
PicketLink Reference

Documentation

PicketLink [http://www.jboss.org/picketlink]

http://www.jboss.org/picketlink
http://www.jboss.org/picketlink

PicketLink Reference Documentation
by

Version 2.5.0.Beta3

iii

1. Overview .. 1

1.1. What is PicketLink? .. 1

1.2. Modules ... 1

1.2.1. Base module ... 1

1.2.2. Identity Management .. 2

1.2.3. Federation ... 2

1.3. License .. 2

1.4. Maven Dependencies ... 2

2. Authentication ... 4

2.1. Overview .. 4

2.2. The Authentication API ... 4

2.3. The Authentication Process ... 7

2.3.1. A Basic Authenticator ... 8

2.3.2. Multiple Authenticator Support .. 9

2.3.3. Credentials .. 10

2.3.4. DefaultLoginCredentials .. 11

3. Identity Management ... 13

3.1. Overview .. 13

3.2. Identity Model ... 14

3.2.1. Architectural Overview .. 15

3.3. Configuration .. 19

3.3.1. Architectural Overview .. 19

3.3.2. Programmatic Configuration .. 21

3.3.3. Security Context Configuration .. 22

3.3.4. Identity Store Feature Set ... 23

3.3.5. Identity Store Configurations ... 26

3.3.6. JPAIdentityStoreConfiguration ... 26

3.3.7. LDAPIdentityStoreConfiguration .. 36

3.3.8. FileIdentityStoreConfiguration .. 38

3.3.9. Providing a Custom IdentityStore .. 39

3.4. Java EE Environments .. 39

3.5. Using the IdentityManager ... 39

3.5.1. Accessing the IdentityManager in Java EE .. 39

3.5.2. Accessing the IdentityManager in Java SE .. 40

3.6. Managing Users, Groups and Roles ... 40

3.6.1. Managing Users ... 40

3.6.2. Managing Groups ... 41

3.7. Managing Relationships .. 42

3.7.1. Built In Relationship Types ... 44

3.7.2. Creating Custom Relationships ... 50

3.8. Authentication ... 51

3.9. Managing Credentials ... 54

3.10. Credential Handlers ... 55

3.10.1. The CredentialStore interface .. 57

PicketLink Reference

Documentation

iv

3.11. Built-in Credential Handlers ... 59

3.11.1. ... 59

3.12. Advanced Topics .. 59

3.12.1. Multi Realm Support ... 59

4. Federation .. 63

4.1. Overview .. 63

4.2. SAML SSO ... 63

4.3. SAML Web Browser Profile ... 63

4.4. Additional Information .. 63

1

Chapter 1. Overview

1.1. What is PicketLink?

PicketLink is an Application Security Framework for Java EE applications. It provides features for

authenticating users, authorizing access to the business methods of your application, managing

your application's users, groups, roles and permissions, plus much more. The following diagram

presents a high level overview of the PicketLink modules.

1.2. Modules

1.2.1. Base module

The base module provides the integration framework required to use PicketLink within a Java

EE application. It defines a flexible authentication API that allows pluggable authentication

mechanisms to be easy configured, with a sensible default authentication policy that delegates to

Overview

2

the identity management subsystem. It provides session-scoped authentication tracking for web

applications and other session-capable clients, plus a customisable permissions SPI that supports

a flexible range of authorization mechanisms for object-level security.

The base module libraries are as follows:

• picketlink-api - API for PicketLink's base module.

• picketlink-impl - Internal implementation classes for the base API.

1.2.2. Identity Management

The Identity Management module defines the base identity model; a collection of interfaces and

classes that represent the identity constructs (such as users, groups and roles) used throughout

PicketLink (see the Identity Management chapter for more details). As such, it is a required module

and must always be included in any application deployments that use PicketLink for security. It

also provides a uniform API for managing the identity objects within your application.

Libraries are as follows:

• picketlink-idm-api - PicketLink's Identity Management (IDM) API. This library defines the

Identity Model central to all of PicketLink, and all of the identity management-related interfaces.

• picketlink-idm-impl - Internal implementation classes for the IDM API.

1.2.3. Federation

The Federation module is an optional module that implements a number of Federated Identity

standards, such as SAML (both version 1.1 and 2.0), WS-Trust and OpenID.

1.3. License

PicketLink 3.0 is licensed under the Apache License Version 2, the terms and conditions of which

can be found at apache.org [http://www.apache.org/licenses/LICENSE-2.0.html].

1.4. Maven Dependencies

The PicketLink libraries are available from the Maven Central Repository. To use PicketLink in

your Maven-based project, it is recommended that you first define a version property for PicketLink

in your project's pom.xml file like so:

<properties>

 <picketlink.version>2.5.0.Beta3</picketlink.version>

</properties>

For a typical application, it is suggested that you include the following PicketLink dependencies:

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

Overview

3

<dependencies>

 <dependency>

 <groupId>org.picketlink</groupId>

 <artifactId>picketlink-api</artifactId>

 <scope>compile</scope>

 <version>${picketlink.version}</version>

 </dependency>

 <dependency>

 <groupId>org.picketlink</groupId>

 <artifactId>picketlink-impl</artifactId>

 <scope>runtime</scope>

 <version>${picketlink.version}</version>

 </dependency>

The identity management library is a required dependency of the base module and so will be

automatically included.

If you wish to use PicketLink's Identity Management features and want to include the default

database schema (see the Identity Management chapter for more details) then configure the

following dependency also:

 <dependency>

 <groupId>org.picketlink</groupId>

 <artifactId>picketlink-idm-schema</artifactId>

 <version>${picketlink.version}</version>

 </dependency>

4

Chapter 2. Authentication

2.1. Overview

Authentication is the act of verifying the identity of a user. PicketLink offers an extensible

authentication API that allows for significant customization of the authentication process, while

also providing sensible defaults for developers that wish to get up and running quickly. It also

supports both synchronous and asynchronous user authentication, allowing for both a traditional

style of authentication (such as logging in with a username and password), or alternatively allowing

authentication via a federated identity service, such as OpenID, SAML or OAuth. This chapter will

endeavour to describe the authentication API and the authentication process in some detail, and

is a good place to gain a general overall understanding of authentication in PicketLink. However,

please note that since authentication is a cross-cutting concern, various aspects (for example

Identity Management-based authentication and Federated authentication) are documented in

other chapters of this book.

2.2. The Authentication API

The Identity bean (which can be found in the org.picketlink package) is central to

PicketLink's security API. This bean represents the authenticated user for the current session,

and provides many useful methods for controlling the authentication process and querying the

user's assigned privileges. In terms of authentication, the Identity bean provides the following

methods:

AuthenticationResult login();

void logout();

boolean isLoggedIn();

Agent getAgent();

The login() method is the primary point of entry for the authentication process. Invoking this

method will cause PicketLink to attempt to authenticate the user based on the credentials that they

have provided. The AuthenticationResult type returned by the login() method is a simple

enum that defines the following two values:

public enum AuthenticationResult {

 SUCCESS, FAILED

}

Authentication

5

If the authentication process is successful, the login() method will return a result of SUCCESS,

otherwise it will return a result of FAILED. By default, the Identity bean is session-scoped, which

means that once a user is authenticated they will stay authenticated for the duration of the session.

Note

One significant point to note is the presence of the @Named annotation on the

Identity bean, which means that its methods may be invoked directly from the

view layer (if the view layer, such as JSF, supports it) via an EL expression.

One possible way to control the authentication process is by using an action bean, for example

the following code might be used in a JSF application:

public @RequestScoped @Named class LoginAction {

 @Inject Identity identity;

 public void login() {

 AuthenticationResult result = identity.login();

 if (AuthenticationResult.FAILED.equals(result)) {

 FacesContext.getCurrentInstance().addMessage(null,

 new FacesMessage(

 "Authentication was unsuccessful. Please check your username and password " +

 "before trying again."));

 }

 }

}

In the above code, the Identity bean is injected into the action bean via the CDI

@Inject annotation. The login() method is essentially a wrapper method that delegates to

Identity.login() and stores the authentication result in a variable. If authentication was

unsuccessful, a FacesMessage is created to let the user know that their login failed. Also, since

the bean is @Named it can be invoked directly from a JSF control like so:

<h:commandButton value="LOGIN" action="#{loginAction.login}"/>

The isLoggedIn() method may be used to determine whether there is a user logged in for the

current session. It is typically used as an authorization check to control either an aspect of the user

interface (for example, not displaying a menu item if the user isn't logged in), or to restrict certain

business logic. While logged in, the getAgent() method can be used to retrieve the currently

authenticated agent (or user). If the current session is not authenticated, then getAgent() will

return null. The following example shows both the isLoggedIn() and getAgent() methods

being used inside a JSF page:

Authentication

6

<ui:fragment rendered="#{identity.loggedIn}">Welcome, #{identity.agent.loginName}

Note

If you're wondering what an Agent is, it is simply a representation of the external

entity that is interacting with your application, whether that be a human user

or some third party (non-human) system. The Agent interface is actually the

superclass of User - see the Identity Management chapter for more details.

The logout() method allows the user to log out, thereby clearing the authentication state for their

session. Also, if the user's session expires (for example due to inactivity) their authentication state

will also be lost requiring the user to authenticate again.

