
RiftSaw 2.1.0.Final

User Guide

by Gary Brown, Kurt Stam, Heiko Braun, and Jeff Yu

ii

1. Introduction ... 1

1.1. Overview .. 1

2. Administration .. 2

2.1. Overview .. 2

2.2. BPEL Console ... 2

2.2.1. Overview ... 2

2.2.2. Logging in ... 2

2.2.3. Deployed Process Definitions .. 3

2.2.4. Process Instances ... 3

2.2.5. Retiring and Reactivating Process Definitions ... 5

2.3. BPEL Properties .. 6

3. Deploying BPEL Processes ... 8

3.1. Overview .. 8

3.2. Direct deployment to JBossAS server .. 8

3.3. Eclipse based Deployment ... 9

3.4. Changing Endpoint Configuration Properties ... 16

4. Web Service Configuration ... 17

4.1. Overview .. 17

4.2. Configuring a JAX-WS Handler .. 17

4.3. Apache CXF Configuration .. 18

4.3.1. Configuring the Server endpoint ... 18

4.3.2. Configuring the Client endpoint .. 20

5. UDDI Integration .. 22

5.1. Overview .. 22

5.2. UDDI config properties ... 22

5.3. Default configurations ... 24

5.4. Other UDDI v3 Registries .. 24

5.5. UDDI Registry Entities and UDDI Seed Data .. 24

6. JBoss ESB Integration ... 25

6.1. Overview .. 25

6.2. Using the BPELInvoke ESB action .. 25

6.2.1. Fault Handling ... 27

7. Database ... 29

7.1. Upgrade database schema .. 29

7.2. Database schema diagram .. 29

Chapter 1.

1

Introduction

1.1. Overview

This is the User Guide for the RiftSaw BPEL process engine.

RiftSaw provides a JBoss AS integration for the Apache ODE BPEL engine. For detailed information on

executing BPEL processes within Apache ODE, we would refer the reader to the Apache ODE website

and documentation.

In addition to the ability to run the Apache ODE engine within JBoss AS, the RiftSaw project also provides

a GWT based administration console, replaces the Axis2 based transport with JBossWS (which can be

configured to use Apache CXF), and provides tighter integration with JBossESB.

http://ode.apache.org

Chapter 2.

2

Administration

2.1. Overview

This section describes the administration capabilities associated with RiftSaw.

2.2. BPEL Console

2.2.1. Overview

This section provides an overview of the BPEL Console. The console provides the ability to view:

• The process definitions deployed to the BPEL engine

• The process instances executing in the BPEL engine

2.2.2. Logging in

The BPEL console can be located using the URL: http://localhost:8080/bpel-console.

The first screen that is presented is the login screen:

http://localhost:8080/bpel-console

Deployed Process Definitions

3

The default username is admin with password password.

The Access Control mechanism used by the admin console is configured in the $deployFolder/bpel-

console/bpel-identity.sar/META-INF/jboss-service.xml. The JAAS login module is

initially set to use a property file based access mechanism, but can be replaced to use any appropriate

alternative implementation.

The users for the default mechanism are configured in the property file $deployFolder/bpel-

console/bpel-identity.sar/bpel-users.properties. The entries in this file represent

username=password.

The user roles for the default mechanism are configured in the property file $deployFolder/bpel-

console/bpel-identity.sar/bpel-roles.properties. The entries in this file represent

username=role. The only role of interest currently is administrator.

2.2.3. Deployed Process Definitions

Once logged in, the 'Process Overview' tab shows the currently deployed BPEL processes and their versions.

2.2.4. Process Instances

When a process definition is selected, the list of active process instances for that process definition (and

version) will be displayed in the right hand panel.

Process Instances

4

When a process instance is selected, its details will be displayed in the lower Execution Details window. The

Instance Data button will also become enabled, allowing further detail about the process to be displayed.

Retiring and Reactivating Process Definitions

5

2.2.5. Retiring and Reactivating Process Definitions

When a process definition is initially deployed (i.e. the first version of the process), it automatically becomes

the active process definition. If that BPEL process definition is subsequently change and redeployed, then

the previous version is retired, and the new version becomes the active version.

The only difference between an active and retired process definition is that a retired process definition can

no longer create new process instances. However if there are current process instances associated with the

retired process definition version, then these will continue to execute.

On some occasions, the administrator may wish to change which version of a process definition is considered

the active version. Or they may simply want to retire the currently active process definition, so that no

more process instances can be created, only allowing the already running process instances to continue until

completed.

