classes/resources>

| |

| |-lib

| |-ip-loader-jee.jar

| |-<additional libraries>

The ip.json file contains the JSON representation of the Information Processor configuration.

The ip-loader-jee.jar acts as a bootstrapper to load and register the Information Processors.

If custom classes are defined, then the associated classes and resources can be defined in the

WEB-INF/classes folder or within additional libraries located in the WEB-INF/lib folder.

A maven pom.xml that will create this structure is:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>....</groupId>

Chapter 3. Reporting Activity...

20

 <artifactId>....</artifactId>

 <version>....</version>

 <packaging>war</packaging>

 <name>....</name>

 <properties>

 <rtgov.version>....</rtgov.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.overlord.rtgov.activity-management</

groupId>

 <artifactId>activity</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.activity-management</

groupId>

 <artifactId>ip-loader-jee</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

 </dependencies>

</project>

If deploying in JBoss Application Server, then the following fragment also needs to be included,

to define the dependency on the core Overlord Runtime Governance modules:

.....

 <build>

 <finalName>....</finalName>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <failOnMissingWebXml>false</

failOnMissingWebXml>

 <archive>

 <manifestEntries>

 <Dependencies>deployment.overlord-rtgov.war</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

Activity Validation

21

 </build>

3.1.3. Activity Validation

The Activity Validator mechanism provides the means to install event processing capabilities within

the activity collection environment (i.e. co-located with the execution of the business transaction).

The main reason for performing analysis of the activity events at this stage in the runtime

governance lifecycle is to enable the analysis to potential block the business transaction. For an

example of such a case, please see the synchronous policy sample.

In some execution environments these validators can be implicitly called as part of collecting the

activity events. However in some environments these validators need to be explicitly invoked,

as they impact the execution behaviour. The SwitchYard environment is an example of this later

environment, where an auditor needs to be explicitly included within the SwitchYard application,

which is responsible for invoking the validation capability and reacting to any issues it detects. To

see how to configure such an auditor, please see the synchronous policy sample.

3.1.3.1. Defining the Activity Validators

The Activity Validator can be defined as an object model or specified as a JSON representation

for packaging in a suitable form, and subsequently de-serialized when deployed to the governed

execution environment.

The following is an example of the JSON representation of a list of Activity Validators. This

particular example is from the synchronous policy sample:

[{

 "name" : "RestrictUsage",

 "version" : "1",

 "predicate" : {

 "@class" : "org.overlord.rtgov.ep.mvel.MVELPredicate",

 "expression" : "event instanceof

 org.overlord.rtgov.activity.model.soa.RequestReceived && event.serviceType

 == \"{urn:switchyard-quickstart-demo:orders:0.1.0}OrderService\""

 },

 "eventProcessor" : {

 "@class" : "org.overlord.rtgov.ep.mvel.MVELEventProcessor",

 "script" : "VerifyLastUsage.mvel",

 "services" : {

 "CacheManager" : {

 "@class" :

 "org.overlord.rtgov.common.infinispan.service.InfinispanCacheManager"

 }

 }

 }

}]

Chapter 3. Reporting Activity...

22

This example illustrates the configuration of a single Activity Validator with the top level elements:

Field Description

name The name of the Activity Validator.

version The version of the Activity Validator. If

multiple versions of the same named Activity

Validator are installed, only the newest

version will be used. Versions can be

expressed using three schemes:

Numeric - i.e. simply define the version as a

number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

predicate The optional implementation of the

org.overlord.rtgov.ep.Predicate

interface, used to determine if the activity

event is relevant and therefore should be

supplied to the event processor

eventProcessor The implementation of the

org.overlord.rtgov.ep.EventProcessor

interface, that is used to analyse the activity

event

When comparing versions, for example when determining whether a newly deployed Activity

Validator has a higher version than an existing one with the same name, then initially the versions

will be compared as numeric values. If either are not numeric, then they will be compared using

dot format, with each field being compared first as numeric values, and if not based on lexical

comparison. If both fields don’t have a dot, then they will just be compared lexically.

3.1.3.2. Registering the Activity Validators

JEE Container

The Activity Validators are deployed within the JEE container as a WAR file with the following

structure:

warfile

|

|-META-INF

| |- beans.xml

|

|-WEB-INF

| |-classes

Activity Validation

23

| | |-av.json

| | |-<custom classes/resources>

| |

| |-lib

| |-av-loader-jee.jar

| |-<additional libraries>

The av.json file contains the JSON representation of the Activity Validator configuration.

The av-loader-jee.jar acts as a bootstrapper to load and register the Activity Validators.

If custom classes are defined, then the associated classes and resources can be defined in the

WEB-INF/classes folder or within additional libraries located in the WEB-INF/lib folder.

A maven pom.xml that will create this structure is:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>....</groupId>

 <artifactId>....</artifactId>

 <version>....</version>

 <packaging>war</packaging>

 <name>....</name>

 <properties>

 <rtgov.version>....</rtgov.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.overlord.rtgov.activity-management</

groupId>

 <artifactId>activity</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.activity-management</

groupId>

 <artifactId>av-loader-jee</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

 </dependencies>

</project>

Chapter 3. Reporting Activity...

24

If deploying in JBoss Application Server, then the following fragment also needs to be included,

to define the dependency on the core Overlord Runtime Governance modules:

.....

 <build>

 <finalName>....</finalName>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <failOnMissingWebXml>false</

failOnMissingWebXml>

 <archive>

 <manifestEntries>

 <Dependencies>deployment.overlord-rtgov.war</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

 </build>

3.2. Reporting and Querying Activity Events via REST

This section explains how activity information can be reported to, and queried from, the Activity

Server via a RESTful service.

3.2.1. Reporting Activity Information

POST request to URL: <host>/overlord-rtgov/activity/store

The service uses basic authentication, with the default username admin and password overlord.

The request contains the list of ActivityUnit objects encoded in JSON. (See

org.overlord.rtgov.activity.model.ActivityUnit class within the API documentation, as

the root component of this configuration). For example,

[{

 "id":"TestId1",

 "activityTypes":[{

 "type":"RequestSent",

 "context":[{

 "value":"12345"

 },{

 "value":"abc123",

 "type":"Endpoint"

 },{

Querying Activity Events using an Expression

25

 "value":"ABC123",

 "type":"Message"

 }],

 "content":"....",

 "serviceType":"{http://service}OrderService",

 "operation":"buy",

 "fault":"MyFault",

 "messageType":"{http://message}OrderRequest",

 "timestamp":1347028592880

 },{

 "type":"ResponseReceived",

 "context":[{

 "value":"12345"

 },{

 "value":"ABC124",

 "type":"Message"

 }],

 "content":"....",

 "serviceType":"{http://service}OrderService",

 "operation":"buy",

 "fault":"OutOfStock",

 "messageType":"{http://message}OutOfStock",

 "replyToId":"ABC123",

 "timestamp":1347028593010

 }],

 "origin":{

 "host":"Saturn",

 "principal":"Fred",

 "node":"Saturn1",

 "thread":"Thread-1"

 }

},{

}]

3.2.2. Querying Activity Events using an Expression

POST request to URL: <host>/overlord-rtgov/activity/query

The service uses basic authentication, with the default username admin and password overlord.

The request contains the JSON encoding of the Query Specification (see API documentation for

+org.overlord.rtgov.activity.server.QuerySpec+) which has the following properties:

Property Description

fromTimestamp Optionally specifies the start date/time for the

activity units required. If not specified, then

the query will apply to activity units from the

first one recorded.

Chapter 3. Reporting Activity...

26

Property Description

toTimestamp Optionally specifies the end date/time for the

activity units required. If not specified, then

the query will relate up to the most recently

recorded activity units.

expression An optional expression that can be used to

specify the activity events of interest.

format Optionally specifies the format of the

expression. The value must be supported

by the configured activity store. The only

supported format currently is "jpql" (Java

Persistence Query Language).

