Upgrading from
Resteasy 2 to Resteasy 3

3.1.0-Final

L. ClENt FrAMEBWOTK .oieitiieiiiii ettt et e et s et et e e e e et e e e et e e e eatnaeeeannns 1
I [0 1= o | T (Y - o= 1
I O 1= o) T) (=P 4
1.3. Client side error RaNdliNgooeiiiiiiiii e 4
1.4. Maven CONSIAEIALIONSiiiiiiiieeiiii e e e e e e et e eeeaen s 5
2. Filters and INTEICEPLOIS ...ttt e et e e 7
3. Asynchronous HTTP ReqUESTt PrOCESSING ..ccuuiiiiiiiiiiii e e e e e e 9
T 1o = 4 o] o 11
5. Resteasy Caching FEALUIESciiiiiiiii i e e e e e e e e eaaas 13
LS00 O 1= o | =3 o PPN 13
L S = =T T [PSP 14
6. MISCellaneouUS ChaNQESoouiiiiii e 15
0 I T o O 15
O © 1T o [T Tol Y/ o1 PP PPPPTPRPPPPIN 16
LSRRG TS (10T (@40 4 1Y/=T o (=] P 16
(O 0T [[T PP 17

A number of API classes in Resteasy 2, which is based on the JAX-RS 1.1 specification
(https://icp.org/enl/jsridetail?id=311), have been deprecated in, and eventually removed from,
Resteasy 3, which is based on JAX-RS 2.0 (https://jcp.org/aboutJava/communityprocess/final/
jsr339/index.html). In particular, those classes are deprecated by the end of the 3.0.x series of
releases, and removed as of the 3.1.0.Final release. For the most part, these changes are due to
the fact that a number of facilities specific to Resteasy were introduced in Resteasy 2 and then
formalized, in somewhat different form, in JAX-RS 2.0. A few other facilities in Resteasy simply
were not carried over to Resteasy 3.

This short document describes the principal changes from Resteasy 2 to Resteasy 3 and
gives some hints about upgrading code from the Resteasy 2 APl to Resteasy 3. Additional
information can be found in the Resteasy Users Guides (http://resteasy.jboss.org/docs.html). A
more extensive treatment may be found in the O'Reilly book RESTful Java with JAX-RS 2.0, 2nd
Edition, by Bill Burke.

https://jcp.org/en/jsr/detail?id=311
https://jcp.org/aboutJava/communityprocess/final/jsr339/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr339/index.html
http://resteasy.jboss.org/docs.html

Vi

Chapter 1.

Chapter 1. Client Framework

1.1. Fluent interface

The two principal client side classes in Resteasy 2 are d i ent Request and C i ent Response:

Cli ent Request request = new CientRequest("http://|ocal host: 8081/test");
request. body("text/plain", "hello world");

Cl i ent Response<?> response = request. post();

String result = response.getEntity(String.class);

d i ent Request holds the target URL and entity, if any. d i ent Response holds the response
entity, which can be extracted by the getEntity() method.

In JAX-RS 2.0, these classes are replaced by four classes that support a fluent call pattern:
Client,WebTar get, | nvocati on. Bui | der, and Response:

Client client = CientBuilder.newdient();

WebTarget target = client.target("http://|ocal host:8081/test");

I nvocati on. Bui | der builder = target.request();

Entity<String> entity = Entity.entity("hello world", "text/plain");
Response response = buil der. post(entity);

String result = response.readEntity(String.class);

The invocation process begins with d i ent , whose primary responsibility is to create a WebTar get .
d i ent s are somewhat expensive to build, so it often makes sense to reuse a d i ent to create
multiple WebTar get s.

Resteasy extends CdientBuilder and Cient with methods that allow the registration of
providers:

static class TestWiter inplenments MessageBodyWiter<String>
{
@verride
public boolean isWiteabl e(C ass<?> type, Type genericType, Annotation[]
annot ati ons, Medi aType nedi aType)
{

return fal se;

Chapter 1. Client Framework

@verride
public long getSize(String t, Cass<?> type, Type genericType, Annotation[]
annot ati ons, Medi aType nedi aType)

{

return O;
}
@verride

public void witeTo(String t, Cass<?> type, Type genericType, Annotation[]
annot ati ons, Medi aType nedi aType,
Mul tival uedMap<String, Object> httpHeaders, QutputStreamentityStream
throws | OException, WebApplicati onException

11

Rest easyCl i ent Bui | der clientBuil der = new ResteasyC ientBuil der();
Client client = clientBuilder.register(TestWiter.class).build();

All dients created by that Rest easyd i ent Bui | der, and all invocations on all WebTar get s
created by those C i ent s, will have Test Wi t er available.