To change the status of a process definition, the administrator should select the Runtime tab from the lefthand

panel, and then select the Deployments option. This will show the process definitions, their versions and

their current status (active or retired).

BPEL Properties

6

To change a particular version from retired to active, simply select the retired version and press the Activate

button in the bottom right.

To retire a currently active process definition, simply select the particular version and then press the Retire

button in the bottom right.

2.3. BPEL Properties

When RiftSaw has been installed within the JBossAS environment, there is a property file located at

${JBossAS}/server/default/deploy/riftsaw.sar/bpel.properties.

This property file contains a number of properties that are specific to ODE, and if interested in these

properties, then you should refer to the ODE documentation. Only one point to note, the name of the property

in this file maybe prefixed with bpel., however in the ODE documentation the prefix would be ode..

This section will present the properties that are specific to RiftSaw.

Table 2.1. RiftSaw specific properties

bpel.uddi.* These properties relate to the UDDI support, which

is discussed in a subsequent chapter.

bpel.jaxws.client.initializer.impl This property is automatically set upon installation,

based on the JAXWS stack being used. This value

should not be changed.

BPEL Properties

7

bpel.ws.stableInterface (default false) This property determines whether the Web Service

interface, associated with a BPEL process, will be

updated when a new version of the BPEL process

is deployed. The benefit of setting this to false is

that changes to the WSDL will be made active

with the BPEL process. However the issue is that

during the transition between the interfaces, the

web service will momentarily be unavailble - which

may cause heavily used services to reject requests.

By setting this value to true, then the web service

will remain available while the BPEL process is

updated, however any changes in the WSDL will

not be made available.

Chapter 3.

8

Deploying BPEL Processes

3.1. Overview

This section outlines the mechanisms that can be used to deploy a BPEL process to RiftSaw BPEL engine

running within a JBoss AS server.

3.2. Direct deployment to JBossAS server

The direct deployment approach is demonstrated using an Ant script in each of the quickstart examples.

For example,

 <!-- Import the base Ant build script... -->

 <property file="../../../install/deployment.properties" />

 <property name="version" value="1" />

 <property name="server.dir" value="${org.jboss.as.home}/server/${org.jboss.as.config}"/>

 <property name="conf.dir" value="${server.dir}/conf"/>

 <property name="deploy.dir" value="${server.dir}/deploy"/>

 <property name="server.lib.dir" value="${server.dir}/lib"/>

 <property name="sample.jar.name" value="${ant.project.name}-${version}.jar" />

 <target name="deploy">

 <echo>Deploy ${ant.project.name}</echo>

 <jar basedir="bpel" destfile="${deploy.dir}/${sample.jar.name}" />

 </target>

 <target name="undeploy">

 <echo>Undeploy ${ant.project.name}</echo>

 <delete file="${deploy.dir}/${sample.jar.name}" />

 </target>

This excerpt from the Ant build file for the hello_world quickstart example shows that deploying a RiftSaw

BPEL process using Ant is very straightforward. The main points of interest are:

• It is necessary to identify the location of the JBoss AS server in which the BPEL process will be deployed.

This is achieved in this example by referring to the deployment.properties file that has been

configured in the RiftSaw distribution (install folder).

• If a versioned approach is being used, so that multiple versions of the same BPEL process may be

deployed at one time, then the name of the archive (jar) containing the BPEL process (and associated

artifacts) has a version number suffix. This would need to be manually incremented for each distinct

version of the BPEL process being deployed.

Eclipse based Deployment

9

Warning

Currently the version must be specified as a single integer value. Non-numeric values,

such as versions expressed in a major.minor.incremental (maven style), will result in an

exception when deployed to the server.

• The next step is to define the deploy target, which will create the BPEL process archive, using the contents

of the bpel sub-folder in this case, and store it within the JBoss AS server's deploy folder.

• The final step is to define the undeploy target, which simply removes the BPEL process archive from

the JBoss AS server's deploy folder.

3.3. Eclipse based Deployment

This section will explain how to deploy an Eclipse BPEL project to the RiftSaw BPEL engine running in

a JBossAS server.

The first step is to create or import the Eclipse BPEL project. In this case we are going to import an existing

project from the ${RiftSaw}/samples/quickstart/hello_world folder. This can be achieved

by selecting the Import ... menu item associated with the lefthand navigator panel in Eclipse, and then select

the General->Existing Projects into Workspace entry and press the Next button.