The response contains a list of ActivityType objects encoded in JSON, which would be similar in

form to the example shown above when recording a list of activity units. (See API documentation

for org.overlord.rtgov.activity.model.ActivityType).

3.2.3. Retrieving an Activity Unit

GET request to URL: <host>/overlord-rtgov/activity/unit?id=<unitId>

The service uses basic authentication, with the default username admin and password overlord.

The <unitId> represents the identifier associated with the ActivityUnit

that is being retrieved encoded in JSON. (See API documentation for

org.overlord.rtgov.activity.model.ActivityUnit).

3.2.4. Retrieve Activity Events associated with a Context Value

GET request to URL: <host>/overlord-rtgov/activity/events?

type=<contextType>&value=<identifier>

The service uses basic authentication, with the default username admin and password overlord.

The <contextType> represents the context type, e.g. Conversation, Endpoint, Message or

Link. This is explained in the Information Processor section of this chapter, or see the API

documentation for org.overlord.rtgov.activity.model.Context.Type.

The <identifier> represents the correlation value associated with the ActivityType(s) that are being

retrieved.

Two additional optional query parameters can be provided, start being the start timestamp, and

end for the end timestamp. These parameters can be used to scope the time period of the query.

The response is a list of ActivityType objects (see

org.overlord.rtgov.activity.model.ActivityType in the API documentation) encoded in

JSON.

Chapter 4.

27

Chapter 4. Analyzing Events

4.1. Configuring an Event Processor Network

An Event Processor Network is a mechanism for processing a stream of events through a network

of linked nodes established to perform specific filtering, transformation and/or analysis tasks.

4.1.1. Defining the Network

The network can be defined as an object model or specified as a JSON representation for

packaging in a suitable form, and subsequently de-serialized when deployed to the runtime

governance server.

The following is an example of the JSON representation of an Event Processor Network. This

particular example defines the "out of the box" EPN installed with the distribution:

{

 "name" : "Overlord-RTGov-EPN",

 "version" : "1.0.0.Final",

 "subscriptions" : [{

 "nodeName" : "SOAEvents",

 "subject" : "ActivityUnits"

 },

 {

 "nodeName" : "ServiceDefinitions",

 "subject" : "ActivityUnits"

 },

 {

 "nodeName" : "SituationsStore",

 "subject" : "Situations"

 }],

 "nodes" : [

 {

 "name" : "SOAEvents",

 "sourceNodes" : [],

 "destinationSubjects" : ["SOAEvents"],

 "maxRetries" : 3,

 "retryInterval" : 0,

 "eventProcessor" : {

 "@class" :

 "org.overlord.rtgov.content.epn.SOAActivityTypeEventSplitter"

 },

 "predicate" : null,

 "notifications" : []

 },{

 "name" : "ServiceDefinitions",

 "sourceNodes" : [],

Chapter 4. Analyzing Events

28

 "destinationSubjects" : [],

 "maxRetries" : 3,

 "retryInterval" : 0,

 "eventProcessor" : {

 "@class" :

 "org.overlord.rtgov.content.epn.ServiceDefinitionProcessor"

 },

 "predicate" : null,

 "notifications" : [{

 "type" : "Results",

 "subject" : "ServiceDefinitions"

 }]

 },{

 "name" : "ServiceResponseTimes",

 "sourceNodes" : ["ServiceDefinitions"],

 "destinationSubjects" : ["ServiceResponseTimes"],

 "maxRetries" : 3,

 "retryInterval" : 0,

 "eventProcessor" : {

 "@class" :

 "org.overlord.rtgov.content.epn.ServiceResponseTimeProcessor"

 },

 "predicate" : null,

 "notifications" : [{

 "type" : "Results",

 "subject" : "ServiceResponseTimes"

 }]

 },{

 "name" : "SituationsStore",

 "maxRetries" : 3,

 "retryInterval" : 0,

 "eventProcessor" : {

 "@class" : "org.overlord.rtgov.ep.jpa.JPAEventProcessor",

 "entityManager" : "overlord-rtgov-epn-non-jta"

 }

 }

]

}

Another example of a network, used within one of the quickstarts is:

{

 "name" : "AssessCreditPolicyEPN",

 "version" : "1",

 "subscriptions" : [{

 "nodeName" : "AssessCredit",

 "subject" : "SOAEvents"

 }],

 "nodes" : [

Defining the Network

29

 {

 "name" : "AssessCredit",

 "sourceNodes" : [],

 "destinationSubjects" : [],

 "maxRetries" : 3,

 "retryInterval" : 0,

 "predicate" : {

 "@class" : "org.overlord.rtgov.ep.mvel.MVELPredicate",

 "expression" : "event.serviceProvider && !event.request

 && event.serviceType == \"{urn:switchyard-quickstart-

demo:orders:0.1.0}OrderService\""

 },

 "eventProcessor" : {

 "@class" : "org.overlord.rtgov.ep.mvel.MVELEventProcessor",

 "script" : "AssessCredit.mvel",

 "services" : {

 "CacheManager" : {

 "@class" :

 "org.overlord.rtgov.common.infinispan.service.InfinispanCacheManager"

 }

 }

 }

 }

]

}

This example illustrates the configuration of a service associate with the event processor, as well

as a predicate.

The top level elements of this descriptior are:

Field Description

name The name of the network.

subscriptions The list of subscriptions associated with the

network, discussed below.

nodes The nodes that form the connected graph

within the network, discussed below.

version The version of the network. Versions can be

expressed using three schemes:

Numeric - i.e. simply define the version as a

number

Dot Format - i.e. 1.5.1.Final Any alpha,

numeric and symbols

When comparing versions, for example when determining whether a newly deployed EPN has

a higher version than an existing network with the same name, then initially the versions will

Chapter 4. Analyzing Events

30

be compared as numeric values. If either are not numeric, then they will be compared using

dot format, with each field being compared first as numeric values, and if not based on lexical

comparison. If both fields don’t have a dot, then they will just be compared lexically.

4.1.1.1. Subscription

The subscription element is used to define a subject that the network is interested in, and the

name of the node to which the events from that subject should be routed.

This decoupled subscription approach enables multiple networks to register their interest in events

from the same subject. Equally multiple nodes within the same network could subscribe to the

same subject.

The fields associated with this component are:

Field Description

Subject The subject to subscribe to.

nodeName The name of the node within the network to

route the events to.

Reserved subjects

This is a list of the subjects that are reserved for Overlord’s use:

Subject Purpose

ActivityUnits This subject is used to

publish events of the type

org.overlord.rtgov.activity.model.ActivityUnit,

produced when activity information is

recorded with the Activity Server.

4.1.1.2. Node

This element is used to define a particular node in the graph that forms the network, and has the

following fields:

Field Description

name The name of the node.

sourceNodes A list of node names that represent the

source nodes, within the same network, that

this node receives its events from. Therefore,

if this list is empty, it means that the node

is a root node and should be the target of a

subscription.

destinationSubjects A list of inter-EPN subjects to publish any

resulting events to. Note: these subjects are

only of relevance to other networks.

Defining the Network

31

Field Description

maxRetries The maximum number of times an event

should be retried, following a failure, before

giving up on the event.

retryInterval The delay that should occur between retry

attempts - may only be supported in some

environments.

eventProcessor Defines the details for the event processor

implementation being used. At a minimum,

the value for this field should define a @class

property to specify the Java class name for

the event process implementation to use.

Another general field that can be configured

is the map of services that can be used

by the event processor. Depending upon

which implementation is selected, the other

fields within the value will apply to the event

processor implementation.

predicate This field is optional, but if specified will

define a predicate implementation. As with

the event processor, it must at a minimum

define a @class field that specifies the Java

class name for the implementation, with

any additional fields be used to initialize the

predicate implementation.

notifications A list of notifications. A notification entry

will define its type (explained below) and

the notification subject upon which the

information should be published. Unlike the

destinationSubjects described above, which

are subjects for inter-EPN communication,

these notification subjects are the mechanism

for distribution information out of the EPN

capability, for presentation to end-users

through various means.

