Runtime Governance:
User Guide

by Gary Brown (Red Hat)

T O V7= VAT 1

b [1S3 = 11 - A o o PP 3
2.1. IBOSS APPIICALION SEIVEL ...iiiiiieiiii ettt e 3

b 0 N 1 - 1 PSP 3

2.1.2. CONFIQUIALION ..eettieiiiti ettt e s 3

2,130 UNINSTAIL coeene e 5

3. Reporting Activity INfOrmMationcoouiiiiiiii e 7
3.1. Embedded Activity COIECIONiiiiiicii e e e e 7
3.1.1. Execution ENVIFONMENTScouuiiiiiiiiiiee e e e e e 7

3.1.2. ACHVILY INTEICEPION .vuniiii i e e e e aans 8

3.1.3. INfOrmMation PrOCESSOKcvuiiiiiieie et eaaas 11

3.2. Reporting and Querying Activity Events via RESTcccoociiiiiiiiiininceeen, 19
3.2.1. Reporting Activity INfOrmationcoooeiiiiiiiiiiii e 19

3.2.2. Querying Activity Events using an EXPressioncccovvvvieeviinneeineeineenn 20

3.2.3. Retrieving an ACHIVItY UNItoviiiiiiiii e 21

3.2.4. Retrieve Activity Events associated with a Context Value 21

4. ANAIYZING EVENTS ..oiiiiiiii ittt et 23
4.1. Configuring an Event Processor NetWOTKccccuuieiiiiiiiiiieiii e 23
4.1.1. Defining the NEetWOIKuiiiiiii e 23

4.1.2. Registering the NetWOrkcociiiiiiiiiii e 28

4.1.3. Supporting MUltiple VErSIONSocoouuiiiiiiiiiieie e 30

4.2, EVENE PrOCESSOIS ..ottt ettt et e e e e e an s 30
4.2.1. Drools EVENt PrOCESSON ...uoviiiiiiie ettt e e e e 30

4.2.2. MVEL EVENE PrOCESSOI ...cuuiiiiieeiieiee e e e e e e ees 32

4.2.3. SUPPOITING SEIVICES ...uuiieiiiieiiii ettt et e e e s 32

G T o =T o= (= PP 33
4.3.1. MVEL PrediCatecc..oiiiiiiiiiei ettt e e e e et e e e 34

5. Accessing Derived INfOrmationccooouiiiiiiiiii e 35
5.1. Configuring Active COlELIONSuiiiiiiiieiiii e 35
5.1.1. Defining the SOUICEcoviiiiiii e e 35

5.1.2. Registering the SOUICEuiiiiiiiiiieiiii e 41

5.2. Presenting Results from an Event Processor Networkccceeeveiiiiiiiiieeinneennnn. 43

5.3. Publishing Active Collection Contents as JMX Notificationsccc.cccevevivnennn... 44

5.4. Querying Active Collections via RESTc.ccciiiiiiiiiii e 46

5.5. Pre-Defined Active COlIECHIONSovvuniiiiieii e 47
5.5.1. ServiceRESPONSETIMESuuiiiiieii i e e e e e e e e eees 47

5.5.2. SIUALIONS .. e e 48

5.5.3. ServiceDefiNItIONScoiiuiiiiiii i 49

B5.5.4. PIINCIPAIS ..uiiiii e 50

6. AVAIIADIE SEIVICES ..ouiiiiiiii it 51
L0 O | I = Vo - PP 51

6.2. SErviCe DEPENUENCYuiiiiiiiiii et e e e e e aaas 51
6.2.1. How to customize the color codingcccovieiiiiiiiiiiiii e 51

7. Managing The INfrastrUCTUIEcoouiiiii e e 53

Runtime Governance: User Guide

7.1. Managing the ACtiVity COIECIONcoouuiiiiiii e 53
7.1.1. Batched Activity COlECIOruuiiiiieiii e 53
7.2. Managing the Event Processor NEtWOrKScocuuiiiiiiiiiiiiiiie e 54
7.2.1. Event Processor Network Managercoceuuviviiiieiiieeiiiiecieeeineeeiee e 54
7.2.2. Event Processor NEtWOIKSoiviiiiiiiieii e e 54
7.3. Managing the Active COIlECIONSccouiiiiiiii e 55
7.3.1. Active Collection MaNAGETccuuuiiiiiiiieeeiii e 55
7.3.2. ACHIVE COlIECLIONSviiiiiiii i 56

Chapter 1.

Chapter 1. Overview

This section provides an overview of the Runtime Governance architecture.

The architecture is separated into four distinct areas, with components that bridge between these
areas:

 Activity Collector - this component is optional, and can be embedded within an executing
environment to manage the collection of information

« Activity Server - this component provides a store and query API for activity information. If not
using the Activity Collector, then activity information can be reported directly to the server via
a suitable binding (e.g. REST).

« Event Processor Network - this component can be used to analyse the activity information.
Each network can be configured with a set of event processing nodes, to filter, transform and
analyse the events, to produce relevant rules.

» Active Collection - this component is responsible for maintaining an active representation of
information being collected. Ul components can then access this information via REST services
to present the information to users (e.g. via gadgets)

This document will explain how a user can configure these components to work together to build
a Runtime Governance solution to realtime monitoring of executing business transactions.

Chapter 2.

Chapter 2. Installation

This section will describe how to install Overlord Runtime Governance in different environments.

2.1. JBoss Application Server

This section describes how to install Overlord Runtime Governance into the JBoss Application
Server.

2.1.1. Install

Download the latest release from the Overlord Runtime Governance website, selecting the
distribution specific to JBoss AS. Then unpack the distribution into a suitable location.

Make sure that the JBOSS_HOME environment variable is set to the root folder of the JBoss AS
installation.

The final step is to perform the installation using maven. You will need maven 3.0.4 or higher, and
can be downloaded from here: http://maven.apache.org/download.html

To do the installation, use the following command from the root folder of the installation:
m/n install [-Dtype=<installation-type>]

The installation-type value can be:

Value Description

server This will result in the full server configuration
being installed into the server. This is the
default value.

restc This will result in only the activity collector
functionality being installed, using a RESTful
client to communicate with a remote Runtime
Governance server.

2.1.2. Configuration

The configuration for the Runtime Governance capability within a JBoss AS environment can be
found in the file $JBOSS_HOVE/ st andal one/ confi gur ati on/ overl ord-rtgov. properties. The
particular properties of interest will depend upon the installation type.

2.1.2.1. "server" Installation Type

When installing the full Runtime Governance server, modification to the configuration will generally
only be necessary if running in a clustered environment and/or wishing to use a particular
database. The default installed environment is intended to work "out of the box", and uses an in-
memory H2 database.

http://maven.apache.org/download.html

Chapter 2. Installation

However, specific technologies used in the Activity Server, Event Processor Network or Active
Collection modules may need to use different configuration properties to work correctly within a
clustered environment. More details will be provided in sections discussing those technologies,
however here we will present the common changes that may be required.

Database
The database is defined by the configuration in two places:

(i) The datasource is configured in the $JBOSS_HOME/ st andal one/ depl oyment/ over| or d-
rtgov/rtgov-ds. xm .

(i) Properties supplied to the Entity Manager are configured in the over | ord-rt gov. properties
file.

Caching

The EPN and Active Collection mechanisms both have the ability to make use of caching provided
by infinispan. When running the AS7 server in clustered mode (i.e. with st andal one-full -
ha. xm), the server provides a default clustered cache container, which is referenced in the
infinispan.container property in the overl ord-rtgov. properties file. Simply uncomment this
property to enable the EPN and Active Collection Source configurations that do not explicitly
provide a container JNDI name, to make use of this default clustered cache container.

However, to make sure the individual named caches are clustered correctly, it is necessary to
add an entry for each cache into the st andal one-f ul | - ha. xnl file. As an example, the following
cache entry for the "Principals" cache has been defined, for use with the Policy Enforcement
example:

<cache-cont ai ner nanme="cluster" aliases="ha-partition" default-
cache="defaul t">
<transport | ock-ti meout="60000"/>
<replicat ed- cache nane="defaul t" node="SYNC'
bat chi ng="true" >
<l ocki ng i sol ati on=" REPEATABLE READ'/ >
</replicated-cache>

<I-- Configuration for Runtinme Governance caches -->

<repl i cat ed- cache nane="Princi pal s" node="SYNC" >
<l ocki ng i sol ati on=" REPEATABLE READ'/ >
<transaction node="FULL_XA" | ocki ng="PESSI M STI C"'/ >
</replicated-cache>
</ cache- cont ai ner >

2.1.2.2. "restc" Installation Type

This installation type is used to configure an execution environment that will be sending its activity
information to a remote Runtime Governance server using REST.