Then press the Browse button and navigate to the hello_world quickstart folder. Once located, press

the Finish button.

Eclipse based Deployment

10

Once the project has been imported, you can inspect the contents, such as the BPEL process and WSDL

description.

Eclipse based Deployment

11

The next step is to create a server configuration for the JBoss AS environment in which the RiftSaw BPEL

engine has previously been installed. From the Eclipse Java EE perspective, the Server tab should be visible

in the lower region of the Eclipse window. If this view is not present, then go to the Window->Show Views-

>Servers menu item to open the view explicitly.

In the Servers view, right click and select the New->Server menu item.

Eclipse based Deployment

12

Select the appropriate JBoss AS version, and then press Finish.

Before being able to deploy an example, we should start the new server. This can be achieved by right

clicking on the server in the Servers tab, and selecting the Start menu item. The output from the server will

be displayed in the Console tab.

Once the server has been started, right click on the server entry again, and select the Add and Remove ...

menu item.

Eclipse based Deployment

13

Select the Quickstart_bpel_hello_world project, press the Add button and the press the Finish button. This

will cause the project to be deployed to the server.

Once the project has been deployed, it will show up as an entry below the server in the Servers tab.

The final step is to test the deployed BPEL process. In this example, we can do this using the ant script

provided with the quickstart sample. Right click on the build.xml file in the root folder of the project,

and select the Run As->Ant Build ... menu item. NOTE: It is important to select the menu item with the "...",

as this provides a dialog window to enable you to select which ant target you wish to perform.

Eclipse based Deployment

14

Deselect the deploy target, and select the sendhello target, before pressing the Run button. This was send a

test 'hello' message to the server, and then display the response in the Console tab.

If you now want to update the BPEL process, select the assignHelloMesg node in the diagram, and select

the Properties view. On the left of the view is a vertical list of tabs. Select the Details tab. Then select the

"Expression to Variable" from the list, and update the concat function's second parameter - for example to

add 'UPDATED' to the text.

Eclipse based Deployment

15

Once the update has been saved, go to the Server View and select the Full Publish option from the menu

associated with the Quickstart_bpel_hello_world project. This will cause the project to be re-deployed to

the RiftSaw server.

The final step is to then re-run the 'sendhello' target within the build.xml file, to send a new request,

and view the response. The response should now be modified according to the changes you made in the

BPEL process.

If you expand the deployed project node, in the Server View, you will see that both of the deployed versions

are shown. The older version is retained as there may still be BPEL process instances using that version of

the process. If you right-click on each of the child nodes, you will see that it is also possible to undeploy

the specific versions. However, if you explicitly undeploy a version, then any remaining active process

instances for that version will be terminated.

You can then use the menu associated with the project, contained in the Server View, to undeploy the project

(using the Add and Remove ... menu item) and finally use the menu associated with the server itself to Stop

the server.

Changing Endpoint Configuration Properties

16

3.4. Changing Endpoint Configuration Properties

Apache ODE provides the means to customise certain properties, associated with a BPEL endpoint, by

specifying the properties in a file with an extension of .endpoint.

For information on the properties that can be specified in this file, please see the Apache ODE

documentation, located at: http://ode.apache.org/endpoint-configuration.html.

Note

RiftSaw currently only supports the following properties: mex.timeout

This section explains how to deploy these .endpoint files as part of a RiftSaw deployment.

Apache ODE supports two locations for finding these .endpoint files. A 'global' configuration

folder, which by default is ode/WEB-INF/conf, and a process deployment specific location, which is

ode/WEB-INF/processes/$your_process. Properties associated with the 'global' configuration

override any property values provided in the process specific location.

RiftSaw currently does not support a 'global' configuration location, so it will only obtain the configuration

files from the deployed BPEL bundle. More specifically, from the root location within the BPEL deployment

unit, along side the BPEL deployment descriptor.

So, for example, if you place a file called test.endpoint in the ${RiftSaw}/samples/

quickstart/hello_world/bpelContent folder, with the following content:

 # 3 minutes

 mex.timeout=180000

then once deployed, the helloworld example could wait up to a maximum of 3 minutes to respond. To

test this out, edit the hello_world.bpel and insert a wait activity before the response - similar to the

following:

 <wait>

 <for>'PT150S'</for>

 </wait>

This will wait 2 minutes 30 seconds before responding, which is 30 seconds more than the default timeout,

but still within the new timeout period specified within the test.endpoint file. If you then wish to try

forcing the timeout to occur, simply increase the wait duration to 3 minutes 30 seconds, and resubmit the

test message using the ant sendhello command.

http://ode.apache.org/endpoint-configuration.html

Chapter 4.