Notify Types

The notify types field defines what type of notifications should be emitted from a node when

processing an event. The notifications are the mechanism used by potentially interested

applications to observe what information each node is processing, and the results they produce.

The possible values for this field are:

Chapter 4. Analyzing Events

32

Field Description

Processed This type indicates that a notification should

be created when an event is considered

suitable for processing by the node. An event

is suitable either if no predicate is defined, or

if the predicate indicates the event is valid.

Results This type indicates that a notification should

be created for any information produced as

the result of the event processor processing

the event.

Tip

Notifications are the mechanism for making information processed by the Event

Processor Network accessible by interested parties. If a notity type(s) is not defined

for a node, then it will only be used for internal processing, potentially supplying

the processed event to other nodes in the network (or other networks if destination

subject(s) are specified).

4.1.2. Registering the Network

4.1.2.1. JEE Container

The Event Processor Network is deployed within the JEE container as a WAR file with the following

structure:

warfile

|

|-META-INF

| |- beans.xml

|

|-WEB-INF

| |-classes

| | |-epn.json

| | |-<custom classes/resources>

| |

| |-lib

| |-epn-loader-jee.jar

| |-<additional libraries>

The epn.json file contains the JSON representation of the EPN configuration.

The epn-loader-jee.jar acts as a bootstrapper to load and register the Event Processor

Network.

Registering the Network

33

If custom predicates and/or event processors are defined, then the associated classes and

resources can be defined in the WEB-INF/classes folder or within additional libraries located in

the WEB-INF/lib folder.

A maven pom.xml that will create this structure is:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>....</groupId>

 <artifactId>....</artifactId>

 <version>....</version>

 <packaging>war</packaging>

 <name>....</name>

 <properties>

 <rtgov.version>....</rtgov.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.overlord.rtgov.event-processor-

network</groupId>

 <artifactId>epn-core</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.event-processor-

network</groupId>

 <artifactId>epn-loader-jee</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

 </dependencies>

</project>

If deploying in JBoss Application Server, then the following fragment also needs to be included,

to define the dependency on the core Overlord Runtime Governance modules:

.....

 <build>

 <finalName>slamonitor-epn</finalName>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

Chapter 4. Analyzing Events

34

 <configuration>

 <failOnMissingWebXml>false</

failOnMissingWebXml>

 <archive>

 <manifestEntries>

 <Dependencies>deployment.overlord-rtgov.war</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

 </build>

4.1.3. Supporting Multiple Versions

Event Processor Networks define a version number that can be used to keep track of the evolution

of changes in a network.

When a network is deployed to a container, and used to process events, a newer version of

the network can be deployed along side the existing version to ensure there is continuity in the

processing of the event stream. New events presented to the network will be processed by the

most recent version, while events still being processed by a particular version of the network, will

continue to be processed by the same version - thus ensuring that changes to the internal structure

of the network do not impact events that are mid-way through being processed by the network.

The management features, discussed later in the User Guide, can be used to determine when an

older version of the network last processed an event - and therefore when an older version has

been inactive for a suitable amount of time, it can be unregistered.

4.2. Event Processors

Although custom event processors can be defined, there are some "out of the box"

implementations. These are discussed in the following sub-sections.

4.2.1. Drools Event Processor

The Drools Event Processor implementation

(org.overlord.rtgov.ep.drools.DroolsEventProcessor) enables events to be processed by

a Complex Event Processing (CEP) rule. This implementation defines the following additional

fields:

Field Description

ruleName The name of the rule, used to locate the rule

definition in a file called "<ruleName>.drl".

An example of such a rule is:

Drools Event Processor

35

import org.overlord.rtgov.activity.model.soa.RequestReceived

import org.overlord.rtgov.activity.model.soa.ResponseSent

global org.overlord.rtgov.ep.EPContext epc

declare RequestReceived

 @role(event)

 @timestamp(timestamp)

 @expires(2m20s)

end

declare ResponseSent

 @role(event)

 @timestamp(timestamp)

 @expires(2m20s)

end

rule "correlate request and response"

when

 $req : RequestReceived($id : messageId) from entry-point "Purchasing"

 $resp : ResponseSent(replyToId == $id, this after[0,2m20s] $req) from

 entry-point "Purchasing"

then

 epc.logInfo("REQUEST: "+$req+" RESPONSE: "+$resp);

 java.util.Properties props=new java.util.Properties();

 props.put("requestId", $req.getMessageId());

 props.put("responseId", $resp.getMessageId());

 long responseTime=$resp.getTimestamp()-$req.getTimestamp();

 epc.logDebug("CORRELATION on id '"+$id+"' response time "+responseTime);

 props.put("responseTime", responseTime);

 epc.handle(props);

end

This is an example of a rule used to correlate request and response events. When a correlation is

found, then a ResponseTime object is created and "forwarded" to the Event Processor Network

for further processing using the handle method.

The source of the events into the rule are named entry points, where the name relates to the

source node or subject that supplies the events.

The rule has access to external capabilities through the EPContext, which is defined in the

statements:

Chapter 4. Analyzing Events

36

global org.overlord.rtgov.ep.EPContext epc

which is used at the end of the above example to handle the result of the event processing (i.e.

to forward a derived event back into the network).

If an error occurs, that requires the event to be retried (within the Event Processor Network), or

the business transaction blocked (when used as a synchronous policy), then the rule can either

throw an exception or return the exception as the result using the handle() method.

Caution

Temporal rules do not currently work in a clustered environment. This is because

correlation between events occurs in working memory, which is not shared across

servers. Therefore for the correlation to work, all relevant events must be received

by a single server.

4.2.2. JPA Event Processor

A JPA based Event Processor implementation

(org.overlord.rtgov.ep.jpa.JPAEventProcessor) enables events to be persisted. This

implementation defines the following additional fields:

Field Description

entityManager The name of the entity manager to be used.

4.2.3. Mail Event Processor

A mail based Event Processor implementation

(org.overlord.rtgov.ep.mail.MailEventProcessor) enables events to be transformed and

sent as an email. This implementation defines the following additional fields:

Field Description

from The from email address.

to The list of to email addresses.

subjectScript The location of the MVEL script, which may

be relative to the classpath, used to define the

email subject.

contentScript The location of the MVEL script, which may

be relative to the classpath, used to define the

email content.

contentType The optional type of the email content. By

default it will be "text/plain".

MVEL Event Processor

37

Field Description

jndiName The optional JNDI name locating the JavaMail

session.

4.2.4. MVEL Event Processor

A MVEL based Event Processor implementation

(org.overlord.rtgov.ep.mvel.MVELEventProcessor) enables events to be processed by a

MVEL script. This implementation defines the following additional fields:

Field Description

script The location of the MVEL script, which may

be relative to the classpath.

The script will have access to the following variables:

Variable Description

source The name of the source node or subject upon

which the event was received.

event The event to be processed.

retriesLeft The number of retries remaining.

epc The EP context

(org.overlord.rtgov.ep.EPContext),

providing some utility functions for use by

the script, including the handle method for

pushing the result back into the network.

If an error occurs, that requires the event to be retried (within the Event Processor Network), or

the business transaction blocked (when used as a synchronous policy), then the script can return

the exception as the result using the handle() method.

4.2.5. Supporting Services

This section describes a set of supporting services available to some of the Event Processor

implementations. See the documentation for the specific Event Processor implementations for

information on how to access these services.

4.2.5.1. Cache Manager

Description

The purpose of the Cache Manager service is to enable event processors to store and retrieve

information in named caches.

