PicketLink Reference
Documentation

PicketLink [http://www.jboss.org/picketlink]

http://www.jboss.org/picketlink
http://www.jboss.org/picketlink

PicketLink Reference Documentation
by
Version 2.5.0.Beta3

T O V7= VAT 1

1.1, What iS PICKELLINK? ..ieviieiei e e e e e s 1
2 /T Yo [= P 1
1.2.1. BASE MOUUIE .. .eeveiiieii et 1
1.2.2. Identity Man@gemENTiiiiiiieiiiii et e et e e e 2
I T =T =T =i oo S SPPPRTN 2

I R I o= o 1 PP 2
1.4. Maven DEPENAENCIESiiiiiieiii e et e e e e e e e e et e e e ean s 2
A N UL Y= o | A= oY o [PP 4
2.0 OVEBIVIEW .ottt e e ettt e e ettt e e ettt e e ettt s e e e eetn e e e e ettt e e eestnneeeeatnaaaaes 4
2.2. The AUthentication AP e e e e e eens 4
2.3. The AUthentiCation PrOCESScicuuuiiiiiiiii ettt 7
2.3.1. A BasiC AUhENLICALONc.uuiiiiiiii e e 8
2.3.2. Multiple Authenticator SUPPOITccuuiiiii e e e e 9
2.3.3. CredentialSocveuiiiiiei e 10
2.3.4. DefaultLoginCredentialscccccuiiiiiiiiiiii e 11

3. Identity ManagemMENT ... 13
0 I O 1= o T PP 13
3.2, 1dentity MOAEI ... oo 14
3.2.1. Architectural OVEIVIEWcoiuuiiiiiiiiiiee i 15

IR B O] o1 T 0] =1 1] o PP PPTTR PP 19
3.3.1. Architectural OVEIVIEWcocuuuiiiiiiiiiee et 19
3.3.2. Programmatic Configurationooeeieuiiiiiiiiin e 21
3.3.3. Security Context Configurationccoeevuiieiiiieiiii e 22
3.3.4. Identity StOre FEAUre Stiiiiiiiiiiiiii e 23
3.3.5. Identity Store Configurationscooveiiiiiiiieiiie e 26
3.3.6. JPAIdentityStoreConfigurationcooeeeueiieieiiineeeiie e 26
3.3.7. LDAPIdentityStoreConfigurationcccociuiiiiiiiiiiiiicciin e 36
3.3.8. FileldentityStoreConfigurationc..ooveieiiiieiiiiii e 38
3.3.9. Providing a Custom [dentityStoreccoocvuiiiiiieiiiiiciieeece e 39

3.4. Java EE ENVIFONMENTSiiuiiiiiiiiis e e et e e e e e e e et e et s e e e e e eaeeennaees 39
3.5. Using the IdentityManageroiiiiiiiiiii e e e 39
3.5.1. Accessing the | dentityManager inJava EEcooooviiiiiiiiinineen, 39
3.5.2. Accessing the I dentityManager in Java SEccoooeviiiiiinciinneieeeeenn, 40

3.6. Managing Users, Groups and ROIEScc.uoiiiiiiiiiiiiiii e 40
T Y/ = T T= Vo LYo Y= 40
3.6.2. MANAGING GIOUPS .. eeetuieiiiti et e et e e et e et et e e e e e eae e e eaean s 41

3.7. Managing RelationShipscooiiiiiiii e 42
3.7.1. Built In Relationship TYPESuiiiiiiiiieiii e 44
3.7.2. Creating Custom Relationshipscccciviiiiiiiiiii e, 50

GRS T AN Ui =T o1 1 To7= 1o o I P 51
3.9. Managing CredentialScciiiiiiiiiie e 54
3.10. Credential HANAIEISc.uuiiiiiiie e e e e e e e aa e 55
3.10.1. The CredentialStore INterfacecooeuiiiiiiiiiiiiii e 57

PicketLink Reference

Documentation

3.11. Built-in Credential HandIers ..o 59

G 00 PPN 59

3.12. AVANCEA TOPICS ..evvtniiiiiiiee ettt ettt e et e et e et e e e e eeera e 59
3.12.1. Multi REAIM SUPPOIT . .oeenciiiiei e e e e e e e 59

O = To =T = L4 [0] o H PP 63
N T O 1Y =Y V= 63

4.2, SAML SSO ..ot 63

4.3. SAML Web Browser Profilecccooiiiiiiiiiii e 63

4.4, Additional INfOrmMationcoooiiiiiii e 63

Chapter 1. Overview

1.1. What is PicketLink?

PicketLink is an Application Security Framework for Java EE applications. It provides features for
authenticating users, authorizing access to the business methods of your application, managing
your application's users, groups, roles and permissions, plus much more. The following diagram
presents a high level overview of the PicketLink modules.

PicketLink

Base Module

Authentication API
Permissions API
Session-based Identity
CDI Integration

Federation) IDM
SAML v1.1 User, Group, and
SAML 2.0 Role management Coming Soon
WS-Trust Credential management
OpenlD and validation
Identity Stores

Coming Soon Coming-Soon

Database File-
based

Common
Common utility classes, Logging

1.2. Modules

1.2.1. Base module

The base module provides the integration framework required to use PicketLink within a Java
EE application. It defines a flexible authentication API that allows pluggable authentication
mechanisms to be easy configured, with a sensible default authentication policy that delegates to

Overview

the identity management subsystem. It provides session-scoped authentication tracking for web
applications and other session-capable clients, plus a customisable permissions SPI that supports
a flexible range of authorization mechanisms for object-level security.

The base module libraries are as follows:

« pi cketlink-api - API for PicketLink's base module.

e picketlink-inpl - Internal implementation classes for the base API.

1.2.2. Identity Management

The Identity Management module defines the base identity model; a collection of interfaces and
classes that represent the identity constructs (such as users, groups and roles) used throughout
PicketLink (see the Identity Management chapter for more details). As such, itis a required module
and must always be included in any application deployments that use PicketLink for security. It
also provides a uniform API for managing the identity objects within your application.

Libraries are as follows:

e picketlink-idmapi - PicketLink's Identity Management (IDM) API. This library defines the
Identity Model central to all of PicketLink, and all of the identity management-related interfaces.

e picketlink-idminpl -Internal implementation classes for the IDM API.
1.2.3. Federation

The Federation module is an optional module that implements a number of Federated Identity
standards, such as SAML (both version 1.1 and 2.0), WS-Trust and OpenlD.

1.3. License

PicketLink 3.0 is licensed under the Apache License Version 2, the terms and conditions of which
can be found at apache.org [http://www.apache.org/licenses/LICENSE-2.0.html].

1.4. Maven Dependencies

The PicketLink libraries are available from the Maven Central Repository. To use PicketLink in
your Maven-based project, itis recommended that you first define a version property for PicketLink
in your project's pom xnl file like so:

<properties>
<pi cketlink. version>2.5. 0. Bet a3</ pi cket | i nk. ver si on>
</ properties>

For a typical application, it is suggested that you include the following PicketLink dependencies:

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

Overview

<dependenci es>
<dependency>
<groupl d>or g. pi cket | i nk</ gr oupl d>
<artifact!|d>pi cketlink-api</artifactld>
<scope>conpi | e</ scope>
<versi on>%{ pi cketlink. version}</version>
</ dependency>

<dependency>
<gr oupl d>or g. pi cket | i nk</ gr oupl d>
<artifact|d>picketlink-inmpl</artifactld>
<scope>runti me</ scope>
<versi on>%{ pi cket | i nk. version}</version>
</ dependency>

The identity management library is a required dependency of the base module and so will be
automatically included.

If you wish to use PicketLink's Identity Management features and want to include the default
database schema (see the Identity Management chapter for more details) then configure the
following dependency also:

<dependency>
<groupl d>or g. pi cket | i nk</ gr oupl d>
<artifact!d>picketlink-idmschema</artifactld>
<versi on>${pi cketlink.version}</version>

</ dependency>

Chapter 2. Authentication

2.1. Overview

Authentication is the act of verifying the identity of a user. PicketLink offers an extensible
authentication API that allows for significant customization of the authentication process, while
also providing sensible defaults for developers that wish to get up and running quickly. It also
supports both synchronous and asynchronous user authentication, allowing for both a traditional
style of authentication (such as logging in with a username and password), or alternatively allowing
authentication via a federated identity service, such as OpenID, SAML or OAuth. This chapter will
endeavour to describe the authentication API and the authentication process in some detail, and
is a good place to gain a general overall understanding of authentication in PicketLink. However,
please note that since authentication is a cross-cutting concern, various aspects (for example
Identity Management-based authentication and Federated authentication) are documented in
other chapters of this book.

2.2. The Authentication API

The Identity bean (which can be found in the org. pi cketlink package) is central to
PicketLink's security API. This bean represents the authenticated user for the current session,
and provides many useful methods for controlling the authentication process and querying the
user's assigned privileges. In terms of authentication, the 1 dent i t y bean provides the following
methods:

Aut henti cationResult |ogin();
void | ogout();
bool ean i sLoggedI n();

Agent get Agent () ;

The | ogi n() method is the primary point of entry for the authentication process. Invoking this
method will cause PicketLink to attempt to authenticate the user based on the credentials that they
have provided. The Aut henti cati onResul t type returned by the | ogi n() method is a simple
enum that defines the following two values:

public enum Aut henti cati onResult {
SUCCESS, FAI LED

}

Authentication

If the authentication process is successful, the | ogi n() method will return a result of SUCCESS,
otherwise it will return a result of FAI LED. By default, the | dent i t y bean is session-scoped, which
means that once a user is authenticated they will stay authenticated for the duration of the session.

Note

One significant point to note is the presence of the @anmed annotation on the
I dentity bean, which means that its methods may be invoked directly from the
view layer (if the view layer, such as JSF, supports it) via an EL expression.

One possible way to control the authentication process is by using an action bean, for example
the following code might be used in a JSF application:

publ i c @Request Scoped @Naned cl ass Logi nAction {
@nject ldentity identity;

public void login() {
Aut henticationResult result = identity.login();
if (AuthenticationResult.FAlILED. equal s(result)) {
FacesCont ext . get Current I nst ance() . addMessage(nul |,
new FacesMessage(
"Aut henti cati on was unsuccessful. Please check your usernane and password " +
"before trying again."));

In the above code, the Identity bean is injected into the action bean via the CDI
@nj ect annotation. The | ogi n() method is essentially a wrapper method that delegates to
Identity.login() and stores the authentication result in a variable. If authentication was
unsuccessful, a FacesMessage is created to let the user know that their login failed. Also, since
the bean is @\anmed it can be invoked directly from a JSF control like so:

<h: commandBut t on val ue="LOG N' acti on="#{l| ogi nActi on.|ogin}"/>

The i sLogged! n() method may be used to determine whether there is a user logged in for the
current session. It is typically used as an authorization check to control either an aspect of the user
interface (for example, not displaying a menu item if the user isn't logged in), or to restrict certain
business logic. While logged in, the get Agent () method can be used to retrieve the currently
authenticated agent (or user). If the current session is not authenticated, then get Agent () will
return nul I . The following example shows both the i sLoggedl n() and get Agent () methods
being used inside a JSF page:

Authentication

<ui: fragnent rendered="#{identity.|oggedl n}">Wel cone, #{identity.agent.| ogi nNane}

Note

If you're wondering what an Agent is, it is simply a representation of the external

entity that is interacting with your application, whether that be a human user
or some third party (non-human) system. The Agent interface is actually the
superclass of User - see the Identity Management chapter for more details.