WebTar get , as its name implies, constructs and holds a URL which targets a server side resource.
It has various options for extending and manipulating URISs:

WebTarget target = client.target("http://1ocal host: 8081/test/{index}");
WebTarget targetl = target.resol veTenpl ate("i ndex", "1");
WebTarget target2 = target.resol veTenpl ate("i ndex", "2");

Here, two new WebTar get s are created from the original target, each with a different ending path
segment. Query and matrix parameters can also be appended:

WebTarget target3 = target2. queryParan("x", "y");

Here, target3 targets "http://localhost:8081/test/2?x=y".

Resteasy also extends WebTar get with the ability to register providers:

Fluent interface

Client client = CientBuilder.newdient();

String url = "http://|ocal host:8081/test/{index}";

WebTarget target = client.target(url).register(TestWiter.class);
WebTarget targetl target.resol veTenpl ate("i ndex", "1");
WebTarget target2 = target.resol veTenpl ate("i ndex", "2");
WebTarget target3 = target2. queryParan("x", "y");

Here, Test Wi t er is available to all invocations on targetl, target2, and target3.

I nvocat i on. Bui | der plays a role similar to the old C i ent Request :

Response response = buil der. header ("User-Agent", "Mzilla/5.0").get();
or
String s = buil der. header ("User-Agent”, "Muzilla/5.0").get(String.class);

Finally, note that Response, unlike the old C i ent Response<T>, iS not a generic type, so it is
necessary to give a type when extracting a response entity:

String result = response.readEntity(String.class);

Note. Response. get Enti ty() still exists, but it plays a different role, which could easily lead to
bugs. Itis necessary to call readEnt i t y() to extract the response entity. If get Enti t y() is called
instead, it will return null.

Note. Unlike the old getEntity(), readEntity() is not idempotent. Once it is called, the
response is closed, and subsequent calls will throw an 11 | egal St at eExcept i on. This behavior
can be circumvented by calling Response. bufferEntity() before calling readEntity(). l.e.,
this will work:

response. bufferEntity();

Chapter 1. Client Framework

Systemout. println(response.readEntity(String.class));
Systemout. println(response.readEntity(String.class));

1.2. Client proxies

The client framework in Resteasy 2 included a facility for interacting with JAX-RS resources
through client side POJOs, not unlike the Java RMI facility:

@ath("/test")
public static interface TestResource

{
@ET
@°r oduces("text/plain")
public String test();

}

public void testProxy() throws Exception

{
String url = "http://local host: 8081";
Test Resource poj o = ProxyFactory. create(Test Resource.class, url);
String result = pojo.test();

This technique avoids a lot of complications, but, perhaps because it is perceived as not being
in the RESTful spirit, it is not part of the JAX-RS 2.0 client framework. It still exists in Resteasy
3, but in a re-worked form that fits into the official client framework. Now, a proxy is created by
a call to Rest easyWebTar get . proxy():

Client client = dientBuilder.newCient();

String url = "http://1ocal host: 8081";

Rest easyWebTarget target = (ResteasyWbTarget) client.target(url);
Test Resource pojo = target. proxy(TestResource. cl ass);

String result = pojo.test();

1.3. Client side error handling

Resteasy 2 had two facilities for handling errors on the client side.

An instance of an org.jboss.resteasy.client.core.ClientErrorlinterceptor could
be registered to handle exceptions thrown during a proxied call. Also, an

Maven considerations

instance of an org.jboss.resteasy.client.exception. mapper.d ient Excepti onMapper
could be registered to map exceptions thrown during a proxied cal. A
default CientExceptionMapper was installed that mapped exceptions thrown
by the HittpClient transport layer to Resteasy specific analogs. For example,
an org.apache. http.client.dientProtocol Exception would be mapped to an
org. j boss.resteasy.client.exception. Rest easyC i ent Prot ocol Excepti on.

