
RichFaces Developer Guide

RichFaces framework with a huge library of

rich components and skinnability support

iii

1. Introduction ... 1

2. Technical Requirements ... 3

2.1. Supported Java Versions .. 3

2.2. Supported JavaServer Faces Implementations and Frameworks 3

2.3. Supported Servers .. 3

2.4. Supported Browsers .. 4

3. Getting Started with RichFaces .. 5

3.1. Downloading the RichFaces .. 5

3.2. Simple JSF application with RichFaces .. 5

3.2.1. Adding RichFaces libraries into the project .. 5

3.2.2. Registering RichFaces in web.xml ... 6

3.2.3. Managed bean ... 8

3.2.4. Registering bean in faces-cofig.xml ... 8

3.2.5. RichFaces Greeter index.jsp ... 9

3.3. Integration of RichFaces into Maven Project ... 10

3.4. Relevant Resources Links ... 16

4. Settings for different environments .. 17

4.1. Web Application Descriptor Parameters .. 17

4.2. Sun JSF RI .. 20

4.3. Apache MyFaces .. 21

4.4. Facelets Support ... 21

4.5. JBoss Seam Support .. 22

4.6. Portlet Support .. 25

4.7. Sybase EAServer .. 25

4.8. Oracle AS/OC4J ... 26

5. Basic concepts of the RichFaces Framework .. 27

5.1. Introduction ... 27

5.2. RichFaces Architecture Overview ... 28

5.3. RichFaces Integral Parts ... 31

5.4. Limitations and Rules .. 32

5.5. Ajax Request Optimization ... 32

5.5.1. Re-Rendering ... 32

5.5.2. Queue and Traffic Flood Protection ... 35

5.5.3. Queue Principles .. 36

5.5.4. Data Processing Options .. 41

5.5.5. Action and Navigation ... 42

5.5.6. JavaScript Interactions .. 42

5.5.7. Iteration components Ajax attributes .. 44

5.5.8. Other useful attributes .. 44

5.6. How To... ... 45

5.6.1. Send an Ajax request ... 45

5.6.2. Decide What to Send ... 46

5.6.3. Decide What to Change ... 46

5.6.4. Decide what to process .. 46

RichFaces Developer Guide

iv

5.7. Filter Configuration .. 47

5.8. Scripts and Styles Load Strategy ... 49

5.9. Request Errors and Session Expiration Handling .. 51

5.9.1. Request Errors Handling ... 51

5.9.2. Session Expired Handling ... 51

5.10. Skinnability ... 52

5.10.1. Why Skinnability ... 52

5.10.2. Using Skinnability ... 53

5.10.3. Example ... 53

5.10.4. Skin Parameters Tables in RichFaces .. 55

5.10.5. Creating and Using Your Own Skin File ... 56

5.10.6. Built-in Skinnability in RichFaces ... 57

5.10.7. Changing skin in runtime .. 58

5.10.8. Standard Controls Skinning ... 60

5.10.9. Client-side Script for Extended Skinning Support 70

5.10.10. XCSS File Format .. 71

5.10.11. Plug-n-Skin ... 72

5.11. State Manager API .. 79

5.12. Identifying User Roles ... 84

6. The RichFaces Components .. 85

6.1. Ajax Support ... 85

6.1.1. < a4j:ajaxListener > ... 85

6.1.2. < a4j:actionparam > .. 87

6.1.3. < a4j:form > .. 90

6.1.4. < a4j:region > ... 95

6.1.5. < a4j:support > ... 99

6.1.6. < a4j:commandButton > ... 105

6.1.7. < a4j:commandLink > .. 112

6.1.8. < a4j:jsFunction > .. 119

6.1.9. < a4j:poll > ... 124

6.1.10. < a4j:push > .. 128

6.1.11. < a4j:queue > .. 133

6.1.12. < a4j:status > .. 138

6.2. Resources/Beans Handling .. 142

6.2.1. < a4j:loadBundle > .. 143

6.2.2. < a4j:keepAlive > .. 147

6.2.3. < a4j:loadScript > .. 149

6.2.4. < a4j:loadStyle > ... 151

6.3. Ajax Validators .. 152

6.3.1. < rich:ajaxValidator > ... 152

6.3.2. < rich:beanValidator > ... 159

6.3.3. < rich:graphValidator > .. 162

6.4. Ajax Output ... 166

6.4.1. < a4j:include > .. 166

v

6.4.2. < a4j:mediaOutput > .. 168

6.4.3. < a4j:outputPanel > ... 176

6.5. Ajax Miscellaneous .. 181

6.5.1. < a4j:page > ... 181

6.5.2. < a4j:portlet > ... 185

6.5.3. < a4j:htmlCommandLink > ... 186

6.5.4. < a4j:log > .. 191

6.6. Data Iteration .. 194

6.6.1. < rich:column > ... 194

6.6.2. < rich:columnGroup > .. 209

6.6.3. < rich:columns > ... 217

6.6.4. < rich:dataDefinitionList > ... 228

6.6.5. < rich:dataFilterSlider > .. 235

6.6.6. < rich:dataGrid > ... 243

6.6.7. < rich:dataList > .. 253

6.6.8. < rich:dataOrderedList > .. 260

6.6.9. < rich:datascroller > ... 267

6.6.10. < rich:dataTable > ... 283

6.6.11. < rich:subTable > .. 296

6.6.12. < rich:extendedDataTable > ... 305

6.6.13. < a4j:repeat > ... 318

6.6.14. < rich:scrollableDataTable > ... 321

6.7. Drag-Drop Support .. 337

6.7.1. < rich:dragIndicator > ... 337

6.7.2. < rich:dragSupport > .. 341

6.7.3. < rich:dragListener > ... 347

6.7.4. < rich:dropListener > ... 350

6.7.5. < rich:dropSupport > .. 352

6.7.6. < rich:dndParam > .. 362

6.8. Rich Menu .. 364

6.8.1. < rich:contextMenu > ... 365

6.8.2. < rich:dropDownMenu > ... 375

6.8.3. < rich:menuGroup > .. 386

6.8.4. < rich:menuItem > ... 393

6.8.5. < rich:menuSeparator > ... 403

6.9. Rich Trees .. 406

6.9.1. < rich:tree > .. 406

6.9.2. < rich:treeNode > .. 428

6.9.3. < rich:treeNodesAdaptor > ... 439

6.9.4. < rich:recursiveTreeNodesAdaptor > ... 442

6.9.5. < rich:changeExpandListener > .. 446

6.9.6. < rich:nodeSelectListener > .. 448

6.10. Rich Output ... 450

6.10.1. < rich:modalPanel > ... 450

RichFaces Developer Guide

vi

6.10.2. < rich:paint2D > .. 465

6.10.3. < rich:panel > .. 470

6.10.4. < rich:panelBar > ... 477

6.10.5. < rich:panelBarItem > .. 483

6.10.6. < rich:panelMenu > .. 489

6.10.7. < rich:panelMenuGroup > ... 501

6.10.8. < rich:panelMenuItem > ... 514

6.10.9. < rich:progressBar > .. 525

6.10.10. < rich:separator > .. 538

6.10.11. < rich:simpleTogglePanel > .. 543

6.10.12. < rich:spacer > .. 552

6.10.13. < rich:tabPanel > ... 556

6.10.14. < rich:tab > ... 565

6.10.15. < rich:togglePanel > ... 577

6.10.16. < rich:toggleControl > ... 585

6.10.17. < rich:toolBar > .. 592

6.10.18. < rich:toolBarGroup > ... 599

6.10.19. < rich:toolTip > .. 604

6.11. Rich Input ... 613

6.11.1. < rich:calendar > ... 613

6.11.2. < rich:colorPicker > .. 644

6.11.3. < rich:comboBox > .. 653

6.11.4. < rich:editor > .. 667

6.11.5. < rich:fileUpload > ... 682

6.11.6. < rich:inplaceInput > .. 704

6.11.7. < rich:inplaceSelect > .. 718

6.11.8. < rich:inputNumberSlider > ... 733

6.11.9. < rich:inputNumberSpinner > .. 745

6.11.10. < rich:suggestionbox > ... 753

6.12. Rich Selects .. 769

6.12.1. < rich:listShuttle > .. 769

6.12.2. < rich:orderingList > ... 788

6.12.3. < rich:pickList > ... 804

6.13. Rich Semantic Layouts .. 819

6.13.1. < rich:page > .. 819

6.13.2. < rich:layout > ... 826

6.13.3. < rich:layoutPanel > ... 829

6.14. Rich Miscellaneous .. 831

6.14.1. < rich:componentControl > ... 831

6.14.2. < rich:effect > .. 836

6.14.3. < rich:gmap > .. 840

6.14.4. < rich:virtualEarth > ... 850

6.14.5. < rich:hotKey > .. 855

6.14.6. < rich:insert > .. 859

vii

6.14.7. < rich:message > .. 861

6.14.8. < rich:messages > ... 868

6.14.9. < rich:jQuery > .. 875

7. IDE Support ... 883

8. Links to information resources .. 885

Chapter 1.

1

Introduction
RichFaces is an open source framework that adds Ajax capability into existing JSF applications

without resorting to JavaScript.

RichFaces leverages JavaServer Faces framework including lifecycle, validation, conversion

facilities and management of static and dynamic resources. RichFaces components with built-

in Ajax support and a highly customizable look-and-feel can be easily incorporated into JSF

applications.

RichFaces allows to:

• Intensify the whole set of JSF benefits while working with Ajax. RichFaces is fully integrated into

the JSF lifecycle. While other frameworks only give you access to the managed bean facility,

RichFaces advantages the action and value change listeners, as well as invokes server-side

validators and converters during the Ajax request-response cycle.

• Add Ajax capability to the existing JSF applications. Framework provides two components

libraries (Core Ajax and UI). The Core library sets Ajax functionality into existing pages, so

there is no need to write any JavaScript code or to replace existing components with new Ajax

ones. RichFaces enables page-wide Ajax support instead of the traditional component-wide

support and it gives the opportunity to define the event on the page. An event invokes an Ajax

request and areas of the page which become synchronized with the JSF Component Tree after

changing the data on the server by Ajax request in accordance with events fired on the client.

• Create quickly complex View basing on out of the box components. RichFaces UI library

contains components for adding rich user interface features to JSF applications. It extends

the RichFaces framework to include a large (and growing) set of powerful rich Ajax-enabled

components that come with extensive skins support. In addition, RichFaces components are

designed to be used seamlessly with other 3d-party component libraries on the same page, so

you have more options for developing your applications.

• Write your own custom rich components with built-in Ajax support. We're always working on

improvement of Component Development Kit (CDK) that was used for RichFaces UI library

creation. The CDK includes a code-generation facility and a templating facility using a JSP-

like syntax. These capabilities help to avoid a routine process of a component creation.

The component factory works like a well-oiled machine allowing the creation of first-class

rich components with built-in Ajax functionality even more easily than the creation of simpler

components by means of the traditional coding approach.

• Package resources with application Java classes. In addition to its core, Ajax functionality of

RichFaces provides an advanced support for the different resources management: pictures,

JavaScript code, and CSS stylesheets. The resource framework makes possible to pack easily

these resources into Jar files along with the code of your custom components.

Chapter 1. Introduction

2

• Easily generate binary resources on-the-fly. Resource framework can generate images,

sounds, Excel spreadsheets etc.. on-the-fly so that it becomes for example possible to create

images using the familiar approach of the "Java Graphics2D" library.

• Create a modern rich user interface look-and-feel with skins-based technology. RichFaces

provides a skinnability feature that allows easily define and manage different color schemes

and other parameters of the UI with the help of named skin parameters. Hence, it is possible to

access the skin parameters from JSP code and the Java code (e.g. to adjust generated on-the-

fly images based on the text parts of the UI). RichFaces comes with a number of predefined

skins to get you started, but you can also easily create your own custom skins.

• Test and create the components, actions, listeners, and pages at the same time. An automated

testing facility is in our roadmap for the near future. This facility will generate test cases for your

component as soon as you develop it. The testing framework will not just test the components,

but also any other server-side or client-side functionality including JavaScript code. What is

more, it will do all of this without deploying the test application into the Servlet container.

RichFaces UI components come ready to use out-of-the-box, so developers save their time and

immediately gain the advantage of the mentioned above features in Web applications creation.

As a result, usage experience can be faster and easily obtained.

Chapter 2.

3

Technical Requirements
RichFaces was developed with an open architecture to be compatible with the widest possible

variety of environments.

This is what you need to start working with RichFaces 3.3.1:

• Java

• JavaServer Faces

• Java application server or servlet container

• Browser (on client side)

• RichFaces framework

2.1. Supported Java Versions

• JDK 1.5 and higher

2.2. Supported JavaServer Faces Implementations and

Frameworks

• Sun JSF-RI - 1.2_12

• MyFaces 1.2.5

• Facelets 1.1.1 - 1.2

• Seam 1.2. - 2.1.0

2.3. Supported Servers

• Apache Tomcat 5.5 - 6.0

• BEA WebLogic 9.1 - 10.0

• Resin 3.1

• Jetty 6.1.x

• Sun Application Server 9 (J2EE 1.5)

• Glassfish (J2EE 5)

Chapter 2. Technical Requirements

4

• JBoss 4.2.x - 5

• Websphere 7.0. and higher

• Geronimo 2.0 and higher

2.4. Supported Browsers

• Internet Explorer 6.0 - 8.0

• Firefox 2.0 - 3.0

• Opera 8.5 - 9.5

• Safari 3.0

• Google Chrome

This list is composed basing on reports received from our users. We assume the list can be

incomplete and absence of your environment in the list doesn't mean incompatibility.

We appreciate your feedback on platforms and browsers that aren't in the list but are compatible

with RichFaces. It helps us to keep the list up-to-date.

Chapter 3.

5

Getting Started with RichFaces
This chapter describes all necessary actions and configurations that should be done for plugging

the RichFaces components into a JSF appplication. The description relies on a simple JSF with

RichFaces application creation process from downloading the libraries to running the application

in a browser. The process of application creation described here is common and does not depend

on used IDE.

3.1. Downloading the RichFaces

The latest release of RichFaces components is available for download at JBoss RichFaces

Downloads area [http://labs.jboss.com/jbossrichfaces/downloads] at JBoss community. Binary

files (uploaded there in *.bin.zip or *.bin.tar.gz archives) contains compiled, ready-to-use

version of RichFaces with set of basic skins.

To start with RichFaces in computer file system create new folder with name "RichFaces",

download and unzip the archive with binaries there.

For those who want to download and compile the RichFaces by themselfs there is an

article at JBoss community that describes the RichFaces repository's structure overview [http://

www.jboss.org/community/docs/DOC-11864] and some aspects of working with it.

3.2. Simple JSF application with RichFaces

"RichFaces Greeter"—the simple application—is hello-world like application but with one

difference: the world of RichFaces will say "Hello!" to user first.

Create standard JSF 1.2 project with all necessary libraries; name the project "Greeter" and follow

the decription.

3.2.1. Adding RichFaces libraries into the project

Go to the folder with unzipped earlier RichFaces binary files and open lib folder. This folder

contains three *.jar files with API, UI and implementation libraries. Copy that "jars" from lib

folder to WEB-INF/lib folder of "Greeter" JSF application.

Important:

A JSF application with RichFaces assumes that the following JARs are available in

the project: commons-beanutils-1.7.0.jar, commons-collections-3.2.jar, commons-

digester-1.8.jar, commons-logging-1.0.4.jar, jhighlight-1.0.jar.

http://labs.jboss.com/jbossrichfaces/downloads
http://labs.jboss.com/jbossrichfaces/downloads
http://labs.jboss.com/jbossrichfaces/downloads
http://www.jboss.org/community/docs/DOC-11864
http://www.jboss.org/community/docs/DOC-11864
http://www.jboss.org/community/docs/DOC-11864

Chapter 3. Getting Started wi...

6

3.2.2. Registering RichFaces in web.xml

After RichFaces libraries where added into the project it is necessary to register them in project

web.xml file. Add following lines in web.xml:

...

<!-- Plugging the "Blue Sky" skin into the project -->

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>blueSky</param-value>

</context-param>

<!-- Making the RichFaces skin spread to standard HTML controls -->

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING</param-name>

 <param-value>enable</param-value>

</context-param>

<!-- Defining and mapping the RichFaces filter -->

<filter>

 <display-name>RichFaces Filter</display-name>

 <filter-name>richfaces</filter-name>

 <filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>

 <filter-name>richfaces</filter-name>

 <servlet-name>Faces Servlet</servlet-name>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

</filter-mapping>

...

For more information on how to work with RichFaces skins read "Skinnabilty" chapter.

Finally the web.xml should look like this:

<?xml version="1.0"?>

<web-app version="2.5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Registering RichFaces in web.xml

7

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-app_2_5.xsd">

<display-name>Greeter</display-name>

<context-param>

 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>

 <param-value>server</param-value>

</context-param>

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>blueSky</param-value>

</context-param>

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING</param-name>

 <param-value>enable</param-value>

</context-param>

<filter>

 <display-name>RichFaces Filter</display-name>

 <filter-name>richfaces</filter-name>

 <filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>

 <filter-name>richfaces</filter-name>

 <servlet-name>Faces Servlet</servlet-name>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

</filter-mapping>

<listener>

 <listener-class>com.sun.faces.config.ConfigureListener</listener-class>

</listener>

<!-- Faces Servlet -->

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

Chapter 3. Getting Started wi...

8

<!-- Faces Servlet Mapping -->

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.jsf</url-pattern>

</servlet-mapping>

<login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

</web-app>

3.2.3. Managed bean

The "RichFaces Greeter" application needs a managed bean. In project JavaSource folder create

a new managed bean with name user in demo package and paste there the following simple code:

package demo;

public class user {

 private String name="";

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

3.2.4. Registering bean in faces-cofig.xml

With the next step the user bean should be registered in faces-config.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config version="1.2"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xi="http://www.w3.org/2001/XInclude"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

ns/javaee/web-facesconfig_1_2.xsd">

 <managed-bean>

 <description>UsernName Bean</description>

 <managed-bean-name>user</managed-bean-name>

RichFaces Greeter index.jsp

9

 <managed-bean-class>demo.user</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property>

 <property-name>name</property-name>

 <property-class>java.lang.String</property-class>

 <value/>

 </managed-property>

 </managed-bean>

</faces-config>

3.2.5. RichFaces Greeter index.jsp

The "RichFaces Greeter" application has only one JSP page. Create index.jsp page in root of

WEB CONTENT folder and add there following code:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<!-- RichFaces tag library declaration -->

<%@ taglib uri="http://richfaces.org/a4j" prefix="a4j"%>

<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

<html>

 <head>

 <title>RichFaces Greeter</title>

 </head>

 <body>

 <f:view>

 <a4j:form>

 <rich:panel header="RichFaces Greeter" style="width: 315px">

 <h:outputText value="Your name: " />

 <h:inputText value="#{user.name}" >

 <f:validateLength minimum="1" maximum="30" />

 </h:inputText>

 <a4j:commandButton value="Get greeting" reRender="greeting" />

 <h:panelGroup id="greeting" >

 <h:outputText value="Hello, " rendered="#{not empty user.name}" />

 <h:outputText value="#{user.name}" />

 <h:outputText value="!" rendered="#{not empty user.name}" />

 </h:panelGroup>

 </rich:panel>

Chapter 3. Getting Started wi...

10

 </a4j:form>

 </f:view>

 </body>

</html>

The application uses three RichFaces components: <rich:panel> is used as visual container

for information; <a4j:commandButton> with built-in Ajax support allows rendering a greeting

dynamically after a response comes back and <a4j:form> helps the button to perform the action.

Note, that the RichFaces tag library should be declared on each JSP page. For XHTML pages

add following lines for tag library declaration:

<xmlns:a4j="http://richfaces.org/a4j">

<xmlns:rich="http://richfaces.org/rich">

That’s it. Run the application on server. Point your browser to index.jsp page in browser:

http://localhost:8080/Greeter/index.jsf

Figure 3.1. "RichFaces Greeter" application

3.3. Integration of RichFaces into Maven Project

In this section we will tell how you can create a simple JSF application with RichFaces using

Maven.

In the first place you need to make sure that Maven is installed on you local machine. We will

run the JSF application on Tomcat 6.0 server, so please download and install it if you haven't

done already so.

Now we can move on to creating the application. To create the project structure and fill it with

minimal content we will use the "maven-archetype-jsfwebapp" Maven archetype which is a part

of RichFaces CDK.

The "maven-archetype-jsfwebapp" archetype and the project itself require extra repositories

to be provided, namely "http://snapshots.jboss.org/maven2/" and "http://repository.jboss.com/

maven2/". The easiest way to make the repositories visible for Maven is to create a profile in

"maven_installation_folder/conf/settings.xml" in <profiles> element. This is the content of the

profile:

Integration of RichFaces into Maven Project

11

<profile>

 <id>jsf-app-profile</id>

 <repositories>

 <repository>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>always</updatePolicy>

 </snapshots>

 <id>snapshots.jboss.org</id>

 <name>Snapshot Jboss Repository for Maven</name>

 <url>http://snapshots.jboss.org/maven2/</url>

 <layout>default</layout>

 </repository>

 <repository>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>always</updatePolicy>

 </snapshots>

 <id>repository.jboss.com</id>

 <name>Jboss Repository for Maven</name>

 <url>http://repository.jboss.com/maven2/</url>

 <layout>default</layout>

 </repository>

 </repositories>

</profile>

When the profile is added you need to activate it in the <activeProfiles> element. It can be

done like this:

...

<activeProfiles>

 <activeProfile>jsf-app-profile</activeProfile>

</activeProfiles>

Chapter 3. Getting Started wi...

12

...

Now you have everything to create the project using the "maven-archetype-jsfwebapp" archetype.

Create a folder that will house your project and run the this command in it:

...

mvn archetype:generate -DarchetypeGroupId=org.richfaces.cdk -DarchetypeArtifactId=maven-

archetype-jsfwebapp -DarchetypeVersion=3.3.2-SNAPSHOT -DgroupId=org.docs.richfaces -

DartifactId=jsf-app

...

You can adjust some parameters of the command.

Table 3.1. Title of the table

Parameter Description

-DgroupId Defines the package for the Managed beans

-DartifactId Defines the name of the project

This command generates a JSF project that has the following structure:

jsf-app

|-- pom.xml

`-- src

 |-- main

 | |-- java

 | | `-- org

 | | `-- docs

 | | `-- richfaces

 | | `-- Bean.java

 | |-- resources

 | `-- webapp

 | |-- WEB-INF

 | | |-- faces-config.xml

 | | `-- web.xml

 | |-- index.jsp

 | `-- pages

 | |-- index.jsp

 | `-- index.xhtml

 `-- test

 `-- java

Integration of RichFaces into Maven Project

13

 `-- org

 `-- docs

 `-- richfaces

 `-- BeanTest.java

Now go to "jsf-app" folder, it contains a project descriptor(pom.xml). Open the project descriptor

to edit and add dependencies to the <dependencies> element. Your <dependencies> element

content should be the following:

...

<dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>2.4</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>jsp-api</artifactId>

 <version>2.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>jstl</groupId>

 <artifactId>jstl</artifactId>

 <version>1.1.2</version>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

 <artifactId>jsp-api</artifactId>

 <version>2.1</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.faces</groupId>

Chapter 3. Getting Started wi...

14

 <artifactId>jsf-api</artifactId>

 <version>1.2_12</version>

 </dependency>

 <dependency>

 <groupId>javax.faces</groupId>

 <artifactId>jsf-impl</artifactId>

 <version>1.2_12</version>

 </dependency>

 <dependency>

 <groupId>javax.el</groupId>

 <artifactId>el-api</artifactId>

 <version>1.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>el-impl</groupId>

 <artifactId>el-impl</artifactId>

 <version>1.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.annotation</groupId>

 <artifactId>jsr250-api</artifactId>

 <version>1.0</version>

 </dependency>

 <!-- RichFaces libraries -->

 <dependency>

 <groupId>org.richfaces.framework</groupId>

 <artifactId>richfaces-api</artifactId>

 <version>3.3.2-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.richfaces.framework</groupId>

 <artifactId>richfaces-impl</artifactId>

 <version>3.3.2-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.richfaces.ui</groupId>

 <artifactId>richfaces-ui</artifactId>

 <version>3.3.2-SNAPSHOT</version>

 </dependency>

</dependencies>

...

Integration of RichFaces into Maven Project

15

The last three dependences add RichFaces libraries to the project. You can now build the project

with the mvn install command.

When you see the "BUILD SUCCESSFUL" message, the project is assembled and can be

imported to a IDE and run on the server.

The project can be built for Eclipse IDE with mvn eclipse:eclipse -Dwtpversion=2.0

command.

Then you can import the project into Eclipse. After importing to Eclipse open the "jsf-app/src/main/

webapp/WEB-INF/web.xml" to configure it according to the listing in the Registering RichFaces

in web.xml section of the guide.

The project is configured and now you can start using RichFaces. Open "jsf-app/src/main/webapp/

pages/index.jsp" file and add the tag library declaration.

...

<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

...

Add some RichFaces component to the "index.jsp" page, for instance <rich:calendar>. Your

"index.jsp" page will look like this:

...

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>

<html>

 <head>

 <title>JSF Application with RichFaces built by Maven</title>

 </head>

 <body>

 <f:view>

 <rich:calendar />

 </f:view>

 </body>

</html>

...

Now run the application on Tomcat server and open it in your favourite browser by pointing it to

"http://localhost:8080/jsf-app/" .

Chapter 3. Getting Started wi...

16

3.4. Relevant Resources Links

The Photo Album Application [http://livedemo.exadel.com/photoalbum] is designed and

developed with RichFaces.

Maven Resource Dependency Plugin Reference [http://www.jboss.org/community/wiki/

MavenResourceDependencyPluginReference] article discusses plugin configuration and usage.

See also the "How to start RichFaces application with NetBeans IDE" [http://www.jboss.org/

community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE] article in the RichFaces

Cookbook.

JBoss Developer Studio [https://www.redhat.com/apps/store/developers/

jboss_developer_studio.html] comes with a tight integration with RichFaces component

framework. Following links might be useful for those who already use this IDE and RichFaces for

developing applications and those who wish to improve their development process:

• "Rich Components [http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/

html/first_seam.html#rich_components]" chapter in "Getting Started with JBoss Developer

Studio Guide" describes how to add RichFaces components into a CRUD application;

• "JBoss Tools Palette [http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/

palette.html]" chapter in "Visual Web Tools Reference Guide" describes advantages that gives

Tools Pallete (comes together with JBDS) for quick and easy pages creation processs including

RichFaces applications;

• "RichFaces Toolkit for developing Web application [http://docs.jboss.org/tools/movies/demos/

rich_faces_demo/rich_faces_demo.htm]" video tutorial demonstrates some aspects of

interaction with JBoss Developer Studio while working with RichFaces.

• "How to Configure Maven for RichFaces [http://docs.jboss.org/tools/movies/demos/

rich_faces_demo/rich_faces_demo.htm]" article shortly discusses Maven configuration for

RichFaces.

• " RichFaces Release Procedure [http://www.jboss.org/community/docs/DOC-13446]" article

describes how RichFaces release builds are made.

Read also the quick overview [http://mkblog.exadel.com/?p=110] to "Practical RichFaces " book

by Max Katz at his blog.

http://livedemo.exadel.com/photoalbum
http://livedemo.exadel.com/photoalbum
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/MavenResourceDependencyPluginReference
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
http://www.jboss.org/community/wiki/HowtostartRichFacesapplicationwithNetBeansIDE
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
https://www.redhat.com/apps/store/developers/jboss_developer_studio.html
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/GettingStartedGuide/html/first_seam.html#rich_components
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://download.jboss.org/jbosstools/nightly-docs/en/jsf/html/palette.html
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://docs.jboss.org/tools/movies/demos/rich_faces_demo/rich_faces_demo.htm
http://www.jboss.org/community/docs/DOC-13446
http://www.jboss.org/community/docs/DOC-13446
http://mkblog.exadel.com/?p=110
http://mkblog.exadel.com/?p=110

Chapter 4.

17

Settings for different environments
RichFaces comes with support for all tags (components) included in the JavaServer Faces

specification. To add RichFaces capabilities to the existing JSF project you should just put the

RichFaces libraries into the lib folder of the project and add filter mapping. The behavior of the

existing project doesn't change just because of RichFaces.

4.1. Web Application Descriptor Parameters

RichFaces doesn't require any parameters to be defined in your web.xml. But the RichFaces

parameters listed below may help with development and may increase the flexibility of RichFaces

usage.

Table 4.1. Initialization Parameters

Name Default Description

org.richfaces.SKIN DEFAULT Is a name of a skin used in an

application. It can be a literal

string with a skin name, or

the EL expression (#{...})

pointed to a String property

(skin name) or a property of a

org.richfaces.framework.skin

type. Skin in last case, this

instance is used as a current

skin

org.richfaces.LoadScriptStrategyDEFAULT Defines how the RichFaces

script files are loaded to

application. Possible values

are: ALL, DEFAULT, NONE.

For more information see

"Scripts and Styles Load

Strategy".

org.richfaces.LoadStyleStrategyDEFAULT Defines how the RichFaces

style files are loaded to

application. Possible values

are: ALL, DEFAULT, NONE.

For more information see

"Scripts and Styles Load

Strategy".

org.ajax4jsf.LOGFILE none Is an URL to an application or

a container log file (if possible).

If this parameter is set, content

Chapter 4. Settings for diffe...

18

Name Default Description

from the given URL is shown

on a Debug error page in the

iframe window

org.ajax4jsf.VIEW_HANDLERS none Is a comma-separated list

of custom ViewHandler

instances for inserting

in chain. Handlers are

inserted BEFORE RichFaces

viewhandlers in the given

order. For example, in

facelets application this

parameter must contain

com.sun.facelets.FaceletViewHandler,

instead of declaration in faces-

config.xml

org.ajax4jsf.CONTROL_COMPONENTSnone Is a comma-separated list of

names for a component as

a special control case, such

as messages bundle loader,

alias bean components, etc.

Is a type of component got

by a reflection from the static

field COMPONENT_TYPE .

For components with such

types encode methods always

are called in rendering

Ajax responses, even if a

component isn't in an updated

part

org.ajax4jsf.ENCRYPT_RESOURCE_DATAfalse For generated resources, such

as encrypt generation data,

it's encoded in the resource

URL. For example, URL for

an image generated from

the mediaOutput component

contains a name of a

generation method, since for

a hacker attack, it is possible

to create a request for any

JSF baked beans or other

attributes. To prevent such

attacks, set this parameter to

Web Application Descriptor Parameters

19

Name Default Description

"true" in critical applications

(works with JRE > 1.4)

org.ajax4jsf.ENCRYPT_PASSWORDrandom Is a password for encryption of

resources data. If isn't set, a

random password is used

org.ajax4jsf.COMPRESS_SCRIPTtrue It doesn't allow framework

to reformat JavaScript files

(makes it impossible to debug)

org.ajax4jsf.RESOURCE_URI_PREFIXa4j Defines prefix which is added

to all URIs of generated

resources. This prefix

designed to handle RichFaces

generated resources requests

org.ajax4jsf.GLOBAL_RESOURCE_URI_PREFIXa4j/g Defines prefix which is added

to URIs of global resources.

This prefix designed to

handle RichFaces generated

resources requests

org.ajax4jsf.SESSION_RESOURCE_URI_PREFIXa4j/s Defines prefix which is

used for session tracking

for generated resources.

This prefix designed to

handle RichFaces generated

resources requests

org.ajax4jsf.DEFAULT_EXPIRE86400 Defines in seconds how long

streamed back to browser

resources can be cached

org.ajax4jsf.SERIALIZE_SERVER_STATEfalse If enabled the component

state (not the tree) will be

serialized before being stored

in the session. This may

be desirable for applications

that may have issues with

view state being sensitive

to model changes. Instead

of this parameter can use

com.sun.faces.serializeServerState

and

org.apache.myfaces.SERIALIZE_STATE_IN_SESSION

parameters for corresponding

environments.

Chapter 4. Settings for diffe...

20

Note:

org.richfaces.SKIN is used in the same way as org.ajax4jsf.SKIN

Table 4.2. org.ajax4jsf.Filter Initialization Parameters

Name Default Description

log4j-init-file - Is a path (relative to web

application context) to the

log4j.xml configuration file, it

can be used to setup per-

application custom logging

enable-cache true Enable caching of framework-

generated resources

(JavaScript, CSS, images,

etc.). For debug purposes

development custom

JavaScript or Style prevents

to use old cached data in a

browser

forcenotrf true Force parsing by a filter

HTML syntax checker on

any JSF page. If "false", only

Ajax responses are parsed to

syntax check and conversion

to well-formed XML. Setting to

"false" improves performance,

but can provide visual effects

on Ajax updates

4.2. Sun JSF RI

RichFaces works with implementation of JSF (JSF 1.2_12) and with most JSF component libraries

without any additional settings. For more information look at:

java.sun.com [http://java.sun.com/javaee/javaserverfaces/]

Additional information how to get ViewExpiredExceptions when using RichFaces

with JSF 1.2_12 you can find in RichFaces Cookbook article [http://wiki.jboss.org/auth/wiki//

RichFacesCookbook/ViewExpiredException].

http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException
http://wiki.jboss.org/auth/wiki//RichFacesCookbook/ViewExpiredException

Apache MyFaces

21

4.3. Apache MyFaces

RichFaces works with Apache MyFaces 1.2.5 version including specific libraries like TOMAHAWK

Sandbox and Trinidad (the previous ADF Faces). However, there are some considerations to take

into account for configuring applications to work with MyFaces and RichFaces.

Note:

There are some problems with different filters defined in the web.xml file clashing.

To avoid these problems, the RichFaces filter must be the first one among other

filters in the web.xml configuration file.

For more information look at: http://myfaces.apache.org [http://myfaces.apache.org]

There's one more problem while using MyFaces + Seam . If you use this combination you should

use <a4j:page> inside <f:view> (right after it in your code) wrapping another content inside

your pages because of some problems in realization of <f:view> in myFaces.

The problem is to be overcome in the nearest future.

4.4. Facelets Support

A high-level support for Facelets is one of our main support features. When working with

RichFaces, there is no difference what release of Facelets is used.

You should also take into account that some JSF frameworks such as Facelets use their

own ViewHandler and need to have it first in the chain of ViewHandlers and the RichFaces

AjaxViewHandler is not an exception. At first RichFaces installs its ViewHandler in any case, so in

case of two frameworks, for example RichFaces + Facelets, no changes in settings are required.

Although, when more then one framework (except RichFaces) is used, it's possible to use the

VIEW_HANDLERS parameter defining these frameworks view handlers according to its usage order

in it. For example, the declaration:

Example:

...

<context-param>

 <param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>

 <param-value>com.sun.facelets.FaceletViewHandler</param-value>

</context-param>

...

says that Facelets will officially be the first, however AjaxViewHandler will be a little ahead

temporarily to do some small, but very important job.

http://myfaces.apache.org
http://myfaces.apache.org

Chapter 4. Settings for diffe...

22

Note:

In this case you don't have to define FaceletViewHandler in the WEB-INF/faces-

config.xml.

4.5. JBoss Seam Support

RichFaces now works out-of-the-box with JBoss Seam and Facelets running inside JBoss AS

4.0.4 and higher. There is no more shared JAR files needed. You just have to package the

RichFaces library with your application.

Your web.xml for Seam 1.2 must be like this:

<?xml version="1.0" ?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/

j2ee/web-app_2_4.xsd"

 version="2.4">

 <!-- richfaces -->

 <filter>

 <display-name>RichFaces Filter</display-name>

 <filter-name>richfaces</filter-name>

 <filter-class>org.ajax4jsf.Filter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>richfaces</filter-name>

 <url-pattern>*.seam</url-pattern>

 </filter-mapping>

 <!-- Seam -->

 <listener>

 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>

 </servlet>

JBoss Seam Support

23

 <servlet-mapping>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <url-pattern>/seam/resource/*</url-pattern>

 </servlet-mapping>

 <filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.web.SeamFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <!-- MyFaces -->

 <listener>

 <listener-class>org.apache.myfaces.webapp.StartupServletContextListener</listener-

class>

 </listener>

 <!-- JSF -->

 <context-param>

 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>

 <param-value>client</param-value>

 </context-param>

 <context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.seam</url-pattern>

Chapter 4. Settings for diffe...

24

 </servlet-mapping>

</web-app>

Seam 2 supports RichFaces Filter. Thus your web.xml for Seam 2 must be like this:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

ns/javaee/web-app_2_5.xsd">

 <context-param>

 <param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>

 <param-value>com.sun.facelets.FaceletViewHandler</param-value>

 </context-param>

 <!-- Seam -->

 <listener>

 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Seam Resource Servlet</servlet-name>

 <url-pattern>/seam/resource/*</url-pattern>

 </servlet-mapping>

 <filter>

 <filter-name>Seam Filter</filter-name>

 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Seam Filter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Portlet Support

25

 <!-- JSF -->

 <context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <context-param>

 <param-name>facelets.DEVELOPMENT</param-name>

 <param-value>true</param-value>

 </context-param>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.seam</url-pattern>

 </servlet-mapping>

</web-app>

Only one issue still persists while using Seam with MyFaces. Look at myFaces part of this section.

Detailed information on how to integrate Richfaces and Trinidad and how to hide ".seam"

postfix in the URL you can find in the RichFaces Cookbook article [http://wiki.jboss.org/auth/wiki/

RichFacesWithTrinidad]

4.6. Portlet Support

JBoss Portlets have support since version Ajax4jsf 1.1.1. This support is improved from RichFaces

3.2.1. Provide your feedback on compatible with RichFaces if you face some problems.

4.7. Sybase EAServer

The load-on-startup for the Faces Servlet had to be set to 0 in web.xml.

Example:

...

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad
http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad
http://wiki.jboss.org/auth/wiki/RichFacesWithTrinidad

Chapter 4. Settings for diffe...

26

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>0</load-on-startup>

</servlet>

...

This is because, EAServer calls servlet init() before the ServletContextInitializer. Not an

EAServer bug, this is in Servlet 2.3 spec.

4.8. Oracle AS/OC4J

In order to deploy your project with RichFaces components to an Oracle AS you just have to

prevent the application's class loader from importing the Oracle XML parser. Use the following

notation in orion-application.xml :

...

<imported-shared-libraries>

 <remove-inherited name="oracle.xml"/>

 <remove-inherited name="oracle.xml.security"/>

</imported-shared-libraries>

...

Chapter 5.

27

Basic concepts of the RichFaces

Framework

5.1. Introduction

The framework is implemented as a component library which adds Ajax capability into existing

pages, so you don't need to write any JavaScript code or to replace existing components with new

Ajax widgets. RichFaces enables page-wide Ajax support instead of the traditional component-

wide support. Hence, you can define the event on the page that invokes an Ajax request and

the areas of the page that should be synchronized with the JSF Component Tree after the Ajax

request changes the data on the server according to the events fired on the client.

Next Figure shows how it works:

Chapter 5. Basic concepts of ...

28

Figure 5.1. Request Processing flow

RichFaces allows to define (by means of JSF tags) different parts of a JSF page you wish to

update with an Ajax request and provide a few options to send Ajax requests to the server. Also

JSF page doesn't change from a "regular" JSF page and you don't need to write any JavaScript

or XMLHTTPRequest objects by hands, everything is done automatically.

5.2. RichFaces Architecture Overview

Next figure lists several important elements of the RichFaces framework

RichFaces Architecture Overview

29

Figure 5.2. Core Ajax component structure

Ajax Filter. To get all benefits of RichFaces , you should register a Filter in web.xml file of

your application. The Filter recognizes multiple request types. Necessary information about Filter

configuration can be found in the "Filter configuration" section. The sequence diagram on Figure

3 shows the difference in processing of a "regular" JSF request and an Ajax request.

In the first case the whole JSF tree will be encoded, in the second one option it depends on the

"size" of the Ajax region. As you can see, in the second case the filter parses the content of an

Ajax response before sending it to the client side.

Have a look at the next picture to understand these two ways:

Chapter 5. Basic concepts of ...

30

Figure 5.3. Request Processing sequence diagram

In both cases, the information about required static or dynamic resources that your application

requests is registered in the ResourseBuilder class.

When a request for a resource comes (Figure 4), the RichFaces filter checks the Resource Cache

for this resource and if it is there, the resource is sent to the client. Otherwise, the filter searches for

the resource among those that are registered by the ResourceBuilder. If the resource is registered,

the RichFaces filter will send a request to the ResourceBuilder to create (deliver) the resource.

Next Figure shows the ways of resource request processing.

RichFaces Integral Parts

31

Figure 5.4. Resource request sequence diagram

AJAX Action Components. There are Ajax Action Components: <a4j:commandButton> ,

<a4j:commandLink> , <a4j:poll> and <a4j:support> and etc. You can use them to send Ajax

requests from the client side.

AJAX Containers. AjaxContainer is an interface that describes an area on your JSF page that

should be decoded during an Ajax request. AjaxViewRoot and AjaxRegion are implementations

of this interface.

JavaScript Engine. RichFaces JavaScript Engine runs on the client-side. It knows how to

update different areas on your JSF page based on the information from the Ajax response. Do

not use this JavaScript code directly, as it is available automatically.

5.3. RichFaces Integral Parts

The RichFaces comes with a number of integral parts (framework, libraries):

• Prototype 1.6.0.3 [http://prototypejs.org]

• jQuery 1.3.1 [http://jquery.com]

http://prototypejs.org
http://prototypejs.org
http://jquery.com
http://jquery.com

Chapter 5. Basic concepts of ...

32

• Script.aculo.us 1.8.1 [http://script.aculo.us]

For more information about framework and libraries loading see the following section in the

FAQ [http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/

en/faq/faq.html#d0e581].

Note:

In order to prevent JavaScript versions conflict you should use only one

version of the framework or library. You could find more information about

libraries exclusion in the FAQ [http://www.jboss.org/file-access/default/members/

jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e1546].

5.4. Limitations and Rules

In order to create RichFaces applications properly, keep the following points in mind:

• Any Ajax framework should not append or delete, but only replace elements on the page. For

successful updates, an element with the same ID as in the response must exist on the page.

If you'd like to append any code to a page, put in a placeholder for it (any empty element). For

the same reason, it's recommended to place messages in the "AjaxOutput" component (as

no messages is also a message).

• Don't use <f:verbatim> for self-rendered containers, since this component is transient and

not saved in the tree.

• Ajax requests are made by XMLHTTPRequest functions in XML format, but this XML bypasses

most validations and the corrections that might be made in a browser. Thus, create only a strict

standards-compliant code for HTML and XHTML, without skipping any required elements or

attributes. Any necessary XML corrections are automatically made by the XML filter on the

server, but lot's of unexpected effects can be produced by an incorrect HTML code.

• The RichFaces ViewHandler puts itself in front of the Facelets ViewHandlers chain.

• RichFaces components uses their own renderers. On the Render Response Phase RichFaces

framework makes a traversal of the component tree, calls its own renderer and put the result

into the Faces Response.

5.5. Ajax Request Optimization

5.5.1. Re-Rendering

Ajax attributes are common for Ajax components such as <a4j:support> ,

<a4j:commandButton> , <a4j:jsFunction> , <a4j:poll> , <a4j:push> and so on. Also, most

http://script.aculo.us
http://script.aculo.us
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e581
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e581
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e581
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e1546
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e1546
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#d0e1546

Re-Rendering

33

RichFaces components with built-in Ajax support have these attributes for a similar purpose. Ajax

components attributes help RichFaces to expose its features. Most of the attributes have default

values. Thus, you can start working with RichFaces without knowing the usage of these attribute.

However, their usage allows to tune the required Ajax behavior very smoothly.

"reRender" is a key attribute. The attribute allows to point to area(s) on a page that should be

updated as a response on Ajax interaction. The value of the "reRender" attribute is an id of the

JSF component or an id list.

A simple example is placed below:

...

<a4j:commandButton value="update" reRender="infoBlock"/>

...

<h:panelGrid id="infoBlock">

 ...

</h:panelGrid>

...

The value of "reRender" attribute of the <a4j:commandButton> tag defines which part(s) of your

page is (are) to be updated. In this case, the only part of the page to update is the <h:panelGrid>

tag because its ID value matches to the value of "reRender" attribute. As you see, it's not difficult

to update multiple elements on the page, only list their IDs as the value of "reRender" .

"reRender" uses UIComponent.findComponent() algorithm [http://java.sun.com/javaee/

javaserverfaces/1.2_MR1/docs/api/javax/faces/component/

UIComponent.html#findComponent(java.lang.String)] (with some additional exceptions) to find

the component in the component tree. As can you see, the algorithm presumes several steps.

Each other step is used if the previous step is not successful. Therefore, you can define how fast

the component is found mentioning it more precisely. The following example shows the difference

in approaches (both buttons will work successfully):

...

<h:form id="form1">

 ...

 <a4j: commandButton value="Usual Way" reRender="infoBlock, infoBlock2" />

 <a4j:commandButton value="Shortcut" reRender=":infoBlockl,:sv:infoBlock2" />

 ...

</h:form>

<h:panelGrid id="infoBlock">

 ...

</h:panelGrid>

...

<f:subview id="sv">

http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)
http://java.sun.com/javaee/javaserverfaces/1.2_MR1/docs/api/javax/faces/component/UIComponent.html#findComponent(java.lang.String)

Chapter 5. Basic concepts of ...

34

 <h:panelGrid id="infoBlock2">

 ...

 </h:panelGrid>

 ...

</f:subview>

...

It's also possible to use JSF EL expression as a value of the reRender attribute. It might be a

property of types Set, Collection, Array or simple String. The EL for reRender is resolved right

before the Render Response phase. Hence, you can calculate what should be re-rendered on

any previous phase during the Ajax request processing.

Most common problem with using reRender is pointing it to the component that has a "rendered"

attribute. Note, that JSF does not mark the place in the browser DOM where the outcome of the

component should be placed in case the "rendered" condition returns false. Therefore, after the

component becomes rendered during the Ajax request, RichFaces delivers the rendered code to

the client, but does not update a page, because the place for update is unknown. You need to

point to one of the parent components that has no "rendered" attribute. As an alternative, you

can wrap the component with <a4j:outputPanel> layout="none" .

"ajaxRendered" attribute of the <a4j:outputPanel> set to "true" allows to define the area of the

page that will be re-rendered even if it is not pointed in the reRender attribute explicitly. It might be

useful if you have an area on a page that should be updated as a response on any Ajax request.

For example, the following code allows to output error messages regardless of what Ajax request

causes the Validation phase failed.

...

<a4j:outputPanel ajaxRendered="true">

 <h:messages />

</a4j:outputPanel>

...

"limitToList" attribute allows to dismiss the behavior of the <a4j:outputPanel> "ajaxRendered"

attribute. limitToList = "true" means to update only the area(s) that mentioned in the

"reRender" attribute explicitly. All output panels with ajaxRendered="true" is ignored. An

example is placed below:

...

<h:form>

 <h:inputText value="#{person.name}">

 <a4j:support event="onkeyup" reRender="test" limitToList="true"/>

 </h:inputText>

 <h:outputText value="#{person.name}" id="test"/>

Queue and Traffic Flood Protection

35

</form>

...

5.5.2. Queue and Traffic Flood Protection

"eventsQueue" attribute defines the name of the queue that will be used to order upcoming

Ajax requests. By default, RichFaces does not queue Ajax requests. If events are produced

simultaneously, they will come to the server simultaneously. JSF implementations (especially, the

very first ones) does not guaranty that the request that comes first will be served or passed into

the JSF lifecycle first. The order how the server-side data will be modified in case of simultaneous

request might be unpredictable. Usage of eventsQueue attribute allows to avoid possible mess.

Define the queue name explicitly, if you expect intensive Ajax traffic in your application.

The next request posted in the same queue will wait until the previos one is not processed and

Ajax Response is returned back if the "eventsQueue" attribute is defined. In addition, RichFaces

starts to remove from the queue "similar" requests. "Similar'"requests are the requests produced

by the same event. For example, according to the following code, only the newest request will be

sent to the server if you type very fast and has typed the several characters already before the

previous Ajax Response is back.

...

<h:inputText value="#{userBean.name}">

 <a4j:support event="onkeyup" eventsQueue="foo" reRender="bar" />

</h:inputText>

...

"requestDelay" attribute defines the time (in ms) that the request will be wait in the queue before

it is ready to send. When the delay time is over, the request will be sent to the server or removed

if the newest "similar" request is in a queue already .

"ignoreDupResponses" attribute orders to ignore the Ajax Response produced by the request

if the newest "similar" request is in a queue already. ignoreDupResponses"="true" does not

cancel the request while it is processed on the server, but just allows to avoid unnecessary updates

on the client side if the response loses the actuality.

Defining the "eventsQueue" along with "requestDelay" allows to protect against unnecessary

traffic flood and synchronizes Ajax requests order. If you have several sources of Ajax requests,

you can define the same queue name there. This might be very helpful if you have Ajax

components that invoke request asynchronously from the ones produced by events from users.

For example, <a4j:poll> or <a4j:push> . In case the requests from such components modify

the same data, the synchronization might be very helpful.

More information can be found on the RichFaces Users Forum [http://jboss.com/index.html?

module=bb&op=viewtopic&t=105766] .

http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766
http://jboss.com/index.html?module=bb&op=viewtopic&t=105766

Chapter 5. Basic concepts of ...

36

"timeout" attribute is used for setting response waiting time on a particular request. If a response

is not received during this time, the request is aborted.

5.5.3. Queue Principles

Starting from 3.3.0 version RichFaces has an improved queue.

There are some reasons why the queue has been improved. In previous versions the queue had

quite simple implementation: it sent to the server only the last Ajax request out of all requests

coming in the queue during request delay.

The improved queue allows to

• Eliminate the possibility of collisions when several JSF requests pass the JSF lifecycle at the

same time. The queue prevents sending such requests. Only one request is processed. The

rest ones are waiting.

• Reduce the traffic between browser and the server. The "similar" requests came within request

delay are absorbed. Only the last one is actually sent. Reducing the number of request reduces

the server load.

There are 4 types of the queue:

• Global default queue, defined in the web.xml file

• View scoped default queue

• View scoped named queue

• Form-based default queue

In this section we will take a closer look at the listed above types of the queue and see in more

detail how they differ. Usage details are covered in the <a4j:queue> chapter.

5.5.3.1. Global default queue, defined in the web.xml file

Design details

• Only one global queue will ever exist on a view

If you define more then one with this name while attempting to set its attributes a warning will

appear in server console during rendering. All the same named queues after the first instance

are ignored.

• The queue class name is "org.richfaces.queue.global"

Global default queue has application scope and is defined in the web.xml

It can be done as follows:

...

Queue Principles

37

<context-param>

 <param-name>org.richfaces.queue.global.enabled</param-name>

 <param-value>true</param-value>

</context-param>

...

The global default queue is disabled by default, because artificial serializing of all Ajax requests

on a page can significantly affect expected behavior.

5.5.3.2. View scoped default queue

Design details

• Only one default queue is ever active at one time for a given view or form.

• If ever more are detected a warning will appears in server console during rendering. All the

same named queues after the first instance are ignored.

• View scoped default queue is also created for components which have the following Ajax

attributes: (in this case queue has a component scope)

• "requestDelay"

• "ignoreDupResponce"

• View scoped default queue is created automatically if the "eventsQueue" attribute is defined

with some name in a component but not found in the view. It has a scope the same as defined

in corresponding context param.

The view scoped default, named and formed-based types of queue utilize the <a4j:queue> tag

to override the settings of the global queue defined in the web.xml file.

You can also programmatically enable/disable the global queue on a single view using the

following:

...

<a4j:queue name="org.richfaces.global_queue" disabled="true"... />

...

Hence, to enable the queue for a single view page you need to define the "disable" attribute with

"false".

Now, you can override the default settings using the attributes of the <a4j:queue> component.

The full list of attributes [file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/

en-US/html_single/index.html#d0e10019] is given in the "6.20. <a4j:queue>" chapter of the guide.

Example:

file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019
file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019
file:///C:/Projects/RichFaces/docs/userguide/en/target/docbook/publish/en-US/html_single/index.html#d0e10019

Chapter 5. Basic concepts of ...

38

...

<a4j:queue name="org.richfaces.global_queue" requestDelay="1000" />

...

View scoped queue can be also added by just definition of the queue without name specified.

In this case it should be placed anywhere outside the forms in order not to be recognized as a

form-based queue.

...

<a4j:queue ... />

...

5.5.3.3. View scoped named queue

Design details

• Named queues must have a unique name, if a second queue with the same name is defined

all the same named queues after the first instance are ignored.

• Form elements are used as naming container for the queue i.e. custom queue defined within

the form cannot be used by the components outside this concrete form.

You can reference a named queue from any Ajax4JSF or RichFaces component that supports

the "eventsQueue" attribute. Below there is an example of how the components can reference

a named queue.

Example:

...

<a4j:queue name="sampleQueue"/>

<h:inputText value="#{bean.inputValue}" >

 <a4j:support id="inputSupport" event="onkeyup" eventsQueue="sampleQueue"/>

</h:inputText>

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" eventsQueue="sampleQueue" /

>

...

In this example, two components(<a4j:queue>, <rich:comboBox>,) reference the named

("sampleQueue") queue via the "eventsQueue" attribute.

5.5.3.4. Form based default queue

Design details

Queue Principles

39

• Only one enabled form based default queue can be active at a time.

• A warning appears in server console during rendering if more than one enabled form based

queue exists. All queues with the same name after the first instance should be ignored.

• Users can define more than one form queue, however all but one must be disabled.

Queues are often used within forms, but defining the "eventsQueue" attribute on every component

within a form can be tedious work. To avoid that you can create a default queue for a form

(overriding the global default queue).

You can use either a JSF <h:form> or an Ajax4JSF <a4j:form>.

Example:

...

<h:form ... >

 <a4j:queue ... /><!-- note no name specified -->

 ...

</h:form>

...

Though, using an Ajax4JSF <a4j:form> you can refrence a named queue via the "eventsQueue".

Example:

...

<a4j:form eventsQueue="fooQueue" ...>

 ...

</a4j:form>

...

However the implementation of the queue allows you to reference a named queue from the form

with a form-based queue.

Example:

...

<a4j:queue name="sampleQueue" ... /> <!-- named queue -->

...

<h:form ... >

 <a4j:queue ... /><!-- form-based queue-->

 <a4j:commandButton ... /> <!-- uses the form-based queue -->

 <a4j:commandButton eventsQueue="sampleQueue" /> <!-- uses named queue -->

Chapter 5. Basic concepts of ...

40

</h:form>

...

5.5.3.5. Queue functionality

This section will cover some queue's functionality aspects.

5.5.3.5.1. Events Similarity

By default all the events raised by the same component are similar to the queue (according to

client Id of event source). This means that if new requests come from the same component they

are combined with the previous ones. For example: if we use a4j:support on an input field and

the user types frequently all the request raised by key up during requestDelay will be combined

into one.

You can also manually specify multiple components which will produce similar requests. The

"similarityGroupingId" attribute is added to all the Ajax action components with 3.3.0 release.

Hence, for example, you can add two <a4j:support/> components to the input (one for key up

and the second for blur) and define that request events are similar by specifying the same

"similarityGroupingId".

5.5.3.5.2. Similar requests during request delay

As written above requests are collected in the queue during requestDelay and similar ones are

combined. But similar requests can only be combined if they are raised sequentially. This is done

in order not to block the queue and not to change the requests order.

Example:

A request with some delay comes to the queue, let it be A1 the delay counter for this request is

started. If similar request(e.g. from the same component - A2) appears - these two requests are

combined(A1A2 to Acombined) and the counter is reset.

But if some not similar request comes to the queue B1 - it is placed after the first one(Acombined,B1).

And if the Acombined request doesn't exit the queue and another request similar to A (let is be A3)

appears again - these requests are not combined with the first one. The request is placed after

B1. (Acombined, B1, A3).

Such behavior allows

• to maximize similar requests throughput

• to send only the latest fields state for similar requests

• not to block the queue if the different types of requests comes to queue and should wait one

for another

Data Processing Options

41

The <a4j:poll> component has delay time 0 by default staring from 3.3.0 version in order not

to use the queue delay(its own value for this parameter redefines queue's parameter) to avoid

blocking periodical update in the queue. You can redefine this on the component level if need.

5.5.3.5.3. JavaScript API

Table 5.1. JavaScript API

Function Description

getSize() Returns the current size to the queue

getMaximumSize() Returns the maximum size to the queue,

specified in the "size" attribute

5.5.4. Data Processing Options

RichFaces uses form based approach for Ajax request sending. This means each time, when you

click an Ajax button or <a4j:poll> produces an asynchronous request, the data from the closest

JSF form is submitted with the XMLHTTPRequest object. The form data contains the values from

the form input element and auxiliary information such as state saving data.

When "ajaxSingle" attribute value is "true" , it orders to include only a value of the current

component (along with <f:param> or <a4j:actionparam> values if any) to the request map. In

case of <a4j:support> , it is a value of the parent component. An example is placed below:

...

<h:form>

 <h:inputText value="#{person.name}">

 <a4j:support event="onkeyup" reRender="test" ajaxSingle="true"/>

 </h:inputText>

 <h:inputText value="#{person.middleName}"/>

</form>

...

In this example the request contains only the input component causes the request generation, not

all the components contained on a form, because of ajaxSingle="true" usage.

Note, that ajaxSingle="true" reduces the upcoming traffic, but does not prevent decoding other

input components on the server side. Some JSF components, such as <h:selectOneMenu> do

recognize the missing data in the request map value as a null value and try to pass the validation

process with a failed result. Thus, use <a4j:region> to limit a part of the component tree that will

be processed on the server side when it is required.

"immediate" attribute has the same purpose as any other non-JSF component. The default

"ActionListener" should be executed immediately (i.e. during the Apply Request Values phase

of a request processing lifecycle), rather than waiting until the Invoke Application phase. Using

Chapter 5. Basic concepts of ...

42

immediate="true" is one of the ways to have some data model values updated when other

cannot be updated because of a problem with passing the Validation phase successfully. This

might be important inside the <h:dataTable> like components where using <a4j:region> is

impossible due to the <h:dataTable> component architecture.

"bypassUpdates" attribute allows to bypass the Update Model phase. It might be useful if you need

to check your input against the available validator, but not to update the model with those data.

Note, that an action will be invoked at the end of the Validation phase only if the Validation phase

is passed successfully. The listeners of the Application phase will not be invoked in any case.

5.5.5. Action and Navigation

Ajax component is similar to any other non-Ajax JSF component like <h:commandButton> . It

allows to submit the form. You can use "action" and "actionListener" attributes to invoke the

action method and define the action event.

"action" method must return null if you want to have an Ajax Response with a partual page update.

This is regular mode called "Ajax request generates Non-Ajax Response". In case of action

does not return null, but the action outcome that matches one of navigation rules, RichFaces starts

to work in "Ajax request generates Non-Ajax Response" mode. This mode might be helpful

in two major cases:

• RichFaces allows to organize a page flow inside the <a4j:include> component. This is a typical

scenario for Wizard like behavior. The new content is rendered inside the <a4j:include> area.

The content is taken from the navigation rule of the faces configuration file (usually, the faces-

config.xml). Note, that the content of the "wizard" is not isolated from the rest of the page. The

included page should not have own <f:view> (it does not matter if you use facelets). You need

to have an Ajax component inside the <a4j:include> to navigate between the wizard pages.

Otherwize, the whole page update will be performed.

• If you want to involve the server-side validators and navigate to the next page only if

the Validation phase is passed successfully, you can replace <h:commandButton> with

<a4j:commandButton> and point to the action method that navigates to the next page. If

Validation process fails, the partial page update will occur and you will see an error message.

Otherwize, the application proceeds to the next page. Make sure, you define <redirect/> option

for the navigation rule to avoid memory leaks.

5.5.6. JavaScript Interactions

RichFaces allows writing Ajax-enabled JSF application without writing any Javascript code.

However, you can still invoke the JavaScript code if you need. There are several Ajax attributes

that helps to do it.

"onsubmit" attribute allows to invoke JavaScript code before an Ajax request is sent. If "onsubmit"

returns "false" , the Ajax request is canceled. The code of "onsubmit" is inserted before the

RichFaces Ajax call. Hence, the "onsubmit" should not has a "return" statement if you want

the Ajax request to be sent. If you are going to invoke a JavaScript function that returns "true"

JavaScript Interactions

43

or "false" , use the conditional statement to return something only when you need to cancel the

request. For example:

...

onsubmit="if (mynosendfunct()==false){return false}"

...

"onclick" attribute is similar to the "onsubmit" , but for clickable components such as

<a4j:commandLink> and <a4j:commandButton> . If it returns "false" , the Ajax request is

canceled also.

The "oncomplete" attribute is used for passing JavaScript that would be invoked right after the

Ajax response returns back and DOM is updated. It is not recommended to use use keyword this

inside the EL-expression, because it will not always point to the component where Ajax request

was initiated.

"onbeforedomupdate" attribute defines JavaScript code for call after Ajax response receiving and

before updating DOM on a client side.

"data" attribute allows to get the additional data from the server during an Ajax call. You can use

JSF EL to point the property of the managed bean and its value will be serialized in JSON format

and be available on the client side. You can refer to it using the "data" variable. For example:

...

<a4j:commandButton value="Update" data="#{userBean.name}" oncomplete="showTheName(data.name)" /

>

...

RichFaces allows to serialize not only primitive types into JSON format, but also complex types

including arrays and collections. The beans should be serializable to be refered with "data" .

There is a number of useful functions which can be used in JavaScript:

• rich:clientId('id') - returns client id by short id or null if the component with the id specified

hasn't been found

• rich:element('id') - is a shortcut for

document.getElementById(#{rich:clientId('id')})

• rich:component('id') - is a shortcut for #{rich:clientId('id')}.component

• rich:findComponent('id') - returns an instance of UIComponent taking the short ID of the

component as a parameter.

...

Chapter 5. Basic concepts of ...

44

<h:inputText id="myInput">

 <a4j:support event="onkeyup" reRender="outtext"/>

</h:inputText>

<h:outputText id="outtext" value="#{rich:findComponent('myInput').value}" />

...

5.5.7. Iteration components Ajax attributes

"ajaxKeys" attribute defines strings that are updated after an Ajax request. It provides possibility

to update several child components separately without updating the whole page.

...

<a4j:poll intervall="1000" action="#{repeater.action}" reRender="text">

 <table>

 <tbody>

 <a4j:repeat value="#{bean.props}" var="detail" ajaxKeys="#{repeater.ajaxedRowsSet}">

 <tr>

 <td>

 <h:outputText value="detail.someProperty" id="text"/>

 </td>

 </tr>

 </a4j:repeat>

 </tbody>

 </table>

</a4j:poll>

...

5.5.8. Other useful attributes

"status" attribute for Ajax components (such as <a4j:commandButton> , <a4j:poll> , etc.)

points to an ID of <a4j:status> component. Use this attribute if you want to share <a4j:status>

component between different Ajax components from different regions. The following example

shows it.

...

<a4j:region id="extr">

 <h:form>

 <h:outputText value="Status:" />

 <a4j:status id="commonstatus" startText="In Progress...." stopText=""/>

 <h:panelGrid columns="2">

 <h:outputText value="Name"/>

 <h:inputText id="name" value="#{userBean.name}">

How To...

45

 <a4j:support event="onkeyup" reRender="out" />

 </h:inputText>

 <h:outputText value="Job"/>

 <a4j:region id="intr">

 <h:inputText id="job" value="#{userBean.job}">

 <a4j:support event="onkeyup" reRender="out" status="commonstatus"/>

 </h:inputText>

 </a4j:region>

 </h:panelGrid>

 <a4j:region>

 <h:outputText id="out" value="Name: #{userBean.name}, Job: #{userBean.job}" />

 <a4j:commandButton ajaxSingle="true" value="Clean Up Form" reRender="name, job,

 out" status="commonstatus">

 <a4j:actionparam name="n" value="" assignTo="#{userBean.name}" />

 <a4j:actionparam name="j" value="" assignTo="#{userBean.job}" />

 </a4j:commandButton>

 </a4j:region>

 </h:form>

</a4j:region>

...

In the example <a4j:support> and <a4j:commandButton> are defined in different regions.

Values of "status" attribute for these components points to an ID of <a4j:support> .Thus, the

<a4j:support> component is shared between two components from different regions.

More information could be found on the RichFaces Live Demo [http://livedemo.exadel.com/

richfaces-demo/richfaces/status.jsf?c=status] .

Other useful attribute is "focus" . It points to an ID of a component where focus will be set after

an Ajax request.

5.6. How To...

5.6.1. Send an Ajax request

There are different ways to send Ajax requests from your JSF page. For example you can use

<a4j:commandButton> , <a4j:commandLink> , <a4j:poll> or <a4j:support> tags or any

other.

All these tags hide the usual JavaScript activities that are required for an XMHTTPRequest object

building and an Ajax request sending. Also, they allow you to decide which components of your

JSF page are to be re-rendered as a result of the Ajax response (you can list the IDs of these

components in the "reRender" attribute).

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status

Chapter 5. Basic concepts of ...

46

<a4j:commandButton> and <a4j:commandLink> tags are used to send an Ajax request on

"onclick" JavaScript event.

<a4j:poll> tag is used to send an Ajax request periodically using a timer.

The <a4j:support> tag allows you to add Ajax functionality to standard JSF components and

send Ajax request onto a chosen JavaScript event: "onkeyup" , "onmouseover" , etc.

5.6.2. Decide What to Send

You may describe a region on the page you wish to send to the server, in this way you can control

what part of the JSF View is decoded on the server side when you send an Ajax request.

The easiest way to describe an Ajax region on your JSF page is to do nothing, because the content

between the <f:view> and </f:view> tags is considered the default Ajax region.

You may define multiple Ajax regions on the JSF page (they can even be nested) by using the

<a4j:region> tag.

If you wish to render the content of an Ajax response outside of the active region then the value

of the "renderRegionOnly" attribute should be set to "false" ("false" is default value). Otherwise,

your Ajax updates are limited to elements of the active region.

5.6.3. Decide What to Change

Using IDs in the "reRender" attribute to define "AJAX zones" for update works fine in many cases.

But you can not use this approach if your page contains, e.g. a <f:verbatim> tag and you wish

to update its content on an Ajax response.

The problem with the <f:verbatim/> tag as described above is related to the value of the

transientFlag of JSF components. If the value of this flag is true, the component must not

participate in state saving or restoring of process.

In order to provide a solution to this kind of problems, RichFaces uses the concept of an output

panel that is defined by the <a4j:outputPanel> tag. If you put a <f:verbatim> tag inside of the

output panel, then the content of the <f:verbatim/> tag and content of other panel's child tags

could be updated on Ajax response. There are two ways to control this:

• By setting the "ajaxRendered" attribute value to "true".

• By setting the "reRender" attribute value of an Action Component to the output panel ID.

5.6.4. Decide what to process

The "process" attribute allows to define the ids of components to be processed together with the

component which is marked as ajaxSingle or wrapped to region.

Filter Configuration

47

You could make use of the "process" attribute when you need to process only two components

in the different parts of view.

Imagine you need to process only two input fields but not all the view. If you wrap the first input

to region or make <a4j:support> component with ajaxSingle="true" nested the second input

will not be processed.

Here is a simple solution:

...

<h:inputText value="#{bean.name}" id="name">

 <a4j:support ajaxSingle="true" process="email" event="onblur" reRender="someOut"/>

</h:inputText>

<h:inputTextarea value="#{bean.description}" id="desc" />

<h:inputText value="#{bean.email}" id="email">

 <a4j:support ajaxSingle="true" process="name" event="onblur" reRender="someOut"/>

</h:inputText>

...

In the example above when the input field with the id="name" looses focus, an Ajax request is

sent. So only two input fields (with id="name" and additionally with id="email") are processed:

decoding, conversion/validation, value applying phases are executed. The input field with the

id="email" is handled the same way on blur event.

5.7. Filter Configuration

RichFaces uses a filter for a correction of code received on an Ajax request. In case of a "regular"

JSF request a browser makes correction independently. In case of Ajax request in order to prevent

layout destruction it's needed to use a filter, because a received code could differ from a code

validated by a browser and a browser doesn't make any corrections.

An example of how to set a Filter in a web.xml file of your application is placed below.

Example:

...

<filter>

 <display-name>RichFaces Filter</display-name>

 <filter-name>richfaces</filter-name>

 <filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

...

Chapter 5. Basic concepts of ...

48

Note:

Fast Filter is deprecated and available only for backward compatibility with previous

RichFaces versions. Fast Filter usage isn't recomended, because there is another

way to use its functionality by means of Neko filter type [48] .

From RichFaces 3.2 filter configuration becomes more flexible. It's possible to configure different

filters for different sets of pages for the same application.

The possible filter types are:

• TIDY

"TIDY" filter type based on the Tidy parser. This filter is recommended for applications with

complicated or non-standard markup when all necessary code corrections are made by the filter

when a response comes from the server.

• NEKO

"NEKO" filter type corresponds to the former "Fast Filter" and it's based on the Neko parser. In

case of using this filter code isn't strictly verified. Use this one if you are sure that your application

markup is really strict for this filter. Otherwise it could cause lot's of errors and corrupt a layout as

a result. This filter considerably accelerates all Ajax requests processing.

• NONE

No correction.

An example of configuration is placed below.

Example:

...

<context-param>

 <param-name>org.ajax4jsf.xmlparser.ORDER</param-name>

 <param-value>NONE,NEKO,TIDY</param-value>

</context-param>

<context-param>

 <param-name>org.ajax4jsf.xmlparser.NONE</param-name>

 <param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>

</context-param>

<context-param>

 <param-name>org.ajax4jsf.xmlparser.NEKO</param-name>

 <param-value>/pages/repeat\.xhtml</param-value>

</context-param>

<filter>

Scripts and Styles Load Strategy

49

 <display-name>RichFaces Filter</display-name>

 <filter-name>richfaces</filter-name>

 <filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>

 <filter-name>richfaces</filter-name>

 <servlet-name>Faces Servlet</servlet-name>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

</filter-mapping>

...

The example shows that ORDER parameter defines the order in which particular filter types are

used for pages code correction.

First of all "NONE" type is specified for the filter. Then two different sets of pages are defined for

which two filter types (NONE and NEKO) are used correspondingly. If a page relates to the first

set that is defined in the following way:

<param-value>/pages/performance\.xhtml,/pages/default.*\.xhtml</param-value>

it's not corrected, because filter type for this page is defined as "NONE". If a page is not from the

first set, then "NEKO" type is set.

If a page relates to the second set that is defined in the following way:

<param-value>/pages/repeat\.xhtml</param-value>

then "NEKO" filter type is used for correction. If it's not related to the second set, "TIDY" type is

set for the filter ("TIDY" filter type is used for code correction).

5.8. Scripts and Styles Load Strategy

Before the version 3.1.3, RichFaces loaded styles and script on demand. I.e. files are loaded only

if they are required on a particular page. Since RichFaces 3.1.3, it's possible to manage how the

RichFaces script and style files are loaded to application.

org.richfaces.LoadScriptStrategy

The following declaration in your web.xml allows loading the integrated script files.

...

Chapter 5. Basic concepts of ...

50

<context-param>

 <param-name>org.richfaces.LoadScriptStrategy</param-name>

 <param-value>ALL</param-value>

</context-param>

...

If you do not declare the org.richfaces.LoadScriptStrategy in the web.xml, it equals to:

...

<context-param>

 <param-name>org.richfaces.LoadScriptStrategy</param-name>

 <param-value>DEFAULT</param-value>

</context-param>

...

The third possible value is "NONE". You have no a special reason to use it unless you obtain the

newest (or modified) version of the script and want to include it manually in a page header.

Note:

If you use ALL value of Scripts Load Strategy, the JavaScript files compression

turns off!

org.richfaces.LoadStyleStrategy

The following declaration allows to load only one integrated style sheet file.

...

<context-param>

 <param-name>org.richfaces.LoadStyleStrategy</param-name>

 <param-value>ALL</param-value>

</context-param>

...

The integrated style sheet contains style for all shipped components. The skinnability feature still

works.

The "DEFAULT" value is a classical on-demand variant.

The "NONE" stops loading the styles at all. The earlier introduced plain skin resets all color and

font parameters to null. The "NONE" value for org.richfaces.LoadStyleStrategy means that

predefined styles for RichFaces are not used.

Request Errors and Session Expiration Handling

51

For more information see RichFaces User Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&p=4114033] .

5.9. Request Errors and Session Expiration Handling

RichFaces allows to redefine standard handlers responsible for processing of different exceptional

situations. It helps to define own JavaScript, which is executed when these situations occur.

Add the following code to web.xml:

<context-param>

 <param-name>org.ajax4jsf.handleViewExpiredOnClient</param-name>

 <param-value>true</param-value>

</context-param>

5.9.1. Request Errors Handling

To execute your own code on the client in case of an error during Ajax request, it's necessary to

redefine the standard "A4J.AJAX.onError" method:

 A4J.AJAX.onError = function(req, status, message){

 window.alert("Custom onError handler "+message);

}

The function defined this way accepts as parameters:

• req - a params string of a request that calls an error

• status - the number of an error returned by the server

• message - a default message for the given error

Thus, it's possible to create your own handler that is called on timeouts, internal server errors,

and etc.

5.9.2. Session Expired Handling

It's possible to redefine also the "onExpired" framework method that is called on the "Session

Expiration" event.

Example:

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4114033

Chapter 5. Basic concepts of ...

52

A4J.AJAX.onExpired = function(loc, expiredMsg){

 if(window.confirm("Custom onExpired handler "+expiredMsg+" for a location: "+loc)){

 return loc;

 } else {

 return false;

 }

}

Here the function receives in params:

• loc - URL of the current page (on demand can be updated)

• expiredMsg - a default message on "Session Expiration" event.

Note:

Note that custom "onError", "onExpire" handlers do not work under MyFaces.

MyFaces handles exception by its internals generating debug page. You could use

the following code to prevent such behavior:

...

<context-param>

 <param-name>org.apache.myfaces.ERROR_HANDLING</param-name>

 <param-value>false</param-value>

</context-param>

...

5.10. Skinnability

5.10.1. Why Skinnability

If you have a look at a CSS file in an enterprise application, for example, the one you're working

on now, you'll see how often the same color is noted in it. Standard CSS has no way to define

a particular color abstractly for defining as a panel header color, a background color of an active

pop-up menu item, a separator color, etc. To define common interface styles, you have to copy

the same values over and over again and the more interface elements you have the more copy-

and-paste activity that needs to be performed.

Hence, if you want to change the application palette, you have to change all interrelating values,

otherwise your interface can appear a bit clumsy. The chances of such an interface coming

about is very high, as CSS editing usually becomes the duty of a general developer who doesn't

necessarily have much knowledge of user interface design.

Using Skinnability

53

Moreover, if a customer wishes to have an interface look-and-feel that can be adjusted on-the-fly

by an end user, your work is multiplied, as you have to deal with several CSS files variants, each

of which contains the same values repeated numerous times.

These problems can be solved with the skinnability system built into the RichFaces project and

implemented fully in RichFaces. Every named skin has some skin-parameters for the definition of

a palette and the other parameters of the user interface. By changing just a few parameters, you

can alter the appearance of dozens of components in an application in a synchronized fashion

without messing up user interface consistency.

The skinnability feature can't completely replace standard CSS and certainly doesn't eliminate

its usage. Skinnability is a high-level extension of standard CSS, which can be used together

with regular CSS declarations. You can also refer to skin parameters in CSS via JSF Expression

Language. You have the complete ability to synchronize the appearance of all the elements in

your pages.

5.10.2. Using Skinnability

RichFaces skinnability is designed for mixed usage with:

• Skin parameters defined in the RichFaces framework

• Predefined CSS classes for components

• User style classes

The color scheme of the component can be applied to its elements using any of three style classes:

• A default style class inserted into the framework

This contains style parameters linked to some constants from a skin. It is defined for every

component and specifies a default representation level. Thus, an application interface could be

modified by changing the values of skin parameters.

• A style class of skin extension

This class name is defined for every component element and inserted into the framework to

allow defining a class with the same name into its CSS files. Hence, the appearance of all

components that use this class is extended.

• User style class

It's possible to use one of the styleClass parameters for component elements and define your

own class in it. As a result, the appearance of one particular component is changed according

to a CSS style parameter specified in the class.

5.10.3. Example

Here is a simple panel component:

Chapter 5. Basic concepts of ...

54

Example:

<rich:panel> ... </rich:panel>

The code generates a panel component on a page, which consists of two elements: a wrapper

<div> element and a <div> element for the panel body with the particular style properties. The

wrapper <div> element looks like:

Example:

<div class="dr-pnl rich-panel">

 ...

</div>

dr-pnl is a CSS class specified in the framework via skin parameters:

• background-color is defined with generalBackgroundColor

• border-color is defined with panelBorderColor

It's possible to change all colors for all panels on all pages by changing these skin parameters.

However, if a <rich:panel> class is specified somewhere on the page, its parameters are also

acquired by all panels on this page.

A developer may also change the style properties for a particular panel. The following definition:

Example:

<rich:panel styleClass="customClass" />

Could add some style properties from customClass to one particular panel, as a result we get

three styles:

Example:

<div class="dr_pnl rich-panel customClass">

 ...

</div>

Skin Parameters Tables in RichFaces

55

5.10.4. Skin Parameters Tables in RichFaces

RichFaces provides eight predefined skin parameters (skins) at the simplest level of common

customization:

• DEFAULT

• plain

• emeraldTown

• blueSky

• wine

• japanCherry

• ruby

• classic

• deepMarine

To plug one in, it's necessary to specify a skin name in the org.richfaces.SKIN context-param.

Here is an example of a table with values for one of the main skins, "blueSky" .

Table 5.2. Colors

Parameter name Default value

headerBackgroundColor #BED6F8

headerGradientColor #F2F7FF

headTextColor #000000

headerWeightFont bold

generalBackgroundColor #FFFFFF

generalTextColor #000000

generalSizeFont 11px

generalFamilyFont Arial, Verdana, sans-serif

controlTextColor #000000

controlBackgroundColor #ffffff

additionalBackgroundColor #ECF4FE

shadowBackgroundColor #000000

shadowOpacity 1

panelBorderColor #BED6F8

subBorderColor #ffffff

Chapter 5. Basic concepts of ...

56

Parameter name Default value

tabBackgroundColor #C6DEFF

tabDisabledTextColor #8DB7F3

trimColor #D6E6FB

tipBackgroundColor #FAE6B0

tipBorderColor #E5973E

selectControlColor #E79A00

generalLinkColor #0078D0

hoverLinkColor #0090FF

visitedLinkColor #0090FF

Table 5.3. Fonts

Parameter name Default value

headerSizeFont 11px

headerFamilyFont Arial, Verdana, sans-serif

tabSizeFont 11px

tabFamilyFont Arial, Verdana, sans-serif

buttonSizeFont 11px

buttonFamilyFont Arial, Verdana, sans-serif

tableBackgroundColor #FFFFFF

tableFooterBackgroundColor #cccccc

tableSubfooterBackgroundColor #f1f1f1

tableBorderColor #C0C0C0

Skin "plain" was added from 3.0.2 version. It doesn't have any parameters. It's necessary for

embedding RichFaces components into existing projecst which have its own styles.

To get detailed information on particular parameter possibilities, see the chapter where each

component has skin parameters described corresponding to its elements.

5.10.5. Creating and Using Your Own Skin File

In order to create your own skin file, do the following:

• Create a file and define in it skin constants which are used by style classes (see section

"Skin Parameters Tables in RichFaces"). The name of skin file should correspond to the

following format: <name>.skin.properties . As an example of such file you can see RichFaces

predefined skin parameters (skins): blueSky, classic, deepMarine, etc. These files are located

in the richfaces-impl-xxxxx.jar inside the /META-INF/skins folder.

Built-in Skinnability in RichFaces

57

• Add a skin definition <contex-param> to the web.xml of your application. An example is placed

below:

Example:

...

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>name</param-value>

</context-param>

...

• Put your <name>.skin.properties file in one of the following classpath elements: META-INF/

skins/ or classpath folder (e.g. WEB-INF/classes).

5.10.6. Built-in Skinnability in RichFaces

RichFaces gives an opportunity to incorporate skinnability into UI design. With this framework

you can easily use named skin parameters in properties files to control the appearance of the

skins that are applied consistently to a whole set of components. You can look at examples of

predefined skins at:

http://livedemo.exadel.com/richfaces-demo/ [http://livedemo.exadel.com/richfaces-demo/]

You may simply control the look-and-feel of your application by using the skinnability service of the

RichFaces framework. With the means of this service you can define the same style for rendering

standard JSF components and custom JSF components built with the help of RichFaces.

To find out more on skinnability possibilities, follow these steps:

• Create a custom render kit and register it in the faces-config.xml like this:

<render-kit>

 <render-kit-id>NEW_SKIN</render-kit-id>

 <render-kit-class>org.ajax4jsf.framework.renderer.ChameleonRenderKitImpl</render-kit-

class>

</render-kit>

• Then you need to create and register custom renderers for the component based on the look-

and-feel predefined variables:

<renderer>

http://livedemo.exadel.com/richfaces-demo/
http://livedemo.exadel.com/richfaces-demo/

Chapter 5. Basic concepts of ...

58

 <component-family>javax.faces.Command</component-family>

 <renderer-type>javax.faces.Link</renderer-type>

 <renderer-class>newskin.HtmlCommandLinkRenderer</renderer-class>

</renderer>

• Finally, you need to place a properties file with skin parameters into the class path root. There

are two requirements for the properties file:

• The file must be named <skinName>.skin.properties , in this case, it would be called

newskin.skin.properties .

• The first line in this file should be render.kit=<render-kit-id> in this case, it would be

called render.kit=NEW_SKIN .

Extra information on custom renderers creation can be found at:

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html [http://java.sun.com/

javaee/javaserverfaces/reference/docs/index.html]

5.10.7. Changing skin in runtime

It's possible to change skins in runtime. In order to do that, define the EL-expression in the

web.xml. For example:

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>#{skinBean.skin}</param-value>

</context-param>

The skinBean code looks as follows:

public class SkinBean {

 private String skin;

 public String getSkin() {

 return skin;

 }

 public void setSkin(String skin) {

 this.skin = skin;

 }

}

http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html
http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html
http://java.sun.com/javaee/javaserverfaces/reference/docs/index.html

Changing skin in runtime

59

Further, it is necessary to set the skin property to the initial value in the configuration file. For

example, "classic":

<managed-bean>

 <managed-bean-name>skinBean</managed-bean-name>

 <managed-bean-class>SkinBean</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>skin</property-name>

 <value>classic</value>

 </managed-property>

</managed-bean>

You can also change the default skin, for instance, change the default color. To do this, edit the

file properties of the skin. Here is an example of the code for page:

<h:form>

 <div style="display: block; float: left">

 <h:selectOneRadio value="#{skinBean.skin}" border="0" layout="pageDirection" title="Changing

 skin" style="font-size: 8; font-family: comic" onchange="submit()">

 <f:selectItem itemLabel="plain" itemValue="plain" />

 <f:selectItem itemLabel="emeraldTown" itemValue="emeraldTown" />

 <f:selectItem itemLabel="blueSky" itemValue="blueSky" />

 <f:selectItem itemLabel="wine" itemValue="wine" />

 <f:selectItem itemLabel="japanCherry" itemValue="japanCherry" />

 <f:selectItem itemLabel="ruby" itemValue="ruby" />

 <f:selectItem itemLabel="classic" itemValue="classic" />

 <f:selectItem itemLabel="laguna" itemValue="laguna" />

 <f:selectItem itemLabel="deepMarine" itemValue="deepMarine" />

 <f:selectItem itemLabel="blueSky Modified" itemValue="blueSkyModify" />

 </h:selectOneRadio>

 </div>

 <div style="display: block; float: left">

 <rich:panelBar height="100" width="200">

 <rich:panelBarItem label="Item 1" style="font-family: monospace; font-size: 12;">

 Changing skin in runtime

 </rich:panelBarItem>

 <rich:panelBarItem label="Item 2" style="font-family: monospace; font-size: 12;">

 This is a result of the modification "blueSky" skin

Chapter 5. Basic concepts of ...

60

 </rich:panelBarItem>

 </rich:panelBar>

 </div>

</h:form>

This is result:

Figure 5.5. Changing skin in runtime

5.10.8. Standard Controls Skinning

The feature is designed to unify the look and feel of standard HTML element and RichFaces

components. Skinning can be applied to all controls on a page basing on elements' name and

attribute type (where applicable). Also this feature provides a set of CSS styles so that skinning

can be applied assigning rich-* classes to particular elements or to container of elements that

nests controls.

Standard controls skinning feature provides 2 levels of skinning: Standard and Extended. The level

is based on detecting the browser type. If browser type is not identified, Advanced level is used.

However, if you want to explicitly specify the level of skinning you want to be applied, you need

to add a context parameter to your web.xml with org.richfaces.CONTROL_SKINNING_LEVEL as

the parameter name and value set to either basic or extended.

• Standard level provides customization for only basic style properties.

To the following browsers Standard level of skinning is applied:

• Internet Explorer 6

• Internet Explorer 7 in BackCompat mode (see document.compatMode property in MSDN

[http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx])

• Opera

http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms533687(VS.85).aspx

Standard Controls Skinning

61

• Safari

• Extended level extends basic level introducing broader number of style properties and is applied

to browsers with rich visual styling capability of controls

The following browsers support Extended level of skinning:

• Mozilla Firefox

• Internet Explorer 7 in Standards-compliant mode (CSS1Compat mode)

These are the elements that affected by skinning:

• input

• select

• textarea

• keygen

• isindex

• legend

• fieldset

• hr

• a (together with a:hover, a:visited "pseudo"-elements)

Skinning for standard HTML controls can be initialized in two ways:

• by adding org.richfaces.CONTROL_SKINNING parameter to web.xml. Values: "enable" and

"disable". This way implies that skinning style properties are applied to elements by element

name and attribute type (where applicable). No additional steps required. Please find below the

table that contains the list of elements to which skinning is applicable.

• by adding org.richfaces.CONTROL_SKINNING_CLASSES parameter to web.xml file. Possible

values "enable" and "disable". When this option is enabled you are provided with a set of

predefined CSS classes that you can use for skinning your HTML components.

By setting org.richfaces.CONTROL_SKINNING_CLASSES to "enable" you are provided with style

classes applicable to:

• Basic elements nested inside element having rich-container class, e.g.:

Example:

Chapter 5. Basic concepts of ...

62

...

.rich-container select {

 //class content

}

...

• Elements that have class name corresponding to one of the basic elements name/type mapped

by the following scheme rich-<elementName>[-<elementType>] . See the example:

Example:

...

.rich-select {

 //class content

}

.rich-input-text {

 //class content

}

...

Note:

Elements have classes based on "link" and pseudo class name, e.g.: rich-link,

rich-link-hover, rich-link-visited

Additionally, the predefined rich CSS classes that we provide can be used not only as classes for

basic HTML elements but also as classes for creation of complex elements .

There is a snippet with some of them for example:

...

<u:selector name=".rich-box-bgcolor-header">

 <u:style name="background-color" skin="headerBackgroundColor" />

</u:selector>

<u:selector name=".rich-box-bgcolor-general">

 <u:style name="background-color" skin="generalBackgroundColor" />

</u:selector>

...

Standard Controls Skinning

63

//gradient elements

...

<u:selector name=".rich-gradient-menu">

 <u:style name="background-image">

 <f:resource f:key="org.richfaces.renderkit.html.gradientimages.MenuGradientImage"/>

 </u:style>

 <u:style name="background-repeat" value="repeat-x" />

</u:selector>

<u:selector name=".rich-gradient-tab">

 <u:style name="background-image">

 <f:resource f:key="org.richfaces.renderkit.html.gradientimages.TabGradientImage"/>

 </u:style>

 <u:style name="background-repeat" value="repeat-x" />

</u:selector>

...

To get a better idea of standard component skinning we recommend to explore CSS files located

in ui/core/src/main/resources/org/richfaces/ folder of RichFaces svn.

5.10.8.1. Standard level

Table 5.4. Html Elements Skin Bindings for input, select, textarea, button,

keygen, isindex, legend

CSS Properties Skin parameters

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

Table 5.5. Html Elements Skin Bindings for fieldset

CSS Properties Skin parameters

border-color panelBorderColor

Table 5.6. Html Elements Skin Bindings for hr

CSS Properties Skin parameters

border-color panelBorderColor

Table 5.7. Html Elements Skin Bindings for a

CSS Properties Skin parameters

color generalLinkColor

Chapter 5. Basic concepts of ...

64

Table 5.8. Html Elements Skin Bindings for a:hover

CSS Properties Skin parameters

color hoverLinkColorgeneralLinkColor

Table 5.9. Html Elements Skin Bindings for a:visited

CSS Properties Skin parameters

color visitedLinkColor

Table 5.10. Rich Elements Skin Bindings for .rich-input, .rich-select, .rich-

textarea, .rich-keygen, .rich-isindex, .rich-link

CSS Properties Skin parameters

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

Table 5.11. Rich Elements Skin Bindings for .rich-fieldset

CSS Properties Skin parameters

border-color panelBorderColor

Table 5.12. Rich Elements Skin Bindings for .rich-hr

CSS Properties Skin parameters/Value

border-color panelBorderColor

border-width 1px

border-style solid

Table 5.13. Rich Elements Skin Bindings for .rich-link

CSS Properties Skin parameters

color generalLinkColor

Table 5.14. Rich Elements Skin Bindings for .rich-link:hover

CSS Properties Skin parameters

color hoverLinkColor

Table 5.15. Rich Elements Skin Bindings for .rich-link:visited

CSS Properties Skin parameters

color visitedLinkColor

Standard Controls Skinning

65

Table 5.16. Rich Elements Skin Bindings for .rich-field

CSS Properties Skin parameters/Value

border-width 1px

border-style inset

border-color panelBorderColor

background-color controlBackgroundColor

background-repeat no-repeat

background-position 1px 1px

Table 5.17. Rich Elements Skin Bindings for .rich-field-edit

CSS Properties Skin parameters/Value

border-width 1px

border-style inset

border-color panelBorderColor

background-color editBackgroundColor

Table 5.18. Rich Elements Skin Bindings for .rich-field-error

CSS Properties Skin parameter/Value

border-width 1px

border-style inset

border-color panelBorderColor

background-color warningBackgroundColor

background-repeat no-repeat

background-position center left

padding-left 7px

Table 5.19. Rich Elements Skin Bindings for .rich-button, .rich-button-

disabled, .rich-button-over

CSS Properties Skin parameter/Value

border-width 1px

border-style solid

border-color panelBorderColor

background-color trimColor

padding 2px 10px 2px 10px

text-align center

Chapter 5. Basic concepts of ...

66

CSS Properties Skin parameter/Value

cursor pointer

background-repeat repeat-x

background-position top left

Table 5.20. Rich Elements Skin Bindings for .rich-button-press

CSS Properties Skin parameter/Value

background-position bottom left

Table 5.21. Rich Elements Skin Bindings for .rich-container fieldset, .rich-

fieldset

CSS Properties Skin parameters/Value

border-color panelBorderColor

border-width 1px

border-style solid

padding 10px

padding 10px

Table 5.22. Rich Elements Skin Bindings for .rich-legend

CSS Properties Skin parameter/Value

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

font-weight bold

Table 5.23. Rich Elements Skin Bindings for .rich-form

CSS Properties Skin parameters/Value

padding 0px

margin 0px

5.10.8.2. Extended level

Table 5.24. Html Elements Skin Bindings for input, select, textarea, button,

keygen, isindex

CSS properties Skin parameters/Value

border-width 1px

Standard Controls Skinning

67

CSS properties Skin parameters/Value

border-color panelBorderColor

color controlTextColor

Table 5.25. Html Elements Skin Bindings for *|button

CSS properties Skin parameters

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color headerTextColor

background-color headerBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonBackgroundImage

Table 5.26. Html Elements Skin Bindings

for button[type=button], button[type=reset], button[type=submit],

input[type=reset], input[type=submit], input[type=button]

CSS properties Skin parameters

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color headerTextColor

background-color headerBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonBackgroundImage

Table 5.27. Html Elements Skin Bindings for *|button[disabled], .rich-

container *|button[disabled], .rich-button-disabled

CSS properties Skin parameters

color tabDisabledTextColor

border-color tableFooterBackgroundColor

background-color tableFooterBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonDisabledBackgroundImage

Table 5.28. Html Elements Skin Bindings for .rich-button-

disabled, .rich-container button[type="button"][disabled], .rich-button-

button-disabled, .rich-container button[type="reset"][disabled], .rich-

button-reset-disabled, .rich-container button[type="submit"]

Chapter 5. Basic concepts of ...

68

[disabled], .rich-button-submit-disabled, .rich-container input[type="reset"]

[disabled], .rich-input-reset-disabled, .rich-container input[type="submit"]

[disabled], .rich-input-submit-disabled, .rich-container

input[type="button"][disabled], .rich-input-button-disabled

CSS properties Skin parameters

color tabDisabledTextColor

background-color tableFooterBackgroundColor

border-color tableFooterBackgroundColor

background-image org.richfaces.renderkit.html.images.ButtonDisabledBackgroundImage

Table 5.29. Html Elements Skin Bindings for *button[type="button"]

[disabled], button[type="reset"][disabled], button[type="submit"]

[disabled], input[type="reset"][disabled], input[type="submit"][disabled],

input[type="button"][disabled]

CSS properties Skin parameters

color tabDisabledTextColor

border-color tableFooterBackgroundColor

background-color tableFooterBackgroundColor

Table 5.30. Html Elements Skin Bindings for *|textarea

CSS properties Skin parameters

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

background-color controlBackgroundColor

background-image org.richfaces.renderkit.html.images.InputBackgroundImage

Table 5.31. Html Elements Skin Bindings for textarea[type=textarea],

input[type=text], input[type=password], select

CSS properties Skin parameters

border-color panelBorderColor

font-size generalSizeFont

font-family generalFamilyFont

color controlTextColor

Standard Controls Skinning

69

CSS properties Skin parameters

background-color controlBackgroundColor

background-image org.richfaces.renderkit.html.images.InputBackgroundImage

Table 5.32. Html Elements Skin Bindings for *|textarea[disabled], .rich-

container *|textarea[disabled]

CSS properties Skin parameters

color tableBorderColor

Table 5.33. textarea[type="textarea"][disabled], input[type="text"]

[disabled], input[type="password"][disabled]

CSS properties Skin parameters

color tableBorderColor

Table 5.34. textarea[type="textarea"][disabled], input[type="text"]

[disabled], input[type="password"][disabled]

CSS properties Skin parameters

color tableBorderColor

Note:

Standard skinning level can fail if configuration of ajaxPortlet is as following:

...

<portlet>

 <portlet-name>ajaxPortlet</portlet-name>

 <header-content>

 <script src="/faces/rfRes/org/ajax4jsf/framework.pack.js" type="text/

javascript" />

 <script src="/faces/rfRes/org/richfaces/ui.pack.js" type="text/javascript" />

 <link rel="stylesheet" type="text/css" href="/faces/rfRes/org/richfaces/

skin.xcss" />

 </header-content>

</portlet>

...

Attention. The <a4j:portlet> component is DEPRECATED as far as JSR-301

[http://jcp.org/en/jsr/detail?id=301] was defined the same functionality for a

http://jcp.org/en/jsr/detail?id=301
http://jcp.org/en/jsr/detail?id=301

Chapter 5. Basic concepts of ...

70

UIViewRoot component. Thus, it is implicitly defined by mandatory <f:view>

component.

5.10.9. Client-side Script for Extended Skinning Support

As it was mentioned earlier in the guide, extended skinning of standard HTML controls is applied

automatically: the browser type is detected and if a browser doesn't fully support extended skinning

feature, only basic skinning is applied.

However, if you don't want the RichFaces components and standard HTML controls to be skinned

automatically and perform the skinnability implementation yourself, you might encounter with a

problem, namely standard HTML controls in such browsers as Opera and Safari will be affected by

standard controls skinning. (In this section you can get more details on how to disable skinnability.)

In brief, to disable the skinnability mechanism of RichFaces you need to set the

"org.richfaces.LoadStyleStrategy" parameter to "NONE" in the web.xml file.

...

<context-param>

 <param-name>org.richfaces.LoadStyleStrategy</param-name>

 <param-value>NONE</param-value>

</context-param>

...

Additionally, you should include the style sheets that perform skinning of the RichFaces

component and standard HTML controls.

In order to resolve the problem with extended skinning in Opera and Safari a client script

(skinning.js) is added to the RichFaces library. The script detects the browser type and enables

extended skinning only for those browsers that fully support it.

The script can be activated by inserting this JavaScript code to the page:

<script type="text/javascript">

 window.RICH_FACES_EXTENDED_SKINNING_ON = true;

</script>

When NO script loading strategy is used and extended skinning is turned on then corresponding

warning message will appears in the console.

You also need to specify "media" attribute in the <link> tag which includes the

"extended_both.xcss" style sheet with "rich-extended-skinning".

XCSS File Format

71

This is how you can include the style sheets to the page, in case automatic skinnability

implementation is disabled.

<link href='/YOUR_PROJECT_NAME/a4j_3_2_2-SNAPSHOTorg/richfaces/renderkit/html/css/

basic_both.xcss/DATB/eAF7sqpgb-jyGdIAFrMEaw__.jsf' type='text/

css' rel='stylesheet' class='component' />

<link media='rich-extended-skinning' href='/ YOUR_PROJECT_NAME /a4j_3_2_2-

SNAPSHOTorg/richfaces/renderkit/html/css/extended_both.xcss/DATB/eAF7sqpgb-

jyGdIAFrMEaw__.jsf' type='text/css' rel='stylesheet' class='component' />

<link href='/ YOUR_PROJECT_NAME /a4j_3_2_2-SNAPSHOT/org/richfaces/skin.xcss/DATB/

eAF7sqpgb-jyGdIAFrMEaw__.jsf' type='text/css' rel='stylesheet' class='component' />

Note

Now it's necessary to use a4j/versionXXX resources prefix instead of

a4j_versionXXX. Base64 encoder changed to use '!' instead of '.'.

5.10.10. XCSS File Format

XCSS files are the core of RichFaces components skinnability.

XCSS is an XML formatted CSS that adds extra functionality to the skinning process. XCSS

extends skinning possibilities by parsing the XCSS file that contains all look-and-feel parameters

of a particular component into a standard CSS file that a web browser can recognize.

XCSS file contains CSS properties and skin parameters mappings. Mapping of a CSS selector

to a skin parameter is performed using < u:selector > and < u:style> XML tags that form the

mapping structure. Please study the example below.

...

<u:selector name=".rich-component-name">

 <u:style name="background-color" skin="additionalBackgroundColor" />

 <u:style name="border-color" skin="tableBorderColor" />

 <u:style name="border-width" skin="tableBorderWidth" />

 <u:style name="border-style" value="solid" />

</u:selector>

...

During processing the code in the shown example is parsed into a standard CSS format.

...

Chapter 5. Basic concepts of ...

72

.rich-component-name {

 background-color: additionalBackgroundColor; /*the value of the constant defined by your skin*/

 border-color: tableBorderColor; /*the value of the constant defined by your skin*/

 border-width: tableBorderWidth; /*the value of the constant defined by your skin*/

 border-style: solid;

}

...

The "name" attribute of <u:selector> tag defines the CSS selector, while "name" attribute of

the <u:style> tag defines what skin constant is mapped to a CSS property. The "value" attribute

of the <u:style> tag can also be used to assign a value to a CSS property.

CSS selectors with identical skinning properties can be set as a comma separated list.

...

<u:selector name=".rich-ordering-control-disabled, .rich-ordering-control-top, .rich-ordering-

control-bottom, .rich-ordering-control-up, .rich-ordering-control-down">

 <u:style name="border-color" skin="tableBorderColor" />

</u:selector>

...

5.10.11. Plug-n-Skin

Plug-n-Skin is a feature that gives you an opportunity to easily create, customize and plug into

your project a custom skin. The skin can be created basing on parameters of some predefined

RichFaces skin.

The feature also provides an option to unify the appearance of rich controls with standard HTML

elements.

In order to create your own skin using Plug-n-Skin feature, you can follow these step by step

instructions.

First of all, you need to create a template for the new skin. Creation of the template can

be performed using Maven build and deployment tool. More information on how to configure

Maven for RichFaces you can find out from JBoss wiki article [http://wiki.jboss.org/wiki/

HowToConfigureMavenForRichFaces] . You can copy and paste these Maven instructions to

command line and execute them.

...

mvn archetype:create -DarchetypeGroupId=org.richfaces.cdk -DarchetypeArtifactId=maven-

archetype-plug-n-skin -DarchetypeVersion=RF-VERSION -DartifactId=ARTIFACT-ID -

DgroupId=GROUP-ID -Dversion=VERSION

http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces
http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces
http://wiki.jboss.org/wiki/HowToConfigureMavenForRichFaces

Plug-n-Skin

73

...

Primary keys for the command:

• archetypeVersion indicates the RichFaces version. For example, "3.3.2-SNAPSHOT"

• artifactId artifact id of the project

• groupId group id of the project

• version the version of the project you create, by default it is "1.0.-SNAPSHOT"

After this operation, a folder with the name of your "ARTIFACT-ID" appears. The folder contains

a template of Maven project.

Next steps will guide you though creating of the skin itself.

In the root folder of Maven project (the one that contains "pom.xml" file) you should run the

following command in the command line:

...

mvn cdk:add-skin -Dname=SKIN-NAME -Dpackage=SKIN-PACKAGE

...

Primary keys for the command:

• name defines the name of the new skin

• package base package of the skin. By default "groupId" of the project is used.

Additional optional keys for the command:

• baseSkin defines the name of the base skin.

• createExt if set to "true", extended CSS classes are added. For more information, please, see

"Standard controls skinning"

As a result of the performed operations the following files and folders are created:

• BaseImage.java - the base class to store images. Location: "\src\main\java\SKIN-PACKAGE

\SKIN-NAME\images\"

Chapter 5. Basic concepts of ...

74

• BaseImageTest.java - a test version of a class that stores images. Location: "\src\test\java

\SKIN-PACKAGE\SKIN-NAME\images\"

• XCSS files - XCSS files define the new look of RichFaces components affected by the new skin.

Location: "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\"

• SKIN-NAME.properties - a file that contains properties of the new skin. Location: "\src\main

\resources\SKIN-PACKAGE\SKIN-NAME\css\"

The following properties are used to configure the SKIN-NAME.properties file:

• baseSkin – the name of the base skin to be used as basis. The look of the skin you define

will be affected by new style properties.

• generalStyleSheet - a path to the style sheet (SKIN-NAME.xcss) that imports style sheets of

the components to be affected by the new skin.

• extendedStyleSheet - a path to a style sheet that is used to unify the appearance of RichFaces

components and standard HTML controls. For additional information please read "Standard

controls skinning" chapter.

• gradientType - a predefined property to set the type of gradient applied to the new skin.

Possible values are glass, plastic, plain. More information on gradient implementation you

can find further in this chapter.

• SKIN-NAME.xcss - a XCSS file that imports XCSS files of the components to be affected by

the new skin. Location: "src\main\resources\META-INF\skins "

• XCSS files If the command is executed with the "DcreateExt" key set to "true", the XCSS

(extended_classes.xcss and extended.xcss) files that define style for standard controls will be

created. Location: "\src\main\resources\SKIN-PACKAGE\SKIN-NAME\css\".

• SKIN-NAME-ext.xcss If the command is executed with the "DcreateExt" key set to "true", the

configuration SKIN-NAME-ext.xcss file that imports XCSS file defining styles for the standard

controls will be created. Location: "src\main\resources\META-INF\skins ".

• SKIN-NAME-resources.xml - the file contains the description of all listed above files. Location:

"src\main\config\resources ".

Now you can start editing the XCSS files located in "\src\main\resources\SKIN-PACKAGE\SKIN-

NAME\css\". New style properties can be assigned to the selectors (the selectors listed in the

XCSS files) in two ways, which are both valid, and it'up to you what way to choose.

• Standard CSS coding approach, i.e. you can add CSS properties to the given selectors. The

only thing, you have to keep in mind is that the selectors must be inside <f:verbatim> <!

[CDATA[...]]> </f:verbatim> tags.

For example

Plug-n-Skin

75

...

.rich-calendar-cell {

 background: #537df8;

}

...

• Using XCSS coding approach, the same way as XCSS files are normally formed in RichFaces.

The XCSS tags have to be placed outside <f:verbatim> <![CDATA[...]]> </f:verbatim>

tags.

...

<u:selector name=".rich-calendar-cell">

 <u:style name="border-bottom-color" skin="panelBorderColor"/>

 <u:style name="border-right-color" skin="panelBorderColor"/>

 <u:style name="background-color" skin="tableBackgroundColor"/>

 <u:style name="font-size" skin="generalSizeFont"/>

 <u:style name="font-family" skin="generalFamilyFont"/>

</u:selector>

...

Having performed described above steps and edited the XCSS files you can proceed to building

the new skin and to plugging it into the project. Building the new skin can be done by executing

the given below command in the command line in the root folder of you skin project (the one that

contains pom.xml file).

...

mvn clean install

...

In addition Plug-n-Skin has a number of predefined gradients that you can also use to make your

application look nicer. The given below code snippet shows how a gradient can be used

...

<u:selector name=".rich-combobox-item-selected">

 <u:style name="border-width" value="1px" />

 <u:style name="border-style" value="solid" />

 <u:style name="border-color" skin="newBorder" />

 <u:style name="background-position" value="0% 50%" />

 <u:style name="background-image">

Chapter 5. Basic concepts of ...

76

 <f:resource f:key="org.richfaces.renderkit.html.CustomizeableGradient">

 <f:attribute name="valign" value="middle" />

 <f:attribute name="gradientHeight" value="17px" />

 <f:attribute name="baseColor" skin="headerBackgroundColor" />

 </f:resource>

 </u:style>

</u:selector>

...

So, as you can see, the background-image CSS property is defined with <f:resource

f:key="org.richfaces.renderkit.html.CustomizeableGradient"> that sets the gradient.

While the gradient type can be specified in the SKIN-NAME.properties file with gradientType

property. The gradientType property can be set to one of the possible values glass, plastic, plain.

The gradient in it's turn can be can be adjusted using baseColor, gradientColor, gradientHeight,

valign attributes. Their usage is shown in the snippet above.

Now, you can use your newly-created and customized skin in your project by adding your new

skin parameters to web.xml file and placing the jar file with your skin (the jar file is located in

"target" folder of your skin project) to "\WebContent\WEB-INF\lib\".

...

<context-param>

 <param-name>org.ajax4jsf.SKIN</param-name>

 <param-value>SKIN-NAME</param-value>

</context-param>

...

5.10.11.1. Details of Usage

This section will cover some practical aspects of Plug-n-Skin implementation. It's assumed that

you have read the section of the guide that tells how the new skin using Plug-n-Skin prototype

can be created.

Above all, we need to create a new skin, in order to do that we just have to follow the steps

described in the previous section.

This command will be used to create a template of the new skin project.

mvn archetype:create -DarchetypeGroupId=org.richfaces.cdk -DarchetypeArtifactId=maven-

archetype-plug-n-skin -DarchetypeVersion=3.3.2-SNAPSHOT -DartifactId=P-n-S -

DgroupId=GROUPID -Dversion=1.0.-SNAPSHOT

Plug-n-Skin

77

Now you can browse the "P-n-S" folder to view what files and folders were created there.

Next, we will use Maven to add all needed files to the skin project. This will done by the following

command:

mvn cdk:add-skin -DbaseSkin=blueSky -DcreateExt=true -Dname=PlugnSkinDemo -

Dpackage=SKINPACKAGE

As you remember from the previous section "-DbaseSkin" key defines what RichFaces built-in

skin to be used as a base one, "-DcreateExt=true" determines that the new skin will come with

XCSS files that unify the look of the rich components with standard HTML controls.

So, now the files and folder with all needed resources are created and redefining/editing the new

skin can be started.

Now we can start editing XCSS files of the rich components. In order to see how the Plug-n-Skin

feature works we will change some style attributes of <rich:calendar> and some basic HTML

controls to see how they are affected by standard controls skinning.

Thus, it will be demonstrated how to:

• Recolor the current day's cell background of the <rich:calendar> to see how the new skin

created with the help of Plug-n-Skin feature affects the style of the component;

• Recolor a standard HTML submit button;

In oder to edit the style properties of <rich:calendar> you need to open the "calendar.xcss" file

located in "P-n-S\src\main\resources\skinpackage\plugnskindemo\css\". Once, you have opened

the file, please find ".rich-calendar-today" selector and amend it as follows: background-color:

#075ad1;. The current day's background color can be considered recolored.

Now we will see how font style of a standard HTML submit button can be changed. Please,

open "extended.xcss" file located in "P-n-S\src\main\resources\skinpackage\plugnskindemo\css

\" and put in font-weight: bold; inside the curly braces of these coma separated

selectors button[type="button"], button[type="reset"], button[type="submit"],

input[type="reset"], input[type="submit"], input[type="button"]. So, the CSS code

should look like this.

button[type="button"], button[type="reset"],

 button[type="submit"], input[type="reset"],

 input[type="submit"], input[type="button"] {

 font-weight: bold;

}

Chapter 5. Basic concepts of ...

78

All the changes that were planned to be preformed are done and now you can proceed to building

the new PlugnSkinDemo skin and import it into the project. As you read in the previous section,

the skin should be built in the "P-n-S" folder of the skin project by executing mvn clean install

command. This procedure results in creating a "target" folder that contains a .jar file with a

compiled new skin, it our case the file is named "P-n-S-1.0.-SNAPSHOT.jar". The next step is to

import the new PlugnSkinDemo skin into the project.

What you need to do, in order to have the new skin imported to the project is to

• Copy the "P-n-S-1.0.-SNAPSHOT.jar" file to the "\WebContent\WEB-INF\lib\" folder.

• Add the new skin's name to the "web.xml" file. It is done like this

 <context-param>

 <param-name>org.ajax4jsf.SKIN</param-name>

 <param-value>PlugnSkinDemo</param-value>

</context-param>

Please, do not forget that standard controls skinning has to be enabled in the "web.xml" file, which

can be done by adding the following code to the "web.xml" file:

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING</param-name>

 <param-value>enable</param-value>

</context-param>

The result of both operations is displayed on the figure below.

State Manager API

79

Figure 5.6. Plug-n-Skin feature in action.

5.11. State Manager API

JSF has an advanced navigation mechanism that allows you to define navigation from view to

view. Navigation happens in a Web Application when a user tries to switch from one page to

another page either by clicking a button, a hyperlink, or another command component. But there

is no switch mechanism between some logical states of the same view. For example in Login/

Register dialog an existing user signs in with his user name and password, but if a new user

registers an additional field "Confirm" is displayed, buttons labels and methods are changed when

the user clicks "To register" link:

Figure 5.7. Login Dialog

Chapter 5. Basic concepts of ...

80

Figure 5.8. Register Dialog

RichFaces State API allows easily to define some set of states for the pages and any properties

for this states.

Actually States is a map where the entry key is a name of the State and the value is a State map.

Particular State map has entries with some names as keys and any objects as values that are used

after the state activation. Thus, in the State map you could define any values, method bindings,

or just some simple state variables (constants) which have different values for every State.

Figure 5.9. RichFaces State API

One of the most convenience features of the RichFaces State API is a navigation between states.

The RichFaces State API implements states change as the standard JSF navigation. Action

component just returns outcome and the RichFaces State API extension for the JSF navigation

handler checks whether this outcome is registered as a state change outcome or not. If the state

change outcome is found the corresponding state is activated. Otherwise the standard navigation

handling is called.

In order to use RichFaces State API you should follow the next steps:

• Register State Manager EL resolver and navigation handler in the faces-config.xml:

State Manager API

81

...

<application>

 <navigation-handler>org.richfaces.ui.application.StateNavigationHandler</navigation-

handler>

 <el-resolver>org.richfaces.el.StateELResolver</el-resolver>

</application>

...

• Register an additional application factory in the faces-config.xml:

...

<factory>

 <application-factory>org.richfaces.ui.application.StateApplicationFactory</application-

factory>

</factory>

...

• Register two managed beans in the faces-config.xml:

...

<managed-bean>

 <managed-bean-name>state</managed-bean-name>

 <managed-bean-class>org.richfaces.ui.model.States</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property>

 <property-name>states</property-name>

 <property-class>org.richfaces.ui.model.States</property-class>

 <value>#{config.states}</value>

 </managed-property>

</managed-bean>

<managed-bean>

 <managed-bean-name>config</managed-bean-name>

 <managed-bean-class>org.richfaces.demo.stateApi.Config</managed-bean-class>

 <managed-bean-scope>none</managed-bean-scope>

</managed-bean>

...