Uninstall

Before being able to use this Runtime Governance client, it will be necessary to configure the
serverURL property inthe over | ord-rt gov. properti es file, to point to the Runtime Governance
server.

2.1.3. Uninstall

To uninstall, simply perform the following command in the root folder of the installation, ensuring
that the JBOSS_HOME environment variable refers to the root location of the JBoss AS
environment:

mvn cl ean

Chapter 3.

Chapter 3. Reporting Activity
Information

There are two ways in which activity information can be collected for further processing by the
Runtime Governance server.

1. Integrating an activity collector into the execution environment. This will intercept activities and
automatically report them to the Runtime Governance server.

2. Manually report the activity information to the Runtime Governance server through a publicly
available API (e.g. REST service)

This section will explain how to use both approaches.

3.1. Embedded Activity Collector

3.1.1. Execution Environments
This section describes how activities can be collected from different execution environments.

3.1.1.1. SwitchYard

To instrument a switchyard application, that is deployed as a war, is simply a case of including a
maven dependency and configuring a manifest property within the built war file.

The maven dependency added to the pom.xml for the SwitchYard project is:

<dependency>
<groupl d>or g. over| ord.rtgov.integration</groupl d>
<artifactld>rtgov-sw tchyard</artifactld>
<versi on>${rtgov. versi on}</version>

</ dependency>

and the following build plugin, to include the dependency between the SwitchYard application and
the Overlord Runtime Governance infrastructure:

<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<I-- Java EE 6 doesn't require web.xm , Maen needs to
catch up! -->

<fai | OnM ssi ng\WebXm >f al se</fai | OnM ssi ng\WebXm >

Chapter 3. Reporting Activity...

<webResour ces>
<resour ce>
<di rectory>target/sw tchyard_xm </directory>
</resource>
</ webResour ces>
<ar chi ve>
<mani fest Entri es>
<Dependenci es>depl oynent . over | ord-rt gov. war </
Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

3.1.2. Activity Interceptor

The Activity Interceptor mechanism provides the means to install event processing capabilities
within the activity collection environment (i.e. co-located with the execution of the business
transaction).

The main reason for performing analysis of the activity events at this stage in the runtime
governance lifecycle is to enable the analysis to potential block the business transaction. For an
example of such a case, please see the synchronous policy sample.

3.1.2.1. Defining the Activity Interceptors

The Activity Interceptor can be defined as an object model or specified as a JSON representation
for packaging in a suitable form, and subsequently de-serialized when deployed to the governed
execution environment.

The following is an example of the JSON representation of a list of Activity Interceptors. This
particular example is from the synchronous policy sample:

[{
"nane" "RestrictUsage",
"version" : "1",
"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . \WELPr edi cat e",
"expression" : "event instanceof

org.overlord.rtgov. activity. nodel . soa. Request Recei ved && event. servi ceType
== \"{urn:sw tchyard-qui ckstart-deno: orders: 0. 1. 0} Or der Service\""

H

"event Processor" : ({
"@lass" : "org.overlord.rtgov. ep. nvel . WELEvent Processor",
"script" : "VerifylLastUsage. nmvel ",
"services" : {

"CacheManager" : {

Activity Interceptor

u@l assu
"org.overlord. rtgov. ep.service.infinispan.!|nfini spanCacheManager"

}

}
}

This example illustrates the configuration of a single Activity Interceptor with the top level elements:

Field Description

name The name of the Activity Interceptor.

version The version of the Activity Interceptor.

If multiple versions of the same named
Activity Interceptor are installed, only the
newest version will be used. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

predicate The optional implementation of the
org.overlord. rtgov. ep. Predi cate
interface, used to determine if the activity
event is relevant and therefore should be
supplied to the event processor

eventProcessor The implementation of the

org.overlord. rtgov. ep. Event Processor
interface, that is used to analyse the activity
event

When comparing versions, for example when determining whether a newly deployed Activity
Interceptor has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

3.1.2.2. Registering the Activity Interceptors

JEE Container

The Activity Interceptors are deployed within the JEE container as a WAR file with the following
structure:

warfil e

Chapter 3. Reporting Activity...

I

| - META- | NF

| | - beans. xm

I

| - VEB- | NF

| | -cl asses

| [| -ai.json

| | | - <cust om cl asses/resour ces>
I I

| [-1ib

| | -ai -1 oader-jee.jar

| | -<additional |ibraries>

The ai . j son file contains the JSON representation of the Activity Interceptor configuration.
The ai -1 oader -j ee. j ar acts as a bootstrapper to load and register the Activity Interceptors.

If custom classes are defined, then the associated classes and resources can be defined in the
VEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"

xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupld>....</groupld>

<artifactld>. ...</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenment </

groupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. versi on}</versi on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<groupl d>org. overlord. rtgov. acti vi ty- managenent </
groupl d>

<artifactld>ai-|oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>

10

Information Processor

</ dependency>
</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. ... </fi nal Name>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai | OnM ssi ng\WebXni >f al se</
fail OnM ssi ng\WebXm >
<ar chi ve>
<mani fest Entri es>

<Dependenci es>depl oynent . over| ord-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

3.1.3. Information Processor

To enable the Runtime Governance infrastructure, and the user policies/rules that are defined
within it, to make the most effective use of the activities that are reported, it is necessary to process
certain events to extract relevant information for use in:

« correlating activity events to a particular business transaction instance
« highlighting important properties that may need to be used in business policies

It is also important to control what information is distributed with the actvity events, for both size
(i.e. performance) and security reasons. By default information content should not be distributed,
unless an information processor has been defined to explicitly indicate how that information should
be represented (if at all) within the activity event.

This section explains how information processors can be configured and deployed along side the
business applications they are monitoring.

11

Chapter 3. Reporting Activity...

3.1.3.1. Defining the Information Processors

The Information Processor can be defined as an object model or specified as a JSON
representation for packaging in a suitable form, and subsequently de-serialized when deployed
to the governed execution environment.

The following is an example of the JSON representation of a list of Information Processors. This
particular example accompanies the Order Management sample:

[{

"name": " Or der Managenent | P",
"version":"1",
"typeProcessors": {
"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} submi t Order": {
"contexts":[{
"type":"Conversation",
"eval uator": {
"type":"xpath",
"namespaces”: {
"orders":"urn:swtchyard-
qui ckstart -deno: orders: 1. 0"
b
"expression":"/orders: submt O der/
order/orderld"

H,
"properties":[{
"nane": " cust oner",
"eval uator": {
"type":"xpath",
"namespaces”: {
"orders":"urn:swtchyard-
qui ckstart -deno: orders: 1. 0"
},
"expression":"/orders: submt Order/
order/ custoner"

}
h

"java:org.sw tchyard. qui ckstarts. denps. orders. O der Ack": {
"contexts":[{
"type":"Conversation",
"eval uat or": {
"type":"nvel ",
"expression":"orderld"

H,
"properties":[{

name": "cust omer",

12

Information Processor

"eval uator": {
"type" : n nvel " ,
"expression":"custoner"

}
A
"name": "total "
"eval uat or": {
"type":"nvel ",
"expression":"total "
}
}

h

"{urn:sw tchyard-qui ckstart-denp: orders: 1. 0} nekePaynent " : {
"properties":[{
"nanme": "cust oner",
"eval uat or": {
"type":"xpath",
"nanmespaces": {
"orders":"urn:swtchyard-

qui ckstart - denmo: orders: 1. 0"

H

"expression":"/orders: makePaynent/

paynent / cust oner "

A

"nane": "anmount"
"eval uat or": {
"type":"xpath",
"nanmespaces": {
"orders":"urn:swtchyard-

qui ckstart - deno: orders: 1. 0"

h

"expression":"/orders: makePaynent /

paynent / anount "

}
H

"java: org.sw tchyard. qui ckstarts. denps. orders. Recei pt": {
"properties”:[{
"nane": "cust oner",
"eval uator": {
"type":"nmvel ",
"expression":"custoner"

A

"nane": "anmount"

"eval uat or": {
"type":"nvel ",
"expression":"anount"

13

Chapter 3. Reporting Activity...

}
H

"java: org.sw tchyard. qui ckstarts. denps. orders. |t enNot FoundExcepti on": {
"script":{
"type":"nvel ",
"expression":"activity.fault =
\"1tem\ot Found\ ""

}

This example illustrates the configuration of a single Information Processor with the top level
elements:

Field Description

name The name of the Information Processor.

version The version of the Information Processor.