The following JSF code example demonstrates how to render a log out button when the current

user is logged in:

<ui:fragment rendered="#{identity.loggedIn}">

 <h:form>

 <h:commandButton value="Log out" action="#{identity.logout}"/>

 </h:form>

</ui:fragment>

While it is the Identity bean that controls the overall authentication process, the actual

authentication "business logic" is defined by the Authenticator interface:

public interface Authenticator {

 public enum AuthenticationStatus {

 SUCCESS,

 FAILURE,

 DEFERRED

 }

 void authenticate();

 void postAuthenticate();

 AuthenticationStatus getStatus();

 Agent getAgent();

}

During the authentication process, the Identity bean will invoke the methods of the active

Authenticator (more on this in a moment) to perform user authentication. The authenticate()

method is the most important of these, as it defines the actual authentication logic. After

authenticate() has been invoked by the Identity bean, the getStatus() method will reflect

Authentication

7

the authentication status (either SUCCESS, FAILURE or DEFERRED). If the authentication process

was a success, the getAgent() method will return the authenticated Agent object and the

postAuthenticate() method will be invoked also. If the authentication was not a success,

getAgent() will return null.

2.3. The Authentication Process

Now that we've looked at all the individual pieces, let's take a look at how they all work together to

process an authentication request. For starters, the following sequence diagram shows the class

interaction that occurs during a successful authentication:

Authentication

8

• 1 - The user invokes the login() method of the Identity bean.

• 1.1 - The Identity bean (after performing a couple of validations) invokes its own

authenticate() method.

• 1.1.1 - Next the Identity bean invokes the Authenticator bean's authenticate() method

(which has a return value of void).

• 1.1.2 - To determine whether authentication was successful, the Identity bean invokes the

Authenticator's getStatus() method, which returns a SUCCESS.

• 1.1.3 - Upon a successful authentication, the Identity bean then invokes the Authenticator's

postAuthenticate() method to perform any post-authentication logic.

• 1.1.4 - The Identity bean then invokes the Authenticator's getAgent() method, which

returns an Agent object representing the authenticated agent, which is then stored as a private

field in the Identity bean.

The authentication process ends when the Identity.authenticate() method returns a value

of true to the login() method, which in turn returns an authentication result of SUCCESS to the

invoking user.

2.3.1. A Basic Authenticator

Let's take a closer look at an extremely simple example of an Authenticator. The following code

demonstrates an Authenticator implementation that simply tests the username and password

credentials that the user has provided against hard coded values of jsmith for the username, and

abc123 for the password, and if they match then authentication is deemed to be a success:

@PicketLink

public class SimpleAuthenticator extends BaseAuthenticator {

 @Inject DefaultLoginCredentials credentials;

 @Override

 public void authenticate() {

 if ("jsmith".equals(credentials.getUserId()) &&

 "abc123".equals(credentials.getPassword())) {

 setStatus(AuthenticationStatus.SUCCESS);

 setUser(new SimpleUser("jsmith"));

 } else {

 setStatus(AuthenticationStatus.FAILURE);

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(

 "Authentication Failure - The username or password you provided were invalid."));

 }

 }

}

The first thing we can notice about the above code is that the class is annotated with

the @PicketLink annotation. This annotation indicates that this bean should be used for

Authentication

9

the authentication process. The next thing is that the authenticator class extends something

called BaseAuthenticator. This abstract base class provided by PicketLink implements the

Authenticator interface and provides implementations of the getStatus() and getAgent()

methods (while also providing matching setStatus() and setAgent() methods), and

also provides an empty implementation of the postAuthenticate() method. By extending

BaseAuthenticator, our Authenticator implementation simply needs to implement the

authenticate() method itself.

We can see in the above code that in the case of a successful authentication, the setStatus()

method is used to set the authentication status to SUCCESS, and the setUser() method is used

to set the user (in this case by creating a new instance of SimpleUser). For an unsuccessful

authentication, the setStatus() method is used to set the authentication status to FAILURE, and

a new FacesMessage is created to indicate to the user that authentication has failed. While this

code is obviously meant for a JSF application, it's possible to execute whichever suitable business

logic is required for the view layer technology being used.

One thing that hasn't been touched on yet is the following line of code:

@Inject DefaultLoginCredentials credentials;

This line of code injects the credentials that have been provided by the user using CDI's

@Inject annotation, so that our Authenticator implementation can query the credential values

to determine whether they're valid or not. We'll take a look at credentials in more detail in the

next section.

Note

You may be wondering what happens if you don't provide an Authenticator bean

in your application. If this is the case, PicketLink will automatically authenticate

via the identity management API, using a sensible default configuration. See the

Identity Management chapter for more information.

2.3.2. Multiple Authenticator Support

If your application needs to support multiple authentication methods, you can provide the

authenticator selection logic within a producer method annotated with @PicketLink, like so:

@RequestScoped

@Named

public class AuthenticatorSelector {

 @Inject Instance<CustomAuthenticator> customAuthenticator;

 @Inject Instance<IdmAuthenticator> idmAuthenticator;

Authentication

10

 private String authenticator;

 public String getAuthenticator() {

 return authenticator;

 }

 public void setAuthenticator(String authenticator) {

 this.authenticator = authenticator;

 }

 @Produces

 @PicketLink

 public Authenticator selectAuthenticator() {

 if ("custom".equals(authenticator)) {

 return customAuthenticator.get();

 } else {

 return idmAuthenticator.get();

 }

 }

}

This @Named bean exposes an authenticator property that can be set by a user interface control

in the view layer. If its value is set to "custom" then CustomAuthenticator will be used, otherwise

IdmAuthenticator (the Authenticator used to authenticate using the identity management API)

will be used instead. This is an extremely simple example but should give you an idea of how to

implement a producer method for authenticator selection.

2.3.3. Credentials

Credentials are something that provides evidence of a user's identity; for example a username

and password, an X509 certificate or some kind of biometric data such as a fingerprint. PicketLink

has extensive support for a variety of credential types, and also makes it relatively simple to add

custom support for credential types that PicketLink doesn't support out of the box itself.

In the previous section, we saw a code example in which a DefaultLoginCredentials (an

implementation of the Credentials interface that supports a user ID and a credential value)

was injected into the SimpleAuthenticator bean. The most important thing to know about the

Credentials interface in relation to writing your own custom Authenticator implementation is

that you're not forced to use it. However, while the Credentials interface is mainly designed

for use with the Identity Management API (which is documented in a separate chapter) and

its methods would rarely be used in a custom Authenticator, PicketLink provides some

implementations which are suitably convenient to use as such, DefaultLoginCredentials being

one of them.

So, in a custom Authenticator such as this:

public class SimpleAuthenticator extends BaseAuthenticator {

 @Inject DefaultLoginCredentials credentials;

Authentication

11

 // code snipped

}

The credential injection is totally optional. As an alternative example, it is totally valid to create a

request-scoped bean called UsernamePassword with simple getters and setters like so:

public @RequestScoped class UsernamePassword {

 private String username;

 private String password;

 public String getUsername() { return username; }

 public String getPassword() { return password; }

 public void setUsername(String username) { this.username = username; }

 public void setPassword(String password) { this.password = password; }

}

And then inject that into the Authenticator bean instead:

public class SimpleAuthenticator extends BaseAuthenticator {

 @Inject UsernamePassword usernamePassword;

 // code snipped

}

Of course it is not recommended that you actually do this, however this simplistic example serves

adequately for demonstrating the case in point.

2.3.4. DefaultLoginCredentials

The DefaultLoginCredentials bean is provided by PicketLink as a convenience, and is intended

to serve as a general purpose Credentials implementation suitable for a variety of use cases. It

supports the setting of a userId and credential property, and provides convenience methods

for working with text-based passwords. It is a request-scoped bean and is also annotated with

@Named so as to make it accessible directly from the view layer.

Authentication

12

A view technology with support for EL binding (such as JSF) can access the

DefaultLoginCredentials bean directly via its bean name, loginCredentials. The following

code snippet shows some JSF markup that binds the controls of a login form to

DefaultLoginCredentials:

<div class="loginRow">

 <h:outputLabel for="name" value="Username" styleClass="loginLabel"/>

 <h:inputText id="name" value="#{loginCredentials.userId}"/>

</div>

<div class="loginRow">

 <h:outputLabel for="password" value="Password" styleClass="loginLabel"/>

 <h:inputSecret id="password" value="#{loginCredentials.password}" redisplay="true"/>

</div>

13

Chapter 3. Identity Management

3.1. Overview

PicketLink's Identity Management (IDM) features provide a rich and extensible API

for managing the users, groups and roles of your applications and services. The

org.picketlink.idm.IdentityManager interface declares all the methods required to create,

update and delete Identity objects and create relationships between them such as group and role

memberships.

Interaction with the backend store that provides the persistent identity state is performed by

configuring one or more IdentityStores. PicketLink provides a few built-in IdentityStore

implementations for storing identity state in a database, file system or LDAP directory server, and

it is possible to provide your own custom implementation to support storing your application's

identity data in other backends, or extend the built-in implementations to override their default

behaviour.

Before PicketLink IDM can be used, it must first be configured. See the configuration section below

for details on how to configure IDM for both Java EE and Java SE environments.

Identity Management

14

3.2. Identity Model

PicketLink's identity model consists of a number of core interfaces that define the fundamental

identity types upon which much of the Identity Management API is based. The following class

diagram shows the classes and interfaces in the org.picketlink.idm.model package that form

the base identity model.

• AttributedType is the base interface for the identity model. It declares a number of methods

for managing a set of attribute values, plus getId() and setId() methods for setting a unique

UUID value.

• Attribute is used to represent an attribute value. An attribute has a name and a (generically

typed) value, and may be marked as read-only. Attribute values that are expensive to load (such

as large binary data) may be lazy-loaded; the isLoaded() method may be used to determine

whether the Attribute has been loaded or not.