One bean ("config") defines and stores states as it is shown in the following example:

Chapter 5. Basic concepts of ...

82

...

public class Config {

 /**

 * @return States

 */

 public States getStates() {

 FacesContext facesContext = FacesContext.getCurrentInstance();

 States states = new States();

 // Registering new User State definition

 states.setCurrentState("register"); // Name of the new state

 // Text labels, properties and Labels for controls in "register" state

 states.put("showConfirm", Boolean.TRUE); // confirm field rendering

 states.put("link", "(To login)"); // Switch State link label

 states.put("okBtn", "Register"); // Login/Register button label

 states.put("stateTitle", "Register New User"); // Panel title

 ExpressionFactory expressionFactory = facesContext.getApplication()

 .getExpressionFactory();

 // Define "registerbean" available under "bean" EL binding on the page

 ValueExpression beanExpression = expressionFactory

 .createValueExpression(facesContext.getELContext(),

 "#{registerbean}", Bean.class);

 states.put("bean", beanExpression);

 // Define "registeraction" available under "action" EL binding on the

 // page

 beanExpression = expressionFactory.createValueExpression(facesContext

 .getELContext(), "#{registeraction}", RegisterAction.class);

 states.put("action", beanExpression);

 // Define method expression inside registeraction binding for this state

 MethodExpression methodExpression = expressionFactory.createMethodExpression(

 facesContext.getELContext(), "#{registeraction.ok}",

 String.class, new Class[] {});

 states.put("ok", methodExpression);

 // Outcome for switching to login state definition

 states.setNavigation("switch", "login");

State Manager API

83

 // Login Existent User State analogous definition

 states.setCurrentState("login");

 states.put("showConfirm", Boolean.FALSE);

 states.put("link", "(To register)");

 states.put("okBtn", "Login");

 states.put("stateTitle", "Login Existing User");

 beanExpression = expressionFactory.createValueExpression(facesContext

 .getELContext(), "#{loginbean}", Bean.class);

 states.put("bean", beanExpression);

 beanExpression = expressionFactory.createValueExpression(facesContext

 .getELContext(), "#{loginaction}", LoginAction.class);

 states.put("action", beanExpression);

 methodExpression = expressionFactory.createMethodExpression(

 facesContext.getELContext(), "#{loginaction.ok}",

 String.class, new Class[] {});

 states.put("ok", methodExpression);

 states.setNavigation("switch", "register");

 return states;

 }

}

...

The other bean ("state") with the type org.richfaces.ui.model.States has the "states"

managed property that is bound to the "config" bean which defines states.

• Use state bindings on the page. See the following example:

...

<h:panelGrid columns="3">

 <h:outputText value="username" />

 <h:inputText value="#{state.bean.name}" id="name" required="true" />

 <h:outputText value="password" />

 <h:inputSecret value="#{state.bean.password}" id="password" required="true" />

 <h:outputText value="confirm" rendered="#{state.showConfirm}" />

 <h:inputSecret value="#{state.bean.confirmPassword}" rendered="#{state.showConfirm}" id="confirm" required="true" /

>

</h:panelGrid>

Chapter 5. Basic concepts of ...

84

<a4j:commandButton actionListener="#{state.action.listener}" action="#{state.ok}" value="#{state.okBtn}" id="action"/

>

...

To get full Login/Register dialog example, please, have a look at RichFaces Live Demo [http://

livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI].

5.12. Identifying User Roles

RichFaces provides a function to check whether the logged-in user belongs to a certain user role.

The function is rich:isUserInRole(Object), it takes a String, a comma-separated list String,

Collection etc. as arguments and returns a boolean value.

For example, you need to render some controls only for administrators. To do this you

need to create a role "admin" in web.xml and implement authorisation that assigns the

"admin" role to the user that loggged-in as an administrator. Afterwards, you can use the

rich:isUserInRole(Object) function with the "rendered" attribute of any component.

Example:

...

<rich:editor value="#{bean.text}" rendered="#{rich:isUserInRole('admin')}" />

...

In the example above only a logged-in user with the role "admin" can see the text editor while for

the user with other roles the component will not be rendered.

http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI
http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI
http://livedemo.exadel.com/richfaces-demo/richfaces/stateAPI.jsf?c=stateAPI

Chapter 6.

85

The RichFaces Components
The library encompasses ready-made components built based on the Rich Faces CDK.

6.1. Ajax Support

The component in this section lets you easily add Ajax capabilities to other components as well

as manage Ajax requests.

6.1.1. < a4j:ajaxListener > available since 3.0.0

6.1.1.1. Description

The component adds an action listener to a parent component to provide possibility of Ajax update.

It works like the <f:actionListener> or <f:valueChangeListener> JSF components but for the

whole Ajax container.

6.1.1.2. Key Features

• The listener is invoked for Ajax requests only

• The listener is always guaranteed to be invoked

Table 6.1. a4j : ajaxListener attributes

Attribute Name Description

type HTML: Fully qualified Java class name of an

AjaxListener to be created and registered.

Table 6.2. Component identification parameters

Name Value

listener-class org.ajax4jsf.event.AjaxListener

event-class org.ajax4jsf.event.AjaxEvent

tag-class org.ajax4jsf.taglib.html.jsp.AjaxListenerTag

6.1.1.3. Creating the Component with a Page Tag

To create the simplest variant of the a4j:ajaxListener component on a page use the following

syntax:

Example:

Chapter 6. The RichFaces Comp...

86

...

<a4j:ajaxListener type="demo.Bean"/>

...

6.1.1.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImplBean implements import org.ajax4jsf.event.AjaxListener{

...

}

import demo.ImplBean;

...

ImplBean myListener = new ImplBean();

...

6.1.1.5. Details of Usage

The <a4j:ajaxListener> component adds an action listener to a parent component, which

needs to be provided with Ajax support. That listener is invoked on each Ajax request

during the "Render Response" JSF phase. In comparison with JSF <f:actionListener> and

<f:valueChangeListener> the invocation of the <a4j:ajaxListener> is not skipped in case when

validation of Update Model fails. The <a4j:ajaxListener> is guarantied to be invoked for each

Ajax response.

Note

Ajax listener is not invoked for non-Ajax requests and when RichFaces works in

the "Ajax Request generates Non-Ajax Response" mode.

As example of the <a4j:ajaxListener> component usage one can cite an updating the list of

re-rendered components.

The "type" attribute defines the fully qualified Java

class name for the listener. This Java class implements

org.ajax4jsf.event.AjaxListener [http://www.jboss.org/file-access/default/

members/jbossrichfaces/freezone/docs/apidoc_framework/org/ajax4jsf/event/

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/ajax4jsf/event/AjaxListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/ajax4jsf/event/AjaxListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/ajax4jsf/event/AjaxListener.html

 < a4j:actionparam > available since 3.0.0

87

AjaxListener.html] interface, which is base interface for all listeners, capable

for receiving Ajax events. The source of the event could be accessed using the

java.util.EventObject.getSource() [http://java.sun.com/j2se/1.4.2/docs/api/

java/util/EventObject.html] call.

Example:

...

<a4j:commandLink id="cLink" value="Click it To Send Ajax Request">

 <a4j:ajaxListener type="demo.Bean"/>

</a4j:commandLink>

...

Example:

package demo;

import org.ajax4jsf.event.AjaxEvent;

public class Bean implements org.ajax4jsf.event.AjaxListener{

 ...

 public void processAjax(AjaxEvent arg){

 //Custom Developer Code

 }

 ...

}

6.1.1.6. Relevant resources links

Vizit AjaxListener [http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?

c=ajaxListener] page at RichFaces Livedemo for examples of component usage and their sources.

Check Sun JSF TLD documentation for more information on <f:valueChangeListener> tag [http://

java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html].

6.1.2. < a4j:actionparam > available since 3.0.0

6.1.2.1. Description

The <a4j:actionparam> component combines the functionality of both JSF <f:param> and

<f:actionListener> and allows to assign the value to the property of the manager bean directly

using the assignTo attribute.

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/ajax4jsf/event/AjaxListener.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/EventObject.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/EventObject.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/EventObject.html
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxListener.jsf?c=ajaxListener
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/valueChangeListener.html

Chapter 6. The RichFaces Comp...

88

Table 6.3. a4j : actionparam attributes

Attribute Name Description

actionListener A method binding that refers to a method with

this signature: void methodName(ActionEvent)

assignTo EL expression for updatable bean property.

This property will be updated if the

parent command component performs an

actionEvent.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

converter JSF: ID of a converter to be used or a reference

to a converter.

id JSF: Every component may have a unique id

that is automatically created if omitted

name A name of this parameter

noEscape If set to true, the value will not enclosed within

single quotes and there will be no escaping of

characters. This allows the use of the value

as JavaScript code for calculating value on the

client-side. This doesn't work with non-AJAX

components.

value JSF: An initial value or a value binding

Table 6.4. Component identification parameters

Name Value

component-type org.ajax4jsf.ActionParameter

component-class org.ajax4jsf.component.html.HtmlActionParameter

6.1.2.2. Creating the Component with a Page Tag

Simple component definition example:

Example:

<a4j:actionparam noEscape="true" name="param1" value="getMyValue()" assignTo="#{bean.prop1}" /

>

 < a4j:actionparam > available since 3.0.0

89

6.1.2.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlActionParameter;

...

HtmlActionParameter myActionParameter = new HtmlActionParameter();

...

6.1.2.4. Details of usage

The component <a4j:actionparam> is a combination of the functionality of two JSF tags:

<f:param> and <f:actionListener> .

At the render phase, it's decoded by parent component (<h:commandLink> or like) as usual. At

the process request phase, if the parent component performs an action event, update the "value"

specified in the "assignTo" attribute as its "value" . If a "converter" attribute is specified, use it to

encode and decode the "value" to a string stored in the html parameter. To make the "assignTo"

attribute usable add the actionParam instance to the parent component as an action listener.

<a4j:actionparam> has a "noEscape" attribute. If it is set to "true", the "value" is evaluated

as a JavaScript code.

Example:

...

<script>

 ...

 var foo = "bar";

 ...

</script>

...

<a4j:actionparam noEscape="true" name="param1" value="foo" assignTo="#{bean.prop1}" />

...

The <a4j:param> extends <f:param> , so the "name" attribute is mandatory. Otherwise, the

"value" misses due missing the request parameter name for it.

6.1.2.5. Relevant resources links

Vizit the ActionParamter page [http://livedemo.exadel.com/richfaces-demo/richfaces/

actionparam.jsf?c=actionparam] at RichFaces LiveDemo for examples of component usage abd

their sources.

http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam
http://livedemo.exadel.com/richfaces-demo/richfaces/actionparam.jsf?c=actionparam

Chapter 6. The RichFaces Comp...

90

More information can be found on the Ajax4jsf Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&p=4063764].

More information about <f:param> and <f:actionListener> can be found in Sun JSF TLD

documentation [http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html].

6.1.3. < a4j:form > available since 3.0.0

6.1.3.1. Description

The <a4j:form> component is very similar to JSF <h:form> the only difference is in generation

of links inside and possibility of default Ajax submission.

Table 6.5. a4j : form attributes

Attribute Name Description

accept HTML: This attribute specifies a comma-

separated list of content types that a server

processing this form will handle correctly. User

agents may use this information to filter out

non-conforming files when prompting you to

select files to be sent to the server (cf. the

INPUT element when type="file")

acceptCharset This attribute specifies the list of character

encodings for input data that is accepted by

the server processing this form. The value

is a space- and/or comma-delimited list of

charset values. The client must interpret this

list as an exclusive-or list, i.e., the server is

able to accept any single character encoding

per entity received. The default value for this

attribute is the reserved string "UNKNOWN".

User agents may interpret this value as the

character encoding that was used to transmit

the document containing this FORM element

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

ajaxSubmit If "true", it becomes possible to set AJAX

submission way for any components inside .

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4063764
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

 < a4j:form > available since 3.0.0

91

Attribute Name Description

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

enctype This attribute specifies the content type used

to submit the form to the server (when the

value of method is "post"). The default value

for this attribute is "application/x-www-form-

urlencoded". The value "multipart/form-data"

should be used in combination with the INPUT

element, type="file"

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

iterationState iterationState

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

Chapter 6. The RichFaces Comp...

92

Attribute Name Description

oncomplete The client-side script method to be called after

the request is completed

onreset DHTML: The client-side script method to be

called when a form is reset. It is only applied to

the FORM element

onsubmit DHTML: The client-side script method to be

called when a form is submitted. It is only

applied to the FORM element

prependId The flag indicating whether or not this form

should prepend its id to its descendent id during

the clientId generation process. If this flag is not

set, the default value is "true".

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

 < a4j:form > available since 3.0.0

93

Attribute Name Description

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

target HTML: This attribute specifies the name of a

frame where a document is to be opened. By

assigning a name to a frame via the name

attribute, authors can refer to it as the "target"

of links defined by other elements

timeout Timeout (in ms) for request.

Table 6.6. Component identification parameters

Name Value

component-type org.ajax4jsf.Form

component-family javax.faces.Form

component-class org.ajax4jsf.component.html.AjaxForm

renderer-type org.ajax4jsf.FormRenderer

6.1.3.2. Creating the Component with a Page Tag

Component definition on a page is similar to definition of the original component from JSF HTML

library.

Example:

<a4j:form>

 <h:panelGrid>

 <h:commandButton value="Button" action="#{userBean.nameItMark}" />

 </h:panelGrid>

</a4j:form>

6.1.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxForm;

...

AjaxForm myForm = new AjaxForm();

...

Chapter 6. The RichFaces Comp...

94

6.1.3.4. Details of usahe

The difference with the original component is that all hidden fields required for command links are

always rendered and it doesn't depend on links rendering on the initial page. It solves the problem

with invalid links that weren't rendered on a page immediately, but after some Ajax request.

Beginning with release 1.0.5 additional attributes that make this form variant universal have

appeared.

If "ajaxSubmit" attribute is true, it becomes possible to set Ajax submission way for any

components inside with the help of the javascript A4J.AJAX.Submit(...)call. In this case,

the "reRender" attribute contains a list of Ids of components defined for re-rendering. If

you have <h:commandButton> or <h:commandLink> inside the form, they work as

<a4j:commandButton> .

Example:

<a4j:form id="helloForm" ajaxSubmit="true" reRender="table">

 ...

 <t:dataTable id="table"... >

 ...

 </t:dataTable>

 ...

 <t:datascroller for="table"... >

 ...

 </t:datascroller>

 ...

</a4j:form>

This example shows that in order to make <t:datascroller> submissions to be Ajax ones it's

required only to place this <t:datascroller> into <a4j:form> . In the other case it is necessary

to redefine renders for its child links elements that are defined as <h:commandLink> and can't

be made Ajax ones with using e.g. <a4j:support> .

With the help of "limitToList" attribute you can limit areas, which are updated after the responses.

If "limitToList" is true, only the reRender attribute is taken in account. Therefore, if you use blocks

of text wrapped with <a4j:outputPanel> and ajaxRendered= "true", blocks of text are ignored.

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

6.1.3.5. Relevant resources links

Vizit AjaxForm [http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form] at

RichFaces Livedemo for examples of component usage and their sources. a

http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form
http://livedemo.exadel.com/richfaces-demo/richfaces/form.jsf?c=form

 < a4j:region > available since 3.0.0

95

6.1.4. < a4j:region > available since 3.0.0

6.1.4.1. Description

The <a4j:region> component specifies the part of the component tree to be processed on server.

If no <a4j:region> is defined the whole View functions as a region.

Table 6.7. a4j : region attributes

Attribute Name Description

ajaxListener MethodExpression representing an action

listener method that will be notified when this

component is activated by the ajax Request

and handle it. The expression must evaluate

to a public method that takes an AjaxEvent

parameter, with a return type of void

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate Flag indicating that, if this component is

activated by ajaxrequest, notifications should

be delivered to interested listeners and actions

immediately (that is, during Apply Request

Values phase) rather than waiting until Invoke

Application phase

rendered JSF: If "false", this component is not rendered

renderRegionOnly Excludes all the components from the outside

of the region from updating on the page on

Renderer Response phase. Default value is

"false".

selfRendered if "true", self-render subtree at

InvokeApplication (or Decode, if immediate

property set to true) phase

Table 6.8. Component identification parameters

Name Value

component-type org.ajax4jsf.AjaxRegion

component-family org.ajax4jsf.AjaxRegion

component-class org.ajax4jsf.component.html.HtmlAjaxRegion

renderer-type org.ajax4jsf.components.AjaxRegionRenderer

Chapter 6. The RichFaces Comp...

96

6.1.4.2. Creating the Component with a Page Tag

To create the simplest variant of the <a4j:region> component on a page use the following syntax:

<a4j:region>

 ...

</a4j:region>

6.1.4.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRegion;

...

HtmlAjaxRegion newRegion = new HtmlAjaxRegion();

...

6.1.4.4. Details of Usage

The <a4j:region> component specifies the part of the component tree to be processed on server.

The processing includes data handling during decoding, conversion, validation and model update.

Note that the whole Form is still submitted but only part taken into region will be processed.

Example:

<h:form>

 ...

 <a4j:region>

 <a4j:commandLink/>

 </a4j:region>

 ...

<h:form>

The whole Form on the schematic listing above will be submitted by request invoked with the

<a4j:commandLink> . The only part that is going to be processed on the server is enclosed with

<a4j:region> and </a4j:region> tags. If no <a4j:region> is defined the whole View functions

as a region.

The regions could be nested. Server picks out and decodes only the region, which contains the

component that initiates the request.

Example:

 < a4j:region > available since 3.0.0

97

<h:form>

 ...

 <a4j:region>

 <a4j:commandLink value="Link 1" id="link1"/>

 <a4j:region>

 <a4j:commandLink value="Link 2" id="link2"/>

 </a4j:region >

 </a4j:region>

 ...

<h:form>

The external region is decoded for link1 and the internal one is decoded for link2.

The "renderRegionOnly" attribute is used when it is necessary to exclude all the components

from the outside of the region from updating on the page during Renderer Response phase. Such

manipulation allows region to be passed straight into Encode and reduces performance time. This

optimization should be implemented carefully because it doesn't allow data from the outside of

active region to be updated.

Example:

<h:form>

 ...

 <a4j:region renderRegionOnly="true">

 <a4j:commandLink value="Link 1" id="link1"/>

 </a4j:region>

 ...

 <a4j:region renderRegionOnly="false">

 <a4j:commandLink value="Link 2" id="link2"/>

 </a4j:region>

 ...

</h:form>

On the example above the first region only will be updated if link1 initiates a request. When a

request is initiated by link2 both regions will be updated. In this case search for components to

include them into Renderer Response will be performed on the whole component tree.

RichFaces allows setting Ajax responses rendering basing on component tree nodes directly,

without referring to the JSP (XHTML) code. This speeds up a response output considerably and

could be done by setting the <a4j:region> "selfRendered" attribute to "true". However, this rapid

processing could cause missing of transient components that present on view and don't come into

a component tree as well as omitting of <a4j:outputPanel> usage described below.

Chapter 6. The RichFaces Comp...

98

Example:

<a4j:region selfRendered ="true">

 <a4j:commandLink value="Link" id="link"/>

 <!--Some HTML content-->

</a4j:region>

In this case the processing is quicker and going on without referring to the page code. The HTML

code is not saved in a component tree and could be lost. Thus, such optimization should be

performed carefully and additional RichFaces components usage (e.g. <a4j:outputPanel>) is

required.

Starting from RichFaces 3.2.0 the <a4j:region> can be used together with iterative components

(e.g. <rich:column> or <rich:scrollableDataTable> , etc.). It became possible to re-render a

particular row in a table without updating the whole table and without any additional listeners.

Example:

<rich:column>

 <a4j:region>

 <a4j:commandLink reRender="out"/>

 </a4j:region>

</rich:column>

<rich:column>

 <h:outputText id="out">

</rich:column>

In most cases there is no need to use the <a4j:region> as ViewRoot is a default one.

6.1.4.5. Relevant resources links

Visit <a4j:region> demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?

c=region] at RichFaces live demo for examples of component usage and their sources.

Useful articles and examples:

• <a4j:region> and two <h:inputTexts> [http://www.jboss.org/community/docs/DOC-11866] in

RichFaces cookbook at JBoss portal;

• "A sad story about UIInput [http://ishabalov.blogspot.com/2007/08/sad-story-about-

uiinput.html]" at personal blog of I.Shabalov and exhaustive example [http://

livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf] of solving the

problem with the help of <a4j:region> .

http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://livedemo.exadel.com/richfaces-demo/richfaces/region.jsf?c=region
http://www.jboss.org/community/docs/DOC-11866
http://www.jboss.org/community/docs/DOC-11866
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://ishabalov.blogspot.com/2007/08/sad-story-about-uiinput.html
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf
http://livedemo.exadel.com/richfaces-local-value-demo/pages/local-value-demo.jsf

 < a4j:support > available since 3.0.0

99

6.1.5. < a4j:support > available since 3.0.0

6.1.5.1. Description

The <a4j:support> component is the most important core component in the RichFaces library. It

enriches any existing non-Ajax JSF or RichFaces component with an Ajax capability. All the other

RichFaces Ajax components are based on the same principles <a4j:support> has.

Table 6.9. a4j : support attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disabled HTML: If "true", disable this component on

page.

disableDefault Disables default action for target event

(append "return false;" to JavaScript). Default

value is "false"

event Name of JavaScript event property (onclick,

onchange, etc.) of parent component, for which

we will build AJAX submission code

Chapter 6. The RichFaces Comp...

100

Attribute Name Description

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

onsubmit DHTML: The client-side script method to be

called before an ajax request is submitted

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

 < a4j:support > available since 3.0.0

101

Attribute Name Description

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Timeout (in ms) for request

Table 6.10. Component identification parameters

Name Value

component-type org.ajax4jsf.Support

component-family org.ajax4jsf.AjaxSupport

component-class org.ajax4jsf.component.html.HtmlAjaxSupport

renderer-type org.ajax4jsf.components.AjaxSupportRenderer

6.1.5.2. Creating the Component with a Page Tag

To create the simplest variant on a page you should put <a4j:support> as a nested element

into the component that you want to enhance with Ajax functionality. You should also specify an

event that will trigger an Ajax request.

Example:

<h:inputText value="#{bean.text}">

 <a4j:support event="onkeyup" reRender="repeater"/>

Chapter 6. The RichFaces Comp...

102

</h:inputText>

<h:outputText id="repeater" value="#{bean.text}"/>

6.1.5.3. Creating the Component Dynamically Using Java

In order to add the <a4j:support> in Java code you should add it as facet , not as a child:

Example:

HtmlInputText inputText = new HtmlInputText();

...

HtmlAjaxSupport ajaxSupport = new HtmlAjaxSupport();

ajaxSupport.setActionExpression(FacesContext.getCurrentInstance().getApplication().getExpressionFactory().createMethodExpression(

 FacesContext.getCurrentInstance().getELContext(), "#{bean.action}", String.class, new Class[] {}));

ajaxSupport.setEvent("onkeyup");

ajaxSupport.setReRender("output");

inputText.getFacets().put("a4jsupport", ajaxSupport);

6.1.5.4. Details of Usage

The <a4j:support> component has two key attributes:

• mandatory "event" attribute that defines the JavaScript event the Ajax support will be attached

to

• "reRender" attribute that defines id(s) of JSF component(s) that should be rerendered after an

Ajax request

As mentioned above the <a4j:support> component adds Ajax capability to non-Ajax JSF

components. Let's create ajaxed <h:selectOneMenu> called "Planets and Their Moons".

We begin with the common behavior description. When a page is rendered you see only one

select box with the list of planets. When you select a planet the <h:dataTable> containig moons

of the selected planet appears.

In other words we need <h:selectOneMenu> with the nested <a4j:support> component that

is attached to the onchange event.

When an Ajax response comes back the <h:dataTable> is re-rendered on the server side and

updated on the client.

...

<h:form id="planetsForm">

 <h:outputLabel value="Select the planet:" for="planets" />

 < a4j:support > available since 3.0.0

103

 <h:selectOneMenu id="planets" value="#{planetsMoons.currentPlanet}" valueChangeListener="#{planetsMoons.planetChanged}">

 <f:selectItems value="#{planetsMoons.planetsList}" />

 <a4j:support event="onchange" reRender="moons" />

 </h:selectOneMenu>

 <h:dataTable id="moons" value="#{planetsMoons.moonsList}" var="item">

 <h:column>

 <h:outputText value="#{item}"/>

 </h:column>

 </h:dataTable>

</h:form>

...

Finally we need a backing bean:

...

public class PlanetsMoons {

 private String currentPlanet="";

 public List<SelectItem> planetsList = new ArrayList<SelectItem>();

 public List<String> moonsList = new ArrayList<String>();

 private static final String [] EARTH = {"The Moon"};

 private static final String [] MARS = {"Deimos", "Phobos"};

 private static final String [] JUPITER = {"Europa", "Gamymede", "Callisto"};

 public PlanetsMoons() {

 SelectItem item = new SelectItem("earth", "Earth");

 planetsList.add(item);

 item = new SelectItem("mars", "Mars");

 planetsList.add(item);

 item = new SelectItem("jupiter", "Jupiter");

 planetsList.add(item);

 }

 public void planetChanged(ValueChangeEvent event){

 moonsList.clear();

 String[] currentItems;

 if (((String)event.getNewValue()).equals("earth")) {

 currentItems = EARTH;

 }else if(((String)event.getNewValue()).equals("mars")){

 currentItems = MARS;

 }else{

 currentItems = JUPITER;

 }

Chapter 6. The RichFaces Comp...

104

 for (int i = 0; i < currentItems.length; i++) {

 moonsList.add(currentItems[i]);

 }

 }

 //Getters and Setters

 ...

}

There are two properties planetsList and moonsList. The planetsList is filled with planets

names in the constructor. After you select the planet, the planetChanged() listener is called and

the moonsList is populated with proper values of moons.

With the help of "onsubmit" and "oncomplete" attributes the <a4j:support> component allows

to use JavaScript calls before and after an Ajax request respectively. Actuallly the JavaScript

specified in the "oncomplete" attribute will be executed in any case whether the Ajax request is

completed successfully or not.

You can easily add confirmation dialog for the planet select box and colorize <h:dataTable>

after the Ajax response:

...

<h:form id="planetsForm">

 <h:outputLabel value="Select the planet:" for="planets" />

 <h:selectOneMenu id="planets" value="#{planetsMoons.currentPlanet}" valueChangeListener="#{planetsMoons.planetChanged}">

 <f:selectItems value="#{planetsMoons.planetsList}" />

 <a4j:support event="onchange" reRender="moons"

 onsubmit="if(!confirm('Are you sure to change the planet?')) {form.reset(); return false;}"

 oncomplete="document.getElementById('planetsForm:moonsPanel').style.backgroundColor='#c8dcf9';" /

>

 </h:selectOneMenu>

 <h:dataTable id="moons" value="#{planetsMoons.moonsList}" var="item">

 <h:column>

 <h:outputText value="#{item}"/>

 </h:column>

 </h:dataTable>

</h:form>

...

There is the result:

 < a4j:commandButton > available since 3.0.0

105

Figure 6.1. "Planets and Their Moons"

Information about the "process" attribute usage you can find in the " Decide what to process "

guide section.

Tip:

The <a4j:support> component created on a page as following

<h:inputText value="#{bean.text}">

 <a4j:support event="onkeyup" reRender="output" action="#{bean.action}"/>

</h:inputText>

is decoded in HTML as

<input onkeyup="A4J.AJAX.Submit(Some request parameters)"/>

6.1.5.5. Relevant resources links

Visit <a4j:support> demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?

c=support] at RichFaces live demo for examples of component usage and their sources.

6.1.6. < a4j:commandButton > available since 3.0.0

6.1.6.1. Description

The <a4j:commandButton> component is very similar to JSF <h:commandButton> , the only

difference is that an Ajax form submit is generated on a click and it allows dynamic rerendering

after a response comes back.

http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support
http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support
http://livedemo.exadel.com/richfaces-demo/richfaces/support.jsf?c=support

Chapter 6. The RichFaces Comp...

106

Figure 6.2. The <a4j:commandButton> component rendered in Blue Sky

skin

Table 6.11. a4j : commandButton attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

alt HTML: Alternate textual description of the

element rendered by this component.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

 < a4j:commandButton > available since 3.0.0

107

Attribute Name Description

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

disabled HTML: If "true", disable this component on

page.

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now.

image Absolute or relative URL of the image to

be displayed for this button. If specified,

this "input" element will be of type "image".

Otherwise, it will be of the type specified by

the "type" property with a label specified by the

"value" property.

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

lang HTML: Code describing the language used in

the generated markup for this component

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

Chapter 6. The RichFaces Comp...

108

Attribute Name Description

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onblur DHTML: The client-side script method to be

called when the element loses the focus

onchange DHTML: The client-side script method to be

called when the element value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

 < a4j:commandButton > available since 3.0.0

109

Attribute Name Description

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

size HTML: This attribute tells the user agent the

initial width of the control. The width is given in

pixels except when type attribute has the value

"text" or "password". In that case, its value

refers to the (integer) number of characters

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

Chapter 6. The RichFaces Comp...

110

Attribute Name Description

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

timeout Timeout (in ms) for request.

title HTML: Advisory title information about markup

elements generated for this component

type HTML: This attribute specifies a type of control

to create. The possible values are "submit",

"reset", "image" and "button". The default value

for this attribute is "submit"

value JSF: The current value for this component

Table 6.12. Component identification parameters

Name Value

component-type org.ajax4jsf.CommandButton

component-family javax.faces.Command

component-class org.ajax4jsf.component.html.HtmlAjaxCommandButton

renderer-type org.ajax4jsf.components.AjaxCommandButtonRenderer

6.1.6.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

<a4j:commandButton reRender="someData" action="#{bean.action}" value="Button"/>

The example above creates a button on a page clicking on which causes an Ajax form submit

on the server, "action" method performance, and rendering the component with "someData" ID

after response comes back.

6.1.6.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandButton;

...

HtmlAjaxCommandButton myButton = new HtmlAjaxCommandButton();

...

 < a4j:commandButton > available since 3.0.0

111

6.1.6.4. Details of Usage

The <a4j:commandButton> component is used in the same way as JSF <h:commandButton>

. The difference is that in case of <a4j:commandButton> the components to be updated should

be specified.

The example above [110] generates the following HTML code:

<input type="submit" onclick="A4J.AJAX.Submit(request parameters);return

 false;" value="Button"/>

#licking the generated anchor fires the utility method A4J.AJAX.Submit() that perfroms Ajax

request.

Note:

The <a4j:commandButton> already has Ajax support built-in and there is no

need to add <a4j:support> .

The usage of the keyword 'this' in JavaScript code in the value for "oncomplete" attribute

depends on the location of <a4j:commandButton> . If the <a4j:commandButton> is situated

outside the re-rendered region it is possible to use keyword 'this' as in the following example:

<h:form>

 <a4j:commandButton action="director.rollCamera" onclick="this.disabled=true" oncomplete="this.disabled=false" /

>

</h:form>

Otherwise, if the <a4j:commandButton> is contained in a re-rendered region than the

"oncomplete" attribute has a problem with obtaining a reference of the commandButton object

when using the keyword 'this'. In this case use the "oncomplete" attribute as in the following

example:

<h:form id="form">

 <a4j:commandButton id="cbutton" action="director.rollCamera" onclick="this.disabled=true" oncomplete="document.getElementById('form:cbutton').disabled=false" /

>

</h:form>

Chapter 6. The RichFaces Comp...

112

Common JSF navigation could be performed after an Ajax submit and partial rendering, but

Navigation Case must be defined as <redirect/> in order to avoid problems with some browsers.

As any Core Ajax component that sends Ajax requests and processes server responses the

<a4j:commandButton> has all attributes that provide the required behavior of requests (delay,

limitation of submit area and rendering, etc.)

Note:

When attaching a JavaScript API function to the <a4j:commandButton> with

the help of the <rich:componentControl> do not use the "attachTo" attribute

of the last one. The attribute adds event handlers using Event.observe but

<a4j:commandButton> has no such event. The example below will not work:

<a4j:commandButton value="Show Current

 Selection" reRender="table" action="#{dataTableScrollerBean.takeSelection}" id="button">

 <rich:componentControl attachTo="button" for="panel" event="oncomplete" operation="show" /

>

</a4j:commandButton>

This one should work properly:

<a4j:commandButton value="Show Current

 Selection" reRender="table" action="#{dataTableScrollerBean.takeSelection}" id="button">

 <rich:componentControl for="panel" event="oncomplete" operation="show" />

</a4j:commandButton>

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

6.1.6.5. Relevant resources links

Vizit CommandButton demo [http://livedemo.exadel.com/richfaces-demo/richfaces/

commandButton.jsf?c=commandButton] page at RichFaces live demo for examples of component

usage and their sources.

6.1.7. < a4j:commandLink > available since 3.0.0

6.1.7.1. Description

The <a4j:commandLink> component is very similar to the <h:commandLink> component, the

only difference is that an Ajax form submit is generated on a click and it allows dynamic rerendering

http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton
http://livedemo.exadel.com/richfaces-demo/richfaces/commandButton.jsf?c=commandButton

 < a4j:commandLink > available since 3.0.0

113

after a response comes back. It's not necessary to plug any support into the component, as Ajax

support is already built in.

Table 6.13. a4j : commandLink attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

charset HTML: The character encoding of a resource

designated by this hyperlink

coords HTML: The attribute specifies shape and it

position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", "circle: center-

x, center-y, radius", "poly: x1, y1, x2, y2, ..., xN,

yN". Notes: a) when giving the radius value in

percents, user agents should calculate the final

radius value in pixels based on the associated

object's width and height; b) the radius value

should be smaller than center-x and center-

y values; c) for a polygon, the first and last

Chapter 6. The RichFaces Comp...

114

Attribute Name Description

coordinate pairs should have same x and y to

close the shape (x1=xN; y1=yN) (when these

coordinates are different, user agents should

infer an additional pair to close a polygon).

Coordinates are relative to the top left corner

of an object. All values are lengths. All values

are comma separated.

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

disabled HTML: Disables the component on page.

Boolean.

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

hreflang HTML: Base language of a resource specified

with the href attribute; hreflang may only be

used with href

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

 < a4j:commandLink > available since 3.0.0

115

Attribute Name Description

lang HTML: Code describing the language used in

the generated markup for this component

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onblur DHTML: The client-side script method to be

called when the element loses the focus either

when pointing a device or tabbing navigation.

The attribute may be used with the same

elements as onfocus

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

116

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rel HTML: The relationship from the current

document to the anchor specified by this

hyperlink. The value of this attribute is a space-

separated list of link types

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

rev HTML: A reverse link from the anchor specified

by this hyperlink to the current document. The

value of this attribute is a space-separated list

of link types

shape HTML: This attribute specifies the shape of

a region. The possible values are "default",

"rect", "circle" and "poly".

 < a4j:commandLink > available since 3.0.0

117

Attribute Name Description

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

target HTML: This attribute specifies the name of a

frame where a document is to be opened. By

assigning a name to a frame via the name

attribute, authors can refer to it as the "target"

of links defined by other elements

timeout Timeout (in ms) for request.

title HTML: Advisory title information about markup

elements generated for this component

type HTML: The content type of the resource

designated by this hyperlink

value JSF: The current value for this component

Table 6.14. Component identification parameters

Name Value

component-type org.ajax4jsf.CommandLink

component-family javax.faces.Command

component-class org.ajax4jsf.component.html.HtmlAjaxCommandLink

renderer-type org.ajax4jsf.components.AjaxCommandLinkRenderer

6.1.7.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

Chapter 6. The RichFaces Comp...

118

<a4j:commandLink value="Follow this link" reRender="some ID" action="#{bean.action}" />

The example above creates a link on a page clicking on which causes an Ajax form submit on the

server, "action" method performance, and rendering the component with "someData" ID after

response comes back.

6.1.7.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxCommandLink;

...

HtmlAjaxCommandLink myLink = new HtmlAjaxCommandLink();

...

6.1.7.4. Details of Usage

The <a4j:commandLink> component is used in the same way as JSF <h:commandLink> .

The difference is that in case of <a4j:commandLink> the components to be updated should

be specified. In this chapter we will use the code from RichFaces Greeter and change there

<a4j:commandButton> to <a4j:commandLink> :

...

<a4j:commandLink value="Get greeting" reRender="greeting" />

...

It's not necessary to add nested <a4j:support> as the <a4j:commandLink> has an Ajax

support already built-in. As a result of our changes we will get a form with "Get greeting" link

instead of the button:

Figure 6.3. The RicjFaces greeter with <a4j:commandLink>

The example above [117] generates the following HTML code:

 < a4j:jsFunction > available since 3.0.0

119

<a href="#" onclick="A4J.AJAX.Submit(?"request parameters"); return

 false;">Get greeting

If you click on the generated anchor the utility method A4J.AJAX.Submit() will be fired.

Note:

Common JSF navigation could be performed after Ajax submit and partial

rendering, but Navigation Case must be defined as <redirect/> in order to avoid

problems with some browsers.

As any Core Ajax component that sends Ajax requests and processes server responses the

<a4j:commandLink> has all attributes that provide the required behavior of requests (delay,

limitation of submit area and rendering, etc.)

Information about the "process" attribute usage you can find "Decide what to process" guide

section.

6.1.7.5. Relevant resources links

Vizit CommandLink demo [http://livedemo.exadel.com/richfaces-demo/richfaces/

commandLink.jsf?c=commandLink] page at RichFaces live demo for examples of component

usage and their sources.

Useful articles:

• How to use "window.confirm" JavaScript with <a4j:commandLink> "onclick" attribute [http://

www.jboss.org/community/docs/DOC-11850] in RichFaces cookbook at JBoss portal.

6.1.8. < a4j:jsFunction > available since 3.0.0

6.1.8.1. Description

The <a4j:jsFunction> component allows to perform Ajax requests directly from JavaScript code,

invoke server-side data and return it in a JSON format to use in a client JavaScript calls.

Table 6.15. a4j : jsFunction attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/commandLink.jsf?c=commandLink
http://www.jboss.org/community/docs/DOC-11850
http://www.jboss.org/community/docs/DOC-11850
http://www.jboss.org/community/docs/DOC-11850

Chapter 6. The RichFaces Comp...

120

Attribute Name Description

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

 < a4j:jsFunction > available since 3.0.0

121

Attribute Name Description

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

name Name of generated JavaScript function

definition

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

Chapter 6. The RichFaces Comp...

122

Table 6.16. Component identification parameters

Name Value

component-type org.ajax4jsf.Function

component-family org.ajax4jsf.components.ajaxFunction

component-class org.ajax4jsf.component.html.HtmlajaxFunction

renderer-type org.ajax4jsf.components.ajaxFunctionRenderer

6.1.8.2. Creating the Component with a Page Tag

To create the simpliest example of the component on the page use the following syntax:

Example:

<head>

 <script>

 <!--There is some script named "myScript" that uses parameters which will be taken from

 server-->

 </script>

</head>

<body>

 ...

 <a4j:jsFunction data="#{bean.someProperty}" name="callScript" oncomplete="myScript(data.subProperty1,

 data.subProperty2)"/>

 ...

</body>

The script "myScript" is called after bean.someProperty data is returned from server (e.g. It'll

be object with two subproperties).

6.1.8.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlajaxFunction;

...

HtmlajaxFunction myFunction = new HtmlajaxFunction();

...

 < a4j:jsFunction > available since 3.0.0

123

6.1.8.4. Details of usage

As the component uses Ajax request to get data from server it has all common Ajax Action

attributes. Hence, "action" and "actionListener" can be invoked, and reRendering some parts of

the page fired after calling function.

When using the <a4j:jsFunction> it's possible to initiate the Ajax request from the JavaScript

and perform partial update of a page and/or invoke the JavaScript function with data returned by

Ajax response.

<body onload="callScript()">

 <h:form>

 ...

 <a4j:jsFunction name="callScript" data="#{bean.someProperty1}" reRender="someComponent" oncomplete="myScript(data.subProperty1,

 data.subProperty2)">

 <a4j:actionparam name="param_name" assignTo="#{bean.someProperty2}"/>

 </a4j:jsFunction>

 ...

 </h:form>

 ...

 </body>

The <a4j:jsFunction> allows to use <a4j:actionparam> or pure <f:param> for passing

any number of parameters of the JavaScript function into Ajax request. <a4j:jsFunction> is

similar to <a4j:commandButton> , but it could be activated from the JavaScript code. It allows

to invoke some server-side functionality and use the returned data in the JavaScript function

invoked from "oncomplete" attribute. Hence it's possible to use <a4j:jsFunction> instead of

<a4j:commandButton> . You can put it anywhere, just don't forget to use <h:form> and </

h:form> around it.

Information about the "process" attribute usage you can find "Decide what to process" guide

section.

6.1.8.5. Relevant resources links

Vizit the jsFunction page [http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?

c=jsFunction] at RichFaces LiveDemo for component usage and sources for the given examples.

Useful articles:

• "JsFunctionJson [http://www.jboss.org/community/docs/DOC-11856]" article in the RichFaces

Cookbook describes how to use "a4j:jsFunction" to call the jsonTest backing bean that

generates some random data in a JSON String;

http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://livedemo.exadel.com/richfaces-demo/richfaces/jsFunction.jsf?c=jsFunction
http://www.jboss.org/community/docs/DOC-11856
http://www.jboss.org/community/docs/DOC-11856

Chapter 6. The RichFaces Comp...

124

6.1.9. < a4j:poll > available since 3.0.0

6.1.9.1. Description

The <a4j:poll> component allows periodical sending of Ajax requests to a server and is used

for a page updating according to a specified time interval.

Table 6.17. a4j : poll attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

enabled Enables/disables polling. Default value is

"true".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

 < a4j:poll > available since 3.0.0

125

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

interval Interval (in ms) for call poll requests. Default

value is "1000"ms (1 second).

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

onsubmit DHTML: The client-side script method to be

called before an ajax request is submitted

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

Chapter 6. The RichFaces Comp...

126

Attribute Name Description

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Timeout (in ms) for request

Table 6.18. Component identification parameters

Name Value

component-type org.ajax4jsf.Poll

component-family org.ajax4jsf.components.AjaxPoll

component-class org.ajax4jsf.component.html.AjaxPoll

renderer-type org.ajax4jsf.components.AjaxPollRenderer

6.1.9.2. Creating the component with a Page Tag

To create the simplest variant on a page use the following syntax:

<a4j:poll interval="500" reRender="grid"/>

6.1.9.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxPoll;

...

AjaxPoll myPoll = new AjaxPoll();

...

6.1.9.4. Details of usage

The <a4j:poll> componet is used for periodical polling of server data. In order to use the

component it's necessary to set an update interval. The "interval" attribute defines an interval in

milliseconds between the previous response and the next request. The total period beetween two

 < a4j:poll > available since 3.0.0

127

requests generated by the <a4j:poll> component is a sum of an "interval" attribute value and

server response time. Default value for "interval" attribute is set to "1000" milliseconds (1 second).

See an example of definition in the "Creating the component with a Page Tag [126]" section.

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received

during this period a connection is aborted and the next request is sent. Default value for "timeout"

attribute isn't set.

The "enabled" attribute defines should the <a4j:poll> send request or not. It's necessary to

render the <a4j:poll> to apply the current value of "enabled" attribute. You can use an EL-

expression for "enabled" attribute to point to a bean property. An example of usage of mentioned

above attributes is placed below:

Example:

...

<a4j:region>

 <h:form>

 <a4j:poll id="poll" interval="1000" enabled="#{userBean.pollEnabled}" reRender="poll,grid"/>

 </h:form>

</a4j:region>

<h:form>

 <h:panelGrid columns="2" width="80%" id="grid">

 <h:panelGrid columns="1">

 <h:outputText value="Polling Inactive" rendered="#{not userBean.pollEnabled}" />

 <h:outputText value="Polling Active" rendered="#{userBean.pollEnabled}" />

 <a4j:commandButton style="width:120px" id="control" value="#{userBean.pollEnabled?'Stop':'Start'}

 Polling" reRender="poll, grid">

 <a4j:actionparam name="polling" value="#{!

userBean.pollEnabled}" assignTo="#{userBean.pollEnabled}"/>

 </a4j:commandButton>

 </h:panelGrid>

 <h:outputText id="serverDate" style="font-size:16px" value="Server Date:

 #{userBean.date}"/>

 </h:panelGrid>

</h:form>

...

The example shows how date and time are updated on a page in compliance with data taken

from a server. The <a4j:poll> componet sends requests to the server every second. "reRender"

attribute of the <a4j:poll> contains poll's own Id. Hence, it is self rendered for applying the

current value of "enabled" attribute.

Chapter 6. The RichFaces Comp...

128

Notes:

• The form around the <a4j:poll> component is required.

• To make the <a4j:poll> component send requests periodically when it

limitToList is set to "true", pass the <a4j:poll> ID to it reRender attribute.

Information about the "process" attribute usage you can find "Decide what to process" guide

section.

6.1.9.5. Relevant resources links

Visit the Poll page [http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll] at

RichFaces LiveDemo for examples of the component usage and their sources.

Useful examples and articles:

• "Create a Banner Using Effects and Poll [http://www.jboss.org/community/wiki/

CreateABannerUsingEffectsAndPoll]" article at RichFaces Wiki gives an example of how to

create an image banner using <rich:effect> and <a4j:poll> components;

• "Create an HTML Banner Using Effects and Poll [http://www.jboss.org/community/wiki/

CreateAHTMLBannerUsingEffectsAndPoll]" article at RichFaces Wiki brings the code of the

way of creating an HTML banner banner using <rich:effect> and <a4j:poll> components;

• "RichFaces and Slideshow [http://www.jboss.org/index.html?

module=bb&op=viewtopic&t=125621]" thread in the RichFaces users forum contains an

information and code on making a Slide Show with the help of the <a4j:poll> component;

Manage the RichFaces Users Forum [http://jboss.com/index.html?

module=bb&op=viewtopic&t=103909] for fresh issues about the component usage.

6.1.10. < a4j:push > available since 3.0.0

6.1.10.1. Description

The <a4j:push> periodically perform Ajax request to server, to simulate 'push' data.

The main difference between <a4j:push> and <a4j:poll> components is that <a4j:push>

makes request to minimal code only (not to JSF tree) in order to check the presence of messages

in the queue. If the message exists the complete request is performed. The component doesn't

poll registered beans but registers EventListener which receives messages about events.

http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://livedemo.exadel.com/richfaces-demo/richfaces/poll.jsf?c=poll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateABannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/community/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=125621
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909
http://jboss.com/index.html?module=bb&op=viewtopic&t=103909

 < a4j:push > available since 3.0.0

129

Table 6.19. a4j : push attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

enabled Enables/disables pushing. Default value is

"true".

eventProducer MethodBinding pointing at method accepting

an PushEventListener with return type void.

User bean must register this listener and send

EventObject to this listener on ready.

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

Chapter 6. The RichFaces Comp...

130

Attribute Name Description

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

interval Interval (in ms) for call push requests. Default

value is "1000"ms (1 second).

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

 < a4j:push > available since 3.0.0

131

Attribute Name Description

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Timeout (in ms) for request

Table 6.20. Component identification parameters

Name Value

component-type org.ajax4jsf.Push

component-family org.ajax4jsf.components.AjaxPush

component-class org.ajax4jsf.component.html.AjaxPush

renderer-type org.ajax4jsf.components.AjaxPushRenderer

6.1.10.2. Creating on a page

<a4j:push reRender="msg" eventProducer="#{messageBean.addListener}" interval="3000"/>

6.1.10.3. Creating the Component Dynamically Using Java

import org.ajax4jsf.component.html.AjaxPush;

...

AjaxPush myPush = new AjaxPush();

...

6.1.10.4. Key attributes and ways of usage

The <a4j:push> implements reverse Ajax technique.

The bean, for example, could be subscribed to Java Messaging Service (JMS [http://java.sun.com/

products/jms/]) topic or it could be implemented as Message Driven Bean (MDB) in order to send

a message to the <a4j:push> component about an event presence. In the presence of the event

some action occurs.

Thus, a work paradigm with the <a4j:push> component corresponds to an anisochronous model,

but not to pools as for <a4j:poll> component. See the simplest example below:

Example:

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 6. The RichFaces Comp...

132

...

class MyPushEventListener implements PushEventListener {

 public void onEvent(EventObject evt) {

 System.out.println(evt.getSource());

 //Some action

 }

}

...

Code for EventListener registration in the bean is placed below:

Example:

...

public void addListener(EventListener listener) {

 synchronized (listener) {

 if (this.listener != listener) {

 this.listener = (PushEventListener) listener;

 }

 }

}

...

A page code for this example is placed below.

Example:

...

<a4j:status startText="in progress" stopText="done"/>

<a4j:form>

 <a4j:region>

 <a4j:push reRender="msg" eventProducer="#{pushBean.addListener}" interval="2000"/>

 </a4j:region>

 <a4j:outputPanel id="msg">

 <h:outputText value="#{pushBean.date}">

 <f:convertDateTime type="time"/>

 </h:outputText>

 </a4j:outputPanel>

 <a4j:commandButton value="Push!!" action="#{pushBean.push}" ajaxSingle="true"/>

</a4j:form>

...

 < a4j:queue > available since 3.3.0

133

The example shows how date is updated on a page in compliance with data taken from a server. In

the example "interval" attribute has value "2000". This attribute defines an interval in milliseconds

between the previous response and the next request. Default value is set to "1000" milliseconds

(1 second). It's possible to set value equal to "0". In this case connection is permanent.

The "timeout" attribute defines response waiting time in milliseconds. If a response isn't received

during this period a connection is aborted and the next request is sent. Default value for "timeout"

attribute isn't set. Usage of "interval" and "timeout" attributes gives an opportunity to set short

polls of queue state or long connections.

Note:

The form around the <a4j:push> component is required.

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.1.10.5. Relevant resources links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?

c=push] you can found some additional information for <a4j:push> component usage.

6.1.11. < a4j:queue > available since 3.3.0

3.3.0

6.1.11.1. Description

The <a4j:queue> component enqueues set of Ajax requests sent from client. The RichFaces

components with built-in Ajax can reference the queue to optimize Ajax requests.

Table 6.21. a4j : queue attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

disabled HTML: If "true", disables this component on

page.

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows you to ignore an Ajax

response produced by a request if the newest

'similar' request is in the queue already.

ignoreDupResponses="true" does not cancel

http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push
http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push
http://livedemo.exadel.com/richfaces-demo/richfaces/push.jsf?c=push

Chapter 6. The RichFaces Comp...

134

Attribute Name Description

the request while it is processed on the server,

but just allows avoiding unnecessary updates

on the client side if the response isn't actual

now

name Specifies to name for the named queue.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

onerror The client-side script method to be called

whenever a JavaScript error occurs

onrequestdequeue The client-side script method to be called after

the request is removed from the queue

onrequestqueue The client-side script method to be called when

the request is added to the queue

onsizeexceeded The client-side script method to be called when

a size is exceeded

onsubmit DHTML: The client-side script method to be

called before an ajax request is submitted

requestDelay Attribute defines the time (in ms) the request

will be waiting in the queue before it is ready

to be sent.

size HTML: Defines the number of requests allowed

in the queue at one time.

sizeExceededBehavior Defines the strategies of the queue's behavior

if the number of the requests waiting in the

queue is exceeded. There are four strategies:

dropNext (by default), dropNew, fireNext ,

fireNew.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Waiting time for response on a particular

request. If no response is received during this

time, the request is aborted

Table 6.22. Component identification parameters

Name Value

component-family org.ajax4jsf.Queue

 < a4j:queue > available since 3.3.0

135

Name Value

component-class org.ajax4jsf.component.html.HtmlQueue

renderer-type org.ajax4jsf.QueueRenderer

tag-class org.ajax4jsf.taglib.html.jsp.QueueTag

6.1.11.2. Creating the Component with a Page Tag

To create the simplest variant of the Form Based queue use the following syntax.

Example:

<h:form id="form">

 <a4j:queue />

 <h:inputText value="#{bean.a}">

 <a4j:support event="onkeyup" />

 </h:inputText>

</h:form>

6.1.11.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlQueue;

...

HtmlQueue myQueue = new HtmlQueue();

6.1.11.4. Details of usage

The RichFaces Queue has four different types: global default, view scoped default, view scoped

named and form-based default queue (general Queue principles are good documented in the

"Queue Principles" section). The current section will take closer to the form based queue. The

usage of other types is similar.

In order to disable or enable the <a4j:queue> component on the page you can use the "disabled"

attribute.

The "requestDelay" attribute defines delay time for all the requests fired by the action

components.

The "size" attribute specifies the number of requests that can be stored in the queue at a time. The

attribute helps to prevent server overloading. It is also possible to determine queue's behaviour

when it's size is exceeded. Use the "sizeExceededBehavior" for this purpose. There are four

possible strategies of exceeded queue's behavior:

Chapter 6. The RichFaces Comp...

136

• "dropNext" drops next request that should be fired

• "dropNew" drops the incoming request

• "fireNext" immediately fires the next request in line to be fired

• "fireNew" immediately fires the incoming request.

Example:

<h:form>

 <a4j:queue size="2" requestDelay="500" sizeExceededBehavior="dropNext" onsizeexceeded="alert('The

 size of the queue is exceeded')" />

 <h:inputText value="#{bean.a}">

 <a4j:support event="onkeyup" />

 </h:inputText>

 <h:inputText value="#{bean.b}">

 <a4j:support event="onblur" />

 </h:inputText>

 <h:selectBooleanCheckbox value="#{bean.check}" id="checkboxID">

 <a4j:support id="checkboxSupport" event="onchange" />

 </h:selectBooleanCheckbox>

</h:form>

In this example if the queue has more than 2 requests waiting to be processed the next event will

be dropped and a message (the "onsizeexceeded" attribute fires a JavaScript function) saying

that the queues is exceeded will be displayed.

The "ignoreDupResponses" attribute that takes a boolean value can also help optimize your

Ajax requests. If set to true, response processing for request will not occur if a similar request is

already waiting in the queue. New request will be fired immediately when the response from the

previous one returns.

Example:

<h:form>

 <a4j:queue requestDelay="500" ignoreDupResponses="true" />

 <h:inputText value="#{bean.a}">

 <a4j:support event="onkeyup" />

 </h:inputText>

</h:form>

In this example, the requests are glued together and only the last one is submitted.

 < a4j:queue > available since 3.3.0

137

Another key attribute that easies server load is "timeout" . The attribute specifies the amount of

time an item can be in the queue before the sent event is be aborted and dropped from the queue.

If the request is sent and response is not returned within the time frame defined in this attribute

- the request is aborted, and the next one is sent.

Example:

<h:form>

 <a4j:queue timeout="1000" />

 <h:inputText value="#{bean.a}">

 <a4j:support event="onkeyup" />

 </h:inputText>

</h:form>

In this case if the sever doesn't respond within a second the request will be aborted.

As you can see the implementation of the queue provides some custom event handlers that you

may use to call JavaScript functions.

The "oncomplete" is fired after request completed. In this event handler request object is be

passed as a parameter. Thus queue is be accessible using request.queue. And the element

which was a source of the request is available using this.

Example:

<h:form>

 <a4j:queue oncomplete="alert(request.queue.getSize())" requestDelay="1000" />

 <h:inputText value="#{bean.a}">

 <a4j:support event="onkeyup" />

 </h:inputText>

 <h:selectBooleanCheckbox value="#{bean.check}">

 <a4j:support event="onchange"/>

 </h:selectBooleanCheckbox>

</h:form>

In this example you can see how the number of requests waiting in the queue change. You will

get a message with the number of the requests in the queue.

The "onbeforedomupdate" event handler called before updating DOM on a client side.

The "onrequestqueue" event handler called after the new request has been added to queue. And

the "onrequestdequeue" event handler called after the request has been removed from queue.

Chapter 6. The RichFaces Comp...

138

The "onsubmit" event handler called after request is completed. This attribute allows to invoke

JavaScript code before an Ajax request is sent.

6.1.11.5. JavaScript API

Table 6.23. JavaScript API

Function Description

getSize() Returns the current size to the queue

getMaximumSize() Returns the maximum size to the queue,

specified in the "size" attribute

6.1.11.6. Relevant resources links

Vizit the Queue Page [http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue]

at the RichFaces LiveDemo for examples of component usage and their sources.

Useful articles:

"Queue Principles" section of the RichFaces developer guide describes general Queue principles.

6.1.12. < a4j:status > available since 3.0.0

6.1.12.1. Description

The <a4j:status> component generates elements for displaying of the current Ajax requests

status. There are two status modes: Ajax request is in process or finished.

Table 6.24. a4j : status attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

for ID of the AjaxContainer component whose

status is indicated (in the format of

a javax.faces.UIComopnent.findComponent()

call).

forceId If true, render the ID of the component in HTML

code without JSF modifications.

id JSF: Every component may have a unique id

that is automatically created if omitted

http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue
http://livedemo.exadel.com/richfaces-demo/richfaces/queue.jsf?c=queue

 < a4j:status > available since 3.0.0

139

Attribute Name Description

lang HTML: Code describing the language used in

the generated markup for this component

layout Define visual layout of panel, can be "block" or

"inline".

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onstart The client-side script method to be called at the

start of the request

onstop The client-side script method to be called when

the request is finished

rendered JSF: If "false", this component is not rendered

startStyle CSS style rules to be applied to the element

displayed when a request is in progress

Chapter 6. The RichFaces Comp...

140

Attribute Name Description

startStyleClass Assigns one or more space-separated CSS

class names to the element displayed when a

request is in progress

startText Text to display on starting request.

stopStyle CSS style rules to be applied to the element

displayed on a request completion

stopStyleClass Assigns one or more space-separated CSS

class names to the element displayed on a

request completion

stopText Text for display on request complete.

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

Table 6.25. Component identification parameters

Name Value

component-type org.ajax4jsf.Status

component-family javax.faces.Panel

component-class org.ajax4jsf.component.html.HtmlAjaxStatus

renderer-type org.ajax4jsf.components.AjaxStatusRenderer

6.1.12.2. Creating the Component with a Page Tag

There are two ways to define elements indicating a request status :

• With "StartText"/"StopText" atributes:

<a4j:status startText="Progress" stopText="Done" for="stat1">

In this case, text elements for the corresponding status are generated.

• With "Start" / "Stop" facets definition:

<a4j:status for="stat2">

 < a4j:status > available since 3.0.0

141

 <f:facet name="start">

 <h:graphicImage value="ajax_process.png" />

 </f:facet>

 <f:facet name="stop">

 <h:graphicImage value="ajax_stoped.png" />

 </f:facet>

</a4j:status>

In this case, the elements are generated for each status and correspond the facets content.

6.1.12.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxStatus;

...

HtmlAjaxStatus myStatus = new HtmlAjaxStatus();

...

6.1.12.4. Facets

Table 6.26. Facets

Facet name Description

start Redefines the content for display on starting

request

stop Redefines the content for display on request

complete

6.1.12.5. Details of usage

There are two ways for the components or containers definition, which Ajax requests status is

tracked by a component.

• Definition with the "for" attribute on the <a4j:status> component. Here "for" attribute should

point at an Ajax container (<a4j:region>) id, which requests are tracked by a component.

• Definition with the "status" attribute obtained by any RichFaces library action component. The

attribute should point at the <a4j:status> component id. Then this <a4j:status> component

shows the status for the request fired from this action component.

The component creates two or <div> elements depending on attribute "layout" with

content defined for each status, one of the elements (start) is initially hidden. At the beginning of

Chapter 6. The RichFaces Comp...

142

an Ajax request, elements state is inversed, hence the second element is shown and the first is

hidden. At the end of a response processing, elements display states return to its initial values.

Example:

<a4j:status startText="Started" stopText="stopped" />

The code shown in the example above is decoded on a page as:

 Started

 Stopped

and after the generation of an Ajax response is changed to:

 Started

 Stopped

There is a possibility to group a <a4j:status> elements content into <div> elements, instead of

 . To use it, just redefine the "layout" attribute from "inline" (default) to "block".

6.1.12.6. Relevant resources links

Vizit Status page [http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status] at

RichFaces Livedemo for examples of component usage and their sources.

Useful articles at JBoss portal:

• RichFacesPleaseWaitBox [http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox] describes how

to show a "Please Wait" box and block the input while the Ajax request is processed using

combination of <a4j:status> and <rich:modalPanel> .

6.2. Resources/Beans Handling

The main purpose of the components covered in this section is to load resources (style sheets,

JavaScript files and resource bundle) and to keep a state of a bean between requests.

http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://livedemo.exadel.com/richfaces-demo/richfaces/status.jsf?c=status
http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox
http://wiki.jboss.org/wiki/RichFacesPleaseWaitBox

 < a4j:loadBundle > available since 3.0.0

143

6.2.1. < a4j:loadBundle > available since 3.0.0

6.2.1.1. Description

The <a4j:loadBundle> component is similar to JSF <f:loadBundle> : it loads a resource bundle

localized for the Locale of the current view and stores properties as a Map in the current request

attributes of the current request.

Table 6.27. a4j : loadBundle attributes

Attribute Name Description

basename Base name of the resource bundle to be

loaded.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

var Name of a request scope attribute under which

the resource bundle will be exposed as a Map.

Table 6.28. Component identification parameters

Name Value

component-type org.ajax4jsf.Bundle

component-family org.ajax4jsf.Bundle

component-class org.ajax4jsf.component.html.AjaxLoadBundle

6.2.1.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<a4j:loadBundle baseName="demo.bundle.Messages" var="Message"/>

6.2.1.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLoadBundle;

Chapter 6. The RichFaces Comp...

144

...

AjaxLoadBundle myBundle = new AjaxLoadBundle();

...

6.2.1.4. Details of usage

Internationalization and Localization are the processes of adaptation of web applications for

different languages and cultures. When you develop English and German versions of a site it

can be said that you localize the site for England and Germany. Language is not the only thing

that undergoes the localization — dates, times, numbers, currencies, phone numbers, addresses,

graphics, icons, colors, personal titles and even favourite sounds are also varies from country to

country. It means that an internationalized application may have lots of different types information,

which should be changed depending on user location.

There are several approaches of organizing the localization. The JSF <h:loadBundle> loads

bundles into the request scope when page is being rendered and updates all the needed areas

in a crowd. Bundle information loaded in such way becomes unavailable when dealing with

Ajax requests that work in their own request scopes. The approach provided by RichFaces

<a4j:loadBundle> component enriches one given by the JSF <h:loadBundle> with Ajax

capability: it allows to use reference to a particular bundle item during an Ajax update.

The <a4j:loadBundle> usage is pretty simple. Imagine a small application that says "Hello!"

in different languages, where switching between translations (localizations, in our case) occurs

when corresponding links are being clicked, like you have used to see on lots of sites. In our JSF

with RichFaces application (those who feel not strong with that should better read the "Getting

started with RichFaces" chapter) create resource bundles with "Hello!" message for three different

languages: English, German and Italian. Resource bundles are represented with *.properties

extention files that keep items in key(name) - value pairs. A key for an item should be the same

for all locales.

 < a4j:loadBundle > available since 3.0.0

145

Figure 6.4. Resource bundles *.properties files with Keys and Values for

multi-language application.

#essage resource bundles should be registered in the Faces configuration (faces-config.xml)

file of your application as <message-bundle> inside the <application> element. Name of

a resource should be specified without language or country code and without .properties

extension. Supported locales should be specified inside the <supported-locale> element.

Registering resource bundles in the Faces configuration file:

<application>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>en</supported-locale>

 <supported-locale>de</supported-locale>

 <supported-locale>it</supported-locale>

 </locale-config>

 <message-bundle>demo.message</message-bundle>

</application>

For the application we will use JSF javax.faces.component.UIViewRoot.setLocale method

that will set a needed Locale (each link will invoke corresponding method — there are, off course,

another ways to do that).

ChangeLocale Java class with three methods for setting the correponding Locale:

Chapter 6. The RichFaces Comp...

146

package demo;

 import java.util.Locale;

 import javax.faces.context.FacesContext;

 public class ChangeLocale {

 public String germanAction() {

 FacesContext context = FacesContext.getCurrentInstance();

 context.getViewRoot().setLocale(Locale.GERMAN);

 return null;

 }

 public String englishAction() {

 FacesContext context = FacesContext.getCurrentInstance();

 context.getViewRoot().setLocale(Locale.ENGLISH);

 return null;

 }

 public String italianAction() {

 FacesContext context = FacesContext.getCurrentInstance();

 context.getViewRoot().setLocale(Locale.ITALIAN);

 return null;

 }

}

Recently, the JSP page will look as following:

<h:form>

 <a4j:loadBundle var="msg" basename="demo.message"/>

 <h:outputText id="messageBundle" value="#{msg.greeting}"/>

 <a4j:commandLink value="De" action="#{changeLocale.germanAction}" reRender="messageBundle" /

>

 <a4j:commandLink value="Eng" action="#{changeLocale.englishAction}" reRender="messageBundle" /

>

 <a4j:commandLink value="It" action="#{changeLocale.italianAction}" reRender="messageBundle" /

>

</h:form>

 < a4j:keepAlive > available since 3.0.0

147

As an output we will get a simple application with English "Hello!" by default. Clicking on links

"De", "Eng" and "It" will show the messages specified within the corresponding *.properties

file. To reference to a particular bundle item during an Ajax update it is necessary to point

the component(s) that shold be re-rendered (in this example it is done with the help of

<a4j:commandLink> "reRender" attribute).

Figure 6.5. Using of the RichFaces <a4j:loadBundle> component for

application localization.

6.2.1.5. Relevant resources links

Vizit the LoadBundle page [http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?

c=loadBundle] at RichFaces LiveDemo for additional information on the component.

More useful examples and articles:

• loadBundle tag reference [http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/

loadBundle.html] at java.sun portal;

• Backing a ResourceBundle with Properties Files [http://java.sun.com/docs/books/tutorial/i18n/

resbundle/propfile.html] at java.sun portal;

• Internationalization and Localization of J2EE application [http://www.objectsource.com/

j2eechapters/Ch19-I18N_and_L10N.htm] explains main principles of the internationalization of

a web application;

• one more useful tutorial [http://www.laliluna.de/javaserver-faces-message-resource-bundle-

tutorial.html] explains the internationalization of a web application using JSF message resource

bundle;

• Some special problem with JSF internationalization [http://www.i-coding.de/www/en/jsf/

application/locale.html] and solution from the i-coding.de portal.

6.2.2. < a4j:keepAlive > available since 3.0.0

6.2.2.1. Description

The <a4j:keepAlive> tag allows to keep a state of a bean between requests.

http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://livedemo.exadel.com/richfaces-demo/richfaces/bundle.jsf?c=loadBundle
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/loadBundle.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://java.sun.com/docs/books/tutorial/i18n/resbundle/propfile.html
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.objectsource.com/j2eechapters/Ch19-I18N_and_L10N.htm
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.laliluna.de/javaserver-faces-message-resource-bundle-tutorial.html
http://www.i-coding.de/www/en/jsf/application/locale.html
http://www.i-coding.de/www/en/jsf/application/locale.html
http://www.i-coding.de/www/en/jsf/application/locale.html

Chapter 6. The RichFaces Comp...

148

Table 6.29. a4j : keepAlive attributes

Attribute Name Description

ajaxOnly if true, bean value restored in ajax requests

only.

beanName name of bean for EL-expressions.

Table 6.30. Tag identification parameters

Name Value

component-type org.ajax4jsf.components.KeepAlive

component-family org.ajax4jsf.components.AjaxKeepAlive

component-class org.ajax4jsf.components.AjaxKeepAlive

6.2.2.2. Using the tag on a Page

To create the simplest variant on a page use the following syntax:

Example:

<a4j:keepAlive beanName = "testBean"/>

Note, that to be put into the request scope the pointed bean should be registered inside faces-

config.xml file and marked with org.ajax4jsf.model.KeepAlive annotation. A bean instance

in the request scope could also be saved directly through the declaration of @KeepAlive annotation

inside the bean.

6.2.2.3. Details of usage

If a managed bean is declared with request scope in the configuration file with the help of

<managed-bean-scope> tag then the life-time of this bean instance is valid only for the current

request. Any attempts to make a reference to the bean instance after the request end will throw

in Illegal Argument Exception by the server. To avoid these kinds of Exceptions component

<a4j:keepAlive> is used to maintain the state of the whole bean object among subsequent

request.

Example:

<a4j:keepAlive beanName = "#{myClass.testBean}"/>

The "beanName" attribute defines the request scope bean name you'd like to re-use. Note that

this attribute must point to a legal JSF EL expression which resolves to a managed mean instance.

For example for the above code the class definition may look like this one:

 < a4j:loadScript > available since 3.0.0

149

class MyClass{

 ...

 private TestBean testBean;

 // Getters and Setters for testBean.

 ...

}

The "ajaxOnly" attribute declares whether the value of the bean should be available during a

non-Ajax request. If the value of this attribute is "true" a request scope bean keeps the same value

during Ajax requests from the given page. If a non-Ajax request is sent from this page the bean

is re-created as a regular request scope bean.

6.2.2.4. Relevant resources links

Vizit KeepAlive page [http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?

c=keepAlive] at RichFaces Livedemo for examples of component usage and their sources.

Search the RichFaces Users forum [http://www.jboss.org/index.html?

module=bb&op=viewforum&f=261] for some additional information about usage of component.

6.2.3. < a4j:loadScript > available since 3.0.0

6.2.3.1. Description

The <a4j:loadScript> component allows to load scripts from alternative sources like a jar files,

etc.

Table 6.31. a4j : loadScript attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

src name of JavaScript resource to load.

Table 6.32. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadScript

http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://livedemo.exadel.com/richfaces-demo/richfaces/keepAlive.jsf?c=keepAlive
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261
http://www.jboss.org/index.html?module=bb&op=viewforum&f=261

Chapter 6. The RichFaces Comp...

150

Name Value

component-family org.ajax4jsf.LoadScript

component-class org.ajax4jsf.component.html.HtmlLoadScript

renderer-type org.ajax4jsf.LoadScriptRenderer

6.2.3.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<a4j:loadScript src="scripts/someScript.js"/>

6.2.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlLoadScript;

...

HtmlLoadScript myScript = new HtmlLoadScript();

...

6.2.3.4. Details of usage

The main attribute of the <a4j:loadScript> is "src" , wich defines the context relative path to the

script. The value of the attribute does not require a prefix of an application. Leading slash in the

path means the root of the web context. It is also possible to use resource:/// prefix to access

the script file using RichFaces resource framework.

Example:

<a4j:loadScript src="resource:///org/mycompany/assets/script/focus.js" />

The "src" attribute passses value to the getResourceURL() method of the ViewHandler

of the application, The result is passed through the encodeResourceURL() method of the

ExternalContext.

6.2.3.5. Relevant resources links

Vizit the Script page at RichFaces LiveDemo [http://livedemo.exadel.com/richfaces-demo/

richfaces/script.jsf?c=loadScript] for examples of component usage abd their sources.

http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript
http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript
http://livedemo.exadel.com/richfaces-demo/richfaces/script.jsf?c=loadScript

 < a4j:loadStyle > available since 3.0.0

151

6.2.4. < a4j:loadStyle > available since 3.0.0

6.2.4.1. Description

The <a4j:loadStyle> component allows to load a style sheet file from alternative sources like a

jar file, etc. It inserts stylesheet links to the head element.

Table 6.33. a4j : loadStyle attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

media This attribute defines the device to which it

is necessary to apply style registration. The

possible values are "all", "screen" (by default),

"print", "projection", "projection", "braille" and

"speech".

rendered JSF: If "false", this component is not rendered

src Defines the context relative path to the style

sheet file.

Table 6.34. Component identification parameters

Name Value

component-type org.ajax4jsf.LoadStyle

component-family org.ajax4jsf.LoadStyle

component-class org.ajax4jsf.component.html.HtmlLoadStyle

renderer-type org.ajax4jsf.LoadStyleRenderer

6.2.4.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<a4j:loadStyle src="styles/style.css"/>

6.2.4.3. Creating the Component Dynamically Using Java

Example:

Chapter 6. The RichFaces Comp...

152

import org.ajax4jsf.component.html.HtmlLoadStyle;

...

HtmlLoadScript myStyle = new HtmlLoadStyle();

...

6.2.4.4. Details of usage

The main attribute of the <a4j:loadStylet> is "src" , wich defines the context relative path to the

script. The value of the attribute does not require a prefix of an application. Leading slash in the

path means the root of the web context. It is also possible to use resource:/// prefix to access

the script file using RichFaces resource framework.

Example:

<a4j:loadStyle src="resource:///org/mycompany/assets/script/focus.js" />

The "src" attribute passses value to the getResourceURL() method of the ViewHandler

of the application, The result is passed through the encodeResourceURL() method of the

ExternalContext.

6.2.4.5. Relevant resources links

Vizit the Script page at RichFaces LiveDemo [http://livedemo.exadel.com/richfaces-demo/

richfaces/style.jsf?c=loadStyle] for examples of component usage abd their sources.

6.3. Ajax Validators

RichFaces components library provides 3 components to validate user input data. These

components enhance JSF validation capabilities with Ajax support and possibility to use Hibernate

validators.

6.3.1. < rich:ajaxValidator > available since 3.2.2

3.2.2

6.3.1.1. Description

The <rich:ajaxValidator> is a component designed to provide Ajax validation inside for JSF

inputs.

6.3.1.2. Key Features

• Skips all JSF processing except validation

http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle
http://livedemo.exadel.com/richfaces-demo/richfaces/style.jsf?c=loadStyle

 < rich:ajaxValidator > available since 3.2.2

153

• Possibility to use both standard and custom validation

• Possibility to use Hibernate Validation

• Event based validation triggering

Table 6.35. rich : ajaxValidator attributes

Attribute Name Description

ajaxListener MethodExpression representing an action

listener method that will be notified when this

component is activated by the ajax Request

and handle it. The expression must evaluate

to a public method that takes an AjaxEvent

parameter, with a return type of void. Default

value is "null"

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disableDefault Disables default action for target event

(append "return false;" to JavaScript). Default

value is "false"

event Name of JavaScript event property (onclick,

onchange, etc.) of parent component by which

validation will be triggered. Default value is

"onblur"

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

Chapter 6. The RichFaces Comp...

154

Attribute Name Description

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

onsubmit DHTML: The client-side script method to be

called before an ajax request is submitted

profiles This attribute defines JavaBean Validation

'groups' feature (JSR-303). It is ignored if

Hibernate Validator is used.

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

summary Summary message for a validation errors.

 < rich:ajaxValidator > available since 3.2.2

155

Attribute Name Description

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

Table 6.36. Component identification parameters

Name Value

component-type org.richfaces.ajaxValidator

component-class org.richfaces.component.html.HtmlajaxValidator

component-family org.richfaces.ajaxValidator

renderer-type org.richfaces.ajaxValidatorRenderer

tag-class org.richfaces.taglib.ajaxValidatorTag

6.3.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<h:outputText value="Name:" />

<h:inputText value="#{userBean.name}" id="name" required="true">

 <f:validateLength minimum="3" maximum="12"/>

 <rich:ajaxValidator event="onblur"/>

</h:inputText>

...

6.3.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlCalendar;

...

HtmlAjaxValidator myAjaxValidator= new HtmlAjaxValidator();

...

6.3.1.5. Details of Usage

The <rich:ajaxValidator> component should be added as a child component to an input JSF

tag which data should be validated and an event that triggers validation should be specified as

well. The component is ajaxSingle by default so only the current field will be validated.

Chapter 6. The RichFaces Comp...

156

The following example demonstrates how the <rich:ajaxValidator> adds Ajax functionality

to standard JSF validators. The request is sent when the input field loses focus, the action is

determined by the "event" attribute that is set to "onblur".

...

<rich:panel>

 <f:facet name="header">

 <h:outputText value="User Info:" />

 </f:facet>

 <h:panelGrid columns="3">

 <h:outputText value="Name:" />

 <h:inputText value="#{userBean.name}" id="name" required="true">

 <f:validateLength minimum="3" maximum="12"/>

 <rich:ajaxValidator event="onblur"/>

 </h:inputText>

 <rich:message for="name" />

 <h:outputText value="Age:" />

 <h:inputText value="#{userBean.age}" id="age" required="true">

 <f:convertNumber integerOnly="true"/>

 <f:validateLongRange minimum="18" maximum="99"/>

 <rich:ajaxValidator event="onblur"/>

 </h:inputText>

 <rich:message for="age"/>

 </h:panelGrid>

</rich:panel>

...

This is the result of the snippet.

Figure 6.6. Simple example of <rich:ajaxValidator> with

In the example above it's show how to work with standard JSF validators. The

<rich:ajaxValidator> component also works perfectly with custom validators enhancing their

usage with Ajax.

Custom validation can be performed in two ways:

• Using JSF Validation API is available in javax.faces.validator package

 < rich:ajaxValidator > available since 3.2.2

157

• Using Hibernate Validator, specifying a constraint for the data to be validated. A reference

on Hibernate Validator can be found in Hibernated documentation [http://www.hibernate.org/

hib_docs/validator/reference/en/html_single/].

The following example shows how the data entered by user can be validated using Hibernate

Validator.

...

<rich:panel>

 <f:facet name="header">

 <h:outputText value="User Info:" />

 </f:facet>

 <h:panelGrid columns="3">

 <h:outputText value="Name:" />

 <h:inputText value="#{validationBean.name}" id="name" required="true">

 <rich:ajaxValidator event="onblur" />

 </h:inputText>

 <rich:message for="name" />

 <h:outputText value="Email:" />

 <h:inputText value="#{validationBean.email}" id="email">

 <rich:ajaxValidator event="onblur" />

 </h:inputText>

 <rich:message for="email" />

 <h:outputText value="Age:" />

 <h:inputText value="#{validationBean.age}" id="age">

 <rich:ajaxValidator event="onblur" />

 </h:inputText>

 <rich:message for="age" />

 </h:panelGrid>

</rich:panel>

...

Here is the source code of the managed bean.

package org.richfaces.demo.validation;

import org.hibernate.validator.Email;

import org.hibernate.validator.Length;

import org.hibernate.validator.Max;

import org.hibernate.validator.Min;

import org.hibernate.validator.NotEmpty;

http://www.hibernate.org/hib_docs/validator/reference/en/html_single/
http://www.hibernate.org/hib_docs/validator/reference/en/html_single/
http://www.hibernate.org/hib_docs/validator/reference/en/html_single/

Chapter 6. The RichFaces Comp...

158

import org.hibernate.validator.NotNull;

import org.hibernate.validator.Pattern;

public class ValidationBean {

 private String progressString="Fill the form please";

 @NotEmpty

 @Pattern(regex=".*[^\\s].*", message="This string contain only spaces")

 @Length(min=3,max=12)

 private String name;

 @Email

 @NotEmpty

 private String email;

 @NotNull

 @Min(18)

 @Max(100)

 private Integer age;

 public ValidationBean() {

 }

 /* Corresponding Getters and Setters */

}

By default the Hibernate Validator generates an error message in 10 language, though you can

redefine the messages that are displayed to a user when validation fails. In the shows example it

was done by adding (message="wrong email format") to the @Email annotation.

This is how it looks.

Figure 6.7. Validation using Hibernate validator

 < rich:beanValidator > available since 3.2.2

159

6.3.1.6. Relevant Resources Links

Visit the AjaxValidator page [http://livedemo.exadel.com/richfaces-demo/richfaces/

ajaxValidator.jsf?c=ajaxValidator] at RichFaces LiveDemo for examples of component usage and

their sources.

6.3.2. < rich:beanValidator > available since 3.2.2

3.2.2

6.3.2.1. Description

The <rich:beanValidator> component designed to provide validation using Hibernate model-

based constraints.

6.3.2.2. Key Features

• Validation using Hibernate constraints

Table 6.37. rich : beanValidator attributes

Attribute Name Description

binding JSF: A ValueExpression that evaluates to an

instance of FacesBeanValidator.

profiles This attribute defines JavaBean Validation

'groups' feature (JSR-303). It is ignored if

Hibernate Validator is used.

summary Summary message for a validation errors.

Table 6.38. Component identification parameters

Name Value

component-type org.richfaces.beanValidator

component-class org.richfaces.component.html.HtmlbeanValidator

component-family org.richfaces.beanValidator

renderer-type org.richfaces.beanValidatorRenderer

tag-class org.richfaces.taglib.beanValidatorTag

6.3.2.3. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

<h:inputText value="#{validationBean.email}" id="email">

 <rich:beanValidator summary="Invalid email"/>

</h:inputText>

http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/ajaxValidator.jsf?c=ajaxValidator

Chapter 6. The RichFaces Comp...

160

6.3.2.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.HtmlCalendar;

...

HtmlbeanValidator mybeanValidator= new HtmlbeanValidator();

...

6.3.2.5. Details of Usage

Starting from 3.2.2 GA version Rich Faces provides support for model-based constraints defined

using Hibernate Validator. Thus it's possible to use Hibernate Validators the same as for Seam

based applications.

The <rich:beanValidator> component is defined in the same way as any JSF validator. Look

at the example below.

<rich:panel>

 <f:facet name="header">

 <h:outputText value="#{validationBean.progressString}" id="progress"/>

 </f:facet>

 <h:panelGrid columns="3">

 <h:outputText value="Name:" />

 <h:inputText value="#{validationBean.name}" id="name">

 <rich:beanValidator summary="Invalid name"/>

 </h:inputText>

 <rich:message for="name" />

 <h:outputText value="Email:" />

 <h:inputText value="#{validationBean.email}" id="email">

 <rich:beanValidator summary="Invalid email"/>

 </h:inputText>

 <rich:message for="email" />

 <h:outputText value="Age:" />

 <h:inputText value="#{validationBean.age}" id="age">

 <rich:beanValidator summary="Wrong age"/>

 </h:inputText>

 <rich:message for="age" />

 <f:facet name="footer">

 <a4j:commandButton value="Submit" action="#{validationBean.success}" reRender="progress"/

>

 </f:facet>

 < rich:beanValidator > available since 3.2.2

161

 </h:panelGrid>

</rich:panel>

Please play close attention on the bean code that contains the constraints defined with Hibernate

annotation which perform validation of the input data.

package org.richfaces.demo.validation;

import org.hibernate.validator.Email;

import org.hibernate.validator.Length;

import org.hibernate.validator.Max;

import org.hibernate.validator.Min;

import org.hibernate.validator.NotEmpty;

import org.hibernate.validator.NotNull;

import org.hibernate.validator.Pattern;

public class ValidationBean {

 private String progressString="Fill the form please";

 @NotEmpty

 @Pattern(regex=".*[^\\s].*", message="This string contain only spaces")

 @Length(min=3,max=12)

 private String name;

 @Email

 @NotEmpty

 private String email;

 @NotNull

 @Min(18)

 @Max(100)

 private Integer age;

 public ValidationBean() {

 }

 /* Corresponding Getters and Setters */

 public void success() {

 setProgressString(getProgressString() + "(Strored successfully)");

 }

Chapter 6. The RichFaces Comp...

162

 public String getProgressString() {

 return progressString;

 }

 public void setProgressString(String progressString) {

 this.progressString = progressString;

 }

}

The following figure shows what happens if validation fails

Figure 6.8. <rich:beanValidator> usage

As you can see from the example that in order to validate the <rich:beanValidator> should be

nested into a input JSF or RichFaces component.

The component has the only attribute - "summary" which displays validation messages about

validation errors.

6.3.2.6. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

beanValidator.jsf?c=beanValidator] you can see an example of <rich:beanValidator> usage

and sources for the given example.

6.3.3. < rich:graphValidator > available since 3.2.2

3.2.2

6.3.3.1. Description

The <rich:graphValidator> component allows to register Hibernate Validators for multiple input

components.

6.3.3.2. Key Features

• Skips all JSF processing except validation

http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/beanValidator.jsf?c=beanValidator

 < rich:graphValidator > available since 3.2.2

163

Table 6.39. rich : graphValidator attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

profiles This attribute defines JavaBean Validation

'groups' feature (JSR-303). It is ignored if

Hibernate Validator is used.

summary Summary message for a validation errors.

type HTML: JSF Validator type, that implements

GraphValidator interface.This validator is used

for the Graph and input fields validation.

value JSF: The current value for this component.

Table 6.40. Component identification parameters

Name Value

component-type org.richfaces.graphValidator

component-class org.richfaces.component.html.HtmlgraphValidator

component-family org.richfaces.graphValidator

renderer-type org.richfaces.graphValidatorRenderer

tag-class org.richfaces.taglib.graphValidatorTag

6.3.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<h:outputText value="Name:" />

<h:inputText value="#{userBean.name}" id="name" required="true">

 <f:validateLength minimum="3" maximum="12"/>

 <rich:graphValidator event="onblur"/>

</h:inputText>

...

Chapter 6. The RichFaces Comp...

164

6.3.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlCalendar;

...

HtmlgraphValidator mygraphValidator= new HtmlgraphValidator();

...

6.3.3.5. Details of usage

The <rich:graphValidator> component behaves basically the same way as the

<rich:beanValidator> The deference between these two components is that in order to validate

some input data with a <rich:beanValidator> component, it should be a nested element of

an input component, whereas <rich:graphValidator> wraps multiple input components and

validates the data received from them.

The following example demonstrates a pattern of how the <rich:graphValidator> can be used:

...

<rich:graphValidator>

 <h:panelGrid columns="3">

 <h:outputText value="Name:" />

 <h:inputText value="#{validationBean.name}" id="name">

 <f:validateLength minimum="2" />

 </h:inputText>

 <rich:message for="name" />

 <h:outputText value="Email:" />

 <h:inputText value="#{validationBean.email}" id="email" />

 <rich:message for="email" />

 </h:panelGrid>

</rich:graphValidator>

...

The data validation can be also performed using Hibernate Validator, the same way as it is done

with <rich:beanValidator> .

The components's architecture provides an option to bind the component to a managed bean,

which is done with the "value" attribute. The attribute ensures that the entered data is valid after

the model is updated by revalidating the bean properties.

Please look at the example below.

 < rich:graphValidator > available since 3.2.2

165

...

<rich:graphValidator summary="Invalid values: " value="#{dayStatistics}">

 <a4j:repeat value="#{dayStatistics.dayPasstimes}" var="pt" id="table">

 <h:outputText value="#{pt.title}" />

 <rich:inputNumberSpinner minValue="0" maxValue="24" value="#{pt.time}" id="time" />

 <rich:message for="time" />

 </a4j:repeat>

</rich:graphValidator>

...

Hence, the given above code will provide the functionality that is illustrated on the images below.

Figure 6.9. "Games" field did not pass validation

As you can see from the picture the "Games" field did not pass validation, as

<rich:graphValidator> can be used to perform validation of a single input item.

Figure 6.10. Total sum of all input values is incorrect

The figure above shows that the entered data was revalidated after all fields were completed, and

the data did not pass revalidation since the total sum was incorrect.

Chapter 6. The RichFaces Comp...

166

6.3.3.6. Relevant Resources Links

Visit the GraphValidator page [http://livedemo.exadel.com/richfaces-demo/richfaces/

graphValidator.jsf?c=graphValidator] at RichFaces LiveDemo for examples of component usage

and their sources.

6.4. Ajax Output

The components described in this section render some content dynamically using Ajax

capabilities.

6.4.1. < a4j:include > available since 3.0.0

6.4.1.1. Description

The <a4j:include> component is used to include one view as part of another and navigate there

using standard JSF navigation.

Table 6.41. a4j : include attributes

Attribute Name Description

ajaxRendered Defines, whether the content of this component

must be (or not) included in AJAX response

created by parent AJAX Container, even if it

is not forced by reRender list of ajax action.

Ignored if component marked to output by

some Ajax action component. Default value is

"true".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

id JSF: Every component may have a unique id

that is automatically created if omitted

keepTransient Flag for mark all child components to non-

transient. If true, all children components will

be set to non-transient state and keep in saved

components tree. For output in self-renderer

region all content (By default, all content

in <f:verbatim> tags and non-jsf elements in

facelets, marked as transient - since, self-

rendered ajax regions don't plain output for

ajax processing).

http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator
http://livedemo.exadel.com/richfaces-demo/richfaces/graphValidator.jsf?c=graphValidator

 < a4j:include > available since 3.0.0

167

Attribute Name Description

lang HTML: Code describing the language used in

the generated markup for this component

layout HTML layout for generated markup. Possible

values: "block" for generating an HTML <div>

element, "inline" for generating an HTML

 element, and "none" for generating no

HTML element. There is a minor exception for

the "none" case where a child element has the

property "rendered" set to "false". In this case,

we create an empty element with same

ID as the child element to use as a placeholder

for later processing. Default value is "inline"

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

viewId Specifies the view id of a page that is included.

Table 6.42. Component identification parameters

Name Value

component-type org.ajax4jsf.Include

component-family javax.faces.Output

component-class org.ajax4jsf.component.html.Include

renderer-type org.ajax4jsf.components.AjaxIncludeRenderer

6.4.1.2. Creating the Component with a Page Tag

To create the simplest variant of the component on a page use the following syntax:

Example:

<h:panelGrid>

 <a4j:include viewId="/pages/include/first.xhtml" />

</rich:panelGrid>

Chapter 6. The RichFaces Comp...

168

6.4.1.3. Creating the Component Dynamically Using Java

This component cannot be created dynamically.

6.4.1.4. Details of usage

The component is used to include one view as part of another and may be put anywhere in the

page code. The 'viewID' attribute is used to point at the part to be included and should present

a full context-relative path of the resource in order to be used as from-view and to-view in the

JSF navigation cases. In general the component functions as Fecelets <ui:include> tag but with

partial page navigation in Ajax mode as an advantage.

Note:

To make the RichFaces <a4j:include> component (as well as Facelets

<ui:include> tag) work properly when including the part of the page check that

included page does not generates extra HTML <!DOCTYPE>, <html>, <body>

tags.

The navigation rules could look as following:

Example:

<navigation-rule>

 <from-view-id>/pages/include/first.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>next</from-outcome>

 <to-view-id>/pages/include/second.xhtml</to-view-id>

 </navigation-case>

</navigation-rule>

6.4.1.5. Relevant resources links

Vizit the Include page [http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?

c=include] for examples of component usage and their sources.

6.4.2. < a4j:mediaOutput > available since 3.0.0

6.4.2.1. Description

The <a4j:mediaOutput> component is a facility for generating images, video, sounds and other

binary resources defined by you on-the-fly.

http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include
http://livedemo.exadel.com/richfaces-demo/richfaces/include.jsf?c=include

 < a4j:mediaOutput > available since 3.0.0

169

Table 6.43. a4j : mediaOutput attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

align Deprecated. This attribute specifies the

position of an IMG, OBJECT, or APPLET with

respect to its context. The possible values are

"bottom", "middle", "top", "left" and "right". The

default value is "middle".

archive Specifies a space-separated list of URIs

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: Deprecated. This attribute specifies the

width of an IMG or OBJECT border, in pixels.

The default value for this attribute depends on

the user agent

cacheable Attribute is a flag that defines the caching

strategy. If 'cacheable' is set to false, the

response will not be cached. If it is set to true,

it will be cached and the serialized value of

'value' attribute plays the role of a cache key.

charset HTML: The character encoding of a resource

designated by this hyperlink

classid identifies an implementation

codebase base URI for classid, data, archive

codetype Defines content type for code

converter JSF: ID of a converter to be used or a reference

to a converter.

coords HTML: The attribute specifies shape and it

position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", "circle: center-

x, center-y, radius", "poly: x1, y1, x2, y2, ..., xN,

yN". Notes: a) when giving the radius value in

percents, user agents should calculate the final

radius value in pixels based on the associated

Chapter 6. The RichFaces Comp...

170

Attribute Name Description

object's width and height; b) the radius value

should be smaller than center-x and center-

y values; c) for a polygon, the first and last

coordinate pairs should have same x and y to

close the shape (x1=xN; y1=yN) (when these

coordinates are different, user agents should

infer an additional pair to close a polygon).

Coordinates are relative to the top left corner

of an object. All values are lengths. All values

are comma separated.

createContent Method call expression to send generated

resource to OutputStream. It must have two

parameter with a type of java.io.OutputStream

and java.lang.Object (deserialized value of

data attribute)

createContentExpression Attribute references to the method that will be

used for content creating. The method accepts

two parameters. The first parameter has an

OutputStream type. It is a reference to the

steam that should be used for output. The

second parameter is a reference to a 'value'

attribute of the component.

declare declare but don't instantiate flag

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

element Name of html element for resource link - may

be <a> <object> <applet> <script> or

<link>

expires The attribute allows to manage caching and

defines the period after which a resource is

reloaded.

hreflang HTML: Base language of a resource specified

with the href attribute; hreflang may only be

used with href

hspace Deprecated. This attribute specifies the

amount of white space to be inserted to the left

and right of an IMG, APPLET, or OBJECT. The

default value is not specified, but is generally a

small, non-zero length

 < a4j:mediaOutput > available since 3.0.0

171

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

ismap use server-side image map

lang HTML: Code describing the language used in

the generated markup for this component

lastModified The attribute allows to manage caching. A

browser can send request with the header

"If-Modified-Since" for necessity of object

reloading. If time of modification is earlier,

then the framework doesn't call generation and

return code 304.

mimeType Geterated content mime-type for append to

response header ('image/jpeg' etc)

onblur DHTML: The client-side script method to be

called when the element loses the focus either

when pointing a device or tabbing navigation.

The attribute may be used with the same

elements as onfocus

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

172

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rel HTML: The relationship from the current

document to the anchor specified by this

hyperlink. The value of this attribute is a space-

separated list of link types

rendered JSF: If "false", this component is not rendered

rev HTML: A reverse link from the anchor specified

by this hyperlink to the current document. The

value of this attribute is a space-separated list

of link types

session If "true", a session for an object generation is

restored.

shape HTML: This attribute specifies the shape of

a region. The possible values are "default",

"rect", "circle" and "poly".

standby message to show while loading

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

target HTML: This attribute specifies the name of a

frame where a document is to be opened. By

assigning a name to a frame via the name

attribute, authors can refer to it as the "target"

of links defined by other elements

 < a4j:mediaOutput > available since 3.0.0

173

Attribute Name Description

title HTML: Advisory title information about markup

elements generated for this component

type HTML: The content type of the resource

designated by this hyperlink

uriAttribute Name of attribute for resource-link attribute

('href' for <a>, 'src' for or <script>, etc)

usemap Specifies an image as a client-side image-map

value JSF: Data value calculated at render time and

stored in URI (also as part of cache Key),

at generation time passed to send method.

Can be used for update cache at change of

generating conditions, and for creating beans

as "Lightweight" pattern components (request

scope). IMPORTANT: Since serialized data

stored in URI, avoid using big objects.

vspace Deprecated. This attribute specifies the

amount of white space to be inserted above

and below an IMG, APPLET, or OBJECT. The

default value is not specified, but is generally a

small, non-zero length

Table 6.44. Component identification parameters

Name Value

component-type org.ajax4jsf.MediaOutput

component-family org.ajax4jsf.Resource

component-class org.ajax4jsf.component.html.MediaOutput

renderer-type org.ajax4jsf.MediaOutputRenderer

6.4.2.2. Creating the Component with a Page Tag

Component definition on a page for graphical data output

Example:

<a4j:mediaOutput element="img" cacheable="false" session="true" createContent="#{paintBean.paint}" value="#{paintData}" mimeType="image/

png"/>

6.4.2.3. Creating the Component Dynamically Using Java

Example:

Chapter 6. The RichFaces Comp...

174

import org.ajax4jsf.component.html.MediaOutput;

...

MediaOutput myMedia = new MediaOutput ();

...

6.4.2.4. Details of usage

The <a4j:mediaOutput> component is used for generating images, videos or sounds on-the-fly.

Let's consider an image creation and generate a JPEG image with verification digits for captcha

(the image will include just digits without any graphical noise and distortion).

Write the following line on the page:

<a4j:mediaOutput element="img" cacheable="false" session="false" createContent="#{mediaBean.paint}" value="#{mediaData}" mimeType="image/

jpeg"/>

As You see from the example above, first it is necessary to specify the kind of media data You

want to generate. This can be done with the help of "element" attribute, which possible values

are img, object, applet, script, link or a.

The "cacheable" defines whether the response will be cached or not. In our case we don't need

our image to be cached, cause we need it to be changed every time we refresh the page.

The "mimeType" attribute defines the type of output content. It is used to define the corresponded

type in the header of an HTTP response.

The <a4j:mediaOutput> attribute has two main attributes:

• "createContent" specifies a method that will be used for content creating. The method accepts

two parameters. The first one — with an java.io.OutputStream type — is a reference to the

stream that should be used for output. An output stream accepts output bytes and sends them

to a recipient. The second parameter is a reference to the component's "value" attribute and

has java.lang.Object type. This parameter contains deserialized object with data specified

in the "value" attribute.

• "value" attribute specifies a bean class that keeps data for transmitting it into a stream in the

method specified with "createContent" .

Now let's create the MediaBean class and specify there a primitive random-number generator and

paint method that will convert the generated numbers into an output stream and give a JPEG

image as a result. The code for MediaBean class is going to look as following:

Example:

package demo;

 < a4j:mediaOutput > available since 3.0.0

175

import java.awt.Graphics2D;

import java.awt.image.BufferedImage;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Random;

import javax.imageio.ImageIO;

public class MediaBean {

 public void paint(OutputStream out, Object data) throws IOException{

 Integer high = 9999;

 Integer low = 1000;

 Random generator = new Random();

 Integer digits = generator.nextInt(high - low + 1) + low;

 if (data instanceof MediaData) {

 MediaData paintData = (MediaData) data;

 BufferedImage img = new BufferedImage(paintData.getWidth(),paintData.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics2D graphics2D = img.createGraphics();

 graphics2D.setBackground(paintData.getBackground());

 graphics2D.setColor(paintData.getDrawColor());

 graphics2D.clearRect(0,0,paintData.getWidth(),paintData.getHeight());

 graphics2D.setFont(paintData.getFont());

 graphics2D.drawString(digits.toString(), 20, 35);

 ImageIO.write(img,"png",out);

 }

 }

}

Now it is necessary to create a class that will keep transmissional data that will be used as input

data for a content creation method. The code for MediaData class is going to be as following:

Note:

A bean class transmitted into value should implement Serializable interface in

order to be encoded to the URL of the resource.

Example:

package demo;

import java.awt.Color;

import java.awt.Font;

Chapter 6. The RichFaces Comp...

176

import java.io.Serializable;

public class MediaData implements Serializable{

 private static final long serialVersionUID = 1L;

 Integer Width=110;

 Integer Height=50;

 Color Background=new Color(190, 214, 248);

 Color DrawColor=new Color(0,0,0);

 Font font = new Font("Serif", Font.TRUETYPE_FONT, 30);

 /* Corresponding getters and setters */

}

As a result the <a4j:mediaOutput> component will generate the following image that will be

updated on each page refresh:

Figure 6.11. Using the <a4j:mediaOutput> for generating an image for

captcha

Hence, when using the component it's possible to output your data of any type on a page with

Ajax requests.

6.4.2.5. Relevant resources links

Vizit the MediaOutput page [http://livedemo.exadel.com/richfaces-demo/richfaces/

mediaOutput.jsf?c=mediaOutput] at RichFaces LiveDemo for more examples of component

usage and their sources.

6.4.3. < a4j:outputPanel > available since 3.0.0

6.4.3.1. Description

The component is used for components grouping in the Ajax output area, which offers several

additional output opportunities such as inserting of non-present in tree components, saving of

transient elements after Ajax request and some others.

http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput
http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput
http://livedemo.exadel.com/richfaces-demo/richfaces/mediaOutput.jsf?c=mediaOutput

 < a4j:outputPanel > available since 3.0.0

177

Table 6.45. a4j : outputPanel attributes

Attribute Name Description

ajaxRendered Defines, whether the content of this component

must be (or not) included in AJAX response

created by parent AJAX Container, even if it

is not forced by reRender list of ajax action.

Ignored if component marked to output by

some Ajax action component. Default value is

"false".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

id JSF: Every component may have a unique id

that is automatically created if omitted

keepTransient Flag to mark all child components to non-

transient. If true, all children components will

be set to non-transient state and keep in saved

components tree. For output in self-renderer

region all content (By default, all content

in <f:verbatim> tags and non-jsf elements in

facelets, marked as transient - since, self-

rendered ajax regions don't plain output for

ajax processing). Default value is "true"

lang HTML: Code describing the language used in

the generated markup for this component

layout HTML layout for generated markup. Possible

values: "block" for generating an HTML <div>

element, "inline" for generating an HTML

 element, and "none" for generating no

HTML element. There is a minor exception for

the "none" case where a child element has the

property "rendered" set to "false". In this case,

we create an empty element with same

ID as the child element to use as a placeholder

for later processing. Default value is "inline"

onclick DHTML: The client-side script method to be

called when the element is clicked

Chapter 6. The RichFaces Comp...

178

Attribute Name Description

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

Table 6.46. Component identification parameters

Name Value

component-type org.ajax4jsf.OutputPanel

component-family javax.faces.Panel

component-type org.ajax4jsf.ajax.OutputPanel

 < a4j:outputPanel > available since 3.0.0

179

Name Value

component-class org.ajax4jsf.component.html.HtmlAjaxOutputPanel

renderer-type org.ajax4jsf.components.AjaxOutputPanelRenderer

6.4.3.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

<a4j:outputPanel>

 <h:form>

 <h:outputText value="Some text"/>

 <h:inputText id="text1" label="text1" value="#{rsBean.text1}"/>

 </h:form>

</a4j:outputPanel>

6.4.3.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxOutputPanel;

...

HtmlAjaxOutputPanel myPanel = new HtmlAjaxOutputPanel();

6.4.3.4. Details of usage

The <a4j:outputPanel> component is used when one or more components should be always

updated. The component job is similar to that the "reRender" attribute does, but instead of

specifying a comma separated list of components it wraps the components to be updated. This

could be useful in cases when some components aren't rendered during the primary non-ajax

response.

Example:

<a4j:support reRender="mypanel"/>

...

<a4j:outputPanel id="mypanel">

 <h:panelGrid rendered="#{not empty foo.bar}">

 ...

 </h:panelGrid>

Chapter 6. The RichFaces Comp...

180

</a4j:outputPanel>

By default the <a4j:outputPanel> is rendered as opening and closing HTML tags and

functions as container. With the help of the "layout" attribute this output way could be set to any

of three variants:

• "inline" (default)

• "block"

• "none"

If layout="block" is set, the component is rendered as a pair of opening and closing <div>

tags. In this case it is possible to apply available for <div> elements style attributes. layout

="none" helps to avoid an unnecessary tag around a context that is rendered or not according to

the "rendered" attribute value. In case an inner context isn't rendered the <a4j:outputPanel>

is rendered in a tags with ID equal to ID of a child component and display:none style.

If a child component is rendered, <a4j:outputPanel> doesn't present at all in a final code.

Example:

<a4j:support reRender="mypanel"/>

 ...

<a4j:outputPanel layout="none">

 <h:panelGrid id="mypanel" rendered="#{not empty foo.bar}">

 ...

 </h:panelGrid>

</a4j:outputPanel>

As you see, the code is very similar to the one shown above, but "reRender " attribute refers

directly to the updating panelGrid and not to the framing outputPanel, and it's more semantically

correct.

The <a4j:outputPanel> allows to update a part of a page basing on its own flag. The flag is

defined by the "ajaxRendered" attribute. The flag is commonly used when a part of a page must

be updated or can be updated on any response.

Example:

<a4j:outputPanel ajaxRendered="true">

 <h:messages/>

</a4j:outputPanel>

Ajax Miscellaneous

181

The <a4j:outPanel> should be used for non-JSF component part framing, which is to be updated

on Ajax response, as RichFaces specifies the list of updating areas as a list of an existing JSF

component.

On default non-JSF context isn't saved in a component tree, but is rendered anew every time.

To accelerate the processing speed and Ajax response input speed, RichFaces saves non-JSF

context in a component tree on default. This option could be canceled by "keepTransient" attribute

that cancels transient flag forced setting for child components. This flag setting keeps the current

value set by child components.

Note:

In JSF 1.1 implementation and lower, where non-JSF context should be framed

with the <f:verbatim> component, <a4j:outputPanel> doesn't improve this

JSF implementation option in any way, so you still have to use this tag where it's

necessary without RichFaces usage.

RichFaces allows setting Ajax responses rendering directly basing on component tree nodes

without referring to the JSP (XHTML) page code. It could be defined by "selfRendered" attribute

setting to "true" on <a4j:region> and could help considerably speed up a response output.

However, if a transient flag is kept as it is, this rapid processing could cause missing of transient

components that present on view and don't come into a component tree. Hence, for any particular

case you could choose a way for you application optimization: speed up processing or redundant

memory for keeping tree part earlier defined a transient.

6.4.3.5. Relevant resources links

Vizit OutputPanel page [http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?

c=outputPanel] at RichFaces Livedemo for examples of component usage and their sources.

Useful articles:

• search the RichFaces Users Forum [http://www.jboss.org/index.html?

module=bb&op=viewforum&f=26] for some additional information on component usage;

6.5. Ajax Miscellaneous

6.5.1. < a4j:page > available since 3.0.0

6.5.1.1. Description

The <a4j:page> component encodes the full HTML-page structure and used for solving some

incompatibility in JSP environment with MyFaces in early Ajax4Jsf versions.

http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/outputPanel.jsf?c=outputPanel
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26
http://www.jboss.org/index.html?module=bb&op=viewforum&f=26

Chapter 6. The RichFaces Comp...

182

Table 6.47. a4j : page attributes

Attribute Name Description

ajaxListener MethodExpression representing an action

listener method that will be notified when this

component is activated by the ajax Request

and handle it. The expression must evaluate

to a public method that takes an AjaxEvent

parameter, with a return type of void

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

contentType Set custom mime content type to response

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

format Page layout format (html, xhtml, html-

transitional, html-3.2) for encoding DOCTYPE,

namespace and Content-Type definitions

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate Flag indicating that, if this component is

activated by ajaxrequest, notifications should

be delivered to interested listeners and actions

immediately (that is, during Apply Request

Values phase) rather than waiting until Invoke

Application phase

lang HTML: Code describing the language used in

the generated markup for this component

namespace Set html element default namespace

onload The client-side script method to be called

before a page is loaded

onunload The client-side script method to be called when

a page is unloaded

pageTitle String for output as a page title.

rendered JSF: If "false", this component is not rendered

selfRendered if "true", self-render subtree at

InvokeApplication (or Decode, if immediate

property set to true) phase

 < a4j:page > available since 3.0.0

183

Attribute Name Description

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

Table 6.48. Component identification parameters

Name Value

component-type org.ajax4jsf.components.Page

component-family org.ajax4jsf.components.AjaxRegion

component-class org.ajax4jsf.component.html.HtmlPage

renderer-type org.ajax4jsf.components.AjaxPageRenderer

6.5.1.2. Creating the component with a Page Tag

The <a4j:page> should be the only child of <f:view> :

<f:view>

 <a4j:page>

 <f:facet name="head">

 <!--Head Content-->

 </f:facet>

 <!--Page Content-->

 </a4j:page>

</f:view>

6.5.1.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlPage;

...

HtmlPage myPage = new HtmlPage();

...

Chapter 6. The RichFaces Comp...

184

6.5.1.4. Details of usage

The component solves the problem with MyFaces for early Ajax4Jsf versions: in MyFaces

implementation the <f:view> JSP tag doesn't get control for encoding contents during the

RENDER_RESPONSE phase, thus Ajax can't neiher get a control nor make a response. The

<a4j:page> solves this problem by wrapping the Ajax updatable areas. In the last versions of

both frameworks the problem is successfully fixed and no <a4j:page> usage is required.

The component uses facet "head" for defining the contents corresponding to the HTML HEAD.

There is no need to use "body" facet in order to define first body section. The attribute "format"

defines page layout format for encoding DOCTYPE. The attribute "pageTitle" is rendered as

title section.

According to the described above, the component defined at page as following

<a4j:page format="xhtml" pageTitle="myPage">

 <f:facet name="head">

 <!--Head Content here-->

 </f:facet>

 <!--Page Content Here-->

</a4j:page>

will be rendered on a page as

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/

DTD/xhtml1-strict.dtd">

<html>

 <head>

 <title>myPage</title>

 <!--Head Content here-->

 </head>

 <body>

 <!--Page Content Here-->

 </body>

</html>

6.5.1.5. Facets

Table 6.49. Facets

Facet name Description

head Defines a head content

 < a4j:portlet > available since 3.0.0

185

6.5.1.6. Relevant resources links

Vizit the AjaxPage page [http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page]

at RichFaces LiveDemo for examples of component usage and their sources.

6.5.2. < a4j:portlet > available since 3.0.0

6.5.2.1. Description

The <a4j:portlet> component is DEPRECATED as far as JSR-301 was defined a same

functionality for a UIViewRoot component. Thus, it is implicitly defined by mandatory <f:view>

component.

Table 6.50. a4j : portlet attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

Table 6.51. Component identification parameters

Name Value

component-type org.ajax4jsf.Portlet

component-family org.ajax4jsf.component.Portlet

component-class org.ajax4jsf.component.html.HtmlPortlet

6.5.2.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<f:view>

 <a4j:portlet>

 ...

 </a4j:portlet>

</f:view>

6.5.2.3. Creating the Component Dynamically Using Java

http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page
http://livedemo.exadel.com/richfaces-demo/richfaces/page.jsf?c=page

Chapter 6. The RichFaces Comp...

186

import org.ajax4jsf.component.html.HtmlPortlet;

...

HtmlPortlet myPortlet = new HtmlPortlet();

...

6.5.2.4. Details of usage

The main component purpose is realization of possibility to create several instances the same

portlet on one page. But clientId of elements should be different for each window. In that case

namespace is used for each portlet. The <a4j:portlet> implemets NaimingContainer interface

and adds namespace to all componets on a page. All portlet content should be wrapped by

<a4j:portlet> for resolving problems mentioned before.

6.5.2.5. Relevant resources links

Vizit the Portlet page [http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet]

at RichFaces LiveDemo for examples of component usage and their sources.

Useful publications:

• Ajax4Jsf Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&t=107325] — check the forum for additional information about

component usage;

• portal-echo application [http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/] —

Portlet Sample, could be checked out from JBoss SVN;

• First snapshot with Portal environment support [http://www.jboss.com/index.html?

module=bb&op=viewtopic&t=107325] contains usage instructions for the Portlet Sample demo.

6.5.3. < a4j:htmlCommandLink > available since 3.0.0

6.5.3.1. Description

The <a4j:htmlCommandLink> component is very similar to the same component from the JSF

HTML library, the only slight difference is in links generation and problem solving that occurs when

an original component is used.

Table 6.52. a4j : htmlCommandLink attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://livedemo.exadel.com/richfaces-demo/richfaces/portlet.jsf?c=portlet
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://anonsvn.jboss.org/repos/ajax4jsf/trunk/samples/portal-echo/
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=107325

 < a4j:htmlCommandLink > available since 3.0.0

187

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

charset HTML: The character encoding of a resource

designated by this hyperlink

coords HTML: The attribute specifies shape and it

position on the screen. Possible values: "rect:

left-x, top-y, right-x, bottom-y", "circle: center-

x, center-y, radius", "poly: x1, y1, x2, y2, ..., xN,

yN". Notes: a) when giving the radius value in

percents, user agents should calculate the final

radius value in pixels based on the associated

object's width and height; b) the radius value

should be smaller than center-x and center-

y values; c) for a polygon, the first and last

coordinate pairs should have same x and y to

close the shape (x1=xN; y1=yN) (when these

coordinates are different, user agents should

infer an additional pair to close a polygon).

Coordinates are relative to the top left corner

of an object. All values are lengths. All values

are comma separated.

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

disabled HTML: When set for a form control, this

boolean attribute disables the control for your

input.

hreflang HTML: Base language of a resource specified

with the href attribute; hreflang may only be

used with href

id JSF: Every component may have a unique id

that is automatically created if omitted

Chapter 6. The RichFaces Comp...

188

Attribute Name Description

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

lang HTML: Code describing the language used in

the generated markup for this component

onblur DHTML: The client-side script method to be

called when the element loses the focus either

when pointing a device or tabbing navigation.