The | ogout () method allows the user to log out, thereby clearing the authentication state for their
session. Also, if the user's session expires (for example due to inactivity) their authentication state
will also be lost requiring the user to authenticate again.

The following JSF code example demonstrates how to render a log out button when the current
user is logged in:

<ui:fragnment rendered="#{identity.|oggedln}">

<h: f or n»
<h: commandBut t on val ue="Log out" action="#{identity.|ogout}"/>
</ h: fornp

</ ui : fragment >

While it is the Identity bean that controls the overall authentication process, the actual
authentication "business logic" is defined by the Aut hent i cat or interface:

public interface Authenticator {
public enum Aut henticationStatus {
SUCCESS,
FAI LURE,
DEFERRED

}

voi d authenticate();
voi d post Aut henticate();

Aut henti cati onStatus get Status();

Agent get Agent () ;

During the authentication process, the I dentity bean will invoke the methods of the active
Aut hent i cat or (more on this in a moment) to perform user authentication. The aut henti cat e()
method is the most important of these, as it defines the actual authentication logic. After
aut henti cat e() has been invoked by the | denti ty bean, the get St at us() method will reflect

Authentication

the authentication status (either SUCCESS, FAI LURE or DEFERRED). If the authentication process
was a success, the get Agent () method will return the authenticated Agent object and the
post Aut henti cat e() method will be invoked also. If the authentication was not a success,
get Agent () will return nul I .

2.3. The Authentication Process

Now that we've looked at all the individual pieces, let's take a look at how they all work together to
process an authentication request. For starters, the following sequence diagram shows the class
interaction that occurs during a successful authentication:

sd Successful Authentication Process)

% ldentity Auchenticator
:user

I i
| 1:login()() }l

1.1: authenticate()()

‘

1.1.1: authenticate()()

1.1.2: getStatus(j()

SUCCESS

,< ________________

1.1.3: postiuthenticate()()

1.1.4: getAgent()()

R A S A A

true

[g g g e — —]

Authentication

1 - The user invokes the | ogi n() method of the I denti ty bean.

1.1 - The Identity bean (after performing a couple of validations) invokes its own
aut henti cat e() method.

« 1.1.1 - Next the I dent i t y bean invokes the Aut henti cat or bean's aut henti cat e() method
(which has a return value of voi d).

* 1.1.2 - To determine whether authentication was successful, the |1 denti ty bean invokes the
Aut hent i cat or's get St at us() method, which returns a SUCCESS.

e 1.1.3-Upon a successful authentication, the | dent i t y bean then invokes the Aut hent i cat or's
post Aut hent i cat e() method to perform any post-authentication logic.

 1.1.4 - The I dentity bean then invokes the Aut henti cat or's get Agent () method, which
returns an Agent object representing the authenticated agent, which is then stored as a private
field in the | denti ty bean.

The authentication process ends when the I dentity. aut henti cat e() method returns a value
of true to the | ogi n() method, which in turn returns an authentication result of SUCCESS to the
invoking user.

2.3.1. A Basic Authenticator

Let's take a closer look at an extremely simple example of an Aut hent i cat or . The following code
demonstrates an Aut henti cat or implementation that simply tests the username and password
credentials that the user has provided against hard coded values of j sni t h for the username, and
abc123 for the password, and if they match then authentication is deemed to be a success:

@i cket Li nk
public class SinpleAuthenticator extends BaseAuthenticator {

@nj ect DefaultLogi nCredentials credentials;

@verride
public void authenticate() {
if ("jsmth".equal s(credentials.getUserld()) &&
"abc123". equal s(credenti al s. get Password())) {
set St at us(Aut henti cati onSt at us. SUCCESS) ;
set User (new Si npl eUser ("jsmith"));
} else {
set St at us(Aut henti cati onSt at us. FAI LURE) ;
FacesCont ext . get Current I nstance() . addMessage(nul |, new FacesMessage(
"Aut hentication Failure - The usernane or password you provided were invalid."));

The first thing we can notice about the above code is that the class is annotated with
the @i cket Li nk annotation. This annotation indicates that this bean should be used for

Authentication

the authentication process. The next thing is that the authenticator class extends something
called BaseAut henti cator. This abstract base class provided by PicketLink implements the
Aut hent i cat or interface and provides implementations of the get St at us() and get Agent ()
methods (while also providing matching setStatus() and setAgent() methods), and
also provides an empty implementation of the post Aut henti cate() method. By extending
BaseAut henti cator, our Authenticator implementation simply needs to implement the
aut henti cat e() method itself.

We can see in the above code that in the case of a successful authentication, the set St at us()
method is used to set the authentication status to SUCCESS, and the set User () method is used
to set the user (in this case by creating a new instance of Si npl eUser). For an unsuccessful
authentication, the set St at us() method is used to set the authentication status to FAI LURE, and
a new FacesMessage is created to indicate to the user that authentication has failed. While this
code is obviously meant for a JSF application, it's possible to execute whichever suitable business
logic is required for the view layer technology being used.

One thing that hasn't been touched on yet is the following line of code:

@nj ect DefaultLogi nCredentials credentials;

This line of code injects the credentials that have been provided by the user using CDI's
@ nj ect annotation, so that our Aut hent i cat or implementation can query the credential values
to determine whether they're valid or not. We'll take a look at credentials in more detail in the
next section.

Note

You may be wondering what happens if you don't provide an Aut hent i cat or bean

in your application. If this is the case, PicketLink will automatically authenticate
via the identity management API, using a sensible default configuration. See the
Identity Management chapter for more information.

2.3.2. Multiple Authenticator Support

If your application needs to support multiple authentication methods, you can provide the
authenticator selection logic within a producer method annotated with @i cket Li nk, like so:

@rRequest Scoped
@laned

public class AuthenticatorSel ector {

@ nj ect | nstance<CustomAut henti cator> cust omAut henti cator;
@ nj ect | nstance<ldmAut henti cat or> i dmAut henti cator;

Authentication

private String authenticator;

public String getAuthenticator() {
return authenticator;

}

public void setAuthenticator(String authenticator) {
this.authenticator = authenticator;

}

@r oduces
@i cket Li nk
public Authenticator selectAuthenticator() {
if ("custont.equal s(authenticator)) {
return customAut henticator.get();
} else {
return idmAut henticator.get();

}

This @laned bean exposes an aut hent i cat or property that can be set by a user interface control
in the view layer. If its value is set to "custom" then Cust omAut hent i cat or will be used, otherwise
| dmAut hent i cat or (the Aut hent i cat or used to authenticate using the identity management API)
will be used instead. This is an extremely simple example but should give you an idea of how to
implement a producer method for authenticator selection.

2.3.3. Credentials

Credentials are something that provides evidence of a user's identity; for example a username
and password, an X509 certificate or some kind of biometric data such as a fingerprint. PicketLink
has extensive support for a variety of credential types, and also makes it relatively simple to add
custom support for credential types that PicketLink doesn't support out of the box itself.

In the previous section, we saw a code example in which a Def aul t Logi nCredential s (an
implementation of the Credenti al s interface that supports a user ID and a credential value)
was injected into the Si npl eAut henti cat or bean. The most important thing to know about the
Credenti al s interface in relation to writing your own custom Aut hent i cat or implementation is
that you're not forced to use it. However, while the Credenti al s interface is mainly designed
for use with the Identity Management API (which is documented in a separate chapter) and
its methods would rarely be used in a custom Authenticator, PicketLink provides some
implementations which are suitably convenient to use as such, Def aul t Logi nCr edent i al s being
one of them.

So, in a custom Aut hent i cat or such as this:

public class SinpleAuthenticator extends BaseAuthenticator {

@nj ect DefaultLogi nCredentials credentials;

10

Authentication

/'l code sni pped

The credential injection is totally optional. As an alternative example, it is totally valid to create a
request-scoped bean called User nanePasswor d with simple getters and setters like so:

public @Request Scoped cl ass User namePassword {
private String usernane;
private String password;

public String getUsername() { return usernane; }
public String getPassword() { return password; }

public void setUsername(String usernane) { this.usernane = usernane; }
public void setPassword(String password) { this.password = password; }

And then inject that into the Aut hent i cat or bean instead:

public class SinpleAuthenticator extends BaseAuthenticator {
@nj ect UsernanePassword user namePasswor d;

/'l code sni pped

Of course it is not recommended that you actually do this, however this simplistic example serves
adequately for demonstrating the case in point.

2.3.4. DefaultLoginCredentials

The Def aul t Logi nCr edent i al s beanis provided by PicketLink as a convenience, and is intended
to serve as a general purpose Cr edent i al s implementation suitable for a variety of use cases. It
supports the setting of a user i d and credenti al property, and provides convenience methods
for working with text-based passwords. It is a request-scoped bean and is also annotated with
@laned so as to make it accessible directly from the view layer.

11

Authentication

pleg org.picketlink. credentia)

org, picketlink.idm. credential

<<interface==
Credentials

+ getfialidateddgent() - Agent
+ getStatus() Status
+ invalidatel}() - void

A

1
b
]

DefaultLoginCredentials

- credential ; Okbject
- userld : String

+ getlserld() : 5tring
setlserld{userld : String) : wold

AbstractBaseCredentials

getCredentiall) ;: Object

- validatedagent Agent
- status : Status = UMNVALIDATED

getPassword() : String
rivalidate() ; void

+ getValidatedAgent() | Agent

+ zetValidatedagent{agent | Agent) @ void
+ getStatus() : Status

+ setStatus{status ; Status) - void

+
+
| + setCredentlal{credential : Okject)
+
+
+

tostringl) String

» wioid

A view technology with support for

EL binding (such as JSF) can access

the

Def aul t Logi nCr edenti al s bean directly via its bean name, | ogi nCr edent i al s. The following
code snippet shows some JSF markup that binds the controls of a login form to

Def aul t Logi nCredenti al s:

<di v class="1o0gi nRow' >
<h: out put Label
<h: i nput Text
</ div>

<di v class="1ogi nRow'>
<h: out put Label

for="nane" val ue="Usernanme" styl ed ass="1ogi nLabel "/ >
i d="nanme" val ue="#{l ogi nCredenti al s.userld}"/>

for="password" val ue="Password" styl eC ass="1ogi nLabel "/>

<h:input Secret id="password" val ue="#{l ogi nCredenti al s. password}" redisplay="true"/>

</ di v>

12

Chapter 3. Identity Management

3.1. Overview

PicketLink's Identity Management (IDM) features provide a rich and extensible API
for managing the wusers, groups and roles of your applications and services. The
org. pi cketlink.idm IdentityMnager interface declares all the methods required to create,
update and delete Identity objects and create relationships between them such as group and role
memberships.

Interaction with the backend store that provides the persistent identity state is performed by
configuring one or more | dentityStores. PicketLink provides a few built-in 1 dentityStore
implementations for storing identity state in a database, file system or LDAP directory server, and
it is possible to provide your own custom implementation to support storing your application's
identity data in other backends, or extend the built-in implementations to override their default
behaviour.

DATABASE

i

|
FILE SYSTEM

=

LDAP Directory Server

Before PicketLink IDM can be used, it must first be configured. See the configuration section below
for details on how to configure IDM for both Java EE and Java SE environments.