If multiple versions of the same named
Information Processor are installed, only the
newest version will be used. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

typeProcesors The map of type processors - one per type,
with the type name being the map key.

When comparing versions, for example when determining whether a newly deployed Information
Processor has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

Type Processor

The type processor element is associated with a particular information type (i.e. as its key). The
fields associated with this component are:

Description

contexts The list of context evaluators.

14

Information Processor

Field Description
properties The list of property evaluators.
script An optional script that is used to do any other

processing that may be required.

transformer An optional transformer that determines how
this information type will be represented
within an activity event.

Context Evaluator

The fields associated with the Context Evaluator component are:

Field Description

type The context type, e.g. Conversation, Endpoint
or Message.

expression The expression evaluator used to derived the

context value. See further down for details.

optional Optional field that indicates whether the value
being extracted by the expression is optional.
The default is false. If a value is not optional,
but the expression fails to locate a value, then
an error will be reported

Property Evaluator

The fields associated with the Property Evaluator component are:

Field Description
name The property hame being initialized.
expression The expression evaluator used to derive the

property value. See further down for details.

optional Optional field that indicates whether the value
being extracted by the expression is optional.
The default is false. If a value is not optional,
but the expression fails to locate a value, then
an error will be reported

Expression Evaluator

In the context and property evaluator components, they reference an expression evaluator that is
used to derive their value. The expression evaluator has the following fields:

Field Description

type The type of expression evaluator to use.
Currently only support mvel or xpath.

1

(6]

Chapter 3. Reporting Activity...

Field Description

‘ expression ‘ The expression to evaluate. ‘

These expressions operate on the information being processed, to return a string value to be
applied to the appropriate context or property.

Script

The script field of the Type Processor has the following fields:

Description

type The type of script evaluator to use. Currently
only support mvel.

expression The expression to evaluate.

The MVEL script evaluator is supplied two variables for its use:

« information - The information being processed
* activity - The activity event

An example of how this script can be used is shown in the example above, associated with the
ItemNotFoundException. In this case, the message on the wire does not carry the fault name, so
the information processor is used to set the fault field on the activity event.

Transformer

The transformer field of the Type Processor has the following fields:

Description

type The type of transformer to use. Currently
support serialize and mvel.

The serialize transformer does not take any other properties. It simply attempts to convert the
representation of the information into a textual form for inclusion in the activity event. So this
transformer type can be used where the complete information content is required.

The mvel transformer takes the following additional fields:

The MVEL transformer script is supplied the following variable for its use:

Description

expression The mvel expression to transform the
supplied information.

The MVEL transformer is supplied the following variable for its use:

16

Information Processor

« information - The information being processed

For example, to include the content of the submitOrder message:

"typeProcessors": {
"{urn:sw tchyard-qui ckstart-denn: orders: 1. 0} submit Order": {
"contexts":[{
"type":"Conversation",
"eval uat or": {
"type":"xpath",
"nanmespaces": {
"orders":"urn:swtchyard-
qui ckstart - denmo: orders: 1. 0"

I
"expression":"/orders: subm t Order/
order/orderld"

H
"properties":[{
"nane": "custoner",
"eval uat or": {
"type":"xpath",
"nanmespaces": {
"orders":"urn:swtchyard-
qui ckstart - denmo: orders: 1. 0"

I
"expression":"/orders: subm t Order/
order/ cust onmer"

H
"transfornmer":{
"type":"serialize"

H

3.1.3.2. Registering the Information Processors
JEE Container

The Information Processors are deployed within the JEE container as a WAR file with the following
structure:

warfil e

I

| - META- | NF

| | - beans. xn
I

| - VEB- | NF

| | -cl asses

17

Chapter 3. Reporting Activity...

[| -ip.json

| | - <cust om cl asses/ r esour ces>
I

I

| -ip-1oader-jee.jar
| -<addi tional |ibraries>

The i p. j son file contains the JSON representation of the Information Processor configuration.
The i p- | oader - j ee. j ar acts as a bootstrapper to load and register the Information Processors.

If custom classes are defined, then the associated classes and resources can be defined in the
WEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"

xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>. ...</artifactld>

<versijon>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenment </

gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. versi on} </ versi on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>org. overl ord. rtgov. acti vi t y- managenent </
groupl d>

<artifactld>i p-1oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>
</ dependency>

</ dependenci es>

</ proj ect >

18

Reporting and Querying Activity Events via REST

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. ... </ fi nal Nanme>
<pl ugi ns>
<pl ugi n>

<artifact!| d>maven-war - pl ugi n</artifactl d>
<confi gurati on>
<fai | OnM ssi ng\WebXnl >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani f est Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

3.2. Reporting and Querying Activity Events via REST

This section explains how activity information can be reported to, and queried from, the Activity
Server via a RESTful service.

3.2.1. Reporting Activity Information

POST request to URL: <host >/ overl ord-rtgov/activity/store

The request contains the list of ActivityUnit objects encoded in JSON. For example,

[{
"id":"Testldl",

"activityTypes":[{
"type": " Request Sent ",
"context":[{

"val ue":"12345"

oA
"val ue":"abc123",
"type":"Endpoint"
oA
"val ue": " ABC123"
"type": " Message"
.

19

Chapter 3. Reporting Activity...

"content":"....",
"serviceType":"{http://service}OderService",
"operation":"buy",
"faul t":"M/Faul t",
"messageType": "{http://nmessage} O der Request ",
"tinmestanp": 1347028592880
oA
"type": " ResponseRecei ved",
"context":[{
"val ue": "12345"
oA
"val ue": " ABC124",
"type":"Message"
.
"content":"....",
"serviceType":"{http://service}O derService",
"operation":"buy",
"fault": " Qut OF St ock",
"messageType": "{http://nmessage} Qut O St ock",
"repl yTol d": " ABC123",
"tinmestanp": 1347028593010
.
"origin":{
"host": " Sat urn",
"port":"8010",
"principal":"Fred",
"node": " Sat ur n1",
"thread": " Thread- 1"

3.2.2. Querying Activity Events using an Expression

POST request to URL: <host >/ over| ord-rtgov/activity/query

The request contains the JSON encoding of the Query Specification, which has the following
properties:

Property Description

id Optionally specifies the activity unit id that is
required.
fromTimestamp Optionally specifies the start date/time for the

activity units required. If not specified, then
the query will apply to activity units from the
first one recorded.

20

Retrieving an Activity Unit

Property Description

toTimestamp Optionally specifies the end date/time for the
activity units required. If not specified, then
the query will relate up to the most recently
recorded activity units.

expression An optional expression that can be used to
specify the activity events of interest.

format Optionally specifies the format of the
expression. The value must be supported by
the configured activity store.

The response contains a list of ActivityType objects encoded in JSON, which would be similar in
form to the example shown above when recording a list of activity units.

3.2.3. Retrieving an Activity Unit

GET request to URL: <host >/ overl ord-rtgov/activity/unit?i d=<unitld>

The <unitld> represents the identifier associated with the ActivityUnit that is being retrieved.
3.2.4. Retrieve Activity Events associated with a Context Value

GET request to URL: <host >/ overl ord-rtgov/activity/events?cont ext =<i dentifier>

The <identifier> represents the correlation value associated with the ActivityType(s) that are being
retrieved.

21

22

Chapter 4.

Chapter 4. Analyzing Events

4.1. Configuring an Event Processor Network

An Event Processor Network is a mechanism for processing a stream of events through a network
of linked nodes established to perform specific filtering, transformation and/or analysis tasks.

4.1.1. Defining the Network

The network can be defined as an object model or specified as a JSON representation for
packaging in a suitable form, and subsequently de-serialized when deployed to the runtime
governance server.