The attribute may be used with the same

elements as onfocus

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

 < a4j:htmlCommandLink > available since 3.0.0

189

Attribute Name Description

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rel HTML: The relationship from the current

document to the anchor specified by this

hyperlink. The value of this attribute is a space-

separated list of link types

rendered JSF: If "false", this component is not rendered

rev HTML: A reverse link from the anchor specified

by this hyperlink to the current document. The

value of this attribute is a space-separated list

of link types

shape HTML: This attribute specifies the shape of

a region. The possible values are "default",

"rect", "circle" and "poly".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

target HTML: This attribute specifies the name of a

frame where a document is to be opened. By

assigning a name to a frame via the name

attribute, authors can refer to it as the "target"

of links defined by other elements

title HTML: Advisory title information about markup

elements generated for this component

type HTML: The content type of the resource

designated by this hyperlink

value JSF: The current value for this component

Table 6.53. Component identification parameters

Name Value

component-type javax.faces.HtmlCommandLink

component-family javax.faces.Command

Chapter 6. The RichFaces Comp...

190

Name Value

component-class javax.faces.component.html.HtmlCommandLink

renderer-type org.ajax4jsf.HtmlCommandLinkRenderer

6.5.3.2. Creating the Component with a Page Tag

Component definition on a page is the same as for the original component from the JSF HTML

library.

Example:

<a4j:htmlCommandLink value="value" action="action"/>

6.5.3.3. Creating the Component Dynamically Using Java

Example:

import javax.faces.component.html.HtmlCommandLink;

...

HtmlCommandLink myCommandLink = new HtmlCommandLink();

...

6.5.3.4. Key attributes and ways of usage

The difference with the original component is that all hidden fields required for command links with

the child <f:param> elements are always rendered and it doesn't depend on links rendering on

the initial page. It solves the problem with invalid links that weren't rendered on a page immediately,

but after some Ajax request.

Example:

<a4j:form>

 ...

 <a4j:htmlComandLink action="action" value="link" rendered="#{bean.rendered}">

 <f:param .../>

 <a4j:htmlComandLink>

 ...

</a4j:form>

 < a4j:log > available since 3.0.0

191

In this example <a4j:htmlCommandLink> works as standard <h:commandLink> , but here

hidden fields required for correct functionality are rendered before the first downloading of a page,

though it doesn't happen if its attribute isn't set to "false".

6.5.3.5. Relevant resources links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

htmlCommandLink.jsf?c=htmlCommandLink] you can found some additional information for

<a4j:htmlCommandLink> component usage.

On RichFaces LiveDemo page [http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/

f/param.html] you can found some additional information about <f:param> component.

6.5.4. < a4j:log > available since 3.0.0

6.5.4.1. Description

The <a4j:log > component generates JavaScript that opens a debug window with useful debug

information.

Table 6.54. a4j : log attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

height Height of pop-up. Default value is "600".

hotkey Keyboard key for activate (in combination with

CTRL+SHIFT) log window. Default value is "L"

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

level Log level. The possible values are "FATAL",

"ERROR", "WARN", "INFO", "DEBUG", "ALL".

Component sets level 'ALL' by default.

name Name of pop-up window. Default value is

"LogWindow"

onclick DHTML: The client-side script method to be

called when the element is clicked

http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://livedemo.exadel.com/richfaces-demo/richfaces/htmlCommandLink.jsf?c=htmlCommandLink
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

Chapter 6. The RichFaces Comp...

192

Attribute Name Description

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

popup Renders log as pop-up window or as div

element on the page. Default value is "true".

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

width HTML: Width of pop-up. Default value is "800".

 < a4j:log > available since 3.0.0

193

Table 6.55. Component identification parameters

Name Value

component-type org.ajax4jsf.Log

component-family org.ajax4jsf.Log

component-class org.ajax4jsf.component.html.AjaxLog

renderer-type org.ajax4jsf.LogRenderer

6.5.4.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<a4j:log popup="false" level="ALL" style="width: 800px; height: 300px;"></a4j:log>

Then, in order to open a log window, press "CTRL+SHIFT+L" on a page with the component.

6.5.4.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.AjaxLog;

...

AjaxLog myLog = new AjaxLog();

...

6.5.4.4. Details of usage

The <a4j:log > component generates JavaScript that opens a log window with useful debug

information, which contains data on requests and responses, DOM tree changes et al. The log

could be generated not only in a new window, but also on the current page in a separate <div>

element. This feature is controlled with the component "popup" attribute. The window is opened

on pressing of "CTRL+SHIFT+L", which is default registered key. The hot key could be changed

with the "hotkey" attribute, where it's necessary to define one letter that together with "CTRL

+SHIFT" opens a window.

The "level" attribute has several possible values "FATAL", "ERROR", "WARN", "INFO", "ALL"

and is used when it is necessary to change a logging level.

Example:

<a4j:log level="ALL" popup="false" width="400" height="200"/>

Chapter 6. The RichFaces Comp...

194

The component defined this way is decoded on a page as <div> inside a page, where all the

information beginning with informational message is generated.

Note:

<a4j:log> is getting renewed automatically after execution of Ajax requests. Do

not renew <a4j:log> by using reRender!

6.5.4.5. Relevant resources links

Vizit the Log page [http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log] at

RichFaces LiveDemo for example of component usage and their sources.

6.6. Data Iteration

The following components iterate over a collection of data and represent it on the page.

6.6.1. < rich:column > available since 3.0.0

6.6.1.1. Description

The component for row rendering for a UIData component.

Figure 6.12. <rich:column> component

6.6.1.2. Key Features

• Completely skinned table rows and child elements

• Possibility to combine columns with the help of "colspan"

• Possibility to combine rows with the help of "rowspan" and "breakBefore"

http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log
http://livedemo.exadel.com/richfaces-demo/richfaces/log.jsf?c=log

 < rich:column > available since 3.0.0

195

• Sorting column values

• Filtering column values

Table 6.56. rich : column attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

breakBefore if "true" next column begins from the first row

colspan Corresponds to the HTML colspan attribute

comparator Defines value binding to the comparator that is

used to compare the values

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

filterBy Defines iterable object property which is used

when filtering performed.

filterEvent Event for filter input that forces the filtration

(default value is "onchange")

filterExpression Attribute defines a bean property which is used

for filtering of a column

filterMethod This attribute is defined with method binding.

This method accepts on Object parameter and

return boolean value

filterValue Defines current filtering value

footerClass Assigns one or more space-separated CSS

class names to any footer generated for this

component

headerClass Assigns one or more space-separated CSS

class names to any header generated for this

component

id JSF: Every component may have a unique id

that is automatically created if omitted

label Column label for drag indicator. Usable only for

extendedDataTable component

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowspan Corresponds to the HTML rowspan attribute

Chapter 6. The RichFaces Comp...

196

Attribute Name Description

selfSorted Manages if the header of the column is

clickable, icons rendered and sorting is fired

after click on the header. You need to

define this attribute inside <rich:dataTable>

component. Default value is "true"

sortable Boolean attribute. If "true" it's possible to sort

the column content after click on the header.

Default value is "true"

sortBy Defines a bean property which is used for

sorting of a column. This attribute used with

<rich:dataTable>

sortExpression Defines a bean property which is used for

sorting of a column and used only with

<rich:scrollableDataTable>.

sortIcon Defines sort icon. The value for the attribute is

context related.

sortIconAscending Defines sort icon for ascending order. The

value for the attribute is context related.

sortIconDescending Defines sort icon for descending order. The

value for the attribute is context related.

sortOrder SortOrder is an enumeration of the possible

sort orderings. Default value is "UNSORTED"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

visible The attribute is used to define whether the

component is visible or not. The default value

is "true".

width HTML: Attribute defines width of column.

Table 6.57. Component identification parameters

Name Value

component-type org.richfaces.Column

component-class org.richfaces.component.html.HtmlColumn

 < rich:column > available since 3.0.0

197

Name Value

component-family org.richfaces.Column

renderer-type org.richfaces.ColumnRenderer

tag-class org.richfaces.taglib.ColumnTag

6.6.1.3. Creating the Component with a Page Tag

To create the simplest variant of column on a page, use the following syntax:

Example:

...

<rich:dataTable var="set">

 <rich:column>

 <h:outputText value="#{set.property1}"/>

 </rich:column>

 <!--Set of another columns and header/footer facets-->

</rich:dataTable>

...

6.6.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlColumn;

...

HtmlColumn myColumn = new HtmlColumn();

...

6.6.1.5. Details of Usage

To output a simple table, the <rich:column> component is used the same way as the standard

<h:column> , i.e. the following code on a page is used:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">

 <rich:column>

 <f:facet name="header">State Flag</f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

Chapter 6. The RichFaces Comp...

198

 </rich:column>

 <rich:column>

 <f:facet name="header">State Name</f:facet>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column >

 <f:facet name="header">State Capital</f:facet>

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 <rich:column>

 <f:facet name="header">Time Zone</f:facet>

 <h:outputText value="#{cap.timeZone}"/>

 </rich:column>

</rich:dataTable>

...

The result is:

Figure 6.13. Generated <rich:column> component

Now, in order to group columns with text information into one row in one column with a flag, use

the "colspan" attribute, which is similar to an HTML one, specifying that the first column contains

3 columns. In addition, it's necessary to specify that the next column begins from the first row with

the help of the breakBefore="true".

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">

 <rich:column colspan="3">

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 < rich:column > available since 3.0.0

199

 <rich:column breakBefore="true">

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column >

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 <rich:column>

 <h:outputText value="#{cap.timeZone}"/>

 </rich:column>

</rich:dataTable>

...

As a result the following structure is rendered:

Figure 6.14. <rich:column> modified with "colspan" and "breakbefore"

attributes

The same way is used for columns grouping with the "rowspan" attribute that is similar to an HTML

one responsible for rows quantity definition occupied with the current one. The only thing to add

in the example is an instruction to move onto the next row for each next after the second column.

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">

 <rich:column rowspan="3">

 <f:facet name="header">State Flag</f:facet>

Chapter 6. The RichFaces Comp...

200

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 <rich:column>

 <f:facet name="header">State Info</f:facet>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="#{cap.timeZone}"/>

 </rich:column>

</rich:dataTable>

...

As a result:

Figure 6.15. <rich:column> generated with "rowspan" attribute

Hence, additionally to a standard output of a particular row provided with the <h:column>

component, it becomes possible to group easily the rows with special HTML attribute.

The columns also could be grouped in a particular way with the help of the <h:columnGroup>

component that is described in the following chapter.

 < rich:column > available since 3.0.0

201

In the Dynamic Columns Wiki article [http://wiki.jboss.org/wiki/DynamicColumns] you can find

additional information about dynamic columns.

6.6.1.6. Sorting and Filtering

6.6.1.6.1. Sorting

In order to sort the columns you should use "sortBy" attribute that indicates what values to be

sorted.This attribute can be used only with the <rich:dataTable> component. In order to sort the

column you should click on its header. See the following example.

Example:

...

<h:form>

 <rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">

 <f:facet name="header">

 <h:outputText value="Sorting Example"/>

 </f:facet>

 <rich:column sortBy="#{cap.state}">

 <f:facet name="header">

 <h:outputText value="State Name"/>

 </f:facet>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column sortBy="#{cap.name}">

 <f:facet name="header">

 <h:outputText value="State Capital"/>

 </f:facet>

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 </rich:dataTable>

</h:form>

...

This is result:

http://wiki.jboss.org/wiki/DynamicColumns
http://wiki.jboss.org/wiki/DynamicColumns

Chapter 6. The RichFaces Comp...

202

Figure 6.16. <rich:column> with "sortBy" attribute

The "sortExpression" attribute defines a bean property which is used for sorting of a column.

This attribute can be used only with the <rich:scrollableDataTable> component. The following

example is a example of the attribute usage.

Example:

...

<rich:scrollableDataTable id="carList"

 value="#{dataTableScrollerBean.allCars}" sortMode="single"

 binding="#{dataTableScrollerBean.table}">

 <rich:column id="make" sortExpression="#{cap.make}">

 <f:facet name="header">

 <h:outputText styleClass="headerText" value="Make" />

 </f:facet>

 <h:outputText value="#{category.make}" />

 </rich:column>

 <rich:column id="model">

 <f:facet name="header">

 <h:outputText styleClass="headerText" value="Model" />

 </f:facet>

 <h:outputText value="#{category.model}" />

 </rich:column>

 <rich:column id="price">

 <f:facet name="header">

 <h:outputText styleClass="headerText" value="Price" />

 </f:facet>

 <h:outputText value="#{category.price}" />

 </rich:column>

</rich:scrollableDataTable>

 < rich:column > available since 3.0.0

203

...

The "selfSorted" attribute that would add the possibility of automatic sorting by clicking the column

header. Default value is "true". In the example below the second column is unavailable for sorting.

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">

 <rich:column>

 <f:facet name="header">

 <h:outputText value="State Flag"/>

 </f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 <rich:column sortBy="#{cap.state}" selfSorted="false">

 <f:facet name="header">

 <h:outputText value="State Name"/>

 </f:facet>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

</rich:dataTable>

...

"sortOrder" attribute is used for changing the sorting of columns by means of external controls.

Possible values are:

• "ASCENDING" - column is sorted in ascending

• "DESCENDING" - column is sorted in descending

• "UNSORTED" - column isn't sorted

Example:

...

<h:form>

 <rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="300px">

 <f:facet name="header">

 <h:outputText value="Sorting Example"/>

 </f:facet>

 <rich:column sortBy="#{cap.state}" sortOrder="ASCENDING">

Chapter 6. The RichFaces Comp...

204

 <f:facet name="header">

 <h:outputText value="State Name"/>

 </f:facet>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column sortBy="#{cap.name}" sortOrder="DESCENDING">

 <f:facet name="header">

 <h:outputText value="State Capital"/>

 </f:facet>

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 </rich:dataTable>

</h:form>

...

Below you can see the result:

Figure 6.17. <rich:column> with "sortOrder" attribute

In the example above the first column is sorted in descending order. But if recurring rows appear

in the table the relative second column are sorted in ascending order.

If the values of the columns are complex, the "sortOrder" attribute should point to a bean

property containing the sort order. See how it's done in the LiveDemo [http://livedemo.exadel.com/

richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage] for <rich:columns> .

You can customize the sorting's icon element using "rich-sort-icon" class.

Note

In order to sort a column with the values not in English you can add the

org.richfaces.datatableUsesViewLocale context parameter in your web.xml.

Its value should be "true".

http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/columns.jsf?c=columns&tab=usage

 < rich:column > available since 3.0.0

205

Note:

The "sortBy" and the "selfSorted" attributes used with the

<rich:dataTable> component. Also the "selfSorted" can be used with the

<rich:extendedDataTable> .

The "sortable" and the "sortExpression" attributes used with the

<rich:scrollableDataTable> component.

6.6.1.6.2. Filtering

There are two ways to filter the column value:

• Using built-in filtering. It uses startsWith() function to make filtering. In this case you need

to define "filterBy" attribute at column you want to be filterable. This attribute defines iterable

object property which is used when filtering performed.

The "filterValue" attribute is used to get or change current filtering value. It could be defined with

initial filtering value on the page or as value binding to get/change it on server. If the "filterValue"

attribute isn't empty from the beginning table is filtered on the first rendering.

You can customize the input form using "rich-filter-input" CSS class.

In order to change filter event you could use "filterEvent" attribute on column, e.g.

"onblur"(default value).

Below you can see the example:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" width="500px">

 <rich:column filterBy="#{cap.state}" filterValue="#{filterName.filterBean}" filterEvent="onkeyup">

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column filterBy="#{cap.name}" filterEvent="onkeyup">

 <h:outputText value="#{cap.name}"/>

 </rich:column>

</rich:dataTable>

...

This is the result:

Chapter 6. The RichFaces Comp...

206

Figure 6.18. Built-in filtering feature usage

• Using external filtering. In this case you need to write your custom filtering function or expression

and define controls.

The "filterExpression" attribute is used to define expression evaluated to boolean value. This

expression checks if the object satisfies filtering condition.

The "filterMethod" attribute is defined with method binding. This method accepts on Object

parameter and return boolean value. So, this method also could be used to check if the object

satisfies filtering condition. The usage of this attribute is the best way for implementing your

own complex business logic.

See the following example:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" id="table">

 <rich:column filterMethod="#{filteringBean.filterStates}">

 <f:facet name="header">

 <h:inputText value="#{filteringBean.filterValue}" id="input">

 <a4j:support event="onkeyup" reRender="table"

 ignoreDupResponses="true" requestDelay="700" focus="input" />

 </h:inputText>

 </f:facet>

 <h:outputText value="#{cap.state}" />

 </rich:column>

 <rich:column filterExpression="#{fn:containsIgnoreCase(cap.timeZone,

 filteringBean.filterZone)}">

 <f:facet name="header">

 <h:selectOneMenu value="#{filteringBean.filterZone}">

 <f:selectItems value="#{filteringBean.filterZones}" />

 <a4j:support event="onchange" reRender="table" />

 </h:selectOneMenu>

 < rich:column > available since 3.0.0

207

 </f:facet>

 <h:outputText value="#{cap.timeZone}" />

 </rich:column>

</rich:dataTable>

...

6.6.1.7. Facets

Table 6.58. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.1.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:column> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:column> component

6.6.1.9. Skin Parameters Redefinition

Skin parameters redefinition for <rich:column> are the same as for the <rich:dataTable>

component.

6.6.1.10. Definition of Custom Style Classes

Custom style classes for <rich:column> are the same as for the <rich:dataTable> component.

In order to redefine styles for all <rich:column> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-table-cell{

 font-style: italic;

Chapter 6. The RichFaces Comp...

208

}

...

This is a result:

Figure 6.19. Redefinition styles with predefined classes

In the example cells font style was changed.

Also it's possible to change styles of particular <rich:column> component. In this case you

should create own style classes and use them in corresponding <rich:column> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-weight: bolder;

}

...

The "styleClass" attribute for <rich:column> is defined as it's shown in the example below:

Example:

<rich:column styleClass="myClass">

This is a result:

 < rich:columnGroup > available since 3.0.0

209

Figure 6.20. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font weight for second column was changed.

6.6.1.11. Relevant Resources Links

Vizit Column [http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column]

page at RichFaces live demo for examples of component usage and their sources.

" Using the "rendered" attribute of <rich:column> [http://www.jboss.org/community/docs/

DOC-9607]" article in RichFaces cookbook at JBoss portal gives an example of code of the

component usage case.

6.6.2. < rich:columnGroup > available since 3.0.0

6.6.2.1. Description

The component combines columns in one row to organize complex subparts of a table.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=column
http://www.jboss.org/community/docs/DOC-9607
http://www.jboss.org/community/docs/DOC-9607
http://www.jboss.org/community/docs/DOC-9607

Chapter 6. The RichFaces Comp...

210

Figure 6.21. <rich:columnGroup> component

6.6.2.2. Key Features

• Completely skinned table columns and child elements

• Possibility to combine columns and rows inside

• Possibility to update a limited set of strings with Ajax

Table 6.59. rich : columnGroup attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

 < rich:columnGroup > available since 3.0.0

211

Attribute Name Description

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

Table 6.60. Component identification parameters

Name Value

component-type org.richfaces.ColumnGroup

component-class org.richfaces.component.html.HtmlColumnGroup

component-family org.richfaces.ColumnGroup

renderer-type org.richfaces.ColumnGroupRenderer

tag-class org.richfaces.taglib.ColumnGroupTag

6.6.2.3. Creating the Component with a Page Tag

To create the simplest variant of columnGroup on a page, use the following syntax:

Example:

Chapter 6. The RichFaces Comp...

212

...

<rich:columnGroup>

 <rich:column>

 <h:outputText value="Column1"/>

 </rich:column>

 <rich:column>

 <h:outputText value="Column2"/>

 </rich:column>

</rich:columnGroup>

...

6.6.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlColumnGroup;

...

HtmlColumnGroup myRow = new HtmlColumnGroup();

...

6.6.2.5. Details of Usage

The <rich:columnGroup> component combines columns set wrapping them into the <tr>

element and outputting them into one row. Columns are combined in a group the same way as

when the "breakBefore" attribute is used for columns to add a moving to the next rows, but the

first variant is clearer from a source code. Hence, the following simple examples are very same.

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">

 <rich:column colspan="3">

 <f:facet name="header">State Flag</f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 <rich:columnGroup>

 <rich:column>

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column >

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 < rich:columnGroup > available since 3.0.0

213

 <rich:column >

 <h:outputText value="#{cap.timeZone}"/>

 </rich:column>

 </rich:columnGroup>

</rich:dataTable>

...

And representation without a grouping:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5" id="sublist">

 <rich:column colspan="3">

 <f:facet name="header">State Flag</f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="#{cap.state}"/>

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="#{cap.name}"/>

 </rich:column>

 <rich:column >

 <h:outputText value="#{cap.timeZone}"/>

 </rich:column>

</rich:dataTable>

....

The result is:

Chapter 6. The RichFaces Comp...

214

Figure 6.22. Generated <rich:columnGroup> component with

"breakBefore" attribute

It's also possible to use the component for output of complex headers in a table. For example

adding of a complex header to a facet for the whole table looks the following way:

Example:

...

<f:facet name="header">

 <rich:columnGroup>

 <rich:column rowspan="2">

 <h:outputText value="State Flag"/>

 </rich:column>

 <rich:column colspan="3">

 <h:outputText value="State Info"/>

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="State Name"/>

 </rich:column>

 <rich:column>

 <h:outputText value="State Capital"/>

 </rich:column>

 <rich:column>

 <h:outputText value="Time Zone"/>

 </rich:column>

 </rich:columnGroup>

 < rich:columnGroup > available since 3.0.0

215

</f:facet>

...

Generated on a page as:

Figure 6.23. <rich:columnGroup> with complex headers

6.6.2.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columnGroup> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:columnGroup> component

6.6.2.7. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columnGroup> are the same as for the <rich:dataTable>

component.

6.6.2.8. Definition of Custom Style Classes

Custom style classes for <rich:columnGroup> are the same as for the <rich:dataTable>

component.

In order to redefine styles for all <rich:columnGroup> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

Chapter 6. The RichFaces Comp...

216

.rich-table-cell{

 color: #316ac5;

}

...

This is a result:

Figure 6.24. Redefinition styles with predefined classes

In the example cells color was changed.

Also it's possible to change styles of particular <rich:columnGroup> component. In this case

you should create own style classes and use them in corresponding <rich:columnGroup>

styleClass attributes. An example is placed below:

Example:

...

.myClass{

 background-color: #c0c0c0;

}

...

The "columnClasses" attribute for <rich:columnGroup> is defined as it's shown in the example

below:

Example:

 < rich:columns > available since 3.2.0

217

<rich:columnGroup columnClasses="myClass">

This is a result:

Figure 6.25. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.6.2.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataTable.jsf?c=columnGroup] you can see the example of <rich:columnGroup> usage and

sources for the given example.

6.6.3. < rich:columns > available since 3.2.0

3.2.0

6.6.3.1. Description

The <rich:columns> is a component, that allows you to create a dynamic set of columns from

your model.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columnGroup

Chapter 6. The RichFaces Comp...

218

Figure 6.26. <rich:columns> component

6.6.3.2. Key Features

• Highly customizable look and feel

• Dynamic tables creation

• Possibility to combine columns with the help of "colspan" and "breakBefore"

• Possibility to combine rows with the help of "rowspan"

• Sorting column values

• Filtering column values

Table 6.61. rich : columns attributes

Attribute Name Description

begin Contains the first iteration item

breakBefore if "true" next column begins from the first row

colspan Corresponds to the HTML colspan attribute

columns Number of columns to be rendered

comparator Defines value binding to the comparator that is

used to compare the values

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

end Contains the last iteration item

filterBy Defines iterable object property which is used

when filtering performed.

 < rich:columns > available since 3.2.0

219

Attribute Name Description

filterEvent Event for filter input that forces the filtration

(default value is "onchange")

filterExpression Attribute defines a bean property which is used

for filtering of a column

filterMethod This attribute is defined with method binding.

This method accepts on Object parameter and

return boolean value

filterValue Defines current filtering value

footerClass Assigns one or more space-separated CSS

class names to any footer generated for this

component

headerClass Assigns one or more space-separated CSS

class names to any header generated for this

component

id JSF: Every component may have a unique id

that is automatically created if omitted

index The current counter

label Column label for drag indicator. Usable only for

extendedDataTable component

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: Attribute defines if component should be

rendered. Default value is "true".

rowspan Corresponds to the HTML rowspan attribute

selfSorted Manages if the header of the column is

clickable, icons rendered and sorting is fired

after click on the header. You need to

define this attribute inside <rich:dataTable>

component. Default value is "true"

sortable Boolean attribute. If "true" it's possible to sort

the column content after click on the header.

Default value is "true"

sortBy Defines a bean property which is used for

sorting of a column. This attribute used with

<rich:dataTable>

sortExpression Defines a bean property which is used for

sorting of a column and used only with

<rich:scrollableDataTable>.

Chapter 6. The RichFaces Comp...

220

Attribute Name Description

sortIcon Defines sort icon. The value for the attribute is

context related.

sortIconAscending Defines sort icon for ascending order. The

value for the attribute is context related.

sortIconDescending Defines sort icon for descending order. The

value for the attribute is context related.

sortOrder SortOrder is an enumeration of the possible

sort orderings. Default value is "UNSORTED"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value for this component

var The current variable

visible The attribute is used to define whether the

component is visible or not. The default value

is "true".

width HTML: Attribute defines width of column.

Table 6.62. Component identification parameters

Name Value

component-type org.richfaces.Column

tag-class org.richfaces.taglib.ColumnsTagHandler

6.6.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">

 <rich:columns value="#{capitalsBean.labels}" var="col" index="index">

 <h:outputText value="#{cap[index]}" />

 </rich:columns>

</rich:dataTable>

 < rich:columns > available since 3.2.0

221

...

6.6.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlColumn;

...

HtmlColumn myColumns = new HtmlColumn();

...

6.6.3.5. Details of Usage

The <rich:columns> component gets a list from data model and outputs corresponding set of

columns inside <rich:dataTable> on a page. It is possible to use "header" and "footer" facets

with <rich:columns> component.

The "value" and "var" attributes are used to access the values of collection.

The simple example is placed below.

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">

 <rich:columns value="#{capitalsBean.labels}" var="col" index="index">

 <f:facet name="header">

 <h:outputText value="#{col.text}" />

 </f:facet>

 <h:outputText value="#{cap[index]}" />

 <f:facet name="footer">

 <h:outputText value="#{col.text}" />

 </f:facet>

 </rich:columns>

</rich:dataTable>

...

The "columns" attribute defines the count of columns.

The "rowspan" attribute defines the number of rows to be displayed. If the value of this attribute

is zero, all remaining rows in the table are displayed on a page.

The "begin" attribute contains the first iteration item. Note, that iteration begins from zero.

Chapter 6. The RichFaces Comp...

222

The "end" attribute contains the last iteration item.

With the help of the attributes described below you can customize the output, i.e. define which

columns and how many rows appear on a page.

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap">

 <rich:columns value="#{capitalsBean.labels}" var="col" index="index" rowspan="0" columns="3" begin="1" end="2">

 <f:facet name="header">

 <h:outputText value="#{col.text}" />

 </f:facet>

 <h:outputText value="#{cap[index]}" />

 </rich:columns>

</rich:dataTable>

...

In the example below, columns from first to second and all rows are shown in the

<rich:dataTable> .

The result is:

Figure 6.27. Generated <rich:columns> with columns from first to second

and all rows

The <rich:columns> component does not prevent to use <rich:column> . In the following

example one column renders in any way and another columns could be picked from the model.

Example:

 < rich:columns > available since 3.2.0

223

...

<rich:dataTable value="#{rowBean.rows}" var="row">

 <rich:column>

 <h:outputText value ="#{row.columnValue}"/>

 </rich:column>

 <rich:columns value="#{colBean.columns}" var="col">

 <f:facet name="header">

 <h:outputText value="#{col.header}"/>

 </f:facet>

 <h:outputText value="#{row.columnValue}"/>

 <f:facet name="footer">

 <h:outputText value="#{col.footer}"/>

 </f:facet>

 </rich:columns>

</rich:dataTable>

...

Now, you can use a few <rich:columns> together with <rich:column> within the one table:

...

<rich:dataTable value="#{dataTableScrollerBean.model}" var="model" width="500px" rows="5">

 <f:facet name="header">

 <h:outputText value="Cars Available"></h:outputText>

 </f:facet>

 <rich:columns value="#{dataTableScrollerBean.columns}" var="columns" index="ind">

 <f:facet name="header">

 <h:outputText value="#{columns.header}" />

 </f:facet>

 <h:outputText value="#{model[ind].model} " />

 </rich:columns>

 <rich:column>

 <f:facet name="header">

 <h:outputText value="Price" />

 </f:facet>

 <h:outputText value="Price" />

 </rich:column>

 <rich:columns value="#{dataTableScrollerBean.columns}" var="columns" index="ind">

 <f:facet name="header">

 <h:outputText value="#{columns.header}" />

 </f:facet>

 <h:outputText value="#{model[ind].mileage}$" />

 </rich:columns>

Chapter 6. The RichFaces Comp...

224

</rich:dataTable>

...

In order to group columns with text information into one row, use the "colspan" attribute, which

is similar to an HTML one. In the following example the third column contains 3 columns. In

addition, it's necessary to specify that the next column begins from the first row with the help of

the breakBefore = "true" .

Example:

...

<rich:dataTable value="#{columns.data1}" var="data">

 <rich:column>

 <h:outputText value="#{column.Item1}" />

 </rich:column>

 <rich:column>

 <h:outputText value="#{column.Item2}" />

 </rich:column>

 <rich:column>

 <h:outputText value="#{column.Item3}" />

 </rich:column>

 <rich:columns columns="3" colspan="3" breakBefore="true">

 <h:outputText value="#{data.str0}" />

 </rich:columns>

</rich:dataTable>

...

The same way is used for columns grouping with the "rowspan" attribute that is similar to an

HTML. The only thing to add in the example is an instruction to move onto the next row for each

next after the second column.

Example:

...

<rich:dataTable value="#{columns.data1}" var="data">

 <rich:columns columns="2" rowspan="3">

 <h:outputText value="#{data.str0}" />

 </rich:columns>

 <rich:column>

 <h:outputText value="#{column.Item1}" />

 </rich:column>

 <rich:column breakBefore="true">

 < rich:columns > available since 3.2.0

225

 <h:outputText value="#{column.Item2}" />

 </rich:column>

 <rich:column breakBefore="true">

 <h:outputText value="#{column.Item3}" />

 </rich:column>

</rich:dataTable>

...

Note:

The <rich:columns> tag is initialized during components tree building process.

This process precedes page rendering at "Render Response" JSF phase. To be

rendered properly the component needs all it variables to be initialized while the

components tree is being building. A javax.servlet.jsp.JspTagException occurs

if <rich:columns> uses variables passed from other components, if these

variables are initialized during rendering. Thus, when <rich:columns> is asking

for such variables they do not already exist. Use <c:forEach> JSP standard tag as

workaround. Compare two examples below.

This code calls the exception:

...

<rich:dataTable value="#{bean.data}" var="var">

 <rich:columns value="#{var.columns}">

 ...

 </rich:columns>

</rich:dataTable>

...

This code works properly:

...

<c:forEach items="#{bean.data}" var="var">

 <rich:columns value="#{var.columns}">

 ...

 </rich:columns>

</c:forEach>

...

Chapter 6. The RichFaces Comp...

226

Note:

Since 3.3.0GA <rich:columns> requires explicit definition of "id" for children

components to ensure that decode process works properly. The example of how

you can define unique "id" for children component:

...

<rich:columns value="#{bean.columns}" var="col" index="ind" ... >

 <h:inputText id="input#{ind}" value="">

 <a4j:support id="support#{ind}" event="onchange" reRender="someId" />

 </h:inputText>

</rich:columns>

...

Only if "id" defined as shown above Ajax after onchange event will be processed

as expected.

Sorting and filtering for the <rich:columns> component works the same as for <rich:column>

. See the "Sorting and Filtering" section.

6.6.3.6. Facets

Table 6.63. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:columns> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:columns> component

6.6.3.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:columns> are the same as for the <rich:dataTable>

component .

 < rich:columns > available since 3.2.0

227

6.6.3.9. Definition of Custom Style Classes

Custom style classes for <rich:columns> are the same as for the <rich:dataTable> component

.

In order to redefine styles for all <rich:columns> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-table-subheadercell{

 color: #a0a0a0;

}

...

This is a result:

Figure 6.28. Redefinition styles with predefined classes

In the example column header cells color was changed.

Also it's possible to change styles of particular <rich:columns> component. In this case you

should create own style classes and use them in corresponding <rich:columns> styleClass

attributes. An example is placed below:

Example:

...

Chapter 6. The RichFaces Comp...

228

.myClass {

 font-style: oblique;

}

...

The "styleClass" attribute for <rich:columns> is defined as it's shown in the example below:

Example:

<rich:columns styleClass="myClass">

This is a result:

Figure 6.29. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.

6.6.3.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataTable.jsf?c=columns] you can found some additional information for <rich:columns>

component usage.

6.6.4. < rich:dataDefinitionList > available since 3.0.0

6.6.4.1. Description

The component for definition lists rendering that allows choosing data from a model and obtains

built-in support of Ajax updates.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=columns

 < rich:dataDefinitionList > available since 3.0.0

229

Figure 6.30. <rich:dataDefinitionList> component

6.6.4.2. Key Features

• Completely skinned table rows and child elements

• Possibility to update a limited set of rows with Ajax

• Possibility to receive values dynamically from a model

Table 6.64. rich : dataDefinitionList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

componentState It defines EL-binding for a component state for

saving or redefinition

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

Chapter 6. The RichFaces Comp...

230

Attribute Name Description

first A zero-relative row number of the first row to

display

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKey RowKey is a representation of an identifier for

a specific data row

rowKeyConverter Converter for a RowKey object.

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

 < rich:dataDefinitionList > available since 3.0.0

231

Table 6.65. Component identification parameters

Name Value

component-type org.richfaces.DataDefinitionList

component-class org.richfaces.component.html.HtmlDataDefinitionList

component-family org.richfaces.DataDefinitionList

renderer-type org.richfaces.DataDefinitionListRenderer

tag-class org.richfaces.taglib.DataDefinitionListTag

6.6.4.3. Creating the Component with a Page Tag

To create the simplest variant of dataDefinitionList on a page, use the following syntax:

Example:

...

<rich:dataDefinitionList value="#{bean.capitals}" var="caps">

 <f:facet name="term">Cars</f:facet>

 <h:outputText value="#{car.model}"/>

</rich:dataDefinitionList>

...

6.6.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDataDefinitionList;

...

HtmlDataDefinitionList myList = new HtmlDataDefinitionList();

...

6.6.4.5. Details of Usage

The <rich:dataDefinitionList> component allows to generate an definition list from a model.

The component has the "term" facet, which corresponds to the "type" parameter for the <DT>

HTML element.

Here is an example:

...

<h:form>

Chapter 6. The RichFaces Comp...

232

 <rich:dataDefinitionList var="car" value="#{dataTableScrollerBean.allCars}" rows="5" first="4" title="Cars">

 <f:facet name="term">

 <h:outputText value="#{car.make} #{car.model}"></h:outputText>

 </f:facet>

 <h:outputText value="Price:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.price}" />

 <h:outputText value="Mileage:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.mileage}" />

 </rich:dataDefinitionList>

</h:form>

...

This is a result:

Figure 6.31. <rich:dataDefinitionList> component with "term" facet

In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <a4j:repeat> component and as a result it could be

partially updated with Ajax. The "ajaxKeys" attribute allows to define row keys that are updated

after an Ajax request, you need to pass an array with key (lines) of the list that you want to be

updated after the Ajax request is executed.

Here is an example:

Example:

...

<rich:dataDefinitionList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"

 binding="#{listBean.dataList}" id="list">

 ...

 < rich:dataDefinitionList > available since 3.0.0

233

</rich:dataDefinitionList>

...

<a4j:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:dataDefinitionList>

component. As a result the component is updated after an Ajax request.

6.6.4.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataDefinitionList> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:dataDefinitionList> component

6.6.4.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.32. Style classes

Table 6.66. Classes names that define a list appearance

Class name Description

rich-deflist Defines styles for an html <dl> element

rich-definition Defines styles for an html <dd> element

Chapter 6. The RichFaces Comp...

234

Class name Description

rich-definition-term Defines styles for an html <dt> element

In order to redefine styles for all <rich:dataDefinitionList> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-definition-term{

 font-weight:bold;

}

...

This is a result:

Figure 6.33. Redefinition styles with predefined classes

In the example a term font weight was changed.

Also it's possible to change styles of particular <rich:dataDefinitionList> component.

In this case you should create own style classes and use them in corresponding

<rich:dataDefinitionList> styleClass attributes. An example is placed below:

Example:

...

 < rich:dataFilterSlider > available since 3.0.0

235

.myClass{

 font-style: italic;

}

...

Example:

<rich:dataDefinitionList ... rowClasses="myClass"/>

This is a result:

Figure 6.34. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for rows was changed.

6.6.4.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataLists.jsf?c=dataDefinitionList] you can see the example of <rich:dataDefinitionList> usage

and sources for the given example.

6.6.5. < rich:dataFilterSlider > available since 3.0.0

6.6.5.1. Description

A slider-based action component is used for filtering table data.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataDefinitionList

Chapter 6. The RichFaces Comp...

236

Figure 6.35. <rich:dataFilterSlider> component

6.6.5.2. Key Features

• Filter any UIData based component in dependency on its child's values

• Fully skinnable control and input elements

• Optional value text field with an attribute-managed position

• Optional disablement of the component on a page

• Optional toolTip to display the current value while a handle is dragged

• Dragged state is stable after the mouse moves

• Optional manual input possible if a text input field is present

• Validation of manual input

Table 6.67. rich : dataFilterSlider attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

 < rich:dataFilterSlider > available since 3.0.0

237

Attribute Name Description

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

clientErrorMessage An error message to use in client-side

validation events

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

endRange A slider end point

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

fieldStyleClass Assigns one or more space-separated CSS

class names to the component input field. The

value of the "manualInput" attribute must be

"true".

filterBy A getter of an object member required to

compare a slider value to. This is a value that

is used in results filtering

focus ID of an element to set focus after request is

completed on client side

for The component using UIData (datatable id)

forValRef This is a string which is used in a value attribute

of the datatable. It is used for resetting the

datatable back to the original list provided by a

backing bean

handleStyleClass Assigns one or more space-separated CSS

class names to the component handle

handleValue Current handle value

id JSF: Every component may have a unique id

that is automatically created if omitted

Chapter 6. The RichFaces Comp...

238

Attribute Name Description

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

increment Amount to which a handle on each slide/move

should be incremented

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

manualInput False value for this attribute makes text field

"read-only" and "hidden". Hence, the value can

be changed only from a handle. Default value

is "true"

onbeforedomupdate The client-side script method to be called

before DOM is updated

onchange DHTML: The client-side script method to be

called when the component input field value is

changed

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onerror The client-side script method to be called

whenever a JavaScript error occurs

 < rich:dataFilterSlider > available since 3.0.0

239

Attribute Name Description

oninputkeydown The client-side script method to be called when

a key is pressed down in the component input

field

oninputkeypress The client-side script method to be called

when a key is pressed and released in the

component input field

oninputkeyup The client-side script method to be called when

a key is released in the component input field

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onslide The client-side script method to be called when

a slider handle is moved

onSlideSubmit DEPRECATED (use submitOnSlide). If the

slider value is changed, the form is submitted.

Default value is "true".

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

Chapter 6. The RichFaces Comp...

240

Attribute Name Description

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rangeStyleClass Assigns one or more space-separated CSS

class names to the background div element

wrapping a full range

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

sliderListener MethodBinding representing an action listener

method that will be notified after changing of

slider control position

startRange A slider begin point

status ID (in format of call

UIComponent.findComponent()) of Request

status component

storeResults Specifies if the component will store a UIData

object (your table rows) in session

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the container surrounding

the component. Corresponds to the HTML

"class" attribute.

submitOnSlide If the slider value is changed, the form is

submitted. Default value is "true".

 < rich:dataFilterSlider > available since 3.0.0

241

Attribute Name Description

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

trackStyleClass Assigns one or more space-separated CSS

class names to the component track

trailer It shows or hides a trailer following a handle

trailerStyleClass Assigns one or more space-separated CSS

class names to the trailer following the

component handle

value JSF: The current value for this component

width HTML: Width of the slider control. Default value

is "200px".

Table 6.68. Component identification parameters

Name Value

component-type org.richfaces.dataFilterSlider

component-class org.richfaces.component.html.HtmlDataFilterSlider

component-family org.richfaces.DataFilterSlider

renderer-type org.richfaces.DataFilterSliderRenderer

tag-class org.richfaces.taglib.dataFilterSliderTag

6.6.5.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}" startRange="0"

 endRange="50000" increment="10000" handleValue="1" />

...

6.6.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDataFilterSlider;

...

Chapter 6. The RichFaces Comp...

242

HtmlDataFilterSlider mySlider = new HtmlDataFilterSlider();

...

6.6.5.5. Details of Usage

The dataFilterSlider component is bound to some UIData component using a "for" attribute

and filters data in a table.

Example:

...

<rich:dataFilterSlider sliderListener="#{mybean.doSlide}"

 startRange="0"

 endRange="50000"

 increment="10000"

 handleValue="1"

 for="carIndex"

 forValRef="inventoryList.carInventory"

 filterBy="getMileage" />

...

<h:dataTable id="carIndex">

 ...

</h:dataTable>

...

In this example other two attributes are used for filtering:

• "forValRef" is a string which is used in a value attribute of the target UIData component. It's

designed for resetting the UIData component back to the original list provided by a backing bean.

• "filterBy" is a getter of an object member that is to be compared to a slider value. It's a value

that is used in results filtering.

"handleValue" is an attribute for keeping the current handle position on the dataFilterSlider

component. Based on the current value, appropriate values obtained from a getter method defined

in "filterBy" are filtered.

One more important attribute is a "storeResults" one that allows the dataFilterSlider component

to keep UIData target object in session.

If it's necessary the component submits a form on event of a handle state changing, use the

"submitOnSlide" attribute. When the attribute definition is "true", submission on this event is

defined.

 < rich:dataGrid > available since 3.0.0

243

Information about the "process" attribute usage you can find in the "Decide what to process "

guide section.

6.6.5.6. Look-and-Feel Customization

The <rich:dataFilterSlider> component has no skin parameters and special style classes ,

as it consists of one element generated with a your method on the server. To define some style

properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes

on the component.

6.6.5.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataFilterSlider.jsf?c=dataFilterSlider] you can see the example of <rich:dataFilterSlider>

usage and sources for the given example.

6.6.6. < rich:dataGrid > available since 3.0.0

6.6.6.1. Description

The component to render data as a grid that allows choosing data from a model and obtains built-

in support of Ajax updates.

Figure 6.36. <rich:dataGrid> component

6.6.6.2. Key Features

• A completely skinned table and child elements

• Possibility to update a limited set of rows with Ajax

• Possibility to receive values dynamically from a model

http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/dataFilterSlider.jsf?c=dataFilterSlider

Chapter 6. The RichFaces Comp...

244

Table 6.69. rich : dataGrid attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

align Deprecated. This attribute specifies the

position of the table with respect to the

document. The possible values are "left",

"center" and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background

color for the document body or table cells.

This attribute sets the background color of

the canvas for the document body (the

BODY element) or for tables (the TABLE, TR,

TH, and TD elements). Additional attributes

for specifying text color can be used with

the BODY element. This attribute has been

deprecated in favor of style sheets for

specifying background color information

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: This attributes specifies the width of the

frame around a component. Default value is

"0".

captionClass Assigns one or more space-separated CSS

class names to the component caption

captionStyle CSS style rules to be applied to the component

caption

cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.

Default value is "0".

cellspacing This attribute specifies the amount of space

between the border of the cell and its contents.

The attribute also specifies the amount of

space to leave between cells. Default value is

"0".

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

 < rich:dataGrid > available since 3.0.0

245

Attribute Name Description

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

columns Number of columns

componentState It defines EL-binding for a component state for

saving or redefinition

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

elements Number of elements in grid

first A zero-relative row number of the first row to

display

footerClass Assigns one or more space-separated CSS

class names to the component footer

frame This attribute specifies which sides of the frame

surrounding a table will be visible. Possible

values: "void", "above", "below", "hsides", "lhs",

"rhs", "vsides", "box" and "border". The default

value is "void".

headerClass Assigns one or more space-separated CSS

class names to the component header

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

Chapter 6. The RichFaces Comp...

246

Attribute Name Description

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onRowClick The client-side script method to be called when

the row is clicked

onRowDblClick The client-side script method to be called when

the row is double-clicked

onRowMouseDown The client-side script method to be called when

a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when

a pointer is moved within the row

onRowMouseOut The client-side script method to be called when

a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when

a pointer is moved onto the row

onRowMouseUp The client-side script method to be called when

a mouse button is released over the row

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

 < rich:dataGrid > available since 3.0.0

247

Attribute Name Description

rowKey RowKey is a representation of an identifier for

a specific data row

rowKeyConverter Converter for a row key object

rowKeyVar Request scoped variable for client access to

rowKey

rules This attribute specifies which rules will appear

between cells within a table. The rendering

of rules is user agent dependent. Possible

values: * none: No rules. This is the default

value. * groups: Rules will appear between row

groups (see THEAD, TFOOT, and TBODY)

and column groups (see COLGROUP and

COL) only. * rows: Rules will appear between

rows only. * cols: Rules will appear between

columns only. * all: Rules will appear between

all rows and columns

stateVar The attribute provides access to a component

state on the client side

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

summary This attribute provides a summary of the

table's purpose and structure for user agents

rendering to non-visual media such as speech

and Braille

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

width HTML: This attribute specifies the desired

width of the entire table and is intended

for visual user agents. When the value is

percentage value, the value is relative to the

user agent's available horizontal space. In the

absence of any width specification, table width

is determined by the user agent

Chapter 6. The RichFaces Comp...

248

Table 6.70. Component identification parameters

Name Value

component-type org.richfaces.DataGrid

component-class org.richfaces.component.html.HtmlDataGrid

component-family org.richfaces.DataGrid

renderer-type org.richfaces.DataGridRenderer

tag-class org.richfaces.taglib.DataGridTag

6.6.6.3. Creating the Component with a Page Tag

To create the simplest variant of dataGrid on a page, use the following syntax:

Example:

...

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car">

 <h:outputText value="#{car.model}"/>

</rich:dataGrid>

...

6.6.6.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDataGrid;

...

HtmlDataGrid myList = new HtmlDataGrid();

...

6.6.6.5. Details of Usage

The component takes a list from a model and outputs it the same way as with <h:panelGrid> for

inline data. To define grid properties and styles, use the same definitions as for <h:panelGrid>.

The component allows to:

• Use "header" and "footer" facets for output

• Limit number of output elements ("elements" attribute) and define first element for output (

"first" attribute)

 < rich:dataGrid > available since 3.0.0

249

• Bind pages with <rich:datascroller> component

Here is an example:

Example:

...

<rich:panel style="width:150px;height:200px;">

 <h:form>

 <rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" columns="2" elements="4" first="1">

 <f:facet name="header">

 <h:outputText value="Car Store"></h:outputText>

 </f:facet>

 <rich:panel>

 <f:facet name="header">

 <h:outputText value="#{car.make} #{car.model}"></h:outputText>

 </f:facet>

 <h:panelGrid columns="2">

 <h:outputText value="Price:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.price}"/>

 <h:outputText value="Mileage:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.mileage}"/>

 </h:panelGrid>

 </rich:panel>

 <f:facet name="footer">

 <rich:datascroller></rich:datascroller>

 </f:facet>

 </rich:dataGrid>

 </h:form>

</rich:panel>

...

This is a result:

Chapter 6. The RichFaces Comp...

250

Figure 6.37. Component usage

The component was created basing on the <a4j:repeat> component and as a result it could

be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated

after an Ajax request.

Here is an example:

Example:

...

<rich:dataGrid value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"

 binding="#{listBean.dataGrid}" id="grid" elements="4" columns="2">

 ...

</rich:dataGrid>

...

<a4j:commandButton action="#{listBean.action}" reRender="grid" value="Submit"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:dataGrid>

component. As a result the component is updated after an Ajax request.

 < rich:dataGrid > available since 3.0.0

251

6.6.6.6. Facets

Table 6.71. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

caption Defines the caption content

6.6.6.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataGrid> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:dataGrid> component

6.6.6.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:dataGrid> are the same as for the <rich:dataTable>

component.

6.6.6.9. Definition of Custom Style Classes

Custom style classes for <rich:dataGrid> are the same as for the <rich:dataTable>

component.

In order to redefine styles for all <rich:dataGrid> components on a page using CSS, it's

enough to create classes with the same names (possible classes are the same as for the

<rich:dataTable>) and define necessary properties in them.

Example:

...

.rich-table-footercell{

 color:#ff7800;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

252

Figure 6.38. Redefinition styles with predefined classes

In the example color of footercell was changed.

Also it's possible to change styles of particular <rich:dataGrid> component. In this case you

should create own style classes and use them in corresponding <rich:dataGrid> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style:italic;

}

...

The "columnClasses" attribute for <rich:dataGrid> is defined as it's shown in the example

below:

Example:

<rich:dataGrid ... columnClasses="myClass"/>

This is a result:

 < rich:dataList > available since 3.0.0

253

Figure 6.39. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for columns was changed.

6.6.6.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataGrid.jsf?c=dataGrid] you can see the example of <rich:dataGrid> usage and sources for

the given example.

6.6.7. < rich:dataList > available since 3.0.0

6.6.7.1. Description

The component for unordered lists rendering that allows choosing data from a model and obtains

built-in support of Ajax updates.

Figure 6.40. <rich:dataList> component

http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid
http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid
http://livedemo.exadel.com/richfaces-demo/richfaces/dataGrid.jsf?c=dataGrid

Chapter 6. The RichFaces Comp...

254

6.6.7.2. Key Features

• A completely skinned list and child elements

• Possibility to update a limited set of rows with Ajax

• Possibility to receive values dynamically from a model

Table 6.72. rich : dataList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

componentState It defines EL-binding for a component state for

saving or redefinition

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to

display

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKey RowKey is a representation of an identifier for

a specific data row

rowKeyConverter Converter for a row key object

 < rich:dataList > available since 3.0.0

255

Attribute Name Description

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

stateVar The attribute provides access to a component

state on the client side

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

type HTML: Corresponds to the HTML DL type

attribute

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

Table 6.73. Component identification parameters

Name Value

component-type org.richfaces.DataList

component-class org.richfaces.component.html.HtmlDataList

component-family org.richfaces.DataList

renderer-type org.richfaces.DataListRenderer

tag-class org.richfaces.taglib.DataListTag

6.6.7.3. Creating the Component with a Page Tag

To create the simplest variant of dataList on a page, use the following syntax:

Example:

...

<rich:dataList var="car" value="#{dataTableScrollerBean.allCars}" >

 <h:outputText value="#{car.model}"/>

</rich:dataList>

Chapter 6. The RichFaces Comp...

256

...

6.6.7.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDataList;

...

HtmlDataList myList = new HtmlDataList();

...

6.6.7.5. Details of Usage

The <rich:dataList> component allows to generate a list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the

 HTML element and defines a marker type. Possible values for "type" attribute are: "disc",

"circle", "square".

Here is an example:

...

<h:form>

 <rich:dataList var="car" value="#{dataTableScrollerBean.allCars}" rows="5" type="disc" title="Car

 Store">

 <h:outputText value="#{car.make} #{car.model}"/>

 <h:outputText value="Price:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.price} "/>

 <h:outputText value="Mileage:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.mileage} "/>

 </rich:dataList>

</h:form>

...

This is a result:

 < rich:dataList > available since 3.0.0

257

Figure 6.41. <rich:dataList> component with "type" attribute

In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title. See picture below:

Figure 6.42. <rich:dataList> component with "title" attribute

The component was created basing on the <a4j:repeat> component and as a result it could

be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated

after an Ajax request.

Here is an example:

Example:

...

<rich:dataList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"

 binding="#{listBean.dataList}" id="list" rows="5" type="disc">

Chapter 6. The RichFaces Comp...

258

 ...

</rich:dataList>

...

<a4j:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:dataList>

component. As a result the component is updated after an Ajax request.

6.6.7.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataList> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:dataList> component

6.6.7.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.43. Style classes

Table 6.74. Classes names that define a list appearance

Class name Description

rich-datalist Defines styles for an html element

 < rich:dataList > available since 3.0.0

259

Class name Description

rich-list-item Defines styles for an html element

In order to redefine styles for all <rich:dataList> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-list-item{

 font-style:italic;

}

...

This is a result:

Figure 6.44. Redefinition styles with predefined classes

In the example the font style for list item text was changed.

Also it's possible to change styles of particular <rich:dataList> component. In this case you

should create own style classes and use them in corresponding <rich:dataList> styleClass

attributes. An example is placed below:

Example:

...

Chapter 6. The RichFaces Comp...

260

.myClass{

 background-color:#ffead9;

}

...

The "styleClass" attribute for <rich:dataList> is defined as it's shown in the example below:

Example:

<rich:dataList ... styleClass="myClass"/>

This is a result:

Figure 6.45. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color for <rich:dataList> was changed.

6.6.7.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataLists.jsf?c=dataList] you can see the example of <rich:dataList> usage and sources for

the given example.

6.6.8. < rich:dataOrderedList > available since 3.0.0

6.6.8.1. Description

The component for ordered lists rendering that allows choosing data from a model and obtains

built-in support of Ajax updates.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataList

 < rich:dataOrderedList > available since 3.0.0

261

Figure 6.46. <rich:dataOderedList> component

6.6.8.2. Key Features

• A completely skinned list and child elements

• Possibility to update a limited set of rows with Ajax

• Possibility to receive values dynamically from a model

Table 6.75. rich : dataOrderedList attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to

display

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

Chapter 6. The RichFaces Comp...

262

Attribute Name Description

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKey RowKey is a representation of an identifier for

a specific data row

rowKeyConverter Converter for a RowKey object.

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

type HTML: Corresponds to the HTML OL type

attribute

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

Table 6.76. Component identification parameters

Name Value

component-type org.richfaces.DataOrderedList

component-class org.richfaces.component.html.HtmlDataOrderedList

component-family org.richfaces.DataOrderedList

renderer-type org.richfaces.DataOrderedListRenderer

tag-class org.richfaces.taglib.DataOrderedListTag

6.6.8.3. Creating the Component with a Page Tag

To create the simplest variant of dataOrderedList on a page, use the following syntax:

 < rich:dataOrderedList > available since 3.0.0

263

Example:

...

<rich:dataOrderedList var="car" value="#{dataTableScrollerBean.allCars}" >

 <h:outputText value="#{car.model}"/>

</rich:dataOrderedList>

...

6.6.8.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDataOrderedList;

...

HtmlDataOrderedList myList = new HtmlDataOrderedList();

...

6.6.8.5. Details of Usage

The <rich:dataOrderedList> component allows to generate an ordered list from a model.

The component has the "type" attribute, which corresponds to the "type" parameter for the

 HTML element and defines a marker type. Possible values for "type" attribute are: "A",

"a", "I", "i", "1".

Here is an example:

...

<h:form>

 <rich:dataOrderedList var="car" value="#{dataTableScrollerBean.allCars}" rows="5" type="1" title="Car

 Store">

 <h:outputText value="#{car.make} #{car.model}"/>

 <h:outputText value="Price:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.price}" />

 <h:outputText value="Mileage:" styleClass="label"></h:outputText>

 <h:outputText value="#{car.mileage}" />

 </rich:dataOrderedList>

</h:form>

...

This is a result:

Chapter 6. The RichFaces Comp...

264

Figure 6.47. <rich:dataOrderedList> component with "type" attribute

In the example the "rows" attribute limits number of output elements of the list.

"first" attribute defines first element for output. "title" are used for popup title.

The component was created basing on the <a4j:repeat> component and as a result it could

be partially updated with Ajax. "ajaxKeys" attribute allows to define row keys that are updated

after an Ajax request.

Here is an example:

Example:

...

<rich:dataOrderedList value="#{dataTableScrollerBean.allCars}" var="car" ajaxKeys="#{listBean.list}"

 binding="#{listBean.dataList}" id="list">

 ...

</rich:dataOrderedList>

...

<a4j:commandButton action="#{listBean.action}" reRender="list" value="Submit"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:dataOrderedList>

component. As a result the component is updated after an Ajax request.

6.6.8.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataOrderedList> components at

once:

 < rich:dataOrderedList > available since 3.0.0

265

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:dataOrderedList> component

6.6.8.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.48. Style classes

Table 6.77. Classes names that define a list appearance

Class name Description

rich-orderedlist Defines styles for an html element

rich-list-item Defines styles for an html element

In order to redefine styles for all <rich:dataOrderedList> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-orderedlist{

 background-color: #ebf3fd;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

266

Figure 6.49. Redefinition styles with predefined classes

In the example background color was changed.

Also it's possible to change styles of particular <rich:dataOrderedList> component. In this case

you should create own style classes and use them in corresponding <rich:dataOrderedList>

styleClass attributes. An example is placed below:

Example:

...

.myClass{

 font-style: italic;

}

...

Example:

<rich:dataOrderedList ... styleClass="myClass"/>

 < rich:datascroller > available since 3.0.0

267

This is a result:

Figure 6.50. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style was changed.

6.6.8.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataLists.jsf?c=dataOrderedList] you can see the example of <rich:dataOrderedList > usage

and sources for the given example.

6.6.9. < rich:datascroller > available since 3.0.0

6.6.9.1. Description

The component designed for providing the functionality of tables scrolling using Ajax requests.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList
http://livedemo.exadel.com/richfaces-demo/richfaces/dataLists.jsf?c=dataOrderedList

Chapter 6. The RichFaces Comp...

268

Figure 6.51. <rich:datascroller> component

6.6.9.2. Key Features

• Provides table scrolling functionality

• Built-in Ajax processing

• Provides fast controls

• Skin support

Table 6.78. rich : datascroller attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which send the request only.

Default value is "true"

align This attribute specifies the position of the

table with relatively to the document. Possible

 < rich:datascroller > available since 3.0.0

269

Attribute Name Description

values are "left","center","right ". Default value

is "center".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

boundaryControls The attribute specifies the visibility

of boundaryControls. Possible values

are: "show" (controls are always

visible). "hide" (controls are hidden.

"auto" (unnecessary controls are hidden).

Default value is "show".

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

fastControls The attribute specifies the visibility

of fastControls. Possible values

are: "show" (controls are always

visible). "hide" (controls are hidden.

"auto" (unnecessary controls are hidden).

Default value is "show".

fastStep The attribute indicates pages quantity to switch

onto when fast scrolling is used. Default value

is "0".

focus ID of an element to set focus after request is

completed on client side

for ID of the table component whose data is

scrollled

handleValue Current handle value

id JSF: Every component may have a unique id

that is automatically created if omitted

Chapter 6. The RichFaces Comp...

270

Attribute Name Description

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now. Default value is "true".

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

inactiveStyle CSS style rules to be applied to the scroller

inactive cells

inactiveStyleClass Assigns one or more space-separated CSS

class names to the scroller inactive cells

lastPageMode The attribute to control whether last page of

datascroller shows "rows" number of items or

just the rest. Possible values are "full" and

"short". Default value is "short".

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

maxPages Maximum quantity of pages. Default value is

"10".

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

 < rich:datascroller > available since 3.0.0

271

Attribute Name Description

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onpagechange The client-side script method to be called when

a page is changed

page If page >= 1 then it's a page number to show

pageIndexVar Name of variable in request scope containing

index of active page

pagesVar Name of variable in request scope containing

number of pages

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

renderIfSinglePage If renderIfSinglePage is "true" then datascroller

is displayed on condition that the data hold on

one page. Default value is "true".

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

Chapter 6. The RichFaces Comp...

272

Attribute Name Description

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

scrollerListener MethodBinding representing an action listener

method that will be notified after scrolling

selectedStyle CSS style rules to be applied to the scroller

selected cell

selectedStyleClass Assigns one or more space-separated CSS

class names to the scroller selected cell

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

stepControls The attribute specifies the visibility

of stepControls. Possible values

are: "show" (controls are always

visible). "hide" (controls are hidden.

"auto" (unnecessary controls are hidden).

Default value is "show".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tableStyle CSS style rules to be applied to the wrapper

table element of the component

tableStyleClass Assigns one or more space-separated CSS

class names to the wrapper table element of

the component

 < rich:datascroller > available since 3.0.0

273

Attribute Name Description

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

Table 6.79. Component identification parameters

Name Value

component-type org.richfaces.Datascroller

component-class org.richfaces.component.html.HtmlDatascroller

component-family org.richfaces.Datascroller

renderer-type org.richfaces.DataScrollerRenderer

tag-class org.richfaces.taglib.DatascrollerTag

6.6.9.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<h:dataTable id="table">

 ...

</h:dataTable>

...

<rich:datascroller for="table"/>

...

6.6.9.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDatascroller;

...

HtmlDatascroller myScroll = new HtmlDatascroller();

...

Chapter 6. The RichFaces Comp...

274

6.6.9.5. Details of Usage

The <rich:datascroller> component provides table scrolling functionalitity the same as

TOMAHAWK scroller but with Ajax requests usage.

The <rich:datascroller> component should be reRendered also with <rich:dataTable> when

you changing filter in order to be updated according to the <rich:dataTable> current model.

The component should be placed into footer of the parent table or be bound to it with the "for"

attribute. Note, that "for" is evaluated on view build, not on view render, that is why it will ignore

JSTL tags.

The table should also have the defined "rows" attribute limiting the quantity of inputted table rows.

The scroller could limit the maximum quantity of rendered links on the table pages with the help

of the "maxPages" attribute.

Component provides two controllers groups for switching:

• Page numbers for switching onto a particular page

• The controls of fast switching: "first", "last", "next", "previous", "fastforward", "fastrewind"

The controls of fast switching are created adding the facets component with the corresponding

name:

Example:

 ...

<rich:datascroller for="table" maxPages="10">

 <f:facet name="first">

 <h:outputText value="First"/>

 </f:facet>

 <f:facet name="last">

 <h:outputText value="Last"/>

 </f:facet>

</rich:datascroller>

...

 < rich:datascroller > available since 3.0.0

275

Figure 6.52. <rich:datascroller> controls of fast switching

The screenshot shows one controller from each group.

There are also facets used to create the disabled states: "first_disabled",

"last_disabled", "next_disabled", "previous_disabled", "fastforward_disabled",

"fastrewind_disabled".

For the "fastforward"/"fastrewind" controls customization the additional "fastStep" attribute

is used. The attribute indicates pages quantity to switch onto when fast scrolling is used.

The "page" is a value-binding attribute used to define and save current page number. The

example is placed below.

Example:

...

<h:form id="myForm">

 <rich:dataTable id="carList" rows="7" value="#{dataTableScrollerBean.allCars}" var="category">

 <f:facet name="header">

 <rich:columnGroup>

 <h:column>

 <h:outputText value="Make" />

 </h:column>

 <h:column>

 <h:outputText value="Model" />

 </h:column>

Chapter 6. The RichFaces Comp...

276

 <h:column>

 <h:outputText value="Price" />

 </h:column>

 </rich:columnGroup>

 </f:facet>

 <h:column>

 <h:outputText value="#{category.make}" />

 </h:column>

 <h:column>

 <h:outputText value="#{category.model}" />

 </h:column>

 <h:column>

 <h:outputText value="#{category.price}" />

 </h:column>

 </rich:dataTable>

 <rich:datascroller id="sc2" for="carList" reRender="sc1" maxPages="7" page="#{dataTableScrollerBean.scrollerPage}" /

>

 <h:panelGrid>

 <h:panelGroup>

 <h:outputText value="Set current page number:" />

 <h:inputText value="#{dataTableScrollerBean.scrollerPage}" id="sc1" size="1"/>

 <h:commandButton value="Set" />

 </h:panelGroup>

 </h:panelGrid>

</h:form>

...

In the example above you can enter the page number you want and set it by clicking on the

<h:commandButton> . By the way, if you use <rich:datascroller> page links the input field

rerenders and current page number changes.

This is a result:

 < rich:datascroller > available since 3.0.0

277

Figure 6.53. The "page" attribute usage

The "pageIndexVar" and "pagesVar" attributes define a request scope variables and provide

an ability to show the current page and the number of pages in the <rich:datascroller> .

These attributes are used for definition the names of variables, that is used in the facet with name

"pages" . An example can be found below:

Example:

...

<h:form>

 <rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">

 <rich:column>

 <h:outputText value="#{cap.name}" />

 </rich:column>

 <f:facet name="footer">

 <rich:datascroller pageIndexVar="pageIndex" pagesVar="pages">

 <f:facet name="pages">

 <h:outputText value="#{pageIndex} / #{pages}" />

 </f:facet>

 </rich:datascroller>

 </f:facet>

 </rich:dataTable>

</h:form>

...

It's possible to insert optional separators between controls. For this purpose use a

"controlsSeparator" facet. An example is placed below.

Chapter 6. The RichFaces Comp...

278

 ...

<f:facet name="controlsSeparator">

 <h:graphicImage value="/image/sep.png"/>

</f:facet>

...

Starting from 3.2.1 of RichFaces multiple <rich:datascroller> instances behavior and page

bindings are corrected. Incorrect page after model changes handling is added. Phase Listener

called before RenderResponce scans the page for the <rich:datascroller> and performs the

following operations:

• Checks if the <rich:datascroller> is rendered. (If the checking generates an exception, the

<rich:datascroller> is considered to be not rendered)

• If the <rich:datascroller> is rendered - the table to which the <rich:datascroller> is attached

gets the value of the page attribute of <rich:datascroller> .

Information about the "process" attribute usage you can find in the " Decide what to process

" guide section.

Note:

Make sure, that all <rich:datascroller> components, defined for a table, have

same values for all "page" attributes. The page, specified in the last "page" , will

be rendered in browser.

6.6.9.6. JavaScript API

Table 6.80. JavaScript API

Function Description

switchToPage(page) Switches to the defined page, "page" is

Number or String

next() Navigates to the next page

previous() Navigates to the previous page

first() Navigates to the first page

last() Navigates to the last page

fastForward() Navigates ahead over a certain number of

pages. The number of pages to traverse is

defined with fastStep attribute

 < rich:datascroller > available since 3.0.0

279

Function Description

fastRewind() Navigates backwards over a certain number

of pages. The number of pages to traverse is

defined with fastStep attribute

6.6.9.7. Facets

Table 6.81. Facets

Facet Description

controlsSeparator Redefines optional separators between

controls

first Redefines the "first" button with the content set

first_disabled Redefines the disabled "first" button with the

content set

last Redefines the "last" button with the content set

last_disabled Redefines the disabled "last" button with the

content set

fastrewind Redefines the "fastrewind" button with the

content set

fastrewind_disabled Redefines the disabled "fastrewind" button with

the content set

fastforward Redefines the "fastforward" button with the

content set

fastforward_disabled Redefines the disabled "fastforward" button

with the content set

previous Redefines the "previous" button with the

content set

previous_disabled Redefines the disabled "previous" button with

the content set

next Redefines the "next" button with the content set

next_disabled Redefines the disabled "next" button with the

content set

pages Redefines the pages buttons with the content

set

6.6.9.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:datascroller> components at once:

Chapter 6. The RichFaces Comp...

280

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:datascroller> component

6.6.9.9. Skin Parameters Redefinition

Table 6.82. Skin parameters redefinition for a wrapper element

Skin parameters CSS properties

tableBackgroundColor background-color

panelBorderColor border-color

Table 6.83. Skin parameters redefinition for a button

Skin parameters CSS properties

additionalBackgroundColor background-color

panelBorderColor border-color

generalFamilyFont font-family

generalSizeFont font-size

Table 6.84. Skin parameters redefinition for an active button

Skin parameters CSS properties

generalTextColor border-top-color

generalTextColor color

generalFamilyFont font-family

generalSizeFont font-size

Table 6.85. Skin parameters redefinition for an inactive button

Skin parameters CSS properties

headerBackgroundColor border-top-color

headerBackgroundColor color

generalFamilyFont font-family

generalSizeFont font-size

6.6.9.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

 < rich:datascroller > available since 3.0.0

281

Figure 6.54. Style classes

Table 6.86. Classes names that define a component appearance

Class name Description

rich-datascr Defines styles for a wrapper <div> element of

a datascroller

rich-dtascroller-table Defines styles for a wrapper table element of a

datascroller

rich-datascr-button Defines styles for a button

rich-datascr-ctrls-separator Defines styles for a separator between buttons

Table 6.87. Classes names that define a buttons appearance

Class name Description

rich-datascr-act Defines styles for an active button

rich-datascr-inact Defines styles for an inactive button

rich-datascr-button-dsbld Defines styles for a disabled button

In order to redefine styles for all <rich:datascroller> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the table

above) and define necessary properties in them. An example is placed below:

Example:

...

.rich-datascr-button{

 color: #CD6600;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

282

Figure 6.55. Redefinition styles with predefined classes

In the example an input text font style was changed.

Also it's possible to change styles of particular <rich:datascroller> component. In this case you

should create own style classes and use them in corresponding <rich:datascroller> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 background-color: #C6E2FF;

}

...

The "styleClass" attribute for <rich:datascroller> is defined as it's shown in the example below:

Example:

<rich:datascroller ... selectedStyleClass="myClass"/>

This is a result:

Figure 6.56. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color of the selected cell on scroller was

changed.

6.6.9.11. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataTableScroller.jsf?c=dataTableScroller] you can see the example of <rich:datascroller>

usage and sources for the given example.

The solution about how to do correct pagination using datascroller (load a part of data from

database) can be found on the RichFaces Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&p=4060199#4060199].

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTableScroller.jsf?c=dataTableScroller
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4060199#4060199

 < rich:dataTable > available since 3.0.0

283

How to use <rich:dataTable> and <rich:datascroller> in a context of

Extended Data Model see on theRichFaces Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&t=115636].

6.6.10. < rich:dataTable > available since 3.0.0

6.6.10.1. Description

The component for tables rendering that allows choosing data from a model and obtains built-in

support of Ajax updates.

Figure 6.57. <rich:dataTable> component

6.6.10.2. Key Features

• A completely skinned table and child elements

• Possibility to insert the complex subcomponents "colGroup" and "subTable"

• Possibility to update a limited set of strings with Ajax

• Possibility to sort and to filter of columns

• Sorting column values

• Filtering column values

Table 6.88. rich : dataTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

align Deprecated. This attribute specifies the

position of the table with respect to the

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636

Chapter 6. The RichFaces Comp...

284

Attribute Name Description

document. The possible values are "left",

"center" and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background

color for the document body or table cells.

This attribute sets the background color of

the canvas for the document body (the

BODY element) or for tables (the TABLE, TR,

TH, and TD elements). Additional attributes

for specifying text color can be used with

the BODY element. This attribute has been

deprecated in favor of style sheets for

specifying background color information

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: This attributes specifies the width of the

frame around a component. Default value is

"0".

captionClass Assigns one or more space-separated CSS

class names to the component caption

captionStyle CSS style rules to be applied to the component

caption

cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.

Default value is "0".

cellspacing This attribute specifies the amount of space

between the border of the cell and its contents.

The attribute also specifies the amount of

space to leave between cells. Default value is

"0".

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

 < rich:dataTable > available since 3.0.0

285

Attribute Name Description

columns Specifies the number of columns

columnsWidth Comma-separated list of width attribute for

every column. Specifies a default width for

each column in the table. In addition to

the standard pixel, percentage, and relative

values, this attribute allows the special form

"0*" (zero asterisk) which means that the width

of the each column in the group should be

the minimum width necessary to hold the

column's contents. This implies that a column's

entire contents must be known before its width

may be correctly computed. Authors should

be aware that specifying "0*" will prevent

visual user agents from rendering a table

incrementally

componentState It defines EL-binding for a component state for

saving or redefinition

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

first A zero-relative row number of the first row to

display

footerClass Assigns one or more space-separated CSS

class names to the component footer

frame This attribute specifies which sides of the frame

surrounding a table will be visible. Possible

values: "void", "above", "below", "hsides", "lhs",

"rhs", "vsides", "box" and "border". The default

value is "void".

headerClass Assigns one or more space-separated CSS

class names to the component header

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

Chapter 6. The RichFaces Comp...

286

Attribute Name Description

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onRowClick The client-side script method to be called when

the row is clicked

onRowContextMenu The client-side script method to be called

when a right mouse button is clicked over the

row. Returning false prevents default browser

context menu from being displayed.

onRowDblClick The client-side script method to be called when

the row is double-clicked

onRowMouseDown The client-side script method to be called when

a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when

a pointer is moved within the row

onRowMouseOut The client-side script method to be called when

a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when

a pointer is moved onto the row

 < rich:dataTable > available since 3.0.0

287

Attribute Name Description

onRowMouseUp The client-side script method to be called when

a mouse button is released over the row

rendered JSF: If "false", this component is not rendered

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKeyConverter Converter for a RowKey object.

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

rules This attribute specifies which rules will appear

between cells within a table. The rendering

of rules is user agent dependent. Possible

values: * none: No rules. This is the default

value. * groups: Rules will appear between row

groups (see THEAD, TFOOT, and TBODY)

and column groups (see COLGROUP and

COL) only. * rows: Rules will appear between

rows only. * cols: Rules will appear between

columns only. * all: Rules will appear between

all rows and columns

sortMode Defines mode of sorting. Possible values are

'single' for sorting of one column and 'multi' for

some.

sortPriority Defines a set of columns ids in the sorting order

Chapter 6. The RichFaces Comp...

288

Attribute Name Description

stateVar The attribute provides access to a component

state on the client side

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

width HTML: This attribute specifies the desired

width of the entire table and is intended

for visual user agents. When the value is

percentage value, the value is relative to the

user agent's available horizontal space. In the

absence of any width specification, table width

is determined by the user agent

Table 6.89. Component identification parameters

Name Value

component-type org.richfaces.DataTable

component-class org.richfaces.component.html.HtmlDataTable

component-family org.richfaces.DataTable

renderer-type org.richfaces.DataTableRenderer

tag-class org.richfaces.taglib.DataTableTag

6.6.10.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

 <rich:dataTable value="#{capitalsBean.capitals}" var="capitals">

 <rich:column>

 ...

 </rich:column>

 < rich:dataTable > available since 3.0.0

289

</rich:dataTable>

...

6.6.10.4. Creating the Component Dynamically from Java

Example:

import org.richfaces.component.html.HtmlDataTable;

...

HtmlDataTable myTable = new HtmlDataTable();

...

6.6.10.5. Details of Usage

The <rich:dataTable> component is similar to the <h:dataTable> one, except Ajax support

and skinnability. Ajax support is possible, because the component was created basing on the

<a4j:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"

attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals"

 ajaxKeys="#{bean.ajaxSet}" binding="#{bean.table}" id="table">

 ...

</rich:dataTable>

...

<a4j:commandButton action="#{tableBean.action}" reRender="table" value="Submit"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:dataTable>

component. As a result the component is updated after an Ajax request.

The component allows to use "header" , "footer" and "caption" facets for output. See an example

below:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="cap" rows="5">

 <f:facet name="caption">

Chapter 6. The RichFaces Comp...

290

 <h:outputText value="United States Capitals" />

 </f:facet>

 <f:facet name="header">

 <h:outputText value="Capitals and States Table" />

 </f:facet>

 <rich:column>

 <f:facet name="header">State Flag</f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

 <f:facet name="footer">State Flag</f:facet>

 </rich:column>

 <rich:column>

 <f:facet name="header">State Name</f:facet>

 <h:outputText value="#{cap.state}"/>

 <f:facet name="footer">State Name</f:facet>

 </rich:column>

 <rich:column >

 <f:facet name="header">State Capital</f:facet>

 <h:outputText value="#{cap.name}"/>

 <f:facet name="footer">State Capital</f:facet>

 </rich:column>

 <rich:column>

 <f:facet name="header">Time Zone</f:facet>

 <h:outputText value="#{cap.timeZone}"/>

 <f:facet name="footer">Time Zone</f:facet>

 </rich:column>

 <f:facet name="footer">

 <h:outputText value="Capitals and States Table" />

 </f:facet>

</rich:dataTable>

...

This is a result:

 < rich:dataTable > available since 3.0.0

291

Figure 6.58. <rich:dataTable> component with facets

Information about sorting and filtering you can find in the corresponding section.

You can find information how to remove header's gradient in the "How to remove rich:dataTable

header background " article [http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut].

6.6.10.6. Facets

Table 6.90. Facets

Facet Description

header Redefines the header content

footer Redefines the footer content

caption Defines the caption content

6.6.10.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dataTable> components at once:

• Redefine the corresponding skin parameters

http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut
http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut
http://wiki.jboss.org/wiki/RichFacesDataTableBackgroundOut

Chapter 6. The RichFaces Comp...

292

• Add to your style sheets style classes used by a <rich:dataTable> component

6.6.10.8. Skin Parameters Redefinition

Table 6.91. Skin parameters redefinition for a table

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.92. Skin parameters redefinition for a header

Skin parameters CSS properties

headerBackgroundColor background-color

Table 6.93. Skin parameters redefinition for a footer

Skin parameters CSS properties

tableFooterBackgroundColor background-color

Table 6.94. Skin parameters redefinition for a column header

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.95. Skin parameters redefinition for a column footer

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

Table 6.96. Skin parameters redefinition for cells

Skin parameters CSS properties

generalSizeFont font-size

generalTextColor color

generalFamilyFont font-family

6.6.10.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

 < rich:dataTable > available since 3.0.0

293

Figure 6.59. <rich:dataTable> class names

Table 6.97. Classes names that define a whole component appearance

Class name Description

rich-table Defines styles for all table

rich-table-caption Defines styles for a "caption" facet element

Table 6.98. Classes names that define header and footer elements

Class name Description

rich-table-header Defines styles for a table header row

rich-table-header-continue Defines styles for all header lines after the first

rich-table-subheader Defines styles for a column header

rich-table-footer Defines styles for a footer row

rich-table-footer-continue Defines styles for all footer lines after the first

rich-table-subfooter Defines styles for a column footer

Chapter 6. The RichFaces Comp...

294

Table 6.99. Classes names that define rows and cells of a table

Class name Description

rich-table-headercell Defines styles for a header cell

rich-table-subheadercell Defines styles for a column header cell

rich-table-cell Defines styles for a table cell

rich-table-row Defines styles for a table row

rich-table-firstrow Defines styles for a table's first row

rich-table-footercell Defines styles for a footer cell

rich-table-subfootercell Defines styles for a column footer cell

In order to redefine styles for all <rich:dataTable> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-table-cell{

 font-weight:bold;

}

...

This is a result:

Figure 6.60. Redefinition styles with predefined classes

In the example the font weight for table cell was changed.

 < rich:dataTable > available since 3.0.0

295

Also it's possible to change styles of particular <rich:dataTable> component. In this case you

should create own style classes and use them in corresponding <rich:dataTable> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style:italic;

}

...

The "headerClass" attribute for <rich:dataTable> is defined as it's shown in the example below:

Example:

<rich:dataTable ... headerClass="myClass"/>

This is a result:

Figure 6.61. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for header was changed.

Detailed information on how to set <rich:dataTable> border to "0px" you can find in the " How

to set rich:dataTable border to 0px article " [http://www.jboss.org/community/docs/DOC-11861] .

http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861

Chapter 6. The RichFaces Comp...

296

6.6.10.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dataTable.jsf?c=dataTable] you can see the example of <rich:dataTable> usage and sources

for the given example.

The article about <rich:dataTable> flexibility can be found in the "rich:dataTable Flexibility "

article [http://www.jboss.org/community/docs/DOC-11847].

Article on dataTable skinability [http://www.jboss.org/community/docs/DOC-11848] provides you

a simple example of skinnability.

More information about using <rich:dataTable> and <rich:subTable>

could be found on the RichFaces Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&p=4059044#4059044].

How to use <rich:dataTable> and <rich:datascroller> in a context of Extended

Data Model see on the RichFaces Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&t=115636].

From "rich:dataTable border to 0px " [http://www.jboss.org/community/docs/DOC-11861] article

you'll figure out how to set rich:dataTable border to 0px

dataTable Background Out [http://www.jboss.org/community/docs/DOC-11860] tells you how to

remove rich:dataTable header background

6.6.11. < rich:subTable > available since 3.0.0

6.6.11.1. Description

The component is used for inserting subtables into tables with opportunity to choose data from a

model and built-in Ajax updates support.

http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/dataTable.jsf?c=dataTable
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11847
http://www.jboss.org/community/docs/DOC-11848
http://www.jboss.org/community/docs/DOC-11848
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4059044#4059044
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=115636
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11861
http://www.jboss.org/community/docs/DOC-11860
http://www.jboss.org/community/docs/DOC-11860

 < rich:subTable > available since 3.0.0

297

Figure 6.62. <rich:subTable> element

6.6.11.2. Key Features

• Completely skinned table rows and child elements

• Possibility to insert complex columnGroup subcomponents

• Possibility to combine rows and columns inside

• Possibility to update a limited set of rows with Ajax

Table 6.100. rich : subTable attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

Chapter 6. The RichFaces Comp...

298

Attribute Name Description

componentState It defines EL-binding for a component state for

saving or redefinition

first A zero-relative row number of the first row to

display

footerClass Assigns one or more space-separated CSS

class names to any footer generated for this

component

headerClass Assigns one or more space-separated CSS

class names to any header generated for this

component

id JSF: Every component may have a unique id

that is automatically created if omitted

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

 < rich:subTable > available since 3.0.0

299

Attribute Name Description

onRowClick The client-side script method to be called when

the row is clicked

onRowDblClick The client-side script method to be called when

the row is double-clicked

onRowMouseDown The client-side script method to be called when

a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when

a pointer is moved within the row

onRowMouseOut The client-side script method to be called when

a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when

a pointer is moved onto the row

onRowMouseUp The client-side script method to be called when

a mouse button is released over the row

rendered JSF: If "false", this component is not rendered

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

stateVar The attribute provides access to a component

state on the client side

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

Chapter 6. The RichFaces Comp...

300

Table 6.101. Component identification parameters

Name Value

component-type org.richfaces.SubTable

component-class org.richfaces.component.html.HtmlSubTable

component-family org.richfaces.SubTable

renderer-type org.richfaces.SubTableRenderer

tag-class org.richfaces.taglib.SubTableTag

6.6.11.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">

 <rich:column>

 ...

 </rich:column>

 <rich:subTable value=#{capitals.details} var="detail">

 <rich:column>

 ...

 </rich:column>

 </rich:subTable>

</rich:dataTable>

...

6.6.11.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlSubTable;

...

HtmlSubTable mySubTable = new HtmlSubTable();

...

6.6.11.5. Details of Usage

The <rich:subTable> component is similar to the <h:dataTable> one, except Ajax support

and skinnability. One more difference is that the component doesn't add the wrapping <table>

 < rich:subTable > available since 3.0.0

301

and <tbody> tags. Ajax support is possible, because the component was created basing on

the <a4j:repeat> component and as a result it could be partially updated with Ajax. "ajaxKeys"

attribute allows to define row keys that is updated after an Ajax request.

Here is an example:

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="capitals">

 <rich:column>

 ...

 </rich:column>

 <rich:subTable value="#{capitals.details}" var="detail" ajaxKeys="#{bean.ajaxSet}" binding="#{bean.subtable}" id="subtable">

 <rich:column>

 ...

 </rich:column>

 </rich:subTable>

</rich:dataTable>

...

<a4j:commandButton action="#{tableBean.action}" reRender="subtable"/>

...

In the example "reRender" attribute contains value of "id" attribute for <rich:subTable>

component. As a result the component is updated after an Ajax request.

The component allows to use "header" and "footer" facets for output. See an example for

<rich:dataTable> component [289].

6.6.11.6. Facets

Table 6.102. Facets

Facet name Description

header Defines the header content

footer Defines the footer content

6.6.11.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:subTable> components at once:

Chapter 6. The RichFaces Comp...

302

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:subTable> component

6.6.11.8. Skin Parameters Redefinition

Skin parameters redefinition for <rich:subTable> are the same as for the <rich:dataTable>

component.

6.6.11.9. Definition of Custom Style Classes

Table 6.103. Classes names that define a component appearance

Class name Description

rich-subtable Defines styles for all subtable

rich-subtable-caption Defines styles for a "caption" facet element

Table 6.104. Classes names that define header and footer elements

Class name Description

rich-subtable-header Defines styles for a subtable header row

rich-subtable-header-continue Defines styles for all subtable header lines after

the first

rich-subtable-subheader Defines styles for a column header of subtable

rich-subtable-subfooter Defines styles for a column footer of subtable

rich-subtable-footer Defines styles for a subtable footer row

rich-subtable-footer-continue Defines styles for all subtable footer lines after

the first

Table 6.105. Classes names that define rows and cells

Class name Description

rich-subtable-headercell Defines styles for a subtable header cell

rich-subtable-subheadercell Defines styles for a column header cell of

subtable

rich-subtable-cell Defines styles for a subtable cell

rich-subtable-row Defines styles for a subtable row

rich-subtable-firstrow Defines styles for a subtable start row

rich-subtable-subfootercell Defines styles for a column footer cell of

subtable

rich-subtable-footercell Defines styles for a subtable footer cell

 < rich:subTable > available since 3.0.0

303

Figure 6.63. Style classes

In order to redefine styles for all <rich:subTable> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-subtable-footer{

 font-weight: bold;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

304

Figure 6.64. Redefinition styles with predefined classes

In the example a footer font weight was changed.

Also it's possible to change styles of particular <rich:subTable> component. In this case you

should create own style classes and use them in corresponding <rich:subTable> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 background-color: #fff5ec;

}

...

The "columnClasses" attribute for <rich:subTable> is defined as it's shown in the example

below:

Example:

<rich:subTable ... columnClasses="myClass"/>

This is a result:

 < rich:extendedDataTable > available since 3.2.2

305

Figure 6.65. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for columns was changed.

6.6.12. < rich:extendedDataTable > available since 3.2.2

3.2.2

6.6.12.1. Description

The component for tables extending standard component <rich:dataTable> .

Figure 6.66. <rich:extendedDataTable> component

Chapter 6. The RichFaces Comp...

306

6.6.12.2. Key Features

• Possibility to scroll data

• Possibility to add an attribute to set the kind of selection (none, single line or multiple lines)

• Possibility to change the sequence of the displayed columns by dragging the column-header

to another position

• Possibility to show or hide columns by selecting or deselecting them in a context menu

• Possibility to save the current settings (visible columns, column width, sequence of the columns)

to be reused the next time the page will be shown

• Possibility to combine rows to groups

Table 6.106. rich : extendedDataTable attributes

Attribute Name Description

activeClass Assigns one or more space-separated CSS

class names to the component active row

activeRowKey Request scope attribute under which the

activeRowKey will be accessible

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

align Deprecated. This attribute specifies the

position of the table with respect to the

document. The possible values are "left",

"center" and "right". The default value is "left".

bgcolor Deprecated. This attribute sets the background

color for the document body or table cells.

This attribute sets the background color of

the canvas for the document body (the

BODY element) or for tables (the TABLE, TR,

TH, and TD elements). Additional attributes

for specifying text color can be used with

the BODY element. This attribute has been

deprecated in favor of style sheets for

specifying background color information

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: This attributes specifies the width of the

frame around a component. Default value is "0"

 < rich:extendedDataTable > available since 3.2.2

307

Attribute Name Description

captionClass Assigns one or more space-separated CSS

class names to the component caption

captionStyle CSS style rules to be applied to the component

caption

cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.

Default value is "0"

cellspacing The cellspacing attribute specifies the space

between cells. Default value is "0"

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

componentState It defines EL-binding for a component state for

saving or redefinition

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

enableContextMenu If set to true, table header context menu will be

enabled

first A zero-relative row number of the first row to

display

footerClass Assigns one or more space-separated CSS

class names to the component footer

frame This attribute specifies which sides of the frame

surrounding a table will be visible. Possible

values: "void", "above", "below", "hsides", "lhs",

"rhs", "vsides", "box" and "border". The default

value is "void".

groupingColumn Defines an id of column which the data is

grouped by.

headerClass Assigns one or more space-separated CSS

class names to the component header

Chapter 6. The RichFaces Comp...

308

Attribute Name Description

height Defines a height of the component. Default

value is "500px"

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

noDataLabel Defines label to be displayed in case there are

no data rows.

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onRowClick The client-side script method to be called when

the row is clicked

onRowDblClick The client-side script method to be called when

the row is double-clicked

 < rich:extendedDataTable > available since 3.2.2

309

Attribute Name Description

onRowMouseDown The client-side script method to be called when

a mouse button is pressed down over the row

onRowMouseMove The client-side script method to be called when

a pointer is moved within the row

onRowMouseOut The client-side script method to be called when

a pointer is moved away from the row

onRowMouseOver The client-side script method to be called when

a pointer is moved onto the rows

onRowMouseUp The client-side script method to be called when

a pointer is released over the row

onselectionchange The client-side script method to be called when

a selected row is changed

rendered JSF: If "false", this component is not rendered

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

rules This attribute specifies which rules will appear

between cells within a table. The rendering

of rules is user agent dependent. Possible

values: * none: No rules. This is the default

value. * groups: Rules will appear between row

groups (see THEAD, TFOOT, and TBODY)

Chapter 6. The RichFaces Comp...

310

Attribute Name Description

and column groups (see COLGROUP and

COL) only. * rows: Rules will appear between

rows only. * cols: Rules will appear between

columns only. * all: Rules will appear between

all rows and columns

selectedClass Assigns one or more space-separated CSS

class names to the component rows selected

selection Value binding representing selected rows

selectionMode Single row can be selected. multi: Multiple

rows can be selected. none: no rows can be

selected. Default value is "single"

sortMode Defines mode of sorting. Possible values are

'single' for sorting of one column and 'multi' for

some.

sortPriority Defines a set of column ids in the order the

columns could be set

stateVar The attribute provides access to a component

state on the client side

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tableState ValueBinding pointing at a property of a String

to hold table state

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

width HTML: This attribute specifies the desired

width of the entire table and is intended

for visual user agents. When the value is

percentage value, the value is relative to the

user agent's available horizontal space. In the

absence of any width specification, table width

is determined by the user agent

 < rich:extendedDataTable > available since 3.2.2

311

Table 6.107. Component identification parameters

Name Value

component-type org.richfaces.ExtendedDataTable

component-class org.richfaces.component.html.HtmlExtendedDataTable

component-family org.richfaces.ExtendedDataTable

renderer-type org.richfaces.ExtendedDataTableRenderer

tag-class org.richfaces.taglib.ExtendedDataTableTag

6.6.12.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:extendedDataTable value="#{extendedDT.dataModel}" var="edt">

 <rich:column>

 ...

 </rich:column>

</rich:extendedDataTable>

...

6.6.12.4. Creating the Component Dynamically from Java

Example:

import org.richfaces.component.html.HtmlExtendedDataTable;

...

HtmlExtendedDataTable myTable = new HtmlExtendedDataTable();

...

6.6.12.5. Details of Usage

The <rich:extendedDataTable> component is similar to the <rich:dataTable> . The data in

component is scrollable. You can also set the type of selection ("none", "single" or "multi" lines).

Selection of multiple lines is possible using Shift and Ctrl keys.

Here is an example:

Example:

Chapter 6. The RichFaces Comp...

312

...

<rich:extendedDataTable id="edt" value="#{extendedDT.dataModel}" var="edt" width="500px" height="500px" selectedClass="dataTableSelectedRow" sortMode="single" selectionMode="multi" selection="#{extendedDT.selection}" rowKeyVar="rkvar" tableState="#{extendedDT.tableState}">

 <rich:column id="id" headerClass="dataTableHeader" width="50" label="Id" sortable="true" sortBy="#{edt.id}" sortIconAscending="dataTableAscIcon" sortIconDescending="dataTableDescIcon">

 <f:facet name="header">

 <h:outputText value="Id" />

 </f:facet>

 <h:outputText value="#{edt.id}" />

 </rich:column>

 <rich:column id="name" width="300" headerClass="dataTableHeader" label="Name" sortable="true" sortBy="#{edt.name}" sortIconAscending="dataTableAscIcon" sortIconDescending="dataTableDescIcon" filterBy="#{edt.name}" filterEvent="onkeyup" visible="false">

 <f:facet name="header">

 <h:outputText value="Name" />

 </f:facet>

 <h:outputText value="#{edt.name}" />

 </rich:column>

 <rich:column id="date" width="100" headerClass="dataTableHeader" label="Date" sortable="true" comparator="#{extendedDT.dateComparator}" sortIconAscending="dataTableAscIcon" sortIconDescending="dataTableDescIcon">

 <f:facet name="header">

 <h:outputText value="Date" />

 </f:facet>

 <h:outputText value="#{edt.date}"><f:convertDateTime pattern="yyyy-MM-dd

 HH:mm:ss" />

 </h:outputText>

 </rich:column>

 <rich:column id="group" width="50" headerClass="dataTableHeader" label="Group" sortable="true" sortBy="#{edt.group}" sortIconAscending="dataTableAscIcon" sortIconDescending="dataTableDescIcon">

 <f:facet name="header">

 <h:outputText value="Group" />

 </f:facet>

 <h:outputText value="#{edt.group}" />

 </rich:column>

</rich:extendedDataTable>

...

 < rich:extendedDataTable > available since 3.2.2

313

Figure 6.67. <rich:extendedDataTable> component with selected multiple

lines

Information about sorting and filtering can be found in RichFaces Developer Guide section on

sorting.

For external filtering <rich:extendedDataTable> component supports "filter" facet for

<rich:column> component. In this facet you can define your own controls for filtering which will be

positioned like built-in filter controls. Rest of the filter scenario is the same as described RichFaces

Developer Guide section on filtering.

In the example "selection" attribute contains object with selected rows.

Note:

Attribute "height" is mandatory. The default value is "500px" .

Menu on the right side of the column header is used to perform action: sorting, grouping, hiding

columns.

This is an example:

Figure 6.68. Column menu

Chapter 6. The RichFaces Comp...

314

After selecting a "Group by this column" option, you can see the data grouped. You can collapse

and expand groups by clicking on a group header.

This is an example:

Figure 6.69. <rich:extendedDataTable> component with grouped data

The "label" attribute in <rich:column> sets the name of the column, which is used when

dragging columns (in drag window) and in context menu, in "Columns" submenu.

Example:

...

<rich:column id="name" label="#{msg['name']}"

...

 < rich:extendedDataTable > available since 3.2.2

315

Figure 6.70. <rich:extendedDataTable> component with Drag&Drop

column 'Name'

In the component <rich:extendedDataTable> columns can hidden:

Figure 6.71. <rich:extendedDataTable> component with hidden column

'Id' and 'Group'

"tableState" attribute can be used to bind state of the table (column width, column position, visible,

sequence, grouping...) to a backing-bean string property, for a later used. This state can be for

example saved to a database, and it is different form standard JSF state saving mechanisms.

Example:

...

<rich:extendedDataTable tableState="#{extendedDT.tableState}">

Chapter 6. The RichFaces Comp...

316

...

6.6.12.6. Facets

Table 6.108. Facets

Facet Description

header Redefines the header content

footer Redefines the footer content

caption Redefines the caption content

6.6.12.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:extendedDataTable> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:extendedDataTable> component

6.6.12.8. Skin Parameters Redefinition

Table 6.109. Skin parameters redefinition for a table

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.110. Skin parameters redefinition for a header

Skin parameters CSS properties

headerBackgroundColor background-color

Table 6.111. Skin parameters redefinition for a footer

Skin parameters CSS properties

tableFooterBackgroundColor background-color

Table 6.112. Skin parameters redefinition for a column header

Skin parameters CSS properties

additionalBackgroundColor background-color

 < rich:extendedDataTable > available since 3.2.2

317

Table 6.113. Skin parameters redefinition for a column footer

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

Table 6.114. Skin parameters redefinition for cells

Skin parameters CSS properties

generalSizeFont font-size

generalTextColor color

generalFamilyFont font-family

6.6.12.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.72. <rich:extendedDataTable> class names

Table 6.115. Classes names that define a whole component appearance

Class name Description

rich-extdt Defines styles for all table

rich-extdt-caption Defines styles for a "caption" facet element

Chapter 6. The RichFaces Comp...

318

Table 6.116. Classes names that define header and footer elements

Class name Description

rich-extdt-header Defines styles for a table header row

rich-extdt-header-continue Defines styles for all header lines after the first

rich-extdt-subheader Defines styles for a column header

rich-extdt-footer Defines styles for a footer row

rich-extdt-footer-continue Defines styles for all footer lines after the first

rich-extdt-subfooter Defines styles for a column footer

Table 6.117. Classes names that define rows and cells of a table

Class name Description

rich-extdt-headercell Defines styles for a header cell

rich-extdt-subheadercell Defines styles for a column header cell

rich-extdt-cell Defines styles for a table cell

rich-extdt-row Defines styles for a table row

rich-extdt-firstrow Defines styles for a table start row

rich-extdt-footercell Defines styles for a footer cell

rich-extdt-subfootercell Defines styles for a column footer cell

rich-extdt-group-cell Defines styles for a grouping row cell

An example of use the styles for component <rich:extendedDataTable> is similar to

<rich:dataTable>

6.6.12.10. Relevant resources links

Some additional information about usage of component can be found on its LiveDemo page [http://

livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable].

6.6.13. < a4j:repeat > available since 3.0.0

6.6.13.1. Description

The <a4j:repeat> component implements a basic iteration component that allows to update a

set of its children with Ajax.

Table 6.118. a4j : repeat attributes

Attribute Name Description

ajaxKeys This attribute defines row keys that are updated

after an AJAX request.

http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/extendedDataTable.jsf?c=extendedDataTable

 < a4j:repeat > available since 3.0.0

319

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

componentState It defines EL-binding for a component state for

saving or redefinition.

first A zero-relative row number of the first row to

display

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope.

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

stateVar The attribute provides access to a component

state on the client side.

value JSF: The current value for this component.

var A request-scope attribute via which the data

object for the current row will be used when

iterating

Table 6.119. Component identification parameters

Name Value

component-type org.ajax4jsf.Repeat

component-family javax.faces.Data

component-class org.ajax4jsf.component.html.HtmlAjaxRepeat

renderer-type org.ajax4jsf.components.RepeatRenderer

6.6.13.2. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

<a4j:repeat id="detail" value="#{bean.props}" var="detail">

 <h:outputText value="#{detail.someProperty}"/>

</a4j:repeat>

Chapter 6. The RichFaces Comp...

320

The output is generated according to a collection contained in bean.props with the detail key

passed to child components.

6.6.13.3. Creating the Component Dynamically Using Java

Example:

import org.ajax4jsf.component.html.HtmlAjaxRepeat;

...

HtmlAjaxRepeat repeater = new HtmlAjaxRepeat ();

...

6.6.13.4. Details of usage

The <a4j:repeat> component is similar to Facelets <ui:repeat> tag, which is used to iterate

through a collection of objects binded with JSF page as EL expression. The main difference of the

<a4j:repeat> is a possibility to update particular components (it's children) instead of all using

Ajax requests. The feature that makes the component different is a special "ajaxKeys" attribute

that defines row that are updated after an Ajax request. As a result it becomes easier to update

several child components separately without updating the whole page.

...

<table>

 <tbody>

 <a4j:repeat value="#{repeatBean.items}" var="item" ajaxKeys="#{updateBean.updatedRow}">

 <tr>

 <td><h:outputText value="#{item.code}" id="item1" /></td>

 <td><h:outputText value="#{item.price}" id="item2" /></td>

 </tr>

 </a4j:repeat>

 </tbody>

</table>

 ...

The example above the <a4j:repeat> points to an method that contains row keys to be updated.

Note:

The <a4j:repeat> component is defined as fully updated, but really updated there

are only the row keys which defined in the "ajaxKeys" attribute.

 < rich:scrollableDataTable > available since 3.1.0

321

One more benefit of this component is absence of strictly defined markup as JSF HTML DataTable

and TOMAHAWK DataTable has. Hence the components could be used more flexibly anywhere

where it's necessary to output the results of selection from some collection.

The next example shows collection output as a plain HTML list:

 <a4j:repeat ...>

 ...

 ...

 ...

 </a4j:repeat>

All other general attributes are defined according to the similar attributes of iterative components

(<h:dataTable> or <ui:repeat>) and are used in the same way.

6.6.13.5. Relevant resources links

Vizit the Repeat page [http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat]

at RichFaces LiveDemo for examples of component usage and their sources.

6.6.14. < rich:scrollableDataTable > available since 3.1.0

3.1.0

6.6.14.1. Description

The <rich:scrollableDataTable> component is used for the table-like component creation.

The component just adds the set of additional features described below in comparison with the

standard table.

http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat
http://livedemo.exadel.com/richfaces-demo/richfaces/repeat.jsf?c=repeat

Chapter 6. The RichFaces Comp...

322

Figure 6.73. <rich:scrollableDataTable> component

6.6.14.2. Key Features

• Highly customizable look and feel

• Variable content of the table cells

• Dynamically fetching the rows from the server when the table is scrolled up and down

• Resizing columns by mouse dragging the column bar

• Sorting column by clicking the header

• Fixed one or more left columns when table is scrolled horizontally

• One and multi-selection rows mode

• Built-it drag-n-drop support

• Sorting column values

Table 6.120. rich : scrollableDataTable attributes

Attribute Name Description

activeClass Assigns one or more space-separated CSS

class names to the component active row

 < rich:scrollableDataTable > available since 3.1.0

323

Attribute Name Description

activeRowKey Request scope attribute under which the

activeRowKey will be accessible

ajaxKeys This attribute defines row keys that are updated

after an AJAX request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns of the table.

If the CSS class names are comma-separated,

each class will be assigned to a particular

column in the order they follow in the attribute.

If you have less class names than columns,

the class will be applied to every n-fold column

where n is the order in which the class is listed

in the attribute. If there are more class names

than columns, the overflow ones are ignored.

componentState It defines EL-binding for a component state for

saving or redefinition

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

first A zero-relative row number of the first row to

display

footerClass Assigns one or more space-separated CSS

class names to any footer generated for this

component

frozenColCount Defines the number of the fixed columns from

the left side that will not be scrolled via

horizontal scroll. Default value is "0".

Chapter 6. The RichFaces Comp...

324

Attribute Name Description

headerClass Assigns one or more space-separated CSS

class names to any header generated for this

component

height Defines a height of the component. Default

value is "500px".

hideWhenScrolling If "true" data will be hidden during scrolling.

Can be used for increase performance. Default

value is "false".

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

onRowClick The client-side script method to be called when

the row is clicked

onRowDblClick The client-side script method to be called when

the row is double-clicked

onRowMouseDown The client-side script method to be called when

a mouse button is pressed down over the row

onRowMouseUp The client-side script method to be called when

a mouse button is released over the row

onselectionchange The client side script method to be called when

a selected row is changed

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

 < rich:scrollableDataTable > available since 3.1.0

325

Attribute Name Description

comma-separated list of Id's, or EL Expression

with array or Collection

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows of the table. If

the CSS class names are comma-separated,

each class will be assigned to a particular row

in the order they follow in the attribute. If you

have less class names than rows, the class will

be applied to every n-fold row where n is the

order in which the class is listed in the attribute.

If there are more class names than rows, the

overflow ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the table

scriptVar Name of JavaScript variable corresponding to

component

selectedClass Assigns one or more space-separated CSS

class names to the component rows selected

selection Value binding representing selected rows

selectionMode Defines selection behaviour, provides an

enumeration of the possible selection modes.

Default value is "multi"

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

sortMode Defines mode of sorting. Possible values are

'single' for sorting of one column and 'multi' for

some.

sortOrder ValueBinding pointing at a property of a class

to manage rows sorting

stateVar The attribute provides access to a component

state on the client side

status ID (in format of call

UIComponent.findComponent()) of Request

status component

Chapter 6. The RichFaces Comp...

326

Attribute Name Description

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

var A request-scope attribute via which the data

object for the current row will be used when

iterating

width HTML: Defines a width of the component.

Default value is "700px".

Table 6.121. Component identification parameters

Name Value

component-type org.richfaces.component.ScrollableDataTable

component-class org.richfaces.component.html.HtmlScrollableDataTable

component-family org.richfaces.component.ScrollableDataTable

renderer-type org.richfaces.renderkit.html.ScrollableDataTableRenderer

tag-class org.richfaces.taglib.ScrollableDataTableTag

6.6.14.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:scrollableDataTable value="#{dataTableScrollerBean.allCars}" var="category">

 <!--Set of columns and header/footer facets-->

</rich:scrollableDataTable>

...

6.6.14.4. Creating the Component Dynamically Using Java

Example:

 < rich:scrollableDataTable > available since 3.1.0

327

import org.richfaces.component.html.HtmlScrollableDataTable;

...

HtmlScrollableDataTable myScrollableDataTable = new HtmlScrollableDataTable();

...

6.6.14.5. Details of Usage

The component represents on a page as a scrollable table with some fixed (non-scrollable) rows

(with header and footer) and columns. Like other tables <rich:scrollableDataTable> also has

optional footer and header that could be implemented using the corresponding facets. Columns of

the table are optionally resizable. Resizing is available using "drag and drop" of the column vertical

borders. There is possibility to expand or collapse the columns through JS API on the client side.

You can define the number of the fixed columns from the left side using attribute "frozenColCount"

that is not scrolled via horizontal scroll.

There is possibility to increase component performance using attribute "hideWhenScrolling" . If

attribute value is "true" data is hidden during scrolling.

It's possible to select the whole row with onclick on the row or some set of rows. Selection is

optional and availability of such feature is defined on the component. There are two ways to select

a few rows:

• Just clicking the columns one by one.

• Clicking some row with the SHIFT button hold. In this case all the rows starting from last selected

up to clicked should be selected.

The columns provides the possibility of expanding/collapsing on the client side through the next

JS API:

• collapse(columnId) - Performs the collapse action for the column with the corresponding id

It's possible to sort the table content after clicks on the header. The feature is optional (to disable it,

use attribute sortable on rich:column). Every column should be pointed to the comparator method

that is used for sorting the table. In case the <rich:scrollableDataTable> is already sorted by

some column and the header of this column has been clicked again - the sorting is reversed.

After sorting selection that was made before is reset

The typical variant of using:

...

<rich:scrollableDataTable value="#{modelBuilder.model}" var="issues"

 frozenColCount="1"

Chapter 6. The RichFaces Comp...

328

 first="0"

 rows="40"

 width="300px"

 height="396px">

 <rich:column width="100px">

 <f:facet name="header" >

 <h:outputText value="State"/>

 </f:facet>

 <h:outputText value="#{issues.cell1}"/>

 <f:facet name="footer">

 <h:outputText value="State"/>

 </f:facet>

 </rich:column>

 <!--Set of columns and header/footer facets-->

</rich:scrollableDataTable>

...

The "selection" attribute allows to get the row data when using one and multi-selection rows

mode.

This attribute is a reference to object to the instance of

org.richfaces.model.selection.Selection [http://www.jboss.org/file-access/default/

members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/selection/

Selection.html]. interface interface, containing current collection of objects selected by you.

In the following example when you submit the form, current collection of the selected objects is

placed in the object's property. Then on complete action the <rich:modalPanel> with selected

data is shown.

Example:

...

<h:form>

 <rich:spacer height="30" />

 <rich:scrollableDataTable rowKeyVar="rkv" frozenColCount="1" height="200px"

 width="300px" id="carList" rows="40" columnClasses="col"

 value="#{dataTableScrollerBean.allCars}" var="category" sortMode="single"

 selection="#{dataTableScrollerBean.selection}">

 <rich:column id="make">

 <f:facet name="header"><h:outputText styleClass="headerText" value="Make" /

></f:facet>

 <h:outputText value="#{category.make}" />

 </rich:column>

 <rich:column id="model">

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/selection/Selection.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/selection/Selection.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/selection/Selection.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/selection/Selection.html

 < rich:scrollableDataTable > available since 3.1.0

329

 <f:facet name="header"><h:outputText styleClass="headerText" value="Model" /

></f:facet>

 <h:outputText value="#{category.model}" />

 </rich:column>

 <rich:column id="price">

 <f:facet name="header"><h:outputText styleClass="headerText" value="Price" /

></f:facet>

 <h:outputText value="#{category.price}" />

 </rich:column>

 </rich:scrollableDataTable>

 <rich:spacer height="20px"/>

 <a4j:commandButton value="Show Current Selection" reRender="table"

 action="#{dataTableScrollerBean.takeSelection}"

 oncomplete="javascript:Richfaces.showModalPanel('panel');"/>

</h:form>

<rich:modalPanel id="panel" autosized="true">

 <f:facet name="header">

 <h:outputText value="Selected Rows"/>

 </f:facet>

 <f:facet name="controls">

 X</

span>

 </f:facet>

 <rich:dataTable value="#{dataTableScrollerBean.selectedCars}" var="sel" id="table">

 <rich:column>

 <f:facet name="header"><h:outputText value="Make" /></f:facet>

 <h:outputText value="#{sel.make}" />

 </rich:column>

 <rich:column id="model">

 <f:facet name="header"><h:outputText value="Model" /></f:facet>

 <h:outputText value="#{sel.model}" />

 </rich:column>

 <rich:column id="price">

 <f:facet name="header"><h:outputText value="Price" /></f:facet>

 <h:outputText value="#{sel.price}" />

 </rich:column>

 </rich:dataTable>

</rich:modalPanel>

...

This is a result:

Chapter 6. The RichFaces Comp...

330

Figure 6.74. The "selection" attribute usage

On RichFaces LiveDemo page [http://wiki.jboss.org/wiki/RichFacesCookbook/

ScrollableDataTableSelectionUsage] you can find fuller example of use of this attribute with

example bean.

The <rich:scrollableDataTable> component has the following extra attributes for event

processing on the client:

• "onselectionchange"

• "onRowClick"

• "onRowDblClick"

• "onRowMouseUp"

• "onRowMouseDown"

From version 3.3.1 it becomes possible to switch selection mode with selectionMode attribute

Information about sorting and filtering you can find in RichFaces Developer guide section

aboutsorting.

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

Note:

If you want to use specific features such as pagination on database level you should

pass to the "value" of the <rich:scrollableDataTable> component an object

which class extends org.richfaces.model.ScrollableTableDataModel.

http://wiki.jboss.org/wiki/RichFacesCookbook/ScrollableDataTableSelectionUsage
http://wiki.jboss.org/wiki/RichFacesCookbook/ScrollableDataTableSelectionUsage
http://wiki.jboss.org/wiki/RichFacesCookbook/ScrollableDataTableSelectionUsage

 < rich:scrollableDataTable > available since 3.1.0

331

6.6.14.6. JavaScript API

Table 6.122. JavaScript API

Function Description

collapse(columnId) Performs a collapse action for column with

corresponding Id

6.6.14.7. Facets

Table 6.123. Facets

Facet Description

header Defines the header content

footer Defines the footer content

6.6.14.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:scrollableDataTable> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:scrollableDataTable> component

6.6.14.9. Skin Parameters Redefinition

Table 6.124. Skin parameters for all table

Skin parameters CSS properties

tableBackgroundColor background-color

tableBorderColor border-color

tableBorderWidth border-width

Table 6.125. Skin parameters for header rows and cells

Skin parameters CSS properties

headerBackgroundColor background-color

headerTextColor color

Chapter 6. The RichFaces Comp...

332

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

tableBorderWidth border-bottom-width

tableBorderColor border-bottom-color

tableBorderWidth border-right-width

tableBorderColor border-right-color

Table 6.126. Skin parameters for footer rows and cells

Skin parameters CSS properties

tableSubfooterBackgroundColor background-color

generalFamilyFont font-family

generalSizeFont font-size

tableBorderColor border-right-color

generalFamilyFont font-family

generalSizeFont font-size

Table 6.127. Skin parameters for column cells

Skin parameters CSS properties

tableBorderColor border-right-color

tableBorderColor border-bottom-color

Table 6.128. Skin parameters for active rows

Skin parameters CSS properties

tabDisabledTextColor color

Table 6.129. Skin parameters for selected rows

Skin parameters CSS properties

additionalBackgroundColor background-color

6.6.14.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

 < rich:scrollableDataTable > available since 3.1.0

333

Figure 6.75. Classes names

Table 6.130. Classes names that define a component appearance

Class name Description

rich-sdt Defines styles for a component appearance

Table 6.131. Classes names that define footer and header elements

Class name Description

rich-sdt-header-cell Defines styles for header cells

rich-sdt-header-row Defines styles for a header raw

rich-sdt-column-cell Defines styles for column cells

rich-sdt-footer-cell Defines styles for footer cells

rich-sdt-footer-row Defines styles for a footer raw

rich-sdt-hsep Defines styles for header separators

Table 6.132. Classes names that define different states

Class name Description

rich-sdt-row-active Defines styles for an active row

Chapter 6. The RichFaces Comp...