Identity Management

15

• IdentityType is the base interface for Identity objects. It declares properties that indicate

whether the identity object is enabled or not, optional created and expiry dates, plus methods

to read and set the owning Partition.

• Agent represents a unique entity that may access the services secured by PicketLink. In

contrast to a user which represents a human, Agent is intended to represent a third party

non-human (i.e. machine to machine) process that may authenticate and interact with your

application or services. It declares methods for reading and setting the Agent's login name.

• User represents a human user that accesses your application and services. In addition to the

login name property defined by its parent interface Agent, the User interface declares a number

of other methods for managing the user's first name, last name and e-mail address.

• Group is used to manage collections of identity types. Each Group has a name and an optional

parent group.

• Role is used in various relationship types to designate authority to another identity type to

perform various operations within an application. For example, a forum application may define

a role called moderator which may be assigned to one or more Users or Groups to indicate that

they are authorized to perform moderator functions.

3.2.1. Architectural Overview

The following diagram shows the main components that realize PicketLink Identity Management:

Identity Management

16

• IdentityConfiguration is the the class responsible for holding all PicketLink configuration

options. This class is usually built using the Configuration Builder API, which we'll cover in the

next sections. Once created and populated with the configuration options, an instance is used

to create a IdentityManagerFactory.

• IdentityManagerFactory is the class from which IdentityManager instances are created

for a specific realm, considering all configurations provided by a IdentityConfiguration

instance.

• SecurityContextFactory is an interface that provides methods for creating SecurityContext

instances. This component knows how to properly create and prepare the context that will be

propagated during identity management operations.

Identity Management

17

• SecurityContext is the class that holds context data that will be used during the execution of

identity management operations. Once created, the context is used to create IdentityStore

instances and to invoke their methods.

This component allows to share data between the IdentityManager and IdentityStore

instances. And also provides direct access for some IDM subsystems such as: event handling,

caching and so on.

Beyond that, this component is critical when access to external resources are required, such

as the current EntityManager when using a JPA-based store.

Each IdentityManager instance is associated with a single SecurityContext.

• StoreFactory is an interface that provides methods for creating IdentityStore instances.

Instances are created considering the Feature Set supported by each identity store and also

the current SecurityContext instance.

• IdentityStore is an interface that provides a contract for implementations that store data using

a specific repository such as: LDAP, databases, file system, etc.

It is a critical component as it provides all the necessary logic about how to store data.

• IdentityManager is an interface that provides a simple access for all identity management

operations using one or more of the configured identity stores.

All functionality provided by PicketLink is available from this interface, from where applications

will interact most of the time.

For most use cases, users will only work with the IdentityManagerFactory and

IdentityManager classes. Only advanced use cases may require a deep knowledge about

other components in order to customize the default behaviour/implementation to suit a specific

requirement.

The diagram below shows an overview about how a specific identity management operation is

realized:

Identity Management

18

• 1 - The Application creates an IdentityManagerFactory instance from a previously created

IdentityConfiguration. At this point, the factory reads the configuration and bootstraps the

identity management ecosystem.

• 1.1 - The IdentityManagerFactory initializes the SecurityContextFactory.

• 1.2 - The IdentityManagerFactory initializes the StoreFactory.

• 2 - With a fully initialized IdentityManagerFactory instance, the Application is able to create

IdentityManager instances and execute operations. IdentityManager instances are created

for a specific realm, in this specific case we're creating an instance using the default realm.

• 2.1 and 2.1.1 - An IdentityManager instance is always associated with a SecurityContext.

The SecurityContext is created and set into the IdentityManager instance. The same

Identity Management

19

security context is used during the entire lifecycle of the IdentityManager, it will be used to

share state with the underlying identity stores and provide access to external resources (if

necessary) in order to execute operations.

At this time, the IdentityManager is also configured to hold a reference to the StoreFactory

in order to execute the operations against the underlying/configured IdentityStore instances.

• 3 - Now the application holds a reference to the IdentityManager instance and it is ready to

perform identity management operations (eg.: add an user, queries, validate credentials, etc).

• 3.1 and 3.1.1 - But before executing the operations, the IdentityManager needs to obtain

from the StoreFactory the IdentityStore instance that should be used to execute a specific

operation. Identity stores are selected by examining the configuration to see which store

configuration supports a specific operation or feature.

• 3.2 - Now that the IdentityManager have selected which IdentityStore instance should be

used, this last is invoked in order to process the operation.

• 3.2.1 - Usually, during the execution of an operation, the IdentityStore uses the current

SecurityContext. The SecurityContext can hold some state that may be useful during

the execution (eg.: the JPA store uses the security context to gain access to the current

EntityManager instance) and also provide access for some IDM internal services like event

handling, caching, etc.

• 3.2.2 - Finally, the IdentityStore executes the operation and persist or retrieve identity data

from the underlying repository.

PicketLink IDM design is quite flexible and allows you to configure or even customize most of

the behaviours described above. As stated earlier, most use cases require minimal knowledge

about these details and the default implementation should be enough to satisfy the majority of

requirements.

3.3. Configuration

3.3.1. Architectural Overview

Configuration in PicketLink is in essence quite simple; an IdentityConfiguration object must

first be created to hold the PicketLink configuration options. Once all configuration options have

been set, you just create a IdentityManagerFactory instance passing the previously created

configuration. The IdentityManagerFactory can then be used to create IdentityManager

instances via the createIdentityManager() method.

Identity Management

20

The IdentityConfiguration is usually created using a Configuration Builder API, which provides

a rich and fluent API for every single aspect of PicketLink configuration.

Note

For now, all configuration is set programmatically using the Configuration Builder

API only. Later versions will also support a declarative configuration in a form of

XML documents.

Each IdentityManager instance has its own security context, represented by the

SecurityContext class. The security context contains temporary state which is maintained for

one or more identity management operations within the scope of a single realm or tier. The

IdentityManager (and its associated SecurityContext) is typically modelled as a request-

Identity Management

21

scoped object (for environments which support such a paradigm, such as a servlet container),

or alternatively as an actor within the scope of a transaction. In the latter case, the underlying

resources being utilised by the configured identity stores (such as a JPA EntityManager)

would participate in the active transaction, and changes made as a result of any identity

management operations would either be committed or rolled back as appropriate for the logic of

the encapsulating business method.

The following sections describe various ways that configuration may be performed in different

environments.

3.3.2. Programmatic Configuration

Configuration for Identity Management can be defined programmatically using the Configuration

Builder API. The aim of this API is to make it easier to chain coding of configuration options in

order to speed up the coding itself and make the configuration more readable.

Let's assume that you want to quick start with PicketLink Identity Management features using

a file-based Identity Store. First, a fresh instance of IdentityConfiguration is created using

the IdentityConfigurationBuilder helper object, where we choose which identity store we

want to use (in this case a file-based store) and any other configuration option, if necessary.

Finally, we use the configuration to create a IdentityManagerFactory from where we can create

IdentityManager instances and start to perform Identity Management operations:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .supportAllFeatures();

IdentityConfiguration configuration = builder.build();

IdentityManagerFactory identityManagerFactory = new IdentityManagerFactory(configuration);

IdentityManager identityManager = identityManagerFactory.createIdentityManager();

User user = new SimpleUser("john");

identityManager.add(user);

3.3.2.1. IdentityConfigurationBuilder for Programmatic Configuration

The IdentityConfigurationBuilder is the entry point for PicketLink configuration. It is a very

simple class with some meaningful methods for all supported configuration options.

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores() // supported identity stores configuration

Identity Management

22

 .file()

 // file-based identity store configuration

 .jpa()

 // JPA-based identity store configuration

 .ldap()

 // LDAP-based identity store configuration

 .contextFactory(...); // for custom SecurityContextFactory implementations

In the next sections we'll cover each supported Identity Store and their specific configuration.

3.3.3. Security Context Configuration

The SecurityContext plays an important role in the PicketLink IDM achitecture. As discussed in

the Architectural Overview, it is strongly used during the execution of operations. It carries very

sensitive and contextual information for a specific operation and provides access for some of the

IDM underlying services such as caching, event handling, UUID generator for IdentityTpe and

Relationship instances, among others.

Operations are always executed by a specific IdentityStore in order to persist or store identity

data using a specific repository (eg.: LDAP, databases, filesystem, etc). When executing a

operation the identity store must be able to:

• Access the current Partition. All operations are executed for a specific Realm or Tier

• Access the current IdentityManager instance, from which the operation was executed.

• Access the Event Handling API in order to fire events such as when an user is created, updated,

etc.

• Access the Caching API in order to cache identity data and increase performance.

• Access the Credential Handler API in order to be able to update and validate credentials.

• Access to external resources, provided before the operation is executed and initialized by a

ContextInitializer.

3.3.3.1. Initializing the SecurityContext

Sometimes you may need to provide additional configuration or even references for external

resources before the operation is executed by an identity store. An example is how you tell

to theJPAIdentityStore which EntityManager instance should be used. When executing an

operation, the JPAIdentityStore must be able to access the current EntityManager to persist

or retrieve data from the database. You need someway to populate the SecurityContext with

such information. When you're configuring an identity store, there is a configuration option that

allows you to provide a ContextInitializer implementation.

public interface ContextInitializer {

Identity Management

23

 void initContextForStore(SecurityContext context, IdentityStore<?> store);

}

The method initContextForStore will be invoked for every single operation and before its

execution by the identity store. It can be implemented to provide all the necessary logic to initialize

and populate the SecurityContext for a specific IdentityStore.