The following is an example of the JSON representation of an Event Processor Network. This
particular example defines the "out of the box" EPN installed with the distribution:

"nane" : "Overl ord- RTGov- EPN',
"version" : "1.0.0-SNAPSHOT",
"subscriptions" : [{
"nodeNane" : "SOAEvents",
"subject" : "ActivityUnits"
b
{
"nodeNane" : "ServiceDefinitions",
"subject" : "ActivityUnits"
Pl
"nodes" : [
{
"nane" : "SOAEvents",
"sour ceNodes" : [1,
"destinationSubjects" : ["SOAEvents"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor" : {
"@l ass"
"org.overlord. rtgov. content.epn. SOAActi vi tyTypeEvent Splitter"
b
"predicate" : null,
"notifications" : []
oA
"nane" : "ServiceDefinitions",
"sourceNodes" : [1,
"destinationSubjects" : [],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor" : {

23

Chapter 4. Analyzing Events

"@l ass"
"org.overlord. rtgov. content.epn. Servi ceDefinitionProcessor"
b
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subject” : "ServiceDefinitions"
bl
oA
"nane" : "Servi ceResponseTi nes",
"sour ceNodes" : ["ServiceDefinitions"],
"destinationSubjects" : ["ServiceResponseTi nes"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor"” : {
"@l ass"
"org.overlord. rtgov. content.epn. Servi ceResponseTi neProcessor"
H
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subj ect" : "Servi ceResponseTi nes"
bl

Another example of a network, used within one of the quickstarts is:

{
"name" : "AssessCreditPolicyEPN',
"version" : "1",
"subscriptions" : [{
"nodeNane" : "AssessCredit",
"subj ect” : "SOAEvents"
Pl
"nodes" : [
{
"nane" : "AssessCredit",
"sour ceNodes" : [],
"destinationSubjects" : [1,
"maxRetries" : 3,
"retrylnterval" : O,
"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. nvel . \ELPr edi cat e",
"expression" : "event.serviceProvider &% !event.request
&& event.serviceType == \"{urn: sw tchyard-qui ckstart-
deno: orders: 0. 1. 0} Order Servi ce\""
b

24

Defining the Network

"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELEvent Processor",
"script" : "AssessCredit.nmel",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. ep. service.infinispan.!|nfini spanCacheManager"
}
}

This example illustrates the configuration of a service associate with the event processor, as well
as a predicate.

The top level elements of this descriptior are:

Field Description

name The name of the network.

subscriptions The list of subscriptions associated with the
network, discussed below.

nodes The nodes that form the connected graph
within the network, discussed below.

version The version of the network. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final Any alpha,
numeric and symbols

When comparing versions, for example when determining whether a newly deployed EPN has
a higher version than an existing network with the same name, then initially the versions will
be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

4.1.1.1. Subscription

The subscription element is used to define a subject that the network is interested in, and the
name of the node to which the events from that subject should be routed.

This decoupled subscription approach enables multiple networks to register their interest in events
from the same subject. Equally multiple nodes within the same network could subscribe to the
same subject.

25

Chapter 4. Analyzing Events

The fields associated with this component are:

Field
‘ Subject

nodeName

Description
‘ The subject to subscribe to.

The name of the node within the network to
route the events to.

Reserved subjects

This is a list of the subjects that are reserved for Overlord’s use:

Subject

Purpose

ActivityUnits This subject is used to
publish events of the type
org.overlord.rtgov.activity.model.ActivityUnit,
produced when activity information is
recorded with the Activity Server.
4.1.1.2. Node

This element is used to define a particular node in the graph that forms the network, and has the

following fields:

Field

name

sourceNodes

Description
The name of the node.

A list of node names that represent the
source nodes, within the same network, that
this node receives its events from. Therefore,
if this list is empty, it means that the node

is a root node and should be the target of a
subscription.

destinationSubjects

maxRetries

retrylnterval

A list of inter-EPN subjects to publish any
resulting events to. Note: these subjects are
only of relevance to other networks.

The maximum number of times an event
should be retried, following a failure, before
giving up on the event.

The delay that should occur between retry
attempts - may only be supported in some
environments.

eventProcessor

Defines the details for the event processor
implementation being used. At a minimum,
the value for this field should define a @class
property to specify the Java class name for

Defining the Network

Field Description

the event process implementation to use.
Another general field that can be configured
is the map of services that can be used

by the event processor. Depending upon
which implementation is selected, the other
fields within the value will apply to the event
processor implementation.

predicate

This field is optional, but if specified will
define a predicate implementation. As with
the event processor, it must at a minimum
define a @class field that specifies the Java
class name for the implementation, with
any additional fields be used to initialize the
predicate implementation.

notifications

A list of naotifications. A notification entry

will define its type (explained below) and

the notification subject upon which the
information should be published. Unlike the
destinationSubjects described above, which
are subjects for inter-EPN communication,
these notification subjects are the mechanism
for distribution information out of the EPN
capability, for presentation to end-users
through various means.

Notify Types

The notify types field defines what type of notifications should be emitted from a node when
processing an event. The notifications are the mechanism used by potentially interested
applications to observe what information each node is processing, and the results they produce.

The possible values for this field are:

Field Description

Processed

This type indicates that a notification should
be created when an event is considered
suitable for processing by the node. An event
is suitable either if no predicate is defined, or
if the predicate indicates the event is valid.

Results

This type indicates that a notification should
be created for any information produced as
the result of the event processor processing
the event.

27

Chapter 4. Analyzing Events

Tip

Noatifications are the mechanism for making information processed by the Event
Processor Network accessible by interested parties. If a notity type(s) is not defined
for a node, then it will only be used for internal processing, potentially supplying
the processed event to other nodes in the network (or other networks if destination
subject(s) are specified).

4.1.2. Registering the Network

4.1.2.1. JEE Container

The Event Processor Network is deployed within the JEE container as a WAR file with the following
structure:

warfile

META- | NF
| - beans. xmn

VEB- | NF
| -cl asses
| | -epn.json
| | - <cust om cl asses/ resour ces>
I
I

-lib
| - epn-1 oader-jee.jar
| -<addi tional |ibraries>

The epn. j son file contains the JSON representation of the EPN configuration.

The epn-1oader-jee.jar acts as a bootstrapper to load and register the Event Processor
Network.

If custom predicates and/or event processors are defined, then the associated classes and
resources can be defined in the WEB- | NF/ cl asses folder or within additional libraries located in
the VEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<project xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupl d>

28

Registering the Network

<artifactld>. ...</artifactld>
<version>....</version>
<packagi ng>war </ packagi ng>
<nane>. ... </ nane>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<gr oupl d>or g. overl ord. rtgov. event - pr ocessor -
net wor k</ gr oupl d>
<artifactld>epn-core</artifactld>
<versi on>${rtgov. version}</version>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. overl ord. rtgov. event - processor -
net wor k</ gr oupl d>
<artifactld>epn-| oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>
</ dependency>

</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<fi nal Nane>sl| anoni t or - epn</ f i nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<f ai | OnM ssi ng\WebXni >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>

29

Chapter 4. Analyzing Events

</ bui | d>

4.1.3. Supporting Multiple Versions

Event Processor Networks define a version number that can be used to keep track of the evolution
of changes in a network.

When a network is deployed to a container, and used to process events, a newer version of
the network can be deployed along side the existing version to ensure there is continuity in the
processing of the event stream. New events presented to the network will be processed by the
most recent version, while events still being processed by a particular version of the network, will
continue to be processed by the same version - thus ensuring that changes to the internal structure
of the network do not impact events that are mid-way through being processed by the network.

The management features, discussed later in the User Guide, can be used to determine when an
older version of the network last processed an event - and therefore when an older version has
been inactive for a suitable amount of time, it can be unregistered.

4.2. Event Processors

Although custom event processors can be defined, there are some "out of the box"
implementations. These are discussed in the following sub-sections.

4.2.1. Drools Event Processor

The Drools Event Processor implementation
(org. overlord. rtgov. epn. drool s. Drool sEvent Processor) enables events to be processed
by a Complex Event Processing (CEP) rule. This implementation defines the following additional
fields:

Description

ruleName The name of the rule, used to locate the rule
definition in a file called "<ruleName>.drl".

An example of such a rule is:

i mport org.overlord.rtgov. activity.nodel.soa. Request Recei ved
i mport org.overlord.rtgov. activity.nodel.soa. ResponseSent

gl obal org.overlord.rtgov. ep. EPCont ext epc

decl are Request Recei ved
@ol e(event)
@i nestanmp(tinestanmp)
@xpi res(2n20s)

30

Drools Event Processor

end

decl are ResponseSent
@ol e(event)
@i nestanp(tinestanp)
@xpi res(2n20s)

end

rule "correl ate request and response"
when
$req : RequestReceived($id : nmessageld) from entry-point "Purchasing"
$resp : ResponseSent(replyTold == $id, this after[0,2nR20s] $req) from
entry-poi nt "Purchasing"
t hen

epc. | ogl nf o("REQUEST: "+$reqg+" RESPONSE: "+$resp);

java. util.Properties props=new java.util.Properties();
props. put ("request1d", $req.getMessageld());
props. put ("responsel d", $resp.get Messagel d());

| ong responseTi ne=$r esp. get Ti nest anp() - $r eq. get Ti nest anp() ;

epc. | ogDebug(" CORRELATION on id '"+$i d+"' response tinme "+responseTi ne);
props. put ("responseTi ne", responseTi ne);

epc. handl e(props);

end

This is an example of a rule used to correlate request and response events. When a correlation is
found, then a ResponseTime object is created and "forwarded" to the Event Processor Network
for further processing using the handle method.