334

Class name Description

rich-sdt-row-selected Defines styles for a selected row

rich-sdt-column-sort-up Defines styles for ascending sorted column

rich-sdt-column-sort-down Defines styles for descending sorted column

In order to redefine styles for all <rich:scrollableDataTable> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-sdt-header-cell{

 font-style:italic;

}

...

This is a result:

 < rich:scrollableDataTable > available since 3.1.0

335

Figure 6.76. Redefinition styles with predefined classes

In the example the font style for header cell was changed.

Also it's possible to change styles of particular <rich:scrollableDataTable> component.

In this case you should create own style classes and use them in corresponding

<rich:scrollableDataTable> styleClass attributes. An example is placed below:

Example:

...

.myClass{

 background-color:#ffead9;

}

...

Chapter 6. The RichFaces Comp...

336

The "selectedClass" attribute for <rich:scrollableDataTable> is defined as it's shown in the

example below:

Example:

<rich:scrollableDataTable ... selectedClass="myClass"/>

This is a result:

Figure 6.77. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color for selected item was changed.

Drag-Drop Support

337

6.6.14.11. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/scrollableDataTable.jsf?c=scrollableDataTable] you can see the example of

<rich:scrollableDataTable> usage.

Cookbook article Scrollable dataTable Selection Usage [http://www.jboss.org/community/docs/

DOC-11857] provides a simple example of how you can use the "selection" attribute in order to

get row selection in rich:scrollableDataTable.

6.7. Drag-Drop Support

In this section you will find components that help you build drag-and-drop controls, manage their

behaviour and define the area on the page to be used as a drop zone.

6.7.1. < rich:dragIndicator > available since 3.0.0

6.7.1.1. Description

This is a component for defining what appears under the mouse cursor during drag-and-drop

operations. The displayed drag indicator can show information about the dragged elements.

Figure 6.78. <rich:dragIndicator> component

6.7.1.2. Key Features

• Customizable look and feel

• Customizable marker according to the type of dragable elements

Table 6.133. rich : dragIndicator attributes

Attribute Name Description

acceptClass Assigns one or more space-separated CSS

class names to the indicator which are applied

when a drop is accepted

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

http://livedemo.exadel.com/richfaces-demo/richfaces/scrollableDataTable.jsf?c=scrollableDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/scrollableDataTable.jsf?c=scrollableDataTable
http://livedemo.exadel.com/richfaces-demo/richfaces/scrollableDataTable.jsf?c=scrollableDataTable
http://www.jboss.org/community/docs/DOC-11857
http://www.jboss.org/community/docs/DOC-11857
http://www.jboss.org/community/docs/DOC-11857

Chapter 6. The RichFaces Comp...

338

Attribute Name Description

rejectClass Assigns one or more space-separated CSS

class names to the indicator which are applied

when a drop is rejected

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

Table 6.134. Component identification parameters

Name Value

component-type org.richfaces.Draggable

component-class org.richfaces.component.html.HtmlDragIndicator

component-family org.richfaces.DragIndicator

renderer-type org.richfaces.DragIndicatorRenderer

tag-class org.richfaces.taglib.DragIndicatorTag

6.7.1.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dragIndicator id="indicator">

 <f:facet name="single">

 <f:verbatim>

 Single item {DragInfo}

 </f:verbatim>

 </f:facet>

</rich:dragIndicator>

...

<rich:dragSupport dragType="text" dragIndicator="indicator"/>

...

6.7.1.4. Creating the Component Dynamically Using Java

Example:

 < rich:dragIndicator > available since 3.0.0

339

import org.richfaces.component.html.HtmlDragIndicator;

...

HtmlDragIndicator myDragIndicator = new HtmlDragIndicator();

...

6.7.1.5. Details of Usage

In the simplest way the component could be defined empty - in that case a default indicator is

shown like this:

Figure 6.79. The simplest <rich:dragIndicator>

For indicator customization you need to define one of the following facets:

• "single" — indicator shown when dragging a single item;

• "multiple" — indicator shown when dragging several items.

Note:

The current implementation of the <rich:dragIndicator> component does not

support multiple items selection. The feature is described for future releases.

Thus for specify a look-and-feel you have to define one of these facets and include into it a content

that should be shown in indicator.

6.7.1.5.1. Macro definitions

To place some data from drag or drop zones into component you can use macro definitions. They

are being defining in the following way:

• <rich:dndParam> component with a specific name and value is being included into a drag/

drop support component (an image can be defined as placed inside <rich:dndParam> without

defining a value).

Chapter 6. The RichFaces Comp...

340

• in needed place a parameter value is included into the marking of indicator using syntax (name

of parameter)

For instance, this:

...

<rich:dropSupport...>

 <rich:dndParam name="testDrop">

 <h:graphicImage value="/images/file-manager.png" />

 </rich:dndParam>

</rich:dropSupport>

...

Is placed into indicator as follows:

...

<f:facet name="single">

 {testDrop}

</f:facet>

...

6.7.1.5.2. Predefined macro definitions

Indicator can accept two default macro definitions:

• marker

• label

Thus including one of these elements in the marking of indicator, in other words after setting up

appropriate parameters in DnD components and defining only default indicator - without specifying

facets - a developer gets these parameters values displayed in indicator in the order "marker -

label".

6.7.1.5.3. Marker customization

The macro definition "marker" can be customized depending on what a draggable element is

located over. For that you should define one of these three parameters (specify a parameter with

one of three names):

• accept

 < rich:dragSupport > available since 3.0.0

341

Parameter will be set instead of {marker} into indicator when a draggable element is positioned

over drop zone that accept this type of elements

• reject

Parameter is set instead of {marker} into indicator when a draggable element is positioned over

drop zone that doesn't accept this type of elements

• default

Parameter is set instead of {marker} into indicator when a draggable element is positioned over

all the rest of page elements

Note:

If you use <rich:dragIndicator> inside a form do not forget to use id like

formId:indicatorID defined in <rich:dragSupport> indicator attribute.

6.7.1.6. Look-and-Feel Customization

The <rich:dragIndicator> component has no skin parameters and special style classes , as

it consists of one element generated with a your method on the server. To define some style

properties such as an indent or a border, it's possible to use "style" and "styleClass" attributes

on the component.

6.7.1.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dragSupport.jsf?c=dragIndicator] you can see the example of <rich:dragIndicator> usage and

sources for the given example.

6.7.2. < rich:dragSupport > available since 3.0.0

6.7.2.1. Description

This component defines a subtree of the component tree as draggable for drag-and-drop

operations. Within such a "drag zone," you can click the mouse button on an item and drag it

to any component that supports drop operations (a "drop zone"). It encodes all the necessary

JavaScript for supporting drag-and-drop operations.

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragIndicator

Chapter 6. The RichFaces Comp...

342

Figure 6.80. <rich:dragSupport> component

6.7.2.2. Key Features

• Encodes all necessary JavaScript to perform drag actions

• Can be used within any component type that provides the required properties for drag operations

• Supports drag-and-drop between different forms

Table 6.135. rich : dragSupport attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

 < rich:dragSupport > available since 3.0.0

343

Attribute Name Description

disableDefault Disable default action for target event (append

"return false;" to JavaScript)

dragIndicator Id of a component that is used as drag pointer

during the drag operation

dragListener MethodBinding representing an action listener

method that will be notified after drag operation

dragType A drag zone type that is used for zone

definition, which elements can be accepted by

a drop zone

dragValue Data to be sent to a drop zone after a drop

event

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

grabbingCursors list of comma separated cursors that indicates

then the you has grabbed something

grabCursors List of comma separated cursors that indicates

then you can grab and drag an object

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

Chapter 6. The RichFaces Comp...

344

Attribute Name Description

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

ondragend The client-side script method to be called when

the dragging operation is finished

ondragstart The client-side script method to be called when

the dragging operation is started

ondropout The client-side script method to be called when

the draggable object is moved away from the

drop zone

ondropover The client-side script method to be called when

the draggable object is over the drop zone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

 < rich:dragSupport > available since 3.0.0

345

Table 6.136. Component identification parameters

Name Value

component-type org.richfaces.DragSupport

component-class org.richfaces.component.html.HtmlDragSupport

component-family org.richfaces.DragSupport

renderer-type org.richfaces.DragSupportRenderer

tag-class org.richfaces.taglib.DragSupportTag

6.7.2.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<h:panelGrid id="drag1">

 <rich:dragSupport dragType="item"/>

 <!--Some content to be dragged-->

</h:panelGrid>

...

6.7.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDragSupport;

...

HtmlDragSupport myDragZone = new HtmlDragSupport();

...

6.7.2.5. Details of Usage

The dragSupport tag inside a component completely specifies the events and JavaScript required

to use the component and it's children for dragging as part of a drag-and-drop operation. In order

to work, though, dragSupport must be placed inside a wrapper component that outputs child

components and that has the right events defined on it. Thus, this example won't work, because

the <h:column> tag doesn't provide the necessary properties for redefining events on the client:

Example:

...

Chapter 6. The RichFaces Comp...

346

<h:column>

 <rich:dragSupport dragIndicator=":form:iii" dragType="text">

 <a4j:actionparam value="#{caps.name}" name="name"/>

 </rich:dragSupport>

 <h:outputText value="#{caps.name}"/>

</h:column>

...

However, using a4j:outputPanel as a wrapper inside <h:column> , the following code could be

used successfully:

Example:

...

<h:column>

 <a4j:outputPanel>

 <rich:dragSupport dragIndicator=":form:iii" dragType="text">

 <a4j:actionparam value="#{caps.name}" name="name"/>

 </rich:dragSupport>

 <h:outputText value="#{caps.name}"/>

 </a4j:outputPanel>

</h:column>

...

This code makes all rows of this column draggable.

One of the main attributes for dragSupport is "dragType" , which associates a name with the

drag zone. Only drop zones with this name as an acceptable type can be used in drag-and-drop

operations. Here is an example:

Example:

...

<h:panelGrid id="drag1">

 <rich:dragSupport dragType="singleItems" .../>

 <!--Some content to be dragged-->

</h:panelGrid>

...

<h:panelGrid id="drag2">

 <rich:dragSupport dragType="groups" .../>

 <!--Some content to be dragged-->

</h:panelGrid>

...

 < rich:dragListener > available since 3.1.0

347

<h:panelGrid id="drop1">

 <rich:dropSupport acceptedTypes="singleItems" .../>

 <!--Drop zone content-->

</h:panelGrid>

...

In this example, the drop1 panel grid is a drop zone that invokes drag-and-drop for drops of

items from the first drag1 panel grid, but not the second drag2 panel grid. In the section about

dropSupport , you will find an example that shows more detailed information about moving data

between tables with drag and drop.

The dragSupport component also has a "value" attribute for passing data into the processing

after a drop event.

One more important attribute for <rich:dragSupport> is the "dragIndicator" attribute that point

to the component id of the <rich:dragIndicator> component to be used for dragged items from

this drag zone. If it isn't defined, a default indicator for drag operations is used.

Finally, the component has the following extra attributes for event processing on the client:

• "ondragstart"

• "ondragend"

You can use your own custom JavaScript functions to handle these events.

Note:

If you define width for a outputPanel, in Internet Explorer 6 you can perform a drag

and drop operation, placing the mouse cursor on the text in the outputPanel only.

6.7.2.6. Look-and-Feel Customization

<rich:dragSupport> has no skin parameters and custom style classes , as the component isn't

visual.

6.7.2.7. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dragSupport.jsf?c=dragSupport] you can see the example of <rich:dragSupport> usage and

sources for the given example.

6.7.3. < rich:dragListener > available since 3.1.0

3.1.0

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dragSupport

Chapter 6. The RichFaces Comp...

348

6.7.3.1. Description

The <rich:dragListener> represents an action listener method that is notified after a drag

operation.

6.7.3.2. Key Features

• Allows to define some drag listeners for the components with "Drag and Drop" support

Table 6.137. rich : dragListener attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

type HTML: The fully qualified Java class name for

the listener

Table 6.138. Component identification parameters

Name Value

listener-class org.richfaces.event.DragListener

event-class org.richfaces.event.DragEvent

tag-class org.richfaces.taglib.DragListenerTag

6.7.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:dragListener type="demo.Bean"/>

...

6.7.3.4. Creating the Component Dynamically Using Java

Example:

package demo;

 < rich:dragListener > available since 3.1.0

349

public class ImplBean implements org.richfaces.event.DragListener{

 ...

}

import demo.ImplBean;

...

ImplBean myDragListener = new ImplBean();

...

6.7.3.5. Details of Usage

The <rich:dragListener> is used as a nested tag with components like <rich:dragSupport>

, <rich:tree> and <rich:treeNode> .

Attribute "type" defines the fully qualified Java

class name for a listener. This class should implement

org.richfaces.event.DropListener [http://www.jboss.org/file-access/default/members/

jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html]

interface.

The typical variant of using:

...

<h:panelGrid id="dragPanel">

 <rich:dragSupport dragType="item">

 <rich:dragListener type="demo.ListenerBean"/>

 </rich:dragSupport>

 <!--Some content to be dragged-->

</h:panelGrid>

...

Java bean source:

package demo;

import org.richfaces.event.DragEvent;

public class ListenerBean implements org.richfaces.event.DragListener{

...

 public void processDrag(DragEvent arg0){

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html

Chapter 6. The RichFaces Comp...

350

 //Custom Developer Code

 }

...

}

6.7.3.6. Look-and-Feel Customization

<rich:dragListener> has no skin parameters and custom style classes , as the component isn't

visual.

6.7.4. < rich:dropListener > available since 3.1.0

3.1.0

6.7.4.1. Description

The <rich:dropListener> represents an action listener method that is notified after a drop

operation.

6.7.4.2. Key Features

• Allows to define some drop listeners for the components with "Drag and Drop" support

Table 6.139. rich : dropListener attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

type HTML: The fully qualified Java class name for

the listener

Table 6.140. Component identification parameters

Name Value

listener-class org.richfaces.event.DropListener

event-class org.richfaces.event.DropEvent

tag-class org.richfaces.taglib.DropListenerTag

6.7.4.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

 < rich:dropListener > available since 3.1.0

351

...

<rich:dropListener type="demo.Bean"/>

...

6.7.4.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImplBean implements org.richfaces.event.DropListener{

 ...

}

import demo.ImplBean;

...

ImplBean myListener = new ImplBean();

...

6.7.4.5. Details of Usage

The <rich:dropListener> is used as a nested tag with components like <rich:dropSupport>

, <rich:tree> and <rich:treeNode> .

Attribute "type" defines the fully qualified Java

class name for the listener. This class should implement

org.richfaces.event.DropListener [http://www.jboss.org/file-access/default/members/

jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html]

interface. .

The typical variant of using:

...

<rich:panel style="width:100px;height:100px;">

 <f:facet name="header">Drop Zone</f:facet>

 <rich:dropSupport acceptedTypes="text">

 <rich:dropListener type="demo.ListenerBean"/>

 </rich:dropSupport>

</rich:panel>

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/DropListener.html

Chapter 6. The RichFaces Comp...

352

...

Java bean source:

package demo;

import org.richfaces.event.DropEvent;

public class ListenerBean implements org.richfaces.event.DropListener{

...

 public void processDrop(DropEvent arg0){

 //Custom Developer Code

 }

...

}

6.7.4.6. Look-and-Feel Customization

<rich:dropListener> has no skin parameters and custom style classes , as the component isn't

visual.

6.7.5. < rich:dropSupport > available since 3.0.0

6.7.5.1. Description

This component transforms a parent component into a target zone for drag-and-drop operations.

When a draggable element is moved and dropped onto the area of the parent component, Ajax

request processing for this event is started.

 < rich:dropSupport > available since 3.0.0

353

Figure 6.81. <rich:dropSupport> component

6.7.5.2. Key Features

• Encodes all necessary JavaScript to perform drop actions

• Can be used within any component type that provides the required properties for drop operations

• Built-in Ajax processing

• Supports drag-and-drop between different forms

Table 6.141. rich : dropSupport attributes

Attribute Name Description

acceptCursors List of comma separated cursors that indicates

when acceptable draggable over dropzone

acceptedTypes A list of drag zones types, which elements are

accepted by a drop zone

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

Chapter 6. The RichFaces Comp...

354

Attribute Name Description

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

cursorTypeMapping Mapping between drop types and acceptable

cursors

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disableDefault Disable default action for target event (append

"return false;" to JavaScript)

dropListener MethodBinding representing an action listener

method that will be notified after drop

operation.

dropValue Data to be processed after a drop event

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

 < rich:dropSupport > available since 3.0.0

355

Attribute Name Description

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

ondragenter The client-side script method to be called when

a draggable object enters the zone

ondragexit The client-side script method to be called after

a draggable object leaves the zone

ondrop The client-side script method to be called when

a draggable object is dropped into the available

zone

ondropend The client-side script method to be called when

a draggable object is dropped into any zone

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rejectCursors List of comma separated cursors that indicates

when rejectable draggable over dropzone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

Chapter 6. The RichFaces Comp...

356

Attribute Name Description

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

typeMapping The attribute associates a type of dragable

zone (dragType) with <rich:dndParam>

defined for <rich:dropSupport> for passing

parameter value to <rich:dragIndicator>.

It uses JSON format: (drag_type:

parameter_name).

value JSF: The current value for this component

Table 6.142. Component identification parameters

Name Value

component-type org.richfaces.DropSupport

component-class org.richfaces.component.html.HtmlDropSupport

component-family org.richfaces.DropSupport

renderer-type org.richfaces.DropSupportRenderer

tag-class org.richfaces.taglib.DropSupportTag

6.7.5.3. Creating the Component with a Page Tag

This simple example shows how to make a panel component a potential drop target for drag-and-

drop operations using "text" elements as the dragged items.

Example:

...

<rich:panel>

 < rich:dropSupport > available since 3.0.0

357

 <rich:dropSupport acceptedTypes="text"/>

</rich:panel>

...

6.7.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDropSupport;

...

HtmlDropSupport myDragZone = new HtmlDropSupport();

...

6.7.5.5. Details of Usage

The key attribute for <rich:dropSupport> is "acceptedTypes" . It defines, which types of

dragable items (zones) could be accepted by the current drop zone. Check the example below:

...

<rich:panel styleClass="dropTargetPanel">

 <f:facet name="header">

 <h:outputText value="PHP Frameworks" />

 </f:facet>

 <rich:dropSupport id="php" acceptedTypes="PHP" dropValue="PHP" dropListener="#{eventBean.processDrop}" reRender="phptable,

 src">

 </rich:dropSupport>

 ...

</rich:panel>

...

and here is what happens on the page:

Chapter 6. The RichFaces Comp...

358

Figure 6.82. Drop zone accepts dragable item with "PHP" type only

Using the "typeMapping" attribute. Previous example shows that a drop zone could accept a

dragable item or not. Special markers, which are placed at <rich:dragIndicator> , inform user

about drop zone’s possible behaviors: "checkmark" appears if drop is accepted and "No" symbol

if it is not. Moreover, some extra information (e.g. text message) could be put into the Indicator

to reinforce the signal about drop zone’s behavior or pass some other additional sense. This

reinforcement could be programmed and attributed to drop zone via "typeMapping" attribute

using JSON syntax. The type of dragged zone (dragType) should be passed as "key" and name

of <rich:dndParam> that gives needed message to Indicator as "value":

...

<rich:panel styleClass="dropTargetPanel">

 <f:facet name="header">

 <h:outputText value="PHP Frameworks" />

 </f:facet>

 <rich:dropSupport id="php" acceptedTypes="PHP" dropValue="PHP" dropListener="#{eventBean.processDrop}" reRender="phptable,

 src"

 typeMapping="{PHP: text_for_accepting, DNET: text_for_rejecting}">

 <rich:dndParam name="text_for_accepting" value="Drop accepted!" />

 <rich:dndParam name="text_for_rejecting" value="Drop is not accepted!" />

 </rich:dropSupport>

 ...

</rich:panel>

...

 < rich:dropSupport > available since 3.0.0

359

What happens on the page:

Figure 6.83. "typeMapping" helps to add some extra information to

<rich:dragIndicator>

In examples above dropping a dragable item triggers the use a parameter in the event processing;

Ajax request is sent and dropListener defined for the component is called.

Here is an example of moving records between tables. The example describes all the pieces

for drag-and-drop. (To get extra information on these components, read the sections for these

components.)

As draggable items, this table contains a list of such items designated as being of type "text" :

Example:

...

<rich:dataTable value="#{capitalsBean.capitals}" var="caps">

 <f:facet name="caption">Capitals List</f:facet>

 <h:column>

 <a4j:outputPanel>

 <rich:dragSupport dragIndicator=":form:ind" dragType="text">

 <a4j:actionparam value="#{caps.name}" name="name"/>

 </rich:dragSupport>

 <h:outputText value="#{caps.name}"/>

 </a4j:outputPanel>

 </h:column>

</rich:dataTable>

...

Chapter 6. The RichFaces Comp...

360

As a drop zone, this panel will accept draggable items of type text and then rerender an element

with the ID of box :

Example:

...

<rich:panel style="width:100px;height:100px;">

 <f:facet name="header">Drop Zone</f:facet>

 <rich:dropSupport acceptedTypes="text" reRender="box"

 dropListener="#{capitalsBean.addCapital2}"/>

</rich:panel>

...

As a part of the page that can be updated in a partial page update, this table has an ID of box :

Example:

...

<rich:dataTable value="#{capitalsBean.capitals2}" var="cap2" id="box">

 <f:facet name="caption">Capitals chosen</f:facet>

 <h:column>

 <h:outputText value="#{cap2.name}"/>

 </h:column>

</rich:dataTable>

...

And finally, as a listener, this listener will implement the dropped element:

Example:

...

public void addCapital2(DropEvent event) {

 FacesContext context = FacesContext.getCurrentInstance();

 Capital cap = new Capital();

 cap.setName(context.getExternalContext().getRequestParameterMap().get("name").toString());

 capitals2.add(cap);

}

...

Here is the result after a few drops of items from the first table:

 < rich:dropSupport > available since 3.0.0

361

Figure 6.84. Results of drop actions

In this example, items are dragged element-by-element from the rendered list in the first table and

dropped on a panel in the middle. After each drop, a drop event is generated and a common Ajax

request is performed that renders results in the third table.

As with every Ajax action component, <rich:dropSupport> has all the common attributes (

"timeout" , "limitToList" , "reRender" , etc.) for Ajax request customization.

Finally, the component has the following extra attributes for event processing on the client:

• "ondragenter"

• "ondragexit"

• "ondrop"

• "ondropend"

Developers can use their own custom JavaScript functions to handle these events.

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section .

6.7.5.6. Look-and-Feel Customization

<rich:dropSupport> has no skin parameters and custom style classes , as the component

isn't visual.

6.7.5.7. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dragSupport.jsf?c=dropSupport] you can see the example of <rich:dropSupport> usage and

sources for the given example.

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dropSupport

Chapter 6. The RichFaces Comp...

362

6.7.6. < rich:dndParam > available since 3.0.0

6.7.6.1. Description

This component is used for passing parameters during drag-and-drop operations.

Table 6.143. rich : dndParam attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

name A name of this parameter

rendered JSF: If "false", this component is not rendered

type HTML: This attribute defines parameter

functionality. Possible values are "drag", "drop"

and "default". Default value is "default".

value JSF: The current value for this component

Table 6.144. Component identification parameters

Name Value

component-type org.richfaces.DndParam

component-class org.richfaces.component.html.HtmlDndParam

tag-class org.richfaces.taglib.DndParamTag

6.7.6.2. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page, nested in one of the drag-and-drop

components:

Example:

...

<rich:dragSupport dragType="file">

 <rich:dndParam name="testDrag" value="testDragValue"

 type="drag"/>

</rich:dragSupport>

...

 < rich:dndParam > available since 3.0.0

363

6.7.6.3. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDndParam;

...

HtmlDndParam myDparam = new HtmlDndParam();

...

6.7.6.4. Details of Usage

dndParam is used during drag-and-drop operations to pass parameters to an indicator. At first,

a parameter type is defined with the type attribute (to specify parameter functionality), then a

parameter name could be defined with the name and value attribute. Although, it's possible to use

nested content defined inside dndParam for value definition, instead of the attribute.

Variants of usage:

• Parameters passing for a drag icon when an indicator is in drag.

In this case, dndParam is of a drag type and is defined in the following way:

Example:

...

<rich:dragSupport ... >

 <rich:dndParam type="drag" name="dragging">

 <h:graphicImage value="/img/product1_small.png"/>

 </rich:dndParam>

 <h:graphicImage value="product1.png"/>

</rich:dragSupport>

...

Here dndParam defines an icon that is used by an indicator when a drag is on the place of a

default icon (e.g. a minimized image of a draggable element)

• Parameters passing for an indicator informational part during a drag.

In this case dndParam is of a drag type and is defined in the following way:

Example:

Chapter 6. The RichFaces Comp...

364

...

<rich:dragSupport ... >

 <rich:dndParam type="drag" name="label" value="#{msg.subj}"/>

 ...

</rich:dragSupport>

...

The parameter is transmitted into an indicator for usage in an informational part of the

dragIndicator component (inside an indicator a call to {label} happens)

• Parameters passing happens when dragged content is brought onto some zone with

dropSupport

In this case dndParam is of a drop type and is defined in the following way:

Example:

...

<rich:dropSupport ... >

 <rich:dndParam type="drop" name="comp" >

 <h:graphicImage height="16" width="16" value="/images/comp.png"/>

 </rich:dndParam>

 ...

</rich:dropSupport >

...

Here, dndParam passes icons into an indicator, if dragged content of a comp type is above the

given drop zone that processes it on the next drop event.

6.7.6.5. Look-and-Feel Customization

<rich:dndParam> has no skin parameters and custom style classes, as the component isn't

visual.

6.7.6.6. Relevan Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dragSupport.jsf?c=dndParam] you can see the example of <rich:dndParam> usage and sources

for the given example.

6.8. Rich Menu

This section tells how you can create menus on your page: either navigational ones or context.

http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam
http://livedemo.exadel.com/richfaces-demo/richfaces/dragSupport.jsf?c=dndParam

 < rich:contextMenu > available since 3.0.0

365

6.8.1. < rich:contextMenu > available since 3.0.0

6.8.1.1. Description

The <rich:contextMenu> component is used for creation of multilevelled context menus that

are activated after defined events like "onmouseover" , "onclick" etc. The component could be

applied to any element on the page.

Figure 6.85. <rich:contextMenu> component

6.8.1.2. Key Features

• Highly customizable look and feel

• "oncontextmenu" event support

• Disablement support

• Pop-up appearance event customization

• Usage of shared instance of a menu on a page

Table 6.145. rich : contextMenu attributes

Attribute Name Description

attached If the value of the "attached" attribute is true,

the component is attached to the component,

specified in the "attachTo" attribute or to the

parent component, if "attachTo" is not defined.

Default value is "true".

attachTiming Defines the timing when the menu is attached

to the target element. Possible values "onload",

"immediate", "onavailable" (default). Default

value is "onavailable".

attachTo Client identifier of the component or id of

the existing DOM element that is a source

for a given event. If attachTo is defined, the

event is attached on the client according to

the AttachTiming attribute. If both attached and

attachTo attributes are defined, and attribute

Chapter 6. The RichFaces Comp...

366

Attribute Name Description

attached has value 'false', it is considered to

have higher priority.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

disableDefaultMenu Forbids default handling for adjusted event.

Default value "false".

disabledItemClass Assigns one or more space-separated CSS

class names to the component disabled item

disabledItemStyle CSS style rules to be applied to the component

disabled item

event Defines an event on the parent element

to display the menu. Default value is

"oncontextmenu".

hideDelay Delay between losing focus and menu closing.

Default value is "800".

id JSF: Every component may have a unique id

that is automatically created if omitted

itemClass Assigns one or more space-separated CSS

class names to the component item

itemStyle CSS style rules to be applied to the component

item

oncollapse The client-side script method to be called

before the menu is collapsed

onexpand The client-side script method to be called

before the menu is expanded

ongroupactivate The client-side script method to be called when

some context menu group is activated

onitemselect The client-side script method to be called when

some item is selected

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

 < rich:contextMenu > available since 3.0.0

367

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

popupWidth Set minimal width for the all of the lists that will

appear

rendered JSF: If "false", this component is not rendered

selectItemClass Assigns one or more space-separated CSS

class names to the component selected item

selectItemStyle CSS style rules to be applied to the component

selected item

showDelay Delay between event and menu showing.

Default value is "50".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

submitMode Sets the submission mode for all menu items

of the menu except those where this attribute

redefined. Possible value are "ajax","server",

"none". Default value is "server".

Table 6.146. Component identification parameters

Name Value

component-type org.richfaces.ContextMenu

component-class org.richfaces.component.html.ContextMenu

component-family org.richfaces.ContextMenu

renderer-type org.richfaces.DropDownMenuRenderer

tag-class org.richfaces.taglib.ContextMenuTagHandler

6.8.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

...

<rich:contextMenu event="oncontextmenu" attached="true">

...

Chapter 6. The RichFaces Comp...

368

6.8.1.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.ContextMenu;

...

html.ContextMenu myContextMenu = new html.ContextMenu();

...

6.8.1.5. Details of Usage

<rich:contextMenu> is a support-like component. Context menu itself is an invisible panel that

appears after a particular client-side event ("onmouseover" , "onclick" , etc.) occurred on a parent

component. The event is defined with an "event" attribute. The component uses "oncontextmenu"

event by default to call a context menu by clicking on the right mouse button.

<rich:menuGroup> , <rich:menuItem> and <rich:menuSeparator> components are used as

nested elements for <rich:contextMenu> in the same way as for <rich:dropDownMenu> .

By default, the <rich:contextMenu> completely disables right mouse click on a page in the

context menu area only. But if you want to disable browser's context menu completely you should

set the "disableDefaultMenu" attribute value to "true".

If "attached" value is "true" (default value), component is attached to the parent component or to

the component, which "id" is specified in the "attachTo" attribute.

Example:

...

<rich:contextMenu event="oncontextmenu" attachTo="pic1" submitMode="none">

 <rich:menuItem value="Zoom In" onclick="enlarge();" id="zin"/>

 <rich:menuItem value="Zoom Out" onclick="decrease();" id="zout"/>

</rich:contextMenu>

<h:panelGrid columns="1" columnClasses="cent">

 <h:panelGroup id="picture">

 <h:graphicImage value="/richfaces/jQuery/images/pic1.png" id="pic"/>

 </h:panelGroup>

</h:panelGrid>

<h:panelGrid columns="1" columnClasses="cent">

 <h:panelGroup id="picture1">

 <h:graphicImage value="/richfaces/jQuery/images/pic2.png" id="pic1"/>

 </h:panelGroup>

</h:panelGrid>

...

 < rich:contextMenu > available since 3.0.0

369

The "enlarge()" and "decrease()" functions definition is placed below.

...

<script type="text/javascript">

 function enlarge(){

 document.getElementById('pic').width=document.getElementById('pic').width*1.1;

 document.getElementById('pic').height=document.getElementById('pic').height*1.1;

 }

 function decrease(){

 document.getElementById('pic').width=document.getElementById('pic').width*0.9;

 document.getElementById('pic').height=document.getElementById('pic').height*0.9;

 }

</script>

...

In the example a picture zooming possibility with <rich:contextMenu> component usage was

shown. The picture is placed on the <h:panelGroup> component. The <rich:contextMenu>

component is not nested to <h:panelGroup> and has a value of the "attachTo" attribute defined

as "pic1". Thus, the context menu is attached to the component, which "id" is "pic1". The

context menu has two items to zoom in (zoom out) a picture by "onclick" event. For earch item

corresponding JavaScript function is defined to provide necessary action as a result of the clicking

on it. For the menu is defined an "oncontextmenu" event to call the context menu on a right

click mouse event.

In the example the context menu is defined for the parent <h:panelGroup> component with a

value of "id" attribute equal to "picture" You should be careful with such definition, because

a client context menu is looked for a DOM element with a client Id of a parent component

on a server. If a parent component doesn't encode an Id on a client, it can't be found by the

<rich:contextMenu> and it's attached to its closest parent in a DOM tree.

If the "attached" attribute has "false" value, component activates via JavaScript API with

assistance of <rich:componentControl> . An example is placed below.

Example:

<h:form id="form">

 <rich:contextMenu attached="false" id="menu" submitMode="ajax">

 <rich:menuItem ajaxSingle="true">

 {car} {model} details

 <a4j:actionparam name="det" assignTo="#{ddmenu.current}" value="{car} {model}

 details"/>

 </rich:menuItem>

 <rich:menuGroup value="Actions">

 <rich:menuItem ajaxSingle="true">

Chapter 6. The RichFaces Comp...

370

 Put {car} {model} To Basket

 <a4j:actionparam name="bask" assignTo="#{ddmenu.current}" value="Put {car} {model} To

 Basket"/>

 </rich:menuItem>

 <rich:menuItem value="Read Comments" ajaxSingle="true">

 <a4j:actionparam name="bask" assignTo="#{ddmenu.current}" value="Read

 Comments"/>

 </rich:menuItem>

 <rich:menuItem ajaxSingle="true">

 Go to {car} site

 <a4j:actionparam name="bask" assignTo="#{ddmenu.current}" value="Go

 to {car} site"/>

 </rich:menuItem>

 </rich:menuGroup>

 </rich:contextMenu>

 <h:panelGrid columns="2">

 <rich:dataTable value="#{dataTableScrollerBean.tenRandomCars}" var="car" id="table" onRowMouseOver="this.style.backgroundColor='#F8F8F8'" onRowMouseOut="this.style.backgroundColor='#{a4jSkin.tableBackgroundColor}'" rowClasses="cur">

 <rich:column>

 <f:facet name="header">Make</f:facet>

 <h:outputText value="#{car.make}"/>

 </rich:column>

 <rich:column>

 <f:facet name="header">Model</f:facet>

 <h:outputText value="#{car.model}"/>

 </rich:column>

 <rich:column>

 <f:facet name="header">Price</f:facet>

 <h:outputText value="#{car.price}" />

 </rich:column>

 <rich:componentControl event="onRowClick" for="menu" operation="show">

 <f:param value="#{car.model}" name="model"/>

 <f:param value="#{car.make}" name="car"/>

 </rich:componentControl>

 </rich:dataTable>

 <a4j:outputPanel ajaxRendered="true">

 <rich:panel>

 <f:facet name="header">Last Menu Action</f:facet>

 <h:outputText value="#{ddmenu.current}"></h:outputText>

 </rich:panel>

 </a4j:outputPanel>

 </h:panelGrid>

 < rich:contextMenu > available since 3.0.0

371

</h:form>

This is a result:

Figure 6.86. The "attached" attribute usage

In the example the context menu is activated (by clicking on the left mouse button) on the table

via JavaScript API with assistance of <rich:componentControl> . The attribute "for" contains a

value of the <rich:contextMenu> Id. For menu appearance Java Script API function "show()"

is used. It is defined with "operation" attribute for the <rich:componentControl> component.

Context menu is recreated after the every call on a client and new {car} and {model} values are

inserted in it. In the example for a menu customization macrosubstitutions were used.

The <rich:contextMenu> component can be defined once on a page and can be used as

shared for different components (this is the main difference from the <rich:dropDownMenu>

component). It's necessary to define it once on a page (as it was shown in the example

above [369]) and activate it on required components via JavaScript API with assistance of

<rich:componentControl> .

The <rich:contextMenu> "submitMode" attribute can be set to three possible parameters:

• Server (default)

Regular form submition request is used

Chapter 6. The RichFaces Comp...

372

• Ajax

Ajax submission is used for switching

• None

The "action" and "actionListener" item's attributes are ignored. Menu items don't fire any submits

themselves. The behavior is fully defined by the components nested inside items.

Notes:

• When nesting <rich:contextMenu> into JSF <h:outputText> , specify an id

for <h:outputText> , otherwise, do not nest the <rich:contextMenu> to make

it work properly.

• As the <rich:contextMenu> component doesn't provide its own form, use it

between <h:form> and </h:form> tags.

6.8.1.6. JavaScript API

Table 6.147. JavaScript API

Function Description Apply to

hide() Hides component or group Component, group

show(event, context) Shows component or group Component, group

6.8.1.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:contextMenu> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:contextMenu> component

6.8.1.8. Skin Parameters Redefinition

Table 6.148. Skin parameters redefinition for a border

Skin parameters CSS properties

panelBorderColor border-color

 < rich:contextMenu > available since 3.0.0

373

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.149. Skin parameters redefinition for a background

Skin parameters CSS properties

additionalBackgroundColor border-top-color

additionalBackgroundColor border-left-color

additionalBackgroundColor border-right-color

6.8.1.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.87. Style classes

Table 6.150. Classes names that define the contextMenu element

Class name Description

rich-menu-list-border Defines styles for borders

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for

a strut of a popup list

Chapter 6. The RichFaces Comp...

374

In order to redefine styles for all <rich:contextMenu> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-menu-item{

 font-style:italic;

}

...

This is a result:

Figure 6.88. Redefinition styles with predefined classes

In the example the font style for row items was changed.

Also it's possible to change styles of particular <rich:contextMenu> component. In this case you

should create own style classes and use them in corresponding <rich:contextMenu> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-weight:bold;

}

...

The "rowClasses" attribute for <h:panelGrid> is defined as it's shown in the example below:

Example:

<h:panelGrid ... rowClasses="myClass"/>

 < rich:dropDownMenu > available since 3.0.0

375

This is a result:

Figure 6.89. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font weight for row items was changed.

6.8.1.10. Relevant Resources Links

Visit the ContextMenu page [http://livedemo.exadel.com/richfaces-demo/richfaces/

contextMenu.jsf?c=contextMenu] at RichFaces LiveDemo fro examples of component usage and

their sources.

6.8.2. < rich:dropDownMenu > available since 3.0.0

6.8.2.1. Description

The <rich:dropDownMenu> component is used for creating multilevel drop-down menus.

Figure 6.90. <rich:dropDownMenu> component

6.8.2.2. Key Features

• Highly customizable look-and-feel

• Pop-up appearance event customization

• Different submission modes

• Ability to define a complex representation for elements

• Support for disabling

http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/contextMenu.jsf?c=contextMenu

Chapter 6. The RichFaces Comp...

376

• Smart user-defined positioning

Table 6.151. rich : dropDownMenu attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

direction Defines direction of the popup list to appear.

Possible values are "top-right", "top-right",

"top-left", "bottom-right", "bottom-left", "auto".

Default value is "auto".

disabled HTML: Attribute 'disabled' provides possibility

to make the whole menu disabled if its value

equals to "true". Default value is "false"

disabledItemClass Assigns one or more space-separated CSS

class names to the component disabled item

disabledItemStyle CSS style rules to be applied to the component

disabled item

disabledLabelClass Assigns one or more space-separated CSS

class names to the component label when it is

disabled

event Defines the event on the representation

element that triggers the menu's appearance.

hideDelay Delay between losing focus and menu closing.

Default value is "800".

horizontalOffset Sets the horizontal offset between popup

list and label element. Default value is "0".

conjunction point

id JSF: Every component may have a unique id

that is automatically created if omitted

itemClass Assigns one or more space-separated CSS

class names to the component item

itemStyle CSS style rules to be applied to the component

item

jointPoint Sets the corner of the label for the pop-up to

be connected with. Possible values are "tr", "tl",

"bl", "br", "bottom-left", "auto". Default value is

"auto". "tr" stands for top-right.

labelClass Assigns one or more space-separated CSS

class names to the component label

 < rich:dropDownMenu > available since 3.0.0

377

Attribute Name Description

oncollapse The client-side script method to be called when

a menu is collapsed

onexpand The client-side script method to be called when

a menu is expanded

ongroupactivate The client-side script method to be called when

some menu group is activated

onitemselect The client-side script method to be called when

a menu item is selected

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the menu

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

menu

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the menu

popupWidth Sets minimal width for all lists that will appear.

rendered JSF: If "false", this component is not rendered

selectedLabelClass Assigns one or more space-separated CSS

class names to the component label when it is

selected

selectItemClass Assigns one or more space-separated CSS

class names to the component selected item

selectItemStyle CSS style rules to be applied to the component

selected item

showDelay Delay between event and menu showing.

Default value is "50".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

submitMode Sets the submission mode for all menu

items of the menu except ones where

this attribute redefined. Possible values are

"ajax","server","none". Default value is "sever".

value JSF: Defines representation text for Label used

for menu calls.

Chapter 6. The RichFaces Comp...

378

Attribute Name Description

verticalOffset Sets the vertical offset between popup list and

label element. Default value is "0". conjunction

point

Table 6.152. Component identification parameters

Name Value

component-type org.richfaces.DropDownMenu

component-class org.richfaces.component.html.HtmlDropDownMenu

component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.DropDownMenuRenderer

tag-class org.richfaces.taglib.DropDownMenuTag

6.8.2.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dropDownMenu value="Item1">

 <!--Nested menu components-->

</rich:dropDownMenu>

...

6.8.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlDropDownMenu;

...

HtmlDropDownMenu myDropDownMenu = new HtmlDropDownMenu();

...

6.8.2.5. Details of Usage

All attributes except "value" are optional. The "value" attribute defines text to be represented.

If you can use the "label" facet, you can even not use the "value" attribute.

Here is an example:

 < rich:dropDownMenu > available since 3.0.0

379

Example:

...

<f:facet name="label">

 <h:graphicImage value="/images/img1.png"/>

</f:facet>

...

Use the "event" attribute to define an event for the represented element that triggers a menu

appearance. An example of a menu appearance on a click can be seen below.

Example:

...

<rich:dropDownMenu event="onclick" value="Item1">

 <!--Nested menu components-->

</rich:dropDownMenu>

...

The <rich:dropDownMenu> "submitMode" attribute can be set to three possible parameters:

• Server (default)

Regular form submission request is used.

• Ajax

Ajax submission is used for switching.

• None

The "action" and "actionListener" item's attributes are ignored. Menu items don't fire any submits

themselves. The behavior is fully defined by the components nested into items.

Note:

As the <rich:dropDownMenu> component doesn't provide its own form, use it

between <h:form> and </h:form> tags.

The "direction" and "jointPoint" attributes are used for defining aspects of menu appearance.

Chapter 6. The RichFaces Comp...

380

Possible values for the "direction" attribute are:

• "top-left" - a menu drops to the top and left

• "top-right" - a menu drops to the top and right

• "bottom-left" - a menu drops to the bottom and left

• "bottom-right" - a menu drops to the bottom and right

• "auto" - smart positioning activation

Possible values for the "jointPoint" attribute are:

• "tr" - a menu is attached to the top-right point of the button element

• "tl" - a menu is attached to the top-left point of the button element

• "br" - a menu is attached to the bottom-right point of the button element

• "bl" - a menu is attached to the bottom-left point of the button element

• "auto" - smart positioning activation

By default, the "direction" and "jointPoint" attributes are set to "auto".

Here is an example:

Example:

...

<rich:dropDownMenu value="File" direction="bottom-right" jointPoint="bl">

 <rich:menuItem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>

 <rich:menuItem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>

 <rich:menuGroup value="Save As...">

 <rich:menuItem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>

 <rich:menuItem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>

 </rich:menuGroup>

 <rich:menuItem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>

 <rich:menuSeparator id="menuSeparator11"/>

 <rich:menuItem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>

</rich:dropDownMenu>

...

This is the result:

 < rich:dropDownMenu > available since 3.0.0

381

Figure 6.91. Using the "direction" and "joinPoint" attributes

You can correct an offset of the pop-up list relative to the label using the following attributes:

"horizontalOffset" and "verticalOffset" .

Here is an example:

Example:

...

<rich:dropDownMenu value="File" direction="bottom-

right" jointPoint="tr" horizontalOffset="-15" verticalOffset="0">

 <rich:menuItem submitMode="ajax" value="New" action="#{ddmenu.doNew}"/>

 <rich:menuItem submitMode="ajax" value="Open" action="#{ddmenu.doOpen}"/>

 <rich:menuGroup value="Save As...">

 <rich:menuItem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>

 <rich:menuItem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>

 </rich:menuGroup>

 <rich:menuItem submitMode="ajax" value="Close" action="#{ddmenu.doClose}"/>

 <rich:menuSeparator id="menuSeparator11"/>

 <rich:menuItem submitMode="ajax" value="Exit" action="#{ddmenu.doExit}"/>

</rich:dropDownMenu>

...

This is the result:

Figure 6.92. Using the "horizontalOffset" and "verticalOffset" attributes

The "disabled" attribute is used for disabling whole <rich:dropDownMenu> component. In this

case it is necessary to define "disabled" attribute as "true". An example is placed below.

Chapter 6. The RichFaces Comp...

382

Example:

...

<rich:dropDownMenu value="File" disabled="true">

 ...

</rich:dropDownMenu>

...

6.8.2.6. Facets

Table 6.153. Facets

Facet Description

label Redefines the content set of label

labelDisabled Redefines the content set of disabled label

6.8.2.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:dropDownMenu> components at

once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:dropDownMenu> component

6.8.2.8. Skin Parameters Redefinition

Table 6.154. Skin parameters redefinition for a label <div> element

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Table 6.155. Skin parameters redefinition for a selected label

Skin parameters CSS properties

panelBorderColor border-color

controlBackgroundColor background-color

generalTextColor background-colorcolor

 < rich:dropDownMenu > available since 3.0.0

383

Table 6.156. Skin parameters redefinition for a border

Skin parameters CSS properties

panelBorderColor border-color

additionalBackgroundColor background-color

Table 6.157. Skin parameters redefinition for a background

Skin parameters CSS properties

additionalBackgroundColor border-top-color

additionalBackgroundColor border-left-color

additionalBackgroundColor border-right-color

6.8.2.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.93. Classes names

Table 6.158. Classes names that define a label

Class name Description

rich-label-text-decor Defines text style for a representation element

rich-ddmenu-label Defines styles for a wrapper <div> element of

a representation element

rich-ddmenu-label-select Defines styles for a wrapper <div> element of

a selected representation element

rich-ddmenu-label-unselect Defines styles for a wrapper <div> element of

an unselected representation element

rich-ddmenu-label-disabled Defines styles for a wrapper <div> element of

a disabled representation element

Chapter 6. The RichFaces Comp...

384

On the screenshot there are classes names that define styles for component elements.

Figure 6.94. Classes names

Table 6.159. Classes names that define a popup element

Class name Description

rich-menu-list-border Defines styles for borders

rich-menu-list-bg Defines styles for a general background list

rich-menu-list-strut Defines styles for a wrapper <div> element for

a strut of a popup list

In order to redefine styles for all <rich:dropDownMenu> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the table

above) and define necessary properties in them. An example is placed below:

Example:

...

.rich-ddmenu-label-select{

 background-color: #fae6b0;

 border-color: #e5973e;

}

...

This is a result:

Figure 6.95. Redefinition styles with predefined classes

 < rich:dropDownMenu > available since 3.0.0

385

In the example a label select background color and border color were changed.

Also it's possible to change styles of particular <rich:dropDownMenu> component. In this case

you should create own style classes and use them in corresponding <rich:dropDownMenu>

styleClass attributes. An example is placed below:

Example:

...

.myClass{

 font-style: italic;

}

...

The "itemClass" attribute for <rich:dropDownMenu> is defined as it's shown in the example

below:

Example:

<rich:dropDownMenu ... itemClass="myClass"/>

This is a result:

Figure 6.96. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for items was changed.

6.8.2.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dropDownMenu.jsf?c=dropDownMenu] you can see the example of <rich:dropDownMenu>

usage and sources for the given example.

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=dropDownMenu

Chapter 6. The RichFaces Comp...

386

6.8.3. < rich:menuGroup > available since 3.0.0

6.8.3.1. Description

The <rich:menuGroup> component is used to define an expandable group of items inside a

pop-up list or another group.

Figure 6.97. <rich:menuGroup> component

6.8.3.2. Key Features

• Highly customizable look-and-feel

• Grouping of any menu's items

• Pop-up appearance event customization

• Support for disabling

• Smart user-defined positioning

Table 6.160. rich : menuGroup attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

converter JSF: Id of Converter to be used or reference to

a Converter

direction Defines direction of the popup sublist to appear

("right", "left", "auto"(Default), "left-down", "left-

up", "right-down", "right-up")

disabled HTML: If "true" sets state of the item to disabled

state. Default value is "false".

event Defines the event on the representation

element that triggers the menu's appearance.

Default value is "onmouseover".

 < rich:menuGroup > available since 3.0.0

387

Attribute Name Description

icon Path to the icon to be displayed for the enabled

item state

iconClass Assigns one or more space-separated CSS

class names to the component icon element

iconDisabled Path to the icon to be displayed for the disabled

item state

iconFolder Path to the folder icon to be displayed for the

enabled item state

iconFolderDisabled Path to the folder icon to be displayed for the

enabled item state

iconStyle CSS style rules to be applied to the component

icon element

id JSF: Every component may have a unique id

that is automatically created if omitted

labelClass Assigns one or more space-separated CSS

class names to the component label element

onclose The client-side script method to be called when

a group is closed

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the menu

group

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

menu group

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the menu

group

onopen The client-side script method to be called when

a group is opened

rendered JSF: If "false", this component is not rendered

selectClass Assigns one or more space-separated CSS

class names to the component selected items

selectStyle CSS style rules to be applied to the component

selected items

showDelay Delay between event and menu showing.

Default value is "300".

style HTML: CSS style rules to be applied to the

component

Chapter 6. The RichFaces Comp...

388

Attribute Name Description

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

value JSF: Defines representation text for menuItem

Table 6.161. Component identification parameters

Name Value

component-type org.richfaces.MenuGroup

component-class org.richfaces.component.html.HtmlMenuGroup

component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.MenuGroupRenderer

tag-class org.richfaces.taglib.MenuGroupTag

6.8.3.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dropDownMenu value="Active">

 ...

 <rich:menuGroup value="Active">

 <!--Nested menu components-->

 </rich:menuGroup>

 ...

</rich:dropDownMenu >

...

6.8.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlMenuGroup;

...

HtmlMenuGroup myMenuGroup = new HtmlMenuGroup();

...

 < rich:menuGroup > available since 3.0.0

389

6.8.3.5. Details of Usage

The "value" attribute defines the text representation of a group element in the page.

The "icon" attribute defines an icon for the component. The "iconDisabled" attribute defines an

icon for when the group is disabled. Also you can use the "icon" and "iconDisabled" facets. If

the facets are defined, the corresponding "icon" and "iconDisabled" attributes are ignored and

the facets' contents are used as icons. This could be used for an item check box implementation.

Here is an example:

...

<f:facet name="icon">

 <h:selectBooleanCheckbox value="#{bean.property}"/>

</f:facet>

...

The "iconFolder" and "iconFolderDisabled" attributes are defined for using icons as folder

icons. The "iconFolder" and "iconFolderDisabled" facets use their contents as folder icon

representations in place of the attribute values.

The "direction" attribute is used to define which way to display the menu as shown in the example

below:

Possible values are:

• "left - down" - a submenu is attached to the left side of the menu and is dropping down

• "left - up" - a submenu is attached to the left side of the menu and is dropping up

• "right - down" - a submenu is attached to the right side of the menu and is dropping down

• "right - up" - a submenu is attached to the right side of the menu and is dropping up

• "auto - smart" positioning activation

By default, the "direction" attribute is set to "auto".

Here is an example:

...

<rich:menuGroup value="Save As..." direction="left-down">

 <rich:menuItem submitMode="ajax" value="Text File" action="#{ddmenu.doSaveText}"/>

 <rich:menuItem submitMode="ajax" value="PDF File" action="#{ddmenu.doSavePDF}"/>

</rich:menuGroup>

...

Chapter 6. The RichFaces Comp...

390

This would be the result:

Figure 6.98. Using the "direction" attribute

Note:

The <rich:menuGroup> component was designed to be used only for pop-up

menu list creation.

6.8.3.6. Facets

Table 6.162. Facets

Facet Description

icon Redefines the icon for the enabled item state.

Related attribute is "icon"

iconFolder Redefines the folder icon for the enabled item

state. Related attribute is "iconFolder"

6.8.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:menuGroup> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:menuGroup> component

6.8.3.8. Skin Parameters Redefinition

Table 6.163. Skin parameters redefinition for a group

Skin parameters CSS properties

generalFamilyFont font-family

 < rich:menuGroup > available since 3.0.0

391

Skin parameters CSS properties

generalSizeFont font-size

Table 6.164. Skin parameters redefinition for a disabled group

Skin parameters CSS properties

tabDisabledTextColor color

Table 6.165. Skin parameters redefinition for a label

Skin parameters CSS properties

generalTextColor color

6.8.3.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.99. Classes names

Table 6.166. Classes names that define an appearance of group elements

Class name Description

rich-menu-group Defines styles for a wrapper <div> element for

a group

rich-menu-item-label Defines styles for a label of an item

rich-menu-item-icon Defines styles for the left icon of an item

rich-menu-item-folder Defines styles for the right icon of an item

Table 6.167. Classes names that define different states

Class name Description

rich-menu-item-label-disabled Defines styles for a label of a disabled item

rich-menu-item-icon-disabled Defines styles for the left icon of a disabled item

rich-menu-item-folder-disabled Defines styles for the right icon of a disabled

item

Chapter 6. The RichFaces Comp...

392

Class name Description

rich-menu-group-hover Defines styles for a wrapper <div> element of

a hover group

rich-menu-item-icon-enabled Defines styles for the left icon of an enabled

item

rich-menu-item-icon-selected Defines styles for the left icon of a selected item

In order to redefine styles for all <rich:menuGroup> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-menu-item-label-disabled{

 font-style: italic;

}

...

This is a result:

Figure 6.100. Redefinition styles with predefined classes

In the example a disabled label font style was changed.

Also it's possible to change styles of particular <rich:menuGroup> component. In this case you

should create own style classes and use them in corresponding <rich:menuGroup> styleClass

attributes. An example is placed below:

Example:

...

 < rich:menuItem > available since 3.0.0

393

.myClass{

 background-color: #acbece;

 border: none;

}

...

The "selectClass" attribute for <rich:menuGroup> is defined as it's shown in the example below:

Example:

<rich:menuGroup value="Save As..." selectClass="myClass">

This is a result:

Figure 6.101. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for selected class was changed.

Also selected class has no border.

6.8.3.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dropDownMenu.jsf?c=menuGroup] you can see the example of <rich:menuGroup> usage and

sources for the given example.

6.8.4. < rich:menuItem > available since 3.0.0

6.8.4.1. Description

The <rich:menuItem> component is used for the definition of a single item inside a pop-up list.

This component can be used not only within <rich:dropDownMenu> and <rich:contextMenu> ,

but also it can used as a standalone component. For example, you can use it as nested component

of the <rich:toolBar> .

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuGroup

Chapter 6. The RichFaces Comp...

394

Figure 6.102. <rich:menuItem> component

6.8.4.2. Key Features

• Highly customizable look-and-feel

• Different submission modes

• Support for disabling

• Custom content support

Table 6.168. rich : menuItem attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

 < rich:menuItem > available since 3.0.0

395

Attribute Name Description

disabled HTML: If "true" sets state of the item to disabled

state. Default value is "false".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

icon Path to the icon to be displayed for the enabled

item state

iconClass Assigns one or more space-separated CSS

class names to the component icon element

iconDisabled Path to the icon to be displayed for the disabled

item state.

iconStyle CSS style rules to be applied to the component

icon element

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

labelClass Assigns one or more space-separated CSS

class names to the component label element

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

Chapter 6. The RichFaces Comp...

396

Attribute Name Description

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect The client-side script method to be called when

a menu item is selected

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

 < rich:menuItem > available since 3.0.0

397

Attribute Name Description

comma-separated list of Id's, or EL Expression

with array or Collection

selectClass Assigns one or more space-separated CSS

class names to the selected item

selectStyle CSS style rules to be applied to the selected

item

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

submitMode Sets the submission mode. Possible values

are "ajax", "server", "none". Default value is

"server".

target HTML: Name of a frame where the resource

retrieved via this hyperlink is to be displayed

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

Table 6.169. Component identification parameters

Name Value

component-type org.richfaces.MenuItem

component-class org.richfaces.component.html.HtmlMenuItem

component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.MenuItemRenderer

tag-class org.richfaces.taglib.MenuItemTag

6.8.4.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Chapter 6. The RichFaces Comp...

398

Example:

...

<rich:dropDownMenu>

 ...

 <rich:menuItem value="Active"/>

 ...

<rich:dropDownMenu>

...

6.8.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlMenuItem;

...

HtmlMenuItem myMenuItem = new HtmlMenuItem();

...

6.8.4.5. Details of Usage

The "value" attribute defines the text representation for an item element.

There are two icon-related attributes. The "icon" attribute defines an icon. The "iconDisabled"

attribute defines an icon for a disabled item. Also you can use the "icon" and "iconDisabled"

facets. If the facets are defined, the corresponding "icon" and "iconDisabled" attributes are

ignored and the facets content is shown as an icon. It could be used for an item check box

implementation.

Here is an example:

...

<f:facet name="icon">

 <h:selectBooleanCheckbox value="#{bean.property}"/>

</f:facet>

...

The <rich:menuItem> "submitMode" attribute can be set to three possible parameters:

• Server (default)

Regular form submission request is used.

 < rich:menuItem > available since 3.0.0

399

• Ajax

Ajax submission is used for switching.

• None

The "action" and "actionListener" item's attributes are ignored. Menu items don' fire any submits

themselves. The behavior is fully defined by the components nested into items.

For example, you can put any content into an item, but, in this case, you should set the

"submitMode" attribute as "none" .

Here is an example:

...

<rich:dropDownMenu>

 ...

 <rich:menuItem submitMode="none">

 <h:outputLink value="www.jboss.org"/>

 </rich:menuItem>

 ...

<rich:dropDownMenu>

...

You can use the "disabled" attribute to set the item state.

Here is an example:

...

<rich:dropDownMenu>

 <rich:menuItem value="Disable" disabled="true"/>

<rich:dropDownMenu>

...

Note:

The <rich:menuItem> component was designed to be used only for pop-up menu

list creation.

Information about the "process" attribute usage you can find RichFaces Developer Guide section

about "process" attribute .

Chapter 6. The RichFaces Comp...

400

6.8.4.6. Facets

Table 6.170. Facets

Facet Description

icon Redefines the icon for the enabled item state.

Related attribute is "icon"

iconDisabled Redefines the folder icon the disabled item

state. Related attribute is "iconDisabled"

6.8.4.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:menuItem> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:menuItem> component

6.8.4.8. Skin Parameters Redefinition

Table 6.171. Skin parameters redefinition for an item

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Table 6.172. Skin parameters redefinition for a hovered item

Skin parameters CSS properties

tipBorderColor border-color

tipBackgroundColor background-color

Table 6.173. Skin parameters redefinition for a disabled item

Skin parameters CSS properties

tabDisabledTextColor color

Table 6.174. Skin parameters redefinition for a label

Skin parameters CSS properties

generalTextColor color

 < rich:menuItem > available since 3.0.0

401

6.8.4.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.103. Classes names

Table 6.175. Classes names that define an appearance of item elements

Class name Description

rich-menu-item Defines styles for a wrapper <div> element for

an item

rich-menu-item-label Defines styles for a label of an item

rich-menu-item-icon Defines styles for the left icon of an item

Table 6.176. Classes names that define different states

Class name Description

rich-menu-item-disabled Defines styles for a wrapper <div> element of

an item

rich-menu-item-enabled Defines styles for a wrapper <div> element of

an enabled item

rich-menu-item-hover Defines styles for a wrapper <div> element of

a hover item

rich-menu-item-label-disabled Defines styles for a label of a disabled item

rich-menu-item-icon-disabled Defines styles for the left icon of a disabled item

rich-menu-item-label-enabled Defines styles for a label of an enabled item

rich-menu-item-icon-enabled Defines styles for the left icon of an enabled

item

rich-menu-item-label-selected Defines styles for a label of a selected item

rich-menu-item-icon-selected Defines styles for the left icon of a selected item

In order to redefine styles for all <rich:menuItem> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Chapter 6. The RichFaces Comp...

402

Example:

...

.rich-menu-item-disabled{

 font-style: italic;

}

...

This is a result:

Figure 6.104. Redefinition styles with predefined classes

In the example a disabled item font style was changed.

Also it's possible to change styles of particular <rich:menuItem> component. In this case you

should create own style classes and use them in corresponding <rich:menuItem> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 border-color: #bed6f8;

 background-color: #ffffff;

}

...

The "styleClass" attribute for <rich:menuItem> is defined as it's shown in the example below:

Example:

<rich:menuItem ... selectStyle="myClass">

 < rich:menuSeparator > available since 3.0.0

403

This is a result:

Figure 6.105. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color and border color for selected item

were changed.

6.8.4.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dropDownMenu.jsf?c=menuItem] you can see the example of <rich:menuItem> usage and

sources for the given example.

6.8.5. < rich:menuSeparator > available since 3.0.0

6.8.5.1. Description

The <rich:menuSeparator> component is used for the definition of a horizontal separator that

can be placed between groups or items.

Figure 6.106. <rich:menuSeparator> component

Table 6.177. rich : menuSeparator attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuItem

Chapter 6. The RichFaces Comp...

404

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

Table 6.178. Component identification parameters

Name Value

component-type org.richfaces.MenuSeparator

component-class org.richfaces.component.html.HtmlMenuSeparator

component-family org.richfaces.DropDownMenu

renderer-type org.richfaces.MenuSeparatorRenderer

tag-class org.richfaces.taglib.MenuSeparatorTag

6.8.5.2. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:dropDownMenu/>

 ...

 <rich:menuSeparator/>

 ...

<rich:dropDownMenu/>

...

6.8.5.3. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlMenuSeparator;

...

HtmlMenuSeparator myMenuSeparator = new HtmlMenuSeparator();

...

6.8.5.4. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

 < rich:menuSeparator > available since 3.0.0

405

There are two ways to redefine the appearance of all <rich:menuSeparator> components at

once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:menuSeparator> component

6.8.5.5. Skin Parameters Redefinition

Table 6.179. Skin parameters redefinition for an item

Skin parameters CSS properties

panelBorderColor border-top-color

6.8.5.6. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.107. Classes names

Table 6.180. Classes names that define separator element appearance.

Class name Description

rich-menu-separator Defines styles for a wrapper <div> element for

a separator

In order to redefine styles for all <rich:menuSeparator> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

Chapter 6. The RichFaces Comp...

406

.rich-menu-separator{

 border-color: #acbece;

}

...

This is a result:

Figure 6.108. Redefinition styles with predefined classes

In the example a menu separator border color was changed.

6.8.5.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

dropDownMenu.jsf?c=menuSeparator] you can see the example of <rich:menuSeparator>

usage and sources for the given example.

6.9. Rich Trees

In this section you will learn how to build hierarchical data presentation using the <rich:tree>

component.

6.9.1. < rich:tree > available since 3.0.0

6.9.1.1. Description

The component is designed for hierarchical data presentation and is applied for building a tree

structure with a drag-and-drop capability.

http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator
http://livedemo.exadel.com/richfaces-demo/richfaces/dropDownMenu.jsf?c=menuSeparator

 < rich:tree > available since 3.0.0

407

Figure 6.109. Expanded <rich:tree> with child elements

6.9.1.2. Key Features

• Highly customizable look-and-feel

• Built-in drag and drop capability, than enable relocating tree nodes within the tree

• Built-in Ajax processing

• Possibility to define a visual representation by node type

• Support of several root elements in a tree

Table 6.181. rich : tree attributes

Attribute Name Description

acceptCursors List of comma separated cursors that indicates

when acceptable draggable over dropzone

acceptedTypes A list of drag zones types, which elements are

accepted by a drop zone

adviseNodeOpened MethodBinding pointing at a method

accepting an org.richfaces.component.UITree

with return of java.lang.Boolean type.

If returned value is: java.lang.Boolean.

TRUE, a particular treeNode is expanded;

java.lang.Boolean.FALSE, a particular

treeNode is collapsed; null, a particular

treeNode saves the current state

Chapter 6. The RichFaces Comp...

408

Attribute Name Description

adviseNodeSelected MethodBinding pointing at a method

accepting an org.richfaces.component.UITree

with return of java.lang.Boolean type.

If returned value is: java.lang.Boolean.

TRUE, a particular treeNode is selected;

java.lang.Boolean.FALSE, a particular

treeNode is unselected; null, a particular

treeNode saves the current state

ajaxChildActivationEncodeBehavior Defines which nodes keys will be added to

AjaxNodeKeys automatically on the request

from the children of the node. Values: "none" -

nothing, "node" - only current node, "subtree" -

node and all its children.

ajaxKeys This attribute defines row keys that are updated

after an AJAX request.

ajaxNodeKeys Keys of the nodes (without subtree) to be

updated for ajax request risen by the node itself

ajaxNodeSelectionEncodeBehavior Defines which nodes keys will be added

to AjaxNodeKeys automatically on selecting

ajax request from the node. Values: "none" -

nothing, "node" - only current node, "subtree" -

node and all its children.

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

ajaxSubmitSelection If "true", an Ajax request to be submit when

selecting node. Default value is "false".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

changeExpandListener Listener called on expand/collapse event on

the node

componentState It defines EL-binding for a component state for

saving or redefinition

 < rich:tree > available since 3.0.0

409

Attribute Name Description

cursorTypeMapping Mapping between drop types and acceptable

cursors

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disableKeyboardNavigation Disables keyboard navigation. Default value is

"false"

dragIndicator Id of a component that is used as drag pointer

during the drag operation

dragListener MethodBinding representing an action listener

method that will be notified after drag operation

dragType A drag zone type that is used for zone

definition, which elements can be accepted by

a drop zone

dragValue Data to be sent to the drop zone after a drop

event. Default value is "getRowKey()".

dropListener MethodBinding representing an action listener

method that will be notified after drop operation

dropValue Data to be processed after a drop event.

Default value is "getRowKey()".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

grabbingCursors List of comma separated cursors that indicates

when you has grabbed something

grabCursors List of comma separated cursors that indicates

when you can grab and drag an object

highlightedClass Assigns one or more space-separated CSS

class names to the component highlighted

node

icon The icon for node

iconCollapsed The icon for collapsed node

iconExpanded The icon for expanded node

iconLeaf An icon for component leaves

Chapter 6. The RichFaces Comp...

410

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate A flag indicating that this component value

must be converted and validated immediately

(during an Apply Request Values phase),

rather than waiting until a Process Validations

phase

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

nodeFace Node face facet name

nodeSelectListener MethodBinding representing an action listener

method that will be notified after selection of

node.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncollapse The client-side script method to be called when

a node is collapsed

oncomplete The client-side script method to be called after

the request is completed

oncontextmenu The client-side script method to be called when

the right mouse button is clicked over the

component. Returning false prevents a default

browser context menu from being displayed.

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

 < rich:tree > available since 3.0.0

411

Attribute Name Description

ondragend The client-side script method to be called when

the dragging operation is finished

ondragenter The client-side script method to be called when

a draggable object enters the zone

ondragexit The client-side script method to be called after

a draggable object leaves the zone

ondragstart The client-side script method to be called when

the dragging operation is started

ondrop The client-side script method to be called when

something is dropped into the drop zone

ondropend The client-side script method to be called when

a draggable object is dropped into any zone

ondropout The client-side script method to be called when

the draggable object is moved away from the

drop zone

ondropover The client-side script method to be called when

the draggable object is over the drop zone

onexpand The client-side script method to be called when

a node is expanded

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

Chapter 6. The RichFaces Comp...

412

Attribute Name Description

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselected The client-side script method to be called when

a node is selected

preserveDataInRequest If "true", data is preserved in a request. Default

value is "true".

preserveModel Possible values are "state", "request", "none".

Default value is "request"

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rejectCursors List of comma separated cursors that indicates

when rejectable draggable over dropzone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

rightClickSelection Allow to select tree item using mouse right click

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope

selectedClass Assigns one or more space-separated CSS

class names to the component selected node

showConnectingLines If "true", connecting lines are show

 < rich:tree > available since 3.0.0

413

Attribute Name Description

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

stateAdvisor ValueBinding pointing at instance of class

implementing

org.richfaces.component.state.TreeStateAdvisor

interface.

stateVar The attribute provides access to a component

state on the client side

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchType Tree Nodes switch mode: "client", "server",

"ajax"

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

toggleOnClick If "false" do not toggle node state on click. If

"true", than node will be toggles on click on

ether node content, or node icon. Default value

is "false".

treeNodeVar The attribute provides access to a TreeNode

instance in a Request scope

typeMapping The attribute associates a type of dragable

zone (dragType) with <rich:dndParam>

defined for <rich:dropSupport> for passing

parameter value to <rich:dragIndicator>.

It uses JSON format: (drag_type:

parameter_name).

value JSF: The current value for this component

var Attribute contains a name providing an access

to data defined with value

Chapter 6. The RichFaces Comp...

414

Table 6.182. Component identification parameters

Name Value

component-type org.richfaces.Tree

component-class org.richfaces.component.html.HtmlTree

component-family org.richfaces.Tree

renderer-type org.richfaces.TreeRenderer

tag-class org.richfaces.taglib.TreeTag

6.9.1.3. Creating the Component with a Page Tag

There are two ways to set up a tree

• Using model (org.richfaces.model.TreeNode or javax.swing.tree.TreeNode)

Example:

...

<rich:tree value="#{library.data}" var="item" >

 <rich:treeNode icon="/images/tree/singer.png" >

 <h:outputText value="#{item.name}" />

 </rich:treeNode>

 ...

</rich:tree>

...

• Using model tags <rich:recursiveTreeNodesAdaptor> , <rich:treeNodesAdaptor> .

Example:

...

<rich:tree>

 <rich:recursiveTreeNodesAdaptor roots="#{fileSystemBean.sourceRoots}" var="item" nodes="#{item.nodes}" /

>

</rich:tree>

...

6.9.1.4. Creating the Component Dynamically Using Java

Example:

 < rich:tree > available since 3.0.0

415

import org.richfaces.component.html.HtmlTree;

...

HtmlTree myTree = new HtmlTree();

...

6.9.1.5. Details of Usage

As it has been mentioned above the <rich:tree> component allows rendering any tree-like data

model.

You can build your <rich:tree> using model (org.richfaces.model.TreeNode

or javax.swing.tree.TreeNode). In this case the <rich:tree>

component interacts with data model via "TreeNode" interface

(org.richfaces.model.TreeNode [http://labs.jboss.com/file-access/default/members/

jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNode.html]) that is

used for the <rich:tree> nodes representation.

Actually you can develop and use your own implementation of the "TreeNode"

interface or use a default one, which is defined with a default class "TreeNodeImpl"

(org.richfaces.model.TreeNodeImpl [http://labs.jboss.com/file-access/default/members/

jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNodeImpl.html]).

The "value" attribute of the <rich:tree> component contains a nodes structure defined in a

bean property.

When the <rich:tree> component is being rendered it iterates over the model nodes and renders

them using one of its immediate <rich:treeNode> children. Data property of the current model

TreeNode is exposed using "var" attribute, so if var="station" you can refer to that data using

#{station} syntax.

In the following example the <rich:tree> is built from a simple org.richfaces.model.TreeNode

model:

...

private TreeNodeImpl<String> stationRoot = new TreeNodeImpl<String>();

private TreeNodeImpl<String> stationNodes = new TreeNodeImpl<String>();

private String[] kickRadioFeed = { "Hall & Oates - Kiss On My List",

 "David Bowie - Let's Dance", "Lyn Collins - Think (About It)",

 "Kim Carnes - Bette Davis Eyes",

 "KC & the Sunshine Band - Give It Up" };

 ...

stationRoot.setData("KickRadio");

stationNodes.addChild(0, stationRoot);

for (int i = 0; i < kickRadioFeed.length; i++){

 TreeNodeImpl<String> child = new TreeNodeImpl<String>();

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNode.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNode.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNode.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNodeImpl.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNodeImpl.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/TreeNodeImpl.html

Chapter 6. The RichFaces Comp...

416

 child.setData(kickRadioFeed[i]);

 stationRoot.addChild(i, child);

}

...

As it is mentioned before you need to pass #{stations.stationNodes} property to the "value"

attribute and define the "var" attribute in order to refer to the data:

...

<rich:tree value="#{stations.stationNodes}" var="station">

 <rich:treeNode>

 <h:outputText value="#{station}" />

 </rich:treeNode>

</rich:tree>

...

This is a result:

Figure 6.110. A simple <rich:tree> from a org.richfaces.model.TreeNode

Implementation of the <rich:tree> component provides another way to

build a tree. This approach implies using a "XmlTreeDataBuilder" class (

org.richfaces.component.xml.XmlTreeDataBuilder [http://labs.jboss.com/file-access/default/

members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/component/xml/

XmlTreeDataBuilder.html]) that allows to transform XML into structures of objects containing

"XmlNodeData" (org.richfaces.component.xml.XmlNodeData [http://labs.jboss.com/file-access/

default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/component/xml/

XmlNodeData.html]) instances as data, which could be represented by the <rich:tree>

component.

Let's try to build a simple <rich:tree> from a local XML file. In the following example a simple

XML file (stations.xml) is used as a radio station playlist:

<?xml version="1.0"?>

<station name="KickRadio">

 <feed date="today">

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/component/xml/XmlTreeDataBuilder.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/component/xml/XmlTreeDataBuilder.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/component/xml/XmlTreeDataBuilder.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/component/xml/XmlTreeDataBuilder.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/component/xml/XmlNodeData.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/component/xml/XmlNodeData.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/component/xml/XmlNodeData.html
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/component/xml/XmlNodeData.html

 < rich:tree > available since 3.0.0

417

 <song time="07:00">Hall & Oates - Kiss On My List</song>

 <song time="07:03">David Bowie - Let's Dance</song>

 <song time="07:06">Lyn Collins - Think (About It)</song>

 <song time="07:10">Kim Carnes - Bette Davis Eyes</song>

 <song time="07:15">KC & the Sunshine Band - Give It Up</song>

 </feed>

</station>

Now you need to create a bean that holds a model nodes:

...

private TreeNode data;

 ...

FacesContext context = FacesContext.getCurrentInstance();

data = XmlTreeDataBuilder.build(new InputSource(getClass().getResourceAsStream("stations.xml")));

...

Finally you should set the "value" attribute to the data bean property and define the "var" attribute

in order to refer to the data of nodes:

...

<rich:tree id="treeXML" value="#{stations.data}" var="vardata">

 <rich:treeNode>

 <h:outputText value="#{vardata.attributes['name']}" />

 <h:outputText value="#{vardata.attributes['date']}" />

 <h:outputText value="#{vardata.attributes['time']}" />

 <h:outputText value=" #{vardata.text}" />

 </rich:treeNode>

</rich:tree>

...

This is a result:

Figure 6.111. A simple <rich:tree> from a local XML file

Chapter 6. The RichFaces Comp...

418

It's possible to define a visual representation of a node data model (to define a node icon) and

its behavior in correspondence with the data contained in this node (with a value of the "var"

attribute). The node behavior is defined by the components nested into the <rich:treeNode>

(e.g. links or buttons). For these purposes you should use "nodeFace" attribute. For each tree

node a value of "nodeFace" attribute is evaluated and <rich:treeNode> with a value of "type"

attribute equal to a value of "nodeFace" is used for node representation. See an example below.

Example:

...

<h:form>

 <rich:tree style="width:300px" value="#{library.data}" var="item" nodeFace="#{item.type}">

 <rich:treeNode type="artist" iconLeaf="/images/tree/singer.png" icon="/images/tree/

singer.png">

 <h:outputText value="#{item.name}" />

 </rich:treeNode>

 <rich:treeNode type="album" iconLeaf="/images/tree/disc.png" icon="/images/tree/

disc.png">

 <h:outputText value="#{item.title}" />

 </rich:treeNode>

 <rich:treeNode type="song" iconLeaf="/images/tree/song.png" icon="/images/tree/

song.png">

 <h:outputText value="#{item.title}" />

 </rich:treeNode>

 </rich:tree>

</h:form>

...

This is a result:

Figure 6.112. The "nodeFace" attribute usage

In the example above, when each node of data model is processed, data contained in the "data"

property of "TreeNode" interface is assigned to a request scope variable, which name is defined

 < rich:tree > available since 3.0.0

419

with "var" attribute. The value of the "nodeFace" attribute is evaluated in correspondence with

the data assigned to the "var" attribute. The corresponding <rich:treeNode> component (with

a value of "type" attribute equal to a value of "nodeFace") is used for the node representation.

For example, during data model processing, an object with a name "Chris Rea" was inserted in

the "var" attribute. Then the value of "nodeFace" attribute was evaluated as "artist". Thus,

for the node representation the <rich:treeNode> with "type" equal to "artist" was used.

You can also assign an EL-expression as value of the "nodeFace" attribute. See an example

below:

Example:

nodeFace="#{data.name != 'param-value' ? 'artist' : 'album'}"

There are some essential points in a "nodeFace" attribute usage: you need to define notions for

typeless and a default nodes.

The typeless node is the first <rich:treeNode> component (from all children nodes nested to the

<rich:tree> component) with not defined "type" attribute and defined "rendered" attribute. The

typeless node is used for representation when "nodeFace" attribute is null.

Default node has the following interior presentation:

Example:

...

<h:outputText value="#{varAttributeName}">

...

"varAttributeName" is a value for "var" attribute.

Default node is used in the following cases:

• "nodeFace" attribute is defined, but its value isn't equal to any "type" attribute value from all

children nodes;

• "nodeFace" attribute is defined and its value is equal to a value of some "type" attribute from

all children nodes, but the value of "rendered" attribute for this node is "false".

There is also one thing that has to be remembered using "type" and "rendered" attributes: it's

possible to define several <rich:treeNode> components with equal values of "type" attribute and

different values of "rendered" attribute. It provides a possibility to define different representation

Chapter 6. The RichFaces Comp...

420

styles for the same node types. In the example with artists and their albums (see above [418])

it's possible to represent albums that are available for sale and albums that are not available.

Please study the example below:

Example:

...

<h:form>

 <rich:tree style="width:300px" value="#{library.data}" var="item" nodeFace="#{item.type}">

 ...

 <rich:treeNode type="album" iconLeaf="/images/tree/album.gif" icon="/images/tree/

album.gif"

 rendered="#{item.exist}">

 <h:outputText value="#{item.name}" />

 </rich:treeNode>

 <rich:treeNode type="album" iconLeaf="/images/tree/album_absent.gif" icon="/images/

tree/album_absent.gif"

 rendered="#{not item.exist}">

 <h:outputText value="#{item.name}" />

 </rich:treeNode>

 ...

 </rich:tree>

</h:form>

...

This is a result of the code:

Figure 6.113. The "type" and the "rendered" attributes usage

In the example the <rich:treeNode> components has equal values of the "type" attribute.

Depending on value of the "rendered" attribute the corresponding <rich:treeNode> component

 < rich:tree > available since 3.0.0

421

is selected for node representation. If an album is available for sale the value of the "rendered"

for the first <rich:treeNode> component is "true", for the second one is "false". Thus, the first

<rich:treeNode> is selected for node representation.

Tree node can be run in tree modes. Modes can be specified with "switchType" attribute for

<rich:tree> component.

• Ajax (default value) - Ajax submission is used performing the functionality. Note, that for

collapse/expand operations an Ajax request is sent to the server and it can cause a short delay.

• Server - regular form of submission request is used.

• Client – all operations are performed totally on the client; no interaction with a server is

involved. Full page content is reloaded after every action.

The "icon" , "iconCollapsed" , "iconExpanded" , "iconLeaf" attributes set the icons' images for

the component. You can also define icons using facets with the same names. If the facets are

defined, the corresponding attributes are ignored and facets' content is used as icons. By default

the width of a rendered facet area is 16px.

Example:

...

<rich:tree value="#{library.data}" var="item">

 ...

 <f:facet name="icon">

 <h:graphicImage value="/images/tree/singer.png "/>

 </f:facet>

 <f:facet name="iconCollapsed">

 <h:graphicImage value="/images/tree/singer.png" />

 </f:facet>

 <f:facet name="iconExpanded">

 <h:graphicImage value="/images/tree/singer.png" />

 </f:facet>

 <f:facet name="iconLeaf">

 <h:graphicImage value="/images/tree/song.png" />

 </f:facet>

 ...

</rich:tree>

...

The <rich: tree> component can be used together with <rich: treeNodeAdaptor> . In this

case there is no need to specify the attributes "value" and "var" . Besides, visual representation

shouldn't be defined right in the tree. In this case a <rich: tree> tag is applied mainly for defining

common attributes such as "ajaxSubmitSelection" etc.

Chapter 6. The RichFaces Comp...

422

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

As it's mentioned before, the <rich:tree> component uses a data model to represent the tree-

like nodes structure on the page. To identify a particular node during a client request, the model

provides a set of unique keys for tree nodes. The <rich:tree> can use strings as keys values

which may contain special characters not allowed by browsers, such as the left angle bracket (<),

ampersand (&), ant etc. Thus, to have a possibility to use unallowed characters in the tree nodes

keys, the following converters are provided:

• org.richfaces.TreeRowKeyConverter that is used for "TreeNode" based trees. The key

should be of a java.lang.String type.

• org.richfaces.TreeAdaptorRowKeyConverter that is used for adaptor-based trees (see

<rich:treeNodesAdaptor> , <rich:recursiveTreeNodesAdaptor>). The key should be of

a java.lang.String type.

• org.richfaces.TreeAdaptorIntegerRowKeyConverter which is provided for adaptor-based

trees. The key should be of a java.lang.Integer type.

The converters can be extended in order to have a possibility for implementing custom converters.

To apply a converter to the <rich:tree> component, you should define it as a value of the

"rowKeyConverter" attribute.

Have a look at the example of a tree which contains the RichFaces components as its nodes

and the components attributes as the nodes child elements. As the components have unallowed

characters (< and >) in their names, the org.richfaces.TreeRowKeyConverter is used here.

Example:

...

<rich:tree value="#{treeBean.data}" var="node" switchType="ajax" rowKeyConverter="org.richfaces.TreeRowKeyConverter">

 <rich:treeNode ajaxSingle="true">

 <h:outputText value="#{node}"/>

 </rich:treeNode>

</rich:tree>

...

In the example the tree uses the following data model:

...

String[] components = {"< a4j:ajaxListener >", "< a4j:keepAlive >", "< a4j:actionparam >" };

String[][] attributes = {{"type"},

 {"ajaxOnly", "beanName"},

 < rich:tree > available since 3.0.0

423

 {"actionListener", "assignTo", "binding", "converter", "id", "name", "noEscape", "value"}};

data = new TreeNodeImpl<String>();

for (int i = 0; i < components.length; i++) {

 TreeNode<String> child = new TreeNodeImpl<String>();

 child.setData(components[i]);

 data.addChild(components[i], child);

 for (int j = 0; j < attributes[i].length; j++) {

 TreeNode<String> grandChild = new TreeNodeImpl<String>();

 grandChild.setData(attributes[i][j]);

 child.addChild(attributes[i][j], grandChild);

 }

}

...

6.9.1.6. Built-In Drag and Drop

Words "built-in" in this context mean, that <rich:tree> component has its own attributes, that

provide drag-and-drop capability. These attributes can be divided into two groups: those ones

which provide drag and those which provide drop operations (see the tables below).

Table 6.183. Drag group

Attribute Name Description

dragValue Element value drag passed into processing

after a Drop event

dragListener A listener that processes a Drag event

dragIndicator Id of a component that is used as a drag pointer

during the drag operation

dragType Defines a drag zone type that is used for

definition of a dragged element, which can be

accepted by a drop zone

Table 6.184. Drop group

Attribute Name Description

dropValue Element value drop passed into processing

after Drop events

dropListener A listener that processes a Drop event.

acceptedTypes Drag zone names are allowed to be processed

with a Drop zone

Chapter 6. The RichFaces Comp...

424

Attribute Name Description

typeMapping Drag zones names mapping on the

corresponding drop zone parameters

Consider drag-and-drop inside a tree. All zones, which are assumed to be dragged, must be

marked. In terms of <rich:tree> these zones completely correspond to tree nodes. So, all

dragging nodes should be marked with "dragType" attribute. Then, to mark zone(-s), where the

dragging node could be dropped, pass the type of dragging node to the "acceptedTypes" attribute

of the drop zone. It would be good to itemize, that each tree node in the <rich:tree> component’s

structure has its own key. Depending on how the component is used, these keys can be generated

by the component itself or can be taken from the component’s data model. Keys help to identify

each node in a tree; key is what exactly being passing from one node to another in drag-and-

drop operations. Finally, the method binding, that will process drag-and-drop operation, should be

pointed via "dropListener" attribute of the <rich:tree> .

Chapters "6.40 <dragIndicator>" and "6.39 <dndParam>" describes how to apply visual element,

that show some additional information (e.g. dragging item name) while operating with drag-and-

drop.

Page code, that describes a tree with built in drag-and-drop in the way it is considered, is shown

below.

Example:

...

<h:form>

 <rich:tree style="width:300px" value="#{libraryAjaxTree.data}" nodeFace="#{item.type}" var="item" dragIndicator=":treeDragIndicator" dropListener="#{libraryAjaxTree.processDrop}">

 <rich:treeNode type="artist" icon="/images/tree/group.png" iconLeaf="/images/tree/

group.png" acceptedTypes="album">

 <h:outputText value="#{item.name}" />

 </rich:treeNode>

 <rich:treeNode type="album" icon="/images/tree/cd.png" iconLeaf="/images/tree/

cd.png" dragType="album" acceptedTypes="song">

 <h:outputText value="#{item.title}" />

 <rich:dndParam name="label" type="drag" value="Album: #{item.title}" />

 </rich:treeNode>

 <rich:treeNode type="song" icon="/images/tree/music.png" iconLeaf="/images/tree/

music.png" dragType="song">

 <h:outputText value="#{item.title}" />

 <rich:dndParam name="label" type="drag" value="Song: #{item.title}" />

 </rich:treeNode>

 </rich:tree>

</h:form>

 < rich:tree > available since 3.0.0

425

...

This code renders following tree:

Figure 6.114. Drag-and-drop operations

6.9.1.7. Events handling

Listeners classes that process events on the server side are defined with the help of:

• changeExpandListener processes expand/collapse event of a treeNode

• dropListener processes a Drop event

• dragListener processes a Drag event

• nodeSelectListener is called during request sending on a node selecting event (if request

sending on this event is defined)

Listener methods can be defined using the following attributes or using nested tags.

Client event attributes are:

• "onexpand" is a script expression to invoke when a node is expanded

• "oncollapse" is a script expression to invoke when a node is collapsed

• "ondragexit" is a script expression to invoke when an element passing out from a tree zone

• "ondragstart" is a script expression to invoke when dragging starts

• "ondragend" is a script expression to invoke when dragging ends (a drop event)

• "ondragenter" is a script expression to invoke when a dragged element appears on a tree

They can be used to add some JavaScript effects.

Standart HTML event attributes like "onclick" , "onmousedown" , "onmouseover" etc. can be also

used. Event handlers of a <rich:tree> component capture events occured on any tree part. But

event handlers of treeNode capture events occured on treeNode only, except for children events.

Chapter 6. The RichFaces Comp...

426

6.9.1.8. Facets

Table 6.185. Facets

Facet name Description

icon Redefines the icon for node. Related attribute

is "icon"

iconCollapsed Redefines the icon for collapsed node. Related

attribute is "iconCollapsed"

iconExpanded Redefines the icon for expanded node. Related

attribute is "iconExpanded"

iconLeaf Redefines the icon for component leaves.

Related attribute is "iconLeaf"

6.9.1.9. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:tree> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:tree> component

6.9.1.10. Skin Parameters Redefinition:

There is only one skin parameter for <rich:tree> . As it's a wrapper component for

<rich:treeNode> components, look and feel customization is described in the corresponding

section.

Table 6.186. Skin parameters for a wrapper element

Skin parameters CSS properties

overAllBackground background-color

6.9.1.11. Definition of Custom Style Classes

Table 6.187. Classes names that define a component appearance

Class name Description

rich-tree Defines styles for a wrapper <div> element of

a tree

In order to redefine styles for all <rich:tree> components on a page using CSS, it's enough to

create classes with the same names (possible classes could be found in the table above) and

define necessary properties in them. An example is placed below:

 < rich:tree > available since 3.0.0

427

Example:

...

 .rich-tree{

 font-weight:bold;

}

...

This is a result:

Figure 6.115. Redefinition styles with predefined classes

In the example a tree font weight was changed to bold.

Also it's possible to change styles of a particular <rich:tree> component. In this case you should

create own style classes and use them in corresponding <rich:tree> styleClass attributes. An

example is placed below:

Example:

...

.myClass{

 font-weight:bold;

}

...

The "highlightedClass" attribute for <rich:tree> is defined as it's shown in the example below:

Example:

<rich:tree ... styleClass="myClass"/>

This is a result:

Chapter 6. The RichFaces Comp...

428

Figure 6.116. Redefinition styles with own classes and styleClass attributes

As it's shown on the picture above, font weight of highlighted text node of a tree was changed

to bold.

6.9.1.12. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

tree.jsf?c=tree] you can see the example of <rich:tree> usage and sources for the given example.

How to Expand/Collapse Tree Nodes from code, see in thiswiki article [http://labs.jboss.com/wiki/

ExpandCollapseTreeNodes].

6.9.2. < rich:treeNode > available since 3.0.0

6.9.2.1. Description

The <rich:treeNode> component is designed for creating sets of tree elements within a

<rich:tree> component.

Figure 6.117. <rich:treeNode> component

http://livedemo.exadel.com/richfaces-demo/richfaces/tree.jsf?c=tree
http://livedemo.exadel.com/richfaces-demo/richfaces/tree.jsf?c=tree
http://livedemo.exadel.com/richfaces-demo/richfaces/tree.jsf?c=tree
http://labs.jboss.com/wiki/ExpandCollapseTreeNodes
http://labs.jboss.com/wiki/ExpandCollapseTreeNodes
http://labs.jboss.com/wiki/ExpandCollapseTreeNodes

 < rich:treeNode > available since 3.0.0

429

6.9.2.2. Key Features

• Possibility to assign different icon images for each node within a tree

• Drag and Drop support

• Look-and-Feel customization

Table 6.188. rich : treeNode attributes

Attribute Name Description

acceptCursors List of comma separated cursors that indicates

when acceptable draggable over dropzone

acceptedTypes A list of drag zones types, which elements are

accepted by a drop zone

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

ajaxSubmitSelection An algorithm of AJAX request submission.

Possible values are "inherit", "true", "false".

Default value is "inherit".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

changeExpandListener Listener called on expand/collapse event on

the node

cursorTypeMapping Mapping between drop types and acceptable

cursors

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

dragIndicator Id of a component that is used as drag pointer

during the drag operation

dragListener MethodBinding representing an action listener

method that will be notified after drag operation

Chapter 6. The RichFaces Comp...

430

Attribute Name Description

dragType A drag zone type that is used for zone

definition, which elements can be accepted by

a drop zone

dragValue Data to be sent to the drop zone

after a drop event. Default value is

"getUITree().getDragValue()".

dropListener MethodBinding representing an action listener

method that will be notified after drop operation

dropValue Data to be processed after a drop event.

Default value is "getUITree().getDropValue()".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

grabbingCursors List of comma separated cursors that indicates

when you has grabbed something

grabCursors List of comma separated cursors that indicates

when you can grab and drag an object

highlightedClass Assigns one or more space-separated CSS

class names to the component highlighted

node

icon The icon for node

iconCollapsed The icon for collapsed node

iconExpanded The icon for expanded node

iconLeaf An icon for component leaves

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

 < rich:treeNode > available since 3.0.0

431

Attribute Name Description

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

nodeClass Assigns one or more space-separated CSS

class names to the component node

nodeSelectListener MethodBinding representing an action listener

method that will be notified after selection of

node.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncollapse The client-side script method to be called when

a node is collapsed

oncomplete The client-side script method to be called after

the request is completed

oncontextmenu The client-side script method to be called when

the right mouse button is clicked over the

component. Returning false prevents a default

browser context menu from being displayed.

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

ondragend The client-side script method to be called when

the dragging operation is finished. The default

attribute value is "getDefaultOndragend()".

ondragenter The client-side script method to be called when

a draggable object enters the zone. The default

attribute value is "getDefaultOndragenter()".

ondragexit The client-side script method to be called after

a draggable object leaves the zone. The default

attribute value is "getDefaultOndragexit()".

ondragstart The client-side script method to be called when

the dragging operation is started. The default

attribute value is "getDefaultOndragstart()".

Chapter 6. The RichFaces Comp...

432

Attribute Name Description

ondrop The client-side script method to be called when

something is dropped into the drop zone. The

default attribute value is "getDefaultOndrop()".

ondropend The client-side script method to be called

when a draggable object is dropped into

any zone. The default attribute value is

"getDefaultOndropend()".

ondropout The client-side script method to be called when

the draggable object is moved away from the

drop zone

ondropover The client-side script method to be called when

the draggable object is over the drop zone

onexpand The client-side script method to be called when

a node is expanded

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselected The client-side script method to be called when

a node is selected

 < rich:treeNode > available since 3.0.0

433

Attribute Name Description

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rejectCursors List of comma separated cursors that indicates

when rejectable draggable over dropzone

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection. Default value is

"getDefaultReRender()".

selectedClass Assigns one or more space-separated CSS

class names to the component selected node

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

timeout Gets timeout in ms. Default value is

"getDefaultTimeout()".

type HTML: A node type

typeMapping The attribute associates a type of dragable

zone (dragType) with <rich:dndParam>

defined for <rich:dropSupport> for passing

parameter value to <rich:dragIndicator>.

It uses JSON format: (drag_type:

parameter_name).

Chapter 6. The RichFaces Comp...

434

Table 6.189. Component identification parameters

Name Value

component-type org.richfaces.TreeNode

component-class org.richfaces.component.html.HtmlTreeNode

component-family org.richfaces.TreeNode

renderer-type org.richfaces.TreeNodeRenderer

tag-class org.richfaces.taglib.TreeNodeTag

6.9.2.3. Creating the Component with a Page Tag

Here is a simple example as it can be used on a page:

Example:

...

<rich:tree ... faceNode="simpleNode">

 <rich:treeNode type="simpleNode">

 <!--Tree node data displaying template-->

 </rich:treeNode>

</rich:tree>

...

6.9.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlTreeNode;

...

HtmlTreeNode myPanel = new HtmlTreeNode();

...

6.9.2.5. Details of Usage

The "icon" , "iconCollapsed" , "iconExpanded" , "iconLeaf" attributes define icons for the

component. Also you can define icons using facets with the same names. If the facets are defined,

the corresponding attributes are ignored and facets contents are used as icons. The width of a

rendered facet area is 16px.

...

<rich:tree ...>

 < rich:treeNode > available since 3.0.0

435

 ...

 <rich:treeNode ...>

 <f:facet name="icon">

 <outputText value="A"/>

 </f:facet>

 <f:facet name="iconCollapsed">

 <outputText value="B"/>

 </f:facet>

 <f:facet name="iconExpanded">

 <outputText value="C"/>

 </f:facet>

 <f:facet name="iconLeaf">

 <outputText value="D"/>

 </f:facet>

 </rich:treeNode>

 ...

</rich:tree>

...

As it has been mentioned above, <rich:treeNode> defines a template for nodes rendering in a

tree. Thus, during XML document rendering (a web.xml application) as a tree, the following nodes

output (passed via var="data" on a tree) happens:

Example:

...

<rich:tree ... faceNode="simpleNode" ... value="#{bean.data}" var="data">

 <rich:treeNode type="simpleNode">

 <h:outputText value="context-param:"/>

 <h:inputText value="#{data.name}"/>

 </rich:treeNode>

</rich:tree>

...

Figure 6.118. Nodes output

Hence, <h:outputText /> tag outputs the "context-param" string and then the <h:inputText /

> outputs the data.name element of this node.

Chapter 6. The RichFaces Comp...

436

Different nodes for rendering could be defined depending on some conditions on the tree

level. Each condition represents some rendering template. To get more information on various

treeNodesAdaptorAdaptor definition for nodes, see the tree component chapter.

Switching between expanded/collapsed modes is also managed on the tree level and defined in

the corresponding section.

Default nodes of the tree level as well as the ones defined with the treeNodesAdaptorAdaptor

component could send Ajax requests when selected with the mouse, it's managed with the

"ajaxSubmitSelection" attribute (true/false).

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.9.2.6. Built-in Drag and Drop

The main information on Drag and Drop operations is given in the corresponding paragraph of

the tree component chapter. It's only necessary to mention that each node could also be a Drag

element as well as a Drop container, i.e. the container and the element have all attributes, listeners

and ways of behavior similar to the ones of the <rich:dragSupport > and <rich:dropSupport

> components simultaneously.

6.9.2.7. Events Handling

Just as Drag and Drop operations it corresponds to the one described on the tree component

level for a default Node.

6.9.2.8. Facets

Table 6.190. Facets

Facet name Description

icon Redefines the icon for node. Related attribute

is "icon"

iconCollapsed Redefines the icon for collapsed node. Related

attribute is "iconCollapsed"

iconExpanded Redefines the icon for expanded node. Related

attribute is "iconExpanded"

iconLeaf Redefines the icon for component leaves.

Related attribute is "iconLeaf"

6.9.2.9. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

 < rich:treeNode > available since 3.0.0

437

There are two ways to redefine the appearance of all <rich:treeNode> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:treeNode> component

6.9.2.10. Skin Parameters Redefinition

Table 6.191. Skin parameters for a node element

Skin parameters CSS properties

panelTextColor color

preferableDataSizeFont font-size

preferableDataFamilyFont font-family

Table 6.192. Skin parameters for a selected element

Skin parameters CSS properties

headerBackgroundColor border-color

panelTextColor color

selectControlColor color

Table 6.193. Skin parameters for a mouseovered element

Skin parameters CSS properties

selectControlColor color

6.9.2.11. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Chapter 6. The RichFaces Comp...

438

Figure 6.119. Classes names

Table 6.194. Classes names that define a node element

Class name Description

rich-tree-node Defines styles for a tree node

rich-tree-node-handle Defines styles for a tree node handle

rich-tree-node-handleicon Defines styles for a tree node handle icon

rich-tree-node-children Defines styles for all tree node subnodes

rich-tree-node-text Defines styles for a tree node text

rich-tree-node-icon Defines styles for a tree node icon

rich-tree-h-ic-img Defines styles for an image of a tree node

rich-tree-node-icon-leaf Defines styles for a tree node icon leaf

 < rich:treeNodesAdaptor > available since 3.1.0

439

Table 6.195. Classes names that define states for a node element

Class name Description

rich-tree-node-selected Defines styles for a selected tree node

rich-tree-node-highlighted Defines styles for a highlighted tree node

rich-tree-node-handleicon-collapsed Defines styles for a collapsed tree node

handleicon

rich-tree-node-handleicon-expanded Defines styles for a expanded tree node

handleicon

In order to redefine the style for all <rich:treeNode> components on a page using CSS, it's

enough to create classes with the same names and define the necessary properties in them.

For instance, if you need to change the size of a tree node image, you should redefine the .rich-

tree-h-ic-img class properties:

...

.rich-tree-h-ic-img{

 width:30px;

 height:30px;

}

...

To change the style of particular <rich:treeNode> components define your own style classes in

the corresponding <rich:treeNode> attributes.

It is also possible to change look and feel of specific <rich:treeNode> with the help of defining

for them "selectedClass" and "highlightedClass" attributes by their specific classes.

6.9.2.12. Relevant Resources Links

How to Expand/Collapse Tree Nodes from code see in thiswiki article [http://labs.jboss.com/wiki/

ExpandCollapsetreeNodesAdaptor].

6.9.3. < rich:treeNodesAdaptor > available since 3.1.0

3.1.0

6.9.3.1. Description

The <rich:treeNodesAdaptor> provides the possibility to define data models and create

representations for them.

http://labs.jboss.com/wiki/ExpandCollapsetreeNodesAdaptor
http://labs.jboss.com/wiki/ExpandCollapsetreeNodesAdaptor
http://labs.jboss.com/wiki/ExpandCollapsetreeNodesAdaptor

Chapter 6. The RichFaces Comp...

440

Figure 6.120. Expanded tree with <rich:treeNodesAdaptor>

6.9.3.2. Key Features

• Allows to define combined data models

• Possibility to define nodes for processing via attributes

Table 6.196. rich : treeNodesAdaptor attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

includedNode This boolean expression is used to define

which elements are processed. Default value

is "true".

nodes Defines collection to use at the other (non-top)

levels of iteration

rendered JSF: If "false", this component is not rendered

var A request-scope attribute via which the data

object for the current collection element will be

used when iterating

Table 6.197. Component identification parameters

Name Value

component-type org.richfaces.TreeNodesAdaptor

 < rich:treeNodesAdaptor > available since 3.1.0

441

Name Value

component-class org.richfaces.component.html.HtmlTreeNodesAdaptor

component-family org.richfaces.TreeNodesAdaptor

tag-class org.richfaces.taglib.TreeNodesAdaptorTag

6.9.3.3. Creating the Component with a Page Tag

Example:

...

<rich:treeNodesAdaptor var="issue" nodes="#{model.issues}">

 <rich:treeNode>

 <h:commandLink action="#{project.click}" value="Project: #{project.name}" />

 </rich:treeNode>

 ...

 <!-- Others nodes -->

 ...

</rich:treeNodesAdaptor>

...

6.9.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlTreeNodesAdaptor;

...

HtmlTreeNodesAdaptor myTreeNodesAdaptor = new HtmlTreeNodesAdaptor();

...

6.9.3.5. Details of Usage

The <rich:treeNodesAdaptor> component has a "nodes" attribute that defines a collection of

elements to iterate through.

Collections are allowed to include lists, arrays, maps, XML NodeList and NamedNodeMap either

as a single object.

The "var" attribute is used to access to the current collection element.

The <rich:treeNodesAdaptor> component can be nested without any limitations. See the

following example.

Example:

Chapter 6. The RichFaces Comp...

442

...

<rich:tree adviseNodeOpened="#{treeModelBean.adviseNodeOpened}" switchType="client">

 <rich:treeNodesAdaptor id="project" nodes="#{loaderBean.projects}" var="project">

 <rich:treeNode>

 <h:commandLink action="#{project.click}" value="Project: #{project.name}" />

 </rich:treeNode>

 <rich:treeNodesAdaptor id="srcDir" var="srcDir" nodes="#{project.srcDirs}">

 <rich:treeNode>

 <h:commandLink action="#{srcDir.click}" value="Source directory: #{srcDir.name}" />

 </rich:treeNode>

 <rich:treeNodesAdaptor id="pkg" var="pkg" nodes="#{srcDir.packages}">

 <rich:treeNode>

 <h:commandLink action="#{pkg.click}" value="Package: #{pkg.name}" />

 </rich:treeNode>

 <rich:treeNodesAdaptor id="class" var="class" nodes="#{pkg.classes}">

 <rich:treeNode>

 <h:commandLink action="#{class.click}" value="Class: #{class.name}" />

 </rich:treeNode>

 </rich:treeNodesAdaptor>

 </rich:treeNodesAdaptor>

 </rich:treeNodesAdaptor>

 </rich:treeNodesAdaptor>

</rich:tree>

...

6.9.3.6. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/treeNodesAdaptor.jsf?c=treeNodesAdaptor] you can see the example of

<rich:treeNodesAdaptor > usage and sources for the given example.

6.9.4. < rich:recursiveTreeNodesAdaptor > available since 3.1.0

3.1.0

6.9.4.1. Description

The <rich:recursiveTreeNodesAdaptor> is an extension of a <rich:treeNodesAdaptor>

component that provides the possibility to define data models and process nodes recursively.

http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=treeNodesAdaptor
http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=treeNodesAdaptor
http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=treeNodesAdaptor

 < rich:recursiveTreeNodesAdaptor >
available since 3.1.0

443

Figure 6.121. Expanded tree with <rich:recursiveTreeNodesAdaptor>

6.9.4.2. Key Features

• Allows to define combined data models

• Possibility to define nodes for processing via attributes

• Allows to process nodes recursively

Table 6.198. rich : recursiveTreeNodesAdaptor attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

included This boolean expression is used to define

which elements of both collections are

processed. Default value is "true".

includedNode This boolean expression is used to define

which elements are processed. Default value

is "true".

includedRoot This boolean expression is used to define

which elements are processed applying to

"roots" collection. Default value is "true".

nodes Defines collection to use at the other (non-top)

levels of iteration

recursionOrder The attribute is used to control a recursion

order. Possible values are "first", "last", "[id

Chapter 6. The RichFaces Comp...

444

Attribute Name Description

of adaptor]" ("first" and "last" are reserved

values). When "[id of the adaptor]" is set

it means that recursion occurs after these

adaptor component nodes are processed. The

default value is "last"

rendered JSF: If "false", this component is not rendered

roots Defines collection to use at the top of iteration

var A request-scope attribute via which the data

object for the current collection element will be

used when iterating

Table 6.199. Component identification parameters

Name Value

component-type org.richfaces.RecursiveTreeNodesAdaptor

component-class org.richfaces.component.html.HtmlRecursiveTreeNodesAdaptor

component-family org.richfaces.RecursiveTreeNodesAdaptor

tag-class org.richfaces.taglib.RecursiveTreeNodesAdaptorTag

6.9.4.3. Creating the Component with a Page Tag

Example:

...

<rich:tree switchType="ajax" stateAdvisor="#{treeDemoStateAdvisor}">

 <rich:recursiveTreeNodesAdaptor roots="#{fileSystemBean.sourceRoots}" var="item" nodes="#{item.nodes}" /

>

</rich:tree>

...

6.9.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlRecursiveTreeNodesAdaptor;

...

HtmlRecursiveTreeNodesAdaptor myRecursiveTreeNodesAdaptor = new HtmlRecursiveTreeNodesAdaptor();

...

 < rich:recursiveTreeNodesAdaptor >
available since 3.1.0

445

6.9.4.5. Details of Usage

The <rich:recursiveTreeNodesAdaptor> component has a "roots" attribute that defines

collection to use at the top of recursion.

The "nodes" attribute defines collection to use on another recursion levels.

The "var" attribute is used to access to the current collection element.

The <rich:recursiveTreeNodesAdaptor> component can be nested without any limitations.

See the following example.

Example:

...

<rich:tree adviseNodeOpened="#{treeModelBean.adviseNodeOpened}" switchType="client">

 <rich:treeNodesAdaptor id="project" nodes="#{loaderBean.projects}" var="project">

 <rich:treeNode>

 <h:commandLink action="#{project.click}" value="Project: #{project.name}" />

 </rich:treeNode>

 <rich:recursiveTreeNodesAdaptor id="dir" var="dir" root="#{project.dirs}" nodes="#{dir.directories}">

 <rich:treeNode>

 <h:commandLink action="#{dir.click}" value="Directory: #{dir.name}" />

 </rich:treeNode>

 <rich:treeNodesAdaptor id="file" var="file" nodes="#{dir.files}">

 <rich:treeNode>

 <h:commandLink action="#{file.click}" value="File: #{file.name}" />

 </rich:treeNode>

 </rich:treeNodesAdaptor>

 <rich:treeNodesAdaptor id="file1" var="file" nodes="#{dir.files}">

 <rich:treeNode>

 <h:commandLink action="#{file.click}" value="File1: #{file.name}" />

 </rich:treeNode>

 </rich:treeNodesAdaptor>

 <rich:recursiveTreeNodesAdaptor id="archiveEntry" var="archiveEntry"

 roots="#{dir.files}" nodes="#{archiveEntry.archiveEntries}"

 includedRoot="#{archiveEntry.class.simpleName == 'ArchiveFile'}"

 includedNode="#{archiveEntry.class.simpleName == 'ArchiveEntry'}">

 <rich:treeNode id="archiveEntryNode">

 <h:commandLink action="#{archiveEntry.click}" value="Archive entry:

 #{archiveEntry.name}" />

 </rich:treeNode>

 </rich:recursiveTreeNodesAdaptor>

 </rich:recursiveTreeNodesAdaptor>

Chapter 6. The RichFaces Comp...

446

 </rich:treeNodesAdaptor>

</rich:tree>

...

6.9.4.6. Relevant resources links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

treeNodesAdaptor.jsf?c=recursiveTreeNodesAdaptor] you can see the example of

<rich:recursiveTreeNodesAdaptor> usage.

6.9.5. < rich:changeExpandListener > available since 3.1.0

3.1.0

6.9.5.1. Description

The <rich:changeExpandListener> represents an action listener method that is notified on an

expand/collapse event on the node.

6.9.5.2. Key Features

• Allows to define some "changeExpand" listeners for the component

Table 6.200. rich : changeExpandListener attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

type HTML: The fully qualified Java class name for

the listener

Table 6.201. Component identification parameters

Name Value

listener-class org.richfaces.event.NodeExpandedListener

event-class org.richfaces.event.NodeExpandedEvent

tag-class org.richfaces.taglib.ChangeExpandListenerTag

6.9.5.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=recursiveTreeNodesAdaptor
http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=recursiveTreeNodesAdaptor
http://livedemo.exadel.com/richfaces-demo/richfaces/treeNodesAdaptor.jsf?c=recursiveTreeNodesAdaptor

 < rich:changeExpandListener >
available since 3.1.0

447

...

<rich:changeExpandListener type="demo.Bean"/>

...

6.9.5.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImplBean implements org.richfaces.event.NodeExpandedListener{

 ...

}

import demo.ImplBean;

...

ImplBean myListener = new ImplBean();

...

6.9.5.5. Details of Usage

The <rich:changeExpandListener> is used as a nested tag with <rich:tree> and

<rich:treeNode> components.

Attribute "type" defines the fully qualified Java

class name for the listener. This class should implement

org.richfaces.event.NodeExpandedListener [http://www.jboss.org/file-access/default/

members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/

TreeListenerEventsProducer.html#addChangeExpandListener(org.richfaces.event.NodeExpandedListener)]interface.

The typical variant of using:

...

<rich:tree switchType="server" value="#{project.data}" var="item" nodeFace="#{item.type}">

 <rich:changeExpandListener type="demo.ListenerBean"/>

 ...

 <!-- Tree nodes -->

 ...

</rich:tree>

...

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/TreeListenerEventsProducer.html#addChangeExpandListener(org.richfaces.event.NodeExpandedListener)
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/TreeListenerEventsProducer.html#addChangeExpandListener(org.richfaces.event.NodeExpandedListener)
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/TreeListenerEventsProducer.html#addChangeExpandListener(org.richfaces.event.NodeExpandedListener)
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/TreeListenerEventsProducer.html#addChangeExpandListener(org.richfaces.event.NodeExpandedListener)

Chapter 6. The RichFaces Comp...

448

Java bean source:

package demo;

import org.richfaces.event.NodeExpandedEvent;

public class ListenerBean implements org.richfaces.event.NodeExpandedListener{

 ...

 public void processExpansion(NodeExpandedEvent arg0){

 //Custom Developer Code

 }

 ...

}

...

6.9.5.6. Look-and-Feel Customization

<rich:changeExpandListener> has no skin parameters and custom style classes, as the

component isn't visual.

6.9.6. < rich:nodeSelectListener > available since 3.1.0

3.1.0

6.9.6.1. Description

The <rich:nodeSelectListener> represents an action listener method that is notified after

selection of a node.

6.9.6.2. Key Features

• Allows to define some "nodeSelect" listeners for the component

Table 6.202. rich : nodeSelectListener attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

type HTML: The fully qualified Java class name for

the listener

Table 6.203. Component identification parameters

Name Value

listener-class org.richfaces.event.NodeSelectedListener

 < rich:nodeSelectListener > available since 3.1.0

449

Name Value

event-class org.richfaces.event.NodeSelectedEvent

tag-class org.richfaces.taglib.NodeSelectListenerTag

6.9.6.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:nodeSelectListener type="demo.Bean"/>

...

6.9.6.4. Creating the Component Dynamically Using Java

Example:

package demo;

public class ImplBean implements org.richfaces.event.NodeSelectListener{

 ...

}

import demo.ImplBean;

...

ImplBean myListener = new ImplBean();

...

6.9.6.5. Details of Usage

The <rich:nodeSelectListener> is used as a nested tag with <rich:tree> and <rich:treeNode>

components.

Attribute "type" defines the fully qualified Java

class name for listener. This class should implement

org.richfaces.event.NodeSelectedListener [http://www.jboss.org/file-access/default/

members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/

NodeSelectedListener.html]. interface

The typical variant of using:

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/NodeSelectedListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/NodeSelectedListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/NodeSelectedListener.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/event/NodeSelectedListener.html

Chapter 6. The RichFaces Comp...

450

...

<rich:tree switchType="server" value="#{project.data}" var="item" nodeFace="#{item.type}">

 <rich:nodeSelectListener type="demo.ListenerBean"/>

 ...

 <!-- Tree nodes -->

 ...

</rich:tree>

...