13

Identity Management

3.2. ldentity Model

PicketLink's identity model consists of a number of core interfaces that define the fundamental
identity types upon which much of the Identity Management API is based. The following class
diagram shows the classes and interfaces in the or g. pi cket | i nk. i dm nodel package that form

the base identity model.

pkag org.picketinkidm. modsl)

Attribute

=<interface==
AttributedType

= gettame() : String

+ getWaluely: T

+ setValue(value : T) @ void
isReadOnly(]) : boalzan
islLoaded() - boolean
setloaded{valueg : boolean) : wold

+ gedd(] : Swrihg

+ setld(id ; String) : void

+ getdAttributelname » String) : Attribute
+ setdttributelattribute » Attribute) : void
+ remaveAtiributeiname : String) © void
+ getAtmriburesy) : Collaction

#

LVl

=<irterface=:=
IdentityType

<<interface==
Agent

+ getloginhlame() @ String
+ setLoginiamelloginiame © String) vold

+ IsEnabled() : boolean

+ settnabledfenabled : boolean) - void

+ gelCreatedDate() » Date

+ setCreateaDare(creartedlate » Dara) ; void
+ getExpirationDate() @ Date

+ LetE
+ getPartition() ; Partiiion

+ setPartitonfpartiton : Partition) © void

=<interface=m
User

T

+ getFirsthlamel) String

+ setFirstiNarme(firsthlarme @ String,) ©
+ getlastiame() © String

+ setlasthame(lastiame ; Siring) : void
+ gettmail() © Siring

+ setEmaiifermal ; String) ; vold

Lo

c=interfaces==

Group Role

+ geramsa() : String
+ getFarentGroup() @ Group

+ gethame()

irafionDatefexpirationDate Date) vold

==jnterface==

e Attribut edType is the base interface for the identity model. It declares a number of methods
for managing a set of attribute values, plus get | d() and set | d() methods for setting a unique

UUID value.

e Attribute is used to represent an attribute value. An attribute has a name and a (generically
typed) value, and may be marked as read-only. Attribute values that are expensive to load (such
as large binary data) may be lazy-loaded; the i sLoaded() method may be used to determine
whether the Attribute has been loaded or not.

14

Identity Management

I dentityType is the base interface for Identity objects. It declares properties that indicate
whether the identity object is enabled or not, optional created and expiry dates, plus methods
to read and set the owning Partiti on.

Agent represents a unique entity that may access the services secured by PicketLink. In
contrast to a user which represents a human, Agent is intended to represent a third party
non-human (i.e. machine to machine) process that may authenticate and interact with your
application or services. It declares methods for reading and setting the Agent 's login name.

User represents a human user that accesses your application and services. In addition to the
login name property defined by its parent interface Agent , the User interface declares a number
of other methods for managing the user's first name, last name and e-mail address.

G oup is used to manage collections of identity types. Each G oup has a name and an optional
parent group.

Rol e is used in various relationship types to designate authority to another identity type to
perform various operations within an application. For example, a forum application may define
a role called moderator which may be assigned to one or more User s or G- oups to indicate that
they are authorized to perform moderator functions.

3.2.1. Architectural Overview

The following diagram shows the main components that realize PicketLink Identity Management:

15

Identity Management

X

SecurityContextFactory

ol 1= e

(: __________

1
i
1
I
1
Lottal =t el
1
I
i
1
i
1

Ny

SecurityContext

S

IdentityConfiguration

IdentityManagerfFactory

T
I
1
|
1
Lol =1 e e R
1
1
i
1
i
1

e
ldentitydManager

=EllEe ==

StoreFactory

1
|
1
|
1
Lot =11 e e
1
1
i
1
[
1

My

IdentityStore

.
A \
“<manage=> \

’
’

; %

- w

Lt |
IdentityType Relationship

* ldentityConfiguration is the the class responsible for holding all PicketLink configuration
options. This class is usually built using the Configuration Builder API, which we'll cover in the
next sections. Once created and populated with the configuration options, an instance is used
to create a | dent i t yManager Fact ory.

e I dentityManager Factory is the class from which | denti t yManager instances are created
for a specific realm, considering all configurations provided by a | dentityConfi guration
instance.

* SecurityCont ext Fact ory is an interface that provides methods for creating Secur i t yCont ext
instances. This component knows how to properly create and prepare the context that will be
propagated during identity management operations.

16

Identity Management

* SecurityContext is the class that holds context data that will be used during the execution of
identity management operations. Once created, the context is used to create | dentityStore
instances and to invoke their methods.

This component allows to share data between the IdentityManager and I dentityStore
instances. And also provides direct access for some IDM subsystems such as: event handling,
caching and so on.

Beyond that, this component is critical when access to external resources are required, such
as the current Ent i t yManager when using a JPA-based store.

Each I dent i t yManager instance is associated with a single Securi t yCont ext .

e StoreFactory is an interface that provides methods for creating | denti t ySt or e instances.
Instances are created considering the Feature Set supported by each identity store and also
the current Securi t yCont ext instance.

e I dentityStoreisaninterface that provides a contract for implementations that store data using
a specific repository such as: LDAP, databases, file system, etc.

It is a critical component as it provides all the necessary logic about how to store data.

e I dentityManager is an interface that provides a simple access for all identity management
operations using one or more of the configured identity stores.

All functionality provided by PicketLink is available from this interface, from where applications
will interact most of the time.

For most use cases, users will only work with the IdentityMnagerFactory and
I dentityManager classes. Only advanced use cases may require a deep knowledge about
other components in order to customize the default behaviour/implementation to suit a specific
requirement.

The diagram below shows an overview about how a specific identity management operation is
realized:

17

Identity Management

#d Oharview - PickerLird 100 Operation J

SecurtyConterF aciony

i
|
|
| CECreate =
| v

1 _‘! dentbyManagarF actary [

SxoraFachony ” dentiyStora

11 ¥ imtlalzall e
U
1%y = I
1.2 inkializel)
I
I
T [
I | [
I | [
| 2 ereatelchent byMan agar) h__l |
> . .
2.1 i craaaSecuntyCor "\Ql"f.- AL]
g

=erreaam s

1
|
|
|
|
|
|
|

3 i adid ser(] b

2.1.1:

3,1 W laokupidertityShore)

SecurityConteat

3.2 W addlisar()

Ll

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
el
&

B.2.1: i accessSanurbyCortaxt]] |

i j,

311 ViFe :ll.l.__u'!l.u-uul'-.'l.l.l

porgiesl}

1 - The Application creates an | dent i t yManager Fact ory instance from a previously created
I denti tyConfi gurati on. At this point, the factory reads the configuration and bootstraps the

identity management ecosystem.

1.1- Thel dentityManager Fact ory initializes the Securi t yCont ext Factory.

1.2 - The I denti t yManager Fact or y initializes the St or eFact ory.

2 - With a fully initialized 1 dent i t yManager Fact or y instance, the Application is able to create
I denti t yManager instances and execute operations. | dent i t yManager instances are created
for a specific realm, in this specific case we're creating an instance using the default realm.

2.1and 2.1.1 - An I denti tyManager instance is always associated with a Securi t yCont ext .
The SecurityContext is created and set into the IdentityManager instance. The same

18

Identity Management

security context is used during the entire lifecycle of the | denti t yManager, it will be used to
share state with the underlying identity stores and provide access to external resources (if
necessary) in order to execute operations.

At this time, the | dent i t yManager is also configured to hold a reference to the St or eFact ory
in order to execute the operations against the underlying/configured | dent i t ySt or e instances.

« 3 - Now the application holds a reference to the | denti t yManager instance and it is ready to
perform identity management operations (eg.: add an user, queries, validate credentials, etc).

« 3.1 and 3.1.1 - But before executing the operations, the | denti t yManager needs to obtain
from the St or eFact ory the | dent i t ySt or e instance that should be used to execute a specific
operation. Identity stores are selected by examining the configuration to see which store
configuration supports a specific operation or feature.

e 3.2 - Now that the | dent i t yManager have selected which | denti t ySt or e instance should be
used, this last is invoked in order to process the operation.

e 3.2.1 - Usually, during the execution of an operation, the I dentityStore uses the current
SecurityCont ext. The SecurityContext can hold some state that may be useful during
the execution (eg.: the JPA store uses the security context to gain access to the current
Enti t yManager instance) and also provide access for some IDM internal services like event
handling, caching, etc.

« 3.2.2 - Finally, the I dent i t ySt or e executes the operation and persist or retrieve identity data
from the underlying repository.

PicketLink IDM design is quite flexible and allows you to configure or even customize most of
the behaviours described above. As stated earlier, most use cases require minimal knowledge
about these details and the default implementation should be enough to satisfy the majority of
requirements.

3.3. Configuration

3.3.1. Architectural Overview

Configuration in PicketLink is in essence quite simple; an | denti t yConf i gur at i on object must
first be created to hold the PicketLink configuration options. Once all configuration options have
been set, you just create a | denti t yManager Fact ory instance passing the previously created
configuration. The I dentityManager Factory can then be used to create |dentityManager
instances via the creat el denti t yManager () method.

19

Identity Management

rkg

[|

Configuration Builder API

-::-cbu:'ld::-::-

I
i
v/
IdentityConfiguration

-7

==lUse=s -

IdentityManagerFactory

-

P = ﬁl ldentityManager

Thel dentityConfi gurati onisusually created using a Configuration Builder API, which provides
a rich and fluent API for every single aspect of PicketLink configuration.

Note

For now, all configuration is set programmatically using the Configuration Builder

API only. Later versions will also support a declarative configuration in a form of
XML documents.

Each IdentityManager instance has its own security context, represented by the
Securi tyCont ext class. The security context contains temporary state which is maintained for
one or more identity management operations within the scope of a single realm or tier. The
I dentityManager (and its associated SecurityContext) is typically modelled as a request-

20

Identity Management

scoped object (for environments which support such a paradigm, such as a servlet container),
or alternatively as an actor within the scope of a transaction. In the latter case, the underlying
resources being utilised by the configured identity stores (such as a JPA EntityManager)
would participate in the active transaction, and changes made as a result of any identity
management operations would either be committed or rolled back as appropriate for the logic of
the encapsulating business method.

The following sections describe various ways that configuration may be performed in different
environments.

3.3.2. Programmatic Configuration

Configuration for Identity Management can be defined programmatically using the Configuration
Builder API. The aim of this API is to make it easier to chain coding of configuration options in
order to speed up the coding itself and make the configuration more readable.

Let's assume that you want to quick start with PicketLink Identity Management features using
a file-based Identity Store. First, a fresh instance of | denti t yConfi gurati on is created using
the I denti t yConfi gurati onBui | der helper object, where we choose which identity store we
want to use (in this case a file-based store) and any other configuration option, if necessary.
Finally, we use the configuration to create a | dent i t yManager Fact ory from where we can create
I denti t yManager instances and start to perform Identity Management operations:

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();
bui | der
.stores()
file()
.support Al | Features();
IdentityConfiguration configuration = builder.build();
I dentityManager Factory identityManager Factory = new | dentityManager Factory(configuration);
I dentityManager identityManager = identityManagerFactory. createl dentityManager();

User user = new Sinpl eUser("john");

i dentityManager. add(user);

3.3.2.1. IdentityConfigurationBuilder for Programmatic Configuration

The I denti t yConfi gurati onBui | der is the entry point for PicketLink configuration. It is a very
simple class with some meaningful methods for all supported configuration options.