API

Chapter 4. Analyzing Events

38

Method Description

<K,V> Map<K,V> getCache(String name) This method returns the cache associated

with the supplied name. If the cache does not

exist, then a null will be returned.

boolean lock(String cacheName, Object key) This method locks the item, associated with

the supplied key, in the named cache.

Implementations

Infinispan

Class name: org.overlord.rtgov.common.infinispan.service.InfinispanCacheManager

This class provides an implementation based on Infinispan. The properties for this class are:

Property Description

container The optional JNDI name for the infinspan

container defined in the standalone-

full.xml or standalone-full-ha.xml file.

The container will be obtained in three possible ways.

(a) if the container is explicitly defined, then it will be used

(b) if the container is not defined, then a default container will be obtained from the $JBOSS_HOME/

standalone/configuration/overlord-rtgov.properties file for the infinispan.container

property.

(c) if no default container is defined, then a default cache manager will be created.

4.3. Predicates

Although custom predicates can be defined, there are some "out of the box" implementations:

4.3.1. MVEL Predicate

A MVEL based Predicate implementation (org.overlord.rtgov.ep.mvel.MVELPredicate)

enables events to be evaluated by a MVEL expression or script. This implementation defines the

following additional fields:

Field Description

expression The MVEL expression used to evaluate the

event.

script The location of the MVEL script, which may

be relative to the classpath.

MVEL Predicate

39

Caution

Only the expression or script should be defined, not both.

The expression or script will have access to the following variables:

Variable Description

event The event to be processed.

40

Chapter 5.

41

Chapter 5. Accessing Derived

Information
5.1. Configuring Active Collections

An Active Collection is similar to a standard collection, but with the ability to report change

notifications when items are inserted, updated or removed. The other main difference is that they

cannot be directly updated - their contents is managed by an Active Collection Source which acts

as an adapter between the collection and the originating source of the information.

This section will explain how to define an Active Collection Source and register it to indirectly

create an Active Collection.

5.1.1. Defining the Source

The source can be defined as an object model or specified as a JSON representation for packaging

in a suitable form, and subsequently de-serialized when deployed to the runtime governance

server.

The following is an example of the JSON representation that defines a list of Active Collection

Sources - so more than one source can be specified with a single configuration:

[

 {

 "@class" :

 "org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource",

 "name" : "ServiceResponseTimes",

 "type" : "List",

 "itemExpiration" : 0,

 "maxItems" : 100,

 "subject" : "ServiceResponseTimes",

 "aggregationDuration" : 1000,

 "groupBy" : "serviceType + \":\" + operation + \":\" + fault",

 "aggregationScript" : "AggregateServiceResponseTime.mvel"

 },{

 "@class" :

 "org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource",

 "name" : "ServiceDefinitions",

 "type" : "Map",

 "itemExpiration" : 0,

 "maxItems" : 100,

 "subject" : "ServiceDefinitions",

 "scheduledScript" : "TidyServiceDefinitions.mvel",

 "scheduledInterval" : 60000,

 "properties" : {

 "maxSnapshots" : 5

Chapter 5. Accessing Derived ...

42

 },

 "maintenanceScript" : "MaintainServiceDefinitions.mvel"

 },{

 "@class" :

 "org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource",

 "name" : "Situations",

 "type" : "List",

 "itemExpiration" : 40000,

 "maxItems" : 0,

 "subject" : "Situations",

 "activeChangeListeners" : [{

 "@class" : "org.overlord.rtgov.active.collection.jmx.JMXNotifier",

 "objectName" : "overlord.rtgov.services:name=Situations",

 "descriptionScript" : "SituationDescription.mvel",

 "insertTypeScript" : "SituationType.mvel"

 }],

 "derived": [{

 "name": "FilteredSituations",

 "predicate": {

 "type": "MVEL",

 "expression": "map =

 context.getMap(\"IgnoredSituationSubjects\"); if (map == null) { return

 false; } return !map.containsKey(subject);"

 },

 "properties" : {

 "active" : false

 }

 }]

 },{

 "@class" :

 "org.overlord.rtgov.active.collection.ActiveCollectionSource",

 "name" : "IgnoredSituationSubjects",

 "type" : "Map",

 "lazy" : true,

 "factory" : {

 "@class" :

 "org.overlord.rtgov.active.collection.infinispan.InfinispanActiveCollectionFactory",

 "cache" : "IgnoredSituationSubjects"

 }

 },{

 "@class" :

 "org.overlord.rtgov.active.collection.ActiveCollectionSource",

 "name" : "Principals",

 "type" : "Map",

 "lazy" : true,

 "visibility" : "Private",

 "factory" : {

 "@class" :

 "org.overlord.rtgov.active.collection.infinispan.InfinispanActiveCollectionFactory",

Defining the Source

43

 "cache" : "Principals"

 }

 }

]

This configuration shows the definition of multiple Active Collection Sources. The top level

elements for a source, that are common to all active collection sources, are:

Field Description

@class This attribute defines the Java

class implementing the Active

Collection Source. This class must

be directly or indirectly derived from

org.overlord.rtgov.active.collection.ActiveCollectionSource.

name The name of the Active Collection that will be

created and associated with this source.

type The type of active collection. The currently

supported values (as defined in the

org.overlord.rtgov.active.collection.ActiveCollectionType

enum are:

List (default)

Map

visibility The visibility of active collection, i.e.

whether accessible via the remote access

mechanisms such as REST. The currently

supported values (as defined in the

org.overlord.rtgov.active.collection.ActiveCollectionVisibility

enum are:

Public (default)

Private

lazy Whether active collection should be created

on startup, or lazily instantiated upon first use.

The default is false.

itemExpiration If not zero, then defines the number of

milliseconds until an item in the collection

should expire (i.e. be removed).

maxItems If not zero, defines the maximum number of

items that the collection should hold. If an

insertion causes the size of the collection to

Chapter 5. Accessing Derived ...

44

Field Description

increase above this value, then the oldest

item should be removed.

aggregationDuration The duration (in milliseconds) over which the

information will be aggregated.

groupBy An expression defining the key to be used to

categorize the information being aggregated.

The expression can use properties associated

with the information being aggregated.

aggregationScript The MVEL script to be used to aggregate the

information. An example will be shown in a

following sub-section.

scheduledInterval The interval (in milliseconds) between the

invocation of the scheduled script.

scheduledScript The MVEL script invoked at a fixed interval to

perform routine tasks on the collection.

maintenanceScript By default, events received by the active

collection source will be inserted into the

associated active collection. If a MVEL

maintenance script is specified, then it will

be invoked to manage the way in which the

received information will be applied to the

active collection.

properties A set of properties that can be access by the

various scripts.

derived An optional list of definitions for derived

collections that will be created with the

top level active collection, and retained

regardless of whether any users are currently

accessing them. (Normally when a derived

collection is created dynamically on demand,

once it has served its purpose, it will be

cleaned up). The definition will be explained

below.

activeChangeListeners The list of active change listeners that

should be instantiated and automatically

registered with the Active Collection. The

listeners must be derived from the Java class

org.overlord.rtgov.active.collection.AbstractActiveChangeListener.

Defining the Source

45

Field Description

factory The optional factory for creating the

active collection, derived from the class

org.overlord.rtgov.active.collection.ActiveCollectionFactory.

The additional attributes associated with the EPNActiveCollectionSource implementation will

be discussed in a later section.

5.1.1.1. Scripts

Aggregation

The aggregation script is used to (as the name suggests) aggregate information being provided

by the source, before being applied to the collection. The values available to the MVEL script are:

Variable Description

events The list of events to be aggregated.

The aggregated result will be returned from the script.

Scheduled

The scheduled script is used to perform regular tasks on the active collection, independent of any

information being applied to the collection. The values available to the MVEL script are:

Variable Description

acs The active collection source.

acs.properties The properties configured for the active

collection source.

variables A map associated with the active collection

source that can be used by the scripts to

cache information.