Java bean source:

package demo;

import org.richfaces.event.NodeSelectedEvent;

public class ListenerBean implements org.richfaces.event.NodeSelectedListener{

 ...

 public void processSelection(NodeSelectedEvent arg0){

 //Custom Developer Code

 }

 ...

}

6.9.6.6. Look-and-Feel Customization

<rich:nodeSelectListener> has no skin parameters and custom style classes, as the component

isn't visual.

6.10. Rich Output

This section covers the components that are designed to be used as output and UI elements.

6.10.1. < rich:modalPanel > available since 3.0.0

6.10.1.1. Description

The component implements a modal dialog window. All operations in the main application window

are locked out while this window is active. Opening and closing the window is done through client

JavaScript code.

 < rich:modalPanel > available since 3.0.0

451

Figure 6.122. The <rich:modalPanel> component opens in closest to

observer layer. All other layers are dimmed by blocking <div> element (gray

on the picture).

6.10.1.2. Key Features

• Highly customizable look and feel

• Support of draggable operations and size changes by you

• Easy positioning for the modal dialog window

• Possibility to restore of the previous component state on a page (including position on the

screen) after submitting and reloading

Table 6.204. rich : modalPanel attributes

Attribute Name Description

autosized If "true" modalPanel should be autosizeable.

Default value is "false".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

controlsClass Assigns one or more space-separated CSS

class names to the component controls

Chapter 6. The RichFaces Comp...

452

Attribute Name Description

domElementAttachment Defines the DOM element, which stacking

context will assimilate the modalPanel.

Possible values: "body", "form", "parent".

Default value is "body".

headerClass Assigns one or more space-separated CSS

class names to the component header

height Attribute defines height of component. Default

value is "300".

id JSF: Every component may have a unique id

that is automatically created if omitted

keepVisualState If "true" modalPanel should save state after

submission. Default value is "false".

label A localized user presentable name for this

component.

left Attribute defines X position of component left-

top corner. Default value is "auto".

minHeight Attribute defines min height of component.

Default value is "10". If the value is less then

10, a "IllegalArgumentException" exception is

thrown.

minWidth Attribute defines min width of component.

Default value is "10". If the value is less then

10, a "IllegalArgumentException" exception is

thrown.

moveable If "true" there is possibility to move component.

Default value is "true".

onbeforehide The client-side script method to be called

before the modal panel is hidden

onbeforeshow The client-side script method to be called

before the modal panel is opened

onhide The client-side script method to be called after

the modal panel is hidden

onmaskclick The client-side script method to be called when

a left mouse button is clicked outside the modal

panel

onmaskcontextmenu The client-side script method to be called when

a right mouse button is clicked outside the

modal panel

 < rich:modalPanel > available since 3.0.0

453

Attribute Name Description

onmaskdblclick The client-side script method to be called when

a left mouse button is double-clicked outside

the modal panel

onmaskmousedown The client-side script method to be called when

a mouse button is pressed down outside the

modal panel

onmaskmousemove The client-side script method to be called when

a pointer is moved outside the modal panel

onmaskmouseout The client-side script method to be called when

a pointer is moved away from the modal panel

onmaskmouseover The client-side script method to be called when

a pointer is moved onto the modal panel

onmaskmouseup The client-side script method to be called when

a mouse button is released outside the modal

panel

onmove The client-side script method to be called

before the modal panel is moved

onresize The client-side script method to be called when

the modal panel is resized

onshow The client-side script method to be called when

the modal panel is displayed

overlapEmbedObjects If "true" modalPanel creates iframe to overlap

embed objects like PDF on a page. Default

value is "false".

rendered JSF: If "false", this component is not rendered

resizeable If "true" there is possibility to change

component size. Default value is "true".

shadowDepth Pop-up shadow depth for suggestion content

shadowOpacity HTML CSS class attribute of element for pop-

up suggestion content

showWhenRendered If "true" value for this attribute makes a modal

panel opened as default. Default value is

"false"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

Chapter 6. The RichFaces Comp...

454

Attribute Name Description

top Attribute defines Y position of component left-

top corner. Default value is "auto".

tridentIVEngineSelectBehavior How to handle HTML SELECT-based controls

in IE 6? - "disable" - default, handle as usual,

use disabled="true" to hide SELECT controls -

"hide" - use visibility="hidden" to hide SELECT

controls

trimOverlayedElements Defines whether to trim or not elements inside

modalPanel. Default value is "true"

visualOptions Defines options that were specified on the

client side

width HTML: Attribute defines width of component.

Default value is "200".

zindex Attribute is similar to the standard HTML

attribute and can specify window. Default value

is "100". placement relative to the content

Table 6.205. Component identification parameters

Name Value

component-type org.richfaces.ModalPanel

component-class org.richfaces.component.html.HtmlModalPanel

component-family org.richfaces.ModalPanel

renderer-type org.richfaces.ModalPanelRenderer

tag-class org.richfaces.taglib.ModalPanelTag

6.10.1.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:modalPanel id="panel">

 <f:facet name="header">

 <h:outputText value="header" />

 </f:facet>

 ...

 <!--Any Content inside-->

 ...

 Hide

 < rich:modalPanel > available since 3.0.0

455

</rich:modalPanel>

Show

...

6.10.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlModalPanel;

...

HtmlModalPanel myPanel = new HtmlModalPanel();

...

6.10.1.5. Details of Usage

The component is defined as a panel with some content inside that displays its content as a modal

dialog. To call it and to close it, the client API for the window is used.

Table 6.206. Functions description

Function Description

Richfaces.showModalPanel (client Id) Opens a window with a specified client Id

Richfaces.hideModalPanel (client Id) Closes a window with a specified client Id

Richfaces.hideTopModalPanel () Closes the current visible window at the top

Important:

To work properly the <rich:modalPanel> should always be placed outside the

original <h:form> and must include its own <h:form> for such cases like performing

submissions from within the <rich:modalPanel>.

Note:

In order to avoid a bug in IE, the root node of the dialog is moved on the top of

a DOM tree.

It's possible to add a "header" facet to the component to set the content for the header.

Example:

Chapter 6. The RichFaces Comp...

456

Show ModalPanel

<a4j:form>

 <rich:modalPanel id="pnl">

 <f:facet name="header">

 <h:outputText value="This is a panel header" />

 </f:facet>

 <p>The <rich:modalPanel> accepts different types of information:

 from simple text to iterative components such as <rich:dataTable>, etc.

 </p>

 Hide

 </rich:modalPanel>

</a4j:form>

Here is what happening on the page:

Figure 6.123. <rich:modalPanel> with links

A facet named "controls" can be added to the component to place control elements on a header.

Example:

Show ModalPanel

<a4j:form>

 <rich:modalPanel id="pnl">

 <f:facet name="header">

 <h:outputText value="This is a panel header" />

 < rich:modalPanel > available since 3.0.0

457

 </f:facet>

 <f:facet name="controls">

 <h:graphicImage value="/pages/

close.png" style="cursor:pointer" onclick="Richfaces.hideModalPanel('pnl')" />

 </f:facet>

 <p>The <rich:modalPanel> accepts different types of information:

 from simple text to iterative components such as <rich:dataTable>, etc.

 </p>

 </rich:modalPanel>

</a4j:form>

The result:

Figure 6.124. <rich:modalPanel> with 'Close' control

To understand the sence of " domElementAttachment " attribute you should understand the

stacking context in the division element (<div>) HTML makeup. Since each positioned or z-

indexed element (in CSS position: absolute or relative or z-index: [any integer value

different from 0]) form their own stacking context the <rich:modalPanel> nested into such

element may be overlapped with another elements, which appear later in HTML hierarchy and

assimilated with basic stacking context (HTML <body>). To make the panel rendered in closest

to the observer layer and avoid such overlapping, the component was designed in way when it

is always being automatically assimilated with <body> and with a very high rendering layer (z-

index). Due to some side effects the <rich:modalPanel> should not always be assimilated with

<body> stacking context. The " domElementAttachment " attribute helps to reassign the panel to

it 'parent' or 'form' element. If 'form' is used and no parent form is available the panel is functioning

as if it is assimilated with <body>.

Chapter 6. The RichFaces Comp...

458

Note:

If " domElementAttachment " value is not 'body' then some overlapping may occur.

To manage window placement relative to the component, there are "left" and "top" attributes

defining a window shifting relative to the top-left corner of the window.

Modal windows can also support resize and move operations on the client side. To allow or

disallow these operations, set the "resizeable" and "moveable" attributes to "true" or "false"

values. Window resizing is also limited by "minWidth" and "minHeight" attributes specifying the

minimal window sizes.

Also you can use "minWidth" and "minHeight" attributes used as showModalPanel() arguments

in JavaScript options.

You can pass your parameters during modalPanel opening or closing. This passing could be

performed in the following way:

Example:

Richfaces.showModalPanel('panelId', {left: auto, param1: value1});

Thus, except the standard modalPanel parameters you can pass any of your own parameters.

Also modalPanel allows to handle its own opening and closing events on the client side. The

"onshow" attribute is used in this case.

The following example shows how on the client side to define opening and closing event handling

in such a way that your own parameters could also be obtained:

Example:

onshow="alert(event.parameters.param1)"

Here, during modalPanel opening the value of a passing parameter is output.

More information about this problem could be found on the RichFaces Development Forum [http://

www.jboss.com/index.html?module=bb&op=viewtopic&t=111804].

There is a possibility to restore of the previous component state on a page (including position

on the screen) after submitting and reloading. The modalPanel has some special attributes like

"showWhenRendered" and "keepVisualState" .

"showWhenRendered" - This boolean attribute is used if modalPanel should be rendered after

first page loading.

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=111804

 < rich:modalPanel > available since 3.0.0

459

"keepVisualState" - Used if modalPanel should save state after submission. If

keepVisualState="true" then parameters which modalPanel has during opening should be

submitted and passed to new page.

Example:

<a href="javascript:Richfaces.showModalPanel('pnl', {top:'10px', left:'10px',

 height:'400'});">Show

Here, if you open modal dialog window using current link and after submits data then modalPanel

destination and height on new loaded page is restored.

if you need the content of the modalPanel to be submitted - you need to remember two important

rules:

• modalPanel must have its own form if it has form elements (input or/and command components)

inside (as it was shown in the example above)

• modalPanel must not be included into the form (on any level up) if it has the form inside.

Simple example of using commandButton within modalPanel is placed below.

Example:

<a4j:form>

<rich:modalPanel>

 <f:facet name="header">

 <h:outputText value="Test" />

 </f:facet>

 <f:facet name="controls">

 <h:commandLink value="Close" style="cursor:pointer" onclick="Richfaces.hideModalPanel('mp')" /

>

 </f:facet>

 <h:form>

 <h:commandButton value="Test" action="#{TESTCONTROLLER.test}" />

 </h:form>

</rich:modalPanel>

See also discussion about this problem on the RichFaces Users Forum [http://www.jboss.com/

index.html?module=bb&op=viewtopic&p=4064191].

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4064191

Chapter 6. The RichFaces Comp...

460

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM", {2} for "ShortConverter.SHORT".

In RichFaces Cookbook article about Modal Panel [http://wiki.jboss.org/auth/wiki/

RichFacesCookbook/DetailModalPanelFromTable] there is information for those of you who

would like to click on a details link in table and have it show a modal panel with information loaded

from the server.

To avoid overlapping of the <rich:modalPanel> component on the page by any embed objects

(inserted with HTML <EMBED> tag) set the "overlapEmbedObjects" attribute to "true".

6.10.1.6. JavaScript API

Table 6.207. JavaScript API

Function Description

show() Opens the corresponding modalPanel

hide() Closes the corresponding modalPanel

6.10.1.7. Facets

Table 6.208. Facets

Facet Description

header Define the header content

controls Defines the control elements on the header

6.10.1.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:modalPanel> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:modalPanel> component

6.10.1.9. Skin Parameters Redefinition

Table 6.209. Skin parameters for a component

Skin parameters CSS properties

generalBackgroundColor background-color

panelBorderColor border-color

http://wiki.jboss.org/auth/wiki/RichFacesCookbook/DetailModalPanelFromTable
http://wiki.jboss.org/auth/wiki/RichFacesCookbook/DetailModalPanelFromTable
http://wiki.jboss.org/auth/wiki/RichFacesCookbook/DetailModalPanelFromTable

 < rich:modalPanel > available since 3.0.0

461

Table 6.210. Skin parameters redefinition for a header element

Skin parameters CSS properties

headerBackgroundColor background-color

headerBackgroundColor border-color

Table 6.211. Skin parameters redefinition for a header content

Skin parameters CSS properties

headerSizeFont background-color

headerTextColor font-size

headerWeightFont color

headerFamilyFont font-family

Table 6.212. Skin parameters redefinition for a body element

Skin parameters CSS properties

generalSizeFont font-size

generalTextColor color

generalFamilyFont font-family

6.10.1.10. Definition of Custom Style Classes

Figure 6.125. <rich:modalPanel> class name

Chapter 6. The RichFaces Comp...

462

The screenshot shows the classes names for defining different elements.

Table 6.213. Classes names that define a component appearance

Class name Description

rich-modalpanel Defines styles for a wrapper <div> element of

a modalPanel

rich-mpnl-mask-div Defines styles for a wrapper <div> element of

a mask

rich-mpnl_panel Defines styles for a modalPanel

rich-mp-container Defines styles for a modalPanel container

rich-mpnl-resizer Defines styles for a wrapper <div> element of

a resizing element

rich-mpnl-shadow Defines styles for a modalPanel shadow

rich-mp-content-table Defines styles for a <table> element of a

modalPanel

rich-mpnl-header Defines styles for a modalPanel header

rich-mpnl-header-cell Defines styles for a header cell

rich-mpnl-text Defines styles for a wrapper <div> element of

a header text

rich-mpnl-body Defines styles for a content inside a

modalPanel

rich-mpnl-controls Defines styles for a wrapper <div> element of

a modalPanel control

In order to redefine styles for all <rich:modalPanel> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-mpnl-mask-div{

 background-color:#fae6b0;

}

...

This is a result:

 < rich:modalPanel > available since 3.0.0

463

Figure 6.126. Redefinition styles with predefined classes

In the example the background color for mask was changed.

Also it's possible to change styles of particular <rich:modalPanel> component. In this case you

should create own style classes and use them in corresponding <rich:modalPanel> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style:italic;

}

...

The "headerClass" attribute for <rich:modalPanel> is defined as it's shown in the example

below:

Example:

<rich:modalPanel ... headerClass="myClass"/>

This is a result:

Chapter 6. The RichFaces Comp...

464

Figure 6.127. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above,the font style for header was changed.

6.10.1.11. Relevant Resources Links

Vizit ModalPanel page [http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?

c=modalPanel] at RichFaces Livedemo for examples of component usage and their sources.

Read the " An Introduction To JBoss RichFaces [http://eclipse.dzone.com/articles/an-introduction-

to-jboss-richf?page=0%2C0]" tutorial by Max Katz to find out how the <rich:modalPanel> helps

to edit and save changes for table entries.

Some articles at JBoss portal describing different aspects of <rich:modalPanel> usage:

• "ModalPanelWizards [http://www.jboss.org/community/docs/DOC-11436]" article describes

how to create a typical wizard with the help of <rich:modalPanel> component (the

same could also be found in the " How to organize wizards using the <rich:modalPanel>

component? [http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/

devguide/en/faq/faq.html#Organizewizards]" chapter of RichFaces FAQ guide);

• Refer to the "How to do a detail view modalPanel in a table [http://www.jboss.org/community/

docs/DOC-11853]" article in the RichFaces cookbook at JBoss Portal to find out how to build a

table with details link clicking on which will display a modal panel with information loaded from

the server.

http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/modalPanel.jsf?c=modalPanel
http://eclipse.dzone.com/articles/an-introduction-to-jboss-richf?page=0%2C0
http://eclipse.dzone.com/articles/an-introduction-to-jboss-richf?page=0%2C0
http://eclipse.dzone.com/articles/an-introduction-to-jboss-richf?page=0%2C0
http://www.jboss.org/community/docs/DOC-11436
http://www.jboss.org/community/docs/DOC-11436
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#Organizewizards
http://www.jboss.org/community/docs/DOC-11853
http://www.jboss.org/community/docs/DOC-11853
http://www.jboss.org/community/docs/DOC-11853

 < rich:paint2D > available since 3.0.0

465

• "ModalPanelValidation [http://www.jboss.org/community/docs/DOC-11435]" article gives

examples of validation in <rich:modalPanel> (the same in the corresponding topic

[http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517] at RichFaces Users

Forum);

• "RichFacesPleaseWaitBox [http://www.jboss.org/community/docs/DOC-11863]" article

describes how to show a "Please wait" box and block the input while the Ajax request is being

processed using combination of <a4j:status> and <rich:modalPanel> components.

6.10.2. < rich:paint2D > available since 3.0.0

6.10.2.1. Description

Create image by painting from a managed bean method, same as "paint" (Graphics2D) in

"SWING" components.

Figure 6.128. <rich:paint2D> component

6.10.2.2. Key Features

• Simple Graphics2D - painting style directly on the Web page

• Supports client/server caching for generated images

• Fully supports "JPEG" (24-bit, default), "GIF" (8-bit with transparency), and "PNG" (32-bit

with transparency) formats for sending generated images

• Easily customizable borders and white space to wrap the image

• Dynamically settable paint parameters using tag attributes

Table 6.214. rich : paint2D attributes

Attribute Name Description

align Deprecated. This attribute specifies the

position of an IMG, OBJECT, or APPLET with

respect to its context. The possible values are

"bottom", "middle", "top", "left" and "right". The

default value is "middle".

http://www.jboss.org/community/docs/DOC-11435
http://www.jboss.org/community/docs/DOC-11435
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4061517
http://www.jboss.org/community/docs/DOC-11863
http://www.jboss.org/community/docs/DOC-11863

Chapter 6. The RichFaces Comp...

466

Attribute Name Description

alt HTML: For compability with XHTML 1.1

standart

bgcolor Background color of painted image. Default

value is 'transparent' which means no

background fill. Hex colors can be used, as well

as common color names. Invalid values are

treated as transparent. Note, that JPEG format

doesn't support transparency, and transparent

background is painted black. Also note, that

several browsers (e.g. IE6) do not support PNG

transparency. Default value is "transparent"

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: Deprecated. This attribute specifies the

width of an IMG or OBJECT border, in pixels.

The default value for this attribute depends on

the user agent

cacheable Supported (or not) client/server caching

for generated images. Caching on client

supported by properly sending and processing

of HTTP headers (Last-Modified, Expires, If-

Modified-Since, etc.) Server-side caching is

supported by application-scope object cache.

For build of cache key use "value" attribute,

serialized to URI

data Value calculated at render time and stored in

Image URI (as part of cache Key), at paint time

passed to a paint method. It can be used for

updating cache at change of image generating

conditions, and for creating paint beans as

"Lightweight" pattern components (request

scope). IMPORTANT: Since serialized data

stored in URI, avoid using big objects

format format Name of format for sending a generated

image. It currently supports "jpeg" (24 bit,

default), "gif" (8 bit with transparency),

"png" (32 bit with transparency)

height Height in pixels of image (for paint canvas and

HTML attribute). Default value is "10".

 < rich:paint2D > available since 3.0.0

467

Attribute Name Description

hspace Deprecated. This attribute specifies the

amount of white space to be inserted to the left

and right of an IMG, APPLET, or OBJECT. The

default value is not specified, but is generally a

small, non-zero length

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

paint The method calls expression to paint Image

on prepared Buffered image. It must have two

parameters with a type of java.awt.Graphics2D

(graphics to paint) and Object (restored from

URI "data" property). For painting used 32-

bit RGBA color model (for 8-bit images used

Diffusion filtration before sending)

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

value JSF: The current value of this component

vspace Deprecated. This attribute specifies the

amount of white space to be inserted above

and below an IMG, APPLET, or OBJECT. The

default value is not specified, but is generally a

small, non-zero length

width HTML: Width in pixels of image (for paint

canvas and HTML attribute). Default value is

"10".

Table 6.215. Component identification parameters

Name Value

component-type org.richfaces.Paint2D

component-class org.richfaces.component.html.HtmlPaint2D

component-family javax.faces.Output

Chapter 6. The RichFaces Comp...

468

Name Value

renderer-type org.richfaces.Paint2DRenderer

tag-class org.richfaces.taglib.Paint2DTag

6.10.2.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:paint2D paint="#{paint2D.paint}" data="#{paint2DModel}"/>

...

Here "paint" specifies the method performing drawing and "data" specifies Managed Bean

property keeping the data used by the method.

6.10.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPaint2D;

...

HtmlPaint2D myImage = new HtmlPaint2D();

...

6.10.2.5. Details of Usage

The example shows two main attributes of the component:

• "paint"

Specify a method receiving an object specified in data as a parameter and sending graphical

information into the stream

• "data"

Specifies a bean class keeping your data for rendering

Note:

Data object should implement serializable interface

 < rich:paint2D > available since 3.0.0

469

The "format" attribute of the component defines a format of visual data passing to the server.

Generated data can be used as a cacheable or non-cacheable resource. It's defined with

"cacheable" attribute. If cache support is turned on, a key is created in URI with a mix of size

(width/height), "paint" method, "format" and "data" attributes.

Example:

paintBean.java:

public void paint(Graphics2D g2, Object obj) {

 // code that gets data from the data Bean (PaintData)

 PaintData data = (PaintData) obj;

 ...

 // a code drawing a rectangle

 g2.drawRect(0, 0, data.Width, data.Height);

 ...

 // some more code placing graphical data into g2 stream below

}

dataBean.java:

public class PaintData implements Serializable{

 private static final long serialVersionUID = 1L;

 Integer Width=100;

 Integer Height=50;

 ...

}

page.xhtml:

...

<rich:paint2D paint="#{paint2D.paint}" data="#{paint2DModel.data}"/>

...

6.10.2.6. Look-and-Feel Customization

Paint2D has no skin parameters and special style classes, as it consists of one element generated

with a your method on the server.

To define some style properties such as an indent or a border, it's possible to use "style" and

"styleClass" attributes on the component.

Chapter 6. The RichFaces Comp...

470

6.10.2.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

paint2D.jsf?c=paint2d] you can see the example of <rich:paint2D> usage and sources for the

given example.

6.10.3. < rich:panel > available since 3.0.0

6.10.3.1. Description

A skinnable panel that is rendered as a bordered rectangle with or without a header.

Figure 6.129. <rich:panel> component

6.10.3.2. Key Features

• Highly customizable look and feel

• Support for any content inside

• Header adding feature

Table 6.216. rich : panel attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bodyClass Assigns one or more space-separated CSS

class names to the component content

header Label text appears on a panel header

headerClass Assigns one or more space-separated CSS

class names to the component header

id JSF: Every component may have a unique id

that is automatically created if omitted

http://livedemo.exadel.com/richfaces-demo/richfaces/paint2D.jsf?c=paint2d
http://livedemo.exadel.com/richfaces-demo/richfaces/paint2D.jsf?c=paint2d
http://livedemo.exadel.com/richfaces-demo/richfaces/paint2D.jsf?c=paint2d

 < rich:panel > available since 3.0.0

471

Attribute Name Description

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

Table 6.217. Component identification parameters

Name Value

component-type org.richfaces.panel

component-class org.richfaces.component.html.HtmlPanel

component-family org.richfaces.panel

Chapter 6. The RichFaces Comp...

472

Name Value

renderer-type org.richfaces.PanelRenderer

tag-class org.richfaces.taglib.PanelTag

6.10.3.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:panel header="Panel Header">

 ...

 <!--Any Content inside-->

 ...

</rich:panel>

...

6.10.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanel;

...

HtmlPanel myPanel = new HtmlPanel();

...

6.10.3.5. Details of Usage

The "header" attribute defines text to be represented. If you can use the "header" facet, you

can even not use the "header" attribute.

Example:

...

<rich:panel>

 <f:facet name="header">

 <h:graphicImage value="/images/img1.png"/>

 </f:facet>

 ...

 <!--Any Content inside-->

 < rich:panel > available since 3.0.0

473

 ...

</rich:panel>

...

<rich:panel> components are used to group page content pieces on similarly formatted

rectangular panels.

Example:

...

<rich:panel>

 ...

</rich:panel>

...

It's generating on a page in the following way:

Figure 6.130. <rich:panel> without header

The example shows that similar rectangular areas are formed with a particular style.

When creating a panel with a header element, one more <div> element is added with content

defined for a header.

Example:

...

<rich:panel>

 <f:facet name="header">

 <h:outputText value="Olympus EVOLT E-500 "/>

 </f:facet>

 ...

</rich:panel>

...

It's displayed on a page in the following way:

Chapter 6. The RichFaces Comp...

474

Figure 6.131. <rich:panel> with header

As it has been mentioned above, the component is mostly used for a page style definition, hence

the main attributes are style ones.

• "styleClass"

• "headerClass"

• "bodyClass"

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

• "onmouseover"

• "onclick"

• "onmouseout"

• etc.

6.10.3.6. Facets

Table 6.218. Facets

Facet name Description

header Defines the header content

6.10.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panel> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:panel> component

 < rich:panel > available since 3.0.0

475

6.10.3.8. Skin Parameters Redefinition

Table 6.219. Skin parameters redefinition for a whole component

Skin parameters CSS properties

generalBackgroundColor background-color

panelBorderColor border-color

Table 6.220. Skin parameters redefinition for a header element

Skin parameters CSS properties

headerBackgroundColor background-color

headerBackgroundColor border-color

headerSizeFont font-size

headerTextColor color

headerWeightFont font-weight

headerFamilyFont font-family

Table 6.221. Skin parameters redefinition for a body element

Skin parameters CSS properties

generalSizeFont font-size

generalTextColor color

generalFamilyFont font-family

6.10.3.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.132. Style classes

Chapter 6. The RichFaces Comp...

476

Table 6.222. Classes names that define a component appearance

Class name Class description

rich-panel Defines styles for a wrapper <div> element of

a component

rich-panel-header Defines styles for a header element

rich-panel-body Defines styles for a body element

In order to redefine styles for all <rich:panel> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the table above) and

define necessary properties in them. An example is placed below:

Example:

...

.rich-panel-body{

 background-color: #ebf3fd;

}

...

This is a result:

Figure 6.133. Redefinition styles with predefined classes

In the example a body background color was changed.

Also it's possible to change styles of particular <rich:panel> component. In this case you should

create own style classes and use them in corresponding <rich:panel> styleClass attributes.

An example is placed below:

Example:

...

.myClass{

 text-align: justify;

}

...

 < rich:panelBar > available since 3.0.0

477

The "bodyClass" attribute for <rich:panel> is defined as it's shown in the example below:

Example:

<h:panel... bodyClass="myClass"/>

This is a result:

Figure 6.134. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, text align of body was changed.

6.10.3.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

panel.jsf?c=panel] you can see the example of <rich:panel> usage and sources for the given

example.

6.10.4. < rich:panelBar > available since 3.0.0

6.10.4.1. Description

panelBar is used for grouping any content which is loaded on the client side and appears as

groups divided on child panels after the header is clicked.

Figure 6.135. <rich:panelBar> with content inside

http://livedemo.exadel.com/richfaces-demo/richfaces/panel.jsf?c=panel
http://livedemo.exadel.com/richfaces-demo/richfaces/panel.jsf?c=panel
http://livedemo.exadel.com/richfaces-demo/richfaces/panel.jsf?c=panel

Chapter 6. The RichFaces Comp...

478

6.10.4.2. Key Features

• Skinnable slide panel and child items

• Groups any content inside each panel

Table 6.223. rich : panelBar attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

contentClass Assigns one or more space-separated CSS

class names to the component content

contentStyle CSS style rules to be applied to the component

content

headerClass Assigns one or more space-separated CSS

class names to the component header

headerClassActive Assigns one or more space-separated CSS

class names to the header of the active

component item

headerStyle CSS style rules to be applied to the component

header

headerStyleActive CSS style rules to be applied to the header of

the active component item

height The height of the slide panel. Might be defined

as pixels or as percentage. Default value is

"100%".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

onclick DHTML: The client-side script method to be

called when a panel bar is clicked

onitemchange The client-side script method to be called when

a panel bar item is changed

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

component

 < rich:panelBar > available since 3.0.0

479

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

component

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

component

rendered JSF: If "false", this component is not rendered

selectedPanel Attribure defines name of selected item

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

width HTML: The width of the slide panel. Might be

defined as pixels or as percentage. Default

value is "100%".

Table 6.224. Component identification parameters

Name Value

component-type org.richfaces.PanelBar

component-class org.richfaces.component.html.HtmlPanelBar

component-family org.richfaces.PanelBar

renderer-type org.richfaces.PanelBarRenderer

tag-class org.richfaces.taglib.PanelBarTag

6.10.4.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:panelBar>

 ...

 <rich:panelBarItem label="Canon">

 ...

 </rich:panelBarItem>

Chapter 6. The RichFaces Comp...

480

 <rich:panelBarItem label="Nikon">

 ...

 </rich:panelBarItem>

</rich:panelBar>

...

6.10.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanelBar;

...

HtmlPanelBar myBar = new HtmlPanelBar();

...

6.10.4.5. Details of Usage

As it was mentioned above, panelBar is used for grouping any content on the client, thus its

customization deals only with specification of sizes and styles for rendering.

"width" and "height" (both are 100% on default) attributes stand apart.

Style attributes are described further.

panelBar could contain any number of child panelBarItem components inside, which content is

uploaded onto the client and headers are controls to open the corresponding child element.

6.10.4.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelBar> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:panelBar> component

6.10.4.7. Skin Parameters Redefinition

Table 6.225. Skin parameter redefinition for a whole component

Skin parameter CSS properties

headerBackgroundColor border-color

 < rich:panelBar > available since 3.0.0

481

6.10.4.8. Definition of Custom Style Classes

There is one predefined class for the <rich:panelBar> , which is applicable to a whole component,

specifying padding, borders, and etc.

Figure 6.136. Style classes

Table 6.226. Class name that define a component appearance

Class name Class description

rich-panelbar Defines styles for a wrapper <div> element of

a component

Other classes responsible for elements rendering are described for child <rich:panelBarItem>

elements and could be found in the components chapters.

Table 6.227. Style component classes

A class attribute A component element defined by an

attribute

styleClass Applicable to a whole component (together

with headers)

headerClass Applicable to a header element

contentClass Applicable to a content

In order to redefine styles for all <rich:panelBar> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

Chapter 6. The RichFaces Comp...

482

...

.rich-panelbar{

 font-style: italic;

}

...

This is a result:

Figure 6.137. Redefinition styles with predefined classes

In the example header and content font style was changed.

Also it's possible to change styles of particular <rich:panelBar> component. In this case you

should create own style classes and use them in corresponding <rich:panelBar> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-family: Tahoma;

}

...

The "contentClass" attribute for <rich:panelBar> is defined as it's shown in the example below:

Example:

<rich:panelBar ... contentClass="myClass"/>

 < rich:panelBarItem > available since 3.0.0

483

This is a result:

Figure 6.138. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font family for content were changed.

6.10.4.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

panelBar.jsf?c=panelBar] you can see the example of <rich:panelBar> usage and sources for

the given example.

6.10.5. < rich:panelBarItem > available since 3.0.0

6.10.5.1. Description

panelBarItem is used for grouping any content inside within one panelBar which is loaded on client

side and appears as groups divided on child panels after header is clicked.

Figure 6.139. <rich:panelBarItem> component

http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar
http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar
http://livedemo.exadel.com/richfaces-demo/richfaces/panelBar.jsf?c=panelBar

Chapter 6. The RichFaces Comp...

484

6.10.5.2. Key Features

• Highly customizable look and feel

• Groups any content inside each Panels

Table 6.228. rich : panelBarItem attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

contentClass Assigns one or more space-separated CSS

class names to the component content

contentStyle CSS style rules to be applied to the component

content

headerClass Assigns one or more space-separated CSS

class names to the component header

headerClassActive Assigns one or more space-separated CSS

class names to the header of the active item

headerStyle CSS style rules to be applied to the component

header

headerStyleActive CSS style rules to be applied to the header of

the active item

id JSF: Every component may have a unique id

that is automatically created if omitted

label Label text appears on a panel item header.

Default value is "auto generated label"

name Attribute defines item name. Default value is

"getId()".

onenter The client-side script method to be called when

a panel bar item is opened

onleave The client-side script method to be called when

a panel bar item is leaved

rendered JSF: If "false", this component is not rendered

Table 6.229. Component identification parameters

Name Value

component-type org.richfaces.PanelBarItem

component-class org.richfaces.component.html.HtmlPanelBarItem

 < rich:panelBarItem > available since 3.0.0

485

Name Value

component-family org.richfaces.PanelBarItem

renderer-type org.richfaces.PanelBarItemRenderer

tag-class org.richfaces.taglib.PanelBarItemTag

6.10.5.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:panelBar>

 <rich:panelBarItem label="Canon">

 ...

 </rich:panelBarItem>

 <rich:panelBarItem label="Nikon">

 ...

 </rich:panelBarItem>

</rich:panelBar>

...

6.10.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanelBarItem;

...

HtmlPanelBarItem myBarItem = new HtmlPanelBarItem();

...

6.10.5.5. Details of Usage

The "label" attribute defines text to be represented. If you can use the "label" facet, you can

even not use the "label" attribute.

Example:

...

<rich:panelBarItem...>

 <f:facet name="label">

 <h:graphicImage value="/images/img1.png"/>

Chapter 6. The RichFaces Comp...

486

 </f:facet>

 ...

 <!--Any Content inside-->

 ...

</rich:panelBarItem>

...

As it was mentioned above, panelBarItem is used for grouping any content inside within one

panelBar, thus its customization deals only with specification of sizes and styles for rendering.

panelBar could contain any number of child panelBarItem components inside, which content is

uploaded onto the client and headers are controls to open the corresponding child element.

6.10.5.6. Facets

Table 6.230. Facets

Facet name Description

label defines the label text on the panel item header

6.10.5.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelBarItem> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:panelBarItem> component

6.10.5.8. Skin Parameters Redefinition

Table 6.231. Skin parameters redefinition for a content

Skin parameters CSS properties

generalTextColor color

preferableDataSizeFont font-size

preferableDataFamilyFont font-family

Table 6.232. Skin parameters redefinition for a header element (active or

inactive)

Skin parameters CSS properties

headerTextColor color

headerBackgroundColor background-color

 < rich:panelBarItem > available since 3.0.0

487

Skin parameters CSS properties

headerSizeFont font-size

headerWeightFont font-weight

headerFamilyFont font-family

6.10.5.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.140. Style classes

Table 6.233. Classes names that define a component appearance

Class name Class description

rich-panelbar-header Defines styles for a wrapper <div> element of

a header element

rich-panelbar-header-act Defines styles for a wrapper <div> element of

an active header element

rich-panelbar-content Defines styles for a content

Table 6.234. Style component classes

A class attribute A component element defined by an

attribute

headerClass Applicable to a header element

Chapter 6. The RichFaces Comp...

488

A class attribute A component element defined by an

attribute

contentClass Applicable to a content

In order to redefine styles for all <rich:panelBarItem> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-panelbar-content{

 background-color: #ecf4fe;

}

...

This is a result:

Figure 6.141. Redefinition styles with predefined classes

In the example a content background color was changed.

Also it's possible to change styles of particular <rich:panelBarItem> component. In this case you

should create own style classes and use them in corresponding <rich:panelBarItem> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-family: monospace;

 < rich:panelMenu > available since 3.1.0

489

}

...

The "headerClass" attribute for <rich:panelBarItem> is defined as it's shown in the example

below:

Example:

<rich:panelBarItem ... headerClass="myClass"/>

This is a result:

Figure 6.142. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font family for header of active item was changed.

6.10.6. < rich:panelMenu > available since 3.1.0

3.1.0

6.10.6.1. Description

The <rich:panelMenu> component is used to define an in line vertical menu on a page.

Chapter 6. The RichFaces Comp...

490

Figure 6.143. <rich:panelMenu> component

6.10.6.2. Key Features

• Highly customizable look and feel

• Different submission modes

• Collapsing/expanding sublevels with optional request sending

• Custom and predefined icons support

• Disablement support

Table 6.235. rich : panelMenu attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

disabled HTML: If true sets state of the item to disabled

state. Default value is "false".

disabledGroupClass Assigns one or more space-separated CSS

class names to the component disabled groups

disabledGroupStyle CSS style rules to be applied to the component

disabled groups

 < rich:panelMenu > available since 3.1.0

491

Attribute Name Description

disabledItemClass Assigns one or more space-separated CSS

class names to the component disabled items

disabledItemStyle CSS style rules to be applied to the component

disabled items

event Defines the event on the representation

element that triggers the submenu's expand/

collapse. Default value is "onclick".

expandMode Set the submission mode for all panel menu

groups after expand/collapse except ones

where this attribute redefined. Possible values

are "ajax", "server", "none". Default value is

"none".

expandSingle Whether only one panel menu node on top

level can be opened at a time. If the value

of this attribute is true, the previously opened

node on the top level is closed. If the value is

false, the node is left opened. Default value is

"false".

groupClass Assigns one or more space-separated CSS

class names to any component group except

top groups

groupStyle CSS style rules to be applied to any component

group except top groups

hoveredGroupClass Assigns one or more space-separated CSS

class names to the component hovered group

hoveredGroupStyle CSS style rules to be applied to the component

hovered group

hoveredItemClass Assigns one or more space-separated CSS

class names to the component hovered item

hoveredItemStyle CSS style rules to be applied to the component

hovered item

iconCollapsedGroup Path to the icon to be displayed for the

collapsed Group state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconCollapsedTopGroup Path to the icon to be displayed for the

collapsed top group state.\ You can also

Chapter 6. The RichFaces Comp...

492

Attribute Name Description

use predefined icons, setting the attribute

to one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconDisabledGroup Path to the icon to be displayed for the

disabled group state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconDisabledItem Path to the icon to be displayed for the

disabled item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconExpandedGroup Path to the icon to be displayed for the

expanded Group state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconExpandedTopGroup Path to the icon to be displayed for the

expanded top group state. You can also

use predefined icons, setting the attribute

to one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconGroupPosition Position of the icon for the group icon. Possible

values are "left","right","none". Default value is

"left".

iconGroupTopPosition Position of the icon for the top group

icon. Possible values are "left","right","none".

Default value is "left".

iconItem Path to the icon to be displayed for the

enabled item state. You can also use

 < rich:panelMenu > available since 3.1.0

493

Attribute Name Description

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconItemPosition Position of the icon for the item icon. Possible

values are "left","right","none". Default value is

"left".

iconItemTopPosition Position of the icon for the top item

icon. Possible values are "left","right","none".

Default value is "left".

iconTopDisabledItem Path to the icon to be displayed for the

disabled top item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconTopDisableGroup Path to the icon to be displayed for the

disabled top Group state. You can also

use predefined icons, setting the attribute

to one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconTopItem Path to the icon to be displayed for the

enabled top item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

Chapter 6. The RichFaces Comp...

494

Attribute Name Description

itemClass Assigns one or more space-separated CSS

class names to any component item except top

items

itemStyle CSS style rules to be applied to the component

item except top items

label A localized user presentable name for this

component.

mode Set the submission mode for all panel menu

items on the panel menu except ones where

this attribute redefined. Possible values are

"ajax", "server", "server". Default value is

"server".

onclick DHTML: The client-side script method to be

called when the component is clicked

ondblclick DHTML: HTML: a script expression; a pointer

button is double-clicked

ongroupcollapse The client-side script method to be called when

some group is closed

ongroupexpand The client-side script method to be called when

some group is activated

onitemhover The client-side script method to be called when

a panel menu item is hovered

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

component

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

component

 < rich:panelMenu > available since 3.1.0

495

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

component

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

selectedChild contain the name or the clientId of any of the

item or group, the child defined in this attribute

should be highlighted on PanelMenu rendering

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

topGroupClass Assigns one or more space-separated CSS

class names to the component top groups

topGroupStyle CSS style rules to be applied to the component

top groups

topItemClass Assigns one or more space-separated CSS

class names to the component top items

topItemStyle CSS style rules to be applied to the component

top items

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

Chapter 6. The RichFaces Comp...

496

Attribute Name Description

width HTML: Set minimal width for the menu. Default

value is "100%".

Table 6.236. Component identification parameters

Name Value

component-type org.richfaces.PanelMenu

component-class org.richfaces.component.html.HtmlPanelMenu

component-family org.richfaces.PanelMenu

renderer-type org.richfaces.PanelMenuRenderer

tag-class org.richfaces.taglib.PanelMenuTag

6.10.6.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:panelMenu event="onmouseover">

 <!--Nested panelMenu components-->

</rich:panelMenu>

...

6.10.6.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanelMenu;

...

HtmlPanelMenu myPanelMenu = new HtmlPanelMenu();

...

6.10.6.5. Details of Usage

All attributes are not required.

Use "event" attribute to define an event for appearance of collapsing/expanding sublevels. Default

value is "onclick". An example could be seen below.

Example:

 < rich:panelMenu > available since 3.1.0

497

...

<rich:panelMenu event="onmouseover">

 <!--Nested panelMenu components-->

</rich:panelMenu>

...

Switching mode could be chosen with the "mode" attribute for all panelMenu items except ones

where this attribute was redefined. By default all items send traditional request.

The "expandMode" attribute defines the submission modes for all collapsing/expanding

panelMenu groups except ones where this attribute was redefined.

The "mode" and "expandMode" attributes could be used with three possible parameters. The

"mode" attribute defines parameters for all included <rich:panelMenuItem> elements.

• Server (default)

The common submission of the form is performed and a page is completely refreshed.

Example:

...

<rich:panelMenu mode="server">

 <rich:panelMenuGroup label="test Group" action="#{bean.action}">

 <rich:panelMenuItem label="test" action="#{capitalsBean.action}">

 <f:param value="test value" name="test"/>

 </rich:panelMenuItem>

 </rich:panelMenuGroup>

</rich:panelMenu>

...

• Ajax

An Ajax form submission is performed, and additionally specified elements in the "reRender"

attribute are reRendered.

Example:

...

<rich:panelMenu mode="ajax">

 <rich:panelMenuGroup label="test Group" action="#{bean.action}">

 <rich:panelMenuItem label="test" reRender="test" action="#{capitalsBean.action}">

 <f:param value="test value" name="test"/>

 </rich:panelMenuItem>

Chapter 6. The RichFaces Comp...

498

 </rich:panelMenuGroup>

</rich:panelMenu>

...

• None

"Action" and "ActionListener" item's attributes are ignored. Items don't fire any submits itself.

Behavior is fully defined by the components nested into items.

Example:

...

<rich:panelMenu event="onclick" submitMode="none">

 <rich:panelMenuItem label="Link to external page">

 <h:outputLink ... >

 <rich:panelMenuItem>

</rich:panelMenu>

...

Note:

As the <rich:panelMenu> component doesn't provide its own form, use it

between <h:form> and </h:form> tags.

The "expandSingle" attribute is defined for expanding more than one submenu on the same

level. The default value is "false" . If it's true the previously opened group on the top level closes

before opening another one. See the picture below.

Figure 6.144. Using the "expandSingle" attribute

 < rich:panelMenu > available since 3.1.0

499

The "selectedChild" attribute is used for defining the name of the selected group or item. An

example for group is placed below:

Here is an example:

Example:

...

<rich:panelMenu selectedChild="thisChild">

 <rich:panelMenuGroup label="Group1" name="thisChild">

 <!--Nested panelMenu components-->

 </rich:panelMenuGroup>

</rich:panelMenu>

...

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM", {2} for "ShortConverter.SHORT".

6.10.6.6. JavaScript API

In Java Script code for expanding/collapsing group element creation it's necessary to use

expand()/collapse() function.

Table 6.237. JavaScript API

Function Description

expand() Expands group element

collapse() Collapses group element

6.10.6.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

There are no skin parameters. To redefine the appearance of all <rich:panelMenu> components

at once, you should add to your style sheets the style class used by a <rich:panelMenu>

component.

Chapter 6. The RichFaces Comp...

500

6.10.6.8. Definition of Custom Style Classes

Table 6.238. Classes names that define a component appearance

Class name Class description

rich-pmenu Defines styles for a wrapper <div> element of

a component

rich-pmenu-top-group Defines styles for a top group element of a

component

In order to redefine styles for all <rich:panelMenu> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-pmenu{

 font-style:italic;

}

...

This is a result:

Figure 6.145. Redefinition styles with predefined classes

In the example the font style was changed.

Also it's possible to change styles of particular <rich:panelMenu> component. In this case you

should create own style classes and use them in corresponding <rich:panelMenu> styleClass

attributes. An example is placed below:

Example:

...

 < rich:panelMenuGroup > available since 3.1.0

501

.myClass{

 background-color: #ecf4fe;

}

...

The "hoveredItemClass" attribute for <rich:panelMenu> is defined as it's shown in the example

below:

Example:

<rich:panelMenu ... hoveredItemClass="myClass"/>

This is a result:

Figure 6.146. Redefinition styles with own classes and "styleClass"

attributes

As it could be seen on the picture above,background color for hovered item was changed.

6.10.6.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

panelMenu.jsf?c=panelMenu] you can see the example of <rich:panelMenu> usage and

sources for the given example.

6.10.7. < rich:panelMenuGroup > available since 3.1.0

3.1.0

6.10.7.1. Description

The <rich:panelMenuGroup> component is used to define an expandable group of items inside

the panel menu or other group.

http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu

Chapter 6. The RichFaces Comp...

502

Figure 6.147. <rich:panelMenuGroup> component

6.10.7.2. Key Features

• Highly customizable look-and-feel

• Different submission modes inside every group

• Optional submissions on expand collapse groups

• Custom and predefined icons supported

• Support for disabling

Table 6.239. rich : panelMenuGroup attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

 < rich:panelMenuGroup > available since 3.1.0

503

Attribute Name Description

only to a component that sends the request.

Boolean

align Deprecated. This attribute specifies the

horizontal alignment of its element with respect

to the surrounding context. The possible values

are "left", "center", "right" and "justify". The

default depends on the base text direction. For

left to right text, the default is align="left", while

for right to left text, the default is align="right".

alt HTML: For a user agents that cannot display

images, forms, or applets, this attribute

specifies alternate text. The language of the

alternate text is specified by the lang attribute

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disabled HTML: When set for a form control, this

boolean attribute disables the control for your

input

disabledClass Assigns one or more space-separated CSS

class names to the group disabled items

disabledStyle CSS style rules to be applied to the group

disabled items

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

Chapter 6. The RichFaces Comp...

504

Attribute Name Description

requests of frequently events (key press,

mouse move etc.)

expanded If true group will be displayed expanded

initially. Default value is "false".

expandMode Set the submission mode for all panel menu

groups after expand/collapse except ones

where this attribute redefined. Possible value

are "ajax", "server", "none". Default value is

"none".

focus ID of an element to set focus after request is

completed on client side

hoverClass Assigns one or more space-separated CSS

class names to the group hovered item

hoverStyle CSS style rules to be applied to the group

hovered item

iconClass Assigns one or more space-separated CSS

class names to the group icon element

iconCollapsed Path to the icon to be displayed for the

collapsed item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconDisabled Path to the icon to be displayed for the disabled

item state.

iconExpanded Path to the icon to be displayed for the

expanded item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconStyle CSS style rules to be applied to the group icon

element

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

 < rich:panelMenuGroup > available since 3.1.0

505

Attribute Name Description

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

label Displayed node's text

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

maxlength HTML: Specifies the maximum number of

digits that could be entered into the input field.

The maximum number is unlimited by default.

If entered value exceeds the value specified

in "maxValue" attribute than the slider takes a

maximum value position.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncollapse The client-side script method to be called when

a pane menu group is closed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onexpand The client-side script method to be called when

a pane menu group is opened

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

506

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

size HTML: This attribute tells the user agent the

initial width of the control. The width is given in

pixels except when type attribute has the value

 < rich:panelMenuGroup > available since 3.1.0

507

Attribute Name Description

"text" or "password". In that case, its value

refers to the (integer) number of characters

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

target HTML: Target frame for action to execute.

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value for this component

valueChangeListener JSF: Listener for value changes

Table 6.240. Component identification parameters

Name Value

component-type org.richfaces.PanelMenuGroup

component-class org.richfaces.component.html.HtmlPanelMenuGroup

component-family org.richfaces.PanelMenuGroup

renderer-type org.richfaces.PanelMenuGroupRenderer

tag-class org.richfaces.taglib.PanelMenuGroupTag

Chapter 6. The RichFaces Comp...

508

6.10.7.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:panelMenu>

 <rich:panelMenuGroup label="Group1">

 <!--Nested panelMenu components-->

 </rich:panelMenuGroup>

</rich:panelMenu>

...

6.10.7.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanelMenuGroup;

...

HtmlPanelMenuGroup myPanelMenuGroup = new HtmlPanelMenuGroup();

...

6.10.7.5. Details of Usage

All attributes except "label" are optional. The "label" attribute defines text to be represented.

Switching mode could be chosen with the "expandMode" attribute for the concrete panelMenu

group.

The "expandMode" attribute could be used with three possible parameters:

• ServerM (default)

Regular form submission request is used.

• Ajax

Ajax submission is used for switching.

• None

 < rich:panelMenuGroup > available since 3.1.0

509

"Action" and "actionListener" attributes are ignored. Items don't fire any submits itself. Behavior

is fully defined by the components nested into items.

There are three icon-related attributes. The "iconExpanded" attribute defines an icon for an

expanded state. The "iconCollapsed" attribute defines an icon for a collapsed state. The

"iconDisabled" attribute defines an icon for a disabled state.

Default icons are shown on the picture below:

Figure 6.148. Default icons

Here is an example:

Example:

...

<rich:panelMenu>

 <rich:panelMenuGroup label="Group1" iconExpanded="disc" iconCollapsed="chevron">

 <!--Nested panelMenu components-->

 </rich:panelMenuGroup>

</rich:panelMenu>

...

As the result the pictures are shown below. The first one represents the collapsed state, the

second one - expanded state:

Figure 6.149. Collapsed state

Chapter 6. The RichFaces Comp...

510

Figure 6.150. Expanded state

It's also possible to define a path to the icon. Simple code is placed below.

...

<rich:panelMenu>

 <rich:panelMenuGroup label="Group1" iconExpanded="\images

\img1.png" iconCollapsed="\images\img2.png">

 <!--Nested menu components-->

 </rich:panelMenuGroup>

</rich:panelMenu>

...

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.10.7.6. JavaScript API

In Java Script code for expanding/collapsing group element creation it's necessary to use

expand()/collapse() function.

Table 6.241. JavaScript API

Function Description

expand() Expand group element

collapse() Collapse group element

6.10.7.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelMenuGroup> components

at once:

• Redefine the corresponding skin parameters

 < rich:panelMenuGroup > available since 3.1.0

511

• Add to your style sheets style classes used by a <rich:panelMenuGroup> component

6.10.7.8. Skin Parameters Redefinition

Table 6.242. Skin parameters redefinition for a table element of the first level

group

Skin parameters CSS properties

headerWeightFont font-weight

generalFamilyFont font-family

headerSizeFont font-size

headerTextColor color

headerBackgroundColor background-color

Table 6.243. Skin parameters redefinition for a table element of second and

next level groups

Skin parameters CSS properties

headerWeightFont font-weight

headerFamilyFont font-family

headerSizeFont font-size

generalTextColor color

tableBorderColor border-top-color

Table 6.244. Skin parameters redefinition for wrapper div element of the first

level group

Skin parameters CSS properties

panelBorderColor border-color

Table 6.245. Skin parameters redefinition for a hovered group element

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.246. Skin parameters redefinition for a disabled group element

Skin parameters CSS properties

tabDisabledTextColor color

6.10.7.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Chapter 6. The RichFaces Comp...

512

Figure 6.151. Classes names

Figure 6.152. Classes names

Table 6.247. Classes names that define an upper level groups

Class name Description

rich-pmenu-top-group-self-icon Defines styles for a top group icon

rich-pmenu-top-group-self-label Defines styles for a top group label

Table 6.248. Classes names that define a second and lower level groups

Class name Description

rich-pmenu-group Defines styles for a group

rich-pmenu-group-self-icon Defines styles for a group icon

rich-pmenu-group-self-label Defines styles for a group label

Table 6.249. Classes names that define a group state

Class name Description

rich-pmenu-hovered-element Defines styles for a hovered group element

rich-pmenu-disabled-element Defines styles for a disabled group element

 < rich:panelMenuGroup > available since 3.1.0

513

In order to redefine styles for all <rich:panelMenuGroup> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-pmenu-disabled-element{

 color: #87b9ff;

}

...

This is a result:

Figure 6.153. Redefinition styles with predefined classes

In the example a disabled element font style and color were changed.

Also it's possible to change styles of particular <rich:panelMenuGroup> component. In this case

you should create own style classes and use them in corresponding <rich:panelMenuGroup>

styleClass attributes. An example is placed below:

Example:

...

.myClass{

 background-color: #ecf4fe;

}

...

The "hoverClass" attribute for <rich:panelMenuGroup> is defined as it's shown in the example

below:

Example:

Chapter 6. The RichFaces Comp...

514

<rich:panelMenuGroup ... hoverClass="myClass"/>

This is a result:

Figure 6.154. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the background color for hovered item was changed.

6.10.7.10. Relevant resources links

Some additional information about usage of component can be found on

the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

panelMenu.jsf?c=panelMenu&tab=usage].

6.10.8. < rich:panelMenuItem > available since 3.1.0

3.1.0

6.10.8.1. Description

The <rich:panelMenuItem> component is used to define a single item inside popup list.

Figure 6.155. <rich:panelMenuItem> component

http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage

 < rich:panelMenuItem > available since 3.1.0

515

6.10.8.2. Key Features

• Highly customizable look-and-feel

• Different submission modes

• Optionally supports any content inside

• Custom and predefined icons supported

• Support for disabling

Table 6.250. rich : panelMenuItem attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disabled HTML: If true sets state of the item to disabled

state. Default value is "false".

disabledClass Assigns one or more space-separated CSS

class names to the disabled item

disabledStyle CSS style rules to be applied to the disabled

item

Chapter 6. The RichFaces Comp...

516

Attribute Name Description

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

hoverClass Assigns one or more space-separated CSS

class names to the hovered item

hoverStyle CSS style rules to be applied to the hovered

item

icon Path to the icon or the default one name to be

displayed for the enabled item state. You can

also use predefined icons, setting the attribute

to one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconClass Assigns one or more space-separated CSS

class names to the item icon element

iconDisabled Path to the icon to be displayed for the

disabled item state. You can also use

predefined icons, setting the attribute to

one of these possible values: "triangle",

"triangleUp", "triangleDown", "disc", "chevron",

"chevronUp", "chevronDown", "grid". Default

value is "grid".

iconStyle CSS style rules to be applied to the item icon

element

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

 < rich:panelMenuItem > available since 3.1.0

517

Attribute Name Description

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

label Defines representation text for menuItem.

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

mode Set the submission mode. Possible values are

"ajax", "server", "none". Default value is "none".

name 'selectedChild' attribute of PanelMenu refers to

group/item with the same name. Default value

is "getId()".

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

518

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

target HTML: Target frame for action to execute.

 < rich:panelMenuItem > available since 3.1.0

519

Attribute Name Description

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

Table 6.251. Component identification parameters

Name Value

component-type org.richfaces.PanelMenuItem

component-class org.richfaces.component.html.HtmlPanelMenuItem

component-family org.richfaces.PanelMenuItem

renderer-type org.richfaces.PanelMenuItemRenderer

tag-class org.richfaces.taglib.PanelMenuItemTag

6.10.8.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:panelMenu>

 ...

 <rich:panelMenuItem value="Item1"/>

 ...

</rich:panelMenu>

...

6.10.8.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPanelMenuItem;

...

HtmlPanelMenuItem myPanelMenuItem = new HtmlPanelMenuItem();

...

6.10.8.5. Details of Usage

All attributes except "label" are optional. The "label" attribute defines text to be represented.

Chapter 6. The RichFaces Comp...

520

The "mode" attribute could be used with three possible parameters:

• Server (default)

Regular form submission request is used.

• Ajax

Ajax submission is used for switching.

• None

"Action" and "actionListener" attributes are ignored. Items don't fire any submits itself. Behavior

is fully defined by the components nested into items.

Here is an example for value "none":

Example:

...

<rich:panelMenu>

 ...

 <rich:panelMenuItem mode="none" onclick="document.location.href='http://labs.jboss.com/

jbossrichfaces/">

 <h:outputLink value="http://labs.jboss.com/jbossrichfaces/">

 <h:outputText value="RichFaces Home Page"></h:outputText>

 </h:outputLink>

 </rich:panelMenuItem>

 ...

</rich:panelMenu>

...

There are two icon-related attributes. The "icon" attribute defines an icon. The "iconDisabled"

attribute defines an icon for a disabled item.

Default icons are shown on the picture below:

Figure 6.156. Default icons

Here is an example:

 < rich:panelMenuItem > available since 3.1.0

521

Example:

...

 <rich:panelMenu>

 ...

 <rich:panelMenuItem value="Item 1.1" icon="chevronUp" />

 ...

 </rich:panelMenu>

...

As the result the picture is shown below:

Figure 6.157. Using an "icon" attribute

It's also possible to define a path to the icon. Simple code is placed below.

...

<rich:panelMenu>

 ...

 <rich:panelMenuItem value="Item 1.1" icon="\images\img1.png" />

 ...

</rich:panelMenu>

...

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

6.10.8.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:panelMenuItem> components at

once:

Chapter 6. The RichFaces Comp...

522

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:panelMenuItem> component

6.10.8.7. Skin Parameters Redefinition

Table 6.252. Skin parameters redefinition for a table element of the first level

item

Skin parameters CSS properties

generalFamilyFont font-family

generalWeightFont font-weight

generalSizeFont font-size

generalTextColor color

panelBorderColor border-top-color

Table 6.253. Skin parameter redefinition for a disabled item

Parameter for disabled item CSS properties

tabDisabledTextColor color

6.10.8.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.158. Classes names

 < rich:panelMenuItem > available since 3.1.0

523

Figure 6.159. Classes names

Table 6.254. Classes names that define the first level items

Class name Description

rich-pmenu-top-item Defines styles for a top panel menu item

rich-pmenu-top-item-icon Defines styles for a top panel menu item icon

rich-pmenu-top-item-label Defines styles for a top panel menu item label

Table 6.255. Classes names that define the second and lower level items

Class name Description

rich-pmenu-item Defines styles for a panel menu item

rich-pmenu-item-icon Defines styles for a panel menu item icon

rich-pmenu-item-label Defines styles for a panel menu item label

Table 6.256. Classes names that define items state

Class name Description

rich-pmenu-item-selected Defines styles for a panel menu selected item

rich-pmenu-disabled-element Defines styles for a disabled panel menu item

rich-pmenu-hovered-element Defines styles for a hovered panel menu item

In order to redefine styles for all <rich:panelMenuItem> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-pmenu-hovered-element {

 background-color: #ff7800;

}

Chapter 6. The RichFaces Comp...

524

...

This is a result:

Figure 6.160. Redefinition styles with predefined classes

In the example a hovered element background color was changed.

Also it's possible to change styles of particular <rich:panelMenuItem> component. In this case

you should create own style classes and use them in corresponding <rich:panelMenuItem>

styleClass attributes. An example is placed below:

Example:

...

.myClass {

 color: #a0a0a0;

}

...

The "disabledClass" attribute for <rich:panelMenuItem> is defined as it's shown in the example

below:

Example:

<rich:panelMenuItem ... disabledClass="myClass"/>

This is a result:

 < rich:progressBar > available since 3.2.0

525

Figure 6.161. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the text color for disabled item was changed.

6.10.8.9. Relevant resources links

Some additional information about usage of component can be found on

this LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?

c=panelMenu&tab=usage].

6.10.9. < rich:progressBar > available since 3.2.0

3.2.0

6.10.9.1. Description

The <rich:progressBar> component is designed for displaying a progress bar which shows the

current status of the process.

Figure 6.162. <rich:progressBar> component

6.10.9.2. Key Features

• Ajax or Client modes

• Option to control rerendering frequency

• Customizable status information label

• Highly customizable look and feel

Table 6.257. rich : progressBar attributes

Attribute Name Description

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/panelMenu.jsf?c=panelMenu&tab=usage

Chapter 6. The RichFaces Comp...

526

Attribute Name Description

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

completeClass Assigns one or more space-separated CSS

class names to the component progress line

rendering

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

enabled Enables/disables polling. Default value is

"true".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

finishClass Assigns one or more space-separated CSS

class names to the progress bar complete state

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

 < rich:progressBar > available since 3.2.0

527

Attribute Name Description

processing lifecycle), rather than waiting until

the Invoke Application phase

initialClass Assigns one or more space-separated CSS

class names to the progress bar initial state

interval Interval (in ms) for call poll requests. Default

value 1000 ms (1 sec)

label Attribute defines a simple label instead of

rendering children component

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

maxValue Max value, after which complete state should

be rendered. Default value is "100".

minValue Min value when initial state should be

rendered. Default value is "0".

mode Attributes defines AJAX or CLIENT modes for

component. Possible values are "ajax", "client".

Default value is "ajax".

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

Chapter 6. The RichFaces Comp...

528

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onsubmit DHTML: The client-side script method to be

called before an ajax request is submitted

parameters Parameters for macrosubstitution in the label

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

progressVar DEPRECATED. Provides access to value of

the component on the client

remainClass Assigns one or more space-separated CSS

class names to the remained part of the

progress bar

rendered JSF: If "false", this component is not rendered

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

reRenderAfterComplete Set of componets to rerender after completion

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

 < rich:progressBar > available since 3.2.0

529

Attribute Name Description

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

title HTML: Advisory title information about markup

elements generated for this component

value JSF: Sets the current value of the progress

Table 6.258. Component identification parameters

Name Value

component-type org.richfaces.ProgressBar

component-class org.richfaces.component.html.HtmlProgressBar

component-family org.richfaces.ProgressBar

renderer-type org.richfaces.renderkit.ProgressBarRenderer

tag-class org.richfaces.taglib.ProgressBarTag

6.10.9.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

...

<rich:progressBar value="#{bean.incValue1}"/>

...

6.10.9.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.progressBar;

...

HtmlProgressBar myProgressBar = new progressBar();

...

6.10.9.5. Details of Usage

As it was mentioned above, the <rich:progressBar> component displays the status of the

ongoing process.

Chapter 6. The RichFaces Comp...

530

The <rich:progressBar> component can run in two modes: Ajax (default) and Client.

• Ajax - In this mode the component works the same way as <a4j:poll/> which gets the current

progress value from the sever, repeating after a set time interval.

• Client - The current progress value in Client mode is set using JavaScript API

In order to define the mode you need to use "mode" attribute.

One of the key attributes of the component is "interval" which defines the frequency of status

polling and rerenders the component when the value is updated.

Polling is active while the "enabled" attribute is "true".

Example:

...

<rich:progressBar value="#{bean.incValue}" id="progrs" interval="900" enabled="true"/>

...

With the help of "timeout" attribute you can define the waiting time on a particular request. If a

response is not received during this time the request is aborted.

Status of the process is calculated basing on values of the following attributes:

• "value" is a value binding to the current progress value

• "minValue" (default value is "0") sets minimal progress value

• "maxValue" (default value is "100") sets maximum progress value

Example:

...

<rich:progressBar value="#{bean.incValue}" minValue="50" maxValue="400"/>

...

This is the result

Figure 6.163. Progress bar

There are two ways to display information on a progress bar:

• Using "label" attribute

Example:

 < rich:progressBar > available since 3.2.0

531

...

<rich:progressBar value="#{bean.incValue}" id="progrs" label="#{bean.incValue}"/>

...

• Using any child(nested) components. One of the components that can be used is

<h:outputText />

Example:

...

<rich:progressBar value="#{bean.incValue}">

 <h:outputText value="#{bean.incValue} %"/>

</rich:progressBar>

...

The <rich:progressBar> component provides 3 predefined macrosubstitution parameters:

• {value} contains the current value

• {minValue} contains min value

• {maxValue} contains max value

You can use them as follows:

Example:

...

<rich:progressBar value="#{bean.incValue1}" minValue="400" maxValue="900">

 <h:outputText value="Min value is {minValue}, current value is {value}, max value

 is {maxValue}"/>

</rich:progressBar>

...

This is the result:

Figure 6.164. Macrosubstitution

The "parameters" is also a special attribute which defines parameters that can be to get additional

data from server (e.g. additional info about process status). All you need is to define the value

of your own parameter (e.g parameters="param:'#{bean.incValue1}'") and you can use it to

pass the data.

Chapter 6. The RichFaces Comp...

532

Example:

...

<rich:progressBar value="#{bean.incValue}" parameters="param:'#{bean.dwnlSpeed}'">

 <h:outputText value="download speed {param} KB/s"/>

</rich:progressBar>

...

This is the result:

Figure 6.165. Usage of parameters

The "progressVar" attribute (deprecated) defines request scoped variable that could be used for

substitution purpose. This variable contains the data taken from "value" attribute. Please, study

carefully the following example.

Example:

...

<rich:progressBar value="#{bean.incValue1}" enabled="#{bean.enabled1}" id="progrs1" progressVar="progress">

 <h:outputText value="{progress}%"/>

</rich:progressBar>

...

In the shown example "progressVar" attribute defines a variable "progress" with the value taken

from "value" attribute of the <rich:progressBar> component. The "progress" variable performs

substitution passing the current progress value to the "value" attribute of the <h:outputText> .

This is how the current value of a progress appears on the label of <rich:progressBar> .

As the "progressVar" attribute is deprecated, it's better to use the predefined macrosubstitution

parameter {value} instead. See how you can rewrite the above example with the help of {value}.

Example:

...

<rich:progressBar value="#{bean.incValue1}" enabled="#{bean.enabled1}" id="progrs1">

 <h:outputText value="{value}%"/>

</rich:progressBar>

...

 < rich:progressBar > available since 3.2.0

533

The component can also employ "initial" and "complete" facets to display the states of the

process: "initial" facet is displayed when the progress value is less or equal to "minValue" , and

the "complete" facet is shown when the value is greater or equal to "maxValue" . Please see

an example below.

Example:

...

<rich:progressBar value="#{bean.incValue1}">

 <f:facet name="initial">

 <h:outputText value="Process not started"/>

 </f:facet>

 <f:facet name="complete">

 <h:outputText value="Process completed"/>

 </f:facet>

</rich:progressBar>

 ...

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.10.9.6. JavaScript API

Table 6.259. JavaScript API

Function Description

enable() Begins polling for Ajax mode

disable() Stops polling for Ajax mode

setValue(value) Updates the progress of the process

setLabel(label) Update the label for the process

6.10.9.7. Facets

Table 6.260. Facets

Facet name Description

initial Defines the information content about the state

of the process if the progress value is less or

equal to "minValue"

complete Defines the information content about the state

of the process if the value is greater or equal

to "maxValue"

Chapter 6. The RichFaces Comp...

534

6.10.9.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:progressBar> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:progressBar> component

6.10.9.9. Skin Parameters Redefinition

Table 6.261. Skin parameters redefinition for the progressBar without a label

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-color

Table 6.262. Skin parameters redefinition for the completed progress area

of the progressBar without a label

Skin parameters CSS properties

selectControlColor background-color

Table 6.263. Skin parameters redefinition for the progressBar with a label

Skin parameters CSS properties

panelBorderColor border-color

generalFamilyFont font-family

generalSizeFont font-size

controlTextColor color

Table 6.264. Skin parameters redefinition for the label of the progressBar

Skin parameters CSS properties

panelBorderColor border-color

Table 6.265. Skin parameters redefinition for the completed progress area

of the progressBar with a label

Skin parameters CSS properties

selectControlColor background-color

 < rich:progressBar > available since 3.2.0

535

Skin parameters CSS properties

controlBackgroundColor color

Table 6.266. Skin parameters redefinition for the remained progress area of

the progressBar with a label

Skin parameters CSS properties

controlBackgroundColor background-color

controlTextColor color

6.10.9.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.166. Classes names

Table 6.267. Classes names for the progressBar without a label

Class name Description

rich-progress-bar-shell Defines styles for a wrapper <div> element of

a progressBar

rich-progress-bar-uploaded Defines styles for the completed progress area

rich-progress-bar-height Defines height for a progressBar

rich-progress-bar-width Defines width for a progressBar

Table 6.268. Classes names for the progressBar with a label

Class name Description

rich-progress-bar-shell-dig Defines styles for a wrapper <div> element of

a progressBar

Chapter 6. The RichFaces Comp...

536

Class name Description

rich-progress-bar-uploaded-dig Defines styles for the label

rich-progress-bar-remained Defines styles for the remained progress area

rich-progress-bar-completed Defines styles for the completed progress area

rich-progress-bar-height-dig Defines height for a progressBar

rich-progress-bar-width Defines width for a progressBar

Note:

It's necessary to define width of the component in pixels only.

In order to redefine styles for all <rich:progressBar> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.richfacesSkin .mceButton {

 border: 1px #FF0000 solid;

}

...

This is the result:

Figure 6.167. Redefinition styles with predefined classes

In the example above background color of the remained part of progress area was changed.

It's also possible to change styles of a particular <rich:progressBar> component. In this case you

should create own style classes and use them in corresponding <rich:progressBar> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 background-color: #ebf3fd;

}

 < rich:progressBar > available since 3.2.0

537

...

The "styleClass" attribute for <rich:progressBar> is defined as it's shown in the example below:

Example:

<rich:progressBar value="#{bean.incValue1}" styleClass="myClass"/>

This is the result:

Figure 6.168. Modificaton of a look and feel with own classes and styleClass

attributes

As it could be seen on the picture above, background color of the remained part of progress area

was changed.

In order to change background image for the <rich:progressBar> it is necessary to create a CSS

class with the same name as predefined one (see the tables above) and change background-

image CSS property for it:

...

.rich-progress-bar-uploaded {

 background-image : url(images/accept.gif);

}

...

This is the result:

Figure 6.169. Redefining background image for the <rich:progressBar>

6.10.9.11. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

progressBar.jsf?c=progressBar] you can see the example of <rich:progressBar> usage and

sources for the given example.

http://livedemo.exadel.com/richfaces-demo/richfaces/progressBar.jsf?c=progressBar
http://livedemo.exadel.com/richfaces-demo/richfaces/progressBar.jsf?c=progressBar
http://livedemo.exadel.com/richfaces-demo/richfaces/progressBar.jsf?c=progressBar

Chapter 6. The RichFaces Comp...

538

6.10.10. < rich:separator > available since 3.0.0

6.10.10.1. Description

A horizontal line to use as a separator in a layout. The line type can be customized with the

"lineType" parameter.

Figure 6.170. <rich:separator> component

6.10.10.2. Key Features

• Highly customizable look and feel

• Leveraging layout elements creation

Table 6.269. rich : separator attributes

Attribute Name Description

align This attribute specifies a position of the

separator according to the document. The

possible values are "left", "center" and "right".

Default value is "left".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

height The separator height. Default value is "6px".

id JSF: Every component may have a unique id

that is automatically created if omitted

lineType A line type. The possible values are "beveled",

"dotted", "dashed", "double", "solid" and

"none". Default value is "beveled"

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

 < rich:separator > available since 3.0.0

539

Attribute Name Description

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: HTML: An advisory title for this element.

Often displayed as a tooltip

width HTML: The separator width that can be defined

in pixels or in percents. Default value is "100%".

Table 6.270. Component identification parameters

Name Value

component-type org.richfaces.separator

component-class org.richfaces.component.html.HtmlSeparator

component-family org.richfaces.separator

Chapter 6. The RichFaces Comp...

540

Name Value

renderer-type org.richfaces.SeparatorRenderer

tag-class org.richfaces.taglib.SeparatorTag

6.10.10.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

Example:

...

<rich:separator/>

...

6.10.10.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlSeparator;

...

HtmlSeparator mySeparator = new HtmlSeparator();

...

6.10.10.5. Details of Usage

<rich:separator> is a simple layout component, which represents a separator stylized as a skin.

Thus, the main attributes that define its style are "style" and "styleClass". In addition there

are "width" and "height" attributes that should be specified in pixels. On the HTML page the

component is transposed into HTML <div> tag.

The line type can be customized with the "lineType" parameter. For example, different

line types are shown after rendering with the following initial settings lineType="double"and

lineType="solid".

 < rich:separator > available since 3.0.0

541

Figure 6.171. Different line types of <rich:separator>

Except style attributes, there are also event definition attributes:

• "onmouseover"

• "onclick"

• "onmouseout"

• etc.

6.10.10.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

To redefine the appearance of all <rich:separator> components at once, you should add to your

style sheets the style class used by a <rich:separator> component.

6.10.10.7. Definition of Custom Style Classes

Table 6.271. Classes names that define a component appearance

Class name Description

rich-separator Defines styles for a component appearance

In order to redefine styles for all <rich:separator> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

Chapter 6. The RichFaces Comp...

542

...

.rich-separator{

 background-color:#ff7700;

}

...

This is a result:

Figure 6.172. Redefinition styles with predefined classes

In the example background color for separator was changed.

Also it's possible to change styles of particular <rich:separator> component. In this case you

should create own style classes and use them in corresponding <rich:separator> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 background-color:#ffead9;

}

...

The "styleClass" attribute for <rich:separator> is defined as it's shown in the example below:

Example:

<rich:separator ... styleClass="myClass"/>

This is a result:

Figure 6.173. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above,background color for separator was changed.

 < rich:simpleTogglePanel > available since 3.0.0

543

6.10.10.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

separator.jsf?c=separator] you can see the example of <rich:separator> usage and sources

for the given example.

6.10.11. < rich:simpleTogglePanel > available since 3.0.0

6.10.11.1. Description

A collapsible panel, which content shows/hides after activating a header control.

Figure 6.174. <rich:simpleTogglePanel> component

6.10.11.2. Key Features

• Highly customizable look and feel

• Support for any content inside

• Collapsing expanding content

• Three modes of collapsing/expanding

• Server

• Client

• Ajax

Table 6.272. rich : simpleTogglePanel attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

http://livedemo.exadel.com/richfaces-demo/richfaces/separator.jsf?c=separator
http://livedemo.exadel.com/richfaces-demo/richfaces/separator.jsf?c=separator
http://livedemo.exadel.com/richfaces-demo/richfaces/separator.jsf?c=separator

Chapter 6. The RichFaces Comp...

544

Attribute Name Description

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bodyClass Assigns one or more space-separated CSS

class names to the panel content

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

headerClass Assigns one or more space-separated CSS

class names to the panel header

height Height of a simple toggle panel content area

might be defined as pixels or in percents. By

default height is not defined

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

 < rich:simpleTogglePanel > available since 3.0.0

545

Attribute Name Description

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

label Marker to be rendered on a panel header

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncollapse The client-side script method to be called

before a panel is collapsed

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onexpand The client-side script method to be called

before a panel is expanded

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

Chapter 6. The RichFaces Comp...

546

Attribute Name Description

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

opened A "false" value for this attribute makes the

panel closed by default. Default value is "true".

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

 < rich:simpleTogglePanel > available since 3.0.0

547

Attribute Name Description

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchType Panels switch mode: "client", "server"(default),

"ajax"

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

value JSF: The current value for this component

width HTML: Width of a simple toggle panel might

be defined as pixels or in percents. By default

width is not defined

Table 6.273. Component identification parameters

Name Value

component-type org.richfaces.SimpleTogglePanel

component-class org.richfaces.component.html.HtmlSimpleTogglePanel

component-family org.richfaces.SimpleTogglePanel

renderer-type org.richfaces.SimpleTogglePanelRenderer

tag-class org.richfaces.taglib.SimpleTogglePanelTag

6.10.11.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:simpleTogglePanel>

 ...

</rich:simpleTogglePanel>

...

6.10.11.4. Creating the Component Dynamically Using Java

Example:

Chapter 6. The RichFaces Comp...

548

import org.richfaces.component.html.HtmlSimpleTogglePanel;

...

HtmlSimpleTogglePanel myPanel = new HtmlSimpleTogglePanel();

...

6.10.11.5. Details of Usage

The component is a simplified version of toggle panel that initially has a defined layout as a panel

with a header playing a role of a mode switching control. On a component header element, it's

possible to define a label using an attribute with the same name.

Switching mode could be defined with the "switchType" attribute with three possible parameters.

• Server (DEFAULT)

The common submission is performed around simpleTogglePanel and a page is completely

rendered on a called panel. Only one at a time panel is uploaded onto the client side.

• Ajax

AJAX form submission is performed around the panel, content of the called panel is uploaded

on Ajax request and additionally specified elements in the "reRender" attribute are rendered.

Only one at a time panel is uploaded on the client side.

• Client

All panels are uploaded on the client side. Switching from the active to the hidden panel is

performed with client JavaScript.

The <rich:simpleTogglePanel> component also has an "opened" attribute responsible for

keeping a panel state. It gives an opportunity to manage state of the component from a model. If

the value of this attribute is"true" the component is expanded.

• "onmouseover "

• "onclick "

• "onmouseout "

• etc.

 < rich:simpleTogglePanel > available since 3.0.0

549

Figure 6.175. <rich:simpleTogglePanel> states

With help of "openMarker" and "closeMarker" facets you can set toggle icon for

simpleTogglePanel .

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.10.11.6. Facets

Table 6.274. Facets

Facet name Description

openMarker Redefines the icon for expanding the panel

closeMarker Redefines the icon for collapsing the panel

6.10.11.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:simpleTooglePanel> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:simpleTooglePanel> component

6.10.11.8. Skin Parameters Redefinition

Table 6.275. Skin parameters for a whole component

Skin parameters CSS properties

generalBackgroundColor background-color

Chapter 6. The RichFaces Comp...

550

Skin parameters CSS properties

panelBorderColor border-color

Table 6.276. Skin parameters for a header element

Skin parameters CSS properties

headerBackgroundColor background-color

headerBackgroundColor border-color

headerSizeFont font-size

headTextColor color

headerWeightFont font-weight

headerFamilyFont font-family

Table 6.277. Skin parameters for a body element

Skin parameters CSS properties

generalBackgroundColor background-color

generalSizeFont font-size

panelTextColor color

generalFamilyFont font-family

6.10.11.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.176. Style classes

 < rich:simpleTogglePanel > available since 3.0.0

551

Table 6.278. Classes names that define a component appearance

Class name Class description

rich-stglpanel Defines styles for a wrapper <div> element of

a component

rich-stglpanel-header Defines styles for header element of a

component

rich-stglpnl-marker Defines styles for a wrapper <div> element of

a marker

rich-stglpanel-body Defines styles for a component content

Table 6.279. Style component classes

Class name Class description

styleClass The class defines panel common style. It's

used in the outside <div> element

bodyClass applicable to panels body elements

headerClass applicable to header elements

In order to redefine styles for all <rich:simpleTogglePanel> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-stglpanel-header{

 font-style:italic;

}

...

This is a result:

Figure 6.177. Redefinition styles with predefined classes

In the example the font style for header was changed.

Chapter 6. The RichFaces Comp...

552

Also it's possible to change styles of particular <rich:simpleTogglePanel> component.

In this case you should create own style classes and use them in corresponding

<rich:simpleTogglePanel> styleClass attributes. An example is placed below:

Example:

...

.myClass{

 background-color:#ffead9;

}

...

The "bodyClass" attribute for <rich:simpleTogglePanel> is defined as it's shown in the example

below:

Example:

<rich:simpleTogglePanel ... bodyClass="myClass"/>

This is a result:

Figure 6.178. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above,background color for body was changed.

6.10.11.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/simpleTogglePanel.jsf?c=simpleTogglePanel] you can see the example of

<rich:simpleTogglePanel> usage and sources for the given example.

6.10.12. < rich:spacer > available since 3.0.0

6.10.12.1. Description

A spacer that is used in layout and rendered as a transparent image.

http://livedemo.exadel.com/richfaces-demo/richfaces/simpleTogglePanel.jsf?c=simpleTogglePanel
http://livedemo.exadel.com/richfaces-demo/richfaces/simpleTogglePanel.jsf?c=simpleTogglePanel
http://livedemo.exadel.com/richfaces-demo/richfaces/simpleTogglePanel.jsf?c=simpleTogglePanel

 < rich:spacer > available since 3.0.0

553

Figure 6.179. <rich:spacer> component

6.10.12.2. Key Features

• Easily used as a transparent layout spacer

• Horizontal or vertical spacing is managed by an attribute

• Easily customizable sizes parameters

Table 6.280. rich : spacer attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

height The height of the spacer defined in pixels.

Default value is "1px".

id JSF: Every component may have a unique id

that is automatically created if omitted

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

Chapter 6. The RichFaces Comp...

554

Attribute Name Description

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

title HTML: HTML: An advisory title for this element.

Often used by the user agent as a tooltip

width HTML: The width of the spacer defined in

pixels. Default value is "1px".

Table 6.281. Component identification parameters

Name Value

component-type org.richfaces.spacer

component-class org.richfaces.component.html.HtmlSpacer

component-family org.richfaces.spacer

renderer-type org.richfaces.SpacerRenderer

tag-class org.richfaces.taglib.SpacerTag

6.10.12.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax::

Example:

...

<rich:spacer/>

 < rich:spacer > available since 3.0.0

555

...

6.10.12.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlSpacer;

...

HtmlSpacer mySpacer = new HtmlSpacer();

...

6.10.12.5. Details of Usage

<rich:spacer> is a simple layout component which represents a transparent spacer. Thus, the

main attributes that define its style are "style" and "styleClass".

In addition, the attributes are responsible for the component size: "width" and "height".

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

• "onmouseover "

• "onclick "

• "onmouseout "

• etc.

6.10.12.6. Look-and-Feel Customization

On the component generation, the framework presents a default rich-spacer class in "styleClass"

of a generated component, i.e. in order to redefine appearance of all spacers at once, it's

necessary to redefine this class in your own CSS (replacing in the result properties defined in a

skin with your own).

To define appearance of the particular spacer, it's possible to write your own CSS classes and

properties in the component style attributes ("style", "styleClass") modifying component property.

6.10.12.7. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

spacer.jsf?c=spacer] you can see the example of <rich:spacer> usage and sources for the

given example.

http://livedemo.exadel.com/richfaces-demo/richfaces/spacer.jsf?c=spacer
http://livedemo.exadel.com/richfaces-demo/richfaces/spacer.jsf?c=spacer
http://livedemo.exadel.com/richfaces-demo/richfaces/spacer.jsf?c=spacer

Chapter 6. The RichFaces Comp...

556

6.10.13. < rich:tabPanel > available since 3.0.0

6.10.13.1. Description

A tab panel displaying tabs for grouping content of the panel.

Figure 6.180. <rich:tabPanel> component

6.10.13.2. Key Features

• Skinnable tab panel and child items

• Disabled/enabled tab options

• Customizable headers

• Group any content inside a tab

• Each tab has a unique name for direct access (e.g. for switching between tabs)

• Switch methods can be easily customized with attribute to:

• Server

• Client

• AJAX

• Switch methods can be selected for the whole tab panel and for the each tab separately

Table 6.282. rich : tabPanel attributes

Attribute Name Description

activeTabClass Assigns one or more space-separated CSS

class names to the component active tab

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

 < rich:tabPanel > available since 3.0.0

557

Attribute Name Description

contentClass CSS style rules to be applied to the panel

content

contentStyle Assigns one or more space-separated CSS

class names to the panel content

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

disabledTabClass Assigns one or more space-separated CSS

class names to the component disabled tab

headerAlignment Sets tab headers alignment. It can be "left" or

"right". Default value is "left".

headerClass Assigns one or more space-separated CSS

class names to the panel header

headerSpacing Sets tab headers spacing. It should be a valid

size unit expression. Default value is "1px".

height Height of a tab panel defined in pixels or in

percents

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

inactiveTabClass Assigns one or more space-separated CSS

class names to the component inactive (but not

disabled) tabs

label A localized user presentable name for this

component.

lang HTML: Code describing the language used in

the generated markup for this component

onclick DHTML: The client-side script method to be

called when the element is clicked

Chapter 6. The RichFaces Comp...

558

Attribute Name Description

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

ontabchange The client-side script method to be called

before a tab is changed

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

selectedTab Attribute defines name of selected tab

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

 < rich:tabPanel > available since 3.0.0

559

Attribute Name Description

switchType Tabs switch mode: "client", "server"(default),

"ajax"

tabClass Assigns one or more space-separated CSS

class names to the component tabs

title HTML: Advisory title information about markup

elements generated for this component

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

width HTML: Width of a tab panel defined in pixels or

in percents. The default value is 100%

Table 6.283. Component identification parameters

Name Value

component-type org.richfaces.tabPanel

component-class org.richfaces.component.html.HtmltabPanel

component-family org.richfaces.tabPanel

renderer-type org.richfaces.tabPanelRenderer

tag-class org.richfaces.taglib.tabPanelTag

6.10.13.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:tabPanel>

 <!--Set of Tabs inside-->

 <rich:tab>

 ...

 </rich:tab>

Chapter 6. The RichFaces Comp...

560

</rich:tabPanel>

...

6.10.13.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmltabPanel;

...

HtmltabPanel mytabPanel = new HtmltabPanel();

...

6.10.13.5. Details of Usage

As it was mentioned above, tabPanel groups content on panels and performs switching from one

to another. Hence, modes of switching between panels are described first of all.

Note:

All tabPanels should be wrapped into a form element so as content is correctly

submitted inside. If a form is placed into each tab, the Action elements of Tab

controls appear to be out of the form and content submission inside the panels

could be performed only for Action components inside tabs.

Switching mode could be chosen with the tabPanel attribute "switchType" with three possible

parameters.

• Server (DEFAULT)

The common submission is performed around tabPanel and a page is completely rendered on

a called panel. Only one at a time tabPanel is uploaded onto the client side.

• Ajax

AJAX form submission is performed around the tabPanel, content of the called tabPanel is

uploaded on Ajax request. Only one at a time tabPanel is uploaded on the client.

• Client

All tabPanels are uploaded on the client side. The switching from the active to the hidden panel

is performed with client JavaScript.

As a result, the tabPanel is switched to the second tab according to the action returning outcome

for moving onto another page and switching from the second to the first tab is performed.

 < rich:tabPanel > available since 3.0.0

561

There is also the "selectedTab" attribute. The attribute keeps an active tab name; therefore, an

active tabPanel could be changed with setting a name of the necessary tab to this attribute.

There is also the "headerAlignment" attribute responsible for rendering of tabPanel components.

The attribute has several values: "left" (Default), "right", "center", which specify Tabs components

location on the top of the tabPanel.

Example:

...

<rich:tabPanel width="40%" headerAlignment="right">

 <rich:tab label="Canon">

 ...

 </rich:tab>

 <rich:tab label="Nikon">

 ...

 </rich:tab>

 <rich:tab label="Olympus">

 ...

 </rich:tab>

</rich:tabPanel>

...

Figure 6.181. <rich:tabPanel> with right aligned tabs

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM", {2} for "ShortConverter.SHORT".

Except the specific attributes, the component has all necessary attributes for JavaScript events

definition.

Chapter 6. The RichFaces Comp...

562

• "onmouseover"

• "onmouseout"

• etc.

6.10.13.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:tabPanel> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:tabPanel> component

6.10.13.7. Skin Parameters Redefinition

Table 6.284. Skin parameters redefinition for a header

Skin parameters CSS properties

panelBorderColor border-top-color

Table 6.285. Skin parameters redefinition for an internal content

Skin parameters CSS properties

generalBackgroundColor background-color

generalTextColor color

panelBorderColor border-bottom-color

panelBorderColor border-right-color

panelBorderColor border-left-color

generalSizeFont font-size

generalFamilyFont font-family

6.10.13.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

 < rich:tabPanel > available since 3.0.0

563

Figure 6.182. Style classes

Table 6.286. Classes names that define a component appearance

Class name Description

rich-tabpanel Defines styles for all tabPanel

rich-tabpanel-content Defines styles for an internal content

rich-tabpanel-content-position Defines styles for a wrapper element of a

tabPanel content. It should define a shift equal

to borders width in order to overlap panel tabs

rich-tabhdr-side-border Defines styles for side elements of a tabPanel

header

rich-tabhdr-side-cell Defines styles for a header internal element

rich-tab-bottom-line Defines styles for a tab bottom line element of

a tabPanel

Table 6.287. Classes names that define different tab header states

(corresponds to rich-tabhdr-side-cell)

Class name Description

rich-tabhdr-cell-active Defines styles for an internal element of an

active header

rich-tabhdr-cell-inactive Defines styles for an internal element of an

inactive label

rich-tabhdr-cell-disabled Defines styles for an internal element of a

disabled label

Chapter 6. The RichFaces Comp...

564

In order to redefine styles for all <rich:tabPanel> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the table above) and

define necessary properties in them. An example is placed below:

Example:

...

.rich-tabhdr-cell-active{

 font-weight: bold;

}

...

This is a result:

Figure 6.183. Redefinition styles with predefined classes

In the example a tab active font weight and text color were changed.

Also it's possible to change styles of particular <rich:tabPanel> component. In this case you

should create own style classes and use them in corresponding <rich:tabPanel> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style: italic;

}

...

 < rich:tab > available since 3.0.0

565

The "styleClass" attribute for <rich:tabPanel> is defined as it's shown in the example below:

Example:

<rich:tabPanel ... activeTabClass="myClass"/>

This is a result:

Figure 6.184. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, font style on inactive tab was changed.

6.10.13.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

tabPanel.jsf?c=tabPanel] you can see the example of <rich:tabPanel> usage and sources for

the given example.

6.10.14. < rich:tab > available since 3.0.0

6.10.14.1. Description

A tab section within a tab panel.

http://livedemo.exadel.com/richfaces-demo/richfaces/tabPanel.jsf?c=tabPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/tabPanel.jsf?c=tabPanel
http://livedemo.exadel.com/richfaces-demo/richfaces/tabPanel.jsf?c=tabPanel

Chapter 6. The RichFaces Comp...

566

Figure 6.185. <rich:tab> component

6.10.14.2. Key Features

• Fully skinnable tabs content

• Disabled/enabled tab options

• Groups any content inside a tab

• Each tab has a unique name for a direct access (e.g. for switching between tabs)

• Switch methods can be easily customized for every tab separately with attribute to:

• Server

• Client

• AJAX

Table 6.288. rich : tab attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Limits JSF tree processing (decoding,

conversion, validation and model updating)

only to a component that sends the request.

Boolean

 < rich:tab > available since 3.0.0

567

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

disabled HTML: Disables a tab in a tab panel

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

focus ID of an element to set focus after request is

completed on client side

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

label Text for the actual "tab" in a tab section

labelWidth Length for the actual "tab" in a tab section

defined in pixels. If it is not defined, the length

is calculated basing on a tab label text length

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

Chapter 6. The RichFaces Comp...

568

Attribute Name Description

name Attribute defines tab name. Default value is

"getId()".

onbeforedomupdate The client-side script method to be called

before DOM is updated

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onlabelclick The client-side script method to be called when

a tab label is clicked

onlabeldblclick The client-side script method to be called when

a tab label is double-clicked

onlabelkeydown The client-side script method to be called when

a key is pressed down together with the pointer

hovered over a tab label

onlabelkeypress The client-side script method to be called when

a key is pressed and released together with the

pointer hovered over a tab label

onlabelkeyup The client-side script method to be called when

a key is released together with the pointer

hovered over a tab label

onlabelmousedown The client-side script method to be called when

a mouse button is pressed down over a tab

label

onlabelmousemove The client-side script method to be called when

a pointer is moved within a tab label

onlabelmouseup The client-side script method to be called when

a mouse button is released over a tab label

 < rich:tab > available since 3.0.0

569

Attribute Name Description

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

ontabenter The client-side script method to be called when

the tab is switched

ontableave The client-side script method to be called when

the tab is left

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

Chapter 6. The RichFaces Comp...

570

Attribute Name Description

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchType Tabs switch mode. Possible values are "client",

"server", "ajax", "page".

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

title HTML: HTML: An advisory title for this element.

Often displayed as a tooltip

Table 6.289. Component identification parameters

Name Value

component-type org.richfaces.Tab

component-class org.richfaces.component.html.HtmlTab

component-family org.richfaces.Tab

renderer-type org.richfaces.TabRenderer

tag-class org.richfaces.taglib.TabTag

6.10.14.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:tabPanel>

 <!--Set of Tabs inside-->

 <rich:tab>

 ...

 </rich:tab>

 < rich:tab > available since 3.0.0

571

</rich:tabPanel>

...

6.10.14.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlTab;

...

HtmlTab myTab = new HtmlTab();

...

6.10.14.5. Details of Usage

The main component function is to define a content group that is rendered and processed when

the tab is active, i.e. click on a tab causes switching onto a tab containing content corresponded

to this tab.

The "label" attribute defines text to be represented. If you can use the "label" facet, you can

even not use the "label" attribute.

Example:

...

<rich:tab>

 <f:facet name="label">

 <h:graphicImage value="/images/img1.png"/>

 </f:facet>

 ...

 <!--Any Content inside-->

 ...

</rich:tab>

...

A marker on a tab header defined with the "label" attribute. Moreover, each tab could be disabled

(switching on this tab is impossible) with the "disable" attribute.

Example:

...

<rich:tabPanel width="20%">

 <tabs:tab label="Canon">

Chapter 6. The RichFaces Comp...

572

 <h:outputText value="Canon EOS Digital Rebel XT" />

 ...

 </tabs:tab>

 <tabs:tab label="Nikon">

 <h:outputText value="Nikon D70s" />

 ...

 </tabs:tab>

 <tabs:tab label="Olympus">

 <h:outputText value="Olympus EVOLT E-500" />

 ...

 </tabs:tab>

 <tabs:tab disabled="true" name="disabled" label="Disabled"/>

</rich:tabPanel>

...

With this example it's possible to generate the tab panel with the last disabled and three active

tabs (see the picture).

Figure 6.186. <rich:tabPanel> with disabled <rich:tab>

Switching mode could be defined not only for the whole panel tab, but also for each particular tab,

i.e. switching onto one tab could be performed right on the client with the corresponding JavaScript

and onto another tab with an Ajax request on the server. Tab switching modes are the same as

tabPanel ones.

 < rich:tab > available since 3.0.0

573

Each tab also has an attribute name (alias for "id" attribute). Using this attribute value it's possible

e.g. to set an active tab on a model level specifying this name in the corresponding attribute of

the whole tab.

Except the specific component attributes it has all necessary attributes for JavaScript event

definition.

• "onmouseover"

• "onmouseout"

• etc.

Some event could be performed on the tab which has been entered/left using "ontabenter" /

"ontableave" attributes. See the example below.

Example:

...

<rich:tabPanel>

 <rich:tab label="Tab1" ontabenter="alert()">

 ...

 </rich:tab>

 ...

</rich:tabPanel>

...

The following example shows how on the client side to get the names of entered/left tabs.

ontabenter="alert(leftTabName)"

Information about the "process" attribute usage you can find in the "Decide what to process"

guide section.

6.10.14.6. Facets

Table 6.290. Facets

Facet name Description

label Defines the text for the actual "tab" in a tab

section

Chapter 6. The RichFaces Comp...

574

6.10.14.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

Note:

A panel appearance and content is defined with a tab panel i.e. on the tab level it's

possible to define only an appearance of this tab header.

There are two ways to redefine the appearance of all <rich:tab> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:tab> component

6.10.14.8. Skin Parameters Redefinition

Table 6.291. Skin parameters redefinition for a tab header

Skin parameters CSS properties

generalTextColor color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.292. Skin parameters redefinition for an active tab

Skin parameters CSS properties

generalTextColor color

subBorderColor border-color

generalBackgroundColor background-color

Table 6.293. Skin parameters redefinition for an inactive tab

Skin parameters CSS properties

tabBackgroundColor background-color

subBorderColor border-color

Table 6.294. Skin parameters redefinition for a disabled tab

Skin parameters CSS properties

tabBackgroundColor background-color

 < rich:tab > available since 3.0.0

575

Skin parameters CSS properties

subBorderColor border-color

tabDisabledTextColor color

6.10.14.9. Definition of Custom Style Classes

Figure 6.187. Classes names

Table 6.295. Classes names that define a tab

Class name Description

rich-tab-header Defines styles for a tab header

rich-tab-label Defines styles for a tab label

Table 6.296. Classes names that define a tab states

Class name Description

rich-tab-active Defines styles for an active tab

rich-tab-inactive Defines styles for an inactive tab

rich-tab-disabled Defines styles for a disabled tab

Chapter 6. The RichFaces Comp...

576

In order to redefine styles for all <rich:tab> components on a page using CSS, it's enough to

create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-tab-header{

 font-weight: bold;

}

...

This is a result:

Figure 6.188. Redefinition styles with predefined classes

In the example a header font weight was changed.

Also it's possible to change styles of particular <rich:tab> component. In this case you should

create own style classes and use them in corresponding <rich:tab> styleClass attributes. An

example is placed below:

Example:

...

 < rich:togglePanel > available since 3.0.0

577

.myClass{

 border-color: #5d9ffc;

}

...

The "styleClass" attribute for <rich:tab> is defined as it's shown in the example below:

Example:

<rich:tab ... styleClass="myClass"/>

This is a result:

Figure 6.189. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the border color was changed.

6.10.15. < rich:togglePanel > available since 3.0.0

6.10.15.1. Description

A wrapper component with named facets, where every facet is shown after activation of the

corresponding toggleControl (the other is hidden).

Chapter 6. The RichFaces Comp...

578

Figure 6.190. <rich:togglePanel> component

6.10.15.2. Key Features

• Support for any content inside

• Three modes of facets switching

• Server

• Client

• Ajax

• Controls for togglePanel can be everywhere in layout

Table 6.297. rich : togglePanel attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

id JSF: Every component may have a unique id

that is automatically created if omitted

 < rich:togglePanel > available since 3.0.0

579

Attribute Name Description

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

initialState It contains a name of the first active facet

label A localized user presentable name for this

component.

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

stateOrder Names of the facets in the switching order.

If ToggleControl doesn't contain information

about a next facet to be shown it is switched

corresponding to this attribute

Chapter 6. The RichFaces Comp...

580

Attribute Name Description

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchType Facets switch mode: "client", "server"(default),

"ajax".

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The initial value to set when rendered for

the first time. It contains information about an

active facet

valueChangeListener JSF: Listener for value changes

Table 6.298. Component identification parameters

Name Value

component-type org.richfaces.TogglePanel

component-class org.richfaces.component.html.HtmlTogglePanel

component-family org.richfaces.TogglePanel

renderer-type org.richfaces.TogglePanelRenderer

tag-class org.richfaces.Taglib.togglePanelTag

6.10.15.3. Creating the Component with a Page Tag

Here is a simple example as it could be used in a page:

Example:

...

<rich:togglePanel>

 <f:facet name="first">

 ...

 </f:facet>

 < rich:togglePanel > available since 3.0.0

581

 <f:facet name="second">

 ...

 </f:facet>

 ...

</rich:togglePanel>

...

<!--Set of the toggleControls somewhere on a page-->

...

6.10.15.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmltogglePanel;

...

HtmltogglePanel myPanel = new HtmltogglePanel();

...

6.10.15.5. Details of Usage

As it was mentioned above, togglePanel splits content into named facets that become rendered

and processed when a click performed on controls linked to this togglePanel (either switched on

the client or send requests on the server for switching).

The initial component state is defined with "initialState" attribute, where a facet name that is

shown at first is defined.

Note:

It's also possible to define an "empty" facet to implement the functionality as drop-

down panels have and make the facet active when no content is required to be

rendered.

Switching mode could be defined with the "switchType" attribute with three possible parameters:

• Server (DEFAULT)

The common submission is performed around togglePanel and a page is completely rendered

on a called panel. Only one at a time the panel is uploaded onto the client side.

• Ajax

AJAX form submission is performed around the panel, content of the called panel is uploaded

on an Ajax request . Only one at a time the panel is uploaded on the client side.

Chapter 6. The RichFaces Comp...

582

• Client

All panels are uploaded on the client side. The switching from the active to the hidden panel

is performed with client JavaScript.

"Facets" switching order could be defined on the side of <rich:toggleControl> component or

on the panel. On the side of the togglePanel it's possible to define facets switching order with the

"stateOrder" attribute. The facets names are enumerated in such an order that they are rendered

when a control is clicked, as it's not defined where to switch beforehand.

Example:

...

<rich:togglePanel id="panel" initialState="panelB" switchType="client"

 stateOrder="panelA,panelB,panelC">

 <f:facet name="panelA">

 ...

 </f:facet>

 <f:facet name="panelB">

 ...

 </f:facet>

 <f:facet name="panelC">

 ...

 </f:facet>

</rich:togglePanel>

<rich:toggleControl for="panel" value="Switch"/>

...

The example shows a togglePanel initial state when the second facet (panelB) is rendered and

successive switching from the first to the second happens.

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM", {2} for "ShortConverter.SHORT".

6.10.15.6. Look-and-Feel Customization

The component doesn't have its own representation rendering only content of its facets, thus all

look and feel is set only for content.

 < rich:togglePanel > available since 3.0.0

583

6.10.15.7. Definition of Custom Style Classes

Table 6.299. Classes names that define a component appearance

Class name Description

rich-toggle-panel Defines styles for all component

rich-tglctrl Defines styles for a toggle control

In order to redefine styles for all <rich:togglePanel> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-toggle-panel{

 font-style:italic;

}

...

This is a result:

Figure 6.191. Redefinition styles with predefined classes

In the example the font style for output text was changed.

Also it's possible to change styles of particular <rich:togglePanel> component. In this case you

should create own style classes and use them in corresponding <rich:togglePanel> styleClass

attributes. An example is placed below:

Chapter 6. The RichFaces Comp...

584

Example:

...

.myClass{

 background-color:#bed6f8;

}

...

The "styleClass" attribute for <rich:togglePanel> is defined as it's shown in the example below:

Example:

<rich:togglePanel ... styleClass="myClass"/>

This is a result:

Figure 6.192. Redefinition styles with own classes and "styleClass"

attributes

As it could be seen on the picture above, background color for panel was changed.

6.10.15.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

togglePanel.jsf?c=togglePanel] you can see the example of <rich:togglePanel> usage and

sources for the given example.

http://livedemo.exadel.com/richfaces-demo/richfaces/togglePanel.jsf?c=togglePanel
http://livedemo.exadel.com/richfaces-demo/richfaces/togglePanel.jsf?c=togglePanel
http://livedemo.exadel.com/richfaces-demo/richfaces/togglePanel.jsf?c=togglePanel

 < rich:toggleControl > available since 3.0.0

585

6.10.16. < rich:toggleControl > available since 3.0.0

6.10.16.1. Description

A link type control for switching between togglePanel facets. Target Panel is specified with

"for" attribute. It can be located inside or outside the togglePanel. As the result of switching

between facets previous facet is hidden and another one (specified with "switchToState" or panel

"stateOrder" attributes) is shown.

Figure 6.193. <rich:toggleControl> component

6.10.16.2. Key Features

• Highly customizable look and feel

• Can be located anywhere in a page layout

• Switching is provided in the three modes

• Server

• Client

• Ajax

Table 6.300. rich : toggleControl attributes

Attribute Name Description

accesskey HTML: Access key that, when pressed,

transfers focus to this element

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Chapter 6. The RichFaces Comp...

586

Attribute Name Description

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle Boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which send the request only.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bypassUpdates If "true", after process validations phase

skip updates of model beans an force

render response. Can be used for validate

components input

data Serialized (on default with JSON) data passed

on the client by a developer on AJAX request.

It's accessible via "data.foo" syntax

dir HTML: Direction indication for text that does

not inherit directionality. Possible values are

"LTR" (left-to-right) and "RTL" (right-to-left).

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move, etc.)

focus ID of an element to set focus after request is

completed on client side

for String, which contains id (in the format of

a UIComponent.findComponent() call) of the

target Toggle Panel.

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

 < rich:toggleControl > available since 3.0.0

587

Attribute Name Description

on the client side if the response isn't actual

now

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

lang HTML: Code describing the language used in

the generated markup for this component

limitToList If "true", updates on client side ONLY

elements from this 'reRender' property. if

"false" (default) updates all rendered by ajax

region components

onbeforedomupdate The client-side script method to be called

before DOM is updated

onblur DHTML: The client-side script method to be

called when the element loses the focus

onclick DHTML: The client-side script method to be

called when the element is clicked

oncomplete The client-side script method to be called after

the request is completed

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed and released over

the element

onkeyup DHTML: The client-side script method to be

called when a key is released over the element

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

588

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released over

the element

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

 < rich:toggleControl > available since 3.0.0

589

Attribute Name Description

switchToState Contains one of the facets names where target

togglePanel is switched to

tabindex HTML: Position of this element in the tabbing

order for the current document. This value must

be an integer between 0 and 32767

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

title HTML: Advisory title information about markup

elements generated for this component

value JSF: Initial value to set when rendered for the

first time

Table 6.301. Component identification parameters

Name Value

component-type org.richfaces.ToggleControl

component-class org.richfaces.component.html.HtmlToggleControl

component-family org.richfaces.ToggleControl

renderer-type org.richfaces.ToggleControlRenderer

tag-class org.richfaces.taglib.ToggleControlTag

6.10.16.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:toggleControl for="panel"/>

 ...

 <rich:togglePanel id="panel" stateOrder="[facets order to be switched]">

 <!--Set of Facets-->

 </rich:togglePanel>

...

6.10.16.4. Creating the Component Dynamically Using Java

Example:

Chapter 6. The RichFaces Comp...

590

import org.richfaces.component.html.HtmlToggleControl;

...

HtmlToggleControl myControl = new HtmlToggleControl();

...

6.10.16.5. Details of Usage

As it was mentioned above, the control could be in any place in layout and linked to a switching

panel that is managed with "for" attribute (in the "for" attribute the full component "id" is specified

according to naming containers).

The togglePanel could be also switched from the side of the control instead of being strictly defined

in "switchOrder" attribute of <rich:togglePanel>.

Example:

...

<rich:togglePanel id="panel" initialState="empty" switchType="client">

 <f:facet name="first">

 <h:panelGroup>

 <rich:toggleControl for="helloForm:panel" value="Empty" switchToState="empty"/>

 <rich:toggleControl for="helloForm:panel" value=" Second" switchToState="second"/

>

 <!--Some content-->

 </h:panelGroup>

 </f:facet>

 <f:facet name="second">

 <h:panelGroup>

 <rich:toggleControl for="helloForm:panel" value="Empty" switchToState="empty"/>

 <rich:toggleControl for="helloForm:panel" value=" first" switchToState="first"/>

 <!--Some content-->

 </h:panelGroup>

 </f:facet>

 <f:facet name="empty">

 <h:panelGroup>

 <rich:toggleControl for="helloForm:panel" value="first" switchToState="first"/>

 <rich:toggleControl for="helloForm:panel" value=" second" switchToState="second"/

>

 </h:panelGroup>

 </f:facet>

</rich:togglePanel>

...

 < rich:toggleControl > available since 3.0.0

591

In this example the switching is performed on facets specified in the "switchToState" attribute.

Information about the "process" attribute usage you can find " Decide what to process " guide

section.

6.10.16.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

To redefine the appearance of all <rich:toggleControl> components at once, you should add

to your style sheets style class used by a <rich:toggleControl> component.

6.10.16.7. Definition of Custom Style Classes

Table 6.302. Classes names that define a component appearance

Class name Description

rich-tglctrl Defines styles for a toggle control

In order to redefine styles for all <rich:toggleControl> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-tglctrl {

 font-family: monospace;

}

...

This is a result:

Figure 6.194. Redefinition styles with predefined classes

In the example font family was changed.

Also it's possible to change styles of particular <rich:toggleControl> component. In this case

you should create own style classes and use them in corresponding <rich:toggleControl>

styleClass attributes. An example is placed below:

Example:

...

Chapter 6. The RichFaces Comp...

592

.myClass {

 font-style: italic;

}

...

The "styleClass" attribute for <rich:toggleControl> is defined as it's shown in the example

below:

Example:

<rich:toggleControl ... styleClass="myClass"/>

This is a result:

Figure 6.195. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style was changed.

6.10.17. < rich:toolBar > available since 3.0.0

6.10.17.1. Description

A horizontal bar with Action items on it that accepts any JSF components as children.

Figure 6.196. <rich:toolBar> with action items

6.10.17.2. Key Features

• Skinnable menu panel and child items

• Standard top menu bar that can be used in accordance with a menu component

• Grouping bar content

• Easily place content on any side of a menu bar using predefined group layout

• Predefined separators for menu items and groups

• Any content inside

 < rich:toolBar > available since 3.0.0

593

Table 6.303. rich : toolBar attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

contentClass Assigns one or more space-separated CSS

class names to the tool bar content

contentStyle CSS style rules to be applied to the tool bar

content

height A height of a bar in pixels. If a height is

not defined, a bar height depends of the

"headerFontSize" skin parameter.

id JSF: Every component may have a unique id

that is automatically created if omitted

itemSeparator A separator between items on a bar. Possible

values are "none", "line", "square", "disc" and

"grid". Default value is "none".

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onitemclick The client-side script method to be called when

an item is clicked

onitemdblclick The client-side script method to be called when

an item is double-clicked

onitemkeydown The client-side script method to be called when

a key is pressed down over an item

onitemkeypress The client-side script method to be called when

a key is pressed and released over an item

onitemkeyup The client-side script method to be called when

a key is released over an item

onitemmousedown The client-side script method to be called when

a mouse button is pressed down over an item

onitemmousemove The client-side script method to be called when

a pointer is moved within an item

onitemmouseout The client-side script method to be called when

a pointer is moved away from an item

onitemmouseover The client-side script method to be called when

a pointer is moved onto an item

Chapter 6. The RichFaces Comp...

594

Attribute Name Description

onitemmouseup The client-side script method to be called when

a mouse button is released over an item

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

separatorClass Assigns one or more space-separated CSS

class names to the tool bar separators

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

width HTML: A width of a bar that can be defined

in pixels or as percentage. Default value is

"100%".

 < rich:toolBar > available since 3.0.0

595

Table 6.304. Component identification parameters

Name Value

component-type org.richfaces.ToolBar

component-class org.richfaces.component.html.HtmlToolBar

component-family org.richfaces.ToolBar

renderer-type org.richfaces.ToolBarRenderer

tag-class org.richfaces.taglib.ToolBarTag

6.10.17.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:toolBar>

 <!--Set of action or other JSF components-->

</rich:toolBar>

...

6.10.17.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlToolBar;

...

HtmlToolBar myToolBar = new HtmlToolBar();

...

6.10.17.5. Details of Usage

A toolBar is a wrapper component that facilitates creation of menu and tool bars. All components

defined inside are located on a stylized bar with possibility to group, arrange on the both bar sides,

and place predefined separators between them.

Grouping and an input side definition is described for toolBarGroup that defines this functionality.

Separators are located between components with the help of the "itemSeparator" attribute with

four predefined values:

• "none"

• "line"

Chapter 6. The RichFaces Comp...

596

• "square"

• "disc"

For example, when setting a separator of a disc type, the following result is produced:

Figure 6.197. <rich:toolBar> with a "disc" separator

Moreover, for toolBar style "width" and "height" attributes are placed above all.

A custom separator can be added with the help of "itemSeparator" facet.

Example:

...

<f:facet name="itemSeparator">

 <rich:separator width="2" height="14" />

</f:facet>

...

Custom separator can be also specified by URL to the separator image in the attribute

"itemSeparator" of the <rich:toolBar> .

Example:

...

<rich:toolBar id="toolBar" width="#{bean.width}" height="#{bean.height}" itemSeparator="/

images/separator_img.jpg"/>

...

This is a result:

Figure 6.198. <rich:toolBar> with "itemSeparator" attribute.

 < rich:toolBar > available since 3.0.0

597

As it could be seen in the picture above, the image for itemSeparator was changed.

6.10.17.6. Facets

Table 6.305. Facets

Facet name Description

itemSeparator Defines the custom separator. Related

attribute is "itemSeparator"

6.10.17.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:toolBar> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:toolBar> component

6.10.17.8. Skin Parameters Redefinition

Table 6.306. Skin parameters redefinition for a component exterior

Skin parameters CSS properties

panelBorderColor border-color

headerBackgroundColor background-color

Table 6.307. Skin parameters redefinition for a component item

Skin parameters CSS properties

headerSizeFont font-size

headerTextColor color

headerWeightFont font-weight

headerFamilyFont font-family

6.10.17.9. Definition of Custom Style Classes

Table 6.308. Classes names that define a component appearance

Class name Description

rich-toolbar Defines styles for a toolbar element

Chapter 6. The RichFaces Comp...

598

Class name Description

rich-toolbar-item Defines styles for a toolbar item

Figure 6.199. Classes names

In order to redefine styles for all <rich:toolBar> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-toolbar-item{

 font-weight:bold;

}

...

This is a result:

Figure 6.200. Redefinition styles with predefined classes

In the example font weight for items was changed.

