RiftSaw 2.1.0.Final

User Guide

by Gary Brown, Kurt Stam, Helko Braun, and Jeff Yu

T O Y VT 1

b o 4111 g TR o =L o PR 2
28 T @Y= 4= PP 2

2.2, BPEL CONSOIuiiieiiti ettt ettt e et e et e e et e et e aaan s 2
A T © V= 4 1= P 2

a2 oo o1 1o [T o TSP 2

2.2.3. Deployed Process DEfiNITIONScoeeueniiiiiiee e 3

2.2.4, ProCeSS INSANCESieiiiieie ettt ettt e e e enas 3

2.2.5. Retiring and Reactivating Process DefinitionSoooevviieiiiinieiiiiieceii e, 5

G I = T I = (0] = =" 6

3. DEPIOYING BPEL PrOCESSESiiiiiieiiii ettt ettt et e e et e e e e 8
TN @ = o= 1 PSPPI 8

3.2. Direct deployment t0 JBOSSAS SEIVEN ...ouuuiiiiiiiii et e ettt e et eebe e e e 8

3.3. Eclipse based DEPIOYMENLoiiiiieiiiieii e e e e e e e e e e aeas 9

3.4. Changing Endpoint Configuration Propertiesc...vveiiiiiiieiiiiiineee e 16

4, WED Service ConfigUIationiciuiieiie e e e e e e e e e e e e e et e et e e et e e eaneeeees 17
T © = oV 17

4.2, Configuring @ JAX-WS Handlercc.oiiiiiiiiiiiiii e 17

4.3. Apache CXF CONFIQUIBLIONiiiiiiieeeiii ettt e e e e e eens 18
4.3.1. Configuring the Server endpointccuiviiiiiiiiii e 18

4.3.2. Configuring the Client endpointcoouuiieiiiii e 20

LRI T T N o= = o] o P 22
L3N R @Y= 4= 22

5.2. UDDI CONfiQ PIrOPEITIES .. cvvuieiiieeii et e et e e e e e e e e e e et e e et eeaaeeanaas 22

5.3. Default CONFIQUIBLTIONSuuneiiitie ettt e et e eeaanas 24

5.4. Other UDDI V3 REJISITES ...cevviiiieiiii ettt e et e et e e e et eaeaen s 24

5.5. UDDI Registry Entities and UDDI Seed Da@.........ccuuuveiiiiiiieiiiiiieeecii e 24

6. JBOSS ESB INEEGIatiON ...uuiiiiiiii i e e e e e et e e e e e e e e e e e et e e et e e et eranaeees 25
L30T Y 25

6.2. Using the BPELINVOKE ESB aCtiONcovviiiiiiicii e e e 25
6.2.1. FaUlt HaNAIiNG ... ceeeieeiiiii e 27

A DL = o = PSP 29
7.1. Upgrade datalase SChemMa.iiiiii e 29

7.2. Database sSChema diagramuiiiiii e 29

Chapter 1.

| ntroduction

1.1. Overview

Thisisthe User Guide for the RiftSaw BPEL process engine.

RiftSaw provides a JBoss AS integration for the Apache ODE BPEL engine. For detailed information on
executing BPEL processes within Apache ODE, we would refer the reader to the Apache ODE website
and documentation.

In addition to the ability to run the Apache ODE engine within JBoss AS, the RiftSaw project also provides
a GWT based administration console, replaces the Axis2 based transport with JBosswS (which can be
configured to use Apache CXF), and provides tighter integration with JBossESB.

http://ode.apache.org

Chapter 2.

Administration

2.1. Overview

This section describes the administration capabilities associated with RiftSaw.
2.2. BPEL Console

2.2.1. Overview

This section provides an overview of the BPEL Console. The console provides the ability to view:

» The process definitions deployed to the BPEL engine

 The process instances executing in the BPEL engine

2.2.2. Loggingin

The BPEL console can be located using the URL: http://local host:8080/bpel-consol e.

Thefirst screen that is presented is the login screen:

File Edit View History Bookmarks Tools Help

« v ﬂ ‘ﬂ [<. | http://localhost: 8080/bpel-console/app.html#errai_ToolSet_Processes;n v] [Plv Google Q‘g]

[Most Visitedv @@ Release Notes {Fedora Project~ [EjRed Hatv [E3Free Contentv [z Zimbra Email/Cale... & Open tickets »

| <. BPM Console | 4k v
BPEL Console x

Username: [admin
Password: 9000008

Submit

Varsion: 2.0.1

Done

http://localhost:8080/bpel-console

Deployed Process Definitions

The default username is admin with password password.

The Access Control mechanism used by the admin consoleis configuredinthe$depl oyFol der/ bpel -
consol e/ bpel -identity.sar/ META-|I NF/ j boss-servi ce. xm . The JAASlogin module is
initially set to use a property file based access mechanism, but can be replaced to use any appropriate
alternative implementation.