The source of the events into the rule are named entry points, where the name relates to the
source node or subject that supplies the events.

The rule has access to external capabilities through the EPContext, which is defined in the
statements:

gl obal org.overlord.rtgov. ep. EPCont ext epc

which is used at the end of the above example to handle the result of the event processing (i.e.
to forward a derived event back into the network).

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the rule can either
throw an exception or return the exception as the result using the handle() method.

31

Chapter 4. Analyzing Events

*

4.2.2. MVEL Event Processor

A MVEL based Event Processor implementation
(org. overlord. rtgov. epn. mvel . MVELEvent Pr ocessor) enables events to be processed by a
MVEL script. This implementation defines the following additional fields:

Description

script The location of the MVEL script, which may
be relative to the classpath.

The script will have access to the following variables:

Variable Description

source The name of the source node or subject upon
which the event was received.

event The event to be processed.
retriesLeft The number of retries remaining.
epc The EP context

(org. overlord. rtgov. ep. EPCont ext),
providing some utility functions for use by
the script, including the handle method for
pushing the result back into the network.

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the script can return
the exception as the result using the handle() method.

4.2.3. Supporting Services

This section describes a set of supporting services available to some of the Event Processor
implementations. See the documentation for the specific Event Processor implementations for
information on how to access these services.

4.2.3.1. Cache Manager

Description

Predicates

The purpose of the Cache Manager service is to enable event processors to store and retrieve
information in named caches.

API
Method Description
<K,V> Map<K,V> getCache(String name) This method returns the cache associated

with the supplied name. If the cache does not
exist, then a null will be returned.

boolean lock(String cacheName, Object key) | This method locks the item, associated with
the supplied key, in the named cache.

Implementations
Embedded
Class nhame: or g. over | ord. rt gov. ep. servi ce. | nMenor yCacheManager

This class provides a transient in-memory implementation of the cache manager. This
implementation does not support locking, so will return true to all lock requests.

Infinispan
Class name: or g. over | ord. rt gov. ep. servi ce. i nfini span. I nfi ni spanCacheManager

This class provides an implementation based on Infinispan. The properties for this class are:

Property Description

container The optional JNDI name for the infinspan
container defined in the st andal one-
full.xm orstandal one-full-ha.xn file.

The container will be obtained in three possible ways.
(a) if the container is explicitly defined, then it will be used

(b) if the container is not defined, then a default container will be obtained from the $JB0SS_HOVE/
st andal one/ confi guration/overlord-rtgov. properties file for the infinispan.container

property.

(c) if no default container is defined, then an embedded cache manager will be created based
on the configuration obtained from the rt gov_i nfi ni span. xnl file contained in the over | ord-

rtgov.war.

4.3. Predicates

Although custom event processors can be defined, there are some "out of the box"
implementations:

33

Chapter 4. Analyzing Events

4.3.1. MVEL Predicate

A MVEL based Predicate implementation (org. overl ord. rtgov. epn. nvel . WELPr edi cat e)
enables events to be evaluated by a MVEL expression or script. This implementation defines the
following additional fields:

Description

expression The MVEL expression used to evaluate the
event.

script The location of the MVEL script, which may

be relative to the classpath.

&

The expression or script will have access to the following variables:

Variable Description

event The event to be processed.

34

Chapter 5.

Chapter 5. Accessing Derived
Information

5.1. Configuring Active Colletions

An Active Collection is similar to a standard collection, but with the ability to report change
notifications when items are inserted, updated or removed. The other main difference is that they
cannot be directly updated - their contents is managed by an Active Collection Source which acts
as an adapter between the collection and the originating source of the information.

This section will explain how to define an Active Collection Source and register it to indirectly
create an Active Collection.

5.1.1. Defining the Source

The source can be defined as an object model or specified as a JSON representation for packaging
in a suitable form, and subsequently de-serialized when deployed to the runtime governance
server.

The following is an example of the JSON representation that defines a list of Active Collection
Sources - so more than one source can be specified with a single configuration:

{

"@l ass"

"org.overlord.rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",
"name" : "Servi ceResponseTi nes"”,
"type" : "List",
"itenExpiration" : O,
"maxltens" : 100,
"subj ect” : "ServiceResponseTi nes”, /1

Attribute specific to the source inplenentation
"aggregationbDuration" : 1000,

"groupBy" : "serviceType + \":\" + operation + \":\" + fault",
"aggregationScript" : "AggregateServi ceResponseTi nme. nvel "
A

"@l ass"

"org.overlord.rtgov. active. col | ecti on. epn. EPNActi veCol | ecti onSour ce",
"nane" : "ServiceDefinitions",
“type" @ "Map",
"itenExpiration" : O,
"max| tens" : 100,
"subject” : "ServiceDefinitions",
"schedul edScript" : "TidyServiceDefinitions.nvel",
"schedul edl nterval " : 60000,

35

Chapter 5. Accessing Derived ...

"properties" : {
"maxSnapshots" : 5

h

"mai nt enanceScript" : "MintainServiceDefinitions. nmel"

Bodl
"@l ass"

"org.overlord. rtgov. active. col | ecti on. epn. EPNAct i veCol | ecti onSour ce",

nane "Situations",

"type" : "List",

"itenmExpiration" : 40000,

"maxl tems" : O,

"subject" : "Situations", [/

Attribute specific to the source inplenentation

"acti veChangelLi st eners"
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov: nane=Situations",
"descri ptionScript" "SituationDescription.nmel",
"insert TypeScript" : "SituationType. nvel "

bl

oA
"@l ass"

"org.overlord.rtgov. active. col |l ection. Acti veCol | ecti onSource",

nane "Principal s",
“type" : "Map",
"l azy" : true,
"visibility" : "Private",
"factory" : {
"@l ass"

"org.overlord.rtgov. active. col | ection.infinispan.I|nfinispanActiveCollectionFactory",

"cache" : "Principals"

This configuration shows the definition of two Active Collection Sources. The top level elements
for a source, that are common to all active collection sources, are:

Field Description

@class

This attribute defines the Java

class implementing the Active

Collection Source. This class must

be directly or indirectly derived from
org.overlord. rtgov. active. col | ection. Ac

name

The name of the source and also associated
Active Collection.

type

The type of active collection. The currently
supported values (as defined in the

36

tiveCol |l ecti onS

Defining the Source

Field Description

org.overlord.rtgov. active. col |l ection. Ac
enum are:

List (default)

Map

visibility

lazy

itemExpiration

The visibility of active collection, i.e.

whether accessible via the remote access
mechanisms such as REST. The currently
supported values (as defined in the
org.overlord. rtgov. active. col |l ection. Ac
enum are:

Public (default)

Private

Whether active collection should be created
on startup, or lazily instantiated upon first use.
The default is false.

If not zero, then defines the number of
milliseconds until an item in the collection
should expire (i.e. be removed).

maxltems

If not zero, defines the maximum number of
items that the collection should hold. If an
insertion causes the size of the collection to
increase above this value, then the oldest
item should be removed.

aggregationDuration

groupBy

aggregationScript

scheduledInterval

scheduledScript

The duration (in milliseconds) over which the
information will be aggregated.

An expression defining the key to be used to
categorize the information being aggregated.
The expression can use properties associated
with the information being aggregated.

The MVEL script to be used to aggregated
the information. An example will be shown in
a following sub-section.

The interval (in milliseconds) between the
invocation of the scheduled script.

The MVEL script invoked at a fixed interval to
perform routine tasks on the collection.

maintenanceScript

By default, events received by the active
collection source will be inserted into the

37

tiveColl ectionT

tiveColl ectionVi

Chapter 5. Accessing Derived ...

Field Description

associated active collection. If a MVEL
maintenance script is specified, then it will
be invoked to manage the way in which the
received information will be applied to the
active collection.

properties A set of properties that can be access by the
various scripts.

activeChangelListeners The list of active change listeners that

should be instantiated and automatically
registered with the Active Collection. The
listeners must be derived from the Java class
org.overlord.rtgov.active. col | ection. Abstract Acti veChatr

factory The optional factory for creating the
active collection, derived from the class
org.overlord.rtgov. acti ve. col |l ection. Acti veCol | ecti onFs

The additional attributes associated with the EPNAct i veCol | ecti onSour ce implementation will
be discussed in a later section.