The configuration is also very simple, you just need to provide the following configuration:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .addContextInitializer(new MySecurityContextInitializer());

}

You can provide multiple initializers.

Note

Remember that initializers are executed for every single operation. Also, the same

instance is used between operations which means your implementation should be

“stateless”. You should be careful about the implementation in order to not impact

performance, concurrency or introduce unexpected behaviors.

3.3.3.2. Configuring how SecurityContext instances are created

SecurityContext instances are created by the SecurityContextFactory. If for some reason

you need to change how SecurityContext instances are created, you can provide an

implementation of this interface and configure it as follows:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .contextFactory(mew MySecurityContextFactory());

}

3.3.4. Identity Store Feature Set

When configuring identity stores you must tell which features and operations should be executed

by them. Features and operations are a key concept if you want to mix stores in order to execute

operations against different repositories.

Identity Management

24

PicketLink provides a Java enum, called FeatureGroup, in which are defined all supported

features. The table bellow summarize them:

Table 3.1. Identity class fields

Feature

FeatureGroup.agent

FeatureGroup.user

FeatureGroup.role

FeatureGroup.group

FeatureGroup.relationship

FeatureGroup.credential

FeatureGroup.realm

FeatureGroup.tier

The features are a determinant factor when choosing an identity store to execute a specific

operation. For example, if an identity store is configured with FeatureGroup.user we're

saying that all User operations should be executed by this identity store. The same goes for

FeatureGroup.credential, we're just saying that credentials can also be updated and validated

using the identity store.

Beside that, provide only the feature is not enough. We must also tell the identity store which

operations are supported by a feature. For example, we can configure a identity store to support

only read operations for users, which is very common when using the LDAP identity store against

a read-only tree. Operations are also defined by an enum, called FeatureOperation, as follows:

Table 3.2. Identity class fields

Operation

Featureoperation.create

Featureoperation.read

Featureoperation.update

Featureoperation.delete

Featureoperation.validate

During the configuration you can provide which features and operations should be supported using

the Configuration API. You don't need to be forced to specify them individually, if you want to

support all features and operations for a particular identity store you can use:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

Identity Management

25

 .supportAllFeatures();

}

For a more granular configuration you can also use:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .supportFeature(

 FeatureGroup.agent,

 FeatureGroup.user,

 FeatureGroup.role,

 FeatureGroup.group)

}

The configuration above defines the features individually. In this case the configured features are

also supporting all operations. If you want to specify which operation should be supported by a

feature you can use:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .supportFeature(FeatureGroup.agent, FeatureOperation.read)

 .supportFeature(FeatureGroup.user, FeatureOperation.read))

 .supportFeature(FeatureGroup.role, FeatureOperation.create))

 .supportFeature(FeatureGroup.role, FeatureOperation.read))

 .supportFeature(FeatureGroup.role, FeatureOperation.update))

 .supportFeature(FeatureGroup.role, FeatureOperation.delete))

 .supportFeature(FeatureGroup.group, FeatureOperation.create))

 .supportFeature(FeatureGroup.group, FeatureOperation.read))

 .supportFeature(FeatureGroup.group, FeatureOperation.update))

 .supportFeature(FeatureGroup.group, FeatureOperation.delete))

}

For a more complex configuration evolving multiple identity stores with a different feature set, look

at the example bellow:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .ldap()

 .supportFeature(FeatureGroup.agent)

 .supportFeature(FeatureGroup.user)

 .supportFeature(FeatureGroup.credential)

 .jpa()

Identity Management

26

 .supportFeature(FeatureGroup.role)

 .supportFeature(FeatureGroup.group)

 .supportFeature(FeatureGroup.relationship)

}

The configuration above shows how to use LDAP to store only agents, users and credentials and

database for roles, groups and relationships.

Note

Remember that identity stores must have their features and operations configured.

If you don't provide them you won't be able to build the configuration.

3.3.5. Identity Store Configurations

For each of the built-in IdentityStore implementations there is a corresponding

IdentityStoreConfiguration implementation - the following sections describe each of these

in more detail.

3.3.6. JPAIdentityStoreConfiguration

The JPA identity store uses a relational database to store identity state. The configuration for this

identity store provides control over which entity beans are used to store identity data, and how their

fields should be used to store various identity-related state. The entity beans that store the identity

data must be configured using the annotations found in the org.picketlink.jpa.annotations

package. All identity configuration annotations listed in the tables below are from this package.

3.3.6.1. Recommended Database Schema

The following schema diagram is an example of a suitable database structure for storing IDM-

related data:

Identity Management

27

Please note that the data types shown in the above diagram might not be available in your RDBMS;

if that is the case please adjust the data types to suit.

3.3.6.2. Default Database Schema

If you do not wish to provide your own JPA entities for storing IDM-related state, you may use

the default schema provided by PicketLink in the picketlink-idm-schema module. This module

contains a collection of entity beans suitable for use with JPAIdentityStore. To use this module,

add the following dependency to your Maven project's pom.xml file:

<dependency>

 <groupId>org.picketlink</groupId>

 <artifactId>picketlink-idm-schema</artifactId>

 <version>${picketlink.version}</version>

</dependency>

In addition to including the above dependency, the default schema entity beans must be configured

in your application's persistence.xml file. Add the following entries within the persistence-

unit section:

<class>org.picketlink.idm.jpa.schema.IdentityObject</class>

<class>org.picketlink.idm.jpa.schema.PartitionObject</class>

<class>org.picketlink.idm.jpa.schema.RelationshipObject</class>

<class>org.picketlink.idm.jpa.schema.RelationshipIdentityObject</class>

<class>org.picketlink.idm.jpa.schema.RelationshipObjectAttribute</class>

<class>org.picketlink.idm.jpa.schema.IdentityObjectAttribute</class>

<class>org.picketlink.idm.jpa.schema.CredentialObject</class>

Identity Management

28

<class>org.picketlink.idm.jpa.schema.CredentialObjectAttribute</class>

3.3.6.3. Configuring an EntityManager

Before the JPA identity store can be used, it must be provided with an EntityManager so that it can

connect to a database. In Java EE this can be done by providing a producer method within your

application that specifies the @org.picketlink.annotations.PicketLink qualifier, for example

like so:

@Produces

@PicketLink

@PersistenceContext(unitName = "picketlink")

private EntityManager picketLinkEntityManager;

3.3.6.4. Configuring the Identity class

The Identity class is the entity bean that is used to store the record for users, roles and groups. It

should be annotated with @IdentityType and declare the following field values:

Table 3.3. Identity class fields

Property Annotation Description

ID @Identifier The unique identifier value for

the identity (can also double

as the primary key value)

Discriminator @Discriminator Indicates the identity type (i.e.

user, agent, group or role) of

the identity.

Partition @IdentityPartition The partition (realm or tier)

that the identity belongs to

Login name @LoginName The login name for agent

and user identities (for other

identity types this will be null)

Name @IdentityName The name for group and role

identities (for other identity

types this will be null)

First Name @FirstName The first name of a user

identity

Last Name @LastName The last name of a user

identity

E-mail @Email The primary e-mail address of

a user identity

Identity Management

29

Property Annotation Description

Enabled @Enabled Indicates whether the identity

is enabled

Creation date @CreationDate The creation date of the

identity

Expiry date @ExpiryDate The expiry date of the identity

Group parent @Parent The parent group (only used

for Group identity types, for

other types will be null)

Group path @GroupPath Represents the full group path

(for Group identity types only)

The following code shows an example of an entity class configured to store Identity instances:

Example 3.1. Example Identity class

@IdentityType

@Entity

public class IdentityObject implements Serializable {

 @Discriminator

 private String discriminator;

 @ManyToOne

 @IdentityPartition

 private PartitionObject partition;

 @Identifier

 @Id

 private String id;

 @LoginName

 private String loginName;

 @IdentityName

 private String name;

 @FirstName

 private String firstName;

 @LastName

 private String lastName;

 @Email

 private String email;

 @Enabled

 private boolean enabled;

 @CreationDate

 @Temporal(TemporalType.TIMESTAMP)

 private Date creationDate;

Identity Management

30

 @ExpiryDate

 @Temporal(TemporalType.TIMESTAMP)

 private Date expiryDate;

 @ManyToOne

 @Parent

 private IdentityObject parent;

 @GroupPath

 private String groupPath;

 // getters and setters

}

3.3.6.5. Configuring the Attribute class

The Attribute class is used to store Identity attributes, and should be annotated with

@IdentityAttribute

Table 3.4. Attribute class fields

Property Annotation Description

Identity @Parent The parent identity object

to which the attribute value

belongs

Name @AttributeName The name of the attribute

Value @AttributeValue The value of the attribute

Type @AttributeType The fully qualified classname

of the attribute value class

Example 3.2. Example Attribute class

@Entity

@IdentityAttribute

public class IdentityAttribute implements Serializable {

 @Id @GeneratedValue private Long id;

 @ManyToOne @JoinColumn

 @Parent

 private IdentityObject identityObject;

 @AttributeName

 private String name;

 @AttributeValue

 private String value;

 @AttributeType

 private String type;

Identity Management

31

 // getters and setters

}

3.3.6.6. Configuring the Credential class

The credential entity is used to store user credentials such as passwords and certificates, and

should be annotated with @IdentityCredential.