17

Web Service Configuration

4.1. Overview

This section outlines the mechanisms that are available for configuring the web service stack used in

providing the web service for a BPEL process, as well as invoking external web services from a BPEL

process.

4.2. Configuring a JAX-WS Handler

JAX-WS is a standard Java API for client and server support of web services. The JAX-WS handler

mechanism can be used by a client or server (i.e. the web service) to invoke a user specified class whenever

a message (or fault) is sent or received. The handler is therefore installed into the message pipeline, and can

manipulate the message header or body as required.

The handlers are usually installed either programmatically, or through a HandlerChain annotation on the

Java interface representing the Web Service. However, in the case of a BPEL process deployed to RiftSaw,

the JAX-WS service (representing the web service associated with the BPEL process) is dynamically created

on deployment.

Therefore to associate the configuration of a JAX-WS handler chain with the Web Service dynamically

created to support the BPEL process, the user must place a file called jws_handler.xml alongside the

BPEL process definition and deployment descriptor.

The following provides an example of the XML configuration associated with the jws_handler.xml

file. This particular example is used by the service_handler quickstart sample.

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee">

 <handler-chain>

 <handler>

 <handler-name>JAXWSHandler</handler-name>

 <handler-class>org.jboss.soa.bpel.examples.jaxws.JAXWSHandler</handler-class>

 <init-param>

 <param-name>TestParam</param-name>

 <param-value>TestValue</param-value>

 </init-param>

 </handler>

 </handler-chain>

</handler-chains>

The format of this file is the standard JAX-WS handler chain configuration. One or more handler elements

can be specified, with each handler defining a name and class. The handler configuration can optionally

provide initialization parameters that are passed to the init method on the handler implementation.

Apache CXF Configuration

18

Note

This mechanism only installs JAX-WS handlers on the 'provider' web service. It is not

currently possible to configure JAX-WS handlers for the client endpoints that invoke

external web services from a BPEL process.

An example of this mechanism can be found in the service_handler quickstart sample.

4.3. Apache CXF Configuration

RiftSaw integrates with JBossWS, using the JAX-WS standard API, to support the following web service

stacks: JBossWS native and Apache CXF. This section explains how RiftSaw deployed BPEL processes

can include additional configuration specifically applicable to the Apache CXF web service stack - and

is therefore only relevant if the JBossAS application server has been configured to use this stack. See the

Getting Started Guide for information on how to switch to the Apache CXF stack when installing RiftSaw.

This section will explain how web service endpoints, whether server (i.e. representing the BPEL process) or

client (i.e. being used to invoke external web services), are configured using the Apache CXF configuration

format. It will also discuss reasons why you may wish to do this additional CXF specific configuration.

However, for further information on how to configure CXF, and the features that it offers, the reader is

referred to the Apache CXF website http://cxf.apache.org.

4.3.1. Configuring the Server endpoint

To create a CXF configuration that will be used by the RiftSaw web service provider (i.e. the server), it is

simply a case of placing a file called jbossws-cxf.xml into the root folder of the BPEL deployment

(along side the deployment descriptor).

This is the same filename as used by jbossws-cxf, when deploying a web service based on the use of JAXWS

annotations. An example of the file content is:

<beans

 xmlns='http://www.springframework.org/schema/beans'

 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

 xmlns:beans='http://www.springframework.org/schema/beans'

 xmlns:jaxws='http://cxf.apache.org/jaxws'

 xsi:schemaLocation='http://cxf.apache.org/core

 http://cxf.apache.org/schemas/core.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd'>

 <bean id="UsernameTokenSign_Request"

 class="org.apache.cxf.ws.security.wss4j.WSS4JInInterceptor">

 <constructor-arg>

 <map>

http://cxf.apache.org/

Configuring the Server endpoint

19

 <entry key="action" value="UsernameToken Timestamp Signature"/>

 <entry key="passwordType" value="PasswordDigest"/>

 <entry key="user" value="serverx509v1"/>

 <entry key="passwordCallbackClass"

 value="org.jboss.test.ws.jaxws.samples.wsse.ServerUsernamePasswordCallback"/>

 <entry key="signaturePropFile" value="etc/Server_SignVerf.properties"/>

 <entry key="signatureKeyIdentifier" value="DirectReference"/>

 </map>

 </constructor-arg>

 </bean>

 <bean id="UsernameTokenSign_Response"

 class="org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor">

 <constructor-arg>

 <map>

 <entry key="action" value="UsernameToken Timestamp Signature"/>

 <entry key="passwordType" value="PasswordText"/>

 <entry key="user" value="serverx509v1"/>

 <entry key="passwordCallbackClass"

 value="org.jboss.test.ws.jaxws.samples.wsse.ServerUsernamePasswordCallback"/>

 <entry key="signaturePropFile" value="etc/Server_Decrypt.properties"/>

 <entry key="signatureKeyIdentifier" value="DirectReference"/>

 <entry key="signatureParts"

 value="{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd}Timestamp;{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body"/>