The users for the default mechanism are configured in the property file $depl oyFol der/ bpel -
consol e/ bpel -identity. sar/bpel -users. properties. The entries in this file represent
username=password.

The user roles for the default mechanism are configured in the property file $depl oyFol der/ bpel -
consol e/ bpel -identity. sar/bpel -rol es. properties. The entries in this file represent
username=role. The only role of interest currently is administrator.

2.2.3. Deployed Process Definitions

Onceloggedin, the'Process Overview' tab showsthe currently deployed BPEL processesand their versions.

@ BPM/Console - EEE
File Edit View History Bookmarks Tools Help
€@ v B e [<. | http://localhost: 8080/bpel-console/app.html#errai_ToolSet_Processes;n V] [-‘lv -Cg]
[Most Visitedv @@ Release Notes {FyFedora Projectv [FjRed Hatv E3Free Contentv [z Zimbra Email/Cale... & Open tickets £
| < BPM Console | & -
£ admin Logout
Processes

“ Process Overview
S;'};‘ Process Overview

Refresh | An |

o S T T
loanApprovalProcess 1
Simplelnvoke 1
HelloWorld 1
HelloGoodbye 1
POSenvice 1
InventoryService 1 N
Execution details
Process:
Instance 1D:
Key:
State
Start Date:
Settings « I » ‘ Activity:

Done

2.2.4. Process | nstances

When a process definition is selected, the list of active process instances for that process definition (and
version) will be displayed in the right hand panel.

Process Instances

BPM Console -"Mozilla Firefox
File Edit View History Bookmarks Tools Help

« v ﬂ X) ‘ [<. | http://localhost: 8080/bpel-console/app.html#errai_ToolSet_Processes;n V] [::lv |-:I1'cnc";| e Q]
Most Visitedv @@ Release Notes {3 Fedora Project~ EjRed Hatv [EfFree Contentv [z Zimbra Email/Cale... & Open tickets S
<. BPM Console | & v

£ admin _legout

Processes @ Process Overview

{é} Process Overview
Refresh
[Process ~~ |v. | SEIG DR I
1

loanApprovalProcess 1 RUNNING 2010-02-26 13:59:27
Simplelvoke L2 x RUNWNNG 20100226140001
HelloWorld 1 3 RUNNING 2010-02-26 14:00:04
HelloGoodbye
POSemvice 1-
InventoryService 1
Execution details
Process: {httpc/fwww.jboss.org/bpel/examplesiHelloGoodbye Instance Data
Instance ID: 2
Key:
State RUNNING
Start Date: 2010-02-26 14:00:01
Settings &« I » ‘ Activity: n'a

Done

When aprocessinstanceis selected, its detailswill be displayedin the lower Execution Detailswindow. The
Instance Data button will also become enabled, allowing further detail about the process to be displayed.

Retiring and Reactivating Process Definitions

® BEM|Consale - |Mozilla Firefox BEE
File Edit View History Bookmarks Tools Help

* ~ @ ﬂ [".", http://localhost:8080/bpel-console/app.html#errai_ToolSet_Processes;none V] [-‘]v Q]

Most Visitedv @@ Release Notes (5 Fedora Projectv [EjRed Hatv {5 Free Contentv [Z Zimbra Email/Cale... & Open tickets

| <. BPM Console | ~
Process Instance Data; 2 -0OX J
proces: 2 [T Java e vae
P myHellovar xs:string java.lang.string message
mesg\Var xs:string java.lang.String message -I
L3

Settings « I B I Activity: na

Done

2.2.5. Retiring and Reactivating Process Definitions

When aprocessdefinitionisinitialy deployed (i.e. thefirst version of the process), it automatically becomes
the active process definition. If that BPEL process definition is subsequently change and redeployed, then
the previous version is retired, and the new version becomes the active version.

The only difference between an active and retired process definition isthat aretired process definition can
no longer create new process instances. However if there are current process instances associated with the
retired process definition version, then these will continue to execute.

On some occasions, the admini strator may wish to changewhich version of aprocessdefinitionisconsidered
the active version. Or they may simply want to retire the currently active process definition, so that no
more process instances can be created, only allowing the already running processinstancesto continue until
completed.

To changethe status of aprocessdefinition, the administrator should sel ect the Runtimetab from thelefthand
panel, and then select the Deployments option. This will show the process definitions, their versions and
their current status (active or retired).