Table 3.5. Credential class fields

Property Annotation Description

Type @CredentialType The fully qualified classname

of the credential type

Value @CredentialValue The value of the credential

Effective Date @EffectiveDate The effective date of the

credential

Expiry Date @ExpiryDate The expiry date of the

credential

Identity @Parent The parent identity to which

the credential belongs

Example 3.3. Example Credential class

@Entity

@IdentityCredential

public class IdentityCredential implements Serializable {

 @Id @GeneratedValue private Long id;

 @CredentialType

 private String type;

 @CredentialValue

 private String credential;

 @EffectiveDate

 @Temporal (TemporalType.TIMESTAMP)

 private Date effectiveDate;

 @ExpiryDate

 @Temporal (TemporalType.TIMESTAMP)

 private Date expiryDate;

 @Parent

 @ManyToOne

 private IdentityObject identityType;

 // getters and setters

}

Identity Management

32

3.3.6.7. Configuring the Credential Attribute class

The Credential Attribute class is used to store arbitrary attribute values relating to the credential.

It should be annotated with @CredentialAttribute.

Table 3.6. Credential Attribute class fields

Property Annotation Description

Credential Object @Parent The parent credential to which

this attribute belongs

Attribute Name @AttributeName The name of the attribute

Attribute Value @AttributeValue The value of the attribute

Example 3.4. Example Credential Attribute class

@Entity

@CredentialAttribute

public class IdentityCredentialAttribute implements Serializable {

 @Id @GeneratedValue private Long id;

 @ManyToOne @JoinColumn

 @Parent

 private IdentityCredential credential;

 @AttributeName

 private String name;

 @AttributeValue

 private String value;

 // getters and setters

}

3.3.6.8. Configuring the Relationship class

Relationships are used to define typed associations between two or more identities. The

Relationship class should be annotated with @Relationship.

Table 3.7. Relationship class fields

Property Annotation Description

Identifier @Identifier Unique identifier that

represents the specific

relationship (can also double

as the primary key)

Relationship Class @RelationshipClass The fully qualified class name

of the relationship type

Identity Management

33

Example 3.5. Example Relationship class

@Relationship

@Entity

public class Relationship implements Serializable {

 @Id

 @Identifier

 private String id;

 @RelationshipClass

 private String type;

 // getters and setters

}

3.3.6.9. Configuring the Relationship Identity class

The Relationship Identity class is used to store the specific identities that participate in a

relationship. It should be annotated with @RelationshipIdentity.

Table 3.8. Relationship Identity class fields

Property Annotation Description

Relationship Descriptor @Discriminator Denotes the role of the identity

in the relationship

Relationship Identity @Identity The identity that is

participating in the relationship

Relationship @Parent The parent relationship object

to which the relationship

identity belongs

Example 3.6. Example Relationship Identity class

@RelationshipIdentity

@Entity

public class RelationshipIdentityObject implements Serializable {

 @Id @GeneratedValue private Long id;

 @Discriminator

 private String descriptor;

 @RelationshipIdentity

 @ManyToOne

 private IdentityObject identityObject;

 @Parent

 @ManyToOne

 private RelationshipObject relationshipObject;

Identity Management

34

 // getters and setters

}

3.3.6.10. Configuring the Relationship Attribute class

The Relationship Attribute class is used to store arbitrary attribute values that relate to a specific

relationship. It should be annotated with @RelationshipAttribute.

Table 3.9. Relationship Attribute class fields

Property Annotation Description

Relationship @Parent The parent relationship object

to which the attribute belongs

Attribute Name @AttributeName The name of the attribute

Attribute value @AttributeValue The value of the attribute

Example 3.7. Example Relationship Attribute class

@Entity

@RelationshipAttribute

public class RelationshipObjectAttribute implements Serializable {

 @Id @GeneratedValue private Long id;

 @ManyToOne @JoinColumn

 @Parent

 private Relationship relationship;

 @AttributeName

 private String name;

 @RelationshipValue

 private String value;

 // getters and setters

}

3.3.6.11. Configuring the Partition class

The Partition class is used to store information about partitions, i.e. Realms and Tiers. It should

be annotated with @Partition.

Table 3.10. Partition class fields

Property Annotation Description

ID @Identifier The unique identifier value for

the partition

Identity Management

35

Property Annotation Description

Type @Discriminator The type of partition, either

Realm or Tier

Parent @Parent The parent partition (only used

for Tiers)

Example 3.8. Example Partition class

@Entity

@Partition

public class PartitionObject implements Serializable {

 @Id @Identifier

 private String id;

 @Discriminator

 private String type;

 @ManyToOne

 @Parent

 private PartitionObject parent;

 // getters and setters

}

3.3.6.12. Providing a EntityManager

Sometimes you may need to configure how the EntityManager is provided to the

JPAIdentityStore, like when your application is using CDI and you must run the operations in

the scope of the current transaction by using a injected EntityManager instance.

In cases like that, you need to initialize the SecurityContext by providing a ContextInitializer

implementation, as discussed in Security Context Configuration. The JPAContextInitializer

is provided by PicketLink and can be used to initialize the security context with a specific

EntityManager instance. You can always extend this class and provide your own way to obtain

the EntityManager from your application's environment.

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .addContextInitializer(new JPAContextInitializer(emf) {

 @Override

 public EntityManager getEntityManager() {

 // logic goes here

 }

 });

}

Identity Management

36

By default, the JPAContextInitializer creates a EntityManager from the

EntityManagerFacatory provided when creating a new instance.

3.3.7. LDAPIdentityStoreConfiguration

The LDAP identity store allows an LDAP directory server to be used to provide identity state. You

can use this store in read-only or write-read mode, depending on your permissions on the server.

3.3.7.1. Configuration

The LDAP identity store can be configured by providing the following configuration:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .ldap()

 .baseDN("dc=jboss,dc=org")

 .bindDN("uid=admin,ou=system")

 .bindCredential("secret")

 .url("ldap://localhost:10389")

 .userDNSuffix("ou=People,dc=jboss,dc=org")

 .roleDNSuffix("ou=Roles,dc=jboss,dc=org")

 .groupDNSuffix("ou=Groups,dc=jboss,dc=org")

 .supportAllFeatures();

The following table describes all configuration options:

Table 3.11. LDAP Configuration Options

Option Description Required

baseDN Sets the fixed DN of the

context from where identity

types are stored.

Yes

bindDN Sets the the DN used to bind

against the ldap server. If

you want to perform write

operations the DN must

have permissions on the

agent,user,role and group

contexts.

Yes

bindCredential Sets the password for the

bindDN.

Yes

url Sets the url that should be

used to connect to the server.

Eg.: ldap://<<server>>:389.

Yes

Identity Management

37

Option Description Required

userDNSuffix Sets the fixed DN of the

context where users should

be read/stored from.

Yes

agentDNSuffix Sets the fixed DN of the

context where agents should

be read/stored from. If not

provided, will be used the

context provided by the

setUserDNSuffix

No

roleDNSuffix Sets the fixed DN of the

context where roles should

be read/stored from.

Yes

groupDNSuffix Sets the fixed DN of the

context where groups should

be read/stored from.

Yes

3.3.7.1.1. Mapping Groups to different contexts

Sometimes may be useful to map a specific group to a specific context or DN. By default, all groups

are stored and read from the DN provided by the setGroupDNSuffix method, which means that

you can not have groups with the same name.

The following configuration maps the group with path /QA Group to ou=QA,dc=jboss,dc=org

LDAPIdentityStoreConfiguration ldapStoreConfig = new LDAPIdentityStoreConfiguration();

ldapStoreConfig

 .addGroupMapping("/QA Group", "ou=QA,dc=jboss,dc=org");

With this configuration you can have groups with the same name, but with different paths.

IdentityManager identityManager = getIdentityManager();

Group managers = new SimpleGroup("managers");

identityManager.add(managers); // group's path is /manager

Group qaGroup = identityManager.getGroup("QA Group");

Group managersQA = new SimpleGroup("managers", qaGroup);

// the QA Group is mapped to a different DN.

Group qaManagerGroup = identityManager.add(managersQA); // group's path is /QA Group/managers

Identity Management

38

3.3.8. FileIdentityStoreConfiguration

This identity store uses the file system to persist identity state. The configuration for this identity

store provides control over where to store identity data and if the state should be preserved

between initializatons.

Identity data is stored using the Java Serialization API.

3.3.8.1. Filesystem Structure

Identity data is stored in the filesystem using the following structure:

${WORKING_DIR}/

pl-idm-partitions.db

pl-idm-relationships.db

 <<partition_name_directory>>

 pl-idm.agents.db

 pl-idm.roles.db

 pl-idm.groups.db

 pl-idm.credentials.db

 <<another_partition_directory>>

 ...

By default, files are stored in the ${java.io.tmpdir}/pl-idm directory. For each partition there is a

corresponding directory where agents, roles groups and credentials are stored in specific files.

3.3.8.2. Configuration

The file identity store can be easily configured by providing the following configuration:

IdentityConfigurationBuilder builder = new IdentityConfigurationBuilder();

builder

 .stores()

 .file()

 .preserveState(false)

 .addRealm(Realm.DEFAULT_REALM, "Testing")

 .addTier("Application")

 .supportAllFeatures()

 .supportRelationshipType(CustomRelationship.class, Authorization.class);

3.3.8.2.1. Preserving State Between Initializations

By default, during the initialization, the working directory is re-created. If you want to preserve

state between initializations you should use the following configuration:

builder

.stores()

 .file()

Identity Management

39

 .preserveState(true) // preserve data

 .supportAllFeatures();

3.3.8.2.2. Changing the Working Directory

If you want to change the working directory, where files are stored, you can use the following

configuration:

builder

 .stores()

 .file()

 .workingDir("/tmp/pl-idm")

 .supportAllFeatures();

3.3.9. Providing a Custom IdentityStore

TODO

3.4. Java EE Environments

In Java EE 6.0 and higher environments, basic configuration is performed automatically with a

set of sensible defaults. During application deployment, PicketLink will scan all deployed entity

beans for any beans annotated with @IDMEntity, and if found will use a configuration based on

the JPAIdentityStore. If no entity beans have been configured for identity management and

no other configuration is provided, a file-based identity store will be automatically configured to

provide basic identity management features backed by the file system.