Maintenance

The maintenance script is used to manage how new information presented to the source is applied

to the active collection. If no script is defined, then the information will be inserted by default. The

values available to the MVEL script are:

Variable Description

acs The active collection source.

acs.properties The properties configured for the active

collection source.

Chapter 5. Accessing Derived ...

46

Variable Description

key The key for the information being inserted.

May be null.

value The value for the information being inserted.

variables A map associated with the active collection

source that can be used by the scripts to

cache information.

An example script, showing how these variables can be used is:

int maxSnapshots=acs.properties.get("maxSnapshots");

snapshots = variables.get("snapshots");

if (snapshots == null) {

 snapshots = new java.util.ArrayList();

 variables.put("snapshots", snapshots);

}

// Update the current snapshot

currentSnapshot = variables.get("currentSnapshot");

if (currentSnapshot == null) {

 currentSnapshot = new java.util.HashMap();

}

snapshots.add(new java.util.HashMap(currentSnapshot));

currentSnapshot.clear();

// Remove any snapshots above the number configured

while (snapshots.size() > maxSnapshots) {

 snapshot = snapshots.remove(0);

}

// Merge snapshots

merged =

 org.overlord.rtgov.analytics.util.ServiceDefinitionUtil.mergeSnapshots(snapshots);

// Update existing, and remove definitions no longer relevant

foreach (entry : acs.activeCollection) {

 org.overlord.rtgov.analytics.service.ServiceDefinition sd=null;

 if (merged.containsKey(entry.key)) {

 acs.update(entry.key, merged.get(entry.key));

 } else {

 acs.remove(entry.key, entry.value);

 }

Defining the Source

47

 merged.remove(entry.key);

}

// Add new definitions

for (key : merged.keySet()) {

 acs.insert(key, merged.get(key));

}

This example shows the script accessing the Active Collection Source and its properties, as well

as accessing (and updating) the variables cache associated with the source.

5.1.1.2. Derived Active Collections

The derived element defines a list of derived active collection definitions that will be instantiated

with the active collection.

The fields associated with this component are:

Field Description

name The derived active collection’s name.

predicate The predicate that will determine what subset

of entries from the parent collection should be

available within the derived collection.

properties Properties that will be passed to the derived

active collection.

The following properties can be defined:

Property Description

active This optional property indicates whether

the derived collection should be actively

maintained (i.e. active = true), which is the

default, or whether the contents should be

determined when a query is performed. The

main reason for setting this property to false

is due to the predicate being based on volatile

information, and therefore the contents needs

to be evaluated at the time it is requested.

5.1.1.3. Active Change Listeners

The activeChangeListeners element defines a list of Active Change Listener implementations that

will be instantiated and registered with the active collection.

Chapter 5. Accessing Derived ...

48

The fields associated with this component are:

Field Description

@class The Java class that provides the

listener implementation and is

directly or indirectly derived from

org.overlord.rtgov.active.collection.AbstractActiveChangeListener.

The remaining attributes in the example above will be discussed in a subsequent section related

to reporting results via JMX notifications.

5.1.1.4. Factory

The factory element defines an Active Collection Factory implementation that will be used to create

the active collection.

The fields associated with this component are:

Field Description

@class The Java class that provides the

factory implementation and is

directly or indirectly derived from

org.overlord.rtgov.active.collection.ActiveCollectionFactory.

The current list of factory implementations are defined below.

Infinispan

The fields associated with the

org.overlord.rtgov.active.collection.infinispan.InfinispanActiveCollectionFactory

component are:

Field Description

cache The name of the cache to be presented as an

Active Map.

container The optional JNDI name used to obtain the

cache container. If not defined, then the

default container will be obtained from the

infinispan.container property from overlord-

rtgov.properties file in the $JBOSS_HOME/

standalone/configuration folder. If the

default container is not defined, then a default

cache manager will be instantiated.

Registering the Source

49

5.1.2. Registering the Source

5.1.2.1. JEE Container

The Active Collection Source is deployed within the JEE container as a WAR file with the following

structure:

warfile

|

|-META-INF

| |- beans.xml

|

|-WEB-INF

| |-classes

| | |-acs.json

| | |-<custom classes/resources>

| |

| |-lib

| |-acs-loader-jee.jar

| |-<additional libraries>

The acs.json file contains the JSON representation of the Active Collection Source configuration.

The acs-loader-jee.jar acts as a bootstrapper to load and register the Active Collection

Source.

If custom active collection source and/or active change listeners are defined, then the associated

classes and resources can be defined in the WEB-INF/classes folder or within additional libraries

located in the WEB-INF/lib folder.

A maven pom.xml that will create this structure is:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>....</groupId>

 <artifactId>....</artifactId>

 <version>....</version>

 <packaging>war</packaging>

 <name>....</name>

 <properties>

 <rtgov.version>....</rtgov.version>

 </properties>

 <dependencies>

Chapter 5. Accessing Derived ...

50

 <dependency>

 <groupId>org.overlord.rtgov.active-queries</groupId>

 <artifactId>active-collection</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.active-queries</groupId>

 <artifactId>acs-loader-jee</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

 </dependencies>

</project>

If deploying in JBoss Application Server, then the following fragment also needs to be included,

to define the dependency on the core Overlord rtgov modules:

.....

 <build>

 <finalName>....</finalName>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <failOnMissingWebXml>false</

failOnMissingWebXml>

 <archive>

 <manifestEntries>

 <Dependencies>deployment.overlord-rtgov.war</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

 </build>

5.2. Presenting Results from an Event Processor

Network

As discussed in the preceding section, an Active Collection Source can be configured to obtain

information from an Event Processor Network, which is then placed in the associated Active

Collection. This section will explain in more detail how this can be done using the specific Active

Collection Source implementation.

Presenting Results from an Event Processor Network

51

[

 {

 "@class" :

 "org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource",

 "name" : "Situations",

 "type" : "List",

 "itemExpiration" : 40000,

 "maxItems" : 0,

 "subject" : "Situations",

 "activeChangeListeners" : [{

 "@class" : "org.overlord.rtgov.active.collection.jmx.JMXNotifier",

 "objectName" : "overlord.rtgov.services:name=Situations",

 "descriptionScript" : "SituationDescription.mvel",

 "insertTypeScript" : "SituationType.mvel"

 }],

 "derived": [{

 "name": "FilteredSituations",

 "predicate": {

 "type": "MVEL",

 "expression": "map = context.getMap(\"IgnoredSituationSubjects

\"); if (map == null) { return false; } return !map.containsKey(subject);"

 },

 "properties" : {

 "active" : false

 }

 }]

 }

]

This configuration shows an example of an Active Collection Source

using the org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource

implementation. The additional fields associated with this implementation are:

Field Description

subject The EPN subject upon which the information

has been published.

An example Event Processor Network configuration that will publish information on the subject

(e.g. Situations) specified in the Active Collection Source configuration above is:

{

 "name" : "SLAMonitorEPN",

 "subscriptions" : [{

 "nodeName" : "SLAViolations",

 "subject" : "ServiceResponseTimes"

 }],

 "nodes" : [

 {

Chapter 5. Accessing Derived ...