 </map>

 </constructor-arg>

 </bean>

 <jaxws:endpoint

 id='SecureHelloWorldWS'

 address='http://@jboss.bind.address@:8080/Quickstart_bpel_secure_serviceWS'

 implementor='@provider@'>

 <jaxws:inInterceptors>

 <ref bean="UsernameTokenSign_Request"/>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJInInterceptor"/>

 </jaxws:inInterceptors>

 <jaxws:outInterceptors>

 <ref bean="UsernameTokenSign_Response"/>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJOutInterceptor"/>

 </jaxws:outInterceptors>

 </jaxws:endpoint>

</beans>

This example configures the web service to use username token and digital signature authentication.

Note

The jaxws:endpoint element has an attribute called implementor that defines the Java class

implementing the JAXWS service. RiftSaw dynamically creates this class, and therefore

Configuring the Client endpoint

20

it is important that the attribute is set to the value @provider@ to enable the dynamically

created Java class to be correctly configured during deployment.

4.3.2. Configuring the Client endpoint

When configuring client endpoints, representing web services invoked by a BPEL process, the configuration

is currently separated into different files on a per port basis - similar to the approach used by the Axis2

ODE integration.

The file name is of the form jbossws-cxf-{portname_local_part}.xml, where the

portname_local_part represents the local part of the portname of the web service being invoked. For

example, if the WSDL for the invoked web service is:

<definitions name='SecureHelloWorldWSService'

 targetNamespace='http://secure_invoke/helloworld' >

 <portType name='SecureHelloWorld'>

 ...

 </portType>

 <service name='SecureHelloWorldWSService'>

 <port name='SecureHelloWorldPort' ... >

 ...

 </port>

 </service>

</definitions>

then the CXF configuration file would be jbossws-cxf-SecureHelloWorldPort.xml.

The CXF configuration information within this file is associated with the CXF bus. For example:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cxf="http://cxf.apache.org/core"

 xmlns:wsa="http://cxf.apache.org/ws/addressing"

 xmlns:http="http://cxf.apache.org/transports/http/configuration"

 xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

 xmlns:beans='http://www.springframework.org/schema/beans'

 xmlns:jaxws='http://cxf.apache.org/jaxws'

 xmlns:ns1='http://secure_invoke/helloworld'

 xsi:schemaLocation="

 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd

 http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/

configuration/http-conf.xsd

 http://schemas.xmlsoap.org/ws/2005/02/rm/policy http://schemas.xmlsoap.org/ws/2005/02/

rm/wsrm-policy.xsd

 http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-

manager.xsd

Configuring the Client endpoint

21

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/

spring-beans.xsd

 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <bean id="UsernameTokenSign_Request"

 class="org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor" >

 <constructor-arg>

 <map>

 <entry key="action" value="UsernameToken Timestamp Signature"/>

 <entry key="passwordType" value="PasswordDigest"/>

 <entry key="user" value="clientx509v1"/>

 <entry key="passwordCallbackClass"

 value="org.jboss.test.ws.jaxws.samples.wsse.ClientUsernamePasswordCallback"/>

 <entry key="signaturePropFile" value="etc/Client_Sign.properties"/>

 <entry key="signatureKeyIdentifier" value="DirectReference"/>

 <entry key="signatureParts"

 value="{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd}Timestamp;{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body"/>

 </map>

 </constructor-arg>

 </bean>

 <bean id="UsernameTokenSign_Response"

 class="org.apache.cxf.ws.security.wss4j.WSS4JInInterceptor" >

 <constructor-arg>

 <map>

 <entry key="action" value="UsernameToken Timestamp Signature"/>

 <entry key="passwordType" value="PasswordText"/>

 <entry key="user" value="serverx509v1"/>

 <entry key="passwordCallbackClass"

 value="org.jboss.test.ws.jaxws.samples.wsse.ClientUsernamePasswordCallback"/>

 <entry key="signaturePropFile" value="etc/Client_Encrypt.properties"/>

 <entry key="signatureKeyIdentifier" value="DirectReference"/>

 </map>

 </constructor-arg>

 </bean>

 <cxf:bus>

 <cxf:outInterceptors>

 <ref bean="UsernameTokenSign_Request"/>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJOutInterceptor"/>