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores() // supported identity stores configuration

21

Identity Management

Lfile()
/'l file-based identity store configuration

-jpa()
/'l JPA-based identity store configuration

.1 dap()
/| LDAP-based identity store configuration

.contextFactory(...); // for custom SecurityContextFactory inplenentations

In the next sections we'll cover each supported Identity Store and their specific configuration.

3.3.3. Security Context Configuration

The Securi t yCont ext plays an important role in the PicketLink IDM achitecture. As discussed in
the Architectural Overview, it is strongly used during the execution of operations. It carries very
sensitive and contextual information for a specific operation and provides access for some of the
IDM underlying services such as caching, event handling, UUID generator for | dent i t yTpe and
Rel at i onshi p instances, among others.

Operations are always executed by a specific | dent i t ySt or e in order to persist or store identity
data using a specific repository (eg.: LDAP, databases, filesystem, etc). When executing a
operation the identity store must be able to:

» Access the current Parti ti on. All operations are executed for a specific Real mor Ti er
« Access the current | denti t yManager instance, from which the operation was executed.

» Access the Event Handling APl in order to fire events such as when an user is created, updated,
etc.

» Access the Caching API in order to cache identity data and increase performance.
» Access the Credential Handler API in order to be able to update and validate credentials.

« Access to external resources, provided before the operation is executed and initialized by a
Contextlnitializer.

3.3.3.1. Initializing the SecurityContext

Sometimes you may need to provide additional configuration or even references for external
resources before the operation is executed by an identity store. An example is how you tell
to theJPAI denti t ySt or e which Enti t yManager instance should be used. When executing an
operation, the JPAI dent i t ySt or e must be able to access the current Enti t yManager to persist
or retrieve data from the database. You need someway to populate the Securi t yCont ext with
such information. When you're configuring an identity store, there is a configuration option that
allows you to provide a Cont ext | ni ti al i zer implementation.

public interface Contextlnitializer {

22

Identity Management

voi d initContextForStore(SecurityContext context, |dentityStore<?> store);

The method i ni t Cont ext For St or e will be invoked for every single operation and before its
execution by the identity store. It can be implemented to provide all the necessary logic to initialize
and populate the Securi t yCont ext for a specific | dentityStore.

The configuration is also very simple, you just need to provide the following configuration:

I dentityConfigurationBuilder builder = new | dentityConfigurationBuil der();

bui | der
.stores()
file()
.addContextlnitializer(new MySecurityContextlnitializer());

You can provide multiple initializers.

Note

Remember that initializers are executed for every single operation. Also, the same
instance is used between operations which means your implementation should be
“stateless”. You should be careful about the implementation in order to not impact

performance, concurrency or introduce unexpected behaviors.

3.3.3.2. Configuring how SecurityContext instances are created

Securit yCont ext instances are created by the Securit yCont ext Fact ory. If for some reason
you need to change how SecurityContext instances are created, you can provide an
implementation of this interface and configure it as follows:

I dentityConfigurati onBuil der builder = new I dentityConfigurationBuilder();

bui | der
.stores()
.cont ext Fact ory(mew MySecurityCont ext Factory());

3.3.4. Identity Store Feature Set

When configuring identity stores you must tell which features and operations should be executed
by them. Features and operations are a key concept if you want to mix stores in order to execute
operations against different repositories.

23

Identity Management

PicketLink provides a Java enum called Feat ureG oup, in which are defined all supported
features. The table bellow summarize them:

Table 3.1. Identity class fields

Feature

Feat ur eG oup. agent

Feat ur eG oup. user

Feat ureG oup.role
Feat ur eG oup. gr oup

Feat ureG oup. rel ati onship

Feat ur eGr oup. credenti al

Feat ureG oup.realm

Feat ureG oup. tier

The features are a determinant factor when choosing an identity store to execute a specific
operation. For example, if an identity store is configured with FeatureG oup. user we're
saying that all User operations should be executed by this identity store. The same goes for
Feat ur eG oup. credent i al , we're just saying that credentials can also be updated and validated
using the identity store.

Beside that, provide only the feature is not enough. We must also tell the identity store which
operations are supported by a feature. For example, we can configure a identity store to support
only read operations for users, which is very common when using the LDAP identity store against
a read-only tree. Operations are also defined by an enum called Feat ur eOper at i on, as follows:

Table 3.2. Identity class fields

Operation
Feat ur eoperati on. create

Feat ur eoperati on. read

Feat ur eoper ati on. updat e

Feat ur eoperati on. del ete

Feat ur eoperation. val i date

During the configuration you can provide which features and operations should be supported using
the Configuration API. You don't need to be forced to specify them individually, if you want to
support all features and operations for a particular identity store you can use:

I dentityConfigurationBuilder builder = new I dentityConfigurationBuil der()

bui | der
.stores()
file()

24

Identity Management

.support Al | Features();

For a more granular configuration you can also use:

IdentityConfigurati onBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores()
file()
. support Feat ur e(
Feat ur eG oup. agent,
Feat ur eG oup. user,
Feat ureG oup. rol e,
Feat ur eG oup. gr oup)

The configuration above defines the features individually. In this case the configured features are
also supporting all operations. If you want to specify which operation should be supported by a
feature you can use:

IdentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores()
file()

. support Feat ur e(Feat ur eGr oup. agent, FeatureQperati on.read)
. support Feat ur e(Feat ur eGr oup. user, FeatureQperation.read))
. support Feat ur e(Feat ureGroup. rol e, FeatureQOperation.create))
. support Feat ur e(Feat ureG oup. rol e, FeatureQOperation.read))
. support Feat ur e(Feat ureG oup. rol e, FeatureQOperation. update))
. support Feat ure(Feat ureG oup. rol e, FeatureQperation.delete))
. support Feat ur e(Feat ur eG oup. group, FeatureQOperation.create))
. support Feat ur e(Feat ur eGr oup. group, FeatureQperation.read))
. support Feat ur e(Feat ur eGr oup. group, Feat ureQperati on. update))
. support Feat ur e(Feat ur eG oup. group, Feat ureQOperation. del ete))

For a more complex configuration evolving multiple identity stores with a different feature set, look
at the example bellow:

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores()
. I dap()
. support Feat ur e(Feat ur eG oup. agent)
. support Feat ur e(Feat ur eG oup. user)
. support Feat ur e(Feat ur eGr oup. credenti al)
-ipa()

25

Identity Management

. support Feat ur e(Feat ur eG oup. rol e)
. support Feat ur e(Feat ur eG oup. gr oup)
. support Feat ur e(Feat ur eG oup. r el ati onshi p)

The configuration above shows how to use LDAP to store only agents, users and credentials and
database for roles, groups and relationships.

Note

Remember that identity stores must have their features and operations configured.
If you don't provide them you won't be able to build the configuration.

3.3.5. Identity Store Configurations

For each of the built-in 1dentityStore implementations there is a corresponding
I dentityStoreConfiguration implementation - the following sections describe each of these
in more detail.

3.3.6. JPAldentityStoreConfiguration

The JPA identity store uses a relational database to store identity state. The configuration for this
identity store provides control over which entity beans are used to store identity data, and how their
fields should be used to store various identity-related state. The entity beans that store the identity
data must be configured using the annotations found in the or g. pi cket | i nk. j pa. annot ati ons
package. All identity configuration annotations listed in the tables below are from this package.

3.3.6.1. Recommended Database Schema

The following schema diagram is an example of a suitable database structure for storing IDM-
related data:

26

—"% +*CREDENTIAL_ID NUMBER

Identity Management

CREDENTIAL_ATTRIBUTE
+*CREDENTIAL_ID NUMEBER

IDENTITY ATTRIEUTE

+ATTRIEBUTE_MAME VARCHARZ2 *ATTRIBUTE_ID NUMEER

*ATTRIBUTE_VALUE VARCHARZ —- IDENTITY_ID VARCHARZ
*ATTRIEUTE_MAME WVARCHARZ
*ATTRIEBUTE_TYPE WARCHARZ
=ATTRIBUTE_VALUE VARCHARZ2

CREDENTIAL
L CREDENTIAL ID NUMBER RELATIONSHIP_IDENTITY
« IDENTITY_ID VARCHARZ P> ¢ IDENTITY ID VARCHARZ
*CREDENTIAL_TYPE VARCHARZ 2V RELATIONSHIF ID VARCHARZ
*CREDENTIAL_VALUE WVARCHARZ . IDENTITY TYPE . *DESCRIPTOR VARCHARZ
"EFFECTIVE_DATE DATE *IDENTITY ID VARCHARZ |—
*EXPIRY_DATE DATE |\ DISCRIMINATOR VARCHAR2
*PARTITION_ID VARCHARZ
5LOGIN_NAME VARCHAR2 RELATIONSHIP
- 1
- NAME VARCHAR2 RELATIONSHIF ID VARCHARZ
“FTRST_NAME VARCHAR2 “RELATIONSHIP_TYPE VARCHARZ
= LAST_NAME VARCHAR2
<EMAIL VARCHAR2
*ENMABLED NUMEER(1, @) RELATIONSHIP_ATT RIEUTE
*CREATION_DATE DATE
PARTITION . JEXPIRY DATE DATE *RELATTONSHIP ATTRIBUTE ID NUMBER
*PARTITION ID VARCHARZ JPARENT 1D VARCHARD *RELATIONSHIP_ID VARCHARZ
“PARTITION_TYPE VARCHARZ | e = VARCHARS « ATTRIBUTE_NAME VARCHARZ
= = ATTRIBUTE_VALUE VARCHAR2

Please note that the data types shown in the above diagram might not be available in your RDBMS;
if that is the case please adjust the data types to suit.

3.3.6.2. Default Database Schema

If you do not wish to provide your own JPA entities for storing IDM-related state, you may use
the default schema provided by PicketLink in the pi cket | i nk-i dm schema module. This module
contains a collection of entity beans suitable for use with JPAI dent i t ySt or e. To use this module,
add the following dependency to your Maven project's pom xni file:

<dependency>
<groupl d>or g. pi cket | i nk</ groupl d>
<artifact!ld>pi cketlink-idmschenma</artifactl!d>
<ver si on>${ pi cket | i nk. versi on} </ versi on>

</ dependency>

In addition to including the above dependency, the default schema entity beans must be configured
in your application's per si st ence. xnl file. Add the following entries within the per si st ence-
uni t section:

<cl ass>org. pi cketlink.idmjpa.schema.|dentityCbject</class>
cketlink.idmjpa.schema. PartitionQObject</class>
cketlink.idmjpa.schenma. Rel ati onshi pQbj ect </ cl ass>
cketlink.idmjpa.schena. Rel ati onshi pl dentityObject</class>
cketlink.idmjpa.schema. Rel ati onshi pQbj ect Attribute</class>
cketlink.idmjpa.schema.ldentityObjectAttribute</class>

cketlink.idmjpa.schema. Credenti al Obj ect </ cl ass>

<cl ass>org.p

<cl ass>org. p
<cl ass>org. p
<cl ass>org. p
<cl ass>org. p
<cl ass>org. p

27

Identity Management

<cl ass>org. pi cketlink.idmjpa.schema. Credential Obj ect Attribute</class>

3.3.6.3. Configuring an EntityManager

Before the JPA identity store can be used, it must be provided with an Ent i t yManager so thatit can
connect to a database. In Java EE this can be done by providing a producer method within your
application that specifies the @r g. pi cket | i nk. annot at i ons. Pi cket Li nk qualifier, for example
like so:

@r oduces

@i cket Li nk

@er si st enceCont ext (uni t Nane = "pi cketlink")
private EntityManager picketLinkEntityManager;

3.3.6.4. Configuring the Identity class

The Identity class is the entity bean that is used to store the record for users, roles and groups. It
should be annotated with @ dent i t yType and declare the following field values:

Table 3.3. Identity class fields

Property Annotation Description

ID @dentifier The unique identifier value for
the identity (can also double
as the primary key value)

Discriminator @i scri m nat or Indicates the identity type (i.e.
user, agent, group or role) of
the identity.