Also it's possible to change styles of particular <rich:toolBar> component. In this case you

should create own style classes and use them in corresponding <rich:toolBar> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style:italic;

 font-weight:bold;

}

...

 < rich:toolBarGroup > available since 3.0.0

599

The "styleClass" attribute for <rich:toolBar> is defined as it's shown in the example below:

Example:

<rich:toolBar ... styleClass="myClass"/>

This is a result:

Figure 6.201. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above,the font style and the font weight for items was changed.

The component also has the standard attributes "style" and "styleClass" that could redefine an

appearance of a particular component variants.

6.10.17.10. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

toolBar.jsf?c=toolBar] you can see the example of <rich:toolBar> usage and sources for the

given example.

6.10.18. < rich:toolBarGroup > available since 3.0.0

6.10.18.1. Description

A group of items inside a tool bar.

Figure 6.202. <rich:toolbarGroup> with items on it

6.10.18.2. Key Features

• Fully skinnable with its child items

• Grouping bar content

• Easily place content on either side of tool bar using a predefined group layout

http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar
http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar
http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar

Chapter 6. The RichFaces Comp...

600

• Predefined separators for menu items and groups

• Any content inside

Table 6.309. rich : toolBarGroup attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

itemSeparator A separator for the items in a group. Possible

values are "none", "line", "square", "disc" and

"grid" Default value is "none".

location A location of a group on a tool bar. Possible

values are "left" and "right". Default value is

"left".

onitemclick The client-side script method to be called when

an item is clicked

onitemdblclick The client-side script method to be called when

an item is double-clicked

onitemkeydown The client-side script method to be called when

a key is pressed down over an item

onitemkeypress The client-side script method to be called when

a key is pressed and released over an item

onitemkeyup The client-side script method to be called when

a key is released over an item

onitemmousedown The client-side script method to be called when

a mouse button is pressed down over an item

onitemmousemove The client-side script method to be called when

a pointer is moved within an item

onitemmouseout The client-side script method to be called when

a pointer is moved away from an item

onitemmouseover The client-side script method to be called when

a pointer is moved onto an item

onitemmouseup The client-side script method to be called when

a mouse button is released over an item

rendered JSF: If "false", this component is not rendered

separatorClass Assigns one or more space-separated CSS

class names to the tool bar group separators

 < rich:toolBarGroup > available since 3.0.0

601

Attribute Name Description

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

Table 6.310. Component identification parameters

Name Value

component-type org.richfaces.ToolBarGroup

component-class org.richfaces.component.html.HtmlToolBarGroup

component-family org.richfaces.ToolBarGroup

renderer-type org.richfaces.ToolBarGroupRenderer

tag-class org.richfaces.taglib.ToolBarGroupTag

6.10.18.4. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:toolBar>

 ...

 <rich:toolBarGroup>

 <!--Set of action or other JSF components-->

 </rich:toolBarGroup>

 <rich:toolBarGroup>

 <!--Set of action or other JSF components-->

 </rich:toolBarGroup>

 ...

</rich:toolBar>

...

6.10.18.5. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlToolBarGroup;

...

Chapter 6. The RichFaces Comp...

602

HtmlToolBarGroup myToolBarGroup = new HtmlToolBarGroup();

...

6.10.18.6. Details of Usage

A toolBarGroup is a wrapper component that groups toolBar content and facilitates creation of

menu and tool bars. All components defined inside are located on a stylized bar with a possibility

to group, arrange on the both bar sides, and place predefined separators between them.

Separators are located between components with the help of the "itemSeparator" attribute with

four predefined values:

• "none"

• "line"

• "square"

• "disc"

To control the group location inside, use the "location" attribute with "left" (DEFAULT) and "right"

values.

Example:

...

<rich:toolBar itemSeparator="disc" width="500">

 <rich:toolBarGroup itemSeparator="line">

 <h:commandLink value="Command 1.1"/>

 <h:commandLink value="Command 2.1"/>

 </rich:toolBarGroup>

 <rich:toolBarGroup itemSeparator="line" location="right">

 <h:commandLink value="Command 1.2"/>

 <h:commandLink value="Command 2.2"/>

 </rich:toolBarGroup>

</rich:toolBar>

...

The code result is the following:

Figure 6.203. Stylized <rich:toolbarGroup> with "location" ,

"itemSeparator" attributes

 < rich:toolBarGroup > available since 3.0.0

603

6.10.18.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:toolBarGroup> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:toolBarGroup> component

6.10.18.8. Definition of Custom Style Classes

It's possible to change styles of particular <rich:toolBarGroup> component. In this case you

should create own style classes and use them in corresponding <rich:toolBarGroup> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style: italic;

}

...

The "styleClass" attribute for <rich:toolBarGroup> is defined as it's shown in the example

below:

Example:

<rich:toolBarGroup ... styleClass="myClass"/>

This is a result:

Figure 6.204. Redefinition styles with own classes and "styleClass"

attributes

As it could be seen on the picture above,font style for first toolBarGroup was changed.

6.10.18.9. Relevant resources links

Some additional information about usage of component can be found on the component Live

Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar].

http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar
http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar
http://livedemo.exadel.com/richfaces-demo/richfaces/toolBar.jsf?c=toolBar

Chapter 6. The RichFaces Comp...

604

6.10.19. < rich:toolTip > available since 3.1.0

3.1.0

6.10.19.1. Description

The <rich:toolTip> component is used for creation of event-triggered non modal popup, that

contains information regarding the page element, that event was applied to.

Figure 6.205. <rich:toolTip> component

6.10.19.2. Key Features

• Highly customizable look and feel

• Different ways of data loading to toolTip

• Disablement support

Table 6.311. rich : toolTip attributes

Attribute Name Description

action MethodBinding pointing at the application

action to be invoked, if this UIComponent is

activated by you, during the Apply Request

Values or Invoke Application phase of the

request processing lifecycle, depending on the

value of the immediate property

actionListener MethodBinding pointing at method accepting

an ActionEvent with return type void

ajaxSingle boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which sends the request only.

Default value is "true"

attached If the value of the "attached" attribute is

"true", a component is attached to the parent

component; if "false", component does not

listen to activating browser events, but could be

activated externally. Default value is "true"

 < rich:toolTip > available since 3.1.0

605

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

direction Defines direction of the popup list to appear.

Possible values are "top-right", "top-left",

"bottom-right", "bottom-left", "auto". Default

value is "bottom-right"

disabled HTML: If false the components is rendered on

the client but JavaScript for calling disabled.

Default value is "false"

event DEPRECATED. Use showEvent instead.

Default value is "mouseover"

followMouse If "true" tooltip should follow the mouse while it

moves over the parent element. Default value

is "false"

for Id of the target component

hideDelay Delay in milliseconds before tooltip will be

hidden. Default value is "0"

hideEvent Event that triggers the tooltip disappearance.

Default value is "none" (so, the component

does not disappears)

horizontalOffset Sets the horizontal offset between pop-up list

and mouse pointer. Default value is "10"

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate True means, that the default ActionListener

should be executed immediately (i.e. during

Apply Request Values phase of the request

processing lifecycle), rather than waiting until

the Invoke Application phase

layout Block/inline mode flag. Possible value

are: "inline" or "block". Default value is

"inline". Tooltip will contain div/span elements

respectively

mode Controls the way of data loading to a tooltip.

May have following values: "client" (default)

and "ajax"

onclick DHTML: The client-side script method to be

called when the tooltip is clicked

Chapter 6. The RichFaces Comp...

606

Attribute Name Description

oncomplete The client-side script method to be called after

the tooltip is shown

ondblclick DHTML: The client-side script method to be

called when the tooltip is double-clicked

onhide The client-side script method to be called after

the tooltip is hidden

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onshow The client-side script method to be called

before the tooltip is shown

rendered JSF: If "false", this component is not rendered

showDelay Delay in milliseconds before tooltip will be

displayed. Default value is "0"

showEvent Event that triggers the tooltip. Default value is

"onmouseover"

style HTML: CSS style rules to be applied to the

component

 < rich:toolTip > available since 3.1.0

607

Attribute Name Description

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

value JSF: The current value for this component

verticalOffset Sets the vertical offset between pop-up list and

mouse pointer. Default value is "10"

zorder The same as CSS z-index for toolTip. Default

value is "99"

Table 6.312. Component identification parameters

Name Value

component-type org.richfaces.component.toolTip

component-class org.richfaces.component.html.HtmlToolTip

component-family org.richfaces.component.toolTip

renderer-type org.richfaces.renderkit.html.toolTipRenderer

tag-class org.richfaces.taglib.HtmlToolTipTag

6.10.19.3. Creating the Component with a Page Tag

The simplest way to create the <rich:toolTip> component on a page is as following:

...

<rich:panel>

 <rich:toolTip value="Hello, I am the content of this tooltip!"/>

</rich:panel>

...

6.10.19.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlToolTip;

...

HtmltoolTip mytoolTip = new HtmltoolTip();

...

Chapter 6. The RichFaces Comp...

608

6.10.19.5. Details of Usage

Text information, labeled on the <rich:toolTip> , is specified with "value" attribute. Text that

is put between tooltip start and end tags will also be rendered as tooltip content and could be

marked with HTML tags. Images, links, buttons and other RichFaces components are also may

be put and composed inside the <rich:toolTip> . The <rich:toolTip> borders are stretched

automatically to enclose the contents.

There are three ways to attach the <rich:toolTip> to a page element. The first and simplest

one is when the <rich:toolTip> is nested into a page element the tooltip is applied to. This way

is shown on example in the Creating the Component with a Page Tag section. The "attached"

attribute is "true" by default in this case, which means that the tolltip will be invoked automatically

when the mouse cursor is hovered above the parent component.

The second one uses <rich:toolTip> "for" attribute. In this case the <rich:toolTip> is defined

separately from a component it is applied to.

Example:

<rich:panel id="panelId">

...

</rich:panel>

<rich:toolTip value="This is a tooltip." for="panelId"/>

These two ways are also applicable for HTML elements that are not presented in components

tree built by facelets. Use "for" attribute to attach the <rich:toolTip> in both cases.

Example:

<!-- The <rich:toolTip> is nested into the parent HTML element -->

<div id="para1">

 <p>This paragraph and tooltip are nested into the same <div> element.</p>

 <rich:toolTip for="para1">This is a tooltip.</rich:toolTip>

</div>

<!-- The <rich:toolTip> is defined separately -->

<div id="para2">

 <p>The tooltip for this paragraph is defined separately.</p>

</div>

<rich:toolTip for="para2">This is a tooltip.</rich:toolTip>

The third way to invoke the <rich:toolTip> uses JS API function. List of JS API functions

available for <rich:toolTip> is listed below. JS API functions are defined for a component the

 < rich:toolTip > available since 3.1.0

609

<rich:toolTip> is applied to. The <rich:toolTip> "attached" attribute should be set to "false"

in this case.

Example:

<rich:panel id="panelId" onclick="#{rich:component("tooltipId")}.show(event);" />

<a4j:form>

 <rich:toolTip id="tooltipId" attached="false" value="This is a tooltip."/>

</a4j:form>

Notes:

To provide <rich:toolTip> component proper work in complex cases do the

following:

• specify "id's" for both <rich:toolTip> and component it is applied to;

• define the <rich:toolTip> as last child, when nesting it into the component the

<rich:toolTip> is applied to;

• put the <rich:toolTip> into <a4j:form> when invoking it with JS API function.

The "mode" attribute is provided you to control the way of data loading to <rich:toolTip> . The

component works properly in client and Ajax modes. In client mode <rich:toolTip> content is

rendered once on the server and could be rerendered only via external submit. In Ajax mode

<rich:toolTip> content is requested from server for every activation. For Ajax mode there is

possibility to define a facet "defaultContent" , which provides default <rich:toolTip> content to

be displayed, while main content is loading into the <rich:toolTip> (see the example below).

Example:

...

<h:commandLink value="Simple Link" id="link">

 <rich:toolTip followMouse="true" direction="top-

right" mode="ajax" value="#{bean.toolTipContent}" horizontalOffset="5"

 verticalOffset="5" layout="block">

 <f:facet name="defaultContent">

 <f:verbatim>DEFAULT TOOLTIP CONTENT</f:verbatim>

 </f:facet>

 </rich:toolTip>

</h:commandLink>

...

Chapter 6. The RichFaces Comp...

610

This is the result:

Figure 6.206. <rich:toolTip> component with default content

And after <rich:toolTip> loaded it is changed to next one:

Figure 6.207. <rich:toolTip> component with loaded content

<rich:toolTip> appears attached to the corner dependent on the "direction" attribute. By default

it is positioned bottom-right. <rich:toolTip> activation occurs after an event, defined on the

parent component, takes into consideration the "delay" attribute or after calling JS API function

show(). "hideEvent" attribute defines the way how <rich:toolTip> disappears. It default value

is "none", so the <rich:toolTip> does not disappears. Deactivation may be set for example on

mouseout event on the parent component (excepting the situation when the mouse is hovered

onto the <rich:toolTip> itself) or after calling JS API function hide().

By default, <rich:toolTip> appears smart positioned. But as you can see from the previous

example, you can define an appearance direction via the corresponding attribute "direction" . And

also it's possible to define vertical and horizontal offsets relatively to a mouse position.

Disabled <rich:toolTip> is rendered to a page as usual but JS that responds for its activation

is disabled until enable() is called.

Moreover, to add some JavaScript effects, client events defined on it are used:

Standart:

• "onclick"

• "ondblclick"

• "onmouseout"

• "onmousemove"

• "onmouseover"

Special:

 < rich:toolTip > available since 3.1.0

611

• "onshow" - Called after the tooltip is called (some element hovered) but before its request

• "oncomplete" - Called just after the tooltip is shown

• "onhide" - Called after the tooltip is hidden

6.10.19.6. JavaScript API

Table 6.313. JavaScript API

Function Description

show() Shows the corresponding toolTip

hide() Hides the corresponding toolTip

enable() Enables the corresponding toolTip

disable() Disables the corresponding toolTip

6.10.19.7. Facets

Table 6.314. Facets

Facet name Description

defaultContent Defines the default content for toolTip. It is used

only if mode = "ajax"

6.10.19.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:toolTip> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:toolTip> component

6.10.19.9. Skin Parameters Redefinition

Table 6.315. Skin parameters redefinition for a component

Skin parameters CSS properties

tipBackgroundColor background-color

tipBorderColor border-color

generalSizeFont font-size

generalFamilyFont font-family

Chapter 6. The RichFaces Comp...

612

Skin parameters CSS properties

generalFontColor color

6.10.19.10. Definition of Custom Style Classes

Table 6.316. Classes names that define a component appearance

Class name Description

rich-tool-tip Defines styles for a wrapper or <div>

element of a toolTip

It depends on <rich:toolTip> layout what a wrapper element or <div> to choose.

In order to redefine styles for all <rich:toolTip> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the table above) and

define necessary properties in them. An example is placed below:

Example:

...

.rich-tool-tip{

 background-color: #eef2f8;

 border-color: #7196c8;

}

...

This is a result:

Figure 6.208. Redefinition styles with predefined classes

In the example a tool tip background color, border color and font style were changed.

Also it's possible to change styles of particular <rich:toolTip> component. In this case you should

create own style classes and use them in corresponding <rich:toolTip> styleClass attributes.

An example is placed below:

Example:

...

Rich Input

613

.myClass{

 font-style: italic;

}

...

The "styleClass" attribute for <rich:toolTip> is defined as it's shown in the example below:

Example:

<rich:toolTip ... styleClass="myClass"/>

This is a result:

Figure 6.209. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, background color and border color of tool tip were

changed.

6.10.19.11. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

toolTip.jsf?c=toolTip] you can see the example of <rich:toolTip> usage and sources for the

given example.

6.11. Rich Input

In this section you will find the components that help you deal with various kinds of user inputs

from picking a date, WYSIWYG text editing to uploading a file.

6.11.1. < rich:calendar > available since 3.1.0

3.1.0

6.11.1.1. Description

The <rich:calendar> component is used for creating inputs for dates enriched with interactive

calendar that allows navigate through monthes and years.

http://livedemo.exadel.com/richfaces-demo/richfaces/toolTip.jsf?c=toolTip
http://livedemo.exadel.com/richfaces-demo/richfaces/toolTip.jsf?c=toolTip
http://livedemo.exadel.com/richfaces-demo/richfaces/toolTip.jsf?c=toolTip

Chapter 6. The RichFaces Comp...

614

Figure 6.210. <rich:calendar> component

6.11.1.2. Key Features

• Highly customizable look and feel

• Popup representation

• Disablement support

• Smart and user-defined positioning

• Cells customization

• Macro substitution based on tool bars customization

Table 6.317. rich : calendar attributes

Attribute Name Description

ajaxSingle boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which send the request only.

Default value is "true"

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

boundaryDatesMode This attribute is responsible for behaviour of

dates from the previous and next months which

are displayed in the current month. Valid values

 < rich:calendar > available since 3.1.0

615

Attribute Name Description

are "inactive" (Default) dates inactive and gray

colored, "scroll" boundaries work as month

scrolling controls, and "select" boundaries work

in the same way as "scroll" but with the date

clicked selection. Default value is "inactive".

buttonClass Assigns one or more space-separated CSS

class names to the component popup button

buttonIcon Defines icon for the popup button element. The

attribute is ignored if the "buttonLabel" is set

buttonIconDisabled Defines disabled icon for the popup button

element. The attribute is ignored if the

"buttonLabel" is set

buttonLabel Defines label for the popup button element.

If the attribute is set "buttonIcon" and

"buttonIconDisabled" are ignored

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

cellHeight attribute to set fixed cells height

cellWidth attribute to set fixed cells width

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

currentDate Defines current date

currentDateChangeListener MethodExpression representing an action

listener method that will be notified after date

selection

dataModel Used to provide data for calendar elements.

If data is not provided, all Data Model related

functions are disabled

datePattern Defines date pattern. Default value is "MMM d,

yyyy".

dayStyleClass Should be binded to some JS function that will

provide style classes for special sets of days

highlighting

Chapter 6. The RichFaces Comp...

616

Attribute Name Description

defaultTime Defines time that will be used: 1) to

set time when the value is empty 2)

to set time when date changes and flag

"resetTimeOnDateSelect" is true. Default value

is "getDefaultValueOfDefaultTime()"

direction Defines direction of the calendar popup

("top-left", "top-right", "bottom-left", "bottom-

right" (Default), "auto"). Default value is

"bottom-right".

disabled HTML: If "true", rendered is disabled. In

"popup" mode both controls are disabled.

Default value is "false".

enableManualInput If "true" calendar input will be editable and it

will be possible to change the date manualy. If

"false" value for this attribute makes a text field

"read-only", so the value can be changed only

from a handle. Default value is "false".

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

requests of frequently events (key press,

mouse move etc.)

firstWeekDay Gets what the first day of the week is; e.g.,

SUNDAY in the U.S., MONDAY in France.

Default value is "getDefaultFirstWeekDay()".

Possible values should be integers from 0 to 6,

0 corresponds to Sunday

focus ID of an element to set focus after request is

completed on client side

horizontalOffset Sets the horizontal offset between button and

calendar element conjunction point. Default

value is "0".

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

 < rich:calendar > available since 3.1.0

617

Attribute Name Description

on the client side if the response isn't actual

now

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

inputClass Assigns one or more space-separated CSS

class names to the component input field

inputSize Defines the size of an input field. Similar to the

"size" attribute of <h:inputText/>

inputStyle CSS style rules to be applied to the component

input field

isDayEnabled Should be binded to some JS function that

returns day state

jointPoint Set the corner of the button for the popup to

be connected with (top-left, top-right, bottom-

left (Default), bottom-right, auto). Default value

is "bottom-left".

label A localized user presentable name for this

component.

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

locale Used for locale definition. Default value is

"getDefaultLocale()".

minDaysInFirstWeek Gets what the minimal days required in the first

week of the year are; e.g., if the first week is

defined as one that contains the first day of

the first month of a year, this method returns

1. If the minimal days required must be a full

week, this method returns 7. Default value is

"getDefaultMinDaysInFirstWeek()".

mode Valid values: ajax or client. Default value is

"client".

Chapter 6. The RichFaces Comp...

618

Attribute Name Description

monthLabels Attribute that allows to customize names of

the months. Should accept list with the month

names

monthLabelsShort Attribute that allows to customize short names

of the months. Should accept list with the

month names

onbeforedomupdate The client-side script method to be called

before DOM is updated

onchanged The client-side script method to be called when

the date or time is changed and applied to input

oncollapse The client-side script method to be called

before the calendar popup is closed

oncomplete The client-side script method to be called after

the request is completed

oncurrentdateselect The client-side script method to be called when

the current month or year is changed

oncurrentdateselected The client-side script method to be called after

the current month or year is changed

ondatemouseout The client-side script method to be called when

a pointer is moved away from the date cell

ondatemouseover The client-side script method to be called when

a pointer is moved onto the date cell

ondateselect The client-side script method to be called when

some date cell is selected

ondateselected The client-side script method to be called after

some date cell is selected

onexpand The client-side script method to be called

before the calendar popup is opened

oninputblur The client-side script method to be called when

the input field loses the focus

oninputchange The client-side script method to be called when

the input field value is changed manually

oninputclick The client-side script method to be called when

the input field is clicked

oninputfocus The client-side script method to be called when

the input field gets the focus

oninputkeydown The client-side script method to be called when

a key is pressed down in the input field

 < rich:calendar > available since 3.1.0

619

Attribute Name Description

oninputkeypress The client-side script method to be called when

a key is pressed and released in the input field

oninputkeyup The client-side script method to be called when

a key is released in the input field

oninputmouseout The client-side script method to be called when

a pointer is moved away from the input field

oninputmouseover The client-side script method to be called when

a pointer is moved onto the input field

oninputselect The client-side script method to be called when

the input field value is selected

ontimeselect The client-side script method to be called

before new time is selected

ontimeselected The client-side script method to be called after

time is selected

popup If "true", the calendar will be rendered initially

as hidden with additional elements for calling

as popup. Default value is "true".

preloadDateRangeBegin Define the initial range of date

which will be loaded to client from

dataModel under rendering. Default value is

"getDefaultPreloadBegin(getCurrentDateOrDefault())".

preloadDateRangeEnd Defines the last range of date

which will be loaded to client from

dataModel under rendering. Default value is

"getDefaultPreloadEnd(getCurrentDateOrDefault())".

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

readonly HTML: If "true". Date and time are not

selectable. In "popup" mode input is disabled

and button is enabled. Default value is "false".

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

Chapter 6. The RichFaces Comp...

620

Attribute Name Description

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

resetTimeOnDateSelect If value is true then calendar should change

time to defaultTime for newly-selected dates.

Default value is "false"

showApplyButton If false ApplyButton should not be shown.

Default value is "false".

showFooter If false Calendar's footer should not be shown.

Default value is "true".

showHeader If false Calendar's header should not be

shown. Default value is "true".

showInput "false" value for this attribute makes text field

invisible. It works only if popupMode="true" If

showInput is "true" - input field will be shown.

Default value is "true".

showWeekDaysBar If false this bar should not be shown. Default

value is "true".

showWeeksBar If false this bar should not be shown. Default

value is "true".

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

 < rich:calendar > available since 3.1.0

621

Attribute Name Description

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

timeZone Used for current date calculations. Default

value is "getDefaultTimeZone()".

todayControlMode This attribute defines the mode for "today"

control. Possible values are "scroll", "select",

"hidden". Default value is "select".

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

verticalOffset Sets the vertical offset between button and

calendar element conjunction point. Default

value is "0".

weekDayLabels List of the day names displays on the days bar

in the following way "Sun, Mon, Tue, Wed, "

weekDayLabelsShort Attribute that allows to customize short names

of the weeks. Should accept list with the weeks

names.

zindex Attribute is similar to the standard HTML

attribute and can specify window placement

relative to the content. Default value is "3".

Chapter 6. The RichFaces Comp...

622

Table 6.318. Component identification parameters

Name Value

component-type org.richfaces.Calendar

component-class org.richfaces.component.html.HtmlCalendar

component-family org.richfaces.Calendar

renderer-type org.richfaces.CalendarRenderer

tag-class org.richfaces.taglib.CalendarTag

6.11.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

...

<rich:calendar popup="false"/>

...

6.11.1.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.HtmlCalendar;

...

HtmlCalendar myCalendar = new HtmlCalendar();

...

6.11.1.5. Details of Usage

The "popup" attribute defines calendar representation mode on a page. If it's "true" the calendar

is represented on a page as an input field and a button. Clicking on the button calls the calendar

popup as it's shown on the picture below. For popup rendering a "lazy" loading is implemented:

after the request is completed a client side script method builds the popup. Such improvement

speeds up page loading time.

 < rich:calendar > available since 3.1.0

623

Figure 6.211. Using the "popup" attribute: calendar calls after you click

on the button.

Usage "currentDate" attribute isn't available in the popup mode.

With help of the "currentDate" attribute you can define month and year which will be displayed

currently.

The "value" attribute stores selected date currently.

The difference between the value and currentDate attributes

The "todayControlMode" attribute defines the mode for "today" control. Possible values are:

• "hidden" - in this mode "Today" button will not be displayed

• "select" - (default) in this state "Today" button activation will scroll the calendar to the current

date and it become selected date

• "scroll" - in this mode "Today" activation will simply scroll the calendar to current month without

changing selected day.

With the help of the "readonly" attribute you can make date, time and input field unavailable, but

you can look through the next/previous month or the next/previous year.

In order to disable the component, use the "disabled" attribute. With its help both controls are

disabled in the "popup" mode.

Figure 6.212. Using the "disabled" attribute.

Chapter 6. The RichFaces Comp...

624

The <rich:calendar> component can render pages of days in two modes. A mode could be

defined with the "mode" attribute with two possible parameters: "ajax" and "client". Default

value is "client".

• Ajax

Calendar requests portions of data from Data Model for a page rendering. If "dataModel" attribute

has "null" value, data requests are not sent. In this case the "ajax" mode is equal to the "client".

• Client

Calendar loads an initial portion of data in a specified range and use this data to render months.

Additional data requests are not sent.

Note:

"preloadDateRangeBegin" and "preloadDateRangeEnd" attributes were

designed only for the "client" mode to load some data initially.

"ondateselect" attribute is used to define an event that is triggered before date selection.

The "ondateselected" attribute is used to define an event that is triggered after date selection.

For example, to fire some event after date selection you should use <a4j:support> . And it should

be bound to "ondateselected" event as it's shown in the example below:

...

<rich:calendar id="date" value="#{bean.dateTest}">

 <a4j:support event="ondateselected" reRender="mainTable"/>

</rich:calendar>

...

Note:

When a timePicker was fulfilled, the "ondateselected" attribute does not allow you

to submit a selected date. It happens because this event rose when the date is

selected but the input hasn't been updated with new value yet.

"ondateselect" could be used for possibility of date selection canceling. See an example below:

...

 < rich:calendar > available since 3.1.0

625

<rich:calendar id="date" value="#{bean.dateTest}" ondateselect="if (!confirm('Are you sure to

 change date?')){return false;}"/>

...

"oncurrentdateselected" event is fired when the "next/previous month" or "next/previous year"

button is pressed, and the value is applied.

"oncurrentdateselect" event is fired when the "next/previous month" or "next/previous year" button

is pressed, but the value is not applied yet (you can change the logic of applying the value). Also

this event could be used for possibility of "next/previous month" or "next/previous year" selection

canceling. See an example below:

Example:

...

<rich:calendar id="date" value="#{bean.dateTest}" oncurrentdateselect="if (!confirm('Are you

 sure to change month(year)?')){return false;}"

 oncurrentdateselected="alert('month(year) select:'+event.rich.date.toString());"/>

...

How to use these attributes see also on the RichFaces Users Forum [http://www.jboss.com/

index.html?module=bb&op=viewtopic&p=4092275#4092275].

Information about the "process" attribute usage you can find in the corresponding section .

There are three button-related attributes:

• "buttonLabel" defines a label for the button. If the attribute is set "buttonIcon" and

"buttonIconDisabled" are ignored

• "buttonIcon" defines an icon for the button

• "buttonIconDisabled" defines an icon for the disabled state of the button

The "direction" and "jointPoint" attributes are used for defining aspects of calendar appearance.

The possible values for the "direction" are:

• "top-left" - a calendar drops to the top and left

• "top-right" - a calendar drops to the top and right

• "bottom-left" - a calendar drops to the bottom and left

• "bottom-right" - a calendar drops to the bottom and right

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4092275#4092275

Chapter 6. The RichFaces Comp...

626

• "auto" - smart positioning activation

By default, the "direction" attribute is set to "bottom-right".

The possible values for the "jointPoint" are:

• "top-left" - a calendar docked to the top-left point of the button element

• "top-right" - a calendar docked to the top-right point of the button element

• "bottom-left" - a calendar docked to the bottom-left point of the button element

• "bottom-right" - a calendar docked to the bottom-right point of the button element

• "auto" - smart positioning activation

By default, the "jointPoint" attribute is set to "bottom-left".

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM", {2} for "ShortConverter.SHORT".

The "defaultTime" attribute to set the default time value for the current date in two cases:

• If time is not set

• If another date is selected and the value of the "resetTimeOnDateSelect" attribute is set to

"true"

The "enableManualInput" attribute enables/disables input field, so when enableManualInput =

"false" , user can only pick the date manually and has no possibility to type in the date (default

value is "false").

The <rich:calendar> component allows to use "header" , "footer"

, "optionalHeader" , "optionalFooter" facets. The following elements

are available in these facets: {currentMonthControl}, {nextMonthControl},

{nextYearControl}, {previousYearControl}, {previousMonthControl}, {todayControl},

{selectedDateControl}. These elements could be used for labels output.

Also you can use "weekNumber" facet with available {weekNumber}, {elementId}

elements and "weekDay" facet with {weekDayLabel}, {weekDayLabelShort},

{weekDayNumber}, {isWeekend}, {elementId} elements. {weekNumber}, {weekDayLabel},

{weekDayLabelShort}, {weekDayNumber} elements could be used for labels output,

{isWeekend}, {elementId} - for additional processing in JavaScript code.

These elements are shown on the picture below.

 < rich:calendar > available since 3.1.0

627

Figure 6.213. Available elements

Simple example of usage is placed below.

Example:

...

<!-- Styles for cells -->

<style>

 .width100{

 width:100%;

 }

 .talign{

 text-align:center;

 }

</style>

...

...

<rich:calendar id="myCalendar" popup="true" locale="#{calendarBean.locale}" value="#{bean.date}"

 preloadRangeBegin="#{bean.date}" preloadRangeEnd="#{bean.date}" cellWidth="40px" cellHeight="40px">

 <!-- Customization with usage of facets and accessible elements -->

 <f:facet name="header">

 <h:panelGrid columns="2" width="100%" columnClasses="width100, fake">

Chapter 6. The RichFaces Comp...

628

 <h:outputText value="{selectedDateControl}" />

 <h:outputText value="{todayControl}" style="font-weight:bold; text-align:left"/>

 </h:panelGrid>

 </f:facet>

 <f:facet name="weekDay">

 <h:panelGroup style="width:60px; overflow:hidden;" layout="block">

 <h:outputText value="{weekDayLabelShort}"/>

 </h:panelGroup>

 </f:facet>

 <f:facet name="weekNumber">

 <h:panelGroup>

 <h:outputText value="{weekNumber}" style="color:red"/>

 </h:panelGroup>

 </f:facet>

 <f:facet name="footer">

 <h:panelGrid columns="3" width="100%" columnClasses="fake, width100 talign">

 <h:outputText value="{previousMonthControl}" style="font-weight:bold;"/>

 <h:outputText value="{currentMonthControl}" style="font-weight:bold;"/>

 <h:outputText value="{nextMonthControl}" style="font-weight:bold;"/>

 </h:panelGrid>

 </f:facet>

 <h:outputText value="{day}"></h:outputText>

</rich:calendar>

...

This is a result:

 < rich:calendar > available since 3.1.0

629

Figure 6.214. Facets usage

As it's shown on the picture above {selectedDateControl}, {todayControl} elements

are placed in the "header" facet, {previousMonthControl}, {currentMonthControl},

{nextMonthControl} - in the "footer" facet, {weekDayLabelShort} - in the "weekDay" facet,

{nextYearControl}, {previousYearControl} are absent. Numbers of weeks are red colored.

It is possible to show and manage date. Except scrolling controls you can use quick month and

year selection feature. It's necessary to click on its field, i.e. current month control, and choose

required month and year.

Chapter 6. The RichFaces Comp...

630

Figure 6.215. Quick month and year selection

Also the <rich:calendar> component allows to show and manage time. It's necessary to define

time in a pattern (for example, it could be defined as "d/M/yy HH:mm"). Then after you choose

some data in the calendar, it becomes possible to manage time for this date. For time editing it's

necessary to click on its field (see a picture below). To clean the field click on the "Clean".

Figure 6.216. Timing

It's possible to handle events for calendar from JavaScript code. A simplest example of usage

JavaScript API is placed below:

Example:

...

<rich:calendar value="#{calendarBean.selectedDate}" id="calendarID"

 < rich:calendar > available since 3.1.0

631

 locale="#{calendarBean.locale}"

 popup="#{calendarBean.popup}"

 datePattern="#{calendarBean.pattern}"

 showApplyButton="#{calendarBean.showApply}" style="width:200px"/>

<a4j:commandLink onclick="$('formID:calendarID').component.doExpand(event)" value="Expand"/

>

...

Also the discussion about this problem can be found on the RichFaces Users Forum [http://

www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301].

The <rich:calendar> component provides the possibility to use a special Data Model to define

data for element rendering. Data Model includes two major interfaces:

• CalendarDataModel [http://www.jboss.org/file-access/default/members/jbossrichfaces/

freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModel.html]

• CalendarDataModelItem [http://www.jboss.org/file-access/default/members/jbossrichfaces/

freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModelItem.html]

CalendarDataModel provides the following function:

• CalendarDataModelItem[] getData(Date[]);

This method is called when it's necessary to represent the next block of CalendarDataModelItem.

It happens during navigation to the next (previous) month or in any other case when calendar

renders. This method is called in "Ajax" mode when the calendar renders a new page.

CalendarDataModelItem provides the following function:

• Date getDate() - returns date from the item. Default implementation returns date.

• Boolean isEnabled() - returns "true" if date is "selectable" on the calendar. Default

implementation returns "true".

• String getStyleClass() - returns string appended to the style class for the date span. For

example it could be "relevant holyday". It means that the class could be defined like the "rich-

cal-day-relevant-holyday" one. Default implementation returns empty string.

• Object getData() - returns any additional payload that must be JSON-serializable object. It

could be used in the custom date representation on the calendar (inside the custom facet).

The <rich:calendar> component provides the possibility to use internationalization method

to redefine and localize the labels. You could use application resource bundle and define

RICH_CALENDAR_APPLY_LABEL, RICH_CALENDAR_TODAY_LABEL, RICH_CALENDAR_CLOSE_LABEL,

RICH_CALENDAR_OK_LABEL, RICH_CALENDAR_CLEAN_LABEL, RICH_CALENDAR_CANCEL_LABEL

there.

http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModel.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModel.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModel.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModelItem.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModelItem.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/apidoc_framework/org/richfaces/model/CalendarDataModelItem.html

Chapter 6. The RichFaces Comp...

632

You could also pack org.richfaces.renderkit.calendar resource [http://labs.jboss.com/file-

access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/

CalendarRendererBase.html#CALENDAR_BUNDLE] bundle with your JARs defining the same

properties.

Note:

Only for Internet Explorer 6 and later. To make <rich:calendar> inside

<rich:modalPanel> rendered properly, enable the standards-compliant mode.

Explore !DOCTYPE reference at MSDN [http://msdn.microsoft.com/en-us/library/

ms535242(VS.85).aspx] to find out how to do this.

6.11.1.6. JavaScript API

Table 6.319. JavaScript API

Function Description

selectDate(date) Selects the date specified. If the date isn't in

current month - performs request to select

isDateEnabled(date) Checks if given date is selectable (to be

implemented)

enableDate(date) Enables date cell control on the calendar (to be

implemented)

disableDate(date) Disables date cell control on the calendar (to

be implemented)

enableDates(date[]) Enables dates cell controls set on the calendar

(to be implemented)

disableDates(date[]) Disables dates cell controls set on the calendar

(to be implemented)

nextMonth() Navigates to next month

nextYear() Navigates to next year

prevMonth() Navigates to previous month

prevYear() Navigates to previous year

today() Selects today date

getSelectedDate() Returns currently selected date

Object getData() Returns additional data for the date

getCurrentMonth() Returns number of the month currently being

viewed

getCurrentYear() Returns number of the year currently being

viewed

http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://labs.jboss.com/file-access/default/members/jbossrichfaces/freezone/docs/apidoc/org/richfaces/renderkit/CalendarRendererBase.html#CALENDAR_BUNDLE
http://msdn.microsoft.com/en-us/library/ms535242(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms535242(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms535242(VS.85).aspx

 < rich:calendar > available since 3.1.0

633

Function Description

doCollapse() Collapses calendar element

doExpand() Expands calendar element

resetSelectedDate() Clears a selected day value

doSwitch() Inverts a state for the popup calendar

6.11.1.7. Facets

Table 6.320. Facets

Facet Description

header Redefines calendar header. Related attribute

is "showHeader"

footer Redefines calendar footer. Related attribute is

"showFooter"

optionalHeader Defines calendar's optional header

optionalFooter Defines calendar's optional footer

weekNumber Redefines week number

weekDay Redefines names of the week days.

Related attributes are "weekDayLabels" and

"weekDayLabelsShort"

6.11.1.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:calendar> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:calendar> component

6.11.1.9. Skin Parameters Redefinition

Table 6.321. Skin parameters redefinition for a popup element

Skin parameters CSS properties

panelBorderColor border-color

Chapter 6. The RichFaces Comp...

634

Table 6.322. Skin parameters redefinition for headers (header, optional

header)

Skin parameters CSS properties

panelBorderColor border-bottom-color

additionalBackgroundColor background-color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.323. Skin parameters redefinition for footers (footer, optional footer)

and names of working days

Skin parameters CSS properties

panelBorderColor border-top-color

panelBorderColor border-right-color

additionalBackgroundColor background

generalSizeFont font-size

generalFamilyFont font-family

Table 6.324. Skin parameters redefinition for weeks numbers

Skin parameters CSS properties

panelBorderColor border-bottom-color

panelBorderColor border-right-color

additionalBackgroundColor background

calendarWeekBackgroundColor background-color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.325. Skin parameters redefinition for a toolBar and names of months

Skin parameters CSS properties

headerBackgroundColor background-color

headerSizeFont font-size

headerFamilyFont font-family

headerWeightFont font-weight

headerTextColor color

 < rich:calendar > available since 3.1.0

635

Table 6.326. Skin parameters redefinition for cells with days

Skin parameters CSS properties

panelBorderColor border-bottom-color

panelBorderColor border-right-color

generalBackgroundColor background-color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.327. Skin parameters redefinition for holiday

Skin parameters CSS properties

calendarHolidaysBackgroundColor background-color

calendarHolidaysTextColor color

Table 6.328. Skin parameters redefinition for cell with a current date

Skin parameters CSS properties

calendarCurrentBackgroundColor background-color

calendarCurrentTextColor color

Table 6.329. Skin parameters redefinition for a selected day

Skin parameters CSS properties

headerBackgroundColor background-color

headerTextColor color

headerWeightFont font-weight

Table 6.330. Skin parameters redefinition for a popup element during quick

month and year selection

Skin parameters CSS properties

tableBackgroundColor background

panelBorderColor border-color

Table 6.331. Skin parameters redefinition for a shadow

Skin parameters CSS properties

shadowBackgroundColor background-color

Chapter 6. The RichFaces Comp...

636

Table 6.332. Skin parameters redefinition for a selected month and year

Skin parameters CSS properties

calendarCurrentBackgroundColor background-color

calendarCurrentTextColor color

Table 6.333. Skin parameters redefinition for a hovered month and year

Skin parameters CSS properties

panelBorderColor border-color

calendarSpecBackgroundColor background

Table 6.334. Skin parameters redefinition for a month items near split line

Skin parameters CSS properties

panelBorderColor border-right-color

Table 6.335. Skin parameters redefinition for a hovered toolbar items

Skin parameters CSS properties

calendarWeekBackgroundColor background-color

generalTextColor color

tableBackgroundColor border-color

panelBorderColor border-right-color

panelBorderColor border-bottom-color

Table 6.336. Skin parameters redefinition for a pressed toolbar items

Skin parameters CSS properties

panelBorderColor border-color

tableBackgroundColor border-right-color

tableBackgroundColor border-bottom-color

Table 6.337. Skin parameters redefinition for "ok" and "cancel" buttons

Skin parameters CSS properties

additionalBackgroundColor background

panelBorderColor border-top-color

 < rich:calendar > available since 3.1.0

637

Table 6.338. Skin parameters redefinition for a popup element during time

selection

Skin parameters CSS properties

additionalBackgroundColor background

panelBorderColor border-color

Table 6.339. Skin parameters redefinition for a wrapper <td> element for an

input field

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-color

subBorderColor border-bottom-color

subBorderColor border-right-color

Table 6.340. Skin parameters redefinition for an input field

Skin parameters CSS properties

buttonSizeFont font-size

buttonFamilyFont font-family

Table 6.341. Skin parameters redefinition for a wrapper <td> element for

spinner buttons

Skin parameters CSS properties

headerBackgroundColor background-color

headerBackgroundColor border-color

6.11.1.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Chapter 6. The RichFaces Comp...

638

Figure 6.217. Style classes

 < rich:calendar > available since 3.1.0

639

Figure 6.218. Style classes

Chapter 6. The RichFaces Comp...

640

Figure 6.219. Style classes

Figure 6.220. Style classes

 < rich:calendar > available since 3.1.0

641

Table 6.342. Classes names that define an input field and a button

appearance

Class name Description

rich-calendar-input Defines styles for an input field

rich-calendar-button Defines styles for a popup button

Table 6.343. Classes names that define a days appearance

Class name Description

rich-calendar-days Defines styles for names of working days in a

header

rich-calendar-weekends Defines styles for names of weekend in a

header

rich-calendar-week Defines styles for weeks numbers

rich-calendar-today Defines styles for cell with a current date

rich-calendar-cell Defines styles for cells with days

rich-calendar-holly Defines styles for holiday

rich-calendar-select Defines styles for a selected day

rich-calendar-hover Defines styles for a hovered day

Table 6.344. Classes names that define a popup element

Class name Description

rich-calendar-popup Defines styles for a popup element

rich-calendar-exterior Defines styles for a popup element exterior

rich-calendar-tool Defines styles for toolbars

rich-calendar-month Defines styles for names of months

rich-calendar-header-optional Defines styles for an optional header

rich-calendar-footer-optional Defines styles for an optional footer

rich-calendar-header Defines styles for a header

rich-calendar-footer Defines styles for a footer

rich-calendar-boundary-dates Defines styles for an active boundary button

rich-calendar-btn Defines styles for an inactive boundary date

rich-calendar-toolfooter Defines styles for a today control date

Chapter 6. The RichFaces Comp...

642

Table 6.345. Classes names that define a popup element during quick month

and year selection

Class name Description

rich-calendar-date-layout Defines styles for a popup element during quick

year selection

rich-calendar-editor-layout-shadow Defines styles for a shadow

rich-calendar-editor-btn Defines styles for an inactive boundary date

rich-calendar-date-layout-split Defines styles for a wrapper <td> element for

month items near split line

rich-calendar-editor-btn-selected Defines styles for an selected boundary date

rich-calendar-editor-btn-over Defines styles for a boundary date when

pointer was moved onto

rich-calendar-editor-tool-over Defines styles for a hovered toolbar items

rich-calendar-editor-tool-press Defines styles for a pressed toolbar items

rich-calendar-date-layout-ok Defines styles for a "ok" button

rich-calendar-date-layout-cancel Defines styles for a "cancel" button

Table 6.346. Classes names that define a popup element during time

selection

Class name Description

rich-calendar-time-layout Defines styles for a popup element during time

selection

rich-calendar-editor-layout-shadow Defines styles for a shadow

rich-calendar-time-layout-fields Defines styles for a wrapper <td> element for

input fields and buttons

rich-calendar-spinner-input-container Defines styles for a wrapper <td> element for

an input field

rich-calendar-spinner-input Defines styles for an input field

rich-calendar-spinner-buttons Defines styles for a wrapper <td> element for

spinner buttons

rich-calendar-spinner-up Defines styles for a "up" button

rich-calendar-spinner-down Defines styles for a "down" button

rich-calendar-time-layout-ok Defines styles for a "ok" button

rich-calendar-time-layout-cancel Defines styles for a "cancel" button

In order to redefine styles for all <rich:calendar> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

 < rich:calendar > available since 3.1.0

643

Example:

...

.rich-calendar-today {

 background-color: #FF0000;

}

...

This is a result:

Figure 6.221. Redefinition styles with predefined classes

In the example an active cell background color was changed.

Also it's possible to change styles of particular <rich:calendar> component. In this case you

should create own style classes and use them in corresponding <rich:calendar> styleClass

attributes. An example is placed below:

Example:

...

.myFontClass{

 font-style: italic;

}

...

The "inputClass" attribute for <rich:calendar> is defined as it's shown in the example below:

Example:

Chapter 6. The RichFaces Comp...

644

<rich:calendar ... inputClass="myFontClass"/>

This is a result:

Figure 6.222. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for output text was changed.

6.11.1.11. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

calendar.jsf?c=calendar] you can see the example of <rich:calendar> usage and sources for

the given example.

How to use JavaScript API see on the RichFaces Users Forum [http://www.jboss.com/index.html?

module=bb&op=viewtopic&p=4078301#4078301].

6.11.2. < rich:colorPicker > available since 3.3.1

3.3.1

6.11.2.1. Description

The <rich:colorPicker> component lets you visually choose a color or define it in hex, RGB,

or HSB input fields.

http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar
http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar
http://livedemo.exadel.com/richfaces-demo/richfaces/calendar.jsf?c=calendar
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301
http://www.jboss.com/index.html?module=bb&op=viewtopic&p=4078301#4078301

 < rich:colorPicker > available since 3.3.1

645

Figure 6.223. Simple <rich:colorPicker> component

6.11.2.2. Key Features

• Possibility to get color in hex, or RGB color models

• Flat/inline representation

• Highly customizable look and feel

Table 6.347. rich : colorPicker attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

colorMode Defines a color mode for the component input.

Possible values are hex, rgb.

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

flat Defines whether the component will be

rendered flat.

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

Chapter 6. The RichFaces Comp...

646

Attribute Name Description

inputSize inputSize - way to set the size of the edit box

onbeforeshow The client-side script method to be called

before the component widget is opened

onchange DHTML: The client-side script method to be

called when the element value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onhide The client-side script method to be called

before the component widget is hidden

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect The client-side script method to be called when

the color is selected

onshow The client-side script method to be called when

the component widget is displayed

rendered JSF: If "false", this component is not rendered

 < rich:colorPicker > available since 3.3.1

647

Attribute Name Description

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

showEvent Defines the event that triggers the colorPicker.

Default value is "onclick".

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

Table 6.348. Component identification parameters

Name Value

component-type org.richfaces.ColorPicker

component-class org.richfaces.component.html.HtmlColorPicker

component-family org.richfaces.ColorPicker

renderer-type org.richfaces.ColorPickerRenderer

tag-class org.richfaces.taglib.ColorPickerTag

6.11.2.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

...

<rich:colorPicker value="#{bean.color}" />

...

Chapter 6. The RichFaces Comp...

648

6.11.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.colorPicker;

...

HtmlColorPicker myColorPicker = new ColorPicker();

...

6.11.2.5. Details of Usage

The <rich:colorPicker> component allows you easily select a color or define it in hex, RGB,

or HSB input fields. There are two squares in the widget that help you to compare the currently

selected color and the already selected color.

The "value" attribute stores the selected color.

The value of the <rich:colorPicker> component could be saved in hex or RGB color models.

You can explicitly define a color model in the "colorMode" attribute.

Example:

...

<rich:colorPicker value="#{bean.color}" colorMode="rgb" />

...

This is the result:

Figure 6.224. Usage of the "colorMode" attribute.

The <rich:colorPicker> component has two representation states: flat and inline. With the help

of the "flat" attribute you can define whether the component is rendered flat.

Example:

 < rich:colorPicker > available since 3.3.1

649

...

<rich:colorPicker value="#{bean.color}" flat="true" />

...

The component specific event handler "onbeforeshow" captures the event which occurs before

the <rich:colorPicker> widget is opened. The "onbeforeshow" attribute could be used in order

to cancel this event. See the example below:

...

<rich:colorPicker value="#{bean.color}" onbeforeshow="if (!confirm('Are you sure you want to

 change a color?')){return false;}" />

...

The "showEvent" attribute defines the event that shows <rich:colorPicker> widget. The default

value is "onclick".

The <rich:colorPicker> component allows to use the "icon" facet.

You can also customize <rich:colorPicker> rainbow slider (

) with the help of the "arrows" facet.

...

<rich:colorPicker value="#{bean.color}">

 <f:facet name="icon">

 <h:graphicImage value="/pages/colorPicker_ico.png" />

 </f:facet>

 <f:facet name="arrows">

 <f:verbatim>

 <div style="width: 33px; height: 5px; border: 1px solid #bed6f8; background:none;" />

 </f:verbatim>

 </f:facet>

</rich:colorPicker>

...

This is the result:

Chapter 6. The RichFaces Comp...

650

Figure 6.225. Usage of the "icon" , and "arrows" facets

6.11.2.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:colorPicker> components at once:

• Redefine the corresponding skin parameters

• Add style classes used by a <rich:colorPicker> component to your style sheets

6.11.2.7. Skin Parameters Redefinition

Table 6.349. Skin parameters redefinition for the input field that contains

selected color

Skin parameters CSS properties

panelBorderColor border-color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.350. Skin parameters redefinition for the wrapper <div> element of

a widget

Skin parameters CSS properties

panelBorderColor border-color

generalBackgroundColor background-color

generalFamilyFont font-family

 < rich:colorPicker > available since 3.3.1

651

Table 6.351. Skin parameters redefinition for the icon, color palette, current

color, and new color

Skin parameters CSS properties

panelBorderColor border-color

Table 6.352. Skin parameters redefinition for the hex, RGB, and HSB input

fileds

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

generalTextColor color

panelBorderColor border-color

controlBackgroundColor background-color

Table 6.353. Skin parameters redefinition for the "Apply" and "Cancel"

button

Skin parameters CSS properties

buttonFontSize font-size

buttonFamilyFont font-family

headerTextColor color

headerBackgroundColor border-color

panelBorderColor border-color

generalSizeFont font-size

generalFamilyFont font-family

headerBackgroundColor background-color

6.11.2.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Chapter 6. The RichFaces Comp...

652

Figure 6.226. Classes names

Table 6.354. Classes names for the representation of the input field and

icon containing selected color

Selector name Description

.rich-colorpicker-span input Defines styles for the input field that contains

selected color

.rich-colorpicker-icon Defines styles for the icon

Table 6.355. Classes names for the widget

Class name Description

.rich-colorpicker-ext Defines styles for the wrapper <div> element

of a widget

.rich-colorpicker-color Defines styles for the color palette

.rich-colorpicker-current-color Defines styles for the currently selected color

.rich-colorpicker-new-color Defines styles for the already selected color

.rich-colorpicker-colors-input Defines styles for the hex, RGB, and HSB input

fileds

Table 6.356. Classes names for the buttons representation

Class name Description

.rich-colorpicker-submit Defines styles for the "Apply" button

.rich-colorpicker-cancel Defines styles for the "Cancel" button

 < rich:comboBox > available since 3.2.0

653

In order to redefine styles for all <rich:colorPicker> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-colorPicker-ext{

 background-color: #ecf4fe;

}

...

This is the result:

Figure 6.227. Redefinition styles with predefined classes

In the shown example the background color for the widget is changed.

6.11.2.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

colorPicker.jsf?c=colorPicker] you can see the example of <rich:colorPicker> component usage

and sources for the given example.

6.11.3. < rich:comboBox > available since 3.2.0

3.2.0

6.11.3.1. Description

The <rich:comboBox> is a component creates combobox element with built-in Ajax capability.

http://livedemo.exadel.com/richfaces-demo/richfaces/colorPicker.jsf?c=colorPicker
http://livedemo.exadel.com/richfaces-demo/richfaces/colorPicker.jsf?c=colorPicker
http://livedemo.exadel.com/richfaces-demo/richfaces/colorPicker.jsf?c=colorPicker

Chapter 6. The RichFaces Comp...

654

Figure 6.228. <rich:comboBox> component

6.11.3.2. Key Features

• Client-side suggestions

• Browser like selection

• Smart user-defined positioning

• Seam entity converter support

• Highly customizable look and feel

• Disablement support

Table 6.357. rich : comboBox attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

buttonClass Assigns one or more space-separated CSS

class names to the component button

buttonDisabledClass Assigns one or more space-separated CSS

class names to the component button disabled

buttonDisabledStyle CSS style rules to be applied to the component

button disabled

buttonIcon Defines icon for the button element

buttonIconDisabled Defines disabled icon for the button element

buttonIconInactive Defines inactive icon for the button element

buttonInactiveClass Assigns one or more space-separated CSS

class names to the component inactive button

buttonInactiveStyle CSS style rules to be applied to the component

inactive button

buttonStyle CSS style rules to be applied to the component

button

 < rich:comboBox > available since 3.2.0

655

Attribute Name Description

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

defaultLabel Defines default label for the input field element

directInputSuggestions Defines the first value from the suggested in

input field. Default value is "false".

disabled HTML: When set for a form control, this

boolean attribute disables the control for your

input

enableManualInput Enables keyboard input, if "false" keyboard

input will be locked. Default value is "true"

filterNewValues Defines the appearance of values in the list.

Default value is "true".

hideDelay Delay between losing focus and pop-up list

closing. Default value is "0".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

inputClass Assigns one or more space-separated CSS

class names to the component input field

inputDisabledClass Assigns one or more space-separated CSS

class names to the component input field

disabled

inputDisabledStyle CSS style rules to be applied to the component

input field disabled

inputInactiveClass Assigns one or more space-separated CSS

class names to the component inactive input

field

inputInactiveStyle CSS style rules to be applied to the component

inactive input field

inputStyle CSS style rules to be applied to the component

input field

Chapter 6. The RichFaces Comp...

656

Attribute Name Description

itemClass Assigns one or more space-separated CSS

class names to the component items

itemSelectedClass Assigns one or more space-separated CSS

class names to the component selected item

label A localized user presentable name for this

component.

listClass Assigns one or more space-separated CSS

class names to the component popup list

listHeight Defines height of file pop-up list. Default value

is "200px".

listStyle CSS style rules to be applied to the component

popup list

listWidth Defines width of file popup list

onblur DHTML: The client-side script method to be

called when the element loses the focus

onchange DHTML: The client-side script method to be

called when the element value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onlistcall The clientside script method to be called when

the list is called

onlistclose The clientside script method to be called when

the list is closed

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

 < rich:comboBox > available since 3.2.0

657

Attribute Name Description

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the text

field. This attribute can be used with the INPUT

and TEXTAREA elements.

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

selectFirstOnUpdate Defines if the first value from suggested is

selected in pop-up list. Default value is "true".

showDelay Delay between event and pop-up list showing.

Default value is "0".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

suggestionValues Defines the suggestion collection

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

Chapter 6. The RichFaces Comp...

658

Attribute Name Description

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

width HTML: Width of the component. Default value

is "150".

Table 6.358. Component identification parameters

Name Value

component-type org.richfaces.ComboBox

component-class org.richfaces.component.html.HtmlComboBox

component-family org.richfaces.ComboBox

renderer-type org.richfaces.renderkit.ComboBoxRenderer

tag-class org.richfaces.taglib.ComboBoxTag

6.11.3.3. Creating the Component with a Page Tag

Here is a simple example as it could be used on a page:

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" />

...

6.11.3.4. Creating the Component Dynamically Using Java

import org.richfaces.component.html.HtmlComboBox;

...

HtmlComboBox myComboBox = new HtmlComboBox();

...

6.11.3.5. Details of Usage

The <rich:comboBox> is a simplified suggestion box component, that provides input with client-

side suggestions. The component could be in two states:

 < rich:comboBox > available since 3.2.0

659

• Default - only input and button is shown

• Input, button and a popup list of suggestions attached to input is shown

There are two ways to get values for the popup list of suggestions:

• Using the "suggestionValues" attribute, that defines the suggestion collection

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" />

...

• Using the <f:selectItem /> or <f:selectItems /> JSF components.

...

<rich:comboBox value="#{bean.state}" valueChangeListener="#{bean.selectionChanged}">

 <f:selectItems value="#{bean.selectItems}"/>

 <f:selectItem itemValue="Oregon"/>

 <f:selectItem itemValue="Pennsylvania"/>

 <f:selectItem itemValue="Rhode Island"/>

 <f:selectItem itemValue="South Carolina"/>

</rich:comboBox>

...

Note:

These JSF components consider only the "value" attribute for this component.

Popup list content loads at page render time. No additional requests could be performed on the

popup calling.

The "value" attribute stores value from input after submit.

The "directInputSuggestions" attribute defines, how the first value from the suggested one

appears in an input field. If it's "true" the first value appears with the suggested part highlighted.

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" directInputSuggestions="true" /

>

...

Chapter 6. The RichFaces Comp...

660

This is a result:

Figure 6.229. <rich:comboBox> with "directInputSuggestions" attribute.

The "selectFirstOnUpdate" attribute defines if the first value from suggested is selected in a popup

list. If it's "false" nothing is selected in the list before a user hovers some item with the mouse.

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" selectFirstOnUpdate="false" /

>

...

This is a result:

Figure 6.230. <rich:comboBox> with "selectFirstOnUpdate" attribute.

The "defaultLabel" attribute defines the default label of the input element. Simple example is

placed below.

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" defaultLabel="Select

 a city..." />

...

This is a result:

Figure 6.231. <rich:comboBox> with "defaultLabel" attribute.

 < rich:comboBox > available since 3.2.0

661

With the help of the "disabled" attribute you can disable the whole <rich:comboBox>

component. See the following example.

...

<rich:comboBox value="#{bean.state}" suggestionValues="#{bean.suggestions}" defaultLabel="Select

 a city..." disabled="true" />

...

This is a result:

Figure 6.232. <rich:comboBox> with "disabled" attribute.

The "enableManualInput" attribute enables/disables input field, so when enableManualInput =

"false", user can only pick the value manually and has no possibility to type in the value (default

value is "false").

The <rich:comboBox> component provides to use specific event attributes:

• "onlistcall" which is fired before the list opening and gives you a possibility to cancel list popup/

update

• "onselect" which gives you a possibility to send Ajax request when item is selected

The <rich:comboBox> component allows to use sizes attributes:

• "listWidth" and "listHeight" attributes specify popup list sizes with values in pixels

• "width" attribute customizes the size of input element with values in pixels.

6.11.3.6. JavaScript API

Table 6.359. JavaScript API

Function Description

showList() Shows the popup list

hideList() Hides the popup list

enable() Enables the control for input

disable() Disables the control for input

6.11.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

Chapter 6. The RichFaces Comp...

662

There are two ways to redefine the appearance of all <rich:comboBox> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:comboBox> component

6.11.3.8. Skin Parameters Redefinition

Table 6.360. Skin parameters redefinition for a popup list

Skin parameters CSS properties

tableBackgroundColor background

panelBorderColor border-color

Table 6.361. Skin parameters redefinition for a button background, inactive

button background, button background in pressed and disabled state

Skin parameters CSS properties

tabBackgroundColor background-color

Table 6.362. Skin parameters redefinition for a button

Skin parameters CSS properties

panelBorderColor border-top-color

panelBorderColor border-left-color

Table 6.363. Skin parameters redefinition for an inactive button

Skin parameters CSS properties

panelBorderColor border-top-color

panelBorderColor border-left-color

Table 6.364. Skin parameters redefinition for a disabled button

Skin parameters CSS properties

panelBorderColor border-top-color

panelBorderColor border-left-color

Table 6.365. Skin parameters redefinition for a hovered button

Skin parameters CSS properties

selectControlColor border-color

 < rich:comboBox > available since 3.2.0

663

Table 6.366. Skin parameters redefinition for a font

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

generalTextColor color

Table 6.367. Skin parameters redefinition for a font in inactive state

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

generalTextColor color

Table 6.368. Skin parameters redefinition for a font in disabled state

Skin parameters CSS properties

headerFamilyFont font-size

headerFamilyFont font-family

Table 6.369. Skin parameters redefinition for an input field

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-bottom-color

panelBorderColor border-right-color

Table 6.370. Skin parameters redefinition for an inactive input field

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-bottom-color

panelBorderColor border-right-color

Table 6.371. Skin parameters redefinition for a disabled input field

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-bottom-color

panelBorderColor border-right-color

Chapter 6. The RichFaces Comp...

664

Table 6.372. Skin parameters redefinition for an item

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

generalTextColor color

Table 6.373. Skin parameters redefinition for a selected item

Skin parameters CSS properties

headerBackgroundColor background-color

headerBackgroundColor border-color

generalTextColor color

6.11.3.9. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.233. Classes names

Figure 6.234. Classes names

 < rich:comboBox > available since 3.2.0

665

Table 6.374. Classes names that define popup list representation

Class name Description

rich-combobox-shell Defines styles for a wrapper <div> element of

a list

rich-combobox-list-position Defines position of a list

rich-combobox-list-decoration Defines styles for a list

rich-combobox-list-scroll Defines styles for a list scrolling

Table 6.375. Classes names that define font representation

Class name Description

rich-combobox-font Defines styles for a font

rich-combobox-font-inactive Defines styles for an inactive font

rich-combobox-font-disabled Defines styles for a disabled font

Table 6.376. Classes names that define input field representation

Class name Description

rich-combobox-input Defines styles for an input field

rich-combobox-input-disabled Defines styles for an input field in disabled state

rich-combobox-input-inactive Defines styles for an inactive input field

Table 6.377. Classes names that define item representation

Class name Description

rich-combobox-item Defines styles for an item

rich-combobox-item-selected Defines styles for a selected item

Table 6.378. Classes names that define button representation

Class name Description

rich-combobox-button Defines styles for a button

rich-combobox-button-inactive Defines styles for an inactive button

rich-combobox-button-disabled Defines styles for a button in disabled state

rich-combobox-button-hovered Defines styles for a hovered button

rich-combobox-button-background Defines styles for a button background

rich-combobox-button-background-disabled Defines styles for a disabled button

background

rich-combobox-button-background-inactive Defines styles for an inactive button

background

Chapter 6. The RichFaces Comp...

666

Class name Description

rich-combobox-button-pressed-background Defines styles for a pressed button background

rich-combobox-button-icon Defines styles for a button icon

rich-combobox-button-icon-inactive Defines styles for an inactive button icon

rich-combobox-button-icon-disabled Defines styles for a disabled button icon

Table 6.379. Classes names that define shadow representation

Class name Description

rich-combobox-shadow Defines styles for a wrapper <div> element of

a shadow

rich-combobox-shadow-tl Defines styles for a top-left element of a

shadow

rich-combobox-shadow-tr Defines styles for a top-right element of a

shadow

rich-combobox-shadow-bl Defines styles for a bottom-left element of a

shadow

rich-combobox-shadow-br Defines styles for a bottom-right element of a

shadow

In order to redefine styles for all <rich:comboBox> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-combobox-list-decoration{

 background-color:#ecf4fe;

}

...

This is a result:

Figure 6.235. Redefinition styles with predefined classes

 < rich:editor > available since 3.3.0

667

In the example background color for popup list was changed.

Also it's possible to change styles of particular <rich:comboBox> component. In this case you

should create own style classes and use them in corresponding <rich:comboBox> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-weight:bold;

}

...

The "listClass" attribute for <rich:comboBox> is defined as it's shown in the example below:

Example:

<rich:comboBox ... listClass="myClass"/>

This is a result:

Figure 6.236. Redefinition styles with own classes and "styleClass"

attributes

As it could be seen on the picture above, the font weight for items was changed.

6.11.3.10. Relevant Resources Links

Visit the ComboBox page [http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?

c=comboBox] at RichFaces LiveDemo for examples of component usage and their sources.

6.11.4. < rich:editor > available since 3.3.0

3.3.0

6.11.4.1. Description

The <rich:editor> component is used for creating a WYSIWYG editor on a page.

http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox
http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox
http://livedemo.exadel.com/richfaces-demo/richfaces/comboBox.jsf?c=comboBox

Chapter 6. The RichFaces Comp...

668

Figure 6.237. <rich:editor> component

6.11.4.2. Key Features

• Seam text support

• Manageable global configurations

• Possibility to use custom plug-ins

• Support of all TinyMCE's parameters through <f:param>

Table 6.380. rich : editor attributes

Attribute Name Description

autoResize Attribute enables to get the Editor area to resize

to the boundaries of the contents.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

configuration Attribute defines configuration properties file

name

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

customPlugins Attribute defines property file name witch

contains descriptors of custom plugins

dialogType Attribute defines how dialogs/popups should

be opened. Default value is "modal"

 < rich:editor > available since 3.3.0

669

Attribute Name Description

height Attribute defines height of component.

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

label A localized user presentable name for this

component.

language Attribute defines Editor language

onchange DHTML: The client-side script method to be

called when the editor content is modified by

TinyMCE

oninit The client-side script method to be called

when the initialization of the editor instances is

finished

onsave The client-side script method to be called when

the editor content is extracted/saved

onsetup The client-side script method to be called

before the editor instances get rendered

plugins Attribute defines Editor plugins

readonly HTML: Attribute defines Editor is readonly

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

skin Attribute defines Editor skin

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: In visual mode the attribute works the

same way as "tab_focus" TinyMCE's property

the attribute enables you to specify an element

Chapter 6. The RichFaces Comp...

670

Attribute Name Description

ID to focus, when the TAB key is pressed .

You can also use the special ":prev" and

":next" values that will then place the focus

on an input element placed before/after the

TinyMCE instance in the DOM. While in

"source" mode the attribute works like standard

HTML tabindex attribute.

theme Attribute defines Editor theme

useSeamText Attribute defines if model value should be

converted to Seam Text. Default value is

"false"

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

viewMode Attribute defines if tinyMCE WYSIWYG should

be disabled. Default value is "visual"

width HTML: Attribute defines width of component.

Table 6.381. Component identification parameters

Name Value

component-type org.richfaces.component.editor

component-class org.richfaces.component.html.Htmleditor

component-family org.richfaces.component.editor

renderer-type org.richfaces.renderkit.html.editorRenderer

tag-class org.richfaces.taglib.editorTag

6.11.4.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

 < rich:editor > available since 3.3.0

671

...

<rich:editor />

...

6.11.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.Htmleditor;

...

Htmleditor myeditor = new Htmleditor();

...

6.11.4.5. Details of Usage

The <rich:editor> is fully based on TinyMCE web based Javascript HTML WYSIWYG editor

control and supports all of the features it has. The <rich:editor> adapts the TinyMCE editor for

JSF environment and adds some functional capabilities.

The easiest way to place the <rich:editor> on a page is as follows:

Example:

<rich:editor value="#{bean.editorValue}" />

Implementation of <rich:editor> provides three ways to define the properties of the component:

1. Using attributes

2. Using using <f:param> JSF tag

3. Using configuration files that allow you to set up multiple configurations for all editors in your

application and change them in the runtime

The three methods are described in details in the chapter.

The most important properties are implemented as attributes and you can define them as any other

attribute. The attributes of the <rich:editor> component match the corresponding properties of

TinyMCE editor.

For example, a theme for the editor can be defined using the "theme" attribute like this:

Example:

Chapter 6. The RichFaces Comp...

672

<rich:editor value="#{bean.editorValue}" theme="advanced" />

Setting a different skin for the editor can be done using the "skin" attribute.

Another useful property that is implemented at attribute level is "viewMode" . The attribute

switches between "visual" and "source" modes, toggling between modes is performed setting the

attribute to "visual" and "source" respectively. Implementation of <rich:editor> also implies that

you can change the modes dynamically setting the value of the "viewMode" attribute using EL-

expression.

Example:

...

<rich:editor value="#{editor.submit}" theme="advanced" viewMode="#{editor.viewMode}" >

 ...

 <h:selectOneRadio value="#{editor.viewMode}" onchange="submit();">

 <f:selectItem itemValue="visual" itemLabel="visual" />

 <f:selectItem itemValue="source" itemLabel="source" />

 </h:selectOneRadio>

 ...

</rich:editor>

...

Most configuration options that TinyMCE provides can be applied using <f:param> JSF tag.

The syntax is quite simple: the "name" attribute should contain the option, the "value" attribute

assigns some value to the option.

For example, this code adds some buttons to the editor and positions the toolbar.

Example:

...

<rich:editor value="#{bean.editorValue}" theme="advanced" plugins="save,paste" >

 <f:param name="theme_advanced_buttons1" value="bold,italic,underline,

 cut,copy,paste,pasteword"/>

 <f:param name="theme_advanced_toolbar_location" value="top"/>

 <f:param name="theme_advanced_toolbar_align" value="left"/>

</rich:editor>

...

This is what you get as a result:

 < rich:editor > available since 3.3.0

673

Figure 6.238. Setting configuration options with <f:param>

The third way to configure the <rich:editor> is to use configuration file (.properties)

This method eases your life if you need to configure multiple instances of the <rich:editor> : you

configure the editor once and in one spot and the configuration properties can be applied to any

<rich:editor> in your application.

To implement this type of configuration you need to take a few steps:

• Create a configuration file (.properties) in the classpath folder and add some properties to it. Use

standard syntax for the .properties files: parameter=value. Here is an example of configuration

file:

Example:

theme="advanced"

plugins="save,paste"

theme_advanced_buttons1="bold,italic,underline, cut,copy,paste,pasteword"

theme_advanced_toolbar_location="top"

theme_advanced_toolbar_align="left"

• The properties stored in configuration file are passed to the <rich:editor> via "configuration"

attribute which takes the name of the configuration file as a value (with out .properties

extension).

For example, if you named the configuration file "editorconfig", you would address it as follows:

Example:

...

<rich:editor value="#{bean.editorValue}" configuration="editorconfig"/>

...

Chapter 6. The RichFaces Comp...

674

• Alternately, you can use a EL-expression to define a configuration file. This way you can

dynamically change the sets of configuration properties.

For example, you have two configuration files "configurationAdvanced" and

"configurationSimple" and you want them to be applied under some condition.

To do this you need to bind "configuration" attribute to the appropriate bean property like this.

Example:

...

<rich:editor value="#{bean.editorValue}" configuration="#{editor.configuration}" />

...

Your Java file should look like this.

...

String configuration;

if(some condition){//defines some condition

 configuration = "configurationAdvanced"; //the name on the file with advanced properties

}

else{

 configuration= "configurationSimple"; //the name on the file with simplified properties

}

...

You also might want to add some custom plug-ins to your editor. You can read about how to create

a plugin in TinyMCE Wiki article [http://wiki.moxiecode.com/index.php/TinyMCE:Creating_Plugin].

Adding a custom plugin also requires a few steps to take. Though, the procedure is very similar

to adding a configuration file.

This is what you need to add a plugin:

• Create a .properties file and put the name of the plug-in and a path to it into the file. The file can

contain multiple plug-in declarations. Your .properties file should be like this.

Example:

...

pluginName=/mytinymceplugins/plugin1Name/editor_plugin.js

...

http://wiki.moxiecode.com/index.php/TinyMCE:Creating_Plugin
http://wiki.moxiecode.com/index.php/TinyMCE:Creating_Plugin

 < rich:editor > available since 3.3.0

675

• Use the "customPlugins" attribute to specify the .properties file with a plugin name and a path

to it.

If your .properties file is named "myPlugins", then your will have this code on the page.

Example:

...

<rich:editor theme="advanced" customPlugins="myPlugins" plugins="pluginName" />

...

Note:

Some plug-ins which available for download might have some dependencies on

TinyMCE scripts. For example, dialog pop-ups require tiny_mce_popup.js script

file. Assuming that you will not plug custom plugins to the RF jar with editor

component (standard TinyMCE plugins creation implies that plugins are put into

TinyMCE's corresponding directory) you should manually add required TinyMCE

scripts to some project folder and correct the js includes.

The implementation of the <rich:editor> component has two methods for handling events.

The attributes take some function name as a value with is triggered on the appropriate event. You

need to use standard JavaScript function calling syntax.

• Using attributes ("onchange" , "oninit" , "onsave" , "onsetup")

Example:

...

<rich:editor value="#{bean.editorValue}" onchange="myCustomOnChangeHandler()" />

...

• Using <f:param> as a child element defining the "name" attribute with one of the TinyMCE's

callbacks and the "value" attribute takes the function name you want to be called on the

corresponding event as the value. Note, that the syntax in this case is a bit different: parentheses

are not required.

Example:

...

<rich:editor value="#{bean.editorValue}">

Chapter 6. The RichFaces Comp...

676

 <f:param name="onchange" value="myCustomOnChangeHandler" />

</rich:editor>

...

The <rich:editor> component has a build-in converter that renders HTML code generated

by the editor to Seam text (you can read more on Seam in Seam guide [http://docs.jboss.org/

seam/1.1.5.GA/reference/en/html/text.html].), it also interprets Seam text passed to the

<rich:editor> and renders it to HTML. The converter can be enable with the "useSeamText"

attribute.

Example:

This HTML code generated by editor

...

<p>Lorem ipsum <i>dolor sit</i> amet, ea <u>commodo</

u> consequat.</p>

...

will be parsed to the following Seam text:

...

[Lorem ipsum=>http://mysite.com] *dolor sit* amet, ea _commodo_ consequat.

...

Accordingly, if the Seam text is passed to the component it will be parsed to HTML code.

6.11.4.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:editor> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:editor> component

6.11.4.7. Skin Parameters Redefinition

Table 6.382. Skin parameters redefinition for containers

Skin parameters CSS properties

additionalBackgroundColor background

http://docs.jboss.org/seam/1.1.5.GA/reference/en/html/text.html
http://docs.jboss.org/seam/1.1.5.GA/reference/en/html/text.html
http://docs.jboss.org/seam/1.1.5.GA/reference/en/html/text.html

 < rich:editor > available since 3.3.0

677

Table 6.383. Skin parameters redefinition for external controls

Skin parameters CSS properties

panelBorderColor border-color

Table 6.384. Skin parameters redefinition for layout

Skin parameters CSS properties

panelBorderColor border-left-color

panelBorderColor border-right-color

panelBorderColor border-top-color

panelBorderColor border-bottom-color

generalFamilyFont font-family

generalTextColor color

headerBackgroundColor background-color

Table 6.385. Skin parameters redefinition for buttons

Skin parameters CSS properties

headerBackgroundColor background-color

Table 6.386. Skin parameters redefinition for list box

Skin parameters CSS properties

tableBackgroundColor background

panelBorderColor border-color

generalFamilyFont font-family

Table 6.387. Skin parameters redefinition for color split button

Skin parameters CSS properties

tableBackgroundColor background

panelBorderColor border-color

generalFamilyFont font-family

additionalBackgroundColor background-color

Table 6.388. Skin parameters redefinition for hovered color split button

Skin parameters CSS properties

headerBackgroundColor border-color

Chapter 6. The RichFaces Comp...

678

Table 6.389. Skin parameters redefinition for menu

Skin parameters CSS properties

panelBorderColor border-color

tableBackgroundColor background

generalFamilyFont font-family

generalTextColor color

additionalBackgroundColor background-color

additionalBackgroundColor background-color

Table 6.390. Skin parameters redefinition for menu item

Skin parameters CSS properties

additionalBackgroundColor background

panelBorderColor border-bottom-color

generalTextColor color

generalTextColor color

tabDisabledTextColor color

Table 6.391. Skin parameters redefinition for progress and resize states

Skin parameters CSS properties

tableBackgroundColor background

tableBorderColor border-color

Table 6.392. Skin parameters redefinition for dialog box

Skin parameters CSS properties

generalFamilyFont font-family

generalBackgroundColor background

Table 6.393. Skin parameters redefinition for link in dialog box

Skin parameters CSS properties

generalTextColor color

hoverLinkColor color

Table 6.394. Skin parameters redefinition for link in dialog box

Skin parameters CSS properties

generalTextColor color

hoverLinkColor color

 < rich:editor > available since 3.3.0

679

Table 6.395. Skin parameters redefinition for fieldset in dialog box

Skin parameters CSS properties

generalFamilyFont font-family

panelBorderColor border-color

Table 6.396. Skin parameters redefinition for fieldset legend in dialog box

Skin parameters CSS properties

generalLinkColor color

Table 6.397. Skin parameters redefinition for input elements in dialog box

Skin parameters CSS properties

warningColor color

warningColor border-color

controlBackgroundColor background

tableBorderColor border-color

generalFamilyFont font-family

Table 6.398. Skin parameters redefinition for panel wrapper in dialog box

Skin parameters CSS properties

panelBorderColor border-color

tableBackgroundColor background

Table 6.399. Skin parameters redefinition for headers in dialog box

Skin parameters CSS properties

generalLinkColor color

Table 6.400. Skin parameters redefinition for links in tabs in dialog box

Skin parameters CSS properties

generalFamilyFont font-family

generalTextColor color

Table 6.401. Skin parameters redefinition for main text area

Skin parameters CSS properties

generalFamilyFont font-family

generalTextColor color

Chapter 6. The RichFaces Comp...

680

Skin parameters CSS properties

tableBackgroundColor background

6.11.4.8. Definition of Custom Style Selectors

On the screenshot there are CSS selectors that define styles for component elements.

Figure 6.239. Classes names

Table 6.402. CSS selectors for the layout of the editor

Selector Description

.richfacesSkin table.mceToolbar Defines styles for the rows of icons within

toolbar

.richfacesSkin .mceButton Defines styles for the buttons

.richfacesSkin .mceButtonDisabled .mceIcon Defines styles for the icons

.richfacesSkin .mceListBox Defines styles for the list box

.richfacesSkin .mceSeparator Defines styles for the buttons separator

.richfacesSkin .mceIframeContainer Defines styles for the container

.richfacesSkin table.mceLayout Defines styles for the table layout

.richfacesSkin .mceToolbar Defines styles for the toolbar

Table 6.403. CSS selectors for the menus

Selector Description

.richfacesSkin .mceMenu Defines styles for the menus

 < rich:editor > available since 3.3.0

681

Selector Description

.richfacesSkin .mceMenu .mceMenuItemActive Defines styles for the active menu items

.richfacesSkin .mceMenu .mceMenuItemActive Defines styles for the active menu items

In order to redefine styles for all <rich:editor> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.richfacesSkin .mceButton {

 border: 1px solid red;

}

...

This is the result:

Figure 6.240. Redefinition styles with predefined selectors

It's also possible to change styles of a particular <rich:editor> component. In this case you

should create own style classes and use them in corresponding <rich:editor> "styleClass"

attributes. An example is placed below:

Example:

...

.myClass{

 margin-top: 20px;

}

...

The "styleClass" attribute for <rich:editor> is defined as it's shown in the example below:

Chapter 6. The RichFaces Comp...

682

Example:

<rich:editor value="#{bean.text}" styleClass="myClass"/>

6.11.4.9. Relevant Resources Links

The <rich:editor> is based on TinyMCE editor and supports almost all its features and properties

some of which are not described here since you can find more detailed documentation on them

on the official web site. [http://wiki.moxiecode.com/index.php/TinyMCE:Index]

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/editor.jsf?

c=editor] you can see an example of <rich:editor> usage and sources for the given example.

6.11.5. < rich:fileUpload > available since 3.2.0

3.2.0

6.11.5.1. Description

The <rich:fileUpload> component designed to perform Ajax-ed files upload to server.

Figure 6.241. <rich:fileUpload> component

6.11.5.2. Key Features

• ProgressBar shows the status of downloads

• Restriction on File type, file size and number of files to be uploaded

• Multiple files upload support

• Embedded Flash module

• Possibility to cancel the request

• One request for every upload

• Automatic uploads

• Supports standard JSF internationalization

http://wiki.moxiecode.com/index.php/TinyMCE:Index
http://wiki.moxiecode.com/index.php/TinyMCE:Index
http://livedemo.exadel.com/richfaces-demo/richfaces/editor.jsf?c=editor
http://livedemo.exadel.com/richfaces-demo/richfaces/editor.jsf?c=editor
http://livedemo.exadel.com/richfaces-demo/richfaces/editor.jsf?c=editor

 < rich:fileUpload > available since 3.2.0

683

• Highly customizable look and feel

• Disablement support

Table 6.404. rich : fileUpload attributes

Attribute Name Description

acceptedTypes Files types allowed to upload

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

addButtonClass Assigns one or more space-separated CSS

class names to the component 'Add' button

addButtonClassDisabled Assigns one or more space-separated CSS

class names to the component 'Add' button

disabled

addControlLabel Defines a label for an add button

ajaxSingle Boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which send the request only.

Default value is "false"

allowFlash Attribute which allow the component to use

the flash module that provides file upload

functionality [false, true, auto]. Default value is

"false"

alt HTML: For a user agents that cannot display

images, forms, or applets, this attribute

specifies alternate text. The language of the

alternate text is specified by the lang attribute

autoclear If this attribute is "true" files will be immediately

removed from list after upload completed.

Default value is "false".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

cancelEntryControlLabel Defines a label for a cancel control

cleanButtonClass Assigns one or more space-separated CSS

class names to the component 'Clean' button

Chapter 6. The RichFaces Comp...

684

Attribute Name Description

cleanButtonClassDisabled Assigns one or more space-separated CSS

class names to the component 'Clean' button

disabled

clearAllControlLabel Defines a label for a clearAll button

clearControlLabel Defines a label for a clear control

disabled HTML: Attribute 'disabled' provides a possibility

to make the whole component disabled if its

value equals to "true". Default value is "false".

doneLabel Defines a label for a done label

fileEntryClass Assigns one or more space-separated CSS

class names to the file entries

fileEntryClassDisabled Assigns one or more space-separated CSS

class names to the file entries disabled

fileEntryControlClass Assigns one or more space-separated CSS

class names to the controls of the file entries

fileEntryControlClassDisabled Assigns one or more space-separated CSS

class names to the disabled controls of the file

entries

fileUploadListener MethodExpression representing an action

listener method that will be notified after file

uploaded.

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

immediateUpload If this attribute is true files will be immediately

uploaded after they have been added in list.

Default value is "false".

listHeight Defines height of file list. Default value is

"210px".

listWidth Defines width of file list. Default value is

"400px".

locale Used for locale definition

maxFilesQuantity Defines max files count allowed for upload

(optional). Default value is "1".

 < rich:fileUpload > available since 3.2.0

685

Attribute Name Description

noDuplicate Defines if component should allow to add files

that were already in list. Default value is "false".

onadd The client-side script method to be called

before a file is added

onblur DHTML: The client-side script method to be

called when the element loses the focus

onchange DHTML: The client-side script method to be

called when the element value is changed

onclear The client-side script method to be called when

a file entry is cleared

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onerror The client-side script method to be called when

a file uploading is interrupted according to any

errors

onfileuploadcomplete The client-side script method to be called when

a file is uploaded to the server

onfocus DHTML: The client-side script method to be

called when the element gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

Chapter 6. The RichFaces Comp...

686

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the text

field. This attribute can be used with the INPUT

and TEXTAREA elements.

onsizerejected The client-side script method to be called when

a file uploading is rejected by the file size

overflow

ontyperejected The client-side script method to be called when

a file type is rejected according to the file types

allowed

onupload The client-side script method to be called when

a file uploading is started

onuploadcanceled The client-side script method to be called when

a file uploading is cancelled

onuploadcomplete The client-side script method to be called when

uploading of all files from the list is completed

progressLabel Defines a label for a progress label

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

sizeErrorLabel Defines a label for a size error label

status ID (in format of call

UIComponent.findComponent()) of Request

status component

stopButtonClass Assigns one or more space-separated CSS

class names to the component 'Cancel' button

stopButtonClassDisabled Assigns one or more space-separated CSS

class names to the component 'Cancel' button

disabled

stopControlLabel Defines a label for a stop button

 < rich:fileUpload > available since 3.2.0

687

Attribute Name Description

stopEntryControlLabel Defines a label for a stop control

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

transferErrorLabel Defines a label for a transfer error label

uploadButtonClass Assigns one or more space-separated CSS

class names to the component 'Upload' button

uploadButtonClassDisabled Assigns one or more space-separated CSS

class names to the component 'Upload' button

disabled

uploadControlLabel Defines a label for an upload button

uploadData Collection of files uploaded

uploadListClass Assigns one or more space-separated CSS

class names to the upload list

uploadListClassDisabled Assigns one or more space-separated CSS

class names to the upload list disabled

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

Table 6.405. Component identification parameters

Name Value

component-type org.richfaces.component.FileUpload

component-class org.richfaces.component.html.HtmlFileUpload

component-family org.richfaces.component.FileUpload

renderer-type org.richfaces.renderkit.html.FileUploadRenderer

Chapter 6. The RichFaces Comp...

688

Name Value

tag-class org.richfaces.taglib.FileUploadTag

6.11.5.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:fileUpload />

...

6.11.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlFileUpload;

...

HtmlFileUpload myFileUpload = new HtmlFileUpload();

...

6.11.5.5. Details of Usage

The <rich:fileUpload> component consists of two parts:

• List of files which contains the list of currently chosen files to upload with possibility to manage

every file

• Component controls - the bar with controls for managing the whole component

There are two places where the uploaded files are stored:

• In the temporary folder (depends on OS) if the value of the createTempFile parameter in

Ajax4jsf Filter (in web.xml) section is "true" (by Default)

...

<init-param>

 <param-name>createTempFiles</param-name>

 <param-value>true</param-value>

</init-param>

 < rich:fileUpload > available since 3.2.0

689

...

• In the RAM if the value of the createTempFile parameter in Ajax4jsf Filter section is "false".

This is a better way for storing small-sized files.

The "uploadData" attribute defines the collection of files uploaded. See the example below.

Example:

...

<rich:fileUpload uploadData="#{bean.data}"/>

...

The "fileUploadedListener" is called at server side after every file uploaded and used for the

saving files from temporary folder or RAM.

Example:

...

<rich:fileUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}"/>

 ...

The following methods for processing the uploaded files are available:

• isMultiUpload(). It returns "true" if several files have been uploaded

• getUploadItems(). It returns the list of the uploaded files. If one file was uploaded, the

getUploadItems() method will return the list consisting of one file

• getUploadItem(). It returns the whole list in case of uploading one file only. If several files were

uploaded, the getUploadItem() method will return the first element of the uploaded files list.

Automatically files uploading could be performed by means of the "immediateUpload" attribute.

If the value of this attribute is "true" files are uploaded automatically once they have been added

into the list. All next files in the list are uploaded automatically one by one. If you cancel uploading

process next files aren't started to upload till you press the "Upload" button or clear the list.

Example:

...

<rich:fileUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}" immediateUpload="true"/

>

 ...

Chapter 6. The RichFaces Comp...

690

The "autoclear" attribute is used to remove automatically files from the list after upload completed.

See the simple example below.

Example:

...

<rich:fileUpload uploadData="#{bean.data}" autoclear="true"/>

...

Each file in list waiting for upload has link "Cancel" opposite its name. Clicking this link invokes

JS API remove() function, which gets $('id').component.entries[i] as a parameter and

removes the particular file from list and from the queue for upload. After a file has been uploaded

the link "Cancel" changes to "Clear". Clicking "Clear" invokes clear() JS API function, which

also gets ID of the particular entry and removes it from the list. Uploaded to server file itself is

kept untouched.

The <rich:fileUpload> component provides following restrictions:

• On file types, use "acceptedTypes" attribute to define file types accepted by component. In

the example below only files with "html" and "jpg" extensions are accepted to upload.

Example:

...

<rich:fileUpload acceptedTypes="html, jpg"/>

...

• On file size, use the maxRequestSize parameter(value in bytes) inside Ajax4jsf Filter section

in web.xml:

...

<init-param>

 <param-name>maxRequestSize</param-name>

 <param-value>1000000</param-value>

</init-param>

...

• On max files quantity, use the "maxFilesQuantity" attribute to define max number of files

allowed to be uploaded. After a number of files in the list equals to the value of this attribute

"Add" button is disabled and nothing could be uploaded even if you clear the whole list. In order

to upload files again you should rerender the component. As it could be seen in the example

below, only 2 files are accepted for uploading.

 < rich:fileUpload > available since 3.2.0

691

Example:

...

<rich:fileUpload maxFilesQuantity="2"/>

...

This is the result:

Figure 6.242. <rich:fileUpload> with "maxFilesQuantity" attribute

The <rich:fileUpload> component provides a number of specific event attributes:

• The "onadd" a event handler called on an add file operation

• The "onupload" which gives you a possibility to cancel the upload at client side

• The "onuploadcomplete" which is called after all files from the list are uploaded

• The "onuploadcanceled" which is called after upload has been canceled via cancel control

• The "onerror" which is called if the file upload was interrupted according to any errors

The <rich:fileUpload> component has an embedded Flash module that adds extra functionality

to the component. The module is enabled with "allowFlash" attribute set to "true".

These are the additional features that the Flash module provides:

• Multiple files choosing;

• Permitted file types are specified in the "Open File" dialog window;

• A number of additional entry object properties are also available, which can be found RichFaces

Developer Guide section on object properties.

Apart from uploading files to the sever without using Ajax, the Flash module provides a number

of useful API functions that can be used to obtain information about the uploaded file.

Chapter 6. The RichFaces Comp...

692

There are 2 ways to obtain the data stored in the FileUploadEntry object.

• By means of JavaScript on the client side. Use the following syntax for that

entries[i].propertyName. For example entries[0].state will return the state of the file the

is being processed or has just been processed.

• The properties of FileUploadEntry object can be retrieved using the

entry.propertyName expression in the specific event attributes. For example,

onupload="alert(event.memo.entry.fileName);" will display a message with the name

of the file at the very moment when upload operation starts. A full list of properties can be found

in RichFaces Developer Guide section on properties and their attributes.

The given bellow code sample demonstrates how the properties can be used. Please study it

carefully.

...

<head>

 <script>

 function _onaddHandler (e) {

 var i = 0;

 for (; i < e.memo.entries.lenght; i++) {

 alert(e.memo.entries[i].creator); //Shows creators of the added files

 }

 }

 function _onerrorhandle(e) {

 alert(e.memo.entry.fileName + "file was not uploaded due transfer error");

 }

 </script>

</head>

 ...

Moreover, embedded Flash module provides a smoother representation of progress bar during

the uploading process: the polling is performed is not by Ajax, but my means of the flash module.

Figure 6.243. Uploading using Flash module <rich:fileUpload>

 < rich:fileUpload > available since 3.2.0

693

However, the Flash module doens't perform any visual representation of the component.

In order to customize the information regarding the ongoing process you could use "label" facet

with the following macrosubstitution:

• {B}, {KB}, {MB} contains the size of file uploaded in bytes, kilobytes, megabytes respectively

• {_B}, {_KB}, {_MB} contains the remain file size to upload in bytes, kilobytes, megabytes

respectively

• {ss}, {mm}, {hh} contains elapsed time in seconds, minutes and hours respectively

Example:

...

<rich:fileUpload uploadData="#{bean.data}" fileUploadListener="#{bean.listener}">

 <f:facet name="label">

 <h:outputText value="{_KB}KB from {KB}KB uploaded --- {mm}:{ss}" />

 </f:facet>

</rich:fileUpload>

...

This is the result:

Figure 6.244. <rich:fileUpload> with "label" facet

You could define labels of the component controls with the help of "addControlLabel" ,

"clearAllControlLabel" , "clearControlLabel" , "stopEntryControlLabel" , "uploadControlLabel"

attributes. See the following example.

Example:

...

<rich:fileUpload addControlLabel="Add file..." clearAllControlLabel="Clear

 all" clearControlLabel="Clear"

 stopEntryControlLabel="Stop process" uploadControlLabel="Upload file"/>

Chapter 6. The RichFaces Comp...

694

...

This is the result:

Figure 6.245. <rich:fileUpload> with labels

The <rich:fileUpload> component allows to use sizes attributes:

• "listHeight" attribute specify height for list of files in pixels

• "listWidth" attribute specify width for list of files in pixels

In order to disable the whole component you could use the "disabled" attribute. See the following

example.

Example:

...

<rich:fileUpload disabled="true"/>

...

This is the result:

Figure 6.246. <rich:fileUpload> with "disabled" attribute

It's possible to handle events for fileUpload using JavaScript code. A simplest example of usage

JavaScript API is placed below:

 < rich:fileUpload > available since 3.2.0

695

Example:

...

<rich:fileUpload id="upload" disabled="false"/>

<h:commandButton onclick="${rich:component('upload')}.disable();" value="Disable" />

...

<rich:fileUpload> component also provides a number of JavaScript property, that can be

used to process uploaded files, file states etc. The given below example illustrates how the

entries[0].state property can be used to get access to the file state. Full list of JavaScript

properties can be found below.

...

<rich:fileUpload fileUploadListener="#{fileUploadBean.listener}"

 maxFilesQuantity="#{fileUploadBean.uploadsAvailable}"

 id="upload"

 immediateUpload="#{fileUploadBean.autoUpload}"

 acceptedTypes="jpg, gif, png, bmp"/>

 <a4j:support event="onuploadcomplete" reRender="info" />

</rich:fileUpload>

<h:commandButton onclick="if($('j_id232:upload').component.entries[0].state ==

 FileUploadEntry.UPLOAD_SUCCESS) alert ('DONE');" value="Check file state"/>

...

The <rich:fileUpload> component allows to use internationalization method

to redefine and localize the labels. You could use application resource

bundle and define RICH_FILE_UPLOAD_CANCEL_LABEL, RICH_FILE_UPLOAD_STOP_LABEL,

RICH_FILE_UPLOAD_ADD_LABEL, RICH_FILE_UPLOAD_UPLOAD_LABEL,

RICH_FILE_UPLOAD_CLEAR_LABEL, RICH_FILE_UPLOAD_CLEAR_ALL_LABEL,

RICH_FILE_UPLOAD_PROGRESS_LABEL, RICH_FILE_UPLOAD_SIZE_ERROR_LABLE,

RICH_FILE_UPLOAD_TRANSFER_ERROR_LABLE, RICH_FILE_UPLOAD_ENTRY_STOP_LABEL,

RICH_FILE_UPLOAD_ENTRY_CLEAR_LABEL, RICH_FILE_UPLOAD_ENTRY_CANCEL_LABEL there.

The <rich:fileUpload> component could work together with Seam framework. On

RichFaces LiveDemo page [http://www.jboss.org/file-access/default/members/jbossrichfaces/

freezone/docs/devguide/en/faq/faq.html#fileUploadConf] you can see how to configure filter for

this framework in web.xml file in order to handle <rich:fileUpload> requests.

To make <rich:fileUpload> component work properly with MyFaces extensions, the order

in which filters are defined and mapped in web.xml, is important. See corresponding

FAQ chapter [http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/

devguide/en/faq/faq.html#richfileUploadforMyFaces].

http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#fileUploadConf
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#richfileUploadforMyFaces
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#richfileUploadforMyFaces
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#richfileUploadforMyFaces
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/faq/faq.html#richfileUploadforMyFaces

Chapter 6. The RichFaces Comp...

696

6.11.5.6. JavaScript API

Table 6.406. JavaScript API

Function Description

beforeSubmit() Sets up necessary request parameters for

file uploading and submits form to server by

command button. This method should be used

together with commands.

clear() Removes all files from the list. The function can

also get the $('id').component.entries[i]

as a parameter to remove a particular file.

disable() Disables the component

enable() Enables the component

remove() Cancels the request for uploading

a file by removing this file from

upload list and upload queue. Gets

$('id').component.entries[i] as a

parameter.

stop() Stops the uploading process

submitForm() Submits form to server. All added files will be

put to model and event.

Table 6.407. Client-side object properties

Property Description

entries Returns a array of all files in the list

entries.length Returns the number of files in the list

entries[i].fileName Returns the file name, that is retrieved by the

array index

entries[i].state Returns the file state. Possible states are

• "initialized" - the file is added, corresponds to

FileUploadEntry.INITIALIZED constant

• "progress" - the file is

being uploaded, corresponds to

FileUploadEntry.UPLOAD_IN_PROGRESS

constant

• "ready" - uploading is in process,

corresponds to FileUploadEntry.READY

 < rich:fileUpload > available since 3.2.0

697

Property Description

constant The file will be uploaded on queue

order.

• "canceled" - uploading of the

file is canceled, corresponds

to FileUploadEntry.UPLOAD_CANCELED

constant

• "done" - the file is uploaded successfully,

corresponds to

FileUploadEntry.UPLOAD_SUCCESS

constant

• "transfer_error" - a file transfer

error occurred, corresponds to

FileUploadEntry.UPLOAD_TRANSFER_ERROR

constant

• "size_error" - the file exceeded

maximum size, corresponds to

FileUploadEntry.UPLOAD_SIZE_ERROR

constant

entries[i].size Returns the size of the file. Available in flash

enabled version only

entries[i].Type Returns the mime type of the file. Available in

flash enabled version only

entries[i].creator Returns the name of the author of the file.

Available in flash enabled version only

entries[i].creationDate Returns the date when the file was created.

Available in flash enabled version only

entries[i].modificationDate Returns the date of the last file modification.

Available in flash enabled version only

Table 6.408. Client-side object properties available with specific event

attributes [691]

Property Description

entry.state Returns the file state. Possible states are

• "initialized" - the file is added, corresponds to

FileUploadEntry.INITIALIZED constant

Chapter 6. The RichFaces Comp...

698

Property Description

• "progress" - the file is

being uploaded, corresponds to

FileUploadEntry.UPLOAD_IN_PROGRESS

constant

• "ready" - uploading is in process,

corresponds to FileUploadEntry.READY

constant The file will be uploaded on queue

order.

• "canceled" - uploading of the

file is canceled, corresponds

to FileUploadEntry.UPLOAD_CANCELED

constant

• "done" - the file is uploaded successfully,

corresponds to

FileUploadEntry.UPLOAD_SUCCESS

constant

• "transfer_error" - a file transfer

error occurred, corresponds to

FileUploadEntry.UPLOAD_TRANSFER_ERROR

constant

• "size_error" - the file exceeded

maximum size, corresponds to

FileUploadEntry.UPLOAD_SIZE_ERROR

constant

entry.fileName Returns the file's name. This property works

with all event handlers except for "onadd".

entry.size Returns the size of the file. Available in flash

enabled version only

entry.Type Returns the mime type of the file. Available in

flash enabled version only

entry.creator Returns the name of the author of the file.

Available in flash enabled version only

entry.creationDate Returns the date when the file was created.

Available in flash enabled version only

entry.modificationDate Returns the date of the last file modification.

Available in flash enabled version only

 < rich:fileUpload > available since 3.2.0

699

6.11.5.7. Facets

Table 6.409. Facets

Facet name Description

label Defines the information regarding the ongoing

process

progress Defines the information regarding the

uploading process

6.11.5.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:fileUpload> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:fileUpload> component

6.11.5.9. Skin Parameters Redefinition

Table 6.410. Skin parameters redefinition for a component

Skin parameters CSS properties

tableBackgroundColor background-color

tableBorderColor border-color

Table 6.411. Skin parameters redefinition for a font

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Table 6.412. Skin parameters redefinition for a toolbar

Skin parameters CSS properties

additionalBackgroundColor background-color

tableBorderColor border-bottom-color

tableBackgroundColor border-top-color

tableBackgroundColor border-left-color

Chapter 6. The RichFaces Comp...

700

Table 6.413. Skin parameters redefinition for items in the list

Skin parameters CSS properties

tableBorderColor border-bottom-color

Table 6.414. Skin parameters redefinition for a "Cancel", "Clear" links

Skin parameters CSS properties

generalLinkColor color

Table 6.415. Skin parameters redefinition for a button

Skin parameters CSS properties

trimColor background-color

Table 6.416. Skin parameters redefinition for a button border

Skin parameters CSS properties

tableBorderColor border-color

Table 6.417. Skin parameters redefinition for a highlighted button

Skin parameters CSS properties

trimColor background-color

selectControlColor border-color

Table 6.418. Skin parameters redefinition for a pressed button

Skin parameters CSS properties

selectControlColor border-color

additionalBackgroundColor background-color

Table 6.419. Skin parameters redefinition for "Upload", "Clean" buttons

Skin parameters CSS properties

generalTextColor color

Table 6.420. Skin parameters redefinition for a disabled "Start" button icon

Skin parameters CSS properties

tableBorderColor color

Table 6.421. Skin parameters redefinition for a disabled "Clear" button icon

Skin parameters CSS properties

tableBorderColor color

 < rich:fileUpload > available since 3.2.0

701

6.11.5.10. Definition of Custom Style Classes

The following picture illustrates how CSS classes define styles for component elements.

Figure 6.247. Classes names

Figure 6.248. Classes names

Table 6.422. Classes names that define a component representation

Class name Description

rich-fileupload-list-decor Defines styles for a wrapper <div> element of

a fileUpload

rich-fileupload-font Defines styles for a font of buttons and items

rich-fileupload-toolbar-decor Defines styles for a toolbar

rich-fileupload-list-overflow Defines styles for a list of files

Chapter 6. The RichFaces Comp...

702

Table 6.423. Classes names that define buttons representation

Class name Description

rich-fileupload-button Defines styles for a buttons

rich-fileupload-button-border Defines styles for a border of buttons

rich-fileupload-button-light Defines styles for a highlight of button

rich-fileupload-button-press Defines styles for a pressed button

rich-fileupload-button-dis Defines styles for a disabled button

rich-fileupload-button-selection Defines styles for "Upload", "Clean" buttons

Table 6.424. Classes names that define the representation of the buttons'

icons

Class name Description

rich-fileupload-ico Defines styles for an icon

rich-fileupload-ico-add Defines styles for a "Add" button icon

rich-fileupload-ico-start Defines styles for a "Upload" button icon

rich-fileupload-ico-stop Defines styles for a "Stop" button icon

rich-fileupload-ico-clear Defines styles for a "Clear" button icon

rich-fileupload-ico-add-dis Defines styles for a disabled "Add" button icon

rich-fileupload-ico-start-dis Defines styles for a disabled "Upload" button

icon

rich-fileupload-ico-clear-dis Defines styles for a disabled "Clear" button icon

Table 6.425. Classes names that define list items representation

Class name Description

rich-fileupload-table-td Defines styles for a wrapper <td> element of a

list items

rich-fileupload-anc Defines styles for "Cancel", "Stop", "Clear"

links

In order to redefine styles for all <rich:fileUpload> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-fileupload-anc{

 < rich:fileUpload > available since 3.2.0

703

 font-weight:bold;

 text-decoration:none;

}

...

This is the result:

Figure 6.249. Redefinition styles with predefined classes

In the example above the font weight and text decoration for "Cancel" and "Clear" links are

changed.

Also it's possible to change styles of particular <rich:fileUpload> component. In this case you

should create own style classes and use them in the corresponding <rich:fileUpload> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-weight:bold;

}

...

The "addButtonClass" attribute for <rich:fileUpload> is defined as it's shown in the example

below:

Example:

<rich:fileUpload ... addButtonClass="myClass"/>

This is the result:

Chapter 6. The RichFaces Comp...

704

Figure 6.250. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for "Add" button is changed.

6.11.5.11. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

fileUpload.jsf?c=fileUpload] you can see an example of <rich:fileUpload> usage and sources

for the given example.

6.11.6. < rich:inplaceInput > available since 3.2.0

3.2.0

6.11.6.1. Description

The <rich:inplaceInput> is an input component used for displaying and editing data inputted.

Figure 6.251. <rich:inplaceInput> component

6.11.6.2. Key Features

• View/changed/edit states highly customizable representations

• Changing state event customization

• Possibility to call custom JavaScript function on state changes

• Optional "inline" or "block" element rendering on a page

http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload
http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload
http://livedemo.exadel.com/richfaces-demo/richfaces/fileUpload.jsf?c=fileUpload

 < rich:inplaceInput > available since 3.2.0

705

• Edit mode activation when the component gets focus with the "Tab"

• Sizes synchronizations between modes

• Controls customization

Table 6.426. rich : inplaceInput attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

cancelControlIcon Defines custom cancel icon

changedClass Assigns one or more space-separated CSS

class names to the component in the changed

state

changedHoverClass Assigns one or more space-separated CSS

class names to the component hovered in the

changed state

controlClass Assigns one or more space-separated CSS

class names to the component controls

controlHoverClass Assigns one or more space-separated CSS

class names to the component control hovered

controlPressedClass Assigns one or more space-separated CSS

class names to the component control pressed

controlsHorizontalPosition Positions the controls horizontally. Possible

values are "left", "center", "right". Default value

is "right".

controlsVerticalPosition Positions the controls vertically. Possible

values are "bottom","center" and "top". Default

value is "center"

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

defaultLabel The attribute is used to display text while value

is undefined

editClass Assigns one or more space-separated CSS

class names to the component in the edit state

Chapter 6. The RichFaces Comp...

706

Attribute Name Description

editEvent Provides an option to assign an JavaScript

action that initiates the change of the state.

Default value is "onclick".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

inputWidth Sets width of the input field

label A localized user presentable name for this

component.

layout Defines how the component is displayed in

the layout. Possible values are "block", "inline".

Default value is "inline".

maxInputWidth Sets the maximum width of the input field.

Default value is "500px".

maxlength HTML: Specifies the maximum number of

digits that could be entered into the input field.

The maximum number is unlimited by default.

minInputWidth Sets the minimum width of the input field.

Default value is "40px".

onblur DHTML: The client-side script method to be

called when the component loses the focus

onchange DHTML: The client-side script method to be

called when the component value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

oneditactivated The client-side script method to be called when

the component edit state is activated

oneditactivation The client-side script method to be called

before the component edit state is activated

onfocus DHTML: The client-side script method to be

called when the component gets the focus

 < rich:inplaceInput > available since 3.2.0

707

Attribute Name Description

oninputclick The client-side script method to be called when

the input field is clicked

oninputdblclick The client-side script method to be called when

the input field is double-clicked

oninputkeydown The client-side script method to be called when

a key is pressed down in the input field

oninputkeypress The client-side script method to be called when

a key is pressed and released in the input field

oninputkeyup The client-side script method to be called when

a key is released in the input field

oninputmousedown The client-side script method to be called when

a mouse button is pressed down in the input

field

oninputmousemove The client-side script method to be called when

a pointer is moved within the input field

oninputmouseout The client-side script method to be called when

a pointer is moved away from the input field

oninputmouseover The client-side script method to be called when

a pointer is moved onto the input field

oninputmouseup The client-side script method to be called when

a mouse button is released in the input field

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

Chapter 6. The RichFaces Comp...

708

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the input

field

onviewactivated The client-side script method to be called when

the component view state is activated

onviewactivation The client-side script method to be called

before the component view state is activated

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

saveControlIcon Defines custom save icon

selectOnEdit Makes the input field select when switched to

edit state. Default value is "false"

showControls Serves to display "save" and "cancel" controls.

Default value is "false".

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: Serves to define the tabbing order

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

 < rich:inplaceInput > available since 3.2.0

709

Attribute Name Description

viewClass Assigns one or more space-separated CSS

class names to the component in the view state

viewHoverClass Assigns one or more space-separated CSS

class names to the component hovered in the

view state

Table 6.427. Component identification parameters

Name Value

component-type org.richfaces.inplaceInput

component-class org.richfaces.component.html.HtmlInplaceInput

component-family org.richfaces.inplaceInput

renderer-type org.richfaces.renderkit.inplaceInputRenderer

tag-class org.richfaces.taglib.inplaceInputTag

6.11.6.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

...

<rich:inplaceInput value="#{bean.value}"/>

...

6.11.6.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.inplaceInput;

...

HtmlInpaceInput myInplaceInput = new InplaceInput();

...

6.11.6.5. Details of Usage

The <rich:inplaceInput> component was designed to facilitate displaying and inputting(editing)

some data.

The "value" attribute is a value-binding expression for the current value of the component.

Chapter 6. The RichFaces Comp...

710

The component has three functional states:

• View state displays default label with the value taken from "value" or "defaultLabel" attributes.

If the initial value of the "value" attribute is "null" or empty string the "defaultLabel" attribute

is used to define default label.

Example:

...

<rich:inplaceInput value="#{bean.value}" defaultLabel="click to edit"/>

...

In the example above the "value" attribute is not initialized therefore "click to edit" text,

that "defaultLabel" , contains is displayed.

This is the result:

Figure 6.252. View state

• Edit state - input representation to allow value edit

Figure 6.253. Edit state

• Changed state - value representation after it was changed

Figure 6.254. Changed state

The "editEvent" attribute provides an option to assign a JavaScript action to initiate the change

of the state from view/changed to edit. The default value is "onclick".

Example:

...

 < rich:inplaceInput > available since 3.2.0

711

<rich:inplaceInput value="#{bean.value}" editEvent="ondblclick"/>

...

The <rich:inplaceInput> component provides specific event attributes:

• "oneditactivation" which is fired on edit state activation

• "oneditactivated" which is fired when edit state is activated

• "onviewactivation" which is fired on view state activation

• "onviewactivated" which is fired after the component is changed to representation state

Example:

...

<rich:inplaceInput value="#{bean.value}" oneditactivation="if (!confirm('Are you sure you want

 to change the value?')){return false;}" />

...

The given code illustrates how "oneditactivation" attribute works, namely when the state is being

changed from view to edit, a confirmation window with a message "Are you sure you want

to change value?" comes up.

Using the boolean "selectOnEdit" attribute set to true, the text in the input field will be selected

when the change from view/changed state to edit occurs.

This is the result:

Figure 6.255. Usage of the "selectOnEdit" attribute

If the <rich:inplaceInput> loses focus, input data is saved automatically and the component

displays a new value. Additionally, the data is saved when "Enter" is pressed. Nevertheless, you

can use the "showControls" attribute, which makes "Save" and "Cancel" buttons appear next

to the input field. If the controls are used, data is not saved automatically when the form loses

focus: user has to confirm that he/she wants to save/discard the data explicitly. In both cases(with

controls or without them) the input data can be discarded by pressing "Esc" key.

Example:

Chapter 6. The RichFaces Comp...

712

...

<rich:inplaceInput value="#{bean.value}" showControls="true"/>

...

Figure 6.256. Usage "showControls" attribute

You can also position the controls relatively to the input field, by means of

• The "controlsHorizontalPosition" attribute with "left", "right" and "center" definitions

• The "controlsVerticalPosition " attribute with "bottom", "center" and "top" definitions

Example:

...

<rich:inplaceInput value="#{bean.value}" showControls="true" controlsVerticalPosition="bottom" controlsHorizontalPosition="left"/

>

...

This is the result:

Figure 6.257. Positioning of "Save" and "Cancel" buttons

It is also possible to use "controls" facet in order to replace the default controls with facets content.

See the example below.

Example:

...

<rich:inplaceInput defaultLabel="Click here to

 edit" showControls="true" controlsHorizontalPosition="left" controlsVerticalPosition="bottom" id="inplaceInput">

 <f:facet name="controls">

 < rich:inplaceInput > available since 3.2.0

713

 <h:commandButton value="Save" onclick="#{rich:component('inplaceInput')}.save();" type="button" /

>

 <h:commandButton value="Cancel" onclick="#{rich:component('inplaceInput')}.cancel();" type="button" /

>

 </f:facet>

</rich:inplaceInput>

...

This is the result:

Figure 6.258. "controls" facet usage

Note:

The "controls" facet also implies using "showControls" attribute and it has to be

defined as "true".

Redefinition of the "save" and "cancel" icons can be performed using "saveControlIcon" and

"cancelControlIcon" attributes. You need to define the path to where your images are located.

Example:

...

<rich:inplaceInput value="#{bean.value}" defaultLabel='click to edit'

 showControls="true"

 controlsHorizontalPosition="left"

 controlsVerticalPosition="top"

 saveControlIcon="/images/cancel.gif"

 cancelControlIcon="/images/save.gif"/>

 ...

Figure 6.259. Redefining of "save" and "cancel" buttons

Chapter 6. The RichFaces Comp...

714

The <rich:inplaceInput> component could be rendered with or <div> elements to

display its value. In order to change default output, use "layout" attribute with "block"

value.

The <rich:inplaceInput> component supports standard "tabindex" attribute. When the

component gets focus the edit mode is activated.

The "inputWidth" , "minInputWidth" , "maxInputWidth" attributes are provided to specify the

width, minimal width and maximal width for the input element respectively.