 </cxf:outInterceptors>

 <cxf:inInterceptors>

 <ref bean="UsernameTokenSign_Response"/>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJInInterceptor"/>

 </cxf:inInterceptors>

 </cxf:bus>

</beans>

This example configures the web service client to use username token and digital signature authentication.

Chapter 5.

22

UDDI Integration

5.1. Overview

The integration of a UDDI client into the RiftSaw runtime codebase allows for the auto-registration of BPEL

services to an UDDI registry upon deployment of the service. The registration process uses the jUDDI-3

client libraries which are capable of communicating to any UDDI v3 complaint registry.

Upon deployment both the Service and its BindingTemplate (EndPoint information) are registered, and a

partnerLinkChannel is created for each partnerLink. UDDI lookup will obtain the WSDL Endpoint from

the UDDI and access this URL to obtain the WSDL straight from the Service. Upon undeployment the

BindingTemplate is removed from the UDDI Registry.

5.2. UDDI config properties

By default RiftSaw uses the jUDDI client libraries of JBossESB/SOA-P, and the client configuration is

found in the deploy/jbossesb.sar/esb.juddi.client.xml. Both the name of the ClerkManager and the Clerk

itself are specified in the bpel.properties file.

Table 5.1. The UDDI related properties in the bpel.properties

attribute type (default) description

bpel.uddi.registration boolean (true) If set to 'false', the UDDI

integration is turned off. The

RiftSaw installation process sets

this value to 'true' only if the

jbossesb-registry.sar is detected

containing a jUDDI v3 registry.

In all other case it is defaulted to

false.

bpel.webservice.secure boolean (false) The UDDI Registration process

registers an WSDL AccessPoint

in the BindingTemplate for the

BPEL Service it is registering.

The BPEL server exposes the

service WSDL Endpoint on the

WS stack (Currently we support

JBossWS and CXF), if your WS

stack is configured to a use a

secure (https) protocol, then you

need to switch this setting to

'true'. Note that this setting is used

during the registration process

only.

UDDI config properties

23

attribute type (default) description

bpel.uddi.client.impl String

(org.jboss.soa.bpel.uddi.UDDIRegistrationImpl)

Name of the class

that implements the

org.jboss.soa.bpel.runtime.engine.ode.UDDIRegistration

interface.

bpel.uddi.clerk.config String (not used by default) Defines the path to the

bpel.uddi.client.xml

config file. This can be left

commented out if you want to use

the jbossesb.sar/

esb.uddi.client.xml.

However in that case

a

bpel.uddi.clerk.manager

needs to be defined.

bpel.uddi.clerk.manager String (esb-registry) Defines the ClerkManager

name that will be used

if the bpel.uddi.clerk.config

is left commented out.

This value should correspond

to the name of the

manager in the

esb.juddi.client.xml.

Note that if the

bpel.uddi.clerk.config is defined,

the setting of the

bpel.uddi.clerk.manager is

ignored.

bpel.uddi.clerk String (BPEL_clerk) Defines the Clerk name that

will be used. This value should

correspond to the name of the

clerk in the

esb.juddi.client.xml.

By default this is set to

'BPEL_clerk'.

bpel.uddi.lookup boolean (true) If set to true, the creating process

of the partner channel will do

a lookup by serviceName in the

UDDI, and a WSDL Endpoint is

retrieved. This WSDL Endpoint

is then used to obtain the WSDL.

This process makes it easier to

move Endpoints around within

Default configurations

24

attribute type (default) description

your deployment, without having

to update the partnerlink WSDL

files in your bpel deployments.

Note that an it is still a

requirement to deploy the initial

partnerlink WSDL file for each

partnerLink.

5.3. Default configurations

When RiftSaw is deployed to JBossAS-5.1.0, jUDDI v3 is not installed, and therefore the UDDI integration

is turned off (bpel.uddi.registration=false).

When RiftSaw is deployed to SOA-P-5.0.0 (or JBossESB 4.8 or higher) UDDI integration is turned on and

the bpel.uddi.client.impl is set to org.jboss.soa.bpel.uddi.UDDIRegistrationImpl. The jbossesb.sar/

esb.uddi.client.xml is used, with manager name 'esb.registry'.