5.1.1.1. Scripts

The aggregation script is used to (as the name suggests) aggregate information being provided
by the source, before being applied to the collection. The values available to the MVEL script are:

Variable Description

events The list of events to be aggregated.

The scheduled script is used to perform regular tasks on the active collection, independent of any
information being applied to the collection. The values available to the MVEL script are:

Variable Description

acs The active collection source.

acs.properties The properties configured for the active
collection source.

variables A map associated with the active collection
source that can be used by the scripts to
cache information.

The maintenance script is used to manage how new information presented to the source is applied
to the active collection. If no script is defined, then the information will be inserted by default. The
values available to the MVEL script are:

38

Defining the Source

Variable Description

acs The active collection source.

acs.properties The properties configured for the active
collection source.

key The key for the information being inserted.
May be null.

value The value for the information being inserted.

variables A map associated with the active collection

source that can be used by the scripts to
cache information.

An example script, showing how these variables can be used is:
i nt maxSnapshot s=acs. properties. get (" maxSnapshots");
snapshots = vari abl es. get ("snapshots");
if (snapshots == null) {

snapshots = new java.util.ArrayList();
vari abl es. put ("snapshot s", snapshots);

/'l Update the current snapshot
current Snapshot = vari abl es. get ("current Snapshot");
if (currentSnapshot == null) {

current Snapshot = new java. util.HashMap();
snapshot s. add(new j ava. util . HashMap(current Shapshot));
current Snapshot . cl ear ();
/'l Remove any snapshots above the nunber configured

whil e (snapshots. size() > naxSnapshots) {
snapshot = snapshots. renove(0);

/'l Merge snapshots
nmerged =
org.overlord.rtgov. anal ytics.service.util.ServiceDefinitionUtil.nmergeSnapshots(snapshots);

/1 Update existing, and renove definitions no |onger relevant
foreach (entry : acs.activeCollection) {

org.overlord.rtgov. anal ytics. servi ce. Servi ceDefinition sd=null;

i f (nerged. contai nsKey(entry. key)) ({

39

Chapter 5. Accessing Derived ...

acs. update(entry. key, nerged. get(entry. key));
} else {
acs.renove(entry. key, entry.val ue);

nmer ged. renove(entry. key) ;

/1 Add new definitions
for (key : nerged. keySet()) {
acs.insert (key, nerged.get(key));

This example shows the script accessing the Active Collection Source and its properties, as well
as accessing (and updating) the variables cache associated with the source.

5.1.1.2. Active Change Listeners

The activeChangelListeners element defines a list of Active Change Listener implementations that
will be instantiated and registered with the active collection.

The fields associated with this component are:

Description

@class The Java class that provides the
listener implementation and is
directly or indirectly derived from
org.overlord.rtgov. active. col |l ecti on. Abstract Acti veChal

The remaining attributes in the example above will be discussed in a subsequent section related
to reporting results via JIMX notifications.

5.1.1.3. Factory

The factory element defines an Active Collection Factory implementation that will be used to create
the active collection.

The fields associated with this component are:

Description

@class The Java class that provides the
factory implementation and is
directly or indirectly derived from
org.overlord.rtgov. active. col |l ection. Agti veCol | ecti onFe

The current list of factory implementations are defined below.

40

Registering the Source

Infinispan

The fields associated with the
org.overlord.rtgov. active. col l ection.infinispan.I|nfinispanActiveColl ectionFactory
component are:

Field Description

cache The name of the cache to be presented as an
Active Map.
container The optional JNDI name used to obtain the

cache container. If not defined, then the
default container will be obtained from the
infinispan.container property from over | or d-
rtgov. properti es file in the $JBOSS_HOVE/
st andal one/ confi gur ati on folder. If

the default container is not defined, then
cache details will be obtained from the
rtgov_infinispan. xn file contained within
the overl ord-rtgov. war.

5.1.2. Registering the Source

5.1.2.1. JEE Container

The Active Collection Source is deployed within the JEE container as a WAR file with the following
structure:

| -cl asses

[| -acs.j son

| | - <cust om cl asses/ resour ces>
I

I

-lib

| -acs- | oader-j ee.jar
| -<addi tional |ibraries>

The acs. j son file contains the JSON representation of the Active Collection Source configuration.

The acs-|oader-jee.jar acts as a bootstrapper to load and register the Active Collection
Source.

41

Chapter 5. Accessing Derived ...

If custom active collection source and/or active change listeners are defined, then the associated
classes and resources can be defined in the VEEB- | NF/ ¢l asses folder or within additional libraries
located in the VEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schenmalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupld>....</groupld>

<artifactld>. ...</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<name>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>org. over |l ord. rtgov. acti ve- queri es</ groupl d>
<artifactld>active-collection</artifactld>
<versi on>${rtgov. versi on}</versi on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>org. overlord. rtgov. acti ve-queri es</ groupl d>
<artifactld>acs-| oader-jee</artifactld>
<versi on>${rtgov. version}</version>

</ dependency>

</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord rtgov modules:

<bui | d>
<final Name>. ... </fi nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>

42

Presenting Results from an Event Processor Network

<f ai | OnM ssi ngWebXni >f al se</
fail OnM ssi ngWebXn >
<ar chi ve>
<mani fest Entri es>

<Dependenci es>depl oynent . over| ord-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

5.2. Presenting Results from an Event Processor
Network

As discussed in the preceding section, an Active Collection Source can be configured to obtain
information from an Event Processor Network, which is then placed in the associated Active
Collection. This section will explain in more detail how this can be done using the specific Active
Collection Source implementation.

{
"@l ass"
"org.overlord.rtgov. active. col | ecti on. epn. EPNAct i veCol | ecti onSour ce",
"nane" "Si tuations",
"type" : "List",
"itenmExpiration" : 40000,
"maxl tems" : O,
"subj ect" : "Situations",
"activeChangeli steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov: name=Situations",
"descriptionScript" : "SituationDescription.nvel",
"insert TypeScript" : "SituationType. nvel"
Pl
}

This configuration shows an example of an Active Collection Source
using the org.overlord.rtgov.active.collection.epn. EPNActi veCol | ecti onSource
implementation. The additional fields associated with this implementation are:

Description

subject The EPN subject upon which the information
has been published.

43

Chapter 5. Accessing Derived ...

An example Event Processor Network configuration that will publish information on the subject
(e.g. Situations) specified in the Active Collection Source configuration above is:

"nane" : "SLAMbni tor EPN',
"subscriptions" : [{
"nodeNane" : "SLAVi ol ati ons"
"subj ect" : "Servi ceResponseTi nes"
Pl
"nodes" : [
{
"name" : "SLAVi ol ati ons",
"sourceNodes" : [],
"destinationSubjects" : [],
"maxRetries" : 3,
"retrylnterval" : 0O
"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep.drools. Drool sEvent Processor ",
"rul eName" : "SLAViol ati on"
H
"predicate" : null
"notifications" : [{
"type" : "Processed",
"subject" : "SituationsProcessed"
oA
"type" : "Results",
"subject" : "Situations"
}l
}
]

"version" : "1"

5.3. Publishing Active Collection Contents as JMX
Notifications

[
{
"acti veChangelLi steners” : [{
"@l ass" : "org.overlord.rtgov. active.collection.jm. JMKNotifier",
"obj ect Nane" : "overl ord. sanpl e. sl anoni t or: nane=SLAVi ol ati ons",
"insert Type" : "SLAViol ati on"
Pl
}

44

Publishing Active Collection Contents as JMX Notifications

This configuration shows the use of the JMXNotifier active change listener implementation. This
implementation has the following additional fields:

Field Description

objectName The MBean (JMX) object name to be used to
report the notification.

descriptionScript The MVEL script that can be used to derive
the description field on the notification. If
not defined, then the information’s toString()
value will be used.

insertType The type field for the notification when
performing an insert.

insertTypeScript An optional MVEL script that can be used to
derive the type field for an insert.

updateType The optional type field for the notification
when performing an update.

updateTypeScript An optional MVEL script that can be used to
derive the type field for an update.

removeType The optional type field for the notification
when performing a removal.

removeTypeScript An optional MVEL script that can be used to
derive the type field for a remove.

The following JConsole snapshot shows this IMXNaotifier in action, reporting SLA violations from

the associated active collection:

45

Chapter 5. Accessing Derived ...