These two faciliies do not exist in Resteasy 3. |Instead, the JAX-RS
2.0 specification mandates the wuse of javax.ws.rs.ProcessingException and
javax.ws.rs.client.ResponseProcessi ngExcepti on. In particular, exceptions thrown while
processing a request should be mapped to a Pr ocessi ngExcept i on, and exceptions thrown while
processing a response should be mapped to a ResponsePr ocessi ngExcept i on.

For example, the ProcessingException javadoc lists possible conditions leading to a
Pr ocessi ngExcepti on:

- failures in filter or interceptor chain execution

 errors caused by missing message body readers or writers for the particular Java type and
media type combinations

* propagated j ava. i o. | OExcepti ons thrown by j avax. ws. rs. ext . MessageBodyReader s and
j avax. ws. rs. ext. MessageBodyW i t er s during entity serialization and de-serialization

Note that ProcessingException and ResponseProcessi ngException represent internal
problems. If the client side receives a response with status codes 3xx, 4xx or 5xx, it will map the
response to an instance of j avax. ws. rs. WebAppl i cat i onExcept i on or one of its subclasses.

1.4. Maven considerations

In Resteasy 2, the client framework lives in the resteasy-jaxrs module. In Resteasy 3, it has its
own module, resteasy-client:

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-client</artifactld>
<versi on>${ proj ect . versi on}</ versi on>

</ dependency>

Chapter 2.

Chapter 2. Filters and Interceptors

Interceptors are another facility from Resteasy 2 that now appear in JAX-RS 2.0 but in a rather
different form. There were four kinds of interceptors in Resteasy 2:

1. reader/writer interceptors

2. server side Pr eProcessl nt er cept or

3. server side Post Processl nt er cept or

4. d i ent Execut i onl nt er cept or

Of these, reader/writer interceptors, which wrap around the reading or writing of
entities, carry over essentially unchanged, except for class and method names.
javax.ws.rs. ext.ReaderInterceptor and javax.ws.rs.ext.Witerlnterceptor replace
the old MessageBodyReader | nt er cept or and MessageBodyW it er | nterceptor.

The two kinds of server side interceptors are replaced by filters, which behave similarly. There
are four kinds of filters:

1. Cont ai ner RequestFil ter

2. Cont ai ner ResponseFil ter

3. dientRequestFilter

4. dient ResponseFil ter

Like the old Pr eProcessl nt er cept or S, Cont ai ner Request Fi | t er S can access requests. A

public interface PreProcesslnterceptor

{

Server Response preProcess(Ht t pRequest request, ResourceMethod nethod) throws
Fai |l ure, WebApplicati onExcepti on;

}

can modify the Ht t pRequest and then return a response or null. If it returns a response, then the
execution process is interrupted and that response is returned. Similarly, a new

public interface ContainerRequestFilter

{

Chapter 2. Filters and Interc...

public void filter(ContainerRequestContext requestContext) throws
| OExcepti on;
}

can access and modify a JAX-RS Request by calling Cont ai ner Request Cont ext . get Request (),
and it can supply a response by calling Cont ai ner Request Cont ext . abor t Wt h(Response) .

An old

public interface PostProcesslnterceptor

{

voi d post Process(Server Response response);

can modify the response, as can a new

public interface Contai ner ResponseFilter

{
public voi d filter(ContainerRequest Cont ext r equest Cont ext ,

Cont ai ner ResponseCont ext responseContext) throws | OExcepti on;

}

by calling, for example, Cont ai ner ResponseCont ext . set St at us() or
Cont ai ner ResponseCont ext . set Entity().

The situation is somewhat different with the old dient Executionl nterceptor. Unlike
PreProcessl nterceptor and PreProcessl nterceptor, this one really wraps the invocation
process on the client side. That is, it can examine and/or modify the request
and return by calling dientRequest Cont ext.abortWth(Response), or proceed with
the invocation and examine and/or modify the response. Two client side filters,
CientRequestFilter and dient ResponseFil ter, are required to replace the functionality of
C i ent Executi onl nt er cept or. The former can access the request, and the latter can access
both the request and response.

Chapter 3.