52

 "name" : "SLAViolations",

 "sourceNodes" : [],

 "destinationSubjects" : [],

 "maxRetries" : 3,

 "retryInterval" : 0,

 "eventProcessor" : {

 "@class" : "org.overlord.rtgov.ep.drools.DroolsEventProcessor",

 "ruleName" : "SLAViolation"

 },

 "predicate" : null,

 "notifications" : [{

 "type" : "Processed",

 "subject" : "SituationsProcessed"

 },{

 "type" : "Results",

 "subject" : "Situations"

 }]

 }

],

 "version" : "1"

}

5.3. Publishing Active Collection Contents as JMX

Notifications

[

 {

 "activeChangeListeners" : [{

 "@class" : "org.overlord.rtgov.active.collection.jmx.JMXNotifier",

 "objectName" : "overlord.sample.slamonitor:name=SLAViolations",

 "insertType" : "SLAViolation"

 }],

 }

]

This configuration shows the use of the JMXNotifier active change listener implementation. This

implementation has the following additional fields:

Field Description

objectName The MBean (JMX) object name to be used to

report the notification.

descriptionScript The MVEL script that can be used to derive

the description field on the notification. If

Publishing Active Collection Contents as JMX Notifications

53

Field Description

not defined, then the information’s toString()

value will be used.

insertType The type field for the notification when

performing an insert.

insertTypeScript An optional MVEL script that can be used to

derive the type field for an insert.

updateType The optional type field for the notification

when performing an update.

updateTypeScript An optional MVEL script that can be used to

derive the type field for an update.

removeType The optional type field for the notification

when performing a removal.

removeTypeScript An optional MVEL script that can be used to

derive the type field for a remove.

The following JConsole snapshot shows this JMXNotifier in action, reporting SLA violations from

the associated active collection:

Chapter 5. Accessing Derived ...

54

5.4. Querying Active Collections via REST

The Active Collections configured within the runtime governance server can be accessed via a

REST service, by POSTing the JSON representation of a query specification to the URL: <host>/

overlord-rtgov/acm/query

This service used basic authentication, with a default username admin and password overlord.

The Query Specification (see org.overlord.rtgov.active.collection.QuerySpec in the API

documentation) is comprised of the following information:

Attribute Description

collection The active collection name.

predicate Optional. If defined with the parent name,

then can be used to derive a child collection

that filters its parent’s content (and

notifications) based on the predicate.

parent Optional. If deriving a child collection, this

field defines the parent active collection from

which it will be derived.

maxItems Defines the maximum number of items

that should be returned in the result, or 0 if

unrestricted.

truncate If a maximum number of items is specified,

then this field can be used to indicate whether

the Start or End of the collection should be

truncated.

style Allows control over how the results are

returned. The value Normal means as

it appears in the collection. The value

Reversed means the order of the contents

should be reversed.

properties Map of key/value pairs, used when creating a

derived collection. Currently the only relevant

property is a boolean called active, defaults

to true, which can be used to force queries on

the derived collection to be evaluated when

information requested, in situations where the

predicate is based on volatile information.

The collection field defines the name of the collection - either an existing collection name, or if

defining the predicate and parent fields, then this field defines the name of the derived collection

to be created.

Pre-Defined Active Collections

55

The predicate field refers to a component that implements a predicate interface - the

implementation is defined based on the type field. Currently only a MVEL based implementation

exists, with a single field expression defining the predicate as a string.

For example,

{

 "parent" : "ServiceResponseTime",

 "maxItems" : 5000,

 "collection" : "OrderService",

 "predicate" : {

 "type" : "MVEL",

 "expression" : "serviceType == \"{urn:switchyard-quickstart-

demo:orders:0.1.0}OrderService\" && operation == \"submitOrder\""

 },

 "truncate" : "End",

 "style" : "Reversed"

}

If the Active Collection Manager (ACM) does not have a collection named OrderService, then it

will use the supplied defaults to create the derived collection. If the collection already exists, then

the contents will simply be returned, allowing multiple users to share the same collection.

The list of objects returned by the query will be represented in JSON.

5.5. Pre-Defined Active Collections

This section describes the list of Active Collections that are provided "out of the box".

5.5.1. ServiceResponseTimes

This active collection is a list of org.overlord.rtgov.analytics.service.ResponseTime

objects.

The response times represent an aggregation of the metrics for a particular service, operation and

response/fault, over a configured period. For more details please see the API documentation.

5.5.2. Situations

This active collection is a list of org.overlord.rtgov.analytics.situation.Situation

objects.

The Situation object represents a situation of interest that has been detected within the Event

Processor Network, and needs to be highlighted to end users. For more information on this class,

please see the API documentation.

This active collection configuration also publishes it contents via a JMX notifier, based on the

following configuration details:

Chapter 5. Accessing Derived ...

56

[

 {

 },{

 "@class" :

 "org.overlord.rtgov.active.collection.epn.EPNActiveCollectionSource",

 "name" : "Situations",

 "type" : "List",

 "itemExpiration" : 40000,

 "maxItems" : 0,

 "subject" : "Situations",

 "activeChangeListeners" : [{

 "@class" : "org.overlord.rtgov.active.collection.jmx.JMXNotifier",

 "objectName" : "overlord.rtgov:name=Situations",

 "descriptionScript" : "SituationDescription.mvel",

 "insertTypeScript" : "SituationType.mvel"

 }],

 }

]

5.5.3. ServiceDefinitions

This active collection is a map of Service Type name to

org.overlord.rtgov.analytics.service.ServiceDefinition objects. More details on this

class can be found in the API documentation.

An example of a service definition, represented in JSON is:

{

 "serviceType":"{http://www.jboss.org/examples}OrderService",

 "operations":[{

 "name":"buy",

 "metrics":{

 "count":30,

 "average":1666,

 "min":500,

 "max":2500

 },

 "requestResponse":{

 "metrics":{

 "count":10,

 "average":1000,

 "min":500,

 "max":1500

 },

 "invocations":[{

ServiceDefinitions

57

 "serviceType":"{http://www.jboss.org/

examples}CreditAgencyService",

 "metrics":{

 "count":10,

 "average":500,

 "min":250,

 "max":750

 },

 "operation":"checkCredit"

 }]

 },

 "requestFaults":[{

 "fault":"UnknownCustomer",

 "metrics":{

 "count":20,

 "average":2000,

 "min":1500,

 "max":2500

 }

 }]

 }],

 "metrics":{

 "count":30,

 "average":1666,

 "min":500,

 "max":2500

 }

}

The list of service definitions returned from this active collection, and the information they represent

(e.g. consumed services), represents a near term view of the service activity based on the

configuration details defined in the collection’s active collection source. Therefore, if (for example)

a service has not invoked one of its consumed services within the time period of interest, then its

details will not show in the service definition.

This information is simply intended to show the service activity that has occurred in the recent

history, as a means of monitoring the real-time situation to deal with emerging problems.

The duration over which the information is retained is determined by two properties in the

ServiceDefinitions active collection source configuration - the "scheduledInterval" (in milliseconds)

which dictates how often a snapshot of the current service definition information is stored, and the

"maxSnapshots" property which defines the maximum number of snapshots that should be used.

So the duration of information retained can be calculated as the scheduled interval multiplied by

the maximum number of snapshots.

Chapter 5. Accessing Derived ...

58

5.5.4. Principals

This active collection is a map of Principal name to a map of named properties. This information

is used to convey details captured (or derived) regarding a principal. A principal can represent a

user, group or organization.

Chapter 6.

59

Chapter 6. Available Services
This section describes the "out of the box" additional services that are provided.

6.1. Call Trace

The "Call Trace" service is used to return a tree structure tracing the path of a business transaction

(as a call/invocation stack) through a Service Oriented Architecture.

The URL for the service’s REST GET request is: <host>/overlord-rtgov/call/trace/

instance?type=<type>&value=<value>

The service uses basic authentication, with a default username admin and password overlord.

This service has the following query parameters:

Parameter Description

type The type of the identify value, e.g.

Conversation, Endpoint, Message or Link

value The identifier value, e.g. if type is

Conversation, then the value would be a

globally unique identifier for the business

transaction

The call trace is returned as a JSON representation of the call trace object model. The top level

class is org.overlord.rtgov.call.trace.model.CallTrace, details can be found in the API

documentation.

6.2. Report Server

The "Report Server" service is used to generate instances of a report whose definition has

previously been deployed to the server. This section will explain how to configure and deploy a

report definition, and then how to generate the report instances.

6.2.1. Creating and deploying a report definition

The first step is to specify a JSON representation of the

org.overlord.rtgov.reports.ReportDefinition class (see API documentation for details).