3.5. Using the IdentityManager

The org.picketlink.idm.IdentityManager interface provides access to the bulk of the

IDM features supported by PicketLink. To get access to the IdentityManager depends on

which environment you are using. The following two sections describe how to access the

IdentityManager in both Java EE and Java SE environments.

3.5.1. Accessing the IdentityManager in Java EE

In a Java EE environment, PicketLink provides a producer method for IdentityManager, so

getting a reference to it is as simply as injecting it into your beans:

@Inject IdentityManager identityManager;

3.5.1.1. Configuring the Application Realm

By default, an IdentityManager for the default realm will be injected. If the application should

use a realm other than the default, then this must be configured via a producer method with the

Identity Management

40

@PicketLink qualifier. The following code shows an example of a configuration bean that sets

the application realm to acme:

@ApplicationScoped

public class RealmConfiguration {

 private Realm applicationRealm;

 @Inject IdentityManagerFactory factory;

 @Init

 public void init() {

 applicationRealm = factory.getRealm("acme");

 }

 @Produces

 @PicketLink

 public Realm getApplicationRealm() {

 return applicationRealm;

 }

}

3.5.2. Accessing the IdentityManager in Java SE

3.6. Managing Users, Groups and Roles

PicketLink IDM provides a number of basic implementations of the identity model interfaces

for convenience, in the org.picketlink.idm.model package. The following sections provide

examples that show these implementations in action.

3.6.1. Managing Users

The following code example demonstrates how to create a new user with the following properties:

• Login name - jsmith

• First name - John

• Last name - Smith

• E-mail - jsmith@acme.com

 User user = new SimpleUser("jsmith");

 user.setFirstName("John");

 user.setLastName("Smith");

 user.setEmail("jsmith@acme.com");

 identityManager.add(user);

Once the User is created, it's possible to look it up using its login name:

Identity Management

41

 User user = identityManager.getUser("jsmith");

User properties can also be modified after the User has already been created. The following

example demonstrates how to change the e-mail address of the user we created above:

 User user = identityManager.getUser("jsmith");

 user.setEmail("john@smith.com");

 identityManager.update(user);

Users may also be deleted. The following example demonstrates how to delete the user previously

created:

 User user = identityManager.getUser("jsmith");

 identityManager.remove("jsmith");

3.6.2. Managing Groups

The following example demonstrates how to create a new group called employees:

 Group employees = new SimpleGroup("employees");

It is also possible to assign a parent group when creating a group. The following example

demonstrates how to create a new group called managers, using the employees group created

in the previous example as the parent group:

 Group managers = new SimpleGroup("managers", employees);

To lookup an existing Group, the getGroup() method may be used. If the group name is unique,

it can be passed as a single parameter:

 Group employees = identityManager.getGroup("employees");

If the group name is not unique, the parent group must be passed as the second parameter

(although it can still be provided if the group name is unique):

 Group managers = identityManager.getGroup("managers", employees);

Identity Management

42

It is also possible to modify a Group's name and other properties (besides its parent) after it has

been created. The following example demonstrates how to disable the "employees" group we

created above:

 Group employees = identityManager.getGroup("employees");

 employees.setEnabled(false);

 identityManager.update(employees);

To remove an existing group, we can use the remove() method:

 Group employees = identityManager.getGroup("employees");

 identityManager.remove(employees);

3.7. Managing Relationships

Relationships are used to model typed associations between two or more

identities. All concrete relationship types must implement the marker interface

org.picketlink.idm.model.Relationship:

Identity Management

43

The IdentityManager interface provides three standard methods for managing relationships:

 void add(Relationship relationship);

 void update(Relationship relationship);

 void remove(Relationship relationship);

• The add() method is used to create a new relationship.

• The update() method is used to update an existing relationship.

Note

Please note that the identities that participate in a relationship cannot be updated

themselves, however the attribute values of the relationship can be updated. If

Identity Management

44

you absolutely need to modify the identities of a relationship, then delete the

relationship and create it again.

• The remove() method is used to remove an existing relationship.

Note

To search for existing relationships between identity objects, use the Relationship

Query API described later in this chapter.

Besides the above methods, IdentityManager also provides a number of convenience methods

for managing many of the built-in relationship types. See the next section for more details.

3.7.1. Built In Relationship Types

PicketLink provides a number of built-in relationship types, designed to address the most

common requirements of a typical application. The following sections describe the built-in

relationships and how they are intended to be used. Every built-in relationship type extends the

AbstractAttributedType abstract class, which provides the basic methods for setting a unique

identifier value and managing a set of attribute values:

Identity Management

45

What this means in practical terms, is that every single relationship is assigned and can be

identified by, a unique identifier value. Also, arbitrary attribute values may be set for all relationship

types, which is useful if you require additional metadata or any other type of information to be

stored with a relationship.

3.7.1.1. Application Roles

Application roles are represented by the Grant relationship, which is used to assign application-

wide privileges to a User or Agent.

Identity Management

46

The IdentityManager interface provides methods for directly granting a role. Here's a simple

example:

 User bob = identityManager.getUser("bob");

 Role superuser = identityManager.getRole("superuser");

 identityManager.grantRole(bob, superuser);

The above code is equivalent to the following:

 User bob = identityManager.getUser("bob");

 Role superuser = identityManager.getRole("superuser");

 Grant grant = new Grant(bob, superuser);

 identityManager.add(grant);

A granted role can also be revoked using the revokeRole() method:

 User bob = identityManager.getUser("bob");

 Role superuser = identityManager.getRole("superuser");

 identityManager.revokeRole(bob, superuser);

To check whether an identity has a specific role granted to them, we can use the hasRole()

method:

Identity Management

47

 User bob = identityManager.getUser("bob");

 Role superuser = identityManager.getRole("superuser");

 boolean isBobASuperUser = identityManager.hasRole(bob, superuser);

3.7.1.2. Groups and Group Roles

The GroupMembership and GroupRole relationships are used to represent a user's membership

within a Group, and a user's role for a group, respectively.

Note

While the GroupRole relationship type extends GroupMembership, it does not

mean that a member of a GroupRole automatically receives GroupMembership

Identity Management

48

membership also - these are two distinct relationship types with different

semantics.

A Group is typically used to form logical collections of users. Within an organisation, groups

are often used to mirror the organisation's structure. For example, a corporate structure might

consist of a sales department, administration, management, etc. This structure can be modelled

in PicketLink by creating corresponding groups such as sales, administration, and so forth. Users

(who would represent the employees in a corporate structure) may then be assigned group

memberships corresponding to their place within the company's organisational structure. For

example, an employee who works in the sales department may be assigned to the sales group.

Specific application privileges can then be blanket assigned to the sales group, and anyone who

is a member of the group is free to access the application's features that require those privileges.

The GroupRole relationship type should be used when it is intended for an identity to perform

a specific role for a group, but not be an actual member of the group itself. For example, an

administrator of a group of doctors may not be a doctor themselves, but have an administrative

role to perform for that group. If the intent is for an individual identity to both be a member of a

group and have an assigned role in that group also, then the identity should have both GroupRole

and GroupMembership relationships for that group.

Let's start by looking at a simple example - we'll begin by making the assumption that our

organization is structured in the following way:

The following code demonstrates how we would create the hypothetical Sales group which is

displayed at the head of the above organisational chart:

 Group sales = new SimpleGroup("Sales");

 identityManager.add(sales);

Identity Management

49

We can then proceed to create its subgroups:

identityManager.add(new SimpleGroup("North America", sales);

identityManager.add(new SimpleGroup("EMEA", sales);

identityManager.add(new SimpleGroup("Asia", sales);

// and so forth

The second parameter of the SimpleGroup() constructor is used to specify the group's parent

group. This allows us to create a hierarchical group structure, which can be used to mirror either a

simple or complex personnel structure of an organisation. Let's now take a look at how we assign

users to these groups.

The following code demonstrates how to assign an administrator group role for the Northeast

sales group to user jsmith. The administrator group role may be used to grant certain users the

privilege to modify permissions and roles for that group:

Role admin = identityManager.getRole("administrator");

User user = identityManager.getUser("jsmith");

Group group = identityManager.getGroup("Northeast");

identityManager.grantGroupRole(user, admin, group);

A group role can be revoked using the revokeGroupRole() method:

identityManager.revokeGroupRole(user, admin, group);

To test whether a user has a particular group role, you can use the hasGroupRole() method:

boolean isUserAGroupAdmin = identityManager.hasGroupRole(user, admin, group);

Next, let's look at some examples of how to work with simple group memberships. The following

code demonstrates how we assign sales staff rbrown to the Northeast sales group:

User user = identityManager.getUser("rbrown");

Group group = identityManager.getGroup("Northeast");

identityManager.addToGroup(user, group);

A User may also be a member of more than one Group; there are no built-in limitations on the

number of groups that a User may be a member of.