Chapter 3. Asynchronous HTTP
Request Processing

Asynchronous request processing is another case in which a facility from Resteasy 2 has been
formalized in JAX-RS 2.0. The result in Resteasy is quite similar to the old version. For example,

@ath("/")
public static class TestResource
{
@ET
@roduces("text/plain")
public void test(@uspend(2000) AsynchronousResponse response)

{
Thread t = new Thread()

{
@verride
public void run()
{
try
{
Systemout. println("STARTED! ! I");
Thr ead. sl eep(100) ;
Response jaxrs = Response.ok().type("text/plain").build();
response. set Response(j axrs);
}
catch (Exception e)
{
e.printStackTrace();
}
}
iE
t.start();

would be turned into

@at h(u/u)
public static class TestResource
{

Chapter 3. Asynchronous HTTP ...

@ET
@°r oduces("text/plain")
public void get(@uspended final AsyncResponse response)

{
response. set Ti neout (2000, Ti neUnit. M LLI SECONDS) ;
Thread t = new Thread()
{
@verride
public void run()
{
try
{
Systemout.println("STARTED !!!1");
Thr ead. sl eep(100) ;
Response jaxrs = Response.ok().type("text/plain").build();
response. set Response(j axrs);
}
catch (Exception e)
{
e.printStackTrace();
}
}
b
t.start();
}

Other than the name changes, the one change to note is that the @uspended annotation does
not have a timeout field. Instead, the timeout can be set on the AsyncResponse.

10

Chapter 4.

Chapter 4. Validation

Validation is yet another facility that appeared as an ad hoc extension in Resteasy 2 and was
later formalized in JAX-RS 2.0. In Resteasy 2, validation was implemented in the resteasy-
hibernatevalidator-provider module, and it was necessary to annotate classes and/or methods
with @/al i dat eRequest to enable validation.

In Resteasy, validation is implemented in the resteasy-validator-provider-11 module, and
@val i dat eRequest is no longer relevant. In fact, validation is enabled by default, as long as
resteasy-validator-provider-11 is on the classpath.

11

12

Chapter 5.

Chapter 5. Resteasy Caching
Features

Client and server side caching facilities are Resteasy specific extensions of JAX-RS, and they
each work differently in Resteasy 2 and Resteasy 3.

5.1. Client side

Resteasy 3 offers the same client side cache facility as Resteasy 2, but it is enabled differently, by
way of or g. j boss. rest easy. client.jaxrs. cache. Br owser CacheFeat ur e, which implements
the JAX-RS 2.0 class j avax. ws.rs. core. Feat ure:

Client client = dientBuilder.newdient();

String url = "http://1ocal host: 8081/ orders/{id}";

Rest easyWebTarget target = (ResteasyWbTarget) client.target(url);

Br owser CacheFeat ure cacheFeature = new Browser CacheFeat ure();

target.regi ster(cacheFeature);

String rtn = target.resol veTenpl ate("id", "1").request().get(String.class);

Client side caching also works for proxies:

@rat h("/ orders")
public interface O derServicedient

{

@ath("{id}")

@zET

@°r oduces("application/xm")

public Order getOder(@rathParan("id") String id);
}

Client client = dientBuilder.newdient();

String "http://1ocal host: 8081";

Rest easyWebTarget target = (ResteasyWbTarget) client.target(url);

Br owser CacheFeat ure cacheFeature = new Browser CacheFeat ure();
target.register(cacheFeature);

Order Serviced i ent orderService = target.proxy(OderServiceCient.class);

13

Chapter 5. Resteasy Caching F...

5.2. Server side

As in Resteasy 2, a server side caching facility that sits in front of JAX-RS resources is made
available in Resteasy 3, but the default underlying cache in Resteasy 3 is Infinispan, which
supercedes the JBoss Cache project. It is highly configurable, and the documentation should be
consulted for additional information: http://infinispan.org/documentation/.

Server side caching is also enabled differently. Resteasy 3 uses
the JAX-RS 2.0 javax.ws.rs.core. Feature facility, in the form of
org. j boss.resteasy. pl ugi ns. cache. server. Server CacheFeature, which should be
registered via the j avax. ws. rs. core. Appl i cati on.

14

http://infinispan.org/documentation/

Chapter 6.

Chapter 6. Miscellaneous changes

In addition to the various updated frameworks discussed in previous sections, a few individual
classes have been updated or discarded.