Connection Window Help

Java Monitoring & Management Console

Overview | Memory | Threads

Classes | VM Summary| MBeans |

B IMImplementation
P com.sun.management
B java.lang
P java.util.logging
P jboss.as
B jboss.jsr77
P jboss.jta
P jboss.modules
P jhoss.mse
P jhoss.ws
net.sf.ehcache
org.drools
org.drools.kbases
overlord.bam.collections
overlord.bam.collector
overlord.bam.networks
= overlord.sample.slamonitor

~ @ SLAViclations

= Attributes
ObjectMame

MNotifications[3]

-

vV v v v

rMNotification buffer

TimeStamp “T\.rpe

[t}

]GB[M essage
3

14:25:39:965 SLAViclation SLA violation 'Service exceeded maximum response time of 200 ms' on s... |.. [...
14:25:13:542 SLAViolation 2 |SLA violation 'Service exceeded maximum response time of 200 ms' ons... |.....
14:25:12:505 SLAViolation 1 |SLA violation 'Service exceeded maximum response time of 200 ms' on s... .. [...

[§ub5cribel [gnsubscribel [glearl

l |2 pid: 3163 jboss-modules. jar -mp /home/gbrown/testing/overlord/i... l

5.4. Querying Active Collections via REST

The Active Collections configured within the runtime governance server can be accessed via
a REST service, by POSTing a query specification to the URL: <host >/ over| ord-rt gov/ acm

query

The Query Specification is comprised of the following information:

Attribute Description

collection

The active collection name.

predicate

Optional. If defined with the parent name,
then can be used to derive a child collection
that filters its parent’s content (and
notifications) based on the predicate.

parent

Optional. If deriving a child collection, this
field defines the parent active collection from
which it will be derived.

maxltems

Defines the maximum number of items
that should be returned in the result, or 0 if
unrestricted.

46

Pre-Defined Active Collections

Attribute Description

truncate If a maximum number of items is specified,
then this field can be used to indicate whether
the Start or End of the collection should be
truncated.

style Allows control over how the results are
returned. The value Normal means as

it appears in the collection. The value
Reversed means the order of the contents
should be reversed.

The collection field defines the name of the collection - either an existing collection name, or if
defining the predicate and parent fields, then this field defines the name of the derived collection
to be created.

The predicate field refers to a component that implements a predicate interface - the
implementation is defined based on the type field. Currently only a MVEL based implementation
exists, with a single field expression defining the predicate as a string.

For example,
{
"parent" : "ServiceResponseTi ne",
"maxl tenms" : 5000,
"col lection" : "OrderService",
"predicate" : {
"type" : "MVEL",
"expression" : "serviceType == \"{urn:sw tchyard-qui ckstart -
deno: orders: 0.1. 0} Order Service\" && operation == \"submitOder\""
H
"truncate" : "End",
"style" : "Reversed"
}

If the Active Collection Manager (ACM) does not have a collection named OrderService, then it
will use the supplied defaults to create the derived collection. If the collection already exists, then
the contents will simply be returned, allowing multiple users to share the same collection.

5.5. Pre-Defined Active Collections
This section describes the list of Active Collections that are provided "out of the box".

5.5.1. ServiceResponseTimes

This active collection is a i st of org. overlord. rtgov. anal ytics. servi ce. ResponseTi ne
objects.

47

Chapter 5. Accessing Derived ...

The response times represent an aggregation of the metrics for a particular service, operation and
response/fault, over a configured period. The ResponseTime object has the following fields:

* service type

e operation

« fault - the optional fault name

* timestamp

e average - average response time (where response time represents multiple invocations)

e min - minimum response time (where response time represents multiple invocations)

e max - maximum response time (where response time represents multiple invocations)

5.5.2. Situations

This active collectionis al i st of Situation objects.

The Situation object represents a situation of interest that has been detected within the Event
Processor Network, and needs to be highlighted to end users. The Situation object has the
following fields:

* type - the type of situation

subject - the identity for the entity related to the situation (e.g. service)
« description - a free format textual description of the situation
« timestamp - when the situation occurred

* severity - "Low", "Medium", "High" or "Critical"

activity references - optional references to activity events that resulted in the situation

This active collection configuration also publishes it contents via a JMX notifier, based on the
following configuration details:

{
oA
"@l ass"
"org.overlord. rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",
"pane" : "Situations",
"type" : "List",
"itenExpiration" : 40000,
"max| tenms" : O,

48

ServiceDefinitions

"subj ect" : "Situations",

"acti veChangelLi steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov: nane=Situations",
"descriptionScript" : "SituationDescription.nvel",
"insert TypeScript" : "SituationType. nvel "
bl

5.5.3. ServiceDefinitions

This active collection is a map of Service Type name to Service Definition. The Service Definition
defines:

« the name of the service type (which is also the key for the map),

« the operations it provides (including request, response and fault message types)

« the operations it consumes (including request, response and fault message types)
 the metrics concerning the operations provided and consumed

An example of a service definition, represented in JSON is:

"serviceType":"{http://ww. jboss. or g/ exanpl es} Or der Ser vi ce",
"operations":[{
"nanme": "buy",
"metrics":{
"count": 30,
"aver age": 1666,
"m n":500,
"max": 2500

},
"request Response": {
"metrics":{
"count": 10,
"average": 1000,
"m n": 500,
"max": 1500
b
"invocations":[{
"serviceType":"{http://ww. jboss. org/
exanpl es} Credi t AgencyServi ce",
"metrics":{
"count": 10,
"aver age": 500,
"m n": 250,

49

Chapter 5. Accessing Derived ...

"max": 750
e

"operation":"checkCredit"

}
}
"request Faul ts": [{
"faul t": " UnknownCust oner ",
"metrics":{
"count": 20,
"average": 2000,
"m n": 1500,
"max": 2500

}H

H,

"metrics":{
"count": 30,
"average": 1666,
"m n": 500,
"max": 2500

The list of service definitions returned from this active collection, and the information they represent
(e.g. consumed services), represents a near term view of the service activity based on the
configuration details defined in the collection’s active collection source. Therefore, if (for example)
a service has not invoked one of its consumed services within the time period of interest, then its
details will not show in the service definition.

This information is simply intended to show the service activity that has occurred in the recent
history, as a means of monitoring the real-time situation to deal with emerging problems.

The duration over which the information is retained is determined by two properties in the
ServiceDefinitions active collection source configuration - the "scheduledInterval” (in milliseconds)
which dictates how often a snapshot of the current service definition information is stored, and the
"maxSnapshots" property which defines the maximum number of snapshots that should be used.
So the duration of information retained can be calculated as the scheduled interval multiplied by
the maximum number of snapshots.

5.5.4. Principals

This active collection is a map of Principal name to a map of named properties. This information
is used to convey details captured (or derived) regarding a principal. A principal can represent a
user, group or organization.

50

Chapter 6.

Chapter 6. Available Services

This section describes the "out of the box" additional services that are provided.

6.1. Call Trace

The "Call Trace" service is used to return a tree structure tracing the path of a business transaction
(as a call/invocation stack) through a Service Oriented Architecture.

The URL for the service's REST GET request is: <host>/overlord-rtgov/call/trace/
i nstance?i denti fi er=<val ue>

This service has the following query parameters:

Parameter Description

identifier This mandatory parameter uniquely identifies
the activities associated with the business
transaction.

6.2. Service Dependency

The "Service Dependency" service is used to return a service dependency graph as a SVG image.
The graph represents the invocation and usage links between services (and their operations),
and provides a color-coded indication of areas that require attention. Where situations have been
detected against services or their operations, this will be flagged on the service dependency graph
with an appropriate colour reflecting their severity.

The URL for the service’'s REST GET request is: <host>/overlord-rtgov/service/
dependency/ over vi ew?w dt h=<val ue>

This service has the following query parameters:

Parameter Description

width Represents the optional image width. If the
width is below a certain threshold, then a
summary version of the dependency graph
will be provided without text or tooltips (used
to display metrics).

6.2.1. How to customize the color coding

The colors used for the graph nodes and links can be customized by editing a MVEL script.

The script is called Col or Sel ect or. mvel and is located within the / VEB- | NF/ ¢l asses folder of
the overl ord-rtgov-servi ces. war archive. This file can be edited and updated within this war,
and the war deployed to cause the changes to take affect.