We can use the removeFromGroup() method to remove the same user from the group:

Identity Management

50

identityManager.removeFromGroup(user, group);

To check whether a user is the member of a group we can use the isMember() method:

boolean isUserAMember = identityManager.isMember(user, group);

Relationships can also be created via the add() method. The following code is equivalent to

assigning a group role via the grantGroupRole() method shown above:

Role admin = identityManager.getRole("administrator");

User user = identityManager.getUser("jsmith");

Group group = identityManager.getGroup("Northeast");

GroupRole groupRole = new GroupRole(user, group, admin);

identityManager.add(groupRole);

3.7.2. Creating Custom Relationships

One of the strengths of PicketLink is its ability to support custom relationship types. This

extensibility allows you, the developer to create specific relationship types between two or more

identities to address the domain-specific requirements of your own application.

Note

Please note that custom relationship types are not supported by all IdentityStore

implementations - see the Identity Store section above for more information.

To create a custom relationship type, we start by creating a new class that implements the

Relationship interface. To save time, we also extend the AbstractAttributedType abstract

class which takes care of the identifier and attribute management methods for us:

 public class Authorization extends AbstractAttributedType implements Relationship {

 }

The next step is to define which identities participate in the relationship. Once

we create our identity property methods, we also need to annotate them with the

org.picketlink.idm.model.annotation.RelationshipIdentity annotation. This is done by

creating a property for each identity type.

 private User user;

 private Agent application;

Identity Management

51

 @RelationshipIdentity

 public User getUser() {

 return user;

 }

 public void setUser(User user) {

 this.user = user;

 }

 @RelationshipIdentity

 public Agent getApplication() {

 return application;

 }

 public void setApplication(Agent application) {

 this.application = application;

 }

We can also define some attribute properties, using the @RelationshipAttribute

annotation:

 private String accessToken;

 @RelationshipAttribute

 public String getAccessToken() {

 return accessToken;

 }

 public void setAccessToken(String accessToken) {

 this.accessToken = accessToken;

 }

3.8. Authentication

Note

While the IDM module of PicketLink provides authentication features, for common

use cases involving standard username and password based authentication in

a Java EE environment, PicketLink provides a more streamlined method of

authentication. Please refer to the authentication chapter of this documentation for

more information.

PicketLink IDM provides an authentication subsystem that allows user credentials to be validated

thereby confirming that an authenticating user is who they claim to be. The IdentityManager

interface provides a single method for performing credential validation, as follows:

Identity Management

52

void validateCredentials(Credentials credentials);

The validateCredentials() method accepts a single Credentials parameter, which should

contain all of the state required to determine who is attempting to authenticate, and the credential

(such as a password, certificate, etc) that they are authenticating with. Let's take a look at the

Credentials interface:

public interface Credentials {

 public enum Status {

 UNVALIDATED, IN_PROGRESS, INVALID, VALID, EXPIRED

 };

 Agent getValidatedAgent();

 Status getStatus();

 void invalidate();

}

• The Status enum defines the following values, which reflect the various credential states:

• UNVALIDATED - The credential is yet to be validated.

• IN_PROGRESS - The credential is in the process of being validated.

• INVALID - The credential has been validated unsuccessfully

• VALID - The credential has been validated successfully

• EXPIRED - The credential has expired

• getValidatedAgent() - If the credential was successfully validated, this method returns the

Agent object representing the validated user.

• getStatus() - Returns the current status of the credential, i.e. one of the above enum values.

• invalidate() - Invalidate the credential. Implementations of Credential should use this

method to clean up internal credential state.

Let's take a look at a concrete example - UsernamePasswordCredentials is a Credentials

implementation that supports traditional username/password-based authentication:

public class UsernamePasswordCredentials extends AbstractBaseCredentials {

 private String username;

 private Password password;

Identity Management

53

 public UsernamePasswordCredentials() { }

 public UsernamePasswordCredentials(String userName, Password password) {

 this.username = userName;

 this.password = password;

 }

 public String getUsername() {

 return username;

 }

 public UsernamePasswordCredentials setUsername(String username) {

 this.username = username;

 return this;

 }

 public Password getPassword() {

 return password;

 }

 public UsernamePasswordCredentials setPassword(Password password) {

 this.password = password;

 return this;

 }

 @Override

 public void invalidate() {

 setStatus(Status.INVALID);

 password.clear();

 }

}

The first thing we may notice about the above code is that the UsernamePasswordCredentials

class extends AbstractBaseCredentials. This abstract base class implements the basic

functionality required by the Credentials interface. Next, we can see that two fields are defined;

username and password. These fields are used to hold the username and password state, and can

be set either via the constructor, or by their associated setter methods. Finally, we can also see

that the invalidate() method sets the status to INVALID, and also clears the password value.

Let's take a look at an example of the above classes in action. The following code demonstrates

how we would authenticate a user with a username of "john" and a password of "abcde":

Credentials creds = new UsernamePasswordCredentials("john",

 new Password("abcde"));

identityManager.validate(creds);

if (Status.VALID.equals(creds.getStatus())) {

 // authentication was successful

}

We can also test if the credentials that were provided have expired (if an expiry date was set). In

this case we might redirect the user to a form where they can enter a new password.

Identity Management

54

Credentials creds = new UsernamePasswordCredentials("john",

 new Password("abcde"));

identityManager.validate(creds);

if (Status.EXPIRED.equals(creds.getStatus())) {

 // password has expired, redirect the user to a password change screen

}

3.9. Managing Credentials

Updating user credentials is even easier than validating them. The IdentityManager interface

provides the following two methods for updating credentials:

void updateCredential(Agent agent, Object credential);

void updateCredential(Agent agent, Object credential, Date effectiveDate, Date expiryDate);

Both of these methods essentially do the same thing; they update a credential value for a specified

Agent (or User). The second overloaded method however also accepts effectiveDate and

expiryDate parameters, which allow some temporal control over when the credential will be valid.

Use cases for this feature include implementing a strict password expiry policy (by providing an

expiry date), or creating a new account that might not become active until a date in the future (by

providing an effective date). Invoking the first overloaded method will store the credential with an

effective date of the current date and time, and no expiry date.

Note

One important point to note is that the credential parameter is of type

java.lang.Object. Since credentials can come in all shapes and sizes (and

may even be defined by third party libraries), there is no common base interface

for credential implementations to extend. To support this type of flexibility in an

extensible way, PicketLink provides an SPI that allows custom credential handlers

to be configured that override or extend the default credential handling logic. Please

see the next section for more information on how this SPI may be used.

PicketLink provides built-in support for the following credential types:

Warning

Not all built-in IdentityStore implementations support all credential types. For

example, since the LDAPIdentityStore is backed by an LDAP directory server,

only password credentials are supported. The following table lists the built-in

IdentityStore implementations that support each credential type.

Identity Management

55

Table 3.12. Built-in credential types

Credential type Description Supported by

org.picketlink.idm.credential.DigestUsed for digest-based

authentication

JPAIdentityStore

FileBasedIdentityStore

org.picketlink.idm.credential.PasswordA standard text-based

password

JPAIdentityStore

FileBasedIdentityStore

LDAPIdentityStore

java.security.cert.X509CertificateUsed for X509 certificate

based authentication

JPAIdentityStore

FileBasedIdentityStore

Let's take a look at a couple of examples. Here's some code demonstrating how a password can

be assigned to user "jsmith":

User user = identityManager.getUser("jsmith");

identityManager.updateCredential(user, new Password("abcd1234"));

This example creates a digest and assigns it to user "jdoe":

User user = identityManager.getUser("jdoe");

Digest digest = new Digest();

digest.setRealm("default");

digest.setUsername(user.getLoginName());

digest.setPassword("abcd1234");

identityManager.updateCredential(user, digest);

3.10. Credential Handlers

For IdentityStore implementations that support multiple credential types, PicketLink provides

an optional SPI to allow the default credential handling logic to be easily customized and extended.

To get a better picture of the overall workings of the Credential Handler SPI, let's take a look at

the sequence of events during the credential validation process when validating a username and

password against JPAIdentityStore:

Identity Management

56

• 1 - The user (or some other code) first invokes the validateCredentials() method on

IdentityManager, passing in the Credentials instance to validate.

• 1.1 - After looking up the correct IdentityStore (i.e. the one that has been configured

to validate credentials) the IdentityManager invokes the store's validateCredentials()

method, passing in the SecurityContext and the credentials to validate.

• 1.1.1 - In JPAIdentityStore's implementation of the validateCredentials() method, the

SecurityContext is used to look up the CredentialHandler implementation that has been

configured to process validation requests for usernames and passwords, which is then stored

in a local variable called handler.

• 1.1.2 - The validate() method is invoked on the CredentialHandler, passing in the security

context, the credentials value and a reference back to the identity store. The reference to the

identity store is important as the credential handler may require it to invoke certain methods

upon the store to validate the credentials.

The CredentialHandler interface declares three methods, as follows:

public interface CredentialHandler {

 void setup(IdentityStore<?> identityStore);

 void validate(SecurityContext context, Credentials credentials,

 IdentityStore<?> identityStore);

 void update(SecurityContext context, Agent agent, Object credential,

Identity Management

57

 IdentityStore<?> identityStore, Date effectiveDate, Date expiryDate);

}

The setup() method is called once, when the CredentialHandler instance is first created.

Credential handler instantiation is controlled by the CredentialHandlerFactory, which creates

a single instance of each CredentialHandler implementation to service all credential requests

for that handler. Each CredentialHandler implementation must declare the types of credentials

that it is capable of supporting, which is done by annotating the implementation class with the

@SupportsCredentials annotation like so:

@SupportsCredentials({ UsernamePasswordCredentials.class, Password.class })

public class PasswordCredentialHandler implements CredentialHandler {

Since the validate() and update() methods receive different parameter types (validate()

takes a Credentials parameter value while update() takes an Object that represents a single

credential value), the @SupportsCredentials annotation must contain a complete list of all types

supported by that handler.