Partition @dentityPartition The partition (realm or tier)

that the identity belongs to

Login name @.ogi nName The login name for agent
and user identities (for other
identity types this will be null)

Name @dent it yName The name for group and role
identities (for other identity
types this will be null)

First Name @i r st Nane The first name of a user
identity

Last Name @ast Nane The last name of a user
identity

E-mail @mai | The primary e-mail address of

a user identity

28

Identity Management

Property Annotation Description

Enabled @nabl ed Indicates whether the identity
is enabled

Creation date @Cr eat i onDat e The creation date of the
identity

Expiry date @xpi ryDat e The expiry date of the identity

Group parent @ar ent The parent group (only used
for Group identity types, for
other types will be null)

Group path @ oupPat h Represents the full group path
(for Group identity types only)

The following code shows an example of an entity class configured to store Identity instances:

Example 3.1. Example Identity class

@dentityType
@ntity
public class lIdentityObject inplenents Serializable {

@i scri m nat or
private String discrininator;

@anyToOne
@dentityPartition
private PartitionCbject partition;

@dentifier
@d
private String id,

@ogi nNanme
private String | ogi nNane;

@dentityNane
private String nang;

@i r st Narme
private String firstName;

@.ast Nane
private String | astNane;

@i |
private String emil;

@nabl ed
private bool ean enabl ed;

@Cr eat i onDat e
@enpor al (Tenpor al Type. TI MESTAMP)
private Date creationDate;

29

Identity Management

@Expi ryDat e

@enpor al (Tenpor al Type. TI MESTAMP)
private Date expirybDate;
@manyToOne

@rar ent

private ldentityCbject parent;

@= oupPat h
private String groupPath;

/] getters and setters

3.3.6.5. Configuring the Attribute class

The Attribute class is used to store Identity attributes, and should be annotated with
@dentityAttribute

Table 3.4. Attribute class fields

Property Annotation Description
Identity @Par ent The parent identity object
to which the attribute value
belongs
Name @\t tri but eName The name of the attribute
Value @\t tributeval ue The value of the attribute
Type @\t tributeType The fully qualified classname
of the attribute value class

Example 3.2. Example Attribute class

@ntity

@dentityAttribute

public class lIdentityAttribute inplenents Serializable {
@d @eneratedVal ue private Long id;

@manyToOne @oi nCol umm
@var ent
private ldentityQbject identityQObject;

@At tri but eNane
private String nane;

@\t tributeVal ue
private String val ue;

@\ttributeType
private String type;

30

Identity Management

/'l getters and setters

3.3.6.6. Configuring the Credential class

The credential entity is used to store user credentials such as passwords and certificates, and

should be annotated with @ denti t yCredenti al .

Table 3.5. Credential class fields

Effective Date

@f fecti veDat e

Property Annotation Description

Type @r edent i al Type The fully qualified classname
of the credential type

Value @r edent i al Val ue The value of the credential

The effective date of the
credential

Expiry Date @=xpi ryDat e The expiry date of the
credential
Identity @Par ent The parent identity to which

the credential belongs

Example 3.3. Example Credential class

@ntity
@dentityCredenti al
public class ldentityCredential

inplenents Serializable {

@d @eneratedVal ue private Long id;

@r edent i al Type
private String type;

@Cr edent i al Val ue
private String credential;

@f fectiveDate
@renpor al
private Date effectiveDate;

@Expi ryDat e
@renpor al
private Date expirybDate;

@var ent
@manyToOne

(Tenpor al Type. TI MESTAVP)

(Tenpor al Type. TI MESTAVP)

private ldentityCbject identityType;

/'l getters and setters

31

Identity Management

3.3.6.7. Configuring the Credential Attribute class

The Credential Attribute class is used to store arbitrary attribute values relating to the credential.
It should be annotated with @xr edenti al Attribute.

Table 3.6. Credential Attribute class fields

Property Annotation Description

Credential Object @ar ent The parent credential to which
this attribute belongs

Attribute Name @\t t ri but eName The name of the attribute

Attribute Value @\t tribut eval ue The value of the attribute

Example 3.4. Example Credential Attribute class

@ntity

@redential Attribute

public class lIdentityCredential Attribute inplenments Serializable {
@d @eneratedVal ue private Long id;

@manyToOne @oi nCol um
@var ent

private IdentityCredential credential;

@\t tribut eName
private String nang;

@\t tributeVal ue
private String val ue;

/] getters and setters

3.3.6.8. Configuring the Relationship class

Relationships are used to define typed associations between two or more identities. The
Relationship class should be annotated with @Rel ati onshi p.

Table 3.7. Relationship class fields

Property Annotation Description

Identifier @dentifier Unique identifier that
represents the specific
relationship (can also double
as the primary key)

Relationship Class @=el ati onshi pd ass The fully qualified class name
of the relationship type

32

Identity Management

Example 3.5. Example Relationship class

@Rel ati onship

@ntity

public class Relationship inplenents Serializable {
@d
@dentifier
private String id,;

@Rel ati onshi pCl ass
private String type;

/] getters and setters

3.3.6.9. Configuring the Relationship Identity class

The Relationship Identity class is used to store the specific identities that participate in a
relationship. It should be annotated with @Rel at i onshi pl dentity.

Table 3.8. Relationship Identity class fields

Property Annotation Description

Relationship Descriptor @i scri mi nat or Denotes the role of the identity
in the relationship

Relationship Identity @dentity The identity that is
participating in the relationship

Relationship @ar ent The parent relationship object
to which the relationship
identity belongs

Example 3.6. Example Relationship Identity class

@Rel ati onshipldentity

@ntity

public class Rel ationshipldentityCbject inplenents Serializable {
@d @eneratedVal ue private Long id;

@i scrin nat or
private String descriptor;

@Rel ati onshipldentity
@manyToOne
private IdentityObject identityQbject;

@var ent
@manyToOne
private Rel ati onshi pObject rel ationshi pQbj ect;

33

Identity Management

/'l getters and setters

3.3.6.10. Configuring the Relationship Attribute class

The Relationship Attribute class is used to store arbitrary attribute values that relate to a specific
relationship. It should be annotated with @Rel ati onshi pAttri bute.

Table 3.9. Relationship Attribute class fields

Property Annotation Description

Relationship @ar ent The parent relationship object
to which the attribute belongs

Attribute Name @At tri but eNane The name of the attribute

Attribute value @\t tributeval ue The value of the attribute

Example 3.7. Example Relationship Attribute class

@ntity

@Rrel ationshi pAttribute

public class Rel ationshi pObjectAttribute inplenents Serializable {
@d @eneratedVal ue private Long id;

@manyToOne @oi nCol um
@rar ent

private Rel ationship relationship;

@\t tri but eNane
private String nang;

@Rel ati onshi pVal ue
private String val ue;

/'l getters and setters

3.3.6.11. Configuring the Partition class

The Partition class is used to store information about partitions, i.e. Realms and Tiers. It should
be annotated with @artiti on.

Table 3.10. Partition class fields

Property Annotation Description

ID @dentifier The unique identifier value for
the partition

34

Identity Management

Property Annotation Description

Type @i scri mi nat or The type of partition, either
Realm or Tier

Parent @ar ent The parent partition (only used

for Tiers)

Example 3.8. Example Partition class

public class PartitionObject inplenments Serializable {

@ntity

@artition
@d @dentifier
private String id;
@i scrim nat or
private String type;
@anyToOne
@ar ent

private PartitionCbject parent;

/1 get

ters and setters

3.3.6.12. Providing a enti t ymanager

Sometimes you may need to configure how the EntityManager

is provided to the

JPAI denti t ySt or e, like when your application is using CDI and you must run the operations in
the scope of the current transaction by using a injected Ent i t yManager instance.

In cases like that, you need to initialize the Secur i t yCont ext by providinga Cont ext I nitial i zer
implementation, as discussed in Security Context Configuration. The JPAContext I nitial i zer
is provided by PicketLink and can be used to initialize the security context with a specific
Enti t yManager instance. You can always extend this class and provide your own way to obtain

the Ent i t yManager from your application's environment.

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores(
file(

.addContextlnitializer(new JPAContextlnitializer(enf) {

)
)

@verride
public EntityManager getEntityManager () {

}
1)

/'l 1ogic goes here

35

Identity Management

By default, the JPAContextlnitializer creates a EntityManager from the
Ent i t yManager Facat ory provided when creating a new instance.

3.3.7. LDAPIdentityStoreConfiguration

The LDAP identity store allows an LDAP directory server to be used to provide identity state. You
can use this store in read-only or write-read mode, depending on your permissions on the server.

3.3.7.1. Configuration

The LDAP identity store can be configured by providing the following configuration:

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores()
.l dap()

. baseDN(" dc=j boss, dc=org")
. bi ndDN(" ui d=adni n, ou=syst ent)
. bi ndCredential ("secret")
.url ("l dap://Iocal host: 10389")
. user DNSuf fi x(" ou=Peopl e, dc=j boss, dc=org")
. rol eDNSuf fi x("ou=Rol es, dc=j boss, dc=org")
. groupDNSuf f i x("ou=Gr oups, dc=j boss, dc=org")
.support Al | Features();

The following table describes all configuration options:

Table 3.11. LDAP Configuration Options

Option Description Required

baseDN Sets the fixed DN of the Yes
context from where identity
types are stored.

bi ndDN Sets the the DN used to bind | Yes
against the Idap server. If
you want to perform write
operations the DN must
have permissions on the
agent,user,role and group

contexts.

bi ndCr edent i al Sets the password for the Yes
bindDN.

url Sets the url that should be Yes

used to connect to the server.
Eg.: Idap://<<server>>:389.

36

Identity Management

Option Description Required

user DNSuf f i x Sets the fixed DN of the Yes
context where users should
be read/stored from.

agent DNSuf fi x Sets the fixed DN of the No
context where agents should
be read/stored from. If not
provided, will be used the
context provided by the

set User DNSuf f i x

r ol eDNSuf fi x Sets the fixed DN of the Yes
context where roles should
be read/stored from.

gr oupDNSuf fi x Sets the fixed DN of the Yes
context where groups should
be read/stored from.

3.3.7.1.1. Mapping Groups to different contexts

Sometimes may be useful to map a specific group to a specific context or DN. By default, all groups
are stored and read from the DN provided by the set G oupDNSuf f i x method, which means that
you can not have groups with the same name.