BPEL Properties

@ BPM Console - MozillalFirefox EHEE
File Edit View History Bookmarks Tools Help

‘ v @ ﬂ ["_", http://localhost: 8080/bpel-console/app.html#errai_ToolSet_Runtime; Deployments.0 V] I-‘]v

Ity

[Most Visitedv @ Release Notes [EjFedora Projectv [3Red Hatv {EjFree Contentv [z Zimbra Email/Cale... = Opentickets s Savara - JBoss Com...

| <. BPM Console | 4= .
£ admin Logout
Processes = Deployments
Runtime
B Deployments izl Y
T T
{http:ihwww jboss.org/bpeliexamplesjHelloWorld-2 active

retired
retired
retired

{hitp jboss. 5 active

Deployment details | Properties | < |

Retire
ID: e2h0dHABLY93d3cuamJve 3Mub3JInL2IwZWwvZXhhbX BsZXNISGYsbGIHb29K Y nliLTU= 7~J
Name: {http:/ivamv. jboss .org/bpelfexamples}HelloGoodbye-5
Processes: [{http:/fwaw jboss. org/bpel/examples}HelloGoodbye]
Settings
A
Done

To change aparticular version fromretired to active, simply select theretired version and pressthe Activate
button in the bottom right.

Toretire acurrently active process definition, simply select the particular version and then press the Retire
button in the bottom right.

2.3. BPEL Properties

When RiftSaw has been installed within the JBossAS environment, there is a property file located at
${JBossAS}/ server/defaul t/depl oy/riftsaw sar/bpel.properties.

This property file contains a number of properties that are specific to ODE, and if interested in these
properties, then you should refer to the ODE documentati on. Only one point to note, the name of the property
in this file maybe prefixed with bpel., however in the ODE documentation the prefix would be ode..

This section will present the properties that are specific to RiftSaw.

Table 2.1. RiftSaw specific properties

bpel.uddi.* These properties relate to the UDDI support, which
is discussed in a subsequent chapter.

bpel jaxws.client.initializer.impl This property is automatically set upon installation,
based on the JAXWS stack being used. This value
should not be changed.

BPEL Properties

bpel.ws.stablel nterface (default false)

This property determines whether the Web Service
interface, associated with a BPEL process, will be
updated when a new version of the BPEL process
is deployed. The benefit of setting this to false is
that changes to the WSDL will be made active
with the BPEL process. However the issue is that
during the transition between the interfaces, the
web service will momentarily be unavailble - which
may cause heavily used services to reject requests.
By setting this value to true, then the web service
will remain available while the BPEL process is
updated, however any changes in the WSDL will
not be made available.

Chapter 3.

Deploying BPEL Processes

3.1. Overview

This section outlines the mechanisms that can be used to deploy a BPEL process to RiftSaw BPEL engine
running within aJJBoss AS server.

3.2. Direct deployment to JBossAS server

The direct deployment approach is demonstrated using an Ant script in each of the quickstart examples.
For example,

<l-- Inport the base Ant build script... -->
<property file="../../../install/depl oynent.properties" />

<property nanme="version" value="1" />

<property name="server.dir" value="${org.jboss. as. hone}/server/ ${org.]jboss. as.config}"/>
<property nanme="conf.dir" value="${server.dir}/conf"/>

<property nanme="depl oy.dir" val ue="${server.dir}/deploy"/>

<property nanme="server.lib.dir" value="${server.dir}/lib"/>

<property nanme="sanpl e.jar.nane" val ue="${ant. project.nane}-${version}.jar" />

<target name="depl oy">

<echo>Depl oy ${ant. project.nanme}</echo>

<j ar basedir="bpel" destfile="${deploy.dir}/${sanple.jar.nane}" />
</target>

<target nanme="undepl oy">

<echo>Undepl oy ${ant.project.nane}</echo>

<delete file="${deploy.dir}/${sanple.jar.nanme}" />
</target>

This excerpt from the Ant build file for the hello_world quickstart example shows that deploying a RiftSaw
BPEL process using Ant is very straightforward. The main points of interest are:

* Itisnecessary toidentify thelocation of the JBBoss AS server in which the BPEL processwill be deployed.
This is achieved in this example by referring to the depl oyment . properti es file that has been
configured in the RiftSaw distribution (install folder).

« If a versioned approach is being used, so that multiple versions of the same BPEL process may be
deployed at one time, then the name of the archive (jar) containing the BPEL process (and associated
artifacts) has a version number suffix. This would need to be manually incremented for each distinct
version of the BPEL process being deployed.

Eclipse based Deployment

Warning

Currently the version must be specified as a single integer value. Non-numeric values,
such as versions expressed in a major.minor.incremental (maven style), will result in an
exception when deployed to the server.

» Thenext stepisto definethe deploy target, which will createthe BPEL processarchive, using the contents
of the bpel sub-folder in this case, and store it within the JBoss AS server'sdepl oy folder.

e Thefinal step is to define the undeploy target, which simply removes the BPEL process archive from
the JBoss AS server'sdepl oy folder.

3.3. Eclipse based Deployment

This section will explain how to deploy an Eclipse BPEL project to the RiftSaw BPEL engine running in
aJBOsSAS server.