5.4. Other UDDI v3 Registries

Other UDDI v3 compliant registries can be used, however the UDDIv3 spec only requires communication

using the UDDI WebServices. To set up SOAP based communication specify the JAXWS-Transport.

At this point it makes sense to no longer use the the esb.uddi.client.xml, but rather use your own

bpel.uddi.client.xml. For more details please see the jUDDI v3 documentation.

5.5. UDDI Registry Entities and UDDI Seed Data

In the esb.uddi.client.xml a few properties are defined that are used by the Clerk at

registration time. These settings of these values can be customized, however they must correspond

to the UDDI seed data specified for the jbossesb publisher, in the jbossesb-registry.sar/

juddi_custom_install_data. So you will need to change it there as well.

The clerk is configured to use the jbossesb publisher and the keyDomain is set to "esb.jboss.org".

The businessKey is set to "redhat-jboss".

The serviceDescription is set to "BPEL Service deployed by Riftsaw".

The bindingDescription is set to "BPEL Endpoint deployed by Riftsaw".

Note that in SOA-P-5 the jbossesb-registry.sar/esb.uddi.xml contains a property

juddi.seed.always which is set to "true". This means that that it is always trying to load the root seed data

on startup of the server. It is recommended to turn this value to "false" once you are content with the UDDI

Seed Data.

Chapter 6.

25

JBoss ESB Integration

6.1. Overview

This section outlines the support provided for the direct integration between RiftSaw and JBossESB.

Bi-directional loose integration is available through the use of web services. For example, an ESB action

may invoke a BPEL process running within RiftSaw by invoking the appropriate web service represented

by a WSDL interface. Similarly, a BPEL process can invoke an ESB managed service that is capable of

presenting itself as a web service.

However this section will describe how integration between RiftSaw and JBossESB actions can be achieved

without the use of web services (i.e. WSDL and SOAP).

6.2. Using the BPELInvoke ESB action

The BPELInvoke ESB action can be used within a jboss-esb.xml to request an invocation on a BPEL process

running inside RiftSaw. The only constraints are that RiftSaw is installed within the same Java VM and that

the requested BPEL process must have been deployed to the local RiftSaw engine.

The following example illustrates the BPELInvoke ESB action being used as part of the bpel_helloworld

sample.

<action name="action2" class="org.jboss.soa.esb.actions.bpel.BPELInvoke">

 <property name="service" value="{http://www.jboss.org/bpel/examples/wsdl}HelloService"/>

 <property name="port" value="HelloPort" />

 <property name="operation" value="hello" />

 <property name="requestPartName" value="TestPart" />

 <property name="responsePartName" value="TestPart" />

</action>

The ESB action class is org.jboss.soa.esb.actions.bpel.BPELInvoke.

The properties for this ESB action are:

• service

This property is mandatory, and defines the service name registered in the WSDL associated with the

deployed BPEL process.

• port

This property is optional, and defines the port name registered in the WSDL associated with the deployed

BPEL process. This parameter is only required if port specific endpoint configuration information has

been registered as part of the BPEL process deployment.

Using the BPELInvoke ESB action

26

• operation

This property is mandatory, and represents the WSDL operation that is being invoked.

• requestPartName

This optional property can be used to define the WSDL message part that the inbound ESB message

content should be mapped to. This property should be used where the ESB message does not already

represent a multi-part message.

• responsePartName

This optional property can be used to extract the content of a response multi-part WSDL message, and

place this in the ESB message being passed to the next ESB action in the pipeline. If this property is not

defined, then the complete multi-part message value will be placed in the ESB message.

• abortOnFault

This optional property can be used to indicate whether a fault, generated during the invocation of a BPEL

process, should be treated as a message (when the value of this property is 'false'), or as an exception that

will abort the ESB service. The default value is 'true', causing the ESB service to abort.

This ESB action supports inbound messages with content defined as either:

• DOM

If the message content is a DOM document or element, then this can either be used as the complete

multi-part message, or as the content of a message part defined using the requestPartName property.

If the message content is a DOM text node, then this can ONLY be used if a multi-part name has been

defined in the requestPartName property.

• Java String

If the message content is a string representation of an XML document, then the requestPartName is

optional. If not specified, then the document must represent the multipart message.

If the message content is a string that does not represent an XML document, then the requestPartName

must be specified.