The following configuration maps the group with path /QA Group to ou=QA,dc=jboss,dc=org

LDAPI dent i t ySt or eConfi gurati on | dapSt oreConfig = new LDAPI dentityStoreConfiguration();

| dapSt oreConfi g
. addG oupMappi ng("/ QA G oup", "ou=QA dc=jboss, dc=org");

With this configuration you can have groups with the same name, but with different paths.

I dentityManager identityManager = getldentityManager();
Group nanagers = new Si npl eG oup(" nanagers");

i dentityManager. add(nmanagers); // group's path is /manager

G oup qaG oup = identityManager.get G oup("QA G oup");
Group nmanager sQA = new Si npl eG oup(" managers", gaG oup);

/1 the QA Group is mapped to a different DN
Group qaManager Group = identityManager.add(nmanagersQd); // group's path is /QA G oup/ nanagers

37

Identity Management

3.3.8. FileldentityStoreConfiguration

This identity store uses the file system to persist identity state. The configuration for this identity
store provides control over where to store identity data and if the state should be preserved
between initializatons.

Identity data is stored using the Java Serialization API.

3.3.8.1. Filesystem Structure

Identity data is stored in the filesystem using the following structure:

${ WORKI NG_DI R}/
pl-idmpartitions.db
pl -idmrel ati onshi ps. db
<<partition_nane_directory>>
pl -idm agents. db
pl-idmroles. db
pl -i dm groups. db
pl -idmcredentials.db
<<anot her _partition_directory>>

By default, files are stored in the ${java.io.tmpdir}/pl-idm directory. For each partition there is a
corresponding directory where agents, roles groups and credentials are stored in specific files.

3.3.8.2. Configuration

The file identity store can be easily configured by providing the following configuration;

I dentityConfigurationBuilder builder = new I dentityConfigurationBuilder();

bui | der
.stores()
file()
.preserveState(fal se)
. addReal m(Real m DEFAULT_REALM "Testi ng")
.addTi er (" Appl i cation")
. support Al | Feat ures()
. support Rel ati onshi pType(Cust onRel ati onshi p. cl ass, Authorization. class);

3.3.8.2.1. Preserving State Between Initializations

By default, during the initialization, the working directory is re-created. If you want to preserve
state between initializations you should use the following configuration:

bui | der
.stores()
file()

38

Identity Management

.preserveState(true) // preserve data
.support Al | Features();

3.3.8.2.2. Changing the Working Directory

If you want to change the working directory, where files are stored, you can use the following
configuration:

bui | der
.stores()
Lfile()
.wor ki ngDir("/tnp/pl-idnt)
.support Al | Features();

3.3.9. Providing a Custom IdentityStore

TODO

3.4. Java EE Environments

In Java EE 6.0 and higher environments, basic configuration is performed automatically with a
set of sensible defaults. During application deployment, PicketLink will scan all deployed entity
beans for any beans annotated with @ DVEnti ty, and if found will use a configuration based on
the JPAl dentityStore. If no entity beans have been configured for identity management and
no other configuration is provided, a file-based identity store will be automatically configured to
provide basic identity management features backed by the file system.

3.5. Using the IdentityManager

The org. picketlink.idmldentityMnager interface provides access to the bulk of the
IDM features supported by PicketLink. To get access to the | dentityManager depends on
which environment you are using. The following two sections describe how to access the
| denti t yManager in both Java EE and Java SE environments.

3.5.1. Accessing the identitymanager in Java EE

In a Java EE environment, PicketLink provides a producer method for | dent it yManager, SO
getting a reference to it is as simply as injecting it into your beans:

@nj ect |dentityManager identityManager;

3.5.1.1. Configuring the Application Realm

By default, an 1 dent i t yManager for the default realm will be injected. If the application should
use a realm other than the default, then this must be configured via a producer method with the

39

Identity Management

@i cket Li nk qualifier. The following code shows an example of a configuration bean that sets
the application realm to acme:

@\ppl i cati onScoped
public class Real nConfiguration {
private Real m applicationReal m

@nj ect ldentityManagerFactory factory;
@nit
public void init() {

appl i cationReal m = factory. get Real n{"acne");
}

@°r oduces

@i cket Li nk

public Real m get ApplicationReal m() {
return applicati onReal m

}

3.5.2. Accessing the identitymanager in Java SE

3.6. Managing Users, Groups and Roles

PicketLink IDM provides a number of basic implementations of the identity model interfaces
for convenience, in the org. pi cket | i nk.i dm nodel package. The following sections provide
examples that show these implementations in action.

3.6.1. Managing Users

The following code example demonstrates how to create a new user with the following properties:

* Login name - jsmith

* First name - John

* Last name - Smith

e E-mail - jsmith@acme.com
User user = new Sinpl eUser ("jsmth");
user. set Fi rst Nane("John");
user.set Last Name(" Smith");

user.setEnmmil ("j smth@cne. cont');
i denti t yManager. add(user);

Once the User is created, it's possible to look it up using its login name:

40

Identity Management

User user = identityManager.getUser("jsmth");

User properties can also be modified after the User has already been created. The following
example demonstrates how to change the e-mail address of the user we created above:

User user = identityManager.getUser("jsmth");
user.setEmai | ("j ohn@mi th. cont');
i denti t yManager . updat e(user);

Users may also be deleted. The following example demonstrates how to delete the user previously
created:

User user = identityManager.getUser("jsnmth");
i dentityManager.renove("jsmth");

3.6.2. Managing Groups

The following example demonstrates how to create a new group called employees:
Group enpl oyees = new Si npl eG oup("enpl oyees");

It is also possible to assign a parent group when creating a group. The following example
demonstrates how to create a new group called managers, using the employees group created
in the previous example as the parent group:

G oup nanagers = new Si npl eG oup(" managers", enpl oyees);

To lookup an existing Gr oup, the get G oup() method may be used. If the group name is unique,
it can be passed as a single parameter:

G oup enpl oyees = identityManager. get G oup("enpl oyees");

If the group name is not unique, the parent group must be passed as the second parameter
(although it can still be provided if the group name is unique):

G oup nanagers = identityManager.get G oup("nanagers", enployees);

41

Identity Management

It is also possible to modify a Gr oup's name and other properties (besides its parent) after it has
been created. The following example demonstrates how to disable the "employees" group we
created above:

G oup enpl oyees = identityManager. get G oup("enpl oyees");
enpl oyees. set Enabl ed(f al se);
i denti t yManager . updat e(enpl oyees) ;

To remove an existing group, we can use the r enove() method:

G oup enpl oyees = identityManager. get G oup("enpl oyees");
i dentityManager. renove(enpl oyees);

3.7. Managing Relationships

Relationships are wused to model typed associations between two or more
identities. All concrete relationship types must implement the marker interface
org. pi cketlink.idm nodel . Rel ati onshi p:

42

Identity Management

pkg org.picketlink.idm.model)

AttributedType

< <interface==
Relationship

The I denti t yManager interface provides three standard methods for managing relationships:

voi d add(Rel ati onship rel ationship);
voi d updat e(Rel ati onshi p rel ati onship);
voi d renove(Rel ati onship rel ationship);

e The add() method is used to create a new relationship.

e The updat e() method is used to update an existing relationship.

Note

Please note that the identities that participate in a relationship cannot be updated
themselves, however the attribute values of the relationship can be updated. If

43

Identity Management

you absolutely need to modify the identities of a relationship, then delete the

relationship and create it again.

» Therenove() method is used to remove an existing relationship.

Note

To search for existing relationships between identity objects, use the Relationship
Query API described later in this chapter.

Besides the above methods, | dent i t yManager also provides a number of convenience methods
for managing many of the built-in relationship types. See the next section for more details.

3.7.1. Built In Relationship Types

PicketLink provides a number of built-in relationship types, designed to address the most
common requirements of a typical application. The following sections describe the built-in
relationships and how they are intended to be used. Every built-in relationship type extends the
Abstract Attri but edType abstract class, which provides the basic methods for setting a unique
identifier value and managing a set of attribute values:

44

Identity Management

pkg org.picketlink.idm. model)

AttributedType

AbstractAttributedType

+ getld() . String

+ setld(id : String) : void

+ getAttribute(name : String) : T

+ setAttribute(name : String, value : T) : void
+ removeAttribute(name : String) : wvoid

+ getAttributes() : Collection<Attribute=

What this means in practical terms, is that every single relationship is assigned and can be
identified by, a unique identifier value. Also, arbitrary attribute values may be set for all relationship
types, which is useful if you require additional metadata or any other type of information to be
stored with a relationship.

3.7.1.1. Application Roles

Application roles are represented by the Grant relationship, which is used to assign application-
wide privileges to a User or Agent .

45

Identity Management

pkgorg.picl<etlinl<.idmmodel)

Grant

+ getAssignee() . |dentityType

+ sethAssignee(assignee . |dentityType) : void
+ getRole() . Role

+ setRole(role ; Role) : void

The I dentityManager interface provides methods for directly granting a role. Here's a simple
example:

User bob = identityManager.getUser("bob");
Rol e superuser = identityManager. get Rol e("superuser");
i denti t yManager . gr ant Rol e(bob, superuser);

The above code is equivalent to the following:

User bob = identityManager. getUser ("bob");

Rol e superuser = identityManager. get Rol e("superuser");
Grant grant = new G ant (bob, superuser);

i dentityManager . add(grant);

A granted role can also be revoked using the r evokeRol e() method:

User bob = identityManager. get User ("bob");
Rol e superuser = identityManager. getRol e("superuser");
i denti t yManager . revokeRol e(bob, superuser);

To check whether an identity has a specific role granted to them, we can use the hasRol e()
method:

46

Identity Management

User bob = identityManager. get User ("bob");
Rol e superuser = identityManager. get Rol e("superuser");
bool ean i sBobASuper User = identityManager. hasRol e(bob, superuser);

3.7.1.2. Groups and Group Roles

The G oupMenber shi p and G oupRol e relationships are used to represent a user's membership
within a G oup, and a user's role for a group, respectively.

pkg org.picketlink.idm.model)

GroupMembership

+ getMember() : Agent
+ setMember(member . Agent) : wvoid

+ getGroup() : Group
+ setGroup(group : ldentity Type) : void

v

GroupRole

+ getRole() : Role
+ setRole(role : Role) : void

Note

While the G oupRol e relationship type extends G oupMenber shi p, it does not
mean that a member of a G oupRol e automatically receives G oupMenber shi p

47

Identity Management

membership also - these are two distinct relationship types with different

semantics.

A G oup is typically used to form logical collections of users. Within an organisation, groups
are often used to mirror the organisation's structure. For example, a corporate structure might
consist of a sales department, administration, management, etc. This structure can be modelled
in PicketLink by creating corresponding groups such as sales, administration, and so forth. Users
(who would represent the employees in a corporate structure) may then be assigned group
memberships corresponding to their place within the company's organisational structure. For
example, an employee who works in the sales department may be assigned to the sales group.
Specific application privileges can then be blanket assigned to the sales group, and anyone who
is a member of the group is free to access the application's features that require those privileges.

The G oupRol e relationship type should be used when it is intended for an identity to perform
a specific role for a group, but not be an actual member of the group itself. For example, an
administrator of a group of doctors may not be a doctor themselves, but have an administrative
role to perform for that group. If the intent is for an individual identity to both be a member of a
group and have an assigned role in that group also, then the identity should have both G oupRol e
and G oupMenber shi p relationships for that group.