Similarly, if the IdentityStore implementation makes use of the credential handler SPI

then it also must declare which credential handlers support that identity store. This is done

using the @CredentialHandlers annotation; for example, the following code shows how

JPAIdentityStore is configured to be capable of handling credential requests for usernames

and passwords, X509 certificates and digest-based authentication:

@CredentialHandlers({ PasswordCredentialHandler.class,

 X509CertificateCredentialHandler.class, DigestCredentialHandler.class })

public class JPAIdentityStore implements IdentityStore<JPAIdentityStoreConfiguration>,

 CredentialStore {

3.10.1. The CredentialStore interface

For IdentityStore implementations that support multiple credential types (such as

JPAIdentityStore and FileBasedIdentityStore), the implementation may choose to

also implement the CredentialStore interface to simplify the interaction between the

CredentialHandler and the IdentityStore. The CredentialStore interface declares methods

for storing and retrieving credential values within an identity store, as follows:

public interface CredentialStore {

 void storeCredential(SecurityContext context, Agent agent,

 CredentialStorage storage);

 <T extends CredentialStorage> T retrieveCurrentCredential(SecurityContext context,

 Agent agent, Class<T> storageClass);

 <T extends CredentialStorage> List<T> retrieveCredentials(SecurityContext context,

 Agent agent, Class<T> storageClass);

Identity Management

58

}

The CredentialStorage interface is quite simple and only declares two methods,

getEffectiveDate() and getExpiryDate():

public interface CredentialStorage {

 @Stored Date getEffectiveDate();

 @Stored Date getExpiryDate();

}

The most important thing to note above is the usage of the @Stored annotation. This annotation is

used to mark the properties of the CredentialStorage implementation that should be persisted.

The only requirement for any property values that are marked as @Stored is that they are

serializable (i.e. they implement the java.io.Serializable interface). The @Stored annotation

may be placed on either the getter method or the field variable itself. Here's an example of one

of a CredentialStorage implementation that is built into PicketLink - EncodedPasswordStorage

is used to store a password hash and salt value:

public class EncodedPasswordStorage implements CredentialStorage {

 private Date effectiveDate;

 private Date expiryDate;

 private String encodedHash;

 private String salt;

 @Override @Stored

 public Date getEffectiveDate() {

 return effectiveDate;

 }

 public void setEffectiveDate(Date effectiveDate) {

 this.effectiveDate = effectiveDate;

 }

 @Override @Stored

 public Date getExpiryDate() {

 return expiryDate;

 }

 public void setExpiryDate(Date expiryDate) {

 this.expiryDate = expiryDate;

 }

 @Stored

 public String getEncodedHash() {

 return encodedHash;

 }

 public void setEncodedHash(String encodedHash) {

 this.encodedHash = encodedHash;

 }

Identity Management

59

 @Stored

 public String getSalt() {

 return this.salt;

 }

 public void setSalt(String salt) {

 this.salt = salt;

 }

}

3.11. Built-in Credential Handlers

This section describes each of the built-in credential handlers, and any configuration

parameters that may be set for them. Specific credential handler options can be set

when creating a new IdentityConfiguration. Configured options are always specific to a

particular identity store configuration, allowing different options to be specified between two or

more identity stores. The IdentityStoreConfiguration interface provides a method called

getCredentialHandlersConfig() that provides access to a Map which allows configuration

options to be set for the identity store's credential handlers:

public interface IdentityStoreConfiguration {

 Map<String, Object> getCredentialHandlerProperties();

}

To gain access to the IdentityStoreConfiguration object before PicketLink is initialized, there

are a couple of options. The first option is to provide an IdentityConfiguration object itself via

a producer method.

3.11.1.

3.12. Advanced Topics

3.12.1. Multi Realm Support

PicketLink has been designed from the ground up to support a system of partitioning, allowing the

users, groups and roles of an application to be divided into Realms and Tiers.

Identity Management

60

A Realm is used to define a discrete set of users, groups and roles. A typical use case for realms

is the segregation of corporate user accounts within a multi-tenant application, although it is not

limited this use case only. As all identity management operations must be performed within the

context of an active partition, PicketLink defines the concept of a default realm which becomes

the active partition if no other partition has been specified.

A Tier is a more restrictive type of partition than a realm, as it only allows groups and roles to

be defined (but not users). A Tier may be used to define a set of application-specific groups and

roles, which may then be assigned to groups within the same Tier, or to users and groups within

a separate Realm.

In terms of API, both the Realm and Tier classes implement the Partition interface, as shown

in the following class diagram:

Identity Management

61

Selecting the specific partition that the identity management operations are performed

in is controlled by specifying the partition when creating the IdentityManager via the

IdentityManagerFactory's overloaded createIdentityManager() methods:

 IdentityManager createIdentityManager();

 IdentityManager createIdentityManager(Partition partition);

The first method (without parameters) will create an IdentityManager instance for the

default realm. The second parameter allows a Partition object to be specified. Once

the IdentityManager has been created, any identity management methods invoked on

it will be performed within the selected partition. To look up the partition object, the

IdentityManagerFactory provides two additional methods:

 Realm getRealm(String id);

 Tier getTier(String id);

Here's an example demonstrating how a new user called "bob" is created in a realm called acme:

Identity Management

62

 Realm acme = identityManagerFactory.getRealm("acme");

 IdentityManager im = identityManagerFactory.createIdentityManager(acme);

 im.add(new SimpleUser("bob"));

63

Chapter 4. Federation

4.1. Overview

In this chapter, we look at PicketLink single sign on (SSO) and trust features. We describe

SAML SSO in detail.

4.2. SAML SSO

SAML is an OASIS Standards Consortium standard for single sign on. PicketLink suppors SAML

v2.0 and SAML v1.1.

PicketLink contains support for the following profiles of SAML specification.

• SAML Web Browser SSO Profile.

• SAML Global Logout Profile.

4.3. SAML Web Browser Profile

PicketLink supports the following standard bindings:

• SAML HTTP Redirect Binding

• SAML HTTP POST Binding

4.4. Additional Information

Note
Please refer to exhaustive documentation on PicketLink Confluence Site.

• User Guide [https://docs.jboss.org/author/display/PLINK/User+Guide]

https://docs.jboss.org/author/display/PLINK/User+Guide
https://docs.jboss.org/author/display/PLINK/User+Guide

	PicketLink Reference Documentation
	Table of Contents
	Chapter 1. Overview
	1.1. What is PicketLink?
	1.2. Modules
	1.2.1. Base module
	1.2.2. Identity Management
	1.2.3. Federation

	1.3. License
	1.4. Maven Dependencies

	Chapter 2. Authentication
	2.1. Overview
	2.2. The Authentication API
	2.3. The Authentication Process
	2.3.1. A Basic Authenticator
	2.3.2. Multiple Authenticator Support
	2.3.3. Credentials
	2.3.4. DefaultLoginCredentials

	Chapter 3. Identity Management
	3.1. Overview
	3.2. Identity Model
	3.2.1. Architectural Overview

	3.3. Configuration
	3.3.1. Architectural Overview
	3.3.2. Programmatic Configuration
	3.3.2.1. IdentityConfigurationBuilder for Programmatic Configuration

	3.3.3. Security Context Configuration
	3.3.3.1. Initializing the SecurityContext
	3.3.3.2. Configuring how SecurityContext instances are created

	3.3.4. Identity Store Feature Set
	3.3.5. Identity Store Configurations
	3.3.6. JPAIdentityStoreConfiguration
	3.3.6.1. Recommended Database Schema
	3.3.6.2. Default Database Schema
	3.3.6.3. Configuring an EntityManager
	3.3.6.4. Configuring the Identity class
	3.3.6.5. Configuring the Attribute class
	3.3.6.6. Configuring the Credential class
	3.3.6.7. Configuring the Credential Attribute class
	3.3.6.8. Configuring the Relationship class
	3.3.6.9. Configuring the Relationship Identity class
	3.3.6.10. Configuring the Relationship Attribute class
	3.3.6.11. Configuring the Partition class
	3.3.6.12. Providing a EntityManager

	3.3.7. LDAPIdentityStoreConfiguration
	3.3.7.1. Configuration
	3.3.7.1.1. Mapping Groups to different contexts

	3.3.8. FileIdentityStoreConfiguration
	3.3.8.1. Filesystem Structure
	3.3.8.2. Configuration
	3.3.8.2.1. Preserving State Between Initializations
	3.3.8.2.2. Changing the Working Directory

	3.3.9. Providing a Custom IdentityStore

	3.4. Java EE Environments
	3.5. Using the IdentityManager
	3.5.1. Accessing the IdentityManager in Java EE
	3.5.1.1. Configuring the Application Realm

	3.5.2. Accessing the IdentityManager in Java SE

	3.6. Managing Users, Groups and Roles
	3.6.1. Managing Users
	3.6.2. Managing Groups

	3.7. Managing Relationships
	3.7.1. Built In Relationship Types
	3.7.1.1. Application Roles
	3.7.1.2. Groups and Group Roles

	3.7.2. Creating Custom Relationships

	3.8. Authentication
	3.9. Managing Credentials
	3.10. Credential Handlers
	3.10.1. The CredentialStore interface

	3.11. Built-in Credential Handlers
	3.11.1.

	3.12. Advanced Topics
	3.12.1. Multi Realm Support

	Chapter 4. Federation
	4.1. Overview
	4.2. SAML SSO
	4.3. SAML Web Browser Profile
	4.4. Additional Information