When the message content represents the complete multipart message, this must be defined as a top level

element (whose name is irrelevant) with immediate child elements that represent each of the multiple parts

of the message. Each of these elements must then have a single element/node, that represents the value of

the named part.

<message>

 <TestPart>

 Hello World

 </TestPart>

</message>

Fault Handling

27

This shows an example of a multipart message structure. The top element (i.e. message) is unimportant.

The elements at the next level represent the part names - in this case there is only a single part, with name

TestPart. The value of this part is defined as a text node, with value "Hello World". However this could

have been an element representing the root node of a more complex XML value.

The following diagram illustrates the inter-relationship of the JBossESB bpel_helloworld quickstart and the

RiftSaw BPEL process configuration files.

6.2.1. Fault Handling

The normal response from a WSDL operation will be returned from the BPELInvoke ESB action as a normal

message and placed on the action pipeline ready for processing by the next ESB action, or alternatively if

no further actions have been defined, then returned back to the service client.

Faults, associated with a WSDL operation, are handled slightly differently. Depending on configuration

it is possible to receive the fault as an ESB message or for the fault to be treated as an exception which

aborts the action pipeline. The configuration property used to determine which behaviour is used is called

abortOnFault. The default value for this property is "true". As an example, from the loan fault quickstart

sample,

Fault Handling

28

<action name="action2" class="org.jboss.soa.esb.actions.bpel.BPELInvoke">

 <property name="service" value="{http://example.com/loan-approval/wsdl/}loanService"/>

 <property name="operation" value="request" />

 <property name="abortOnFault" value="true" />

</action>

A WSDL fault has two relevant pieces of information, the fault type (or code) and the fault details. These

are both returned in specific parts of ESB message's body.

1. Fault code (as javax.xml.namespace.QName)

ESB message body part: org.jboss.soa.esb.message.fault.detail.code

This body part identifies the specific WSDL fault returned by the BPEL process, associated with the

WSDL operation that was invoked.

Warning
The specific version of the QName used by the JBoss server is from the stax-api.jar

found in the server's lib/endorsed directory. If the client does not also include this jar

in a folder that is in its endorsed directories, then a class version exception will occur

when this ESB message part is accessed.

2. Fault code (as textual representation of QName)

ESB message body part: org.jboss.soa.bpel.message.fault.detail.code

This body part will return the textual representation of the QName for the fault code. The textual

representation is of the form "{namespace}localpart" and can be converted back into a QName using the

javax.xml.namespace.QName.valueOf(String) method.

3. Fault details

ESB message body part: org.jboss.soa.esb.message.fault.detail.detail

This body part will contain the textual representation of the message content associated with the fault.

Chapter 7.

29

Database

7.1. Upgrade database schema

The RiftSaw database schema has been changed between 2.0.0.Final and 2.1.0.Final, please refer to this

wiki page for the upgrade detail information.

7.2. Database schema diagram

Below is the EER Diagram generated by Mysql Workbench tool.

Note
This diagram is from RiftSaw 2.1.0.Final database schemas.

http://community.jboss.org/wiki/RiftSawDatabaseupgrade
http://community.jboss.org/wiki/RiftSawDatabaseupgrade

Database schema diagram

30

	RiftSaw 2.1.0.Final
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview

	Chapter 2. Administration
	2.1. Overview
	2.2. BPEL Console
	2.2.1. Overview
	2.2.2. Logging in
	2.2.3. Deployed Process Definitions
	2.2.4. Process Instances
	2.2.5. Retiring and Reactivating Process Definitions

	2.3. BPEL Properties

	Chapter 3. Deploying BPEL Processes
	3.1. Overview
	3.2. Direct deployment to JBossAS server
	3.3. Eclipse based Deployment
	3.4. Changing Endpoint Configuration Properties

	Chapter 4. Web Service Configuration
	4.1. Overview
	4.2. Configuring a JAX-WS Handler
	4.3. Apache CXF Configuration
	4.3.1. Configuring the Server endpoint
	4.3.2. Configuring the Client endpoint

	Chapter 5. UDDI Integration
	5.1. Overview
	5.2. UDDI config properties
	5.3. Default configurations
	5.4. Other UDDI v3 Registries
	5.5. UDDI Registry Entities and UDDI Seed Data

	Chapter 6. JBoss ESB Integration
	6.1. Overview
	6.2. Using the BPELInvoke ESB action
	6.2.1. Fault Handling

	Chapter 7. Database
	7.1. Upgrade database schema
	7.2. Database schema diagram