Let's start by looking at a simple example - we'll begin by making the assumption that our
organization is structured in the following way:

Sales

v v v

North America Europe /[Middle East |
Africa (EMEA)

Asia

v v v v

East West Channels Federal

I |
2 v v v

MNortheast Southeast Defense Civilian

The following code demonstrates how we would create the hypothetical Sales group which is
displayed at the head of the above organisational chart:

G oup sales = new Sinpl eGoup("Sal es");
i denti t yManager . add(sal es);

48

Identity Management

We can then proceed to create its subgroups:

i dentityManager. add(new Si npl eGroup("North Anerica", sales);
i dentityManager. add(new Si npl eG oup("EMEA", sales);

i denti t yManager. add(new Si npl eG oup("Asi a", sales);

/1 and so forth

The second parameter of the Si npl eG oup() constructor is used to specify the group's parent
group. This allows us to create a hierarchical group structure, which can be used to mirror either a
simple or complex personnel structure of an organisation. Let's now take a look at how we assign
users to these groups.

The following code demonstrates how to assign an administrator group role for the Northeast
sales group to user jsmith. The administrator group role may be used to grant certain users the
privilege to modify permissions and roles for that group:

Rol e admi n = identityManager. get Rol e("adni nistrator");
User user = identityManager.getUser("jsmith");

Group group = identityManager.get G oup("Northeast");

i denti t yManager. gr ant G oupRol e(user, adm n, group);

A group role can be revoked using the r evokeG oupRol e() method:

i dentityManager.revokeG oupRol e(user, admin, group);

To test whether a user has a particular group role, you can use the hasG oupRol e() method:

bool ean i sUser AGroupAdni n = identityManager. hasG oupRol e(user, adm n, group);

Next, let's look at some examples of how to work with simple group memberships. The following
code demonstrates how we assign sales staff rbrown to the Northeast sales group:

User user = identityManager. getUser("rbrown");
Group group = identityManager.get G oup("Northeast");
i dentityManager. addToG oup(user, group);

A User may also be a member of more than one G oup; there are no built-in limitations on the
number of groups that a User may be a member of.

We can use the r emoveFr onGr oup() method to remove the same user from the group:

49

Identity Management

i denti t yManager. r enoveFr onGr oup(user, group);

To check whether a user is the member of a group we can use the i sMenber () method:

bool ean i sUser AMenber = identityManager.isMenber(user, group);

Relationships can also be created via the add() method. The following code is equivalent to
assigning a group role via the gr ant G oupRol e() method shown above:

Rol e admi n = identityManager. get Rol e("administrator");
User user = identityManager.getUser("jsmith");

Group group = identityManager.get Goup("Northeast");

G oupRol e groupRol e = new GroupRol e(user, group, admn);
i denti t yManager . add(gr oupRol e) ;

3.7.2. Creating Custom Relationships

One of the strengths of PicketLink is its ability to support custom relationship types. This
extensibility allows you, the developer to create specific relationship types between two or more
identities to address the domain-specific requirements of your own application.

Note

Please note that custom relationship types are not supported by all | dent i t ySt or e
implementations - see the Identity Store section above for more information.

To create a custom relationship type, we start by creating a new class that implements the
Rel at i onshi p interface. To save time, we also extend the Abstract Attri but edType abstract
class which takes care of the identifier and attribute management methods for us:

public class Authorization extends AbstractAttributedType inplenents Rel ationship {

}

The next step is to define which identities participate in the relationship. Once
we create our identity property methods, we also need to annotate them with the
or g. pi cketl i nk.i dm nodel . annot ati on. Rel ati onshi pl denti ty annotation. This is done by
creating a property for each identity type.

private User user;
private Agent application;

50

Identity Management

@Rel ati onshi pldentity
public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

@Rel ati onshi pldentity
public Agent getApplication() {
return application;

}

public void setApplication(Agent application) {
this.application = application;

}

We can also define sonme attribute properties, using the @Rel ati onshi pAttribute
annot ati on:

private String accessToken;

@Rel ati onshi pAttribute
public String get AccessToken() {
return accessToken;

}

public void setAccessToken(String accessToken) {
t hi s. accessToken = accessToken;

}

3.8. Authentication

Note

While the IDM module of PicketLink provides authentication features, for common

use cases involving standard username and password based authentication in
a Java EE environment, PicketLink provides a more streamlined method of
authentication. Please refer to the authentication chapter of this documentation for
more information.

PicketLink IDM provides an authentication subsystem that allows user credentials to be validated
thereby confirming that an authenticating user is who they claim to be. The | denti t yManager
interface provides a single method for performing credential validation, as follows:

51

Identity Management

voi d val i dateCredential s(Credentials credentials);

The val i dat eCredenti al s() method accepts a single Credenti al s parameter, which should
contain all of the state required to determine who is attempting to authenticate, and the credential
(such as a password, certificate, etc) that they are authenticating with. Let's take a look at the
Credenti al s interface:

public interface Credentials {
public enum Status {
UNVALI DATED, | N_PROGRESS, | NVALID, VALID, EXPI RED
IE
Agent get Val i dat edAgent () ;

Status get Status();

void invalidate();

« The st at us enum defines the following values, which reflect the various credential states:

* UNVALI DATED - The credential is yet to be validated.

I N_PROGRESS - The credential is in the process of being validated.

* I NVALI D- The credential has been validated unsuccessfully

VALI D - The credential has been validated successfully

EXPI RED - The credential has expired

» getVal i dat edAgent () - If the credential was successfully validated, this method returns the
Agent object representing the validated user.

* get Status() - Returns the current status of the credential, i.e. one of the above enum values.

e invalidate() - Invalidate the credential. Implementations of Credential should use this
method to clean up internal credential state.

Let's take a look at a concrete example - User nanePasswor dCr edenti al s is a Credenti al s
implementation that supports traditional username/password-based authentication:

public class UsernamePasswordCredential s extends AbstractBaseCredentials {
private String usernane;

private Password password;

52

Identity Management

publ i c UsernanePasswor dCredentials() { }

publ i c UsernanePasswor dCredential s(String user Nanme, Password password) {
t hi s. username = user Nane;
this. password = password;

public String getUsername() {
return usernane;

publ i c UsernanePasswor dCredential s setUsernane(String usernanme) {
t hi s. username = user nane;
return this;

public Password get Password() {
return password;

public UsernanePasswor dCredenti al s set Passwor d(Password password) {
this. password = password;
return this;

@verride

public void invalidate() {
set Status(Status. | NVALID);
password. cl ear();

The first thing we may notice about the above code is that the User nanePasswor dCr edenti al s
class extends Abstract BaseCredentials. This abstract base class implements the basic
functionality required by the Cr edent i al s interface. Next, we can see that two fields are defined;
user nane and passwor d. These fields are used to hold the username and password state, and can
be set either via the constructor, or by their associated setter methods. Finally, we can also see
that the i nval i dat e() method sets the status to | NVALI D, and also clears the password value.

Let's take a look at an example of the above classes in action. The following code demonstrates
how we would authenticate a user with a username of "john" and a password of "abcde":

Credential s creds = new UsernanePasswor dCredenti al s("j ohn",
new Password("abcde"));
i dentityManager. validate(creds);
if (Status.VALID. equal s(creds.getStatus())) {
/] authentication was successful

We can also test if the credentials that were provided have expired (if an expiry date was set). In
this case we might redirect the user to a form where they can enter a new password.

53

Identity Management

Credentials creds = new User nanePasswor dCr edenti al s("j ohn",
new Password("abcde"));
i dentityManager. validate(creds);
if (Status.EXPI RED. equal s(creds.getStatus())) {
/| password has expired, redirect the user to a password change screen

}

3.9. Managing Credentials

Updating user credentials is even easier than validating them. The I denti t yManager interface
provides the following two methods for updating credentials:

voi d updat eCredenti al (Agent agent, Cbject credential);
voi d updat eCredenti al (Agent agent, Cbject credential, Date effectiveDate, Date expiryDate);

Both of these methods essentially do the same thing; they update a credential value for a specified
Agent (or User). The second overloaded method however also accepts ef f ecti veDat e and
expi r yDat e parameters, which allow some temporal control over when the credential will be valid.
Use cases for this feature include implementing a strict password expiry policy (by providing an
expiry date), or creating a new account that might not become active until a date in the future (by
providing an effective date). Invoking the first overloaded method will store the credential with an
effective date of the current date and time, and no expiry date.

Note

One important point to note is that the credential parameter is of type
j ava. | ang. Obj ect . Since credentials can come in all shapes and sizes (and

may even be defined by third party libraries), there is no common base interface
for credential implementations to extend. To support this type of flexibility in an
extensible way, PicketLink provides an SPI that allows custom credential handlers
to be configured that override or extend the default credential handling logic. Please
see the next section for more information on how this SPI may be used.

PicketLink provides built-in support for the following credential types:

Warning

Not all built-in I denti t ySt or e implementations support all credential types. For

example, since the LDAPI dent it ySt or e is backed by an LDAP directory server,
only password credentials are supported. The following table lists the built-in
I denti t ySt or e implementations that support each credential type.

54

Identity Management

Table 3.12. Built-in credential types

Credential type Description Supported by

or g. pi cket | i nk. i dm cr edent Useddayedigest-based JPAl dentityStore
authentication Fi | eBasedl dentityStore

org. pi cket i nk. i dm cr edent AsstaPaasddert-based JPAl dentityStore
password Fi | eBasedl dentityStore

LDAPI dentityStore

java. security. cert.X509Cer tiseidctnreX509 certificate JPAl dentityStore
based authentication Fi | eBasedl dentityStore

Let's take a look at a couple of examples. Here's some code demonstrating how a password can
be assigned to user "jsmith":

User user = identityManager.getUser("jsmth");
i dentit yManager . updat eCredenti al (user, new Password("abcd1234"));

This example creates a digest and assigns it to user "jdoe":

User user = identityManager. getUser("jdoe");

Di gest digest = new Digest();

di gest.setReal m("default");

di gest . set User nane(user . get Logi nNane()) ;

di gest . set Passwor d("abcd1234");

i dentityManager. updat eCredenti al (user, digest);

3.10. Credential Handlers

For 1 denti t ySt or e implementations that support multiple credential types, PicketLink provides
an optional SPI to allow the default credential handling logic to be easily customized and extended.
To get a better picture of the overall workings of the Credential Handler SPI, let's take a look at
the sequence of events during the credential validation process when validating a username and
password against JPAl denti tyStore:

55

Identity Management

sd Username/Password YWaldation)

% |dentityidanager |RAldentityStora contest nancer
SecurityContext PasswordCredentialHandiar

Clser

i
| [I
1: walidate Credentialel crodertials) |

I

| b'l"

I
I
I
1.1 walidaleCredentiglsicontexl, credentials)
I

1.1.1: getCredentiah/dlidatcr!)

e _aal;ﬂle_r_jj

1.1.2: walidate{context, credentials, this)

1 - The user (or some other code) first invokes the val i dat eCredenti al s() method on
I denti t yManager , passing in the Cr edent i al s instance to validate.

1.1 - After looking up the correct IdentityStore (i.e. the one that has been configured
to validate credentials) the | dentityManager invokes the store's val i dat eCredenti al s()
method, passing in the Securi t yCont ext and the credentials to validate.