6.1. Link

org.jboss.resteasy.spi.Link has been replaced by the abstract class
javax.ws.rs.core. Link and its implementation org.j boss. resteasy. speci npl . Li nkl npl .
They both represent links as described in RFC 5988 [https://tools.ietf.org/html/rfc5988], with
slight variations. For example, there is now javax.ws.rs. core. Li nk. get Rel () instead of
org.j boss. resteasy. spi.Link.getRel ati onshi p(). Also, they are constructed differently.
For example,

@ET
@at h("/1ink-header")
publi ¢ Response get Wt hHeader (@ontext Urilnfo uri)

{
URI subUri = uri.getAbsol utePat hBuil der (). path("next-link").build();
Link Iink = new Link();
l'ink.setHref (subUri.toASCIIString());
I'i nk. set Rel ati onshi p("nextLink");
return Response. noContent (). header("Link", link.toString()).build();
}

would now be written

@ET
@at h("/1ink-header")
publ i c Response get Wt hHeader (@ontext Urilnfo uri)

{
URI subUri = uri.getAbsol utePat hBuil der (). path("next-link").build();
Link link = new LinkBuilderlnpl ().uri(subUri).rel ("nextLink").build();
return Response. noContent (). header("Link", link.toString()).build();

}

15

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc5988

Chapter 6. Miscellaneous changes

6.2. GenericType

org.j boss.resteasy. util.GenericType, which allows the creation of parameterized type
objects at runtime, is now replaced by j avax. ws.rs. core. Generi cType. They are essentially
the same class, with minor method name changes. In particular, get Generi cType() becomes
get Type() and get Type() becomes get RawType() .

6.3. StringConverter

Implementations of the org.j boss. resteasy.spi.StringConverter interface in Resteasy
2 are providers that can marshal and unmarshal string-based parameters labelled
with @HeaderParam, @MatrixParam, @QueryParam, or @PathParam. JAX-RS 2.0
introduces a similar interface, javax.ws.rs. ext.ParanConverter, but implementations of
ParanConverter are not recognized as providers. Rather, a provider that implements
j avax.ws. rs. ext. ParanConverter Provi der, which produces a ParanConverter, may be
registered. For example,

public static class PQDO{ ... }

public static class PQICConverter inplenments ParanConverter<PQIC>

{
public PQIO fronString(String str)

{
PQJO pojo = new PAIQ);
return pojo;
}
public String toString(PQJO val ue)
{
return val ue. get Nane();
}

public static class PQICConverterProvider inplements ParanConverterProvider

{
@verride
public <T> ParanConverter<T> get Converter(Cl ass<T> rawlype, Type genericType,

Annot ati on[] annot ati ons)

{
if (!'PQJO cl ass. equal s(rawType)) return null;
return (ParanConverter<T>)new PQIQConverter();

Rest easyProvi der Fact ory. get I nstance() . regi sterProvi der (POJOConvert er Provi der. cl ass) ;

16

Logger

6.4. Logger

Resteasy 2 comes with a logging abstraction called org.j boss. rest easy. | oggi ng. Logger,
extensions of which delegate to logging frameworks such as log4j and slf4j. Resteasy 3 no
longer uses its own logging abstraction but rather adopts the JBoss Logging framework, a brief
description of which can be found at http://docs.jboss.org/hibernate/orm/4.3/topical/html/logging/
Logging.html. JBoss Logging was chosen for its internationalization and localization support.

17

http://docs.jboss.org/hibernate/orm/4.3/topical/html/logging/Logging.html
http://docs.jboss.org/hibernate/orm/4.3/topical/html/logging/Logging.html

18

	Upgrading from Resteasy 2 to Resteasy 3
	Table of Contents
	
	Chapter 1. Client Framework
	1.1. Fluent interface
	1.2. Client proxies
	1.3. Client side error handling
	1.4. Maven considerations

	Chapter 2. Filters and Interceptors
	Chapter 3. Asynchronous HTTP Request Processing
	Chapter 4. Validation
	Chapter 5. Resteasy Caching Features
	5.1. Client side
	5.2. Server side

	Chapter 6. Miscellaneous changes
	6.1. Link
	6.2. GenericType
	6.3. StringConverter
	6.4. Logger