[

 {

 "name" : "SLAReport",

 "generator" : {

 "@class" : "org.overlord.rtgov.reports.MVELReportGenerator",

 "scriptLocation" : "SLAReport.mvel"

 }

Chapter 6. Available Services

60

 }

]

The report definition only contains the name of the report, and the definition of the generator.

In this case, the org.overlord.rtgov.reports.MVELReportGenerator implementation of the

report generator has been used, which also includes a property to define the location of the report

script (e.g. SLAReport.mvel). This MVEL SLA report script can be found in the samples/sla/

report folder.

6.2.1.1. Registering the Report

JEE Container

The Report Definition is deployed within the JEE container as a WAR file with the following

structure:

warfile

|

|-META-INF

| |- beans.xml

|

|-WEB-INF

| |-classes

| | |-reports.json

| | |-<custom classes/resources>

| |

| |-lib

| |-reports-loader-jee.jar

| |-<additional libraries>

As described above, the reports.json file contains the JSON representation of the report

definition configuration.

The reports-loader-jee.jar acts as a bootstrapper to load and register the Report Definition.

If custom report generators or scripts are defined, then the associated classes and resources can

be defined in the WEB-INF/classes folder or within additional libraries located in the WEB-INF/

lib folder.

A maven pom.xml that will create this structure is:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>....</groupId>

 <artifactId>....</artifactId>

Creating and deploying a report definition

61

 <version>....</version>

 <packaging>war</packaging>

 <name>....</name>

 <properties>

 <rtgov.version>....</rtgov.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.overlord.rtgov.activity-analysis</

groupId>

 <artifactId>reports-loader-jee</artifactId>

 <version>${project.version}</version>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.activity-analysis</

groupId>

 <artifactId>reports</artifactId>

 <version>${project.version}</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

If deploying in JBoss Application Server, then the following fragment also needs to be included,

to define the dependency on the core Overlord Runtime Governance modules:

.....

 <build>

 <finalName>slamonitor-epn</finalName>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <failOnMissingWebXml>false</

failOnMissingWebXml>

 <archive>

 <manifestEntries>

 <Dependencies>deployment.overlord-rtgov.war</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

 </build>

Chapter 6. Available Services

62

6.2.2. Generating an instance of the report

The URL for the service’s REST GET request is: <host>/overlord-rtgov/report/generate?

<parameters>

The service uses basic authentication, with a default username admin and password overlord.

This service has the following query parameters:

Parameter Description

report The name of the report to be generated. This

must match the previously deployed report

definition name.

startDay/Month/Year The optional start date for the report. If not

defined, then the report will use all activities

stored up until the end date.

endDay/Month/Year The optional end date for the report. If not

defined, then the report will use all activities

up until the current date.

timezone The optional timezone.

calendar The optional business calendar name. A

default called exists called Default which

represents a working week of Monday to

Friday, 9am to 5pm, excluding Christmas

Day.

All other query parameters that may be provided will be specific to the report definition being

generated.

The operation returns a JSON representation of the

org.overlord.rtgov.reports.model.Report class. See the API documentation for further

details of the object model.

6.2.3. Providing a custom Business Calendar

A custom Business Calendar can be defined as a JSON representation of the

org.overlord.rtgov.reports.mode.Calendar class (see API documentation for details).

This should be stored in a file whose location is referenced using a property called

"calendar.<CalendarName>" in the overlord-rtgov.properties file.

6.3. Service Dependency

The "Service Dependency" service is used to return a service dependency graph as a SVG image.

The graph represents the invocation and usage links between services (and their operations),

How to customize the severity levels

63

and provides a color-coded indication of areas that require attention. Where situations have been

detected against services or their operations, this will be flagged on the service dependency graph

with an appropriate colour reflecting their severity.

The URL for the service’s REST GET request is: <host>/overlord-rtgov/service/

dependency/overview?width=<value>

The service uses basic authentication, with a default username admin and password overlord.

This service has the following query parameters:

Parameter Description

width Represents the optional image width. If the

width is below a certain threshold, then a

summary version of the dependency graph

will be provided without text or tooltips (used

to display metrics).

6.3.1. How to customize the severity levels

The severity levels used for the graph nodes and links can be customized by creating a MVEL

script. A default script is provided within the overlord-rtgov.war, which can be used as a

template. The script is called SeverityAnalyzer.mvel and is located within the /WEB-INF/

classes folder of the overlord-rtgov.war archive.

An example of the contents of this script is:

Severity severity=Severity.Normal;

if (summary != null && latest != null && summary.getAverage() > 0) {

 double change=latest.getAverage()/summary.getAverage();

 if (change > 0) {

 if (change > 3.0) {

 severity = Severity.Critical;

 } else if (change > 2.2) {

 severity = Severity.Serious;

 } else if (change > 1.8) {

 severity = Severity.Error;

 } else if (change > 1.4) {

 severity = Severity.Warning;

 } else if (change > 1.2) {

 severity = Severity.Minor;

 }

 }

}

return (severity);

Chapter 6. Available Services

64

The script returns a value of type

org.overlord.rtgov.service.dependency.presentation.Severity, which is automatically

available as an imported class for use by the script.

The script takes four variables:

Variable Description

summary The summary metric to be evaluated.

history The list of recent metrics, merged to produce

the summary metric.

latest The latest metric.

component The service definition component associated

with the metric. This variable is not used

within the example script above.

If a customized script is created, then its location can be specified in the

MVELSeverityAnalyzer.scriptLocation property in the overlord-rtgov.properties

configuration file.

6.4. Situation Manager

The "Situation Manager" service is used to determine whether situations associated with a

particular subject (i.e. service) should be displayed to users via the Situations gadget. The service

supports two operations.

The service uses basic authentication, with a default username admin and password overlord.

6.4.1. Ignoring situations related to a subject

The ignore operation is used to indicate that situations for a particular subject (i.e. generally a

service type) should not be presented to users via the REST service (and therefore the Situations

gadget).

The URL for the ignore operation’s POST request is: <host>/overlord-rtgov/situation/

manager/ignore

This request supplies a JSON representation of the

org.overlord.rtgov.analytics.situation.IgnoreSubject class. See the API

documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

Note

Currently wildcards are not supported for subjects.

Observing situations related to a subject

65

6.4.2. Observing situations related to a subject

The observe operation is used to essentially reverse the actions performed by a previous ignore

operation, to make situations for a particular subject (i.e. generally a service type) visible again to

users via the REST service (and therefore the Situations gadget).

The URL for the observe operation’s POST request is: <host>/overlord-rtgov/situation/

manager/observe

This request supplies a JSON representation of the

org.overlord.rtgov.analytics.situation.IgnoreSubject class. See the API

documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

66

Chapter 7.

67

Chapter 7. Visualising the Runtime

Governance Information
This section describes the gadgets available for displaying runtime governance information.

7.1. Accessing the Runtime Governance UI

Overlord RTGov uses a gadget server to display runtime governance information via a set of

configurable gadgets. These gadgets will be described in the following sections.

To access the gadget server, when the server has been started, using the url: <host>/gadget-web

Once displayed, it will request the username and password. A default user is provided called

admin with password overlord.

When the gadget UI is displayed the first time for a user, they will need to add a new page (by

pressing the + button) before going to the Gadget Store to select the gadgets they wish to view.

7.2. Response Time

The Response Time gadget shows average, minimum and maximum summary metrics from the

service operations invoked over a period of time.

Chapter 7. Visualising the Ru...

68

The gadget configuration can be used to select a particular service to display. It is also possible to

customize the gadget further to display only the metrics from a particular operation on that service.

7.3. Situations

The Situations gadget displays "situations of interest" that have been raised during the processing

of the activity events.

In this particular case, the situations are highlighting Service Level Agreement violations, but event

processors can create situations to reflect any area of concern that needs to be bought to the

attention of users.