Table 6.428. Keyboard usage

Keys and combinations Description

ENTER Saves the input data, and changes the state

from edit to changed

ESC Changes the state from edit to view or

changed, value is not affected

TAB Switches between the components

6.11.6.6. JavaScript API

Table 6.429. JavaScript API

Function Description

edit() Changes the state to edit

cancel() Changes its state to the previous one before

editing (changed or view)

save() Changes its state to changed with a new value

getValue() Gets the current value

setValue(newValue) Sets the current value (to be implemented)

6.11.6.7. Facets

Table 6.430. Facets

Facet name Description

controls Defines the contols contents. Related

attributes are "saveControlIcon" and

"cancelControlIcon"

6.11.6.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

 < rich:inplaceInput > available since 3.2.0

715

There are two ways to redefine the appearance of all <rich:inplaceInput> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:inplaceInput> component

6.11.6.9. Skin Parameters Redefinition

Table 6.431. Skin parameters redefinition for "save" and "cancel" controls

Skin parameters CSS properties

tabBackgroundColor background-color

panelBorderColor border-color

Table 6.432. Skin parameters redefinition for view state

Skin parameters CSS properties

editorBackgroundColor background-color

generalTextColor border-bottom-color

Table 6.433. Skin parameters redefinition for "Changed" state

Skin parameters CSS properties

editorBackgroundColor background-color

generalTextColo border-bottom-color

Table 6.434. Classes names that define input field look and feel in edit state

Skin parameters CSS properties

editBackgroundColor background-color

panelBorderColor border-color

6.11.6.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Chapter 6. The RichFaces Comp...

716

Figure 6.260. Classes names

Table 6.435. Classes names that define a component appearance

Class name Description

rich-inplace Defines styles for a wrapper (or <div>)

element of a component

rich-inplace-input Defines styles for the component input field

Table 6.436. Class name for the view state

Class name Description

rich-inplace-view Defines styles for the view state

rich-inplace-input-view-hover Defines styles for hovered text in the view state

Table 6.437. Class name for the input field in edit state

Class name Description

rich-inplace-field Defines styles for the input field look and feel

in edit state

Table 6.438. Class name for the "Changed" state

Class name Description

rich-inplace-changed Defines styles for the "Changed" state

rich-inplace-input-changed-hover Defines styles for the hovered text in the

"Changed" state

 < rich:inplaceInput > available since 3.2.0

717

Table 6.439. Classes names for "save" and "cancel" controls in Edit state

Class name Description

rich-inplace-control Defines styles for the controls

rich-inplace-control-press Defines styles for the controls when either of

the buttons is pressed

rich-inplace-shadow-size Defines size of the shadow

rich-inplace-shadow-tl Defines styles for the shadow in the top left

corner

rich-inplace-shadow-tr Defines styles for the shadow in the top right

corner

rich-inplace-shadow-bl Defines styles for the shadow in the bottom left

corner

rich-inplace-shadow-br Defines styles for the shadow in the bottom

right corner

In order to redefine styles for all <rich:inplaceInput> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-inplace-field {

 font-style: italic;

}

...

This is the result:

Figure 6.261. Redefinition styles with predefined classes

In the shown example the font in edit state is changed to bold.

It's aslo possible to change styles of a particular <rich:inplaceInput> component. In this case you

should create own style classes and use them in corresponding <rich:inplaceInput> styleClass

attributes. An example is placed below:

Example:

Chapter 6. The RichFaces Comp...

718

...

.myClass {

 color: #008cca;

}

...

The "viewClass" attribute for the <rich:inplaceInput> is defined as it's shown in the example

below:

Example:

<rich:inplaceInput value="click to edit" styleClass="myClass"/>

This is a result:

Figure 6.262. Modificaton of a look and feel with own classes and styleClass

attributes

As it could be seen on the picture above, the font color of the text on the component was changed.

6.11.6.11. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

inplaceInput.jsf?c=inplaceInput] you can see the example of <rich:inplaceIput> usage and

sources for the given example.

6.11.7. < rich:inplaceSelect > available since 3.2.0

3.2.0

6.11.7.1. Description

The <rich:inplaceSelect> is used for creation select based inputs: it shows the value as text in

one state and enables editing the value, providing a list of options in another state

http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceInput.jsf?c=inplaceInput
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceInput.jsf?c=inplaceInput
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceInput.jsf?c=inplaceInput

 < rich:inplaceSelect > available since 3.2.0

719

Figure 6.263. Three states of <rich:inplaceSelect> component

6.11.7.2. Key Features

• View/changed/edit states highly customizable representations

• Optional "inline" or "block" element rendering on a page

• Changing state event customization

• Possibility to call custom JavaScript function on state changes

• Edit mode activation when the component got focus with the "Tab"

• Sizes synchronizations between modes

• Highly customizable look and feel

Table 6.440. rich : inplaceSelect attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

cancelControlIcon Defines custom cancel icon

changedClass Assigns one or more space-separated CSS

class names to the component in the changed

state

controlClass Assigns one or more space-separated CSS

class names to the component controls

controlHoverClass Assigns one or more space-separated CSS

class names to the component control hovered

controlPressClass Assigns one or more space-separated CSS

class names to the component control pressed

Chapter 6. The RichFaces Comp...

720

Attribute Name Description

controlsHorizontalPosition The attribute positions the controls horizontally.

Possible values are "right","center","left".

Default value is "right".

controlsVerticalPosition The attribute positions the controls vertically.

Possible values are "bottom","center" and

"top". Default value is "center"

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

defaultLabel The attribute is used to display text while value

is undefined

editClass Assigns one or more space-separated CSS

class names to the component in the edit state

editEvent The attribute provides an option to assign an

JavaScript action that initiates the change of

the state. Default value is "onclick".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

label A localized user presentable name for this

component.

layout Defines how the component is displayed in

the layout. Possible values are "block", "inline".

Default value is "inline".

listHeight The attribute defines the height of option list.

Default value is "200px".

listWidth The attribute defines the width of option list.

Default value is "200px".

maxSelectWidth Sets the maximum width of the select element.

Default value is "200px".

minSelectWidth Sets the minimum width of the select element.

Default value is "100px".

 < rich:inplaceSelect > available since 3.2.0

721

Attribute Name Description

onblur DHTML: The client-side script method to be

called when the component loses the focus

onchange DHTML: The client-side script method to be

called when the component value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

oneditactivated The client-side script method to be called when

the component edit state is activated

oneditactivation The client-side script method to be called

before the component edit state is activated

onfocus DHTML: The client-side script method to be

called when the component gets the focus

oninputblur The client-side script method to be called when

the component input field loses the focus

oninputclick The client-side script method to be called when

the input field is clicked

oninputdblclick The client-side script method to be called when

the input field is double-clicked

oninputfocus The client-side script method to be called when

the component input field gets the focus

oninputkeydown The client-side script method to be called when

a key is pressed down in the input field

oninputkeypress The client-side script method to be called when

a key is pressed and released in the input field

oninputkeyup The client-side script method to be called when

a key is released in the input field

oninputmousedown The client-side script method to be called when

a mouse button is pressed down in the input

field

oninputmousemove The client-side script method to be called when

a pointer is moved within the input field

oninputmouseout The client-side script method to be called when

a pointer is moved away from the input field

oninputmouseover The client-side script method to be called when

a pointer is moved onto the input field

Chapter 6. The RichFaces Comp...

722

Attribute Name Description

oninputmouseup The client-side script method to be called when

a mouse button is released in the input field

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the input

field

onviewactivated The client-side script method to be called when

the component view state is activated

onviewactivation The client-side script method to be called

before the component view state is activated

openOnEdit The attribute opens the list once edit activated.

Default value is "true".

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

 < rich:inplaceSelect > available since 3.2.0

723

Attribute Name Description

saveControlIcon Defines custom save icon

selectWidth Sets width of the select element

showControls The attribute serves to display "save" and

"cancel" controls. Default value is "false".

showValueInView If "true", shows the SelectItem labels in the

InplaceSelect pull-down list, but displays the

value in the field in view mode once an item is

selected. Default value is "false"

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: The attribute serves to define the

tabbing order

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

viewClass Assigns one or more space-separated CSS

class names to the component in the view state

viewHoverClass Assigns one or more space-separated CSS

class names to the component hovered in the

view state

Table 6.441. Component identification parameters

Name Value

component-type org.richfaces.InplaceSelect

component-class org.richfaces.component.html.HtmlInplaceSelect

component-family org.richfaces.InplaceSelect

renderer-type org.richfaces.renderkit.InplaceSelectRenderer

tag-class org.richfaces.taglib.InplaceSelectTag

Chapter 6. The RichFaces Comp...

724

6.11.7.3. Creating the Component with a Page Tag

Here is a simple example of how the component can be used on a page:

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}">

 <f:selectItem itemValue="1" itemLabel="factory"/>

</rich:inplaceSelect>

...

6.11.7.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.inplaceSelect;

...

HtmlInpaceSelect myInplaceSelect = new InplaceSelect();

...

6.11.7.5. Details of Usage

The "value" attribute is a value-binding expression for the current value of the component.

The <rich:inplaceSelect> component has three functional states:

• View state displays default label with the value taken from "value" or "defaultLabel" attributes.

If the initial value of the "value" attribute is "null" or empty string the "defaultLabel" attribute

is used to define default label.

Example:

...

<rich:inplaceSelect value="#{bean.value}" defaultLabel="click to edit">

 <f:selectItems value="#{bean.selectItems}" />

</rich:inplaceSelect>

...

In the example above the "value" attribute is not initialized therefore "click to edit" text,

that "defaultLabel" , contains is displayed.

 < rich:inplaceSelect > available since 3.2.0

725

This is the result:

Figure 6.264. View state

• Edit state - select representation to allow value edit

Figure 6.265. Edit state

• Changed state - value representation after it was changed

Figure 6.266. Changed state

You can form the list of the options using <f:selectItem/> and <f:selectItems/> JSF

components.

Please, see the example below.

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" defaultLabel="click to edit">

 <f:selectItems value="#{bean.selectItems}"/>

 <f:selectItem itemValue="1" itemLabel="factory"/>

 <f:selectItem itemValue="2" itemLabel="newspaper"/>

</rich:inplaceSelect>

Chapter 6. The RichFaces Comp...

726

...

In the example above the value of the selected item is available via "value" attribute.

The "editEvent" attribute provides an option to assign an JavaScript action that initiates the

change of the state from view to edit. The default value is "onclick".

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" defaultLabel="Double Click to

 edit" editEvent="ondblclick">

 <f:selectItems value="#{demo.selectItems}" />

</rich:inplaceSelect>

...

The <rich:inplaceSelect> component provides specific event attributes:

• "oneditactivation" fired on edit state activation

• "oneditactivated" fired when edit state is activated

• "onviewactivation" fired on view state activation

• "onviewactivated" fired after the component is changed to representation state

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" oneditactivation="if (!confirm('Are you sure you

 want to change the value?')){return false;}">

 <f:selectItems value="#{demo.selectItems}" />

</rich:inplaceSelect>

...

The given code illustrates how "oneditactivation" attribute works, namely when the state is being

changed from view to edit, a confirmation window with a message "Are you sure you want

to change value?" comes up.

To prevent opening the drop-down list by default, once edit state is activated, set the "openOnEdit"

attribute to "false". The default value is "true".

Example:

 < rich:inplaceSelect > available since 3.2.0

727

...

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true" openOnEdit="false">

 <f:selectItems value="#{bean.selectItems}"/>

</rich:inplaceSelect>

...

This is the result:

Figure 6.267. The "openOnEdit" attribute usage

Nowever, if you want to confirm the data saving explicitly you can use the "showControls"

attribute, which makes "Save" and "Cancel" buttons (displayed as icons) appear next to the input

field. Edit state can be deactivated by pressing "Esc" key. An option in the drop-drown list can be

also selected by pressing "Enter".

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true">

 <f:selectItems value="#{bean.selectItems}"/>

</rich:inplaceSelect>

...

This is the result:

Figure 6.268. The "showControls" attribute usage

You can also position the controls relatively to the input field, by means of

• The "controlsHorizontalPosition" attribute with "left", "right" and "center" definitions

• The "controlsVerticalPosition " attribute with "bottom" and "top" definitions

Chapter 6. The RichFaces Comp...

728

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" controlsHorizontalPosition="left" controlsVerticalPosition="center" showControls="true">

 <f:selectItems value="#{bean.selectItems}"/>

</rich:inplaceSelect>

...

This is the result:

Figure 6.269. Controls positioning

It is also possible to use "controls" facet in order to replace the default controls with facets content.

See the example below.

Please, see the example.

Example:

...

<rich:inplaceSelect value="#{bean.inputValue}" showControls="true">

 <f:facet name="controls">

 <button onclick="#{rich:component('inplaceSelect')}.save();" type="button">Save</button>

 <button onclick="#{rich:component('inplaceSelect')}.cancel();" type="button">Cancel</

button>

 </f:facet>

 <f:selectItems value="#{bean.selectItems}"/>

</rich:inplaceSelect>

...

This is the result:

Figure 6.270. "controls" facet usage

 < rich:inplaceSelect > available since 3.2.0

729

Note:

The "controls" facet also implies using "showControls" attribute and it has to be

defined as "true".

The <rich:inplaceSelect> component could be rendered with or <div> elements

to display its value. In order to change default output, use the "layout" attribute with

"block" value.

The <rich:inplaceSelect> component supports standard "tabindex" attribute. When the

component gets focus the edit mode is activated and drop-down list is opened.

The "selectWidth" , "minSelectWidth" and "maxSelectWidth" attributes are provided to specify

the width, minimal width and maximal width for the input element respectively.

In order to specify the height and width parameters for the list items of the component, you can

use "listHeight" and " listWidth" attributes.

6.11.7.6. JavaScript API

Table 6.442. JavaScript API

Function Description

edit() Changes the state to edit

cancel() Changes its state to the previous one before

editing (changed or view)

save() Changes its state to changed with a new value

getValue() Gets the current value

setValue(newValue) Sets the current value and name

6.11.7.7. Facets

Table 6.443. Facets

Facet name Description

controls Defines the contols contents. Related

attributes are "saveControlIcon" and

"cancelControlIcon"

6.11.7.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

Chapter 6. The RichFaces Comp...

730

There are two ways to redefine the appearance of all <rich:inplaceSelect> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:inplaceSelect> component

6.11.7.9. Skin Parameters Redefinition

Table 6.444. Skin parameters redefinition for view state

Skin parameters CSS properties

editorBackgroundColor background-color

generaTextColor border-bottom-color

Table 6.445. Skin parameters redefinition for input field in edit state

Skin parameters CSS properties

editBackgroundColor background-color

panelBorderColor border-color

Table 6.446. Skin parameters redefinition for control

Skin parameters CSS properties

tabBackgroundColor background-color

panelBorderColor border-color

Table 6.447. Skin parameters redefinition for pressed control

Skin parameters CSS properties

tabBackgroundColor background-color

panelBorderColor border-color

Table 6.448. Skin parameters redefinition for list

Skin parameters CSS properties

editBackgroundColor background-color

panelBorderColor border-color

Table 6.449. Skin parameters redefinition for selected item

Skin parameters CSS properties

headerTextColor color

headerBackgroundColor background-color

 < rich:inplaceSelect > available since 3.2.0

731

Skin parameters CSS properties

headerBackgroundColor border-color

6.11.7.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.271. Classes names

Table 6.450. Class name for the view state

Class name Description

rich-inplace-select-view Defines styles for the select view

Table 6.451. Class name for the input field in edit state

Class name Description

rich-inplace-select-field Defines styles for the select field

Table 6.452. Class name for the control

Class name Description

rich-inplace-select-control Defines styles for the select control

rich-inplace-select-control-press Defines styles for the pressed select control

Table 6.453. Class name for the list

Class name Description

rich-inplace-select-list-decoration Defines styles for a wrapper <table> element

of an inplaceSelect

Chapter 6. The RichFaces Comp...

732

Table 6.454. Classes names for the selected item

Class name Description

rich-inplace-select-selected-item Defines styles for the selected item

Table 6.455. Classes names for the shadow

Class name Description

rich-inplace-select-shadow-tl Defines styles for the top-left shadow

rich-inplace-select-shadow-tr Defines styles for the top-right shadow

rich-inplace-select-shadow-bl Defines styles for the bottom-left shadow

rich-inplace-select-shadow-br Defines styles for the bottom-right shadow

In order to redefine styles for all <rich:inplaceSelect> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-inplace-select-list-decoration{

 background-color: #ecf4fe;

}

...

This is the result:

Figure 6.272. Redefinition styles with predefined classes

In the shown example the background color for list is changed.

It's aslo possible to change styles of a particular <rich:inplaceSelect> component. In this

case you should create own style classes and use them in corresponding <rich:inplaceSelect>

styleClass attributes. An example is placed below:

Example:

 < rich:inputNumberSlider > available since 3.0.0

733

...

.myClass {

 background-color:#bed6f8;

 font-style:italic;

}

...

The "viewClass" attribute for <rich:inplaceSelect> is defined as it's shown in the example

below:

Example:

<rich:inplaceSelect value="click to edit" viewClass="myClass"/>

This is a result:

Figure 6.273. Modificaton of a look and feel with own classes and styleClass

attributes

As it could be seen on the picture above, the font style and background color in view state is

changed.

6.11.7.11. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

inplaceSelect.jsf?c=inplaceSelect] you can see the example of <rich:inplaceSelect> usage and

sources for the given example.

6.11.8. < rich:inputNumberSlider > available since 3.0.0

6.11.8.1. Description

The <rich:inputNumberSlider> component is a slider component. A handler's position

corresponds to a definite value on the slider track. In order to change the value you can slide a

handler or set the necessary value into the input field. You can dispose it horizontally or vertically

on the page.

http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect
http://livedemo.exadel.com/richfaces-demo/richfaces/inplaceSelect.jsf?c=inplaceSelect

Chapter 6. The RichFaces Comp...

734

Figure 6.274. <rich:inputNumberSlider> component, horizontal and

vertical views

6.11.8.2. Key Features

• Fully skinnable control and input elements

• Optional value text field with an attribute-managed position

• Optional disablement of the component on a page

• Optional toolTip to display the current value while a handle is dragged

• Dragged state is stable after the mouse moves

• Optional manual input possible if a text input field is present

• Validation of manual input

• Possibility to display 2 controls that increase/decrease the value by the defined step width, when

they will be clicked.

• Attribute "orientation" that can have the values "vertical" and "horizontal" to define in which

direction the slider should be movable.

Table 6.456. rich : inputNumberSlider attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

barClass Assigns one or more space-separated CSS

class names to the component bar element

 < rich:inputNumberSlider > available since 3.0.0

735

Attribute Name Description

barStyle CSS style rules to be applied to the component

bar element

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

clientErrorMessage an error message to use in client-side

validation events

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

decreaseClass Assigns one or more space-separated CSS

class names to the decrease arrow element

decreaseSelectedClass Assigns one or more space-separated CSS

class names to the decrease arrow element

selected

decreaseStyle CSS style rules to be applied to the decrease

arrow element

delay Delay in pressed increase/decrease arrows in

miliseconds. Default value is "200".

disabled HTML: When set for a form control, this

boolean attribute disables the control for your

input

enableManualInput If set to "false" this attribute makes the text field

"read-only", so the value can be changed only

from a handle. Default value is "true".

handleClass Assigns one or more space-separated CSS

class names to the handle element

handleSelectedClass Assigns one or more space-separated CSS

class names to the handle element selected

height The height of a slider control. Default value is

"20px", for orientation="vertical" value is "20px"

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

Chapter 6. The RichFaces Comp...

736

Attribute Name Description

rather than waiting until a Process Validations

phase

increaseClass Assigns one or more space-separated CSS

class names to the increase arrow element

increaseSelectedClass Assigns one or more space-separated CSS

class names to the increase arrow element

selected

increaseStyle CSS style rules to be applied to the increase

arrow element

inputClass Assigns one or more space-separated CSS

class names to the component input field

inputPosition If "right", the InputText Box would be rendered

on the right side of the ruler. If "left", the

InputText Box would be rendered on the left

side of the ruler. If "top", the InputText Box

would be rendered on the top of the ruler. If

"bottom", the InputText Box would be rendered

on the bottom of the ruler.

inputSize Similar to the "Size" attribute of h:inputText.

Default value is "3".

inputStyle CSS style rules to be applied to the component

input field

label A localized user presentable name for this

component.

maxlength HTML: Specifies the maximum number of

digits that could be entered into the input field.

The maximum number is unlimited by default.

If entered value exceeds the value specified

in "maxValue" attribute than the slider takes a

maximum value position.

maxValue Attribute to set an "end" value. Default value is

"100"

minValue Attribute to set the "start" value. Default value

is "0".

onblur DHTML: The client-side script method to be

called when the element loses the focus

onchange DHTML: The client-side script method to be

called when the element value is changed

 < rich:inputNumberSlider > available since 3.0.0

737

Attribute Name Description

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onerror The client-side script method to be called when

a non-number value or a number value that is

out of the range is input

onfocus DHTML: The client-side script method to be

called when the element gets the focus

oninputclick The client-side script method to be called when

the component input field is clicked

oninputdblclick The client-side script method to be called when

the component input field is double-clicked

oninputkeydown The client-side script method to be called when

a key is pressed down in the input field

oninputkeypress The client-side script method to be called when

a key is pressed and released in the input field

oninputkeyup The client-side script method to be called when

a key is released in the input field

oninputmousedown The client-side script method to be called when

a mouse button is pressed down in the input

field

oninputmousemove The client-side script method to be called when

a pointer is moved within the input field

oninputmouseout The client-side script method to be called when

a pointer is moved away from the input field

oninputmouseover The client-side script method to be called when

a pointer is moved onto the input field

oninputmouseup The client-side script method to be called when

a mouse button is released in the input field

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

Chapter 6. The RichFaces Comp...

738

Attribute Name Description

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the text

field. This attribute can be used with the INPUT

and TEXTAREA elements.

onslide The client-side script method to be called when

a slider handle is moved

orientation Attribute can have the values "vertical" and

"horizontal" to define in which direction the

slider should be moveable.

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

showArrows False value for this attribute makes increase/

decrease arrows invisible. Default value is

"false".

showBoundaryValues If the min/max values are shown on the right/

left borders of a control. Default value is "true".

showInput False value for this attribute makes text a field

invisible. Default value is "true".

showToolTip If "true"the current value is shown in the tooltip

when a handle control is in a "dragged" state.

Default value is "true".

step Parameter that determines a step between the

nearest values while using a handle. Default

value is "1".

style HTML: CSS style rules to be applied to the

component

 < rich:inputNumberSlider > available since 3.0.0

739

Attribute Name Description

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

tipClass Assigns one or more space-separated CSS

class names to the tool tip element of the

handle

tipStyle CSS style rules to be applied to the tool tip

element of the handle

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

width HTML: The width of a slider control. Default

value is "200px", for orientation="vertical"

value is "200px"

Table 6.457. Component identification parameters

Name Value

component-type org.richfaces.inputNumberSlider

component-class org.richfaces.component.html.HtmlInputNumberSlider

component-family org.richfaces.inputNumberSlider

renderer-type org.richfaces.InputNumberSliderRenderer

tag-class org.richfaces.taglib.InputNumberSliderTag

6.11.8.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

Chapter 6. The RichFaces Comp...

740

...

<rich:inputNumberSlider minValue="0" maxValue="100" step="1"/>

...

6.11.8.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlInputNumberSlider;

...

HtmlInputNumberSlider mySlider = new HtmlInputNumberSlider();

...

6.11.8.5. Details of Usage

<rich:inputNumberSlider> is used to facilitate your data input with rich UI Controls.

Here is the simplest variant of a slider definition with "minValue" , "maxValue" and "step" (on

default is "1") attributes, which define the beginning and the end of a numerical area and a slider

property step.

Example:

<rich:inputNumberSlider></rich:inputNumberSlider>

It's generated on a page:

Figure 6.275. Generated <rich:inputNumberSlider>

Using "showInput" (default is "true") and "enableManualInput" (default value is "true") attributes,

it's possible to output the input area near the slider, and make it read-only or editable.

To remove input area use showInput = "false" :

Example:

<rich:inputNumberSlider minValue="1" maxValue="100" showInput="false"/>

It's displayed at a page like:

 < rich:inputNumberSlider > available since 3.0.0

741

Figure 6.276. <rich:inputNumberSlider> without input field

It's also possible to switch off displaying of "boundary values" and a toolTip showing on a

handle drawing. This could be performed with the help of the component defined attributes:

"showBoundaryValues" which is responsible for "boundary values" displaying (default is true) and

"showToolTip" which is responsible for tooltTip displaying (default is "true").

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

• "onchange"

• "onmouseover"

• "onclick"

• "onfocus"

• "onmouseout"

• etc.

The "label" attribute is a generic attribute. The "label" attribute provides an association between a

component, and the message that the component (indirectly) produced. This attribute defines the

parameters of a localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM" , {2} for "ShortConverter.SHORT".

The "showArrows" boolean attribute when set to "true" enables additional controls for increasing

and decreasing slider value. The controls (arrows by default) are placed in the beginning and in

the end of slider track:

Figure 6.277. <rich:inputNumberSlider> with additional controls

Clicking an arrow changes the driven value on the amount defined with "step" attribute. Keepeng

an arrow control pressed changes the value continuous. Time that value takes to change from

one step to another is definded with "delay" attribute.

Chapter 6. The RichFaces Comp...

742

6.11.8.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:inputNumberSlider> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:imputNumberSlider> component

6.11.8.7. Skin Parameters Redefinition

Table 6.458. Skin parameters redefinition for a bar

Skin parameters CSS properties

controlBackgroundColor background-color

Table 6.459. Skin parameters redefinition for numbers

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

generalTextColor color

panelBorderColor border-color

generalSizeFont line-height

Table 6.460. Skin parameters redefinition for a text field

Skin parameters CSS properties

controlBackgroundColor background-color

generalFamilyFont font-family

generalSizeFont font-size

controlTextColor color

panelBorderColor border-color

subBorderColor border-bottom-color

subBorderColor border-right-color

Table 6.461. Skin parameters redefinition for a hint

Skin parameters CSS properties

tipBackgroundColor background-color

 < rich:inputNumberSlider > available since 3.0.0

743

Skin parameters CSS properties

tipBorderColor border-color

generalFamilyFont font-family

generalSizeFont font-size

6.11.8.8. Definition of Custom Style Classes

Style classes names that define styles for component elements are shown on the picture below:

Figure 6.278. Style classes

Table 6.462. Classes names that define a component appearance

Class name Description

rich-slider Defines styles for a wrapper table element of a

component

rich-inslider-track Defines styles for a bar

rich-inslider-handler Defines styles for a slider handler

rich-inslider-handler-selected Defines styles for a selected handler

rich-inslider-field Defines styles for a text field

rich-inslider-right-num Defines styles for the right number

rich-inslider-left-num Defines styles for the left number

rich-inslider-track-border Defines styles for track border

rich-inslider-tip Defines styles for a hint

inputNumberSlider-increase-vertical Defines styles for the top arrow

inputNumberSlider-decrease-vertical Defines styles for the bottom arrow

inputNumberSlider-increase-horizontal Defines styles for the right arrow

Chapter 6. The RichFaces Comp...

744

Class name Description

inputNumberSlider-decrease-horizontal Defines styles for the left arrow

In order to redefine styles for all <rich:inputNumberSlider> components on a page using CSS,

it's enough to create classes with the same names (possible classes could be found in the table

above) and define necessary properties in them. An example is placed below:

Example:

...

.rich-inslider-tip{

 background-color: #FFDAB9;

 font-family: Arial Black;

}

...

This is a result:

Figure 6.279. Redefinition styles with predefined classes

In the example a tip background color and font family was changed.

Also it's possible to change styles of particular <rich:inputNumberSlider> component.

In this case you should create own style classes and use them in corresponding

<rich:inputNumberSlider> styleClass attributes. An example is placed below:

Example:

...

.myClass{

 font-style: italic;

 font-weight:bold;

 font-size:12px;

}

...

The "inputClass" attribute for <rich:inputNumberSlider> is defined as it's shown in the example

below:

Example:

 < rich:inputNumberSpinner > available since 3.0.0

745

<rich: inputNumberSlider ... inputClass="myClass"/>

This is a result:

Figure 6.280. Redefinition styles with own classes and styleClass

attributes

As it could be seen on the picture above, the font style for input text was changed.

6.11.8.9. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/inputNumberSlider.jsf?c=inputNumberSlider] you can see the example of

<rich:inputNumberSlider> usage and sources for the given example.

6.11.9. < rich:inputNumberSpinner > available since 3.0.0

6.11.9.1. Description

A single line input field that lets selecting a number using controls near a text field. It's possible

to change a value using "Up/Down" keyboard keys. The keyboard input in a field is possible if it

isn't locked by the "enableManualInput" attribute. When arrow controls are pressed, the cursor

can be moved in any way without losing a dragged state.

Figure 6.281. <rich:inputNumberSpinner> component

6.11.9.2. Key Features

• Fully skinnable control and input elements

• 3D look and feel with an easily customizable appearance

• Attribute-managed positions of the controls (inside/outside of the input field)

• Keyboard controls support

• Optional disablement of the component on a page

• Optional "cycled" mode of scrolling values

• Optional manual/controls-only input into a value text field

• Validation of manual input

http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSlider.jsf?c=inputNumberSlider

Chapter 6. The RichFaces Comp...

746

Table 6.463. rich : inputNumberSpinner attributes

Attribute Name Description

accesskey HTML: This attribute assigns an access key to

an element. An access key is a single character

from the document character set. Note:

Authors should consider the input method

of the expected reader when specifying an

accesskey

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

clientErrorMessage An error message to use in client-side

validation events

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

cycled If "true" after the current value reaches the

border value it is reversed to another border

value after next increasing/decreasing. In

other case possibilities of next increasing (or

decreasing) will be locked. Default value is "

true ".

disableBrowserAutoComplete Disable browser's auto completion. Default

value is "false"

disabled HTML: When set for a form control, this

boolean attribute disables the control for your

input

enableManualInput if "false" your's input to the text field using

keyboard will be locked. Default value is "true"

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

 < rich:inputNumberSpinner > available since 3.0.0

747

Attribute Name Description

inputClass Assigns one or more space-separated CSS

class names to the component input field

inputSize Attribute specifies the initial length of input in

characters. Default value is "10".

inputStyle CSS style rules to be applied to the component

input field

label A localized user presentable name for this

component.

maxValue Maximum value. Default value is "100".

minValue Minimum value. Default value is "0".

onblur DHTML: The client-side script method to be

called when the element loses the focus

onchange DHTML: The client-side script method to be

called when the element value is changed

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

ondownclick The client-side script method to be called when

the 'Down' button is clicked

onerror The client-side script method to be called

whenever a JavaScript error occurs

onfocus DHTML: The client-side script method to be

called when the element gets the focus

oninputclick The client-side script method to be called when

the component input field is clicked

oninputdblclick The client-side script method to be called when

the component input field is double-clicked

oninputkeydown The client-side script method to be called when

a key is pressed down in the input field

oninputkeypress The client-side script method to be called when

a key is pressed and released in the input field

oninputkeyup The client-side script method to be called when

a key is released in the input field

oninputmousedown The client-side script method to be called when

a mouse button is pressed down in the input

field

Chapter 6. The RichFaces Comp...

748

Attribute Name Description

oninputmousemove The client-side script method to be called when

a pointer is moved within the input field

oninputmouseout The client-side script method to be called when

a pointer is moved away from the input field

oninputmouseover The client-side script method to be called when

a pointer is moved onto the input field

oninputmouseup The client-side script method to be called when

a mouse button is released in the input field

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

onselect DHTML: The client-side script method to be

called when some text is selected in the text

field. This attribute can be used with the INPUT

and TEXTAREA elements.

onupclick The client-side script method to be called when

the 'Up' button is clicked

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

step Parameter that determines the step between

nearest values while using controls. Default

value is "1"

style HTML: CSS style rules to be applied to the

component

 < rich:inputNumberSpinner > available since 3.0.0

749

Attribute Name Description

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

tabindex HTML: This attribute specifies the position of

the current element in the tabbing order for

the current document. This value must be a

number between 0 and 32767. User agents

should ignore leading zeros

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

Table 6.464. Component identification parameters

Name Value

component-type org.richfaces.inputNumberSpinner

component-class org.richfaces.component.html.HtmlInputNumberSpinner

component-family org.richfaces.inputNumberSpinner

renderer-type org.richfaces.InputNumberSpinnerRenderer

tag-class org.richfaces.taglib.InputNumberSpinnerTag

6.11.9.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:inputNumberSpinner minValue="0" maxValue="100" step="1"/>

...

Chapter 6. The RichFaces Comp...

750

6.11.9.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlInputNumberSpinner;

...

HtmlInputNumberSpinner mySpinner = new HtmlInputNumberSpinner ();

...

6.11.9.5. Details of Usage

<rich:inputNumberSpinner> is used to facilitate your data input with rich UI Controls.

Here is the simplest variant of spinner definition with "minValue" , "maxValue" and "step" (on

default is "1") attributes, which define the beginning and the end of numerical area and a spinner

step.

Example:

...

<rich:inputNumberSpinner minValue="1" maxValue="100"/>

...

It generates on a page:

Figure 6.282. Generated <rich:inputNumberSpinner>

There are also several attributes to define functionality peculiarities:

• "cycled" if the attribute is "true" after the current value reaches the border value it's be reversed

to another border value after next increasing/decreasing. In other case possibilities of next

increasing/decreasing are locked

• "disabled" is an attribute that defines whether a component is active on a page

• "enableManualInput" is an attribute that defines whether a keyboard input is possible or only

UI controls could be used

Moreover, to add e.g. some JavaScript effects, events defined on it are used

• "onchange"

 < rich:inputNumberSpinner > available since 3.0.0

751

• "onmouseover"

• "onclick"

• "onfocus"

• "onmouseout"

• etc.

The "label" attribute is a generic attribute. The "label" attribute provides an association between

a component, and the message that the component (indirectly) produced. This attribute defines

the parameters of localized error and informational messages that occur as a result of conversion,

validation, or other application actions during the request processing lifecycle. With the help of

this attribute you can replace the last parameter substitution token shown in the messages. For

example, {1} for "DoubleRangeValidator.MAXIMUM" , {2} for "ShortConverter.SHORT" .

6.11.9.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:inputNumberSpinner> components

at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:inputNumberSpinner> component

6.11.9.7. Skin Parameters Redefinition

Table 6.465. Skin parameters redefinition for a container

Skin parameters CSS properties

controlBackgroundColor background-color

panelBorderColor border-color

subBorderColor border-bottom-color

subBorderColor border-right-color

Table 6.466. Skin parameters redefinition for an input field

Skin parameters CSS properties

buttonSizeFont font-size

buttonFamilyFont font-family

Chapter 6. The RichFaces Comp...

752

6.11.9.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.283. Style classes

Table 6.467. Classes names that define a component appearance

Class name Description

rich-spinner-c Defines styles for a wrapper table element of a

component

rich-spinner-input-container Defines styles for a container

rich-spinner-input Defines styles for a wrapper <td> element for

input fields

rich-spinner-button Defines styles for a button

rich-spinner-buttons Defines styles for all buttons

In order to redefine styles for all <rich:inputNumberSpinner> components on a page using

CSS, it's enough to create classes with the same names (possible classes could be found in the

table above) and define necessary properties in them. An example is placed below:

Example:

...

.rich-spinner-input{

 font-style:italic;

}

...

This is a result:

Figure 6.284. Redefinition styles with predefined classes

In the example an input text font style was changed.

 < rich:suggestionbox > available since 3.0.0

753

Also it's possible to change styles of particular <rich:inputNumberSpinner> component.

In this case you should create own style classes and use them in corresponding

<rich:inputNumberSpinner> styleClass attributes. An example is placed below:

Example:

...

.myClass{

 font-family: Arial Black;

}

...

The "inputClass" attribute for <rich:inputNumberSpinner> is defined as it's shown in the

example below:

Example:

<rich: inputNumberSpinner ... inputClass="myClass"/>

This is a result:

Figure 6.285. Redefinition styles with own classes and styleClass

attributes

As it could be seen on the picture above, the font family for input text was changed.

6.11.9.9. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner] you can see the example of

<rich:inputNumberSpinner> usage and sources for the given example.

6.11.10. < rich:suggestionbox > available since 3.0.0

6.11.10.1. Description

The component adds on-keypress suggestions capabilities to any input text component (like

<h:inputText>). When a key is pressed in the field Ajax request is sent to the server. When the

suggestion action returns a list of possible values, it pop ups them inside the <div> element

bellow the input.

http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner
http://livedemo.exadel.com/richfaces-demo/richfaces/inputNumberSpinner.jsf?c=inputNumberSpinner

Chapter 6. The RichFaces Comp...

754

Figure 6.286. <rich:suggestionbox> component

6.11.10.2. Key Features

• Fully skinnable component

• Adds "onkeypress" suggestions capabilities to any input text component

• Performs suggestion via Ajax requests without any line of JavaScript code written by you

• Possible to render table as a popup suggestion

• Can be pointed to any Ajax request status indicator of the page

• Easily customizable size of suggestion popup

• Setting rules that appear between cells within a table of popup values

• "Event queue" and "request delay" attributes present to divide frequently requests

• Managing area of components submitted on Ajax request

• Flexible list of components to update after Ajax request managed by attributes

• Setting restriction to Ajax request generation

• Easily setting action to collect suggestion data

• Keyboard navigation support

Table 6.468. rich : suggestionbox attributes

Attribute Name Description

ajaxSingle Boolean attribute which provides possibility

to limit JSF tree processing(decoding,

conversion/validation, value applying) to the

component which send the request only.

Default value is "true"

bgcolor Deprecated. This attribute sets the background

color for the document body or table cells.

This attribute sets the background color of

the canvas for the document body (the

 < rich:suggestionbox > available since 3.0.0

755

Attribute Name Description

BODY element) or for tables (the TABLE, TR,

TH, and TD elements). Additional attributes

for specifying text color can be used with

the BODY element. This attribute has been

deprecated in favor of style sheets for

specifying background color information

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

border HTML: This attributes specifies the width (in

pixels only) of the frame around a table

bypassUpdates If "true", after process validations phase it

skips updates of model beans on a force

render response. It can be used for validating

components input

cellpadding This attribute specifies the amount of space

between the border of the cell and its contents.

If the value of this attribute is a pixel length,

all four margins should be this distance from

the contents. If the value of the attribute is

percentage length, the top and bottom margins

should be equally separated from the content

based on percentage of the available vertical

space, and the left and right margins should be

equally separated from the content based on

percentage of the available horizontal space

cellspacing This attribute specifies how much space the

user agent should leave between the table and

the column on all four sides. The attribute also

specifies the amount of space to leave between

cells

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

entryClass Assigns one or more space-separated CSS

class names to the suggestion entry elements

(table rows)

eventsQueue Name of requests queue to avoid send next

request before complete other from same

event. Can be used to reduce number of

Chapter 6. The RichFaces Comp...

756

Attribute Name Description

requests of frequently events (key press,

mouse move etc.)

fetchValue A value to set in the target input element on

a choice suggestion that isn't shown in the

suggestion table. It can be used for descriptive

output comments or suggestions. If not set, all

text in the suggestion row is set as a value

first A zero-relative row number of the first row to

display

for id (or full path of id's) of target components,

for which this element must provide

support. If a target component inside of

the same <code>NamingContainer</code>

(UIForm, UIData in base implementations),

can be simple value of the "id"

attribute. For other cases must include

id's of <code>NamingContainer</code>

components, separated by ':'. For search from

the root of components, must be started with ':'.

frame This attribute specifies which sides of the frame

surrounding a table will be visible. Possible

values: "void", "above", "below", "hsides", "lhs",

"rhs", "vsides", "box" and "border". The default

value is "void".

frequency Delay (in seconds) before activating the

suggestion pop-up. Default value is 400ms

height Height of the pop-up window in pixels. Default

value is "200".

id JSF: Every component may have a unique id

that is automatically created if omitted

ignoreDupResponses Attribute allows to ignore an Ajax Response

produced by a request if the newest

'similar' request is in a queue already.

ignoreDupResponses="true" does not cancel

the request while it is processed on the server,

but just allows to avoid unnecessary updates

on the client side if the response isn't actual

now

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

 < rich:suggestionbox > available since 3.0.0

757

Attribute Name Description

rather than waiting until a Process Validations

phase.

lang HTML: Code describing the language used in

the generated markup for this component

limitToList If "true", then of all AJAX-rendered on the

page components only those will be updated,

which ID's are passed to the "reRender"

attribute of the describable component. "false"-

the default value-means that all components

with ajaxRendered="true" will be updated.

minChars Minimal number of chars in input to activate

suggestion pop-up

nothingLabel "nothingLabel" is inserted to popup list if

the autocomplete returns empty list. It isn't

selectable and list is closed as always after

click on it and nothing is put to input.

onbeforedomupdate The client-side script method to be called

before DOM is updated

oncomplete The client-side script method to be called after

the request is completed

onobjectchange The client-side script method to be called

before the list of suggested objects is changed

onselect The client-side script method to be called after

the value of the target element is updated

onsubmit DHTML: The client-side script method to be

called before an ajax event is submitted

param Name the HTTP request parameter with the

value of input element token. If not set, it be

will sent as an input element name. In this

case, input will perform validation and update

the value. Default value is "inputvalue".

popupClass Assigns one or more space-separated CSS

class names to the content of the pop-up

suggestion element

popupStyle CSS style rules to be applied to the content of

the pop-up suggestion element

process Id['s] (in format of call

UIComponent.findComponent()) of

components, processed at the phases 2-5

Chapter 6. The RichFaces Comp...

758

Attribute Name Description

in case of AjaxRequest caused by this

component. Can be single id, comma-

separated list of Id's, or EL Expression with

array or Collection

rendered JSF: If "false", this component is not rendered

requestDelay Attribute defines the time (in ms.) that the

request will be wait in the queue before it is

ready to send. When the delay time is over, the

request will be sent to the server or removed

if the newest 'similar' request is in a queue

already

reRender Id['s] (in format of call

UIComponent.findComponent()) of

components, rendered in case of AjaxRequest

caused by this component. Can be single id,

comma-separated list of Id's, or EL Expression

with array or Collection

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows. If the CSS class

names are comma-separated, each class will

be assigned to a particular row in the order they

follow in the attribute. If you have less class

names than rows, the class will be applied

to every n-fold row where n is the order in

which the class is listed in the attribute. If there

are more class names than rows, the overflow

ones are ignored.

rules This attribute specifies which rules will appear

between cells within a table. The rendering

of rules is user agent dependent. Possible

values: * none: No rules. This is the default

value. * groups: Rules will appear between row

groups (see THEAD, TFOOT, and TBODY)

and column groups (see COLGROUP and

COL) only. * rows: Rules will appear between

rows only. * cols: Rules will appear between

columns only. * all: Rules will appear between

all rows and columns

selectedClass Assigns one or more space-separated CSS

class names to the selected suggestion entry

(table rows)

 < rich:suggestionbox > available since 3.0.0

759

Attribute Name Description

selectValueClass Assigns one or more space-separated CSS

class names to the cells of the selected

suggestion entry (table cells)

selfRendered If "true", forces active Ajax region render

response directly from stored components tree,

bypasses page processing. Can be used for

increase performance. Also, must be set to

'true' inside iteration components, such as

dataTable.

shadowDepth Pop-up shadow depth for suggestion content

shadowOpacity Attribute defines shadow opacity for

suggestion content

similarityGroupingId If there are any component requests with

identical IDs then these requests will be

grouped.

status ID (in format of call

UIComponent.findComponent()) of Request

status component

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

suggestionAction Method calls an expression to get a collection

of suggestion data on request. It must have one

parameter with a type of Object with content

of input component and must return any type

allowed for <h:datatable>

summary This attribute provides a summary of the

table's purpose and structure for user agents

rendering to non-visual media such as speech

and Braille

timeout Response waiting time on a particular request.

If a response is not received during this time,

the request is aborted

title HTML: Advisory title information about markup

elements generated for this component

tokens The list (or single value) of symbols which can

be used for division chosen of suggestion pop-

up values in a target element. After input of

Chapter 6. The RichFaces Comp...

760

Attribute Name Description

a symbol from the list suggestion pop-up it is

caused again

usingSuggestObjects if true, a suggested object list will be created

and will be updated every time when an input

value is changed. Default value is "false".

var A request-scope attribute via which the data

object for the current row will be used when

iterating

width HTML: Width of the pop-up window in pixels.

Default value is "200".

zindex Attribute is similar to the standard HTML

attribute and can specify window placement

relative to the content. Default value is "200".

Table 6.469. Component identification parameters

Name Value

component-type org.richfaces.SuggestionBox

component-class org.richfaces.component.html.HtmlSuggestionBox

component-family org.richfaces.SuggestionBox

renderer-type org.richfaces.SuggestionBoxRenderer

tag-class org.richfaces.taglib.SuggestionBoxTag

6.11.10.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<h:inputText value="#{bean.property}" id="suggest"/>

<rich:suggestionbox for="suggest" suggestionAction="#{bean.autocomplete}" var="suggest">

 <h:column>

 <h:outputText value="#{suggest.text}"/>

 </h:column>

</rich:suggestionbox>

...

Here is the bean.autocomplete method that returns the collection to pop up:

Example:

 < rich:suggestionbox > available since 3.0.0

761

public List autocomplete(Object event) {

 String pref = event.toString();

 //Collecting some data that begins with "pref" letters

 ...

 return result;

}

6.11.10.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlSuggestionBox;

...

HtmlSuggestionBox myList = new HtmlSuggestionBox();

...

6.11.10.5. Details of Usage

As it is shown in the example above, the main component attribute are:

• "for"

The attribute where there is an input component which activation causes a suggestion activation

• "suggestionAction"

is an accepting parameter of a suggestionEvent type that returns as a result a collection for

rendering in a tool tip window.

• "var"

a collection name that provides access for inputting into a table in a popup

There are also two size attributes ("width" and "height") that are obligatory for the suggestion

component. The attributes have initial Defaults but should be specified manually in order to be

changed.

The suggestionbox component, as it is shown on the screenshot, could get any collection for an

output and outputs it in a ToolTip window the same as a custom dataTable (in several columns)

...

<rich:suggestionbox for="test" suggestionAction="#{bean.autocomplete}" var="cit" fetchValue="#{cit.text}">

Chapter 6. The RichFaces Comp...

762

 <h:column>

 <h:outputText value="#{cit.label}"/>

 </h:column>

 <h:column>

 <h:outputText value="#{cit.text}"/>

 </h:column>

</rich:suggestionbox>

...

It looks on a page in the following way:

Figure 6.287. <rich:suggestionbox> with ToolTip window

When some string is chosen input receives the corresponding value from the second column

containing #{cit.text}

There is also one more important attribute named "tokens" that specifies separators after which

a set of some characters sequence is defined as a new prefix beginning from this separator and

not from the string beginning.

Example:

...

<rich:suggestionbox for="test" suggestionAction="#{bean.autocomplete}" var="cit" selfRendered="true" tokens=",">

 <h:column>

 <h:outputText value="#{cit.text}"/>

 </h:column>

</rich:suggestionbox>

...

This example shows that when a city is chosen and a comma and first letter character are input,

Ajax request is called again, but it submits a value starting from the last token:

 < rich:suggestionbox > available since 3.0.0

763

Figure 6.288. <rich:suggestionbox> with chosen word

For a multiple definition use either ",.; " syntax as a value for tokens or link a parameter to some

bean property transmitting separators collection.

The component also encompasses "style" attributes corresponding to dataTable ones for

a table appearing in popup (for additional information, read JSF Reference) and custom

attribute managing Ajax requests sending (for additional information, see Ajax4JSF Project [http://

www.jboss.org/community/wiki/Ajax4jsf]).

In addition to these attributes common for Ajax action components and limiting requests quantity

and frequency, suggestionbox has one more its own attribute limiting requests (the "minChars"

attribute). The attribute defines characters quantity inputted into a field after which Ajax requests

are called to perform suggestion.

There is possibility to define what be shown if the autocomplete returns empty list. Attribute

"nothingLabel" or facet with the same name could be used for it.

Example:

...

<rich:suggestionbox nothingLabel="Empty" for="test" suggestionAction="#{bean.autocomplete}" var="cit">

 <h:column>

 <h:outputText value="#{cit.text}"/>

 </h:column>

</rich:suggestionbox>

...

Example:

...

<rich:suggestionbox for="test" suggestionAction="#{bean.autocomplete}" var="cit">

 <f:facet name="nothingLabel">

 <h:outputText value="Empty"/>

http://www.jboss.org/community/wiki/Ajax4jsf
http://www.jboss.org/community/wiki/Ajax4jsf
http://www.jboss.org/community/wiki/Ajax4jsf

Chapter 6. The RichFaces Comp...

764

 </f:facet>

 <h:column>

 <h:outputText value="#{cit.text}"/>

 </h:column>

</rich:suggestionbox>

...

It looks on a page in the following way:

Figure 6.289. <rich:suggestionbox> with empty list

There is such feature in <rich:suggestionbox> component as object selection. If you want

that selected item has been represented as object, you could set to "true" the value for

"usingSuggestObjects" attribute, "false" value means that selected item represents as string.

Example:

...

<rich:suggestionbox for="test" suggestionAction="#{bean.autocomplete}" var="cit" usingSuggestObjects="true">

 <h:column>

 <h:outputText value="#{cit.text}"/>

 </h:column>

</rich:suggestionbox>

...

Information about the "process" attribute usage you can findin the "Decide what to process"

guide section.

In RichFaces Wiki article about Additional Properties [http://wiki.jboss.org/wiki/

RichFacesSuggestionGettingAdditionalProperties] you can find example of getting additional

properties.

http://wiki.jboss.org/wiki/RichFacesSuggestionGettingAdditionalProperties
http://wiki.jboss.org/wiki/RichFacesSuggestionGettingAdditionalProperties
http://wiki.jboss.org/wiki/RichFacesSuggestionGettingAdditionalProperties

 < rich:suggestionbox > available since 3.0.0

765

6.11.10.6. JavaScript API

Table 6.470. JavaScript API

Function Description

callSuggestion() Calls the suggestion. If the "ignoreMinChars"

value is "true" then the number of symbols

to send a query is no longer actual for

callSuggestion()

getSelectedItems() Returns the array of objects

6.11.10.7. Facets

Table 6.471. Facets

Facet name Description

nothingLabel Redefines the content item if the autocomplete

returns empty list. Related attribute is

"nothingLabel"

popup Redefines the content for the popup list of the

suggestion

header Defines the header content

footer Defines the footer content

6.11.10.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:suggestionbox> components at

once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:suggestionbox> component

6.11.10.9. Skin Parameters Redefinition

Table 6.472. General skin parameters redefinition for popup list

Parameters for popup list CSS properties

additionalBackgroundColor background-color

panelBorderColor border-color

Chapter 6. The RichFaces Comp...

766

Table 6.473. Skin parameters redefinition for shadow element of the list

Parameters for shadow element of the list CSS properties

shadowBackgroundColor background-color

shadowBackgroundColor border-color

shadowOpacity opacity

Table 6.474. Skin parameters redefinition for popup table rows

Parameters for popup table rows CSS properties

generalSizeFont font-size

generalTextColor color

generalFamilyFont font-family

Table 6.475. Skin parameters redefinition for selected row

Parameters for selected row CSS properties

headerBackgroundColor background-color

generalSizeFont font-size

generalFamilyFont font-family

headerTextColor color

6.11.10.10. Definition of Custom Style Classes

Figure 6.290. Classes names

On the screenshot, there are classes names defining specified elements.

 < rich:suggestionbox > available since 3.0.0

767

Table 6.476. Classes names that define a suggestionbox

Class name Description

rich-sb-common-container Defines styles for a wrapper <div> element of

a suggestion container

rich-sb-ext-decor-1 Defines styles for the first wrapper <div>

element of a suggestion box exterior

rich-sb-ext-decor-2 Defines styles for the second wrapper <div>

element of a suggestion box exterior

rich-sb-ext-decor-3 Defines styles for the third wrapper <div>

element of a suggestion box exterior

rich-sb-overflow Defines styles for a wrapper <div> element

rich-sb-int-decor-table Defines styles for a suggestion box table

rich-sb-int Defines the styles for a suggestion box table

rows (tr)

rich-sb-cell-padding Defines the styles for suggestion box table cells

(td)

rich-sb-int-sel Defines styles for a selected row

rich-sb-shadow Defines styles for a suggestion boxshadow

In order to redefine styles for all <rich:suggestionbox> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-sb-int{

 font-weight:bold;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

768

Figure 6.291. Redefinition styles with predefined classes

In the example the font weight for rows was changed.

Also it's possible to change styles of particular <rich:suggestionbox> component. In this case

you should create own style classes and use them in corresponding <rich:suggestionbox>

styleClass attributes. An example is placed below:

Example:

...

.myClass{

 background-color:#f0ddcd;

}

...

The "selectedClass" attribute for <rich:suggestionbox> is defined as it's shown in the example

below:

Example:

<rich:suggestionbox ... selectedClass="myClass"/>

This is a result:

Rich Selects

769

Figure 6.292. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above,background color for selected item was changed.

6.11.10.11. Relevant Resources Links

Vizit SuggestionBox [http://livedemo.exadel.com/richfaces-demo/richfaces/suggestionBox.jsf?

c=suggestionBox] page at RichFaces Livedemo for examples of component usage and sources.

RichFaces cookbook at JBoss Portal includes some articles that cover different aspects of working

with <rich:suggestionbox> :

• "Creating suggestion box dynamically [http://www.jboss.org/community/docs/DOC-11851]";

• "Getting additional properties from <rich:suggectionbox> [http://www.jboss.org/community/

docs/DOC-11865]".

6.12. Rich Selects

RichFaces library provides desktop like complex controls to implement user select functionality.

6.12.1. < rich:listShuttle > available since 3.1.3

3.1.3

6.12.1.1. Description

The <rich:listShuttle> component is used for moving chosen items from one list into another

with their optional reordering there.

http://livedemo.exadel.com/richfaces-demo/richfaces/suggestionBox.jsf?c=suggestionBox
http://livedemo.exadel.com/richfaces-demo/richfaces/suggestionBox.jsf?c=suggestionBox
http://livedemo.exadel.com/richfaces-demo/richfaces/suggestionBox.jsf?c=suggestionBox
http://www.jboss.org/community/docs/DOC-11851
http://www.jboss.org/community/docs/DOC-11851
http://www.jboss.org/community/docs/DOC-11865
http://www.jboss.org/community/docs/DOC-11865
http://www.jboss.org/community/docs/DOC-11865

Chapter 6. The RichFaces Comp...

770

Figure 6.293. <rich:ListShuttle> component

6.12.1.2. Key Features

• Highly customizable look and feel

• Reordering possibility for lists items

• Multiple selection of lists items

• Keyboard support

Table 6.477. rich : listShuttle attributes

Attribute Name Description

activeItem Stores active item

ajaxKeys Defines row keys that are updated after an Ajax

request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bottomControlClass Assigns one or more space-separated CSS

class names to the 'Bottom' button

bottomControlLabel Defines a label for a bottom control

bottomTitle HTML: alt for the last button

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns. If the CSS

class names are comma-separated, each class

will be assigned to a particular column in the

order they follow in the attribute. If you have

less class names than columns, the class will

be applied to every n-fold column where n is the

order in which the class is listed in the attribute.

If there are more class names than columns,

the overflow ones are ignored.

 < rich:listShuttle > available since 3.1.3

771

Attribute Name Description

componentState It defines EL-binding for a component state for

saving or redefinition

controlsType Defines type of a control: button or none.

Default value is "button".

controlsVerticalAlign Customizes vertically a position of move/copy

and order controls relatively to lists. Default

value is "middle"

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

copyAllControlClass Assigns one or more space-separated CSS

class names to the 'Copy all' button

copyAllControlLabel Defines a label for a "Copy all" control

copyAllTitle HTML: alt for "Copy all" button

copyControlClass Assigns one or more space-separated CSS

class names to the 'Copy' button

copyControlLabel Defines a label for a "Copy" control

copyTitle HTML: alt for a "Copy" button

disabledControlClass Assigns one or more space-separated CSS

class names to the component disabled

controls

downControlClass Assigns one or more space-separated CSS

class names to the 'Down' button

downControlLabel Defines a label for a down control

downTitle HTML: alt for bottom button

fastMoveControlsVisible If "false", 'Copy All' and 'Remove All' controls

aren't displayed. Default value is "true".

fastOrderControlsVisible If "false", 'Top' and 'Bottom' controls aren't

displayed. Default value is "true".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

Chapter 6. The RichFaces Comp...

772

Attribute Name Description

rather than waiting until a Process Validations

phase

label A localized user presentable name for this

component.

listClass Assigns one or more space-separated CSS

class names to the component lists

listsHeight Defines height of the list. Default value is "140".

moveControlsVisible If "false", 'Copy' and 'Remove' controls aren't

displayed. Default value is "true".

onblur DHTML: The client-side script method to be

called when the component loses the focus

onbottomclick The client-side script method to be called when

the 'Bottom' button is clicked

onclick DHTML: The client-side script method to be

called when the component is clicked

oncopyallclick The client-side script method to be called when

the 'Copy All' button is clicked

oncopyclick The client-side script method to be called when

the 'Copy' button is clicked

ondblclick DHTML: The client-side script method to be

called when the component is double-clicked

ondownclick The client-side script method to be called when

the 'Down' button is clicked

onfocus DHTML: The client-side script method to be

called when the component gets the focus

onlistchange The client-side script method to be called

before the list is changed

onlistchanged The client-side script method to be called when

the list is changed

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

component

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

component

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

component

 < rich:listShuttle > available since 3.1.3

773

Attribute Name Description

onorderchange The client-side script method to be called

before the list order is changed

onorderchanged The client-side script method to be called when

the list order is changed

onremoveallclick The client-side script method to be called when

the 'Remove All' button is clicked

onremoveclick The client-side script method to be called when

the 'Remove' button is clicked

ontopclick The client-side script method to be called when

the 'Top' button is clicked

onupclick The client-side script method to be called when

the 'Up' button is clicked

orderControlsVisible If "false", 'Up' and 'Down' controls aren't

displayed. Default value is "true".

removeAllControlClass Assigns one or more space-separated CSS

class names to the 'Remove all' button

removeAllControlLabel Defines a label for a "Remove all" control

removeAllTitle HTML: alt for "Remove all" button

removeControlClass Assigns one or more space-separated CSS

class names to the 'Remove' button

removeControlLabel Defines a label for a "Remove" control

removeTitle HTML: alt for a "Remove" button

rendered JSF: If "false", this component is not rendered

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows. If the CSS class

names are comma-separated, each class will

be assigned to a particular row in the order they

follow in the attribute. If you have less class

names than rows, the class will be applied

to every n-fold row where n is the order in

which the class is listed in the attribute. If there

are more class names than rows, the overflow

ones are ignored.

rowKeyConverter Converter for a row key object

Chapter 6. The RichFaces Comp...

774

Attribute Name Description

rowKeyVar The attribute provides access to a row key in a

Request scope

showButtonLabels Shows a label for a button. Default value is

"true".

sourceCaptionLabel Defines source list caption representation text

sourceListWidth Defines width of a source list. Default value is

"140".

sourceRequired Defines the case when source value is being

validated. If the value is "true", there should be

at least one item in the source list

sourceSelection Manages selection in a source list from the

server side

sourceValue Defines a List or Array of items to be shown in

a source list

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchByClick If "true", dragging between lists realized by

click

switchByDblClick If "true", items can be moved between the lists

by double-clicking on them. Default value is

"true".

targetCaptionLabel Defines target list caption representation text

targetListWidth Defines width of a target list. Default value is

"140".

targetRequired Defines the case when target value is being

validated. If the value is "true", there should be

at least one item in the target list

targetSelection Manages selection in a target list from the

server side

targetValue Defines a List or Array of items to be shown in

a target list

topControlClass Assigns one or more space-separated CSS

class names to the 'Top' button

topControlLabel Defines a label for a "Top" control

topTitle HTML: alt for the first button

 < rich:listShuttle > available since 3.1.3

775

Attribute Name Description

upControlClass Assigns one or more space-separated CSS

class names to the 'Up' button

upControlLabel Defines a label for an "Up" control

upTitle HTML: alt for top button

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

valueChangeListener JSF: Listener for value changes

var Defines a list on the page

6.12.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}" converter="listShuttleconverter">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Cars" />

 </f:facet>

 <h:outputText value="#{item.name}" />

 </h:column>

</rich:listShuttle>

...

6.12.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlListShuttle;

...

HtmlListShuttle myListShuttle = new HtmlListShuttle();

...

Chapter 6. The RichFaces Comp...

776

6.12.1.5. Details of Usage

The <rich:listShuttle> component consists of the following parts:

• two item lists (source and target). List consists of items. Each item has three different

representations: common, selected, active

• optional caption element

• optional ordering controls set is a set of controls that performs reordering

• move controls set is a set of controls, which performs moving items between lists

Note:

Now the listener can not be called from the column facet. This is a temporary

limitation. The additional information can be found in RichFaces Jira [http://

jira.jboss.org/jira/browse/RF-5327].

The "sourceValue" attribute defines a List or Array of items to be shown in the source list.

The "targetValue" attribute defines a List or Array of items to be shown in the target list.

The "var" attribute could be shared between both Lists or Arrays to define lists on the page.

The "sourceRequired" and "targetRequired" attributes define the case when source and target

values are being validated. If the value of both attributes is "true" there should be at least one item

in source and target lists. Otherwise validation fails.

Example:

...

<h:form id="myForm">

 <rich:messages>

 <f:facet name="errorMarker">

 <h:graphicImage value="/images/ajax/error.gif" />

 </f:facet>

 </rich:messages>

 <rich:listShuttle id="myListShuttle" sourceValue="#{toolBar.freeItems}" targetValue="#{toolBar.items}"

 sourceRequired = "true" targetRequired = "true" var="items" converter="listShuttleconverter"

 sourceCaptionLabel="Source List" targetCaptionLabel="Target List">

 <rich:column>

 <h:graphicImage value="#{items.iconURI}" />

 </rich:column>

 <rich:column>

 <h:outputText value="#{items.label}" />

http://jira.jboss.org/jira/browse/RF-5327
http://jira.jboss.org/jira/browse/RF-5327
http://jira.jboss.org/jira/browse/RF-5327

 < rich:listShuttle > available since 3.1.3

777

 </rich:column>

 </rich:listShuttle>

 <a4j:commandButton value="Submit" />

</h:form>

...

In the example above the source list is empty. If you submit the form validation fails and error

message appears on a page.

This is the result:

Figure 6.294. Style classes

The "converter" attribute is used to convert component data to a particular component's value.

For example, when you select items in a list, a converter is used to format a set of objects to a

strings to be displayed.

Note

The "converter" attribute and the "equals" and "hashCode" methods should be

defined only in your own class.

The "sourceSelection" attribute stores the collection of items selected by you in the source list.

The "targetSelection" attribute stores the collection of items selected by you in the target list.

Captions could be added to a list only after it was defined as a "sourceCaption" and

"targetCaption" named facets inside the component or defined with the "sourceCaptionLabel"

and "targetCaptionLabel" attribute.

...

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}" sourceSelection="#{bean.sourceSelection}"

 targetSelection="#{bean.targetSelection}" converter="listShuttleconverter">

Chapter 6. The RichFaces Comp...

778

 <f:facet name="sourceCaption">

 <h:outputText value="Cars Store #1" />

 </f:facet>

 <f:facet name="targetCaption">

 <h:outputText value="Cars Store #2" />

 </f:facet>

 <rich:column>

 <h:outputText value="#{items.name}" />

 </rich:column>

</rich:listShuttle>

...

The <rich:listShuttle> component provides the possibility to use ordering controls set, which

performs reordering in the target item list. Every control has possibility to be disabled.

An ordering controls set could be defined with "topControlLabel" , "bottomControlLabel" ,

"upControlLabel" , "downControlLabel" attributes.

It is also possible to use "topControl" , "topControlDisabled" , "bottomControl"

, "bottomControlDisabled" , "upControl" , "upControlDisabled" , "downControl" ,

"downControlDisabled" facets in order to replace the default controls with facets content.

Example:

...

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}" converter="listShuttleconverter">

 ...

 <f:facet name="topControl">

 <h:outputText value="Move to top" />

 </f:facet>

 <f:facet name="upControl">

 <h:outputText value="Move up" />

 </f:facet>

 <f:facet name="downControl">

 <h:outputText value="Move down" />

 </f:facet>

 <f:facet name="bottomControl">

 <h:outputText value="Move to bottom" />

 </f:facet>

</rich:listShuttle>

...

The <rich:listShuttle> component also provides 4 predefined controls in move controls set for

moving items between source and target lists. Every control has possibility to be disabled.

 < rich:listShuttle > available since 3.1.3

779

A move controls set could be defined with "copyControlLabel" , "removeControlLabel" ,

"copyAllControlLabel" , "removeAllControlLabel" attributes.

It is also possible to use "copyControl" , "removeControl" , "copyAllControl" , "removeAllControl"

facets in order to replace the default controls with facets content.

...

<rich:listShuttle var="item" sourceValue="#{bean.source}" targetValue="#{bean.target}" converter="listShuttleconverter"

 copyControlLabel="Copy" removeControlLabel="Remove"

 copyAllControlLabel="Copy all" removeAllControlLabel="Remove all">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Cars" />

 </f:facet>

 <h:outputText value="#{item.name}" />

 </h:column>

</rich:listShuttle>

...

Controls rendering is based on the "controlsType" attribute. Possible types are button and none.

Note

Currently the button controls type is based on <div> element.

The <rich:listShuttle> component allows to use internationalization

method to redefine and localize the labels. You could

use application resource bundle and define RICH_SHUTTLES_TOP_LABEL,

RICH_SHUTTLES_BOTTOM_LABEL, RICH_SHUTTLES_UP_LABEL, RICH_SHUTTLES_DOWN_LABEL

RICH_LIST_SHUTTLE_COPY_ALL_LABEL, RICH_LIST_SHUTTLE_COPY_LABEL,

RICH_LIST_SHUTTLE_REMOVE_ALL_LABEL, RICH_LIST_SHUTTLE_REMOVE_LABEL there.

You could also pack org.richfaces.renderkit.listShuttle resource bundle with your JARs

defining the same properties.

Table 6.478. Keyboard usage for elements selection

Keys and combinations Description

CTRL+click Inverts selection for an item

SHIFT+click Selects all rows from active one to a clicked row

if they differ, else select the actve row. All other

selections are cleared

Chapter 6. The RichFaces Comp...

780

Keys and combinations Description

CTRL+A Selects all elements inside the list if some

active element is already present in a list

Up, Down arrows Changes the active element to the next or

previous in a list and make it the only selected.

Scroll follows the selection to keep it visible

Table 6.479. Keyboard usage for elements reordering

Keys and combinations Description

Home Moves selected set to the top of a list (for target

list only)

End Moves selected set to the bottom of a list (for

target list only)

CTRL+Up arrow Moves selected item to one position upper

CTRL+Down arrow Moves selected item to one position lower

6.12.1.6. JavaScript API

Table 6.480. JavaScript API

Function Description

enable() Enables ordering control (to be implemented)

disable() Disables ordering control (to be implemented)

isEnabled() Checks if current control is enabled (to be

implemented)

up() Moves up selected item in the list

down() Moves down selected item in the list

top() Moves top selected item in the list

bottom() Moves bottom selected item in the list

copy() Copies selected item from the source list to the

target list

remove() Removes selected item from the target list to

the source list

copyAll() Copies all items from the source list to the

target list

removeAll() Removes all items from the target list to the

source list

getSelection() Returns currently selected item (to be

implemented)

 < rich:listShuttle > available since 3.1.3

781

Function Description

getItems() Returns the collection of all items (to be

implemented)

6.12.1.7. Facets

Table 6.481. Facets

Facet Description

copyAllControl Redefines the label content for the

"copyAll" control. Related attribute is

"copyAllControlLabel"

removeAllControl Redefines the label content for the

"removeAll" control. Related attribute is

"removeAllControlLabel"

copyControl Redefines the label content for the "copy"

control. Related attribute is "copyControlLabel"

removeControl Redefines the label content for the

"remove" control. Related attribute is

"removeControlLabel"

copyAllControlDisabled Redefines the disabled label content for the

"copyAll" control

removeAllControlDisabled Redefines the disabled label content for the

"removeAll" control

caption Redefines the caption control

sourceCaption Defines source list caption representation text.

Related attribute is "sourceCaptionLabel"

targetCaption Defines source list target representation text.

Related attribute is "targetCaptionLabel"

6.12.1.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:listShuttle> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:listShuttle> component

Chapter 6. The RichFaces Comp...

782

6.12.1.9. Skin Parameters Redefinition

Table 6.482. Skin parameters redefinition for items in the source and target

lists

Skin parameters CSS properties

generalBackgroundColor background-color

tableBorderColor border-color

tableBorderWidth border-width

Table 6.483. Skin parameters redefinition for caption in the source and

target lists

Skin parameters CSS properties

headerFamilyFont font-family

headerSizeFont font-size

headerWeightFont font-weight

Table 6.484. Skin parameters redefinition for a selected rows in the source

and target lists

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.485. Skin parameters redefinition for a header cell

Skin parameters CSS properties

headerBackgroundColor background-color

headerTextColor color

headerFamilyFont font-family

headerSizeFont font-size

tableBorderWidth border-width

subBorderColor border-top-color

panelBorderColor border-bottom-color

panelBorderColor border-right-color

Table 6.486. Skin parameters redefinition for a selected cell

Skin parameters CSS properties

generalTextColor color

 < rich:listShuttle > available since 3.1.3

783

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Table 6.487. Skin parameters redefinition for an active cell

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

Table 6.488. Skin parameters redefinition for controls

Skin parameters CSS properties

tableBorderColor border-color

Table 6.489. Skin parameters redefinition for a button

Skin parameters CSS properties

trimColor background-color

generalTextColor color

headerFamilyFont font-family

headerSizeFont font-size

Table 6.490. Skin parameters redefinition for a disabled button

Skin parameters CSS properties

trimColor background-color

tabDisabledTextColor color

headerFamilyFont font-family

headerSizeFont font-size

Table 6.491. Skin parameters redefinition for a button highlight

Skin parameters CSS properties

trimColor background-color

selectControlColor border-color

tableBorderWidth border-width

headerFamilyFont font-family

headerSizeFont font-size

generalTextColor color

Chapter 6. The RichFaces Comp...

784

Table 6.492. Skin parameters redefinition for a pressed button

Skin parameters CSS properties

additionalBackgroundColor background-color

tableBorderColor border-color

tableBorderWidth border-width

headerFamilyFont font-family

headerSizeFont font-size

generalTextColor color

Table 6.493. Skin parameters redefinition for a button content

Skin parameters CSS properties

headerFamilyFont font-family

headerSizeFont font-size

Table 6.494. Skin parameters redefinition for a button selection

Skin parameters CSS properties

generalTextColor color

6.12.1.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

 < rich:listShuttle > available since 3.1.3

785

Figure 6.295. Style classes

Table 6.495. Classes names that define a list representation

Class name Description

rich-list-shuttle Defines styles for a wrapper table element of a

listShuttle

rich-list-shuttle-caption Defines styles for a list caption

rich-shuttle-body Defines styles for a list body

rich-shuttle-list-content Defines styles for a list content

rich-shuttle-source-items Defines styles for a wrapper <div> element for

source list

rich-shuttle-target-items Defines styles for a wrapper <div> element for

target list

rich-shuttle-list-header Defines styles for a lists header

rich-shuttle-header-tab-cell Defines styles for a header cell

Table 6.496. Classes names that define a caption representations in a

source and target lists

Class name Description

rich-shuttle-source-caption Defines styles for a caption in a source list

rich-shuttle-target-caption Defines styles for a caption in a target list

Table 6.497. Classes names that define a rows representations in a source

list

Class name Description

rich-shuttle-source-row Defines styles for a row in a source list

rich-shuttle-source-row-selected Defines styles for a selected row in a source list

Chapter 6. The RichFaces Comp...

786

Class name Description

rich-shuttle-source-row-active Defines styles for an active row in a source list

Table 6.498. Classes names that define a rows representations in a target

list

Class name Description

rich-shuttle-target-row Defines styles for a row in a target list

rich-shuttle-target-row-selected Defines styles for a selected row in a target list

rich-shuttle-target-row-active Defines styles for an active row in a target list

Table 6.499. Classes names that define a cells representations in a source

list

Class name Description

rich-shuttle-source-cell Defines styles for a cell in a source list

rich-shuttle-source-cell-selected Defines styles for a selected cell in a source list

rich-shuttle-source-cell-active Defines styles for an active cell in a source list

Table 6.500. Classes names that define a cells representations in a target list

Class name Description

rich-shuttle-target-cell Defines styles for a cell in a target list

rich-shuttle-target-cell-selected Defines styles for a selected cell in a target list

rich-shuttle-target-cell-active Defines styles for an active cell in a target list

Table 6.501. Classes names that define controls representations

Class name Description

rich-shuttle-controls Defines styles for a controls group

rich-shuttle-top Defines styles for a "Top" control

rich-shuttle-bottom Defines styles for a "Bottom" control

rich-shuttle-up Defines styles for a "Up" control

rich-shuttle-down Defines styles for a "Down" control

rich-shuttle-copy Defines styles for a "Copy" control

rich-shuttle-remove Defines styles for a "Remove" control

rich-shuttle-copyAll Defines styles for a "copyAll" control

rich-shuttle-removeAll Defines styles for a "removeAll" control

rich-shuttle-control-disabled Defines styles for a control in a disabled state

 < rich:listShuttle > available since 3.1.3

787

Table 6.502. Classes names that define a button representation

Class name Description

rich-list-shuttle-button Defines styles for a button

rich-list-shuttle-button-disabled Defines styles for a disabled button

rich-list-shuttle-button-light Defines styles for a button highlight

rich-list-shuttle-button-press Defines styles for a pressed button

rich-list-shuttle-button-content Defines styles for a button content

rich-list-shuttle-button-selection Defines styles for a button selection

In order to redefine styles for all <rich:listShuttle> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-shuttle-source-row-active{

 background-color:#FFE4B5;

}

...

This is a result:

Figure 6.296. Redefinition styles with predefined classes

In the example an active row background color in the source list was changed.

Also it's possible to change styles of particular <rich:listShuttle> component. In this case you

should create own style classes and use them in corresponding <rich:listShuttle> styleClass

attributes. An example is placed below:

Example:

Chapter 6. The RichFaces Comp...

788

...

.myClass{

 font-style:italic;

}

...

The "rowClasses" attribute for <rich:listShuttle> is defined as it's shown in the example below:

Example:

<rich:listShuttle ... rowClasses="myClass"/>

This is a result:

Figure 6.297. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, font style for row items was changed.

6.12.1.11. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

listShuttle.jsf?c=listShuttle] you can see an example of <rich:listShuttle> usage and sources

for the given example.

6.12.2. < rich:orderingList > available since 3.1.3

3.1.3

6.12.2.1. Description

The <rich:orderingList> is a component for ordering items in a list. This component provides

possibilities to reorder a list and sort it on the client side.

http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle
http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle
http://livedemo.exadel.com/richfaces-demo/richfaces/listShuttle.jsf?c=listShuttle

 < rich:orderingList > available since 3.1.3

789

Figure 6.298. <rich:orderingList> component

6.12.2.2. Key Features

• Highly customizable look and feel

• Reordering possibility for list items

• Multiple selection of list items

• Keyboard support

Table 6.503. rich : orderingList attributes

Attribute Name Description

activeItem Stores active item

ajaxKeys Defines row keys that are updated after an Ajax

request

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bottomControlLabel Defines a label for a 'Bottom' control

bottomTitle HTML: alt for last button

captionLabel Defines caption representation text

columnClasses JSF: Assigns one or more space-separated

CSS class names to the columns. If the CSS

class names are comma-separated, each class

will be assigned to a particular column in the

order they follow in the attribute. If you have

less class names than columns, the class will

be applied to every n-fold column where n is the

order in which the class is listed in the attribute.

If there are more class names than columns,

the overflow ones are ignored.

componentState It defines EL-binding for a component state for

saving or redefinition

Chapter 6. The RichFaces Comp...

790

Attribute Name Description

controlsHorizontalAlign Controls horizontal rendering. Possible values:

"left" - controls should be rendered to the

left side of a list. "right"- controls should be

rendered to the right side of a list. Default value

is "right".

controlsType Defines type of a control: button or none.

Default value is "button".

controlsVerticalAlign Controls vertical rendering. Possible values:

"top" - controls should be rendered aligned to

top side of a list. "bottom" - controls should

be rendered aligned to bottom side of a

list. "middle" - controls should be rendered

centered relatively to a list. Default value is

"middle"

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

downControlLabel Defines a label for a 'Down' control

downTitle HTML: alt for bottom button

fastOrderControlsVisible If "false", 'Top' and 'Bottom' controls aren't

displayed. Default value is "true".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

label A localized user presentable name for this

component.

listHeight Defines height of a list. Default value is "140".

listWidth Defines width of a list. Default value is "140".

onbottomclick The client-side script method to be called when

the 'Bottom' button is clicked

onclick DHTML: The client-side script method to be

called when the component is clicked

 < rich:orderingList > available since 3.1.3

791

Attribute Name Description

ondblclick DHTML: The client-side script method to be

called when the component is double-clicked

ondownclick The client-side script method to be called when

the 'Down' button is clicked

onheaderclick The client-side script method to be called when

the list header is clicked

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

component

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

component

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

component

onorderchange The client-side script method to be called

before the list order is changed

onorderchanged The client-side script method to be called when

the list order is changed

ontopclick The client-side script method to be called when

the 'Top' button is clicked

onupclick The client-side script method to be called when

the 'Up' button is clicked

orderControlsVisible If "false", 'Up' and 'Down' controls aren't

displayed. Default value is "true".

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

rowClasses JSF: Assigns one or more space-separated

CSS class names to the rows. If the CSS class

names are comma-separated, each class will

be assigned to a particular row in the order they

follow in the attribute. If you have less class

names than rows, the class will be applied

to every n-fold row where n is the order in

which the class is listed in the attribute. If there

Chapter 6. The RichFaces Comp...

792

Attribute Name Description

are more class names than rows, the overflow

ones are ignored.

rowKeyConverter Converter for a row key object

rowKeyVar The attribute provides access to a row key in a

Request scope

rows HTML: A number of rows to display, or zero for

all remaining rows in the list

selection Collection which stores a set of selected items

showButtonLabels If "true", shows a label for a button. Default

value is "true"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

topControlLabel Defines a label for a 'Top' control

topTitle HTML: alt for first button

upControlLabel Defines a label for a 'Up' control

upTitle HTML: alt for top button

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: Defines a List or Array of items to be

shown in a list

valueChangeListener JSF: Listener for value changes

var Defines a list on the page

Table 6.504. Component identification parameters

Name Value

component-type org.richfaces.OrderingList

component-class org.richfaces.component.html.HtmlOrderingList

component-family org.richfaces.OrderingList

 < rich:orderingList > available since 3.1.3

793

Name Value

renderer-type org.richfaces.OrderingListRenderer

6.12.2.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:orderingList value="#{bean.list}" var="list">

 <rich:column>

 <f:facet name="header">

 <h:outputText value="Name" />

 </f:facet>

 <h:inputText value="#{list.name}" />

 </rich:column>

<rich:orderingList>

...

6.12.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlOrderingList;

...

HtmlOrderingList myOrderingList = new HtmlOrderingList();

...

6.12.2.5. Details of Usage

The <rich:orderingList> component consists of

• Item list element that displays a list of items. It has three different representations for a single

element: common, selected, active. Combination of these states is possible.

• Ordering controls set

The "value" and "var" attributes are used to access the values of a list.

Controls rendering is based on the "controlsType" attribute. Possible types are button or none.

Chapter 6. The RichFaces Comp...

794

Note

Currently the button controls type is based on <div> element.

The information about the "converter" attribute is here.

The "selection" attribute stores the collection of items selected by you. In the example below

after submitting the form the current collection is placed in the object's property and then

<rich:dataTable> with selected items is shown.

Example:

...

<h:form>

 <rich:orderingList value="#{bean.simpleItems}" var="item" selection="#{bean.selection}" controlsType="button">

 <rich:column>

 <f:facet name="header">

 <h:outputText value="Cars" />

 </f:facet>

 <h:outputText value="#{item}" />

 </rich:column>

 </rich:orderingList>

 <rich:dataTable id="infoPanelID" value="#{bean.info}" var="info" rendered="true">

 <rich:column>

 <h:outputText value="#{info}" />

 </rich:column>

 </rich:dataTable>

 <a4j:commandButton value="reRender" reRender="infoPanelID" />

</h:form>

...

The <rich:orderingList> component allows to use "caption" facet. A caption could be also

defined with "captionLabel" attribute.

Simple example is placed below.

Example:

...

<rich:orderingList value="#{bean.simpleItems}" var="item" controlsType="button" selection="#{bean.selection}">

 <f:facet name="caption">

 <h:outputText value="Caption Facet" />

 < rich:orderingList > available since 3.1.3

795

 </f:facet>

 <rich:column>

 <f:facet name="header">

 <h:outputText value="Cars" />

 </f:facet>

 <h:outputText value="#{item.name}" />

 </rich:column>

 <rich:column>

 <f:facet name="header">

 <h:outputText value="Price" />

 </f:facet>

 <h:outputText value="#{item.price}" />

 </rich:column>

</rich:orderingList>

...

The <rich:orderingList> component provides the possibility to use ordering controls set, which

performs reordering. Every control has possibility to be disabled.

An ordering controls set could be defined with "topControlLabel" , "bottomControlLabel" ,

"upControlLabel" , "downControlLabel" attributes.

It is also possible to use "topControl" , "topControlDisabled" , "bottomControl"

, "bottomControlDisabled" , "upControl" , "upControlDisabled" , "downControl" ,

"downControlDisabled" facets in order to replace the default controls with facets content.

Example:

...

<rich:orderingList value="#{bean.simpleItems}" var="item" controlsType="button" selection="#{bean.selection}">

 <f:facet name="topControl">

 <h:outputText value="Move to top" />

 </f:facet>

 <f:facet name="upControl">

 <h:outputText value="Move up" />

 </f:facet>

 <f:facet name="downControl">

 <h:outputText value="Move down" />

 </f:facet>

 <f:facet name="bottomControl">

 <h:outputText value="Move to bottom" />

 </f:facet>

<rich:orderingList>

...

Chapter 6. The RichFaces Comp...

796

The position of the controls relatively to a list could be customized with:

• "controlsHorizontalAlign" attribute. Possible values:

• "left" - controls render to the left side of a list

• "right" (default) - controls render to the right side of a list

• "center" - controls is centered

• "controlsVerticalAlign" attribute. Possible values:

• "top" - controls render aligned to the top side of a list

• "bottom" - controls render aligned to the bottom side of a list

• "center" (default) - controls is centered relatively to a list

The <rich:orderingList> component has a possibility to hide any of the controls by pairs using

following attributes:

• "orderControlsVisible" attribute has two values: "true" or "false". If false Up and Down controls

are not displayed.

• "fastOrderControlsVisible" attribute has two values: "true" or "false". If false Top and Bottom

controls are not displayed.

The <rich:orderingList> component allows to use internationalization method to

redefine and localize the labels. You could use application resource bundle and

define RICH_SHUTTLES_TOP_LABEL, RICH_SHUTTLES_BOTTOM_LABEL, RICH_SHUTTLES_UP_LABEL,

RICH_SHUTTLES_DOWN_LABEL there.

You could also pack org.richfaces.renderkit.orderingList resource bundle with your JARs

defining the same properties.

Table 6.505. Keyboard usage for elements selection

Keys and combinations Description

CTRL+click Inverts selection for an item

SHIFT+click Selects all rows from active one to a clicked

row if they differ, else select the active row. All

other selections are cleared

CTRL+A Selects all elements inside the list if some

active element is already present in a list

Up, Down arrows Changes the active and selected elements to

the next or previous in a list

 < rich:orderingList > available since 3.1.3

797

Table 6.506. Keyboard usage for elements reordering

Keys and combinations Description

Page Up Moves selected set to the top of a list

Page Down Moves selected set to the bottom of a list

CTRL+Up arrow Moves selected item to one position upper

CTRL+Down arrow Moves selected item to one position lower

6.12.2.6. JavaScript API

Table 6.507. JavaScript API

Function Description

hide() Hides ordering control (to be implemented)

show() Shows ordering control (to be implemented)

isShown() Checks if current control is shown (to be

implemented)

enable() Enables ordering control (to be implemented)

disable() Disables ordering control (to be implemented)

isEnabled() Checks if current control is enabled (to be

implemented)

Up() Moves up selected item in the list

Down() Moves down selected item in the list

Top() Moves top selected item in the list

Bottom() Moves bottom selected item in the list

getSelection() Returns currently selected item

getItems() Returns the collection of all items

6.12.2.7. Facets

Table 6.508. Facets

Facet Description

caption Redefines the caption content. Related

attribute is "captionLabel"

topControl Redefines the label for the "Top" control.

Related attribute is "topControlLabel"

bottomControl Redefines the label for the "Bottom" control.

Related attribute is "bottomControlLabel"

Chapter 6. The RichFaces Comp...

798

Facet Description

upControl Redefines the label for the "Up" control.

Related attribute is "upControlLabel"

downControl Redefines the label for the "Down" control.

Related attribute is "downControlLabel"

topControlDisabled Redefines the disabled label for the "Top"

control

bottomControlDisabled Redefines the disabled label for the "Bottom"

control

upControlDisabled Redefines the disabled label for the "Up"

control

downControlDisabled Redefines the disabled label for the "Down"

control

6.12.2.8. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:orderingList> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:orderingList> component

6.12.2.9. Skin Parameters Redefinition

Table 6.509. Skin parameters redefinition for a wrapper <div> element of a

list

Skin parameters CSS properties

tableBackgroundColor background-color

tableBorderColor border-color

Table 6.510. Skin parameters redefinition for a header cell of a list

Skin parameters CSS properties

trimColor background-color

generalTextColor color

headerFamilyFont font-family

headerSizeFont font-size

tableBorderWidth border-right-width

 < rich:orderingList > available since 3.1.3

799

Skin parameters CSS properties

tableBorderWidth border-bottom-width

tableBorderColor border-right-color

tableBorderColor border-bottom-color

Table 6.511. Skin parameters redefinition for caption element

Skin parameters CSS properties

headerFamilyFont font-family

headerSizeFont font-size

headerWeightFont font-weight

Table 6.512. Skin parameters redefinition for row element

Skin parameters CSS properties

headerGradientColor background-color

Table 6.513. Skin parameters redefinition for selected row element

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.514. Skin parameters redefinition for cell element

Skin parameters CSS properties

generalTextColor color

generalFamilyFont font-family

generalSizeFont font-size

Table 6.515. Skin parameters redefinition for selected cell element

Skin parameters CSS properties

generalTextColor color

generalFamilyFont font-family

generalSizeFont font-size

Table 6.516. Skin parameters redefinition for active cell element

Skin parameters CSS properties

generalFamilyFont font-family

generalSizeFont font-size

Chapter 6. The RichFaces Comp...

800

Table 6.517. Skin parameters redefinition for a button

Skin parameters CSS properties

trimColor background-color

generalTextColor color

headerFamilyFont font-family

headerSizeFont font-size

Table 6.518. Skin parameters redefinition for a disabled button

Skin parameters CSS properties

trimColor background-color

tabDisabledTextColor color

headerFamilyFont font-family

headerSizeFont font-size

Table 6.519. Skin parameters redefinition for a button highlight

Skin parameters CSS properties

trimColor background-color

selectControlColor border-color

tableBorderWidth border-width

headerFamilyFont font-family

headerSizeFont font-size

generalTextColor color

Table 6.520. Skin parameters redefinition for a pressed button

Skin parameters CSS properties

additionalBackgroundColor background-color

tableBorderColor border-color

tableBorderWidth border-width

headerFamilyFont font-family

headerSizeFont font-size

generalTextColor color

Table 6.521. Skin parameters redefinition for a button content

Skin parameters CSS properties

headerFamilyFont font-family

headerSizeFont font-size

 < rich:orderingList > available since 3.1.3

801

Table 6.522. Skin parameters redefinition for a button selection

Skin parameters CSS properties

generalTextColor color

Table 6.523. Skin parameters redefinition for top, bottom, up, down controls

and for controls in disabled state

Skin parameters CSS properties

panelBorderColor border-color

6.12.2.10. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.299. Classes names

Table 6.524. Classes names that define a list representation

Class name Description

rich-ordering-list-body Defines styles for a wrapper table element of

an orderingList

rich-ordering-list-output Defines styles for a wrapper <div> element of

a list

Chapter 6. The RichFaces Comp...

802

Class name Description

rich-ordering-list-items Defines styles for a wrapper table element of

items in the list

rich-ordering-list-content Defines styles for a list content

rich-ordering-list-header Defines styles for a wrapper <div> element for

a list header

rich-ordering-list-table-header Defines styles for a wrapper <tr> element for a

list header

rich-ordering-list-table-header-cell Defines styles for a header cell

Table 6.525. Classes names that define a caption representation

Class name Description

rich-ordering-list-caption Defines styles for a caption

rich-ordering-list-caption-disabled Defines styles for a caption in disabled state

rich-ordering-list-caption-active Defines styles for a caption in active state

Table 6.526. Classes names that define rows representation

Class name Description

rich-ordering-list-row Defines styles for a row

rich-ordering-list-row-selected Defines styles for a selected row

rich-ordering-list-row-active Defines styles for an active row

rich-ordering-list-row-disabled Defines styles for a disabled row

Table 6.527. Classes names that define cells representation

Class name Description

rich-ordering-list-cell Defines styles for a cell

rich-ordering-list-cell-selected Defines styles for a selected cell

rich-ordering-list-cell-active Defines styles for an active cell

rich-ordering-list-cell-disabled Defines styles for a disabled cell

Table 6.528. Classes names that define a button representation

Class name Description

rich-ordering-list-button Defines styles for a button

rich-ordering-list-button-disabled Defines styles for a disabled button

rich-ordering-list-button-light Defines styles for a button highlight

rich-ordering-list-button-press Defines styles for a pressed button

 < rich:orderingList > available since 3.1.3

803

Class name Description

rich-ordering-list-button-content Defines styles for a button content

rich-ordering-list-button-selection Defines styles for a button selection

rich-ordering-list-button-valign Defines styles for a wrapper <td> element for

buttons vertical align

rich-ordering-list-button-layout Defines styles for a wrapper <div> element of

buttons layout

Table 6.529. Classes names that define controls representation

Class name Description

rich-ordering-controls Defines styles for a controls group

rich-ordering-control-top Defines styles for a "top" control

rich-ordering-control-bottom Defines styles for a "bottom" control

rich-ordering-control-up Defines styles for a "up" control

rich-ordering-control-down Defines styles for a "down" control

rich-ordering-control-disabled Defines styles for controls in disabled state

In order to redefine styles for all <rich:orderingList> components on a page using CSS, it's

enough to create classes with the same names (possible classes could be found in the tables

above) and define necessary properties in them.

Example:

...

.rich-ordering-list-table-header-cell{

 font-weight:bold;

}

...

This is a result:

Figure 6.300. Redefinition styles with predefined classes

Chapter 6. The RichFaces Comp...

804

In the example the font weight for header text was changed.

Also it's possible to change styles of particular <rich:orderingList> component. In this case you

should create own style classes and use them in corresponding <rich:orderingList> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 font-style:italic;

}

...

The "rowClasses" attribute for <rich:orderingList> is defined as it's shown in the example

below:

Example:

<rich:orderingList ... rowClasses="myClass"/>

This is a result:

Figure 6.301. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for rows was changed.

6.12.2.11. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

orderingList.jsf?c=orderingList] you can see an example of <rich:orderingList> usage and

sources for the given example.

6.12.3. < rich:pickList > available since 3.2.0

3.2.0

http://livedemo.exadel.com/richfaces-demo/richfaces/orderingList.jsf?c=orderingList
http://livedemo.exadel.com/richfaces-demo/richfaces/orderingList.jsf?c=orderingList
http://livedemo.exadel.com/richfaces-demo/richfaces/orderingList.jsf?c=orderingList

 < rich:pickList > available since 3.2.0

805

6.12.3.1. Description

The <rich:pickList> component is used for moving selected item(s) from one list into another.

Figure 6.302. <rich:pickList> component

6.12.3.2. Key Features

• Multiple selection of list items

• Keyboard support

• Supports standard JSF internationalization

• Highly customizable look and feel

Table 6.530. rich : pickList attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

controlClass Assigns one or more space-separated CSS

class names to the component controls

converter JSF: Id of Converter to be used or reference to

a Converter

converterMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the converter

message, replacing any message that comes

from the converter

copyAllControlLabel Defines a label for a "Copy all" control

copyAllTitle HTML: alt for a "Copy all" button

copyAllVisible If "false", the 'Copy All' control will not be

displayed. Even if this value is "true", the

'Copy All' control will not be displayed if the

"fastMoveControlsVisible" attribute is "false".

Default value is "true".

copyControlLabel Defines a label for a "Copy" control

Chapter 6. The RichFaces Comp...

806

Attribute Name Description

copyTitle HTML: alt for a "Copy" button

copyVisible If "false", the 'Copy' control will not be

displayed. Even if this value is "true",

the 'Copy' control will not be displayed if

the "moveControlsVisible" attribute is "false".

Default value is "true".

disabled HTML: If "true", disable this component on

page.

disabledStyle CSS style rules to be applied to the component

disabled controls

disabledStyleClass Assigns one or more space-separated CSS

class names to the component disabled

controls

enabledStyle CSS style rules to be applied to the component

enabled controls

enabledStyleClass Assigns one or more space-separated CSS

class names to the component enabled

controls

fastMoveControlsVisible If "false", 'Copy All' and 'Remove All' controls

aren't displayed. Even if this value is "true",

the 'Copy All' and 'Remove All' controls will

not be displayed if the "copyAllVisible" and

"removeAllVisible" attribute values are "false".

Default value is "true".

id JSF: Every component may have a unique id

that is automatically created if omitted

immediate A flag indicating that this component value

must be converted and validated immediately

(that is, during Apply Request Values phase),

rather than waiting until a Process Validations

phase

label A localized user presentable name for this

component.

listClass Assigns one or more space-separated CSS

class names to the component lists

listsHeight Defines height of the list. Default value is

"140px"

 < rich:pickList > available since 3.2.0

807

Attribute Name Description

moveControlsVerticalAlign Customizes vertically a position of move/copy

controls relatively to lists. Default value is

"center".

moveControlsVisible If "false", 'Copy' and 'Remove' controls aren't

displayed. Even if this value is "true", the 'Copy'

and 'Remove' controls will not be displayed if

the "copyVisible" and "removeVisible" attribute

values are "false". Default value is "true".

onblur DHTML: The client-side script method to be

called when the component loses the focus

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onfocus DHTML: The client-side script method to be

called when the component gets the focus

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onlistchange The client-side script method to be called when

the list is changed

onlistchanged The client-side script method to be called

before the list is changed

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

Chapter 6. The RichFaces Comp...

808

Attribute Name Description

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

removeAllControlLabel Defines a label for a "Remove all" control

removeAllTitle HTML: alt for a "Remove" all button

removeAllVisible If "false", the 'Remove All' control will not be

displayed. Even if this value is "true", the

'Remove All' control will not be displayed if the

"fastMoveControlsVisible" attribute is "false".

Default value is "true".

removeControlLabel Defines a label for a "Remove" control

removeTitle HTML: alt for a "Remove" button

removeVisible If "false", the 'Remove' control will not be

displayed. Even if this value is "true", the

'Remove' control will not be displayed if

the "moveControlsVisible" attribute is "false".

Default value is "true".

rendered JSF: If "false", this component is not rendered

required JSF: If "true", this component is checked for

non-empty input

requiredMessage A ValueExpression enabled attribute which

defines text of validation message to show, if a

required field is missing

showButtonsLabel Shows a label for a button. Default value is

"true"

sourceListWidth Defines width of a source list. Default value is

"140px"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

switchByClick If "true", items can be moved between the lists

by clicking on them. Default value is "false".

 < rich:pickList > available since 3.2.0

809

Attribute Name Description

switchByDblClick If "true", items can be moved between the lists

by double-clicking on them. Default value is

"true".

targetListWidth Defines width of a target list. Default value is

"140px"

title HTML: Advisory title information about markup

elements generated for this component

validator JSF: MethodBinding pointing at a method that

is called during Process Validations phase of

the request processing lifecycle, to validate the

current value of this component

validatorMessage A ValueExpression enabled attribute that, if

present, will be used as the text of the validator

message, replacing any message that comes

from the validator

value JSF: The current value of this component

valueChangeListener JSF: Listener for value changes

Table 6.531. Component identification parameters

Name Value

component-type org.richfaces.PickList

component-class org.richfaces.component.html.HtmlPickList

component-family org.richfaces.PickList

renderer-type org.richfaces.PickListRenderer

tag-class org.richfaces.taglib.PickListTag

6.12.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:pickList value="#{pickBean.targetValues}">

 <f:selectItem itemValue="Bentley" itemLabel="Bentley"/>

 <f:selectItems value="#{pickBean.sourceValues}"/>

</rich:pickList>

...

Chapter 6. The RichFaces Comp...

810

6.12.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPickList;

...

HtmlPickList myPickList = new HtmlPickList();

...

6.12.3.5. Details of Usage

The <rich:pickList> component consists of

• 2 item lists. Every item has three different representations: common, selected, active.

Combination of these states is possible.

• Move controls set is a set of controls, which performs moving items between lists.

The "value" attribute is the initial value of this component.

The <f:selectItem /> or <f:selectItems /> facets are used to define the values of a source list.

Example:

...

<rich:pickList value="#{pickBean.listValues}">

 <f:selectItem itemValue="Bentley" itemLabel="Bentley"/>

 <f:selectItem itemValue="Audi" itemLabel="Audi"/>

 <f:selectItems value="#{pickBean.sourceList}"/>

</rich:pickList>

...

The "switchByClick" attribute provides an option to copy and remove items between lists by one

click. Default value of this attribute is "false", so you need a double click to copy, remove items

from one list to another.

Lables of the move controls can be defined with "copyAllControlLabel" , "copyControlLabel" ,

"removeControlLabel" , "removeAllControlLabel" attributes.

Example:

...

<rich:pickList copyAllControlLabel = "#{pickBean.copyAllLabel}" copyControlLabel = "#{pickBean.copyLabel}"

 removeControlLabel = "#{pickBean.removeLabel}" removeAllControlLabel ="#{pickBean.removeAllLabel}" value="#{pickBean.listValues}">

 < rich:pickList > available since 3.2.0

811

 <f:selectItem itemValue="Bentley" itemLabel="Bentley"/>

 <f:selectItem itemValue="Audi" itemLabel="Audi"/>

 <f:selectItems value="#{pickBean.sourceList}"/>

</rich:pickList>

...

If you don't want to display labels on the buttons you need to set "showButtonsLabel" to "false".

Figure 6.303. Move control buttons without labels

Alternative to the given attributes are the following facets: "copyAllControl" , "removeAllControl"

, "copyControl" , "removeControl" , "copyAllControlDisabled" , "removeAllControlDisabled" ,

"copyControlDisabled" , "removeControlDisabled" , "caption" .

It is an example of usage of the facets and it is identical to the previous example.

...

<rich:pickList value="#{pickBean.listValues}">

 <f:facet name="copyAllControl">

 <h:commandButton value="#{pickBean.copyAllLabel}" />

 </f:facet>

 <f:facet name="copyControl">

 <h:commandButton value="#{pickBean.copyLabel}" />

 </f:facet>

 <f:facet name="removeControl">

 <h:commandButton value="#{pickBean.removeLabel}" />

 </f:facet>

 <f:facet name="removeAllControl">

 <h:commandButton value="#{pickBean.removeAllLabel}" />

 </f:facet>

 <f:selectItem itemValue="Bentley" itemLabel="Bentley"/>

 <f:selectItem itemValue="Audi" itemLabel="Audi"/>

 <f:selectItems value="#{pickBean.sourceList}"/>

</rich:pickList>

...

With the help of "moveControlsVerticalAlign" attribute you can align move controls vertically.

Chapter 6. The RichFaces Comp...

812

The possible value for "moveControlsVerticalAlign" are "top", "bottom" and "center" (default

value).

The <rich:pickList> component provides resizing of lists by using such attributes as:

• "listsHeight" defines height of the lists.

• "sourceListWidth" defines width of a source list.

• "targetListWidth" defines width of a target list.

Example:

...

<rich:pickList listsHeight="#{pickBean.listsHeight}" sourceListWidth="#{pickBean.sourceListWidth}" targetListWidth="#{pickBean.targetListWidth}" value="#{pickBean.listValues}">

 <f:selectItem itemValue="Bentley" itemLabel="Bentley"/>

 <f:selectItem itemValue="Audi" itemLabel="Audi"/>

 <f:selectItems value="#{pickBean.sourceList}"/>

</rich:pickList>

...

The <rich:pickList> component allows to use internationalization method

to redefine and localize the labels. You could use application resource

bundle and define RICH_PICK_LIST_COPY_ALL_LABEL, RICH_PICK_LIST_COPY_LABEL,

RICH_PICK_LIST_REMOVE_ALL_LABEL, RICH_PICK_LIST_REMOVE_LABEL there.

Table 6.532. Keyboard usage for elements selection

Keys and combinations Description

CTRL+click Inverts selection for an item

SHIFT+click Selects all rows from active one to a clicked

row if they differ, else select the active row. All

other selections are cleared

CTRL+A Selects all elements inside the list if some

active element is already present in a list

Up, Down arrows Changes the active and selected elements to

the next or previous in a list

6.12.3.6. Facets

Table 6.533. Facets

Facet Description

copyAllControl Redefines the "copyAll" label with the control

set. Related attribute is "copyAllControlLabel"

 < rich:pickList > available since 3.2.0

813

Facet Description

removeAllControl Redefines the "removeAll" label with

the control set. Related attribute is

"removeAllControlLabel"

copyControl Redefines the "copy" label with the control set.

Related attribute is "copyControlLabel"

removeControl Redefines the "remove" label with the control

set. Related attribute is "removeControlLabel"

copyAllControlDisabled Redefines the disabled "copyAll" label with the

control set.

removeAllControlDisabled Redefines the disabled "removeAll" label with

the control set.

copyControlDisabled Redefines the disabled "copy" label with the

control set.

removeControlDisabled Redefines the disabled "remove" label with the

control set.

caption Defines the "caption" label with the control set.

6.12.3.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method. Default

style classes are mapped on skin parameters.

There are two ways to redefine the appearance of all <rich:pickList> components at once:

• Redefine the corresponding skin parameters

• Add to your style sheets style classes used by a <rich:pickList> component

6.12.3.8. Skin Parameters Redefinition

Table 6.534. Skin parameters redefinition for a list

Skin parameters CSS properties

tableBackgroundColor background-color

Table 6.535. Skin parameters redefinition for a button

Skin parameters CSS properties

tabBackgroundColorr background-color

generalTextColor color

headerFamilyFont font-family

Chapter 6. The RichFaces Comp...

814

Skin parameters CSS properties

headerSizeFont font-size

Table 6.536. Skin parameters redefinition for a disabled button

Skin parameters CSS properties

tabBackgroundColor background-color

tabDisabledTextColor color

headerFamilyFont font-family

headerSizeFont font-size

Table 6.537. Skin parameters redefinition for a pressed button

Skin parameters CSS properties

tabBackgroundColor background-color

generalTextColor color

headerFamilyFont font-family

headerSizeFont font-size

tableBorderColor border-color

tableBorderWidth border-width

Table 6.538. Skin parameters redefinition for a highlighted button

Skin parameters CSS properties

tabBackgroundColor background-color

generalTextColor color

headerFamilyFont font-family

headerSizeFon font-size

selectControlColor border-color

tableBorderWidth border-width

Table 6.539. Skin parameters redefinition for a button selection

Skin parameters CSS properties

generalTextColor color

Table 6.540. Skin parameters redefinition for a button content

Skin parameters CSS properties

headerFamilyFont font-family

headerSizeFont font-size

 < rich:pickList > available since 3.2.0

815

Table 6.541. Skin parameters redefinition for a source and target items

Skin parameters CSS properties

generalBackgroundColor background-color

tableBorderColor border-color

tableBorderWidth border-width

Table 6.542. Skin parameters redefinition for a source and target cell

Skin parameters CSS properties

generalTextColor color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.543. Skin parameters redefinition for a selected source and target

cell

Skin parameters CSS properties

generalTextColor color

generalSizeFont font-size

generalFamilyFont font-family

Table 6.544. Skin parameters redefinition for an active source and target cell

Skin parameters CSS properties

generalSizeFont font-size

generalFamilyFont font-family

generalTextColor border-top-color

generalTextColor border-bottom-color

Table 6.545. Skin parameters redefinition for a selected source and target

row

Skin parameters CSS properties

additionalBackgroundColor background-color

Table 6.546. Skin parameters redefinition for a controls

Skin parameters CSS properties

tableBorderColor border-color

Chapter 6. The RichFaces Comp...

816

6.12.3.9. Definition of Custom Style Classes

The following pictures illustrate how CSS classes define styles for component elements.

Figure 6.304. Classes names

Table 6.547. Classes names that define a list representation

Class name Description

rich-list-picklist Defines styles for a wrapper <table> element

of a pickList

Table 6.548. Classes names that define a source and target items

representation

Class name Description

rich-picklist-source-items Defines styles for a wrapper <div> element of

a source list

 < rich:pickList > available since 3.2.0

817

Class name Description

rich-picklist-target-items Defines styles for a wrapper <div> element of

a target list

rich-picklist-body Defines styles for a wrapper <table> element

of a list body (source and target)

rich-picklist-list Defines styles for a (source and target) list

rich-picklist-list-content Defines styles for a (source and target) list

content

rich-picklist-internal-tab Defines styles for a wrapper <table> element

of list items (source and target)

Table 6.549. Classes names that define rows representation

Class name Description

rich-picklist-source-row Defines styles for a source list row

rich-picklist-source-row-selected Defines styles for a selected row in a source list

rich-picklist-target-row-selected Defines styles for a selected row in a target list

Table 6.550. Classes names that define a source cell representation

Class name Description

rich-picklist-source-cell Defines styles for a cell in a source list

rich-picklist-source-cell-selected Defines styles for a selected cell in a source list

rich-picklist-source-cell-active Defines styles for an active cell in a source list

Table 6.551. Classes names that define a target cell representation

Class name Description

rich-picklist-target-cell Defines styles for a target list cell

rich-picklist-target-cell-selected Defines styles for a selected cell in a target list

rich-picklist-target-cell-active Defines styles for an active cell in a target list

Table 6.552. Classes names that define a control representation

Class name Description

rich-picklist-controls Defines styles for wrapper <div> element of a

pickList controls

rich-picklist-control-disabled Defines styles for a control in a disabled state

rich-picklist-control-copyall Defines styles for a "copyAll" control

rich-picklist-control-copy Defines styles for a "Copy" control

rich-picklist-control-remove Defines styles for a "Remove" control

Chapter 6. The RichFaces Comp...

818

Class name Description

rich-picklist-control-removeall Defines styles for a "removeAll" control

rich-picklist-control-img Defines styles for a control image

Table 6.553. Classes names that define a button representation

Class name Description

rich-list-picklist-button Defines styles for a button

rich-list-picklist-button-disabled Defines styles for a disabled button

rich-list-picklist-button-press Defines styles for a pressed button

rich-list-picklist-button-light Defines styles for a button highlight

rich-list-picklist-button-selection Defines styles for a button selection

rich-list-picklist-button-content Defines styles for a button content

In order to redefine styles for all <rich:pickList> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-picklist-list{

 background-color:#ecf4fe;

}

...

This is a result:

Figure 6.305. Redefinition styles with predefined classes

In the example the background color for lists is changed.

Also it's possible to change styles of particular <rich:pickList> component. In this case you

should create own style classes and use them in the corresponding <rich:pickList> styleClass

attributes. An example is placed below:

Example:

Rich Semantic Layouts

819

...

.myClass{

 font-weight:bold;

}

...

The "styleClass" attribute for <rich:pickList> is defined as it's shown in the example below:

Example:

<rich:pickList ... styleClass="myClass"/>

This is a result:

Figure 6.306. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font style for buttons is changed.

6.12.3.10. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

pickList.jsf?c=pickList] you can see an example of <rich:pickList> usage and sources for the

given example.

6.13. Rich Semantic Layouts

Layout components enrich RichFaces with functionality that enables you to create the whole page

layout and define the parameters of the page. You can also create your custom theme and use

it alongside with these components.

6.13.1. < rich:page > available since 3.3.1

3.3.1

6.13.1.1. Description

The <rich:page> component is used to create basic (X)HTML markup and define document

parameters like DOCTYPE, title etc. The component also allows to build top level layout: header,

bottom, center and left or right layout areas.

http://livedemo.exadel.com/richfaces-demo/richfaces/pickList.jsf?c=pickList
http://livedemo.exadel.com/richfaces-demo/richfaces/pickList.jsf?c=pickList
http://livedemo.exadel.com/richfaces-demo/richfaces/pickList.jsf?c=pickList

Chapter 6. The RichFaces Comp...

820

6.13.1.2. Key Features

• Option to change the renderer of the component (themes support)

• Possibility to define parameters of an HTML page

• Possibility to create page layout with facets

• Provides styling based on RichFaces skinnability

Table 6.554. rich : page attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

bodyClass Assigns one or more space-separated CSS

class names to the body part of the page

contentType Set custom mime content type to response

dir HTML: Direction indication for text that does

not inherit directionality. Valid values are

"LTR" (left-to-right) and "RTL" (right-to-left)

footerClass Assigns one or more space-separated CSS

class names to the component footer

headerClass Assigns one or more space-separated CSS

class names to the component header

id JSF: Every component may have a unique id

that is automatically created if omitted

lang HTML: Code describing the language used in

the generated markup for this component

markupType Page layout format (html, xhtml, html-

transitional, html-3.2) for encoding DOCTYPE,

namespace and Content-Type definitions

namespace Set html element default namespace

oncontextmenu The client-side script method to be called when

the right mouse button is clicked over the

component

onload The client-side script method to be called

before a page is loaded

onunload The client-side script method to be called when

a page is unloaded

 < rich:page > available since 3.3.1

821

Attribute Name Description

pageTitle String for output as a page title.

rendered JSF: If "false", this component is not rendered

sidebarClass Assigns one or more space-separated CSS

class names to the component side panel

sidebarPosition Defines the position of the side panel. Possible

values are "left", "right". Default value is "left".

sidebarWidth Defines width for the side panel. Default value

is "160".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

theme Specifies the way of the component rendering

title HTML: Advisory title information about markup

elements generated for this component

width HTML: Sets the width of the page

Table 6.555. Component identification parameters

Name Value

component-type org.richfaces.component.html.HtmlPage

component-class org.richfaces.component.html.HtmlPage

component-family org.richfaces.Page

renderer-type org.richfaces.PageRenderer

tag-class org.richfaces.taglib.PageTag

6.13.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:page>

 <!-- page body -->

</rich:page>

...

Chapter 6. The RichFaces Comp...

822

6.13.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlPage;

...

HtmlPage myHtmlPage = new HtmlPage();

...

6.13.1.5. Details of Usage

The <rich:page> component together with the <rich:layout> component provides a full-fledged

mechanism for markup creation.

First of all, to declare the document type of the page you should use the "markupType" attribute

which has the following values:

• "html"

• "html-transitional"

• "xhtml"

• "xhtml-transitional"

• "html-frameset"

• "html-3.2"

The default value is "html".

The "contentType" allows to specify the type of the content and encoding for the page.

The title of the page can be set with the "pageTile" attribute. To place some other page parameters

(like meta information, links to CSS style sheets etc.) in the <head> element of an HTML page

use "pageHeader" facet.

Example:

...

<rich:page pageTitle="The title of the page" markupType="xhtml">

 <f:facet name="pageHeader">

 <meta content="The rich:page component" name="keywords" />

 <link rel="shortcut icon" href="/images/favicon.ico" />

 < rich:page > available since 3.3.1

823

 <link href="/css/style.css" rel="stylesheet" type="text/css" />

 <script type="text/javascript" src="/js/menu.js"></script>

 </f:facet>

 <!-- page content -->

</rich:page>

...

Note:

Note, the <rich:page> component encodes the full page structure. Therefore,

be sure you don't use the doctype declaration, root html element, head and body

elements on the same page where you've put this component.

The implementation of the <rich:page> component provides four facets that you can use to

arrange the layout of the page: "header", "subheader", "sidebar" and "footer". Their behavior is

quite self-explanatory.