51

Chapter 6. Available Services

An example of the contents of this script is:

String col or ="#00FF00";
doubl e gap=netric.getMax()-netric.getMn();

if (gap > 0) {
doubl e mi d=netric. get Average()-netric.getM n();

doubl e rati o=ni d/ gap;

if (ratio > 0.95) {
col or = "#FF0000";

} else if (ratio > 0.9) {
col or = "#FF3300";

} elseif (ratio > 0.85) {
col or = "#FF5930";

} else if (ratio > 0.8) {
col or = "#FF6A45";

} elseif (ratio > 0.75) {
col or = "#FF9479";

} elseif (ratio > 0.7) {
col or = "#FF9900";

return (color);

The script takes two variables:

Variable Description

‘ metric ‘ The metric to be evaluated. ‘

component The service definition component associated
with the metric. This variable is not used
within the example script above.

The script is then responsible for returning the color code.

52

Chapter 7.

Chapter 7. Managing The

Infrastructure

7.1. Managing the Activity Collector

The Activity Collector mechanism is responsible for collecting activity event information from within
a particular execution environment and reporting it as efficiently as possible to the Activity Server.

This section explains how different Activity Collector implementations may be administered.

7.1.1. Batched Activity Collector

This implementation of the activity collector uses a batching capability to enable the information
to be sent to the Activity Server as efficiently as possible.

This mechanism has two configuration properties that can be set on the Activity Unit Logger

component:

Property Description

MaxUnitCount

The maximum number of activity units that
should be batched before sending the group
to the Activity Server.

MaxTimelnterval

The maximum amount of time (in
milliseconds) before sending the batch of
events to the server.

The maximum number of items takes precedence, so if it is reached before the defined interval,

then the events will be sent to the server.

If the collector is running within a JEE environment, then these properties can be set via a IMX,

e.g. using the JConsole:

53

Chapter 7. Managing The Infra...

Java Monitoring & Management Console

Connection Window Help

Overview | Memary | Threads | Classes | ¥YM Summary| MBeans |

B IMImplementation FAttribute values

P com.sun.management

b javalang Mame HVaIue
P java.util logging MaxTimelnterval [s00
P jhboss.as MaxUnitCount |1000
B jboss.jsr77

P jboss.jta

P jboss.modules

P jhoss.mse

P jhoss.ws

P net.sf.ehcache

B org.drocls

P org.drools.kbases

P overlord.bam.collections

= overlord.bam.collector
= @ ActivityLogger

P averlord.bam.networks
B overlord.sample.slamonitor

l |2 pid: 3163 jboss-modules. jar -mp /home/gbrown/testing/overlord/i... l

7.2. Managing the Event Processor Networks

There are two aspects to managing the Event Processor Network mechanism, the manager
component and the networks themselves. This section will outline the management capabilities
associated with both.

7.2.1. Event Processor Network Manager

The Event Processor Network Manager is the component responsible for registering and
initializing the Event Processor Networks within a containing environment.

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the
attributes that are available:

Attribute Description

NumberOfNetworks This attribute defines the number of networks
registered in the manager.

7.2.2. Event Processor Networks

When a network is registered, if within a JEE environment, it will also be registered as a managed
bean, and therefore available via JMX. Each network provides the following attributes:

54

Managing the Active Collections

Attribute Description

LastAccessed When the network was last used to process
an event. This can be used to determine
when it is safe to remove/unregister a

network.
Name The name of the network.
Version The version of the network.

For example, using the JConsole:

Java Monitoring & Management Console

Connection Window Help

Overview | Memory | Threads | Classes WM Summary| MBeans | =
P JMImplementation CAttribute values

P com.sun.management

b javalang Mame][Value]
B java.util.logging LastAccessed Thu Jul 12 14:25:53 BST 2012

P jboss.as MName SLAMonitorEPN

b jboss.jsr77 Version 1

P jboss.jta

P jboss.modules
P jhoss.msc
P jboss.ws
P net.sf.ehcache
B org.drocls
P org.droals.kbases
P overlord.bam.collections
B overlord.bam.collector
~ overlord.bam.networks
~ @ EPMNManager
= Attributes
MumberOfietworks
MNotifications
= SLAMonitorEPN
v @1

P overlord.sample.slamonitor

l |2 pid: 3163 jhoss-modules. jar -mp /home/gbrown/testing/overlord/i... l

7.3. Managing the Active Collections
There are two aspects to managing the Active Collections mechanism, the manager component
and the collections themselves. This section will outline the management capabilities associated

with both.

7.3.1. Active Collection Manager

The Active Collection Manager is the component responsible for registering and initializing the
Active Collection Sources within a containing environment.

55

Chapter 7. Managing The Infra...

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the
attributes that are available:

Attribute Description

HouseKeepinginterval The number of milliseconds between each
house keeping cycle. The house keeping
refers to removing items from collections

if they are either expired, or the maximum
number of elements in the collection has been
reached.

7.3.2. Active Collections

When a source is registered resulting in an Active Collection being created, if within a JEE
environment, the Active Collection will also be registered as a managed bean, and therefore
available via JMX. Each collection provides the following attributes:

Attribute Description

HighWaterMark If the number of items in the collection
reaches this value, then a warning will be
issued. If zero, then does not apply.

IltemExpiration The number of milliseconds before an item
in the collection should be removed. If zero,
then does not apply.

Maxltems The maximum number of items that should be
in the collection. If zero, then does not apply.

Name The name of the Active Collection.

Size The number of items in the collection.

For example, using the JConsole:

Active Collections

Connection Window Help

Java Monitoring & Management Console

B IMImplementation

P com.sun.management

B java.lang

P java.util.logging

P jboss.as

B jboss.jsr77

P jboss.jta

P jboss.modules

P jhoss.mse

P jhoss.ws

P net.sf.ehcache

B org.drocls

P org.drools.kbases

~ overlord.bam.collections
~ @ CollectionManager

b Attributes
Motifications
~ @ ServiceResponseTime
b Attributes

~ @ ServiceViolations

B overlord.bam.collector

B overlord.bam.networks

B overlord.sample.slamonitor

FAttribute values

MName HVaIue l
HighWaterMark 0

ltemExpiration 0

Maxltems [}

MName ServiceViolations

Size 3

[pid: 3163 jboss—modules jar -mp /home/gbrown/testing/overlord/i...

57

58

	Runtime Governance: User Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. JBoss Application Server
	2.1.1. Install
	2.1.2. Configuration
	2.1.2.1. "server" Installation Type
	2.1.2.2. "restc" Installation Type

	2.1.3. Uninstall

	Chapter 3. Reporting Activity Information
	3.1. Embedded Activity Collector
	3.1.1. Execution Environments
	3.1.1.1. SwitchYard

	3.1.2. Activity Interceptor
	3.1.2.1. Defining the Activity Interceptors
	3.1.2.2. Registering the Activity Interceptors

	3.1.3. Information Processor
	3.1.3.1. Defining the Information Processors
	3.1.3.2. Registering the Information Processors

	3.2. Reporting and Querying Activity Events via REST
	3.2.1. Reporting Activity Information
	3.2.2. Querying Activity Events using an Expression
	3.2.3. Retrieving an Activity Unit
	3.2.4. Retrieve Activity Events associated with a Context Value

	Chapter 4. Analyzing Events
	4.1. Configuring an Event Processor Network
	4.1.1. Defining the Network
	4.1.1.1. Subscription
	4.1.1.2. Node

	4.1.2. Registering the Network
	4.1.2.1. JEE Container

	4.1.3. Supporting Multiple Versions

	4.2. Event Processors
	4.2.1. Drools Event Processor
	4.2.2. MVEL Event Processor
	4.2.3. Supporting Services
	4.2.3.1. Cache Manager

	4.3. Predicates
	4.3.1. MVEL Predicate

	Chapter 5. Accessing Derived Information
	5.1. Configuring Active Colletions
	5.1.1. Defining the Source
	5.1.1.1. Scripts
	5.1.1.2. Active Change Listeners
	5.1.1.3. Factory

	5.1.2. Registering the Source
	5.1.2.1. JEE Container

	5.2. Presenting Results from an Event Processor Network
	5.3. Publishing Active Collection Contents as JMX Notifications
	5.4. Querying Active Collections via REST
	5.5. Pre-Defined Active Collections
	5.5.1. ServiceResponseTimes
	5.5.2. Situations
	5.5.3. ServiceDefinitions
	5.5.4. Principals

	Chapter 6. Available Services
	6.1. Call Trace
	6.2. Service Dependency
	6.2.1. How to customize the color coding

	Chapter 7. Managing The Infrastructure
	7.1. Managing the Activity Collector
	7.1.1. Batched Activity Collector

	7.2. Managing the Event Processor Networks
	7.2.1. Event Processor Network Manager
	7.2.2. Event Processor Networks

	7.3. Managing the Active Collections
	7.3.1. Active Collection Manager
	7.3.2. Active Collections