« 1.1.1 - In JPAl dent i t ySt or e's implementation of the val i dat eCredenti al s() method, the
SecurityCont ext is used to look up the Credenti al Handl er implementation that has been
configured to process validation requests for usernames and passwords, which is then stored
in a local variable called handl er.

e 1.1.2-Theval i dat e() method is invoked on the Cr edent i al Handl er, passing in the security
context, the credentials value and a reference back to the identity store. The reference to the
identity store is important as the credential handler may require it to invoke certain methods
upon the store to validate the credentials.

The Cr edent i al Handl er interface declares three methods, as follows:

public interface Credential Handl er {
voi d setup(ldentityStore<?> identityStore);

voi d val i date(SecurityContext context, Credentials credentials,
IdentityStore<?> identityStore);

voi d updat e(SecurityContext context, Agent agent, Cbject credential,

56

Identity Management

IdentityStore<?> identityStore, Date effectiveDate, Date expiryDate);

The set up() method is called once, when the Credenti al Handl er instance is first created.
Credential handler instantiation is controlled by the Cr edent i al Handl er Fact or y, which creates
a single instance of each Credenti al Handl er implementation to service all credential requests
for that handler. Each Credent i al Handl er implementation must declare the types of credentials
that it is capable of supporting, which is done by annotating the implementation class with the
@upport sCredent i al s annotation like so:

@upportsCredential s({ UsernanePasswor dCredenti al s. cl ass, Password. cl ass })
public class PasswordCredenti al Handl er inplenents Credential Handl er {

Since the val i date() and updat e() methods receive different parameter types (val i dat e()
takes a Cr edent i al s parameter value while updat e() takes an Qbj ect that represents a single
credential value), the @uppor t sCredent i al s annotation must contain a complete list of all types
supported by that handler.

Similarly, if the IdentityStore implementation makes use of the credential handler SPI
then it also must declare which credential handlers support that identity store. This is done
using the @oredenti al Handl ers annotation; for example, the following code shows how
JPAI dentityStore is configured to be capable of handling credential requests for usernames
and passwords, X509 certificates and digest-based authentication:

@Cr edent i al Handl er s({ PasswordCredenti al Handl er. cl ass,
X509CertificateCredential Handl er. cl ass, DigestCredential Handl er.class })
public class JPAldentityStore inplenents |dentityStore<JPAldentityStoreConfiguration>,
Credential Store {

3.10.1. The CredentialStore interface

For ldentityStore implementations that support multiple credential types (such as
JPAldentityStore and Fil eBasedl dentityStore), the implementation may choose to
also implement the Credential Store interface to simplify the interaction between the
Credenti al Handl er andthel dentityStore. The Credenti al St or e interface declares methods
for storing and retrieving credential values within an identity store, as follows:

public interface Credential Store {
voi d storeCredential (SecurityContext context, Agent agent,
Credenti al St orage storage);
<T extends Credential Storage> T retrieveCurrent Credential (SecurityContext context,
Agent agent, C ass<T> storaged ass);
<T extends Credential Storage> List<T> retrieveCredential s(SecurityContext context,
Agent agent, O ass<T> storageCd ass);

57

Identity Management

The Credential Storage interface is quite simple and only declares two methods,
get Ef f ecti veDat e() and get Expi ryDate():

public interface Credential Storage {
@tored Date getEffectiveDate();
@t ored Date get ExpiryDate();

The most important thing to note above is the usage of the @5t or ed annotation. This annotation is
used to mark the properties of the Cr edent i al St or age implementation that should be persisted.
The only requirement for any property values that are marked as @t ored is that they are
serializable (i.e. they implement the j ava. i 0. Seri al i zabl e interface). The @5t or ed annotation
may be placed on either the getter method or the field variable itself. Here's an example of one
of a Credent i al St or age implementation that is built into PicketLink - EncodedPasswor dSt or age
is used to store a password hash and salt value:

public class EncodedPasswor dStorage inplenents Credential Storage {

private Date effectiveDate;
private Date expiryDate;
private String encodedHash;
private String salt;

@verride @stored
public Date getEffectiveDate() {
return effectiveDate;

public void setEffectiveDate(Date effectiveDate) {
this.effectiveDate = effectiveDate;

@verride @stored
public Date get ExpiryDate() {
return expiryDate;

public void setExpiryDate(Date expiryDate) {
this.expiryDate = expiryDate;

@t or ed
public String get EncodedHash() {
return encodedHash;

public void set EncodedHash(String encodedHash) {
t hi s. encodedHash = encodedHash;

58

Identity Management

@t or ed
public String getSalt() {
return this.salt;

}

public void setSalt(String salt) {
this.salt = salt;

}

3.11. Built-in Credential Handlers

This section describes each of the built-in credential handlers, and any configuration
parameters that may be set for them. Specific credential handler options can be set
when creating a new | dentityConfiguration. Configured options are always specific to a
particular identity store configuration, allowing different options to be specified between two or
more identity stores. The I dentityStoreConfiguration interface provides a method called
get Credenti al Handl ersConfi g() that provides access to a Map which allows configuration
options to be set for the identity store's credential handlers:

public interface ldentityStoreConfiguration {
Map<String, Object> get Credenti al Handl er Properties();
}

To gain access to the | dent i t ySt or eConf i gur at i on object before PicketLink is initialized, there
are a couple of options. The first option is to provide an | dent i t yConf i gur at i on object itself via
a producer method.

3.11.1.

3.12. Advanced Topics

3.12.1. Multi Realm Support

PicketLink has been designed from the ground up to support a system of partitioning, allowing the
users, groups and roles of an application to be divided into Realms and Tiers.

59

Identity Management

MEMEER OF

A Realm is used to define a discrete set of users, groups and roles. A typical use case for realms
is the segregation of corporate user accounts within a multi-tenant application, although it is not
limited this use case only. As all identity management operations must be performed within the
context of an active partition, PicketLink defines the concept of a default realm which becomes
the active partition if no other partition has been specified.

A Tier is a more restrictive type of partition than a realm, as it only allows groups and roles to
be defined (but not users). A Tier may be used to define a set of application-specific groups and
roles, which may then be assigned to groups within the same Tier, or to users and groups within
a separate Realm.

In terms of API, both the Real mand Ti er classes implement the Partiti on interface, as shown
in the following class diagram:

60

Identity Management

pkg org.piclketlinleidm.model)

=<interface==
Partition

+ getld() . String

Realm Tier

+ getld() : 5tring + getld() : String

Selecting the specific partition that the identity management operations are performed
in is controlled by specifying the partition when creating the |dentityManager via the
I dent i t yManager Fact or y's overloaded cr eat el dent i t yManager () methods:

I dentityManager createldentityManager();
I dentityManager createldentityManager(Partition partition);

The first method (without parameters) will create an IdentityManager instance for the
default realm. The second parameter allows a Partition object to be specified. Once
the IdentityManager has been created, any identity management methods invoked on
it will be performed within the selected partition. To look up the partition object, the
I dent i t yManager Fact or y provides two additional methods:

Real m get Real m(String id);
Tier getTier(String id);

Here's an example demonstrating how a new user called "bob" is created in a realm called acme:

61

Identity Management

Real m acne = identityManagerFactory. get Real n("acne");
IdentityManager im = identityManager Factory. createldentityManager (acne);
imadd(new Si npl eUser ("bob"));

62

Chapter 4. Federation

4.1. Overview

In this chapter, we look at PicketLink si ngl e sign on (SSO andtrust features. We describe
SAM. SSO in detail.

4.2. SAML SSO

SAML is an QASI S St andards Consorti umstandard for single sign on. PicketLink suppors SAML
v2.0and SAML v1. 1.

PicketLink contains support for the following profiles of SAML specification.

* SAML Web Browser SSO Profile.

* SAML Global Logout Profile.

4.3. SAML Web Browser Profile

PicketLink supports the following standard bindings:

e SAML HTTP Redirect Binding
 SAML HTTP POST Binding
4.4. Additional Information

Note

Please refer to exhaustive documentation on PicketLink Confluence Site.

e User Guide [https://docs.jboss.org/author/display/PLINK/User+Guide]

63

https://docs.jboss.org/author/display/PLINK/User+Guide
https://docs.jboss.org/author/display/PLINK/User+Guide

	PicketLink Reference Documentation
	Table of Contents
	Chapter 1. Overview
	1.1. What is PicketLink?
	1.2. Modules
	1.2.1. Base module
	1.2.2. Identity Management
	1.2.3. Federation

	1.3. License
	1.4. Maven Dependencies

	Chapter 2. Authentication
	2.1. Overview
	2.2. The Authentication API
	2.3. The Authentication Process
	2.3.1. A Basic Authenticator
	2.3.2. Multiple Authenticator Support
	2.3.3. Credentials
	2.3.4. DefaultLoginCredentials

	Chapter 3. Identity Management
	3.1. Overview
	3.2. Identity Model
	3.2.1. Architectural Overview

	3.3. Configuration
	3.3.1. Architectural Overview
	3.3.2. Programmatic Configuration
	3.3.2.1. IdentityConfigurationBuilder for Programmatic Configuration

	3.3.3. Security Context Configuration
	3.3.3.1. Initializing the SecurityContext
	3.3.3.2. Configuring how SecurityContext instances are created

	3.3.4. Identity Store Feature Set
	3.3.5. Identity Store Configurations
	3.3.6. JPAIdentityStoreConfiguration
	3.3.6.1. Recommended Database Schema
	3.3.6.2. Default Database Schema
	3.3.6.3. Configuring an EntityManager
	3.3.6.4. Configuring the Identity class
	3.3.6.5. Configuring the Attribute class
	3.3.6.6. Configuring the Credential class
	3.3.6.7. Configuring the Credential Attribute class
	3.3.6.8. Configuring the Relationship class
	3.3.6.9. Configuring the Relationship Identity class
	3.3.6.10. Configuring the Relationship Attribute class
	3.3.6.11. Configuring the Partition class
	3.3.6.12. Providing a EntityManager

	3.3.7. LDAPIdentityStoreConfiguration
	3.3.7.1. Configuration
	3.3.7.1.1. Mapping Groups to different contexts

	3.3.8. FileIdentityStoreConfiguration
	3.3.8.1. Filesystem Structure
	3.3.8.2. Configuration
	3.3.8.2.1. Preserving State Between Initializations
	3.3.8.2.2. Changing the Working Directory

	3.3.9. Providing a Custom IdentityStore

	3.4. Java EE Environments
	3.5. Using the IdentityManager
	3.5.1. Accessing the IdentityManager in Java EE
	3.5.1.1. Configuring the Application Realm

	3.5.2. Accessing the IdentityManager in Java SE

	3.6. Managing Users, Groups and Roles
	3.6.1. Managing Users
	3.6.2. Managing Groups

	3.7. Managing Relationships
	3.7.1. Built In Relationship Types
	3.7.1.1. Application Roles
	3.7.1.2. Groups and Group Roles

	3.7.2. Creating Custom Relationships

	3.8. Authentication
	3.9. Managing Credentials
	3.10. Credential Handlers
	3.10.1. The CredentialStore interface

	3.11. Built-in Credential Handlers
	3.11.1.

	3.12. Advanced Topics
	3.12.1. Multi Realm Support

	Chapter 4. Federation
	4.1. Overview
	4.2. SAML SSO
	4.3. SAML Web Browser Profile
	4.4. Additional Information