The details column provides a button to expand the row to show the details regarding a situation.

7.4. Call Trace

The Call Trace gadget provides the means to display the invocation flow of a particular business

transaction instance.

Service Overview

69

The business transaction is identifed by entering its globally unique identifier in the gadget’s

configuration.

7.5. Service Overview

The Service Overview gadget provides a graphical representation of the dependencies

(invocation/usage) between services. When displayed as part of a group of gadgets, the

representation does not contain any text - simply showing the status of each service (and link)

as a color (green being normal).

Chapter 7. Visualising the Ru...

70

If the gadget is enlarged, further details are included, such as the service and operation names,

aswell as metrics being available by hovering over the item of interest.

When a situation is reported against a particular service or operation, a red dot will be displayed

on that component which can be used to view some of the situations (if multiple - for a full list,

the user should see the Situations gadget).

Chapter 8.

71

Chapter 8. Managing The

Infrastructure

8.1. Managing the Activity Collector

The Activity Collector mechanism is responsible for collecting activity event information from within

a particular execution environment and reporting it as efficiently as possible to the Activity Server.

This section explains how different Activity Collector implementations may be administered.

8.1.1. Activity Collector

Object Name: overlord.rtgov.collector:name=ActivityCollector

The activity collector has the following configuration properties:

Property Description

CollectionEnabled A boolean property that can be used to

enable or disable activity collection within the

server.

8.1.2. Activity Logger

Object Name: overlord.rtgov.collector:name=ActivityLogger

This component uses a batching capability to enable the information to be sent to the Activity

Server as efficiently as possible. This mechanism has the following configuration properties:

Property Description

MaxUnitCount The maximum number of activity units that

should be batched before sending the group

to the Activity Server.

MaxTimeInterval The maximum amount of time (in

milliseconds) before sending the batch of

events to the server.

The maximum number of items takes precedence, so if it is reached before the defined interval,

then the events will be sent to the server.

If the collector is running within a JEE environment, then these properties can be set via a JMX,

e.g. using the JConsole:

Chapter 8. Managing The Infra...

72

The component also provides a read-only property:

Property Description

PendingActivityUnits This value indicates how many logger

messages are waiting to be sent to the

server. This can be used to guage how busy

the collector is, and whether it is getting

backed up.

8.2. Managing the Event Processor Networks

There are two aspects to managing the Event Processor Network mechanism, the manager

component and the networks themselves. This section will outline the management capabilities

associated with both.

8.2.1. Event Processor Network Manager

Object Name: overlord.rtgov.networks:name=EPNManager

The Event Processor Network Manager is the component responsible for registering and

initializing the Event Processor Networks within a containing environment.

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the

attributes that are available:

Event Processor Networks

73

Attribute Description

NumberOfNetworks This attribute defines the number of networks

registered in the manager.

8.2.2. Event Processor Networks

Object Name: overlord.rtgov.networks:name=<name>,version=<version>

When a network is registered, if within a JEE environment, it will also be registered as a managed

bean, and therefore available via JMX. Each network provides the following attributes:

Attribute Description

LastAccessed When the network was last used to process

an event. This can be used to determine

when it is safe to remove/unregister a

network.

Name The name of the network.

Version The version of the network.

For example, using the JConsole:

Chapter 8. Managing The Infra...

74

8.3. Managing the Active Collections

There are two aspects to managing the Active Collections mechanism, the manager component

and the collections themselves. This section will outline the management capabilities associated

with both.

8.3.1. Active Collection Manager

Object Name: overlord.rtgov.collections:name=CollectionManager

The Active Collection Manager is the component responsible for registering and initializing the

Active Collection Sources within a containing environment.

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the

attributes that are available:

Attribute Description

HouseKeepingInterval The number of milliseconds between each

house keeping cycle. The house keeping

refers to removing items from collections

if they are either expired, or the maximum

number of elements in the collection has been

reached.

8.3.2. Active Collections

Object Name: overlord.rtgov.collections:name=<ActiveCollectionSourceName>

When a source is registered resulting in an Active Collection being created, if within a JEE

environment, the Active Collection will also be registered as a managed bean, and therefore

available via JMX. Each collection provides the following attributes:

Attribute Description

HighWaterMark If the number of items in the collection

reaches this value, then a warning will be

issued. If zero, then does not apply.

ItemExpiration The number of milliseconds before an item

in the collection should be removed. If zero,

then does not apply.

MaxItems The maximum number of items that should be

in the collection. If zero, then does not apply.

Name The name of the Active Collection.

Size The number of items in the collection.

For example, using the JConsole:

Active Collections

75

76

	Runtime Governance: User Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. JBoss Application Server (or JBoss EAP)
	2.1.1. Install
	2.1.2. Configuration
	2.1.2.1. Users
	2.1.2.2. Properties
	2.1.2.3. Database
	2.1.2.4. Caching

	2.1.3. Uninstall

	Chapter 3. Reporting Activity Information
	3.1. Integrated Activity Collector
	3.1.1. Supported Environments
	3.1.2. Information Processor
	3.1.2.1. Defining the Information Processors
	3.1.2.2. Registering the Information Processors

	3.1.3. Activity Validation
	3.1.3.1. Defining the Activity Validators
	3.1.3.2. Registering the Activity Validators

	3.2. Reporting and Querying Activity Events via REST
	3.2.1. Reporting Activity Information
	3.2.2. Querying Activity Events using an Expression
	3.2.3. Retrieving an Activity Unit
	3.2.4. Retrieve Activity Events associated with a Context Value

	Chapter 4. Analyzing Events
	4.1. Configuring an Event Processor Network
	4.1.1. Defining the Network
	4.1.1.1. Subscription
	4.1.1.2. Node

	4.1.2. Registering the Network
	4.1.2.1. JEE Container

	4.1.3. Supporting Multiple Versions

	4.2. Event Processors
	4.2.1. Drools Event Processor
	4.2.2. JPA Event Processor
	4.2.3. Mail Event Processor
	4.2.4. MVEL Event Processor
	4.2.5. Supporting Services
	4.2.5.1. Cache Manager

	4.3. Predicates
	4.3.1. MVEL Predicate

	Chapter 5. Accessing Derived Information
	5.1. Configuring Active Collections
	5.1.1. Defining the Source
	5.1.1.1. Scripts
	5.1.1.2. Derived Active Collections
	5.1.1.3. Active Change Listeners
	5.1.1.4. Factory

	5.1.2. Registering the Source
	5.1.2.1. JEE Container

	5.2. Presenting Results from an Event Processor Network
	5.3. Publishing Active Collection Contents as JMX Notifications
	5.4. Querying Active Collections via REST
	5.5. Pre-Defined Active Collections
	5.5.1. ServiceResponseTimes
	5.5.2. Situations
	5.5.3. ServiceDefinitions
	5.5.4. Principals

	Chapter 6. Available Services
	6.1. Call Trace
	6.2. Report Server
	6.2.1. Creating and deploying a report definition
	6.2.1.1. Registering the Report

	6.2.2. Generating an instance of the report
	6.2.3. Providing a custom Business Calendar

	6.3. Service Dependency
	6.3.1. How to customize the severity levels

	6.4. Situation Manager
	6.4.1. Ignoring situations related to a subject
	6.4.2. Observing situations related to a subject

	Chapter 7. Visualising the Runtime Governance Information
	7.1. Accessing the Runtime Governance UI
	7.2. Response Time
	7.3. Situations
	7.4. Call Trace
	7.5. Service Overview

	Chapter 8. Managing The Infrastructure
	8.1. Managing the Activity Collector
	8.1.1. Activity Collector
	8.1.2. Activity Logger

	8.2. Managing the Event Processor Networks
	8.2.1. Event Processor Network Manager
	8.2.2. Event Processor Networks

	8.3. Managing the Active Collections
	8.3.1. Active Collection Manager
	8.3.2. Active Collections