The position of the panel rendered by the "sidebar" facet can be set with the "sidebarPosition"

attribute that can take either "right" or "left" as values, you can also specify the width for this facet

with the "sidebarWidth" attribute.

Example:

...

<rich:page sidebarPosition="left" sidebarWidth="300">

 <f:facet name="header">

 <!-- header content -->

 </f:facet>

 <f:facet name="sidebar">

 <!-- side panel content -->

 </f:facet>

 <!-- body content -->

 <f:facet name="footer">

 <!-- footer content -->

 </f:facet>

</rich:page>

...

The <rich:page> component also provides attributes to define CSS classes for each nested

facet as well as a body part of the page created with the component.

Several templates are available for the <rich:page> component. A template can be activated

with the "theme" attribute.

Chapter 6. The RichFaces Comp...

824

The theme defines the way the <rich:page> is rendered. Default renderer(default theme) of the

<rich:page> has no mappings to skin parameters and just provides CSS classes for the page

part. However, the simple theme, which is an extension of the default theme, has mappings to

skin parameters and adds the RichFaces skinning for the page elements.

As a whole, RichFaces provides 4 themes for the <rich:page> component out-of-the-box:

"simple", "violetRays", "oldschool", "smooth". The Creating a Theme for <rich:page> [http://

www.jboss.org/community/docs/DOC-13635] article tells how you can create your custom theme

for the <rich:page> component.

6.13.1.6. Facets

Table 6.556. Facets

Facet Name Description

pageHeader Creates the <head/> part of the HTML page

header Creates a header

subheader Creates a horizontal panel under the header

footer Creates a footer

sidebar Creates a left/right panel

6.13.1.7. Skin Parameters for the "simple" theme

Table 6.557. Skin parameters for the <body/> HTML element

Skin parameters CSS properties

generalFamilyFont font-family

Table 6.558. Skin parameters for the whole page

Skin parameters CSS properties

generalSizeFont font-size

Table 6.559. Skin parameters for the header

Skin parameters CSS properties

generalSizeFont border-bottom-color

headerGradientColor background-color

trimColor color

headerFamilyFont font-family

headerTextColor color

headerSizeFont font-size

http://www.jboss.org/community/docs/DOC-13635
http://www.jboss.org/community/docs/DOC-13635
http://www.jboss.org/community/docs/DOC-13635

 < rich:page > available since 3.3.1

825

Table 6.560. Skin parameters for the content area of the page

Skin parameters CSS properties

generalBackgroundColor background-color

panelBorderColor border-top-color

trimColor color

generalFamilyFont font-family

generalTextColor color

generalSizeFont font-size

Table 6.561. Skin parameters for the footer

Skin parameters CSS properties

generalBackgroundColor border-top-color

panelBorderColor background-color

generalFamilyFont font-family

generalTextColor color

generalSizeFont font-size

Table 6.562. Skin parameters for the side panel

Skin parameters CSS properties

generalFamilyFont font-family

generalTextColor color

generalSizeFont font-size

Table 6.563. Skin parameters for h1,h2,h3 HTML tags

Skin parameters CSS properties

headerFamilyFont font-family

headTextColor color

Table 6.564. Skin parameters for p,ul,ol HTML tags

Skin parameters CSS properties

generalFamilyFont font-family

controlTextColor color

Table 6.565. Skin parameters for the hovered link

Skin parameters CSS properties

hoverLinkColor color

Chapter 6. The RichFaces Comp...

826

Table 6.566. Skin parameters for the visited link

Skin parameters CSS properties

visitedLinkColor color

6.13.1.8. Component CSS Selectors

Table 6.567. CSS Selectors that define the representation of the

component's blocks

CSS Selector Description

.rich-page Defines styles for the whole page

.rich-page-header Defines styles for the header

.rich-page-subheader Defines styles for the block under the header

.rich-page-sidebar Defines styles for the sidebar

.rich-page-body Defines styles for the body part of the page

.rich-page-footer Defines styles for the footer

6.13.1.9. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

layouts.jsf] you can see the example of <rich:page> component usage and sources for the given

example.

The Layout components for RichFaces 3.3.1 [http://www.jboss.org/community/docs/DOC-13336]

on the JBoss.org Wiki

6.13.2. < rich:layout > available since 3.3.1

3.3.1

6.13.2.1. Description

The <rich:layout> component is designed to build layouts basing on Yahoo UI Grids CSS

Figure 6.307. The <rich:layout> component

http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://www.jboss.org/community/docs/DOC-13336
http://www.jboss.org/community/docs/DOC-13336

 < rich:layout > available since 3.3.1

827

6.13.2.2. Key Features

• Cross-borwser compatibility

• Easy layout creation

Table 6.568. rich : layout attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

Table 6.569. Component identification parameters

Name Value

component-type org.richfaces.layout

component-class org.richfaces.component.html.HtmlLayout

component-family org.richfaces.Layout

renderer-type org.richfaces.LayoutRenderer

tag-class org.richfaces.taglib.layoutTag

6.13.2.3. Creating the Component with a Page Tag

To create the simplest layout with the <rich:layout> on a page, use the following syntax:

Example:

...

<rich:layout>

 <rich:layoutPanel position="center">

 <!--center-->

 </rich:layoutPanel>

</rich:layout>

...

6.13.2.4. Creating the Component Dynamically Using Java

Example:

Chapter 6. The RichFaces Comp...

828

import org.richfaces.component.html.HtmlLayout;

...

Htmllayout mylayout = new HtmlLayout();

...

6.13.2.5. Details of Usage

The <rich:layout> allows to build a grid that can be used to make the layout on a page. The

<rich:layout> is used in conjunction with the <rich:layoutPanel> that is used as a child element

and carries the main burden of building the grid.

Hence, you need to use the <rich:layout> as a container and <rich:layoutPanel> to create

areas inside the container.

This is how you can make a layout with 5 areas:

Example:

...

<rich:layout>

 <rich:layoutPanel position="top">

 <!--top-->

 </rich:layoutPanel>

 <rich:layoutPanel position="left">

 <!--left-->

 </rich:layoutPanel>

 <rich:layoutPanel position="center">

 <!--center-->

 </rich:layoutPanel>

 <rich:layoutPanel position="right">

 <!--right-->

 </rich:layoutPanel>

 <rich:layoutPanel position="bottom">

 <!--bottom-->

 </rich:layoutPanel>

</rich:layout>

...

To get more details about <rich:layoutPanel> please read the chapter about layoutPanel in

the guide.

 < rich:layoutPanel > available since 3.3.1

829

6.13.2.6. Relevant Resources Links

Visit layout [http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf] page at RichFaces

Live Demo for examples of component usage and their sources.

The Layout components for RichFaces 3.3.1 [http://www.jboss.org/community/docs/DOC-13336]

on the JBoss.org Wiki

6.13.3. < rich:layoutPanel > available since 3.3.1

3.3.1

6.13.3.1. Description

The <rich:layouPanel> is an auxiliary component used to create layout areas within the

<rich:layout> container.

6.13.3.2. Key Features

• Cross-browser compatibility

• Provides possibility of an easy layout creation

Table 6.570. rich : layoutPanel attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

position Positions the component relative to the

<rich:layout/> component. Possible values are

top, left, right, center, bottom.

rendered JSF: If "false", this component is not rendered

width HTML: Sets the width of the layout area

Table 6.571. Component identification parameters

Name Value

component-type org.richfaces.LayoutPanel

component-class org.richfaces.component.html.HtmlLayoutPanel

component-family org.richfaces.LayoutPanel

http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://www.jboss.org/community/docs/DOC-13336
http://www.jboss.org/community/docs/DOC-13336

Chapter 6. The RichFaces Comp...

830

Name Value

renderer-type org.richfaces.LayoutPanelRenderer

tag-class org.richfaces.taglib.LayoutPanelTag

6.13.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:layout>

 <rich:layoutPanel position="center">

 <!--center-->

 </rich:layoutPanel>

</rich:layout>

...

6.13.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmllayoutPanel;

...

HtmllayoutPanel mylayoutPanel = new HtmllayoutPanel();

...

6.13.3.5. Details of Usage

The <rich:layoutPanel> component is used to split the area inside the <rich:layout> into up

to 5 parts: top, left, center, right, bottom.

The "position" attribute defines the position of the <rich:layoutPanel> in the area created with

<rich:layout> .

...

<rich:layout>

 <rich:layoutPanel position="top">

 <!--top-->

 </rich:layoutPanel>

 <rich:layoutPanel position="left">

Rich Miscellaneous

831

 <!--left-->

 </rich:layoutPanel>

 <rich:layoutPanel position="center">

 <!--center-->

 </rich:layoutPanel>

 <rich:layoutPanel position="right">

 <!--right-->

 </rich:layoutPanel>

 <rich:layoutPanel position="bottom">

 <!--bottom-->

 </rich:layoutPanel>

</rich:layout>

...

You can specify the width of the layout area with the "width" attribute.

6.13.3.6. Relevant Resources Links

On RichFaces Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf]

you can see an example of <rich:layoutPanel> usage and sources for the given example.

The <rich:layout> chapter of the guide.

The Layout components for RichFaces 3.3.1 [http://www.jboss.org/community/docs/DOC-13336]

on the JBoss.org Wiki.

6.14. Rich Miscellaneous

6.14.1. < rich:componentControl > available since 3.0.0

6.14.1.1. Description

The <rich:componentControl> allows to call JavaScript API functions on components after

defined events.

6.14.1.2. Key Features

• Management of components JavaScript API

• Customizable initialization variants

• Customizable activation events

• Possibility to pass parameters to the target component

http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://livedemo.exadel.com/richfaces-demo/richfaces/layouts.jsf
http://www.jboss.org/community/docs/DOC-13336
http://www.jboss.org/community/docs/DOC-13336

Chapter 6. The RichFaces Comp...

832

Table 6.572. rich : componentControl attributes

Attribute Name Description

attachTiming Defines the page loading phase when

componentControl is attached to another

component. Default value is "onavailable"

attachTo Client identifier of the component or id of

the existing DOM element that is a source

for given event. If attachTo is defined, the

event is attached on the client according to

the attachTiming attribute. If attachTo is not

defined, the event is attached on the server

to the closest in the component tree parent

component.

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

disableDefault Disable default action for target event. If the

attribute is not set, it's made "true" by default

if the event oncontextmenu is used and false

in all other cases. if the attribute set, its value

is used.

event The Event that is used to trigger the operation

on the target component

for Client identifier of the target component.

id JSF: Every component may have a unique id

that is automatically created if omitted

name The optional name of the function that might

be used to trigger the operation on the target

component

operation The function of JavaScript API that will be

invoked. The API method is attached to the

'component' property of the root DOM element

that represents the target component. The

function has two parameters - event and

params. See: 'params' attribute for details.

params The set of parameters passed to the function

of Javascript API that will be invoked. The

JSON syntax is used to define the parameters,

but without open and closed curve bracket.

As an alternative, the set of f:param can be

used to define the parameters passed to the

 < rich:componentControl > available since 3.0.0

833

Attribute Name Description

API function. If both way are used to define

the parameters, both set are concatenated. if

names are equals, the f:param has a priority.

rendered JSF: If "false", this component is not rendered

Table 6.573. Component identification parameters

Name Value

component-type org.richfaces.ComponentControl

component-class org.richfaces.component.html.HtmlComponentControl

component-family org.richfaces.ComponentControl

renderer-type org.richfaces.ComponentControlRenderer

tag-class org.richfaces.taglib.ComponentControlTag

6.14.1.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:componentControl attachTo="doExpandCalendarID" for="ccCalendarID" event="onclick" operation="Expand" /

>

...

6.14.1.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlComponentControl;

...

HtmlComponentControl myComponentControl = new HtmlComponentControl();

...

6.14.1.5. Details of Usage

<rich:componentControl> is a command component, that allows to call JavaScript API function

on some defined event. Look at the example:

...

Chapter 6. The RichFaces Comp...

834

<rich:componentControl attachTo="doExpandCalendarID" event="onclick" for="ccCalendarID" operation="Expand"/

>

...

In other words it means "clicking on the component with ID 'doExpandCalendarID', expands the

component with ID 'ccCalendarID'". It can be said, that <rich:componentControl> connects

two components with the help of JavaScript API function.

Component ID, to wich the event, that invokes JavaScript API function is applied, is defined with

"attachTo" attribute (see the exapmle above). If "attachTo" attribute is not defined, the component

will be attached to the parent component.

Example:

...

<h:commandButton value="Show Modal Panel">

 <rich:componentControl for="ccModalPanelID" event="onclick" operation="show"/> <!--

attached to the commandButton-->

</h:commandButton>

...

On the result page the component is rendered to JavaScript code. This means, that it is possible

to invoke the <rich:componentControl> handler operation as usual JavaScript function. This

function is called by name, specified in the component "name" attribute. The definition of "name"

attribute is shown on the example below:

...

<rich:componentControl name="func" event="onRowClick" for="menu" operation="show" />

...

The generated JavaScript function will look as shown below:

function func (event) {

}

An important <rich:componentControl> feature, is that it allows transferring parameters, with

the help of special attribute "params" .

Example:

 < rich:componentControl > available since 3.0.0

835

...

<rich:componentControl name="func" event="onRowClick" for="menu" operation="show" params=##{car.model}"/

>

...

The alternative way for parameters transferring uses <f:param> attribute. As the code above,

the following code will represent the same functionality.

Example:

...

<rich:componentControl event="onRowClick" for="menu" operation="show">

 <f:param value="#{car.model}" name="model"/>

</rich:componentControl>

...

With the help of the "attachTiming" attribute you can define the page loading phase when

<rich:componentControl> is attached to source component. Possible values are:

• "immediate" - attached during execution of <rich:componentControl> script

• "onavailable" - attached after the target component is initialized

• "onload" - attached after the page is loaded

<rich:componentControl> interacts with such components as: <rich:contextMenu> ,

<rich:toolTip> , <rich:modalPanel > , <rich:listShuttle> , <rich:orderingList> ,

<rich:calendar>

In order to use <rich:componentControl> with another component you should place the id of

this component into "for" attribute field. All operations with defined component you can find in

the JavaScript API section of defined component.

Example:

...

<f:view>

 <h:form>

 <rich:toolTip id="toolTipFor" followMouse="false" direction="top-

right" mode="ajax" value="This is button"

 horizontalOffset="5" verticalOffset="5" layout="block" />

 </h:form>

Chapter 6. The RichFaces Comp...

836

 <h:commandButton id="ButtonID" value="Button">

 <rich:componentControl for="toolTipFor" attachTo="ButtonID" operation="show" event="onclick"/

>

 </h:commandButton>

</f:view>

...

This is a result:

Figure 6.308. <rich:toolTip> shows with the help of

<rich:componentControl> .

As it could be seen in the picture above, the <rich:toolTip> shows after you click the button.

6.14.1.6. Look-and-Feel Customization

<rich:componentControl> has no skin parameters and custom style classes, as the component

isn't visual.

6.14.1.7. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/

richfaces/componentControl.jsf?c=componentControl] you can see an example of

<rich:componentControl> usage and sources for the given example.

On RichFaces LiveDemo page [http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/

f/param.html] you can found some additional information about <f:param> component.

6.14.2. < rich:effect > available since 3.1.0

3.1.0

6.14.2.1. Description

The <rich:effect> utilizes a set of effects provided by the scriptaculous JavaScript library. It

allows to attach effects to JSF components and html tags.

6.14.2.2. Key Features

• No developers JavaScript writing needed to use it on pages

http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://livedemo.exadel.com/richfaces-demo/richfaces/componentControl.jsf?c=componentControl
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html
http://java.sun.com/javaee/javaserverfaces/1.1_01/docs/tlddocs/f/param.html

 < rich:effect > available since 3.1.0

837

• Presents scriptaculous JavaScript library functionality

Table 6.574. rich : effect attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

disableDefault Disable default action for target event (append

"return false;" to JavaScript). Default value is

"false".

event Event on the component or html tag the effect

is attached to

for Id of the target component.

id JSF: Every component may have a unique id

that is automatically created if omitted

name Generated JavaScript name.

params Parameters passed to the effect function.

Example

params="{duration:0.2,from:1.0,to:0.1}"

rendered JSF: If "false", this component is not rendered

targetId The id of the element the effect apply to. Might

be component id or client id of jsf component

or html tag. If targetId is not defined the value

of the attribute 'for' or the 'targetId' option effect

play its role

type HTML: Defines the type of effect. Possible

values: "Fade", "Blind", "Opacity".

Table 6.575. Component identification parameters

Name Value

component-type org.richfaces.Effect

component-class org.richfaces.component.html.HtmlEffect

component-family org.richfaces.Effect

renderer-type org.richfaces.EffectRenderer

tag-class org.richfaces.taglib.EffectTag

6.14.2.3. Creating the Component with a Page Tag

To create the simplest variant of <rich:effect> on a page, use the following syntax:

Chapter 6. The RichFaces Comp...

838

Example:

...

<rich:effect for="componentId" type="Appear"/>

...

6.14.2.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlRichEffect;

...

HtmlRichEffect myEffect = new HtmlRichEffect();

...

6.14.2.5. Details of Usage

It is possible to use <rich:effect> in two modes:

• attached to the JSF components or html tags and triggered by a particular event. Wiring effect

with JSF components might occur on the server or client. Wiring with html tag is possible only

on the client side

• invoking from the JavaScript code by an effect name. During the rendering, <rich:effect>

generates the JavaScript function with defined name. When the function is called, the effect

is applied

Those a the typical variants of using:

...

<!-- attaching by event -->

<rich:panel>

 <rich:effect event="onmouseout" type="Opacity" params="duration:0.8,from:1.0,to:0.3" />

 <!--panel content-->

</rich:panel>

...

<!-- invoking from JavaScript -->

<div id="contentDiv">

 <!--div content-->

</div>

 < rich:effect > available since 3.1.0

839

<input type="button" onclick="hideDiv({duration:0.7})" value="Hide" />

<input type="button" onclick="showDiv()" value="Show" />

<rich:effect name="hideDiv" for="contentDiv" type="Fade" />

<rich:effect name="showDiv" for="contentDiv" type="Appear" />

<!-- attaching to window on load and applying on particular page element -->

<rich:effect for="window" event="onload" type="Appear" params="targetId:'contentDiv',duration:0.8,from:0.3,to:1.0" /

>

...

Figure 6.309. Initial

Figure 6.310. When the mouse cursor is over

"name" attribute defines a name of the JavaScript function that is be generated on a page when the

component is rendered. You can invoke this function to activate the effect. The function accesses

one parameter. It is a set of effect options in JSON format.

"type" attribute defines the type of an effect. For example, "Fade", "Blind", "Opacity". Have a look

at scriptaculous documentation [http://script.aculo.us] for set of available effect.

"for" attribute defines the id of the component or html tag, the effect is attached to. RichFaces

converts the "for" attribute value to the client id of the component if such component is found.

If not, the value is left as is for possible wiring with on the DOM element's id on the client side.

By default, the target of the effect is the same element that effect pointed to. However, the target

element is might be overridden with "targetId" option passed with "params" attribute of with

function paramenter.

"params" attribute allows to define the set of options possible for particurar effect. For example,

'duration', 'delay', 'from', 'to'. Additionally to the options used by the effect itself, there are two

option that might override the <rich:effect> attribute. Those are:

• "targetId" allows to re-define the target of effect. The option is override the value of "for"

attribute.

http://script.aculo.us
http://script.aculo.us

Chapter 6. The RichFaces Comp...

840

• "type" defines the effect type. The option is override the value of "type" attribute.

You can use a set of effects directly without defining the <rich:effect> component on a page if

it's convenient for you. For that, load the scriptaculous library to the page with the following code:

Example:

...

<a4j:loadScript src="resource://scriptaculous/effect.js" />

...

If you do use the <rich:effect> component, there is no need to include this library because it's

already here.

For more information look at RichFaces Users Forum [http://jboss.com/index.html?

module=bb&op=viewtopic&t=119044].

6.14.2.6. Look-and-Feel Customization

<rich:effect> has no skin parameters and custom style classes, as the component isn't visual.

6.14.2.7. Relevant Resources Links

Here [http://wiki.jboss.org/wiki/CreateABannerUsingEffectsAndPoll] you can get additional

information how to create an image banner using <rich:effect> and <a4j:poll>

components and figure out how to create an HTML banner from "Creating HTML

Banner Using Effects And Poll RichFaces Wiki" article [http://wiki.jboss.org/auth/wiki/

CreateAHTMLBannerUsingEffectsAndPoll] .

In the RichFaces Cookbook article [http://wiki.jboss.org/auth/wiki/RichFacesCookbook/

SlideShow] you can find information how to make a Slide Show with help of the <rich:effect>

and <a4j:poll> components.

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

effect.jsf?c=effect] you can see the example of <rich:effect> usage.

How to save <rich:effect> status see on the RichFaces Users Forum [http://www.jboss.com/

index.html?module=bb&op=viewtopic&t=118833].

6.14.3. < rich:gmap > available since 3.0.0

6.14.3.1. Description

Component that presents the Google map in the JSF applications.

http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://jboss.com/index.html?module=bb&op=viewtopic&t=119044
http://wiki.jboss.org/wiki/CreateABannerUsingEffectsAndPoll
http://wiki.jboss.org/wiki/CreateABannerUsingEffectsAndPoll
http://wiki.jboss.org/auth/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://wiki.jboss.org/auth/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://wiki.jboss.org/auth/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://wiki.jboss.org/auth/wiki/CreateAHTMLBannerUsingEffectsAndPoll
http://wiki.jboss.org/auth/wiki/RichFacesCookbook/SlideShow
http://wiki.jboss.org/auth/wiki/RichFacesCookbook/SlideShow
http://wiki.jboss.org/auth/wiki/RichFacesCookbook/SlideShow
http://livedemo.exadel.com/richfaces-demo/richfaces/effect.jsf?c=effect
http://livedemo.exadel.com/richfaces-demo/richfaces/effect.jsf?c=effect
http://livedemo.exadel.com/richfaces-demo/richfaces/effect.jsf?c=effect
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=118833

 < rich:gmap > available since 3.0.0

841

Figure 6.311. <rich:gmap> component

6.14.3.2. Key Features

• Presents all the Google map functionality

• Highly customizable via attributes

• No developers JavaScript writing needed to use on a pages

Table 6.576. rich : gmap attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

enableContinuousZoom Enables continuous smooth zooming for

selected browsers. Default value is "false".

enableDoubleClickZoom Enables zooming in by a double click. Default

value is "false".

enableDragging Enables a map dragging with the mouse.

Default value is "true".

enableInfoWindow Enables Info Window. Default value is "true".

Chapter 6. The RichFaces Comp...

842

Attribute Name Description

gmapKey Google Map key. A single Map API key is valid

for a single "directory" on your web server.

Default value is "internal".

gmapVar The JavaScript variable that is used to access

the Google Map API. If you have more than one

Google Map components on the same page,

use individual key for each of them. The default

variable name is "map" (without quotes).

id JSF: Every component may have a unique id

that is automatically created if omitted

lat Initial latitude coordinate in degrees, as a

number between -90 and +90. Default value is

"37.9721046".

lng Initial longitude coordinate in degrees, as a

number between -180 and +180. Default value

is "-122.0424842834".

locale Used for locale definition. Default value is

"getDefaultLocale()".

mapType Initial map type. The possible values are

"G_NORMAL_MAP", "G_SATELLITE_MAP",

"G_HYBRID_MAP". Default value is

"G_SATELLITE_MAP".

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

oninit The client-side script method to be called when

the Google Map object is initiated

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

 < rich:gmap > available since 3.0.0

843

Attribute Name Description

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

rendered JSF: If "false", this component is not rendered

showGLargeMapControl Shows the GLarge control. Default value is

"true".

showGMapTypeControl Shows the Type switch control. Default value

is "true".

showGScaleControl It shows the scale control. Default value is

"true".

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

warningMessage The warning message that appears if a

browser is not compatible with Google Map.

Default value is "Your browser does not

support Google Maps".

zoom Initial zoom level as a number between 1 and

18. Default value is "17".

Table 6.577. Component identification parameters

Name Value

component-type org.richfaces.Gmap

component-class org.richfaces.component.html.HtmlGmap

component-family org.richfaces.Gmap

renderer-type org.richfaces.GmapRenderer

tag-class org.richfaces.taglib.GmapTag

Chapter 6. The RichFaces Comp...

844

6.14.3.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:gmap gmapKey="..."/>

...

6.14.3.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlGmap;

...

HtmlGmap myMap = new HtmlGmap();

...

6.14.3.5. Details of Usage

To use Google Map in your application, generate a key on Google Map official resource [http://

google.com/apis/maps] . One key could be used for one directory on the server.

Here are the main settings of initial rendering performed with a component map that are accessible

with the following attributes:

• "zoom" defines an approximation size (boundary values 1-18)

• "lat" specifies an initial latitude coordinate in degrees, as a number between -90 and +90

• "lng" specifies an initial longitude coordinate in degrees, as a number between -180 and +180

• "mapType" specifies a type of a rendered map (G_NORMAL_MAP, G_SATELLITE_MAP (DEFAULT),

G_HYBRID_MAP)

For example, the city of Paris is shown after rendering with the following initial settings: lat =

"48.44" , lng = "2.24" and zoom = "5" .

http://google.com/apis/maps
http://google.com/apis/maps
http://google.com/apis/maps

 < rich:gmap > available since 3.0.0

845

Figure 6.312. <rich:gmap> initial rendering

It's also possible to set accessible controls on the map with the help of the attributes:

• "showGMapTypeControl" determines whether the controls for a map type definition are

switched on

• "showGScaleControl" determines whether the controls for scaling are switched on

• "showGLargeMapControl" determines whether the control for map scale rendering is rendered

Chapter 6. The RichFaces Comp...

846

Figure 6.313. <rich:gmap> accessible controls

To set all these parameters and perform some activity (Zoom In/Out etc.) is possible with your

JavaScript, i.e. declare a name of an object on a map in the "gmapVar" attribute and then call

the object directly with API Google Map .

For example, to approximate a map for gmapVar = "map" declared inside the component, call

map.zoomIn() on an event.

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

• "onmouseover"

• "onclick"

• "onmouseout"

• etc.

Note

Google Map does not support XHTML format of the page. Thus, if you use Facelets

and JSF 1.2, do not forget to put the following tags somewhere on the page:

 < rich:gmap > available since 3.0.0

847

...

<f:view contentType="text/html">...</f:view>

...

6.14.3.6. Look-and-Feel Customization

<rich:gmap> component isn't tied to skin parameters, as there is no additional elements on it,

except the ones provided with Google Map .

6.14.3.7. Definition of Custom Style Classes

Table 6.578. Classes names that define a component appearance

Class name Description

rich-gmap Defines styles for a wrapper <div> element of

a component

In order to redefine styles for all <rich:gmap> components on a page using CSS, it's enough to

create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-gmap{

 font-style:italic;

}

...

This is a result:

Chapter 6. The RichFaces Comp...

848

Figure 6.314. Redefinition styles with predefined classes

In the example the font style for buttons was changed.

Also it's possible to change styles of particular <rich:gmap> component. In this case you should

create own style classes and use them in corresponding <rich:gmap> styleClass attributes. An

example is placed below:

Example:

...

.myClass{

 font-weight:bold;

}

...

 < rich:gmap > available since 3.0.0

849

The "styleClass" attribute for <rich:gmap> is defined as it's shown in the example below:

Example:

<rich:gmap ... styleClass="myClass"/>

This is a result:

Figure 6.315. Redefinition styles with own classes and "styleClass"

attributes

As it could be seen on the picture above, the font weight for buttons was changed.

Chapter 6. The RichFaces Comp...

850

6.14.3.8. Relevant Resources Links

On the component Live Demo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

gmap.jsf?c=gmap] you can see the example of <rich:gmap> usage and sources for the given

example.

6.14.4. < rich:virtualEarth > available since 3.1.0

3.1.0

6.14.4.1. Description

The component presents the Microsoft Virtual Earth map in the JSF applications.

Figure 6.316. <rich:virtualEarth> component

6.14.4.2. Key Features

• Presents the Microsoft Virtual Earth map functionality

• Highly customizable via attributes

• No developers JavaScript writing is needed to use it on a pages

Table 6.579. rich : virtualEarth attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

dashboardSize Initial map type. The possible values are

"Normal", "Small", "Tiny". Default value is

"Normal".

http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap
http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap
http://livedemo.exadel.com/richfaces-demo/richfaces/gmap.jsf?c=gmap

 < rich:virtualEarth > available since 3.1.0

851

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

lat Initial latitude coordinate in degrees, as a

number between -90 and +90. Default value is

"37.9721046".

lng Initial longitude coordinate in degrees, as a

number between -180 and +180. Default value

is "-122.04248428346".

mapStyle Navigation control size. Possible values are

"Road", "Aerial", "Hybrid", "Birdseye". Default

value is "Road"

onclick DHTML: The client-side script method to be

called when the element is clicked

ondblclick DHTML: The client-side script method to be

called when the element is double-clicked

onkeydown DHTML: The client-side script method to be

called when a key is pressed down over the

element

onkeypress DHTML: The client-side script method to be

called when a key is pressed over the element

and released

onkeyup DHTML: The client-side script method to be

called when a key is released

onLoadMap The client-side script method to be called when

the Virtual Earth object is initiated

onmousedown DHTML: The client-side script method to be

called when a mouse button is pressed down

over the element

onmousemove DHTML: The client-side script method to be

called when a pointer is moved within the

element

onmouseout DHTML: The client-side script method to be

called when a pointer is moved away from the

element

onmouseover DHTML: The client-side script method to be

called when a pointer is moved onto the

element

onmouseup DHTML: The client-side script method to be

called when a mouse button is released

Chapter 6. The RichFaces Comp...

852

Attribute Name Description

rendered JSF: If "false", this component is not rendered

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more CSS class names

to the component. Corresponds to the HTML

"class" attribute.

var The JavaScript variable that is used to access

the Virtual Earth API. If you have more than one

Virtual Earth components on the same page,

use individual key for each of them. Default

value name is "map".

version Virtual earth version, Default value is "6.1".

zoom Initial zoom level as a number between 1 and

18. Default value is "17".

Table 6.580. Component identification parameters

Name Value

component-type org.richfaces.VirtualEarth

component-class org.richfaces.component.html.HtmlVirtualEarth

component-family org.richfaces.VirtualEarth

renderer-type org.richfaces.VirtualEarthRenderer

tag-class org.richfaces.taglib.VirtualEarthTag

6.14.4.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:virtualEarth lat="..." lng="..."/>

...

6.14.4.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlVirtualEarth;

 < rich:virtualEarth > available since 3.1.0

853

...

HtmlVirtualEarth myMap = new HtmlVirtualEarth();

...

6.14.4.5. Details of Usage

Here are the main settings of initial rendering performed with a component map that are accessible

with the following attributes:

• "zoom" defines an approximation size (boundary values 1-18)

• "lat" specifies an initial latitude coordinate in degrees, as a number between -90 and +90

• "lng" specifies an initial longitude coordinate in degrees, as a number between -180 and +180

• "dashboardSize" specifies a type of a rendered map (Normal, Small, Tiny)

For example, the city of Paris is shown after rendering with the following initial settings: lat =

"48.833" , lng = "2.40" and zoom = "11" .

Figure 6.317. <rich:virtualEarth> initial rendering

Code for this example is placed below:

Example:

...

<rich:virtualEarth style="width:800px;" id="vm" lat="48.833" lng="2.40"

 dashboardSize="Normal" zoom="11" mapStyle="Hybrid" var="map" />

...

Chapter 6. The RichFaces Comp...

854

To set all these parameters and perform some activity (Zoom In/Out etc.) is possible with your

JavaScript, i.e. declare a name of an object on a map in the "var" attribute and then call the

object directly with API Microsoft Virtual Earth map .

For example, to approximate a map for var = "map" declared inside the component, call

map.ZoomIn() on an event.

Moreover, to add e.g. some JavaScript effects, events defined on it are used.

• "onmouseover"

• "onclick"

• "onmouseout"

• etc.

Note

Virtual Earth does not support XHTML format of the page. Thus, if you use Facelets

and JSF 1.2, do not forget to put the following tags somewhere on the page:

...

<f:view contentType="text/html">...</f:view>

...

6.14.4.6. Look-and-Feel Customization

<rich:virtualEarth> component isn't tied to skin parameters, as there is no additional elements

on it, except the ones provided with Virtual Earth map .

6.14.4.7. Definition of Custom Style Classes

Table 6.581. Classes names that define a component appearance

Class name Description

rich-virtualEarth Defines styles for a wrapper <div> element of

a component

In order to redefine styles for all <rich:virtualEarth> components on a page using CSS, it's

enough to create class with the same name and define necessary properties in it.

To change styles of particular <rich:virtualEarth> components, define your own style class in

the corresponding <rich:virtualEarth> attribute.

 < rich:hotKey > available since 3.2.2

855

6.14.4.8. Relevant Resources Links

Here [http://msdn2.microsoft.com/en-us/library/bb429619.aspx] you can found additional

information about Microsoft Virtual Earth map.

Some additional information about usage of component can be found on its LiveDemo page [http://

livedemo.exadel.com/richfaces-demo/richfaces/virtualEarth.jsf?c=virtualEarth].

6.14.5. < rich:hotKey > available since 3.2.2

3.2.2

6.14.5.1. Description

The <rich:hotKey> component allows to register hot keys for the page or particular elements

and to define client-side processing functions for these keys.

6.14.5.2. Key Features

• Includes all features of the Javascript jQuery Hotkeys Plugin [http://code.google.com/p/js-

hotkeys/]

• Hot key registration by request through JavaScript API

• Possibility to attach <rich:hotKey> to a whole page or to a particular element using "selector"

attribute

• Hot key registration timing

• Enabling/disabling the <rich:hotKey> using JavaScript API

Table 6.582. rich : hotKey attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

checkParent Defines the hotkey handling of events

generated by child components nested into the

parent component to which the <rich:hotKey>

is attached.

disableInInput Disables the hotkeys activated on input

elements when the value of this attribute is

"true".

disableInInputTypes Defines the types of the inputs not to be

influenced with hotKey component. Possible

values: buttons, texts and all (default). By

http://msdn2.microsoft.com/en-us/library/bb429619.aspx
http://msdn2.microsoft.com/en-us/library/bb429619.aspx
http://livedemo.exadel.com/richfaces-demo/richfaces/virtualEarth.jsf?c=virtualEarth
http://livedemo.exadel.com/richfaces-demo/richfaces/virtualEarth.jsf?c=virtualEarth
http://livedemo.exadel.com/richfaces-demo/richfaces/virtualEarth.jsf?c=virtualEarth
http://code.google.com/p/js-hotkeys/
http://code.google.com/p/js-hotkeys/
http://code.google.com/p/js-hotkeys/

Chapter 6. The RichFaces Comp...

856

Attribute Name Description

default it is empty and this means ALL the

types.

handler Defines the JavaScript function name which is

called on hotkey activation

id JSF: Every component may have a unique id

that is automatically created if omitted

key Defines the hotkey itself

rendered JSF: If "false", this component is not rendered

selector Defines a selector for query

timing Defines the time when the hotkey is registered.

Possible values are "immediate" (by default),

"onload", and "onregistercall". Default value is

"immediate"

type HTML: Defines the type of a keyboard event

(onkeyup, onkeypress, etc.)

Table 6.583. Component identification parameters

Name Value

component-type org.richfaces.HotKey

component-class org.richfaces.component.html.HtmlHotKey

component-family org.richfaces.HotKey

renderer-type org.richfaces.HotKeyRenderer

6.14.5.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:hotKey key="alt+a" handler="alert('alt+A is pressed')" />

...

6.14.5.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlHotKey;

...

 < rich:hotKey > available since 3.2.2

857

HtmlHotKey myHotKey = new HtmlHotKey();

...

6.14.5.5. Details of Usage

There are two ways to register <rich:hotKey> :

• just place it anywhere on the page. In this case the <rich:hotKey> component is attached to

the whole page (html[0] element). This is default scenario.

• attach it with "selector" attribute to all the elements defined using this selector. This attribute

uses defined by w3c consortium [http://www.w3.org] syntax for CSS rule selector with some

jQuery extensions.

The "key" attribute defines the hot key itself which is processed by the component.

After the hot key has been registered and defined you could set the "handler" attribute which

determines a JavaScript function to be called every time when corresponding keys are pressed.

Example:

...

<rich:listShuttle var="cap" sourceValue="#{capitalsBean.capitals}" id="ls">

 <rich:column>

 <f:facet name="header">

 <h:outputText value="State flag"/>

 </f:facet>

 <h:graphicImage value="#{cap.stateFlag}"/>

 </rich:column>

 <rich:column>

 <f:facet name="header">

 <h:outputText value="State name"/>

 </f:facet>

 <h:outputText value="#{cap.name}"/>

 </rich:column>

</rich:listShuttle>

<rich:hotKey selector="#ls" key="right" handler="#{rich:component('ls')}.copy()"/>

<rich:hotKey selector="#ls" key="left" handler="#{rich:component('ls')}.remove()"/>

<rich:hotKey selector="#ls" key="end" handler="#{rich:component('ls')}.copyAll()"/>

<rich:hotKey selector="#ls" key="home" handler="#{rich:component('ls')}.removeAll()"/>

...

In the example above the "selector" attribute is used. So the keys work only if <rich:listShuttle>

component is focused.

http://www.w3.org
http://www.w3.org

Chapter 6. The RichFaces Comp...

858

You could press Right or Left keys in order to move some selected items between lists. You could

press Home or End buttons in order to move all items between lists.

With the help of the "timing" attribute you could manage <rich:hotKey> registration timing.

There are three possible values of this attribute:

• "immediate" - the component is rendered in browser immediately (by default)

• "onload" - the component is rendered after the page is fully loaded

• "onregistercall" - the component is rendered only after JavaScript API for the key registration

is used.

The "type" attribute defines the type of keyboard event. Possible values are: "onkeyup",

"onkeypress" and "onkeydown".

The "disableInInput" attribute disables the <rich:hotKey> if it is activated on input elements

and the value of this attribute is "true".

The "checkParent" attribute defines the hotkey handling of events generated by child components

nested into the parent component to which the <rich:hotKey> is attached.

The <rich:hotKey> component also provides a number of JavaScript API functions. There is

an example below.

Example:

...

<h:form id="myForm">

 <rich:hotKey id="myKey" key="ctrl+g" handler="alert('Ctrl+G is pressed')" />

 <button onclick="${rich:component('myKey')}.enable(); return false;">Turn Ctrl+G On</button>

 <button onclick="${rich:component('myKey')}.disable(); return false;">Turn Ctrl+G Off</button>

</h:form>

...

In the example above the Ctrl+G is registered as a global hotkey, so if you press this key

combination the alert window with the "Ctrl+G is pressed" text appears. With the help of enable(),

disable() JavaScript API fucntions you could enable or disable registered hotkey.

6.14.5.6. JavaScript API

Table 6.584. JavaScript API

Function Description

add(selector, key, handler) Adds the hotkey(from key param) for elements

targeted by selector. it assigns a handler

function to the key

 < rich:insert > available since 3.1.0

859

Function Description

remove() Removes hotkey registration

enable() Enables registered hotkey

disable() Disables registered hotkey

6.14.5.7. Look-and-Feel Customization

<rich:hotKey> has no skin parameters and custom style classes, as the component isn't visual.

6.14.5.8. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/hotKey.jsf?

c=hotKey] you can see an example of <rich:hotKey> usage and sources for the given example.

6.14.6. < rich:insert > available since 3.1.0

3.1.0

6.14.6.1. Description

The <rich:insert> component is used for highlighting, source code inserting and, optionally,

format the file from the application context into the page.

6.14.6.2. Key Features

• Source code highlighting

• Variety of formats for source code highlighting

Table 6.585. rich : insert attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

content Defines the String, inserted with this

component. This attribute is alternative to "src"

attribute.

encoding Attribute defines encoding for inserted content

errorContent Attribute defines the alternative content that

will be shown in case component cannot

read the resource defined with 'src' attribute.

If "errorContent" attribute is not defined, the

component shown the actual error message in

the place where the content is expected

highlight Defines a type of code

http://livedemo.exadel.com/richfaces-demo/richfaces/hotKey.jsf?c=hotKey
http://livedemo.exadel.com/richfaces-demo/richfaces/hotKey.jsf?c=hotKey
http://livedemo.exadel.com/richfaces-demo/richfaces/hotKey.jsf?c=hotKey

Chapter 6. The RichFaces Comp...

860

Attribute Name Description

id JSF: Every component may have a unique id

that is automatically created if omitted

rendered JSF: If "false", this component is not rendered

src Defines the path to the file with source code

Table 6.586. Component identification parameters

Name Value

component-type org.richfaces.ui.Insert

component-class org.richfaces.ui.component.html.HtmlInsert

component-family org.richfaces.ui.Insert

renderer-type org.richfaces.ui.InsertRenderer

tag-class org.richfaces.ui.taglib.InsertTag

6.14.6.3. Creating the Component with a Page Tag

To create the simplest variant on a page use the following syntax:

Example:

...

<rich:insert src="/pages/sourcePage.xhtml" highlight="xhtml"/>

...

6.14.6.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.ui.component.html.HtmlInsert;

...

HtmlInsert myInsert = new HtmlInsert();

...

6.14.6.5. Details of Usage

The are two basic attributes. The "src" attribute defines the path to the file with source code. The

"highlight" attribute defines the type of a syntax highlighting.

If "highlight" attribute is defined and JHighlight [https://jhighlight.dev.java.net/] open source library

is in the classpath, the text from the file is formated and colorized.

https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/

 < rich:message > available since 3.1.0

861

An example is placed below.

Example:

...

<rich:insert src="/pages/sourcePage.xhtml" highlight="xhtml"/>

...

The result of using <rich:insert> component is shown on the picture:

Figure 6.318. Source code highlighting

The <rich:insert> component provides the same functionality as JHighlight [https://

jhighlight.dev.java.net/]. Thus, all names of highlight style classes for source code of particular

language could be changed to your names, which are used by the JHighlight [https://

jhighlight.dev.java.net/] library.

6.14.6.6. Look-and-Feel Customization

<rich:insert> has no skin parameters and custom style classes, as the component doesn't have

own visual representation.

6.14.6.7. Relevant Resources Links

On RichFaces LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?

c=insert] you can found some additional information for <rich:insert> component usage.

6.14.7. < rich:message > available since 3.1.0

3.1.0

https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
https://jhighlight.dev.java.net/
http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert
http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert
http://livedemo.exadel.com/richfaces-demo/richfaces/insert.jsf?c=insert

Chapter 6. The RichFaces Comp...

862

6.14.7.1. Description

The component is used for rendering a single message for a specific component.

Figure 6.319. <rich:message> component

6.14.7.2. Key Features

• Highly customizable look and feel

• Tracking both traditional and Ajax based requests

• Optional toolTip to display the detail portion of the message

• Additionally customizable with attributes and facets

• Additionally provides two parts to be optionally defined: marker and label

Table 6.587. rich : message attributes

Attribute Name Description

ajaxRendered Define, must be (or not) content of this

component will be included in AJAX response

created by parent AJAX Container, even if not

forced by reRender list of ajax action. Ignored

if component marked to output by some Ajax

action component. The default value is "true".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

errorClass Assigns one or more space-separated CSS

class names to the message with a severity

class of "ERROR"

errorLabelClass Assigns one or more space-separated CSS

class names to the message label with a

severity class of "ERROR"

errorMarkerClass Assigns one or more space-separated CSS

class names to the message marker with a

severity class of "ERROR"

fatalClass Assigns one or more space-separated CSS

class names to the message with a severity

class of "FATAL"

 < rich:message > available since 3.1.0

863

Attribute Name Description

fatalLabelClass Assigns one or more space-separated CSS

class names to the message label with a

severity class of "FATAL"

fatalMarkerClass Assigns one or more space-separated CSS

class names to the message marker with a

severity class of "FATAL"

for Client identifier of the component for which to

display messages

id JSF: Every component may have a unique id

that is automatically created if omitted

infoClass Assigns one or more space-separated CSS

class names to the message with a severity

class of "INFO"

infoLabelClass Assigns one or more space-separated CSS

class names to the message label with a

severity class of "INFO"

infoMarkerClass Assigns one or more space-separated CSS

class names to the message marker with a

severity class of "INFO"

labelClass Assigns one or more space-separated CSS

class names to the message label

level Defines a comma-separated list of messages

categories to display. Default value is "ALL".

markerClass Assigns one or more space-separated CSS

class names to the message marker

markerStyle CSS style rules to be applied to the message

marker

minLevel Defines a minimum level of messages

categories to display.

rendered JSF: If "false", this component is not rendered

showDetail Flag indicating whether detailed information

of a displayed messages should be included.

Default value is "true".

showSummary Flag indicating whether the summary portion

of displayed messages should be included.

Default value is "false".

style HTML: CSS style rules to be applied to the

component

Chapter 6. The RichFaces Comp...

864

Attribute Name Description

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML "class" attribute.

title HTML: Advisory title information about markup

elements generated for this component

tooltip Flag indicating whether the detail portion of

the message should be displayed as a tooltip.

Default value is "false".

warnClass Assigns one or more space-separated CSS

class names to the message with a severity

class of "WARN"

warnLabelClass Assigns one or more space-separated CSS

class names to the message label with a

severity class of "WARN"

warnMarkerClass Assigns one or more space-separated CSS

class names to the message marker with a

severity class ofS "WARN"

Table 6.588. Component identification parameters

Name Value

component-type org.richfaces.component.RichMessage

component-class org.richfaces.component.html.HtmlRichMessage

component-family org.richfaces.component.RichMessage

renderer-type org.richfaces.renderkit.html.RichMessagesHtmlBaseRenderer

tag-class org.richfaces.taglib.RichMessageTag

6.14.7.3. Creating the Component with a Page Tag

To create the simplest variant of message on a page, use the following syntax:

Example:

...

<rich:message for="id"/>

...

6.14.7.4. Creating the Component Dynamically Using Java

Example:

 < rich:message > available since 3.1.0

865

import org.richfaces.component.html.HtmlRichMessage;

...

HtmlRichMessage myMessage = new HtmlRichMessage();

...

6.14.7.5. Details of Usage

The component has the same behavior as standard <h:message> component except next two

features:

• It's ajaxRendered. It means that the component is reRendered after Ajax request automatically

without outputPanel usage

• The component optionally provides "passed" state which will be shown if no message is

displayed

• Provides possibility to add some marker to message. By default a marker element isn't shown

A set of facets which can be used for marker defining:

• "passedMarker" . This facet is provided to allow setting a marker to display if there is no message

• "errorMarker" . This facet is provided to allow setting a marker to display if there is a message

with a severity class of "ERROR"

• "fatalMarker" . This facet is provided to allow setting a marker to display if there is a message

with a severity class of "FATAL"

• "infoMarker" . This facet is provided to allow setting a marker to display if there is a message

with a severity class of "INFO"

• "warnMarker" . This facet is provided to allow setting a marker to display if there is a message

with a severity class of "WARN"

The following example shows different variants for component customization. The attribute

"passedLabel" is used for definition of the label to display when no message appears. But the

message component doesn't appear before the form submission even when state is defined

as passed (on initial rendering). Boolean attribute "showSummary" defines possibility to display

summary portion of displayed messages. The facets "errorMarker" and "passedMarker" set

corresponding images for markers.

Example:

...

<rich:message for="id" passedLabel="No errors" showSummary="true">

 <f:facet name="errorMarker">

 <h:graphicImage url="/image/error.png"/>

Chapter 6. The RichFaces Comp...

866

 </f:facet>

 <f:facet name="passedMarker">

 <h:graphicImage url="/image/passed.png"/>

 </f:facet>

</rich:message>

...

6.14.7.6. Facets

Table 6.589. Facets

Facet Description

errorMarker Redefines the content for the marker if there is

message with a severity class of "ERROR"

fatalError Redefines the content for the marker if there is

message with a severity class of "FATAL"

infoError Redefines the content for the marker if there is

message with a severity class of "INFO"

warnError Redefines the content for the marker if there is

message with a severity class of "WARN"

passedError Redefines the content for the marker if there is

no message

6.14.7.7. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

There are no skin parameters and default predefined values. To redefine the appearance of all

<rich:message> components at once, you should only add to your style sheets style classes

used by a <rich:message> component.

6.14.7.8. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.320. Classes names

 < rich:message > available since 3.1.0

867

Table 6.590. Classes names that define a component appearance

Class name Description

rich-message Defines styles for a wrapper element

rich-message-marker Defines styles for a marker

rich-message-label Defines styles for a label

In order to redefine styles for all <rich:message> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

.rich-message-label{

 font-style:italic

}

...

This is a result:

Figure 6.321. Redefinition styles with predefined classes

In the example the font style for message was changed.

Also it's possible to change styles of particular <rich:message> component. In this case you

should create own style classes and use them in corresponding <rich:message> styleClass

attributes. An example is placed below:

Example:

Chapter 6. The RichFaces Comp...

868

...

.myClass{

 font-weight:bold;

}

...

The "styleClass" attribute for <rich:message> is defined as it's shown in the example below:

Example:

<rich:message ... styleClass="myClass"/>

This is a result:

Figure 6.322. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, the font weight for message was changed.

6.14.7.9. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

message.jsf?c=message] you can see the example of <rich:message> usage and sources for

the given example.

6.14.8. < rich:messages > available since 3.1.0

3.1.0

6.14.8.1. Description

The <rich:messages> component is similar to <rich:message> component but used for

rendering all messages for the components.

http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message
http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message
http://livedemo.exadel.com/richfaces-demo/richfaces/message.jsf?c=message

 < rich:messages > available since 3.1.0

869

Figure 6.323. <rich:messages> component

6.14.8.2. Key Features

• Highly customizable look and feel

• Track both traditional and Ajax based requests

• Optional ToolTip to display a detailed part of the messages

• Additionally customizable via attributes and facets

• Additionally provides of three parts to be optionally defined: marker, label and header

Table 6.591. rich : messages attributes

Attribute Name Description

ajaxRendered Define, must be (or not) content of this

component will be included in AJAX response

created by parent AJAX Container, even if not

forced by reRender list of ajax action. Ignored

if component marked to output by some Ajax

action component. The default value is "true".

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

errorClass Assigns one or more space-separated CSS

class names to the messages with a severity

class of "ERROR"

errorLabelClass Assigns one or more space-separated CSS

class names to the messages labels with a

severity class of "ERROR"

errorMarkerClass Assigns one or more space-separated CSS

class names to the messages marker with a

severity class of "ERROR"

fatalClass Assigns one or more space-separated CSS

class names to the messages with a severity

class of "FATAL"

fatalLabelClass Assigns one or more space-separated CSS

class names to the messages labels with a

severity class of "FATAL"

Chapter 6. The RichFaces Comp...

870

Attribute Name Description

fatalMarkerClass Assigns one or more space-separated CSS

class names to the messages markers with a

severity class of "FATAL"

for Client identifier of the component for which to

display messages

globalOnly Flag indicating that only global messages (that

is, messages not associated with any client

identifier) are to be displayed. Default value is

"false"

id JSF: Every component may have a unique id

that is automatically created if omitted

infoClass Assigns one or more space-separated CSS

class names to the messages with a severity

class of "INFO"

infoLabelClass Assigns one or more space-separated CSS

class names to the messages labels with a

severity class of "INFO"

infoMarkerClass Assigns one or more space-separated CSS

class names to the messages markers with a

severity class of "INFO"

labelClass Assigns one or more space-separated CSS

class names to the messages labels

layout The type of layout markup to use when

rendering error messages. Possible values are

"table" (an HTML table), "list" (an HTML list)

and iterator. If not specified, the default value

is "list".

level Defines a comma-separated list of messages

categories to display. Default value is "ALL".

markerClass Assigns one or more space-separated CSS

class names to the messages markers

markerStyle CSS style rules to be applied to the messages

markers

minLevel Defines a minimum level of messages

categories to display.

rendered JSF: If "false", this component is not rendered

showDetail Flag indicating whether the detailed

information of displayed messages should be

included. Default value is "false"

 < rich:messages > available since 3.1.0

871

Attribute Name Description

showSummary Flag indicating whether the summary portion

of displayed messages should be included.

Default value is "true"

style HTML: CSS style rules to be applied to the

component

styleClass JSF: Assigns one or more space-separated

CSS class names to the component.

Corresponds to the HTML 'class' attribute.

title HTML: Advisory title information about markup

elements generated for this component

tooltip Flag indicating whether the detail portion of

the message should be displayed as a tooltip.

Default value is "false".

warnClass Assigns one or more space-separated CSS

class names to the messages with a severity

class of "WARN"

warnLabelClass Assigns one or more space-separated CSS

class names to the messages labels with a

severity class of "WARN"

warnMarkerClass Assigns one or more space-separated CSS

class names to the messages markers with a

severity class of "WARN"

Table 6.592. Component identification parameters

Name Value

component-type org.richfaces.component.RichMessages

component-class org.richfaces.component.html.HtmlRichMessages

component-family org.richfaces.component.RichMessages

renderer-type org.richfaces.renderkit.html.HtmlRichMessagesRendere

tag-class org.richfaces.taglib.RichMessagesTag

6.14.8.3. Creating the Component with a Page Tag

To create the simplest variant of message on a page, use the following syntax:

Example:

...

<rich:messages/>

Chapter 6. The RichFaces Comp...

872

...

6.14.8.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlRichMessages;

...

HtmlRichMessages myMessages = new HtmlRichMessages();

...

6.14.8.5. Details of Usage

The <rich:messages> component is considered as JSF HTML <h:messages> , extended with

following features:

• Ajax support (the component does not require to be wrapped in <a4j:outputPanel> in order

to be rendered during Ajax requests);

• possibilty to add graphical markers (pictograms) to reinforce a message for both "passed" or

"failed" states;

• set of predefined CSS classes for customizing messages appearance.

There are two optional parts that could be defined for every message: marker and text label. The

set of facets, which can be used for a marker definition, is shown below:

Table 6.593. Facets

Facet Description

errorMarker Defines marker for "Error" message severity

class

fatalMarker Defines marker for "Fatal" message severity

class

infoMarker Defines marker for "Info" message severity

class

warnMarker Defines marker for "Warn" message severity

class

The following example shows different variants of customization of the component.

Example:

<rich:messages layout="table" tooltip="true" showDetail="false" showSummary="true">

 < rich:messages > available since 3.1.0

873

 <f:facet name="errorMarker">

 <h:graphicImage url="/image/error.png"/>

 </f:facet>

 <f:facet name="infoMarker">

 <h:graphicImage url="/image/info.png"/>

 </f:facet>

 </rich:messages>

The <rich:messages> component keeps all messages for all components even after only one

Ajax-validated component was updated.

6.14.8.6. Look-and-Feel Customization

For skinnability implementation, the components use a style class redefinition method.

There are no skin parameters and default predefined values. To redefine the appearance of all

<rich:messages> components at once, you should only add to your style sheets style classes

used by a <rich:messages> component.

6.14.8.7. Definition of Custom Style Classes

On the screenshot there are classes names that define styles for component elements.

Figure 6.324. Classes names

Table 6.594. Classes names that define a component appearance

Class name Description

rich-messages Defines styles for a wrapper element

rich-messages-marker Defines styles for a marker

rich-messages-label Defines styles for a label

In order to redefine styles for all <rich:messages> components on a page using CSS, it's enough

to create classes with the same names (possible classes could be found in the tables above) and

define necessary properties in them.

Example:

...

Chapter 6. The RichFaces Comp...

874

.rich-messages-label{

 font-style:italic;

}

...

This is a result:

Figure 6.325. Redefinition styles with predefined classes

In the example the font style for messages was changed.

Also it's possible to change styles of particular <rich:messages> component. In this case you

should create own style classes and use them in corresponding <rich:messages> styleClass

attributes. An example is placed below:

Example:

...

.myClass{

 color:red;

}

...

The "errorClass" attribute for <rich:messages> is defined as it's shown in the example below:

 < rich:jQuery > available since 3.0.0

875

Example:

<rich:messages ... errorClass="myClass"/>

This is a result:

Figure 6.326. Redefinition styles with own classes and styleClass attributes

As it could be seen on the picture above, color of messages was changed.

6.14.8.8. Relevant Resources Links

On the component LiveDemo page [http://livedemo.exadel.com/richfaces-demo/richfaces/

messages.jsf?c=messages&tab=usage] you can see the example of <rich:messages> usage

and sources for the given example.

6.14.9. < rich:jQuery > available since 3.0.0

6.14.9.1. Description

The <rich:jQuery> allows to apply styles and behaviour to DOM objects.

6.14.9.2. Key Features

• Presents jQuery JavaScript framework functionality

• Able to apply onto JSF components and other DOM objects.

http://livedemo.exadel.com/richfaces-demo/richfaces/messages.jsf?c=messages&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/messages.jsf?c=messages&tab=usage
http://livedemo.exadel.com/richfaces-demo/richfaces/messages.jsf?c=messages&tab=usage

Chapter 6. The RichFaces Comp...

876

• Works without conflicts with prototype.js library

Table 6.595. rich : jQuery attributes

Attribute Name Description

binding JSF: The attribute takes a value-binding

expression for a component property of a

backing bean

id JSF: Every component may have a unique id

that is automatically created if omitted

name The name of a function that will be generated

to execute a query. The "name" attribute

is required if "timing" attribute equals to

"onJScall"

query The query string that is executed for a given

selector.

rendered JSF: If "false", this component is not rendered

selector Selector for query. The "selector" attribute uses

defined by w3c consortium syntax for CSS rule

selector with some jQuery extensions.

timing The attribute that defines when to

perform the query. The possible values

are "immediate","onload" and "onJScall".

"immediate" performs the query right away.

"onload" adds the task to the time when a

document is loaded (the DOM tree is created).

"onJScall" allows to invoke the query by

Javascipt function name defined with "name"

attribute. The default value is "immediate".

Table 6.596. Component identification parameters

Name Value

component-type org.richfaces.JQuery

component-class org.richfaces.component.html.HtmlJQuery

component-family org.richfaces.JQuery

renderer-type org.richfaces.JQueryRenderer

tag-class org.richfaces.taglib.JQueryTag

6.14.9.3. Creating the Component with a Page Tag

To create the simplest variant on a page, use the following syntax:

 < rich:jQuery > available since 3.0.0

877

Example:

...

<rich:jQuery selector="#customList tr:odd" timing="onload" query="addClass(odd)" />

...

6.14.9.4. Creating the Component Dynamically Using Java

Example:

import org.richfaces.component.html.HtmlJQuery;

...

HtmlJQuery myJQuery = new HtmlJQuery();

...

6.14.9.5. Details of Usage

<rich:jQuery> can be used in two main modes:

• as a one-time query applied immediately or on a document ready event

• as a JavaScript function that can be invoked from the JavaScript code

The mode is chosen with "timing" attribute that has the following options:

• "immediate" - applying a query immediately

• "onload" - applying a query when a document is loaded

• onJScall - applying a query by invoked JavaScript function defined with the "name" attribute

Definition of the "name" attribute is mandatory when the value of "timing" attribute is "onJScall".

If the "name" attribute is defined when "timing" value equals to "immediate" or "onload", the query

is applied according to this value, but you still have an opportunity to invoke it by a function name.

The "selector" attribute defines an object or a list of objects. The query is defined with the "query"

attribute.

Here is an example of how to highlight odd rows in a table:

Example:

...

<style>

Chapter 6. The RichFaces Comp...

878

 .odd {

 background-color: #FFC;

 }

</style>

...

...

<rich:table id="customList" ...>

 ...

</rich:table>

...

<rich:jQuery selector="#customList tr:odd" timing="onload" query="addClass(odd)" />

...

The "selector" attribute uses defined by w3c consortium syntax for CSS rule selector [http://

www.w3.org/TR/REC-CSS2/selector.html] with some jQuery extensions

Those are typical examples of using selector in the <rich:jQuery> component.

Table 6.597. Examples of using selector

Selector Comment

"p[a]" In a document all "p" tags with "a" tag inside

are selected

"ul/li" All "li" elements of unordered "ul" lists are

selected

"p.foo[a]" All "p" tags with "foo" class and inserted "a" tag

are selected

"input[@name=bar]" All "input" tags with "name" attribute which

value is "bar" are selected

"input[@type=radio][@checked]" All "input" tags with attribute "type"="radio" and

attribute value = "chekced" are selected

"p,span,td" All tag elements "p" or"span" or "td" are

selected

"p#secret" "p" paragraph element with "id" identification =

"secret" is selected

"p span" "span" tag is a (direct or non-direct) child of "p"

tag. If it's necessary, use "p > span" or "p/span"

is selected

"p[@foo^=bar]" "p" tag containing "foo" attribute with textual

value beginning with "bar" word is selected

http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/selector.html

 < rich:jQuery > available since 3.0.0

879

Selector Comment

"p[@foo$=bar] " "p" tag containing "foo" attribute with textual

value ending with "bar" word is selected

"p[@foo*=bar] " "p" tag with "foo" attribute containing substring

"bar" in any place is selected

"p//span " "span" tag that is a (direct or non-direct) child

of "p" tag is selected

"p/../span " "span" tag that is a grandchild of "p" tag is

selected

In addition, RichFaces allows using either a component id or client id if you apply the query to a

JSF component. When you define a selector, RichFaces examines its content and tries to replace

the defined in the selector id with a component id if it's found.

For example, you have the following code:

...

<h:form id="form">

 ...

 <h:panelGrid id="menu">

 <h:graphicImage ... />

 <h:graphicImage ... />

 ...

 </h:panelGrid>

</h:form>

...

The actual id of the <h:panelGrid> table in the browser DOM is "form:menu". However, you

still can reference to images inside this table using the following selector:

...

<rich:jQuery selector="#menu img" query="..." />

...

You can define the exact id in the selector if you want. The following code reference to the same

set of a DOM object:

...

<rich:jQuery selector="#form\\:menu img" query="..." />

...

Chapter 6. The RichFaces Comp...

880

Pay attention to double slashes that escape a colon in the id.

In case when the "name" attribute is defined, <rich:jQuery> generates a JavaScript function

that might be used from any place of JavaScript code on a page.

There is an example of how to enlarge the picture smoothly on a mouse over event and return

back to the normal size on mouse out:

...

<h:graphicImage width="50" value="/images/price.png"

 onmouseover="enlargePic(this, {pwidth:'60px'})" onmouseout="releasePic(this)" />

<h:graphicImage width="50" value="/images/discount.png"

 onmouseover="enlargePic(this, {pwidth:'100px'})" onmouseout="releasePic(this)" />

...

<rich:jQuery name="enlargePic" timing="onJScall" query="animate({width:param.pwidth})" />

<rich:jQuery name="releasePic" timing="onJScall" query="animate({width:'50px'})"/>

...

The JavaScript could use two parameters. The first parameter is a replacement for the selector

attribute. Thus, you can share the same query, applying it to the different DOM objects. You can

use a literal value or a direct reference for an existing DOM object. The second parameter can

be used to path the specific value inside the query. The JSON syntax is used for the second

parameter. The "param." namespace is used for referencing data inside the parameter value.

<rich:jQuery> adds styles and behavior to the DOM object dynamically. This means if you replace

something on a page during an Ajax response, the applied artifacts is overwritten. But you are

allowed to apply them again after the Ajax response is complete.

Usually, it could be done with reRendering the <rich:jQuery> components in the same Ajax

interaction with the components these queries are applied to. Note, that queries with "timing"

attribute set to "onload" are not invoked even if the query is reRendered, because a DOM

document is not fully reloaded during the Ajax interaction. If you need to re-applies query with

"onload" value of "timing" attribute, define the "name" attribute and invoke the query by name

in the "oncomplete" attribute of the Ajax component.

RichFaces includes jQuery JavaScript framework. You can use the futures of jQuery directly

without defining the <rich:jQuery> component on a page if it is convenient for you. To start using

the jQuery feature on the page, include the library into a page with the following code:

...

<a4j:loadScript src="resource://jquery.js"/>

...

 < rich:jQuery > available since 3.0.0

881

Refer to the jQuery documentation [http://docs.jquery.com/] for the right syntax. Remember to use

jQuery() function instead of $(), as soon as jQuery works without conflicts with prototype.js.

6.14.9.6. Look-and-Feel Customization

<rich:jQuery> has no skin parameters and custom style classes, as the component isn't visual.

6.14.9.7. Relevant Resources Links

More information about jQuery framework and its features you can read injQuery official

documentation [http://jquery.com/].

How to use jQuery with other libraries see also injQuery official documentation [http://

docs.jquery.com/Using_jQuery_with_Other_Libraries].

Some additional information about usage of component can be found on its LiveDemo [http://

livedemo.exadel.com/richfaces-demo/richfaces/jQuery.jsf?c=jQuery].

http://docs.jquery.com/
http://docs.jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://docs.jquery.com/Using_jQuery_with_Other_Libraries
http://docs.jquery.com/Using_jQuery_with_Other_Libraries
http://docs.jquery.com/Using_jQuery_with_Other_Libraries
http://livedemo.exadel.com/richfaces-demo/richfaces/jQuery.jsf?c=jQuery
http://livedemo.exadel.com/richfaces-demo/richfaces/jQuery.jsf?c=jQuery
http://livedemo.exadel.com/richfaces-demo/richfaces/jQuery.jsf?c=jQuery

Chapter 7.

883

IDE Support
RichFaces support is implemented in JBoss Developer Studio 1.0.0 GA [http://www.redhat.com/

developers/rhds/index.html] and in Jboss Tools [http://www.jboss.org/tools/index.html]. JBoss

Developer Studio is a fully packaged IDE that provides full support for Java Server Faces,

RichFaces, Facelets, Struts and other Web technologies. In addition to this, it seamlessly

combines visual and source-oriented development approaches. One of the special support feature

for RichFaces is that it is available as project "capabilitiy" which can be added to any existing JSF

project by adding libraries and modifying configuration files as required."

http://www.redhat.com/developers/rhds/index.html
http://www.redhat.com/developers/rhds/index.html
http://www.redhat.com/developers/rhds/index.html
http://www.jboss.org/tools/index.html
http://www.jboss.org/tools/index.html

Chapter 8.

885

Links to information resources

Table 8.1. Web Resources

Resources Links

JBoss RichFaces JBoss RichFaces [http://labs.jboss.com/portal/

jbossrichfaces/]

JBoss Forum JBoss Forums [http://jboss.com/index.html?

module=bb&op=main&c=27]

RichFaces Wiki RichFaces Wiki [http://labs.jboss.com/wiki/

RichFaces]

RichFaces Blog RichFaces Blog [http://jroller.com/page/a4j]

http://labs.jboss.com/portal/jbossrichfaces/
http://labs.jboss.com/portal/jbossrichfaces/
http://labs.jboss.com/portal/jbossrichfaces/
http://jboss.com/index.html?module=bb&op=main&c=27
http://jboss.com/index.html?module=bb&op=main&c=27
http://jboss.com/index.html?module=bb&op=main&c=27
http://labs.jboss.com/wiki/RichFaces
http://labs.jboss.com/wiki/RichFaces
http://labs.jboss.com/wiki/RichFaces
http://jroller.com/page/a4j
http://jroller.com/page/a4j

	RichFaces Developer Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Technical Requirements
	2.1. Supported Java Versions
	2.2. Supported JavaServer Faces Implementations and Frameworks
	2.3. Supported Servers
	2.4. Supported Browsers

	Chapter 3. Getting Started with RichFaces
	3.1. Downloading the RichFaces
	3.2. Simple JSF application with RichFaces
	3.2.1. Adding RichFaces libraries into the project
	3.2.2. Registering RichFaces in web.xml
	3.2.3. Managed bean
	3.2.4. Registering bean in faces-cofig.xml
	3.2.5. RichFaces Greeter index.jsp

	3.3. Integration of RichFaces into Maven Project
	3.4. Relevant Resources Links

	Chapter 4. Settings for different environments
	4.1. Web Application Descriptor Parameters
	4.2. Sun JSF RI
	4.3. Apache MyFaces
	4.4. Facelets Support
	4.5. JBoss Seam Support
	4.6. Portlet Support
	4.7. Sybase EAServer
	4.8. Oracle AS/OC4J

	Chapter 5. Basic concepts of the RichFaces Framework
	5.1. Introduction
	5.2. RichFaces Architecture Overview
	5.3. RichFaces Integral Parts
	5.4. Limitations and Rules
	5.5. Ajax Request Optimization
	5.5.1. Re-Rendering
	5.5.2. Queue and Traffic Flood Protection
	5.5.3. Queue Principles
	5.5.3.1. Global default queue, defined in the web.xml file
	5.5.3.2. View scoped default queue
	5.5.3.3. View scoped named queue
	5.5.3.4. Form based default queue
	5.5.3.5. Queue functionality
	5.5.3.5.1. Events Similarity
	5.5.3.5.2. Similar requests during request delay
	5.5.3.5.3. JavaScript API

	5.5.4. Data Processing Options
	5.5.5. Action and Navigation
	5.5.6. JavaScript Interactions
	5.5.7. Iteration components Ajax attributes
	5.5.8. Other useful attributes

	5.6. How To...
	5.6.1. Send an Ajax request
	5.6.2. Decide What to Send
	5.6.3. Decide What to Change
	5.6.4. Decide what to process

	5.7. Filter Configuration
	5.8. Scripts and Styles Load Strategy
	5.9. Request Errors and Session Expiration Handling
	5.9.1. Request Errors Handling
	5.9.2. Session Expired Handling

	5.10. Skinnability
	5.10.1. Why Skinnability
	5.10.2. Using Skinnability
	5.10.3. Example
	5.10.4. Skin Parameters Tables in RichFaces
	5.10.5. Creating and Using Your Own Skin File
	5.10.6. Built-in Skinnability in RichFaces
	5.10.7. Changing skin in runtime
	5.10.8. Standard Controls Skinning
	5.10.8.1. Standard level
	5.10.8.2. Extended level

	5.10.9. Client-side Script for Extended Skinning Support
	5.10.10. XCSS File Format
	5.10.11. Plug-n-Skin
	5.10.11.1. Details of Usage

	5.11. State Manager API
	5.12. Identifying User Roles

	Chapter 6. The RichFaces Components
	6.1. Ajax Support
	6.1.1. < a4j:ajaxListener > available since 3.0.0
	6.1.1.1. Description
	6.1.1.2. Key Features
	6.1.1.3. Creating the Component with a Page Tag
	6.1.1.4. Creating the Component Dynamically Using Java
	6.1.1.5. Details of Usage
	6.1.1.6. Relevant resources links

	6.1.2. < a4j:actionparam > available since 3.0.0
	6.1.2.1. Description
	6.1.2.2. Creating the Component with a Page Tag
	6.1.2.3. Creating the Component Dynamically Using Java
	6.1.2.4. Details of usage
	6.1.2.5. Relevant resources links

	6.1.3. < a4j:form > available since 3.0.0
	6.1.3.1. Description
	6.1.3.2. Creating the Component with a Page Tag
	6.1.3.3. Creating the Component Dynamically Using Java
	6.1.3.4. Details of usahe
	6.1.3.5. Relevant resources links

	6.1.4. < a4j:region > available since 3.0.0
	6.1.4.1. Description
	6.1.4.2. Creating the Component with a Page Tag
	6.1.4.3. Creating the Component Dynamically Using Java
	6.1.4.4. Details of Usage
	6.1.4.5. Relevant resources links

	6.1.5. < a4j:support > available since 3.0.0
	6.1.5.1. Description
	6.1.5.2. Creating the Component with a Page Tag
	6.1.5.3. Creating the Component Dynamically Using Java
	6.1.5.4. Details of Usage
	6.1.5.5. Relevant resources links

	6.1.6. < a4j:commandButton > available since 3.0.0
	6.1.6.1. Description
	6.1.6.2. Creating the Component with a Page Tag
	6.1.6.3. Creating the Component Dynamically Using Java
	6.1.6.4. Details of Usage
	6.1.6.5. Relevant resources links

	6.1.7. < a4j:commandLink > available since 3.0.0
	6.1.7.1. Description
	6.1.7.2. Creating the Component with a Page Tag
	6.1.7.3. Creating the Component Dynamically Using Java
	6.1.7.4. Details of Usage
	6.1.7.5. Relevant resources links

	6.1.8. < a4j:jsFunction > available since 3.0.0
	6.1.8.1. Description
	6.1.8.2. Creating the Component with a Page Tag
	6.1.8.3. Creating the Component Dynamically Using Java
	6.1.8.4. Details of usage
	6.1.8.5. Relevant resources links

	6.1.9. < a4j:poll > available since 3.0.0
	6.1.9.1. Description
	6.1.9.2. Creating the component with a Page Tag
	6.1.9.3. Creating the Component Dynamically Using Java
	6.1.9.4. Details of usage
	6.1.9.5. Relevant resources links

	6.1.10. < a4j:push > available since 3.0.0
	6.1.10.1. Description
	6.1.10.2. Creating on a page
	6.1.10.3. Creating the Component Dynamically Using Java
	6.1.10.4. Key attributes and ways of usage
	6.1.10.5. Relevant resources links

	6.1.11. < a4j:queue > available since 3.3.0
	6.1.11.1. Description
	6.1.11.2. Creating the Component with a Page Tag
	6.1.11.3. Creating the Component Dynamically Using Java
	6.1.11.4. Details of usage
	6.1.11.5. JavaScript API
	6.1.11.6. Relevant resources links

	6.1.12. < a4j:status > available since 3.0.0
	6.1.12.1. Description
	6.1.12.2. Creating the Component with a Page Tag
	6.1.12.3. Creating the Component Dynamically Using Java
	6.1.12.4. Facets
	6.1.12.5. Details of usage
	6.1.12.6. Relevant resources links

	6.2. Resources/Beans Handling
	6.2.1. < a4j:loadBundle > available since 3.0.0
	6.2.1.1. Description
	6.2.1.2. Creating the Component with a Page Tag
	6.2.1.3. Creating the Component Dynamically Using Java
	6.2.1.4. Details of usage
	6.2.1.5. Relevant resources links

	6.2.2. < a4j:keepAlive > available since 3.0.0
	6.2.2.1. Description
	6.2.2.2. Using the tag on a Page
	6.2.2.3. Details of usage
	6.2.2.4. Relevant resources links

	6.2.3. < a4j:loadScript > available since 3.0.0
	6.2.3.1. Description
	6.2.3.2. Creating the Component with a Page Tag
	6.2.3.3. Creating the Component Dynamically Using Java
	6.2.3.4. Details of usage
	6.2.3.5. Relevant resources links

	6.2.4. < a4j:loadStyle > available since 3.0.0
	6.2.4.1. Description
	6.2.4.2. Creating the Component with a Page Tag
	6.2.4.3. Creating the Component Dynamically Using Java
	6.2.4.4. Details of usage
	6.2.4.5. Relevant resources links

	6.3. Ajax Validators
	6.3.1. < rich:ajaxValidator > available since 3.2.2
	6.3.1.1. Description
	6.3.1.2. Key Features
	6.3.1.3. Creating the Component with a Page Tag
	6.3.1.4. Creating the Component Dynamically Using Java
	6.3.1.5. Details of Usage
	6.3.1.6. Relevant Resources Links

	6.3.2. < rich:beanValidator > available since 3.2.2
	6.3.2.1. Description
	6.3.2.2. Key Features
	6.3.2.3. Creating the Component with a Page Tag
	6.3.2.4. Creating the Component Dynamically Using Java
	6.3.2.5. Details of Usage
	6.3.2.6. Relevant Resources Links

	6.3.3. < rich:graphValidator > available since 3.2.2
	6.3.3.1. Description
	6.3.3.2. Key Features
	6.3.3.3. Creating the Component with a Page Tag
	6.3.3.4. Creating the Component Dynamically Using Java
	6.3.3.5. Details of usage
	6.3.3.6. Relevant Resources Links

	6.4. Ajax Output
	6.4.1. < a4j:include > available since 3.0.0
	6.4.1.1. Description
	6.4.1.2. Creating the Component with a Page Tag
	6.4.1.3. Creating the Component Dynamically Using Java
	6.4.1.4. Details of usage
	6.4.1.5. Relevant resources links

	6.4.2. < a4j:mediaOutput > available since 3.0.0
	6.4.2.1. Description
	6.4.2.2. Creating the Component with a Page Tag
	6.4.2.3. Creating the Component Dynamically Using Java
	6.4.2.4. Details of usage
	6.4.2.5. Relevant resources links

	6.4.3. < a4j:outputPanel > available since 3.0.0
	6.4.3.1. Description
	6.4.3.2. Creating the Component with a Page Tag
	6.4.3.3. Creating the Component Dynamically Using Java
	6.4.3.4. Details of usage
	6.4.3.5. Relevant resources links

	6.5. Ajax Miscellaneous
	6.5.1. < a4j:page > available since 3.0.0
	6.5.1.1. Description
	6.5.1.2. Creating the component with a Page Tag
	6.5.1.3. Creating the Component Dynamically Using Java
	6.5.1.4. Details of usage
	6.5.1.5. Facets
	6.5.1.6. Relevant resources links

	6.5.2. < a4j:portlet > available since 3.0.0
	6.5.2.1. Description
	6.5.2.2. Creating the Component with a Page Tag
	6.5.2.3. Creating the Component Dynamically Using Java
	6.5.2.4. Details of usage
	6.5.2.5. Relevant resources links

	6.5.3. < a4j:htmlCommandLink > available since 3.0.0
	6.5.3.1. Description
	6.5.3.2. Creating the Component with a Page Tag
	6.5.3.3. Creating the Component Dynamically Using Java
	6.5.3.4. Key attributes and ways of usage
	6.5.3.5. Relevant resources links

	6.5.4. < a4j:log > available since 3.0.0
	6.5.4.1. Description
	6.5.4.2. Creating the Component with a Page Tag
	6.5.4.3. Creating the Component Dynamically Using Java
	6.5.4.4. Details of usage
	6.5.4.5. Relevant resources links

	6.6. Data Iteration
	6.6.1. < rich:column > available since 3.0.0
	6.6.1.1. Description
	6.6.1.2. Key Features
	6.6.1.3. Creating the Component with a Page Tag
	6.6.1.4. Creating the Component Dynamically Using Java
	6.6.1.5. Details of Usage
	6.6.1.6. Sorting and Filtering
	6.6.1.6.1. Sorting
	6.6.1.6.2. Filtering

	6.6.1.7. Facets
	6.6.1.8. Look-and-Feel Customization
	6.6.1.9. Skin Parameters Redefinition
	6.6.1.10. Definition of Custom Style Classes
	6.6.1.11. Relevant Resources Links

	6.6.2. < rich:columnGroup > available since 3.0.0
	6.6.2.1. Description
	6.6.2.2. Key Features
	6.6.2.3. Creating the Component with a Page Tag
	6.6.2.4. Creating the Component Dynamically Using Java
	6.6.2.5. Details of Usage
	6.6.2.6. Look-and-Feel Customization
	6.6.2.7. Skin Parameters Redefinition
	6.6.2.8. Definition of Custom Style Classes
	6.6.2.9. Relevant Resources Links

	6.6.3. < rich:columns > available since 3.2.0
	6.6.3.1. Description
	6.6.3.2. Key Features
	6.6.3.3. Creating the Component with a Page Tag
	6.6.3.4. Creating the Component Dynamically Using Java
	6.6.3.5. Details of Usage
	6.6.3.6. Facets
	6.6.3.7. Look-and-Feel Customization
	6.6.3.8. Skin Parameters Redefinition
	6.6.3.9. Definition of Custom Style Classes
	6.6.3.10. Relevant Resources Links

	6.6.4. < rich:dataDefinitionList > available since 3.0.0
	6.6.4.1. Description
	6.6.4.2. Key Features
	6.6.4.3. Creating the Component with a Page Tag
	6.6.4.4. Creating the Component Dynamically Using Java
	6.6.4.5. Details of Usage
	6.6.4.6. Look-and-Feel Customization
	6.6.4.7. Definition of Custom Style Classes
	6.6.4.8. Relevant Resources Links

	6.6.5. < rich:dataFilterSlider > available since 3.0.0
	6.6.5.1. Description
	6.6.5.2. Key Features
	6.6.5.3. Creating the Component with a Page Tag
	6.6.5.4. Creating the Component Dynamically Using Java
	6.6.5.5. Details of Usage
	6.6.5.6. Look-and-Feel Customization
	6.6.5.7. Relevant Resources Links

	6.6.6. < rich:dataGrid > available since 3.0.0
	6.6.6.1. Description
	6.6.6.2. Key Features
	6.6.6.3. Creating the Component with a Page Tag
	6.6.6.4. Creating the Component Dynamically Using Java
	6.6.6.5. Details of Usage
	6.6.6.6. Facets
	6.6.6.7. Look-and-Feel Customization
	6.6.6.8. Skin Parameters Redefinition
	6.6.6.9. Definition of Custom Style Classes
	6.6.6.10. Relevant Resources Links

	6.6.7. < rich:dataList > available since 3.0.0
	6.6.7.1. Description
	6.6.7.2. Key Features
	6.6.7.3. Creating the Component with a Page Tag
	6.6.7.4. Creating the Component Dynamically Using Java
	6.6.7.5. Details of Usage
	6.6.7.6. Look-and-Feel Customization
	6.6.7.7. Definition of Custom Style Classes
	6.6.7.8. Relevant Resources Links

	6.6.8. < rich:dataOrderedList > available since 3.0.0
	6.6.8.1. Description
	6.6.8.2. Key Features
	6.6.8.3. Creating the Component with a Page Tag
	6.6.8.4. Creating the Component Dynamically Using Java
	6.6.8.5. Details of Usage
	6.6.8.6. Look-and-Feel Customization
	6.6.8.7. Definition of Custom Style Classes
	6.6.8.8. Relevant Resources Links

	6.6.9. < rich:datascroller > available since 3.0.0
	6.6.9.1. Description
	6.6.9.2. Key Features
	6.6.9.3. Creating the Component with a Page Tag
	6.6.9.4. Creating the Component Dynamically Using Java
	6.6.9.5. Details of Usage
	6.6.9.6. JavaScript API
	6.6.9.7. Facets
	6.6.9.8. Look-and-Feel Customization
	6.6.9.9. Skin Parameters Redefinition
	6.6.9.10. Definition of Custom Style Classes
	6.6.9.11. Relevant Resources Links

	6.6.10. < rich:dataTable > available since 3.0.0
	6.6.10.1. Description
	6.6.10.2. Key Features
	6.6.10.3. Creating the Component with a Page Tag
	6.6.10.4. Creating the Component Dynamically from Java
	6.6.10.5. Details of Usage
	6.6.10.6. Facets
	6.6.10.7. Look-and-Feel Customization
	6.6.10.8. Skin Parameters Redefinition
	6.6.10.9. Definition of Custom Style Classes
	6.6.10.10. Relevant Resources Links

	6.6.11. < rich:subTable > available since 3.0.0
	6.6.11.1. Description
	6.6.11.2. Key Features
	6.6.11.3. Creating the Component with a Page Tag
	6.6.11.4. Creating the Component Dynamically Using Java
	6.6.11.5. Details of Usage
	6.6.11.6. Facets
	6.6.11.7. Look-and-Feel Customization
	6.6.11.8. Skin Parameters Redefinition
	6.6.11.9. Definition of Custom Style Classes

	6.6.12. < rich:extendedDataTable > available since 3.2.2
	6.6.12.1. Description
	6.6.12.2. Key Features
	6.6.12.3. Creating the Component with a Page Tag
	6.6.12.4. Creating the Component Dynamically from Java
	6.6.12.5. Details of Usage
	6.6.12.6. Facets
	6.6.12.7. Look-and-Feel Customization
	6.6.12.8. Skin Parameters Redefinition
	6.6.12.9. Definition of Custom Style Classes
	6.6.12.10. Relevant resources links

	6.6.13. < a4j:repeat > available since 3.0.0
	6.6.13.1. Description
	6.6.13.2. Creating the Component with a Page Tag
	6.6.13.3. Creating the Component Dynamically Using Java
	6.6.13.4. Details of usage
	6.6.13.5. Relevant resources links

	6.6.14. < rich:scrollableDataTable > available since 3.1.0
	6.6.14.1. Description
	6.6.14.2. Key Features
	6.6.14.3. Creating the Component with a Page Tag
	6.6.14.4. Creating the Component Dynamically Using Java
	6.6.14.5. Details of Usage
	6.6.14.6. JavaScript API
	6.6.14.7. Facets
	6.6.14.8. Look-and-Feel Customization
	6.6.14.9. Skin Parameters Redefinition
	6.6.14.10. Definition of Custom Style Classes
	6.6.14.11. Relevant Resources Links

	6.7. Drag-Drop Support
	6.7.1. < rich:dragIndicator > available since 3.0.0
	6.7.1.1. Description
	6.7.1.2. Key Features
	6.7.1.3. Creating the Component with a Page Tag
	6.7.1.4. Creating the Component Dynamically Using Java
	6.7.1.5. Details of Usage
	6.7.1.5.1. Macro definitions
	6.7.1.5.2. Predefined macro definitions
	6.7.1.5.3. Marker customization

	6.7.1.6. Look-and-Feel Customization
	6.7.1.7. Relevant Resources Links

	6.7.2. < rich:dragSupport > available since 3.0.0
	6.7.2.1. Description
	6.7.2.2. Key Features
	6.7.2.3. Creating the Component with a Page Tag
	6.7.2.4. Creating the Component Dynamically Using Java
	6.7.2.5. Details of Usage
	6.7.2.6. Look-and-Feel Customization
	6.7.2.7. Relevant Resources Links

	6.7.3. < rich:dragListener > available since 3.1.0
	6.7.3.1. Description
	6.7.3.2. Key Features
	6.7.3.3. Creating the Component with a Page Tag
	6.7.3.4. Creating the Component Dynamically Using Java
	6.7.3.5. Details of Usage
	6.7.3.6. Look-and-Feel Customization

	6.7.4. < rich:dropListener > available since 3.1.0
	6.7.4.1. Description
	6.7.4.2. Key Features
	6.7.4.3. Creating the Component with a Page Tag
	6.7.4.4. Creating the Component Dynamically Using Java
	6.7.4.5. Details of Usage
	6.7.4.6. Look-and-Feel Customization

	6.7.5. < rich:dropSupport > available since 3.0.0
	6.7.5.1. Description
	6.7.5.2. Key Features
	6.7.5.3. Creating the Component with a Page Tag
	6.7.5.4. Creating the Component Dynamically Using Java
	6.7.5.5. Details of Usage
	6.7.5.6. Look-and-Feel Customization
	6.7.5.7. Relevant Resources Links

	6.7.6. < rich:dndParam > available since 3.0.0
	6.7.6.1. Description
	6.7.6.2. Creating the Component with a Page Tag
	6.7.6.3. Creating the Component Dynamically Using Java
	6.7.6.4. Details of Usage
	6.7.6.5. Look-and-Feel Customization
	6.7.6.6. Relevan Resources Links

	6.8. Rich Menu
	6.8.1. < rich:contextMenu > available since 3.0.0
	6.8.1.1. Description
	6.8.1.2. Key Features
	6.8.1.3. Creating the Component with a Page Tag
	6.8.1.4. Creating the Component Dynamically Using Java
	6.8.1.5. Details of Usage
	6.8.1.6. JavaScript API
	6.8.1.7. Look-and-Feel Customization
	6.8.1.8. Skin Parameters Redefinition
	6.8.1.9. Definition of Custom Style Classes
	6.8.1.10. Relevant Resources Links

	6.8.2. < rich:dropDownMenu > available since 3.0.0
	6.8.2.1. Description
	6.8.2.2. Key Features
	6.8.2.3. Creating the Component with a Page Tag
	6.8.2.4. Creating the Component Dynamically Using Java
	6.8.2.5. Details of Usage
	6.8.2.6. Facets
	6.8.2.7. Look-and-Feel Customization
	6.8.2.8. Skin Parameters Redefinition
	6.8.2.9. Definition of Custom Style Classes
	6.8.2.10. Relevant Resources Links

	6.8.3. < rich:menuGroup > available since 3.0.0
	6.8.3.1. Description
	6.8.3.2. Key Features
	6.8.3.3. Creating the Component with a Page Tag
	6.8.3.4. Creating the Component Dynamically Using Java
	6.8.3.5. Details of Usage
	6.8.3.6. Facets
	6.8.3.7. Look-and-Feel Customization
	6.8.3.8. Skin Parameters Redefinition
	6.8.3.9. Definition of Custom Style Classes
	6.8.3.10. Relevant Resources Links

	6.8.4. < rich:menuItem > available since 3.0.0
	6.8.4.1. Description
	6.8.4.2. Key Features
	6.8.4.3. Creating the Component with a Page Tag
	6.8.4.4. Creating the Component Dynamically Using Java
	6.8.4.5. Details of Usage
	6.8.4.6. Facets
	6.8.4.7. Look-and-Feel Customization
	6.8.4.8. Skin Parameters Redefinition
	6.8.4.9. Definition of Custom Style Classes
	6.8.4.10. Relevant Resources Links

	6.8.5. < rich:menuSeparator > available since 3.0.0
	6.8.5.1. Description
	6.8.5.2. Creating the Component with a Page Tag
	6.8.5.3. Creating the Component Dynamically Using Java
	6.8.5.4. Look-and-Feel Customization
	6.8.5.5. Skin Parameters Redefinition
	6.8.5.6. Definition of Custom Style Classes
	6.8.5.7. Relevant Resources Links

	6.9. Rich Trees
	6.9.1. < rich:tree > available since 3.0.0
	6.9.1.1. Description
	6.9.1.2. Key Features
	6.9.1.3. Creating the Component with a Page Tag
	6.9.1.4. Creating the Component Dynamically Using Java
	6.9.1.5. Details of Usage
	6.9.1.6. Built-In Drag and Drop
	6.9.1.7. Events handling
	6.9.1.8. Facets
	6.9.1.9. Look-and-Feel Customization
	6.9.1.10. Skin Parameters Redefinition:
	6.9.1.11. Definition of Custom Style Classes
	6.9.1.12. Relevant Resources Links

	6.9.2. < rich:treeNode > available since 3.0.0
	6.9.2.1. Description
	6.9.2.2. Key Features
	6.9.2.3. Creating the Component with a Page Tag
	6.9.2.4. Creating the Component Dynamically Using Java
	6.9.2.5. Details of Usage
	6.9.2.6. Built-in Drag and Drop
	6.9.2.7. Events Handling
	6.9.2.8. Facets
	6.9.2.9. Look-and-Feel Customization
	6.9.2.10. Skin Parameters Redefinition
	6.9.2.11. Definition of Custom Style Classes
	6.9.2.12. Relevant Resources Links

	6.9.3. < rich:treeNodesAdaptor > available since 3.1.0
	6.9.3.1. Description
	6.9.3.2. Key Features
	6.9.3.3. Creating the Component with a Page Tag
	6.9.3.4. Creating the Component Dynamically Using Java
	6.9.3.5. Details of Usage
	6.9.3.6. Relevant Resources Links

	6.9.4. < rich:recursiveTreeNodesAdaptor > available since 3.1.0
	6.9.4.1. Description
	6.9.4.2. Key Features
	6.9.4.3. Creating the Component with a Page Tag
	6.9.4.4. Creating the Component Dynamically Using Java
	6.9.4.5. Details of Usage
	6.9.4.6. Relevant resources links

	6.9.5. < rich:changeExpandListener > available since 3.1.0
	6.9.5.1. Description
	6.9.5.2. Key Features
	6.9.5.3. Creating the Component with a Page Tag
	6.9.5.4. Creating the Component Dynamically Using Java
	6.9.5.5. Details of Usage
	6.9.5.6. Look-and-Feel Customization

	6.9.6. < rich:nodeSelectListener > available since 3.1.0
	6.9.6.1. Description
	6.9.6.2. Key Features
	6.9.6.3. Creating the Component with a Page Tag
	6.9.6.4. Creating the Component Dynamically Using Java
	6.9.6.5. Details of Usage
	6.9.6.6. Look-and-Feel Customization

	6.10. Rich Output
	6.10.1. < rich:modalPanel > available since 3.0.0
	6.10.1.1. Description
	6.10.1.2. Key Features
	6.10.1.3. Creating the Component with a Page Tag
	6.10.1.4. Creating the Component Dynamically Using Java
	6.10.1.5. Details of Usage
	6.10.1.6. JavaScript API
	6.10.1.7. Facets
	6.10.1.8. Look-and-Feel Customization
	6.10.1.9. Skin Parameters Redefinition
	6.10.1.10. Definition of Custom Style Classes
	6.10.1.11. Relevant Resources Links

	6.10.2. < rich:paint2D > available since 3.0.0
	6.10.2.1. Description
	6.10.2.2. Key Features
	6.10.2.3. Creating the Component with a Page Tag
	6.10.2.4. Creating the Component Dynamically Using Java
	6.10.2.5. Details of Usage
	6.10.2.6. Look-and-Feel Customization
	6.10.2.7. Relevant Resources Links

	6.10.3. < rich:panel > available since 3.0.0
	6.10.3.1. Description
	6.10.3.2. Key Features
	6.10.3.3. Creating the Component with a Page Tag
	6.10.3.4. Creating the Component Dynamically Using Java
	6.10.3.5. Details of Usage
	6.10.3.6. Facets
	6.10.3.7. Look-and-Feel Customization
	6.10.3.8. Skin Parameters Redefinition
	6.10.3.9. Definition of Custom Style Classes
	6.10.3.10. Relevant Resources Links

	6.10.4. < rich:panelBar > available since 3.0.0
	6.10.4.1. Description
	6.10.4.2. Key Features
	6.10.4.3. Creating the Component with a Page Tag
	6.10.4.4. Creating the Component Dynamically Using Java
	6.10.4.5. Details of Usage
	6.10.4.6. Look-and-Feel Customization
	6.10.4.7. Skin Parameters Redefinition
	6.10.4.8. Definition of Custom Style Classes
	6.10.4.9. Relevant Resources Links

	6.10.5. < rich:panelBarItem > available since 3.0.0
	6.10.5.1. Description
	6.10.5.2. Key Features
	6.10.5.3. Creating the Component with a Page Tag
	6.10.5.4. Creating the Component Dynamically Using Java
	6.10.5.5. Details of Usage
	6.10.5.6. Facets
	6.10.5.7. Look-and-Feel Customization
	6.10.5.8. Skin Parameters Redefinition
	6.10.5.9. Definition of Custom Style Classes

	6.10.6. < rich:panelMenu > available since 3.1.0
	6.10.6.1. Description
	6.10.6.2. Key Features
	6.10.6.3. Creating the Component with a Page Tag
	6.10.6.4. Creating the Component Dynamically Using Java
	6.10.6.5. Details of Usage
	6.10.6.6. JavaScript API
	6.10.6.7. Look-and-Feel Customization
	6.10.6.8. Definition of Custom Style Classes
	6.10.6.9. Relevant Resources Links

	6.10.7. < rich:panelMenuGroup > available since 3.1.0
	6.10.7.1. Description
	6.10.7.2. Key Features
	6.10.7.3. Creating the Component with a Page Tag
	6.10.7.4. Creating the Component Dynamically Using Java
	6.10.7.5. Details of Usage
	6.10.7.6. JavaScript API
	6.10.7.7. Look-and-Feel Customization
	6.10.7.8. Skin Parameters Redefinition
	6.10.7.9. Definition of Custom Style Classes
	6.10.7.10. Relevant resources links

	6.10.8. < rich:panelMenuItem > available since 3.1.0
	6.10.8.1. Description
	6.10.8.2. Key Features
	6.10.8.3. Creating the Component with a Page Tag
	6.10.8.4. Creating the Component Dynamically Using Java
	6.10.8.5. Details of Usage
	6.10.8.6. Look-and-Feel Customization
	6.10.8.7. Skin Parameters Redefinition
	6.10.8.8. Definition of Custom Style Classes
	6.10.8.9. Relevant resources links

	6.10.9. < rich:progressBar > available since 3.2.0
	6.10.9.1. Description
	6.10.9.2. Key Features
	6.10.9.3. Creating the Component with a Page Tag
	6.10.9.4. Creating the Component Dynamically Using Java
	6.10.9.5. Details of Usage
	6.10.9.6. JavaScript API
	6.10.9.7. Facets
	6.10.9.8. Look-and-Feel Customization
	6.10.9.9. Skin Parameters Redefinition
	6.10.9.10. Definition of Custom Style Classes
	6.10.9.11. Relevant Resources Links

	6.10.10. < rich:separator > available since 3.0.0
	6.10.10.1. Description
	6.10.10.2. Key Features
	6.10.10.3. Creating the Component with a Page Tag
	6.10.10.4. Creating the Component Dynamically Using Java
	6.10.10.5. Details of Usage
	6.10.10.6. Look-and-Feel Customization
	6.10.10.7. Definition of Custom Style Classes
	6.10.10.8. Relevant Resources Links

	6.10.11. < rich:simpleTogglePanel > available since 3.0.0
	6.10.11.1. Description
	6.10.11.2. Key Features
	6.10.11.3. Creating the Component with a Page Tag
	6.10.11.4. Creating the Component Dynamically Using Java
	6.10.11.5. Details of Usage
	6.10.11.6. Facets
	6.10.11.7. Look-and-Feel Customization
	6.10.11.8. Skin Parameters Redefinition
	6.10.11.9. Definition of Custom Style Classes
	6.10.11.10. Relevant Resources Links

	6.10.12. < rich:spacer > available since 3.0.0
	6.10.12.1. Description
	6.10.12.2. Key Features
	6.10.12.3. Creating the Component with a Page Tag
	6.10.12.4. Creating the Component Dynamically Using Java
	6.10.12.5. Details of Usage
	6.10.12.6. Look-and-Feel Customization
	6.10.12.7. Relevant Resources Links

	6.10.13. < rich:tabPanel > available since 3.0.0
	6.10.13.1. Description
	6.10.13.2. Key Features
	6.10.13.3. Creating the Component with a Page Tag
	6.10.13.4. Creating the Component Dynamically Using Java
	6.10.13.5. Details of Usage
	6.10.13.6. Look-and-Feel Customization
	6.10.13.7. Skin Parameters Redefinition
	6.10.13.8. Definition of Custom Style Classes
	6.10.13.9. Relevant Resources Links

	6.10.14. < rich:tab > available since 3.0.0
	6.10.14.1. Description
	6.10.14.2. Key Features
	6.10.14.3. Creating the Component with a Page Tag
	6.10.14.4. Creating the Component Dynamically Using Java
	6.10.14.5. Details of Usage
	6.10.14.6. Facets
	6.10.14.7. Look-and-Feel Customization
	6.10.14.8. Skin Parameters Redefinition
	6.10.14.9. Definition of Custom Style Classes

	6.10.15. < rich:togglePanel > available since 3.0.0
	6.10.15.1. Description
	6.10.15.2. Key Features
	6.10.15.3. Creating the Component with a Page Tag
	6.10.15.4. Creating the Component Dynamically Using Java
	6.10.15.5. Details of Usage
	6.10.15.6. Look-and-Feel Customization
	6.10.15.7. Definition of Custom Style Classes
	6.10.15.8. Relevant Resources Links

	6.10.16. < rich:toggleControl > available since 3.0.0
	6.10.16.1. Description
	6.10.16.2. Key Features
	6.10.16.3. Creating the Component with a Page Tag
	6.10.16.4. Creating the Component Dynamically Using Java
	6.10.16.5. Details of Usage
	6.10.16.6. Look-and-Feel Customization
	6.10.16.7. Definition of Custom Style Classes

	6.10.17. < rich:toolBar > available since 3.0.0
	6.10.17.1. Description
	6.10.17.2. Key Features
	6.10.17.3. Creating the Component with a Page Tag
	6.10.17.4. Creating the Component Dynamically Using Java
	6.10.17.5. Details of Usage
	6.10.17.6. Facets
	6.10.17.7. Look-and-Feel Customization
	6.10.17.8. Skin Parameters Redefinition
	6.10.17.9. Definition of Custom Style Classes
	6.10.17.10. Relevant Resources Links

	6.10.18. < rich:toolBarGroup > available since 3.0.0
	6.10.18.1. Description
	6.10.18.2. Key Features
	6.10.18.3.
	6.10.18.4. Creating the Component with a Page Tag
	6.10.18.5. Creating the Component Dynamically Using Java
	6.10.18.6. Details of Usage
	6.10.18.7. Look-and-Feel Customization
	6.10.18.8. Definition of Custom Style Classes
	6.10.18.9. Relevant resources links

	6.10.19. < rich:toolTip > available since 3.1.0
	6.10.19.1. Description
	6.10.19.2. Key Features
	6.10.19.3. Creating the Component with a Page Tag
	6.10.19.4. Creating the Component Dynamically Using Java
	6.10.19.5. Details of Usage
	6.10.19.6. JavaScript API
	6.10.19.7. Facets
	6.10.19.8. Look-and-Feel Customization
	6.10.19.9. Skin Parameters Redefinition
	6.10.19.10. Definition of Custom Style Classes
	6.10.19.11. Relevant Resources Links

	6.11. Rich Input
	6.11.1. < rich:calendar > available since 3.1.0
	6.11.1.1. Description
	6.11.1.2. Key Features
	6.11.1.3. Creating the Component with a Page Tag
	6.11.1.4. Creating the Component Dynamically Using Java
	6.11.1.5. Details of Usage
	6.11.1.6. JavaScript API
	6.11.1.7. Facets
	6.11.1.8. Look-and-Feel Customization
	6.11.1.9. Skin Parameters Redefinition
	6.11.1.10. Definition of Custom Style Classes
	6.11.1.11. Relevant Resources Links

	6.11.2. < rich:colorPicker > available since 3.3.1
	6.11.2.1. Description
	6.11.2.2. Key Features
	6.11.2.3. Creating the Component with a Page Tag
	6.11.2.4. Creating the Component Dynamically Using Java
	6.11.2.5. Details of Usage
	6.11.2.6. Look-and-Feel Customization
	6.11.2.7. Skin Parameters Redefinition
	6.11.2.8. Definition of Custom Style Classes
	6.11.2.9. Relevant Resources Links

	6.11.3. < rich:comboBox > available since 3.2.0
	6.11.3.1. Description
	6.11.3.2. Key Features
	6.11.3.3. Creating the Component with a Page Tag
	6.11.3.4. Creating the Component Dynamically Using Java
	6.11.3.5. Details of Usage
	6.11.3.6. JavaScript API
	6.11.3.7. Look-and-Feel Customization
	6.11.3.8. Skin Parameters Redefinition
	6.11.3.9. Definition of Custom Style Classes
	6.11.3.10. Relevant Resources Links

	6.11.4. < rich:editor > available since 3.3.0
	6.11.4.1. Description
	6.11.4.2. Key Features
	6.11.4.3. Creating the Component with a Page Tag
	6.11.4.4. Creating the Component Dynamically Using Java
	6.11.4.5. Details of Usage
	6.11.4.6. Look-and-Feel Customization
	6.11.4.7. Skin Parameters Redefinition
	6.11.4.8. Definition of Custom Style Selectors
	6.11.4.9. Relevant Resources Links

	6.11.5. < rich:fileUpload > available since 3.2.0
	6.11.5.1. Description
	6.11.5.2. Key Features
	6.11.5.3. Creating the Component with a Page Tag
	6.11.5.4. Creating the Component Dynamically Using Java
	6.11.5.5. Details of Usage
	6.11.5.6. JavaScript API
	6.11.5.7. Facets
	6.11.5.8. Look-and-Feel Customization
	6.11.5.9. Skin Parameters Redefinition
	6.11.5.10. Definition of Custom Style Classes
	6.11.5.11. Relevant Resources Links

	6.11.6. < rich:inplaceInput > available since 3.2.0
	6.11.6.1. Description
	6.11.6.2. Key Features
	6.11.6.3. Creating the Component with a Page Tag
	6.11.6.4. Creating the Component Dynamically Using Java
	6.11.6.5. Details of Usage
	6.11.6.6. JavaScript API
	6.11.6.7. Facets
	6.11.6.8. Look-and-Feel Customization
	6.11.6.9. Skin Parameters Redefinition
	6.11.6.10. Definition of Custom Style Classes
	6.11.6.11. Relevant Resources Links

	6.11.7. < rich:inplaceSelect > available since 3.2.0
	6.11.7.1. Description
	6.11.7.2. Key Features
	6.11.7.3. Creating the Component with a Page Tag
	6.11.7.4. Creating the Component Dynamically Using Java
	6.11.7.5. Details of Usage
	6.11.7.6. JavaScript API
	6.11.7.7. Facets
	6.11.7.8. Look-and-Feel Customization
	6.11.7.9. Skin Parameters Redefinition
	6.11.7.10. Definition of Custom Style Classes
	6.11.7.11. Relevant Resources Links

	6.11.8. < rich:inputNumberSlider > available since 3.0.0
	6.11.8.1. Description
	6.11.8.2. Key Features
	6.11.8.3. Creating the Component with a Page Tag
	6.11.8.4. Creating the Component Dynamically Using Java
	6.11.8.5. Details of Usage
	6.11.8.6. Look-and-Feel Customization
	6.11.8.7. Skin Parameters Redefinition
	6.11.8.8. Definition of Custom Style Classes
	6.11.8.9. Relevant Resources Links

	6.11.9. < rich:inputNumberSpinner > available since 3.0.0
	6.11.9.1. Description
	6.11.9.2. Key Features
	6.11.9.3. Creating the Component with a Page Tag
	6.11.9.4. Creating the Component Dynamically Using Java
	6.11.9.5. Details of Usage
	6.11.9.6. Look-and-Feel Customization
	6.11.9.7. Skin Parameters Redefinition
	6.11.9.8. Definition of Custom Style Classes
	6.11.9.9. Relevant Resources Links

	6.11.10. < rich:suggestionbox > available since 3.0.0
	6.11.10.1. Description
	6.11.10.2. Key Features
	6.11.10.3. Creating the Component with a Page Tag
	6.11.10.4. Creating the Component Dynamically Using Java
	6.11.10.5. Details of Usage
	6.11.10.6. JavaScript API
	6.11.10.7. Facets
	6.11.10.8. Look-and-Feel Customization
	6.11.10.9. Skin Parameters Redefinition
	6.11.10.10. Definition of Custom Style Classes
	6.11.10.11. Relevant Resources Links

	6.12. Rich Selects
	6.12.1. < rich:listShuttle > available since 3.1.3
	6.12.1.1. Description
	6.12.1.2. Key Features
	6.12.1.3. Creating the Component with a Page Tag
	6.12.1.4. Creating the Component Dynamically Using Java
	6.12.1.5. Details of Usage
	6.12.1.6. JavaScript API
	6.12.1.7. Facets
	6.12.1.8. Look-and-Feel Customization
	6.12.1.9. Skin Parameters Redefinition
	6.12.1.10. Definition of Custom Style Classes
	6.12.1.11. Relevant Resources Links

	6.12.2. < rich:orderingList > available since 3.1.3
	6.12.2.1. Description
	6.12.2.2. Key Features
	6.12.2.3. Creating the Component with a Page Tag
	6.12.2.4. Creating the Component Dynamically Using Java
	6.12.2.5. Details of Usage
	6.12.2.6. JavaScript API
	6.12.2.7. Facets
	6.12.2.8. Look-and-Feel Customization
	6.12.2.9. Skin Parameters Redefinition
	6.12.2.10. Definition of Custom Style Classes
	6.12.2.11. Relevant Resources Links

	6.12.3. < rich:pickList > available since 3.2.0
	6.12.3.1. Description
	6.12.3.2. Key Features
	6.12.3.3. Creating the Component with a Page Tag
	6.12.3.4. Creating the Component Dynamically Using Java
	6.12.3.5. Details of Usage
	6.12.3.6. Facets
	6.12.3.7. Look-and-Feel Customization
	6.12.3.8. Skin Parameters Redefinition
	6.12.3.9. Definition of Custom Style Classes
	6.12.3.10. Relevant Resources Links

	6.13. Rich Semantic Layouts
	6.13.1. < rich:page > available since 3.3.1
	6.13.1.1. Description
	6.13.1.2. Key Features
	6.13.1.3. Creating the Component with a Page Tag
	6.13.1.4. Creating the Component Dynamically Using Java
	6.13.1.5. Details of Usage
	6.13.1.6. Facets
	6.13.1.7. Skin Parameters for the "simple" theme
	6.13.1.8. Component CSS Selectors
	6.13.1.9. Relevant Resources Links

	6.13.2. < rich:layout > available since 3.3.1
	6.13.2.1. Description
	6.13.2.2. Key Features
	6.13.2.3. Creating the Component with a Page Tag
	6.13.2.4. Creating the Component Dynamically Using Java
	6.13.2.5. Details of Usage
	6.13.2.6. Relevant Resources Links

	6.13.3. < rich:layoutPanel > available since 3.3.1
	6.13.3.1. Description
	6.13.3.2. Key Features
	6.13.3.3. Creating the Component with a Page Tag
	6.13.3.4. Creating the Component Dynamically Using Java
	6.13.3.5. Details of Usage
	6.13.3.6. Relevant Resources Links

	6.14. Rich Miscellaneous
	6.14.1. < rich:componentControl > available since 3.0.0
	6.14.1.1. Description
	6.14.1.2. Key Features
	6.14.1.3. Creating the Component with a Page Tag
	6.14.1.4. Creating the Component Dynamically Using Java
	6.14.1.5. Details of Usage
	6.14.1.6. Look-and-Feel Customization
	6.14.1.7. Relevant Resources Links

	6.14.2. < rich:effect > available since 3.1.0
	6.14.2.1. Description
	6.14.2.2. Key Features
	6.14.2.3. Creating the Component with a Page Tag
	6.14.2.4. Creating the Component Dynamically Using Java
	6.14.2.5. Details of Usage
	6.14.2.6. Look-and-Feel Customization
	6.14.2.7. Relevant Resources Links

	6.14.3. < rich:gmap > available since 3.0.0
	6.14.3.1. Description
	6.14.3.2. Key Features
	6.14.3.3. Creating the Component with a Page Tag
	6.14.3.4. Creating the Component Dynamically Using Java
	6.14.3.5. Details of Usage
	6.14.3.6. Look-and-Feel Customization
	6.14.3.7. Definition of Custom Style Classes
	6.14.3.8. Relevant Resources Links

	6.14.4. < rich:virtualEarth > available since 3.1.0
	6.14.4.1. Description
	6.14.4.2. Key Features
	6.14.4.3. Creating the Component with a Page Tag
	6.14.4.4. Creating the Component Dynamically Using Java
	6.14.4.5. Details of Usage
	6.14.4.6. Look-and-Feel Customization
	6.14.4.7. Definition of Custom Style Classes
	6.14.4.8. Relevant Resources Links

	6.14.5. < rich:hotKey > available since 3.2.2
	6.14.5.1. Description
	6.14.5.2. Key Features
	6.14.5.3. Creating the Component with a Page Tag
	6.14.5.4. Creating the Component Dynamically Using Java
	6.14.5.5. Details of Usage
	6.14.5.6. JavaScript API
	6.14.5.7. Look-and-Feel Customization
	6.14.5.8. Relevant Resources Links

	6.14.6. < rich:insert > available since 3.1.0
	6.14.6.1. Description
	6.14.6.2. Key Features
	6.14.6.3. Creating the Component with a Page Tag
	6.14.6.4. Creating the Component Dynamically Using Java
	6.14.6.5. Details of Usage
	6.14.6.6. Look-and-Feel Customization
	6.14.6.7. Relevant Resources Links

	6.14.7. < rich:message > available since 3.1.0
	6.14.7.1. Description
	6.14.7.2. Key Features
	6.14.7.3. Creating the Component with a Page Tag
	6.14.7.4. Creating the Component Dynamically Using Java
	6.14.7.5. Details of Usage
	6.14.7.6. Facets
	6.14.7.7. Look-and-Feel Customization
	6.14.7.8. Definition of Custom Style Classes
	6.14.7.9. Relevant Resources Links

	6.14.8. < rich:messages > available since 3.1.0
	6.14.8.1. Description
	6.14.8.2. Key Features
	6.14.8.3. Creating the Component with a Page Tag
	6.14.8.4. Creating the Component Dynamically Using Java
	6.14.8.5. Details of Usage
	6.14.8.6. Look-and-Feel Customization
	6.14.8.7. Definition of Custom Style Classes
	6.14.8.8. Relevant Resources Links

	6.14.9. < rich:jQuery > available since 3.0.0
	6.14.9.1. Description
	6.14.9.2. Key Features
	6.14.9.3. Creating the Component with a Page Tag
	6.14.9.4. Creating the Component Dynamically Using Java
	6.14.9.5. Details of Usage
	6.14.9.6. Look-and-Feel Customization
	6.14.9.7. Relevant Resources Links

	Chapter 7. IDE Support
	Chapter 8. Links to information resources