Thefirst step isto create or import the Eclipse BPEL project. In this case we are going to import an existing
project fromthe${ Ri f t Saw} / sanpl es/ qui ckstart/ hel | o_wor | d folder. Thiscan be achieved
by selecting the Import ... menu item associated with the lefthand navigator panel in Eclipse, and then select
the General->Existing Projects into Workspace entry and press the Next button.

= —

i Import x|
Select i \J
Create new projects from an archive file or directory. H

Select an import source:

~ (= General —
[E Archive File
[, File System
El Preferences

P = cvs

b =EJB

P = Guwvnor

I (= Java EE

P = Plug-in Development

S PR

@ Next = H Cancel

Then press the Browse button and navigate to the hel | o_wor | d quickstart folder. Once located, press
the Finish button.

Eclipse based Deployment

s

Import Projects E f
Select a directory to search for existing Eclipse projects.

-

@ Select root directory: [:HOT}SampIesfquickstartrhellc_wcrldl Browse. ..

() Select archive file: | |

Projects:

Quickstart_bpel_hello_waorld (/NotBackedUp/gbrown/ftest | Select All

Deselect All

[+ M I D]

[] Copy projects into workspace
Working sets

[] Add project to working sets

®

Cancel H Finish

|'I.J Import x|

Once the project has been imported, you can inspect the contents, such as the BPEL process and WSDL

description.

10

Eclipse based Deployment

' Java EE - Quickstart_bpel_hello_world/bpeiContent/HelloWorld.bpel - Eclipse =
Fle Edit Source Navigate Search Project Run Window Help
e $-0- Q|G- 6- (@ |de |02 Er R & = i’
LR e
[#5 Project Explorer &2 =02 x4 = 8 B outline & Bl task = 8
g% = 4 2 HelloWorld 2w
< [& Quickstart_bpel_hello_world g fpPartnerLinks & %, ff@ Partner Links
¥ (= bpelContent £ Sequence Tl TS P @ Variables
= @ Variables R

P ¥ bpel-deploy.xmi @& Correlation Sets

b % HelloWorld.bpel | start vVan ﬁ Message Exchanges

mesgVar
[* ®HelloWorld. .wsdl g ' = Sequence

b= = assignHelloMesg (@ Correlation Sets# %
messages

#¥ Message Exc... % ®

& build.xml & end
P [2 readme txt k.
Design | Source
[£/ Markers = Properties 4k Servers [Data Source Explorer | 2 Snippets | El Console 2 =g

No consoles to display at this time.

el BD

e

The next step isto create a server configuration for the JBoss AS environment in which the RiftSaw BPEL
engine has previously been installed. From the Eclipse Java EE perspective, the Server tab should bevisible
inthe lower region of the Eclipse window. If thisview isnot present, then go to the Window-> Show Views-
> Servers menu item to open the view explicitly.

In the Servers view, right click and select the New-> Server menu item.

11

Eclipse based Deployment

ey

¥ New Server =
Define a New Server
Choose the type of server to create
Server's host name: [Iocalhost l
-

Select the server type:

e fiter o l

—
id |Boss AS 4.2
id |Boss AS 5.0

JBoss AS 5.1

2 am =y

|Boss Application Server 5.1

Server name: [JBGSS 5.1 Runtime Server]
Server runtime environment: [JBGSS 5.1 Runtime 3] Add...
))
@ Next >] [Cancel] [Finish

Select the appropriate JBoss AS version, and then press Finish.

Before being able to deploy an example, we should start the new server. This can be achieved by right
clicking on the server in the Serverstab, and selecting the Siart menu item. The output from the server will
be displayed in the Console tab.

Once the server has been started, right click on the server entry again, and select the Add and Remove ...
menu item.

12

Eclipse based Deployment

-,

< Add andRemove.. X

Add and Remove
Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

* Quickstart_bpel_hello

=
I
o
v

Add All ==

(11 [1+

If server is started, publish changes immediately

@ Cancel H Einish

Select the Quickstart_bpel _hello_world project, press the Add button and the press the Finish button. This
will cause the project to be deployed to the server.

[£{ Markers | = Properties | 4it Servers 22 ¥ Data Source Explorer| £

~ & JBoss 5.1 Runtime Server [Started, Synchronized]

P 4 Quickstart_bpel_hello_world [Synchronized]

Once the project has been deployed, it will show up as an entry below the server in the Servers tab.

The final step is to test the deployed BPEL process. In this example, we can do this using the ant script
provided with the quickstart sample. Right click on the bui | d. xmi filein the root folder of the project,
and select the Run As-> Ant Build ... menuitem. NOTE: It isimportant to select the menuitemwiththe"...",
asthis provides a dialog window to enable you to select which ant target you wish to perform.

13

Eclipse based Deployment

F Edit Configuration x

Edit configuration and launch. 0

Run an Ant build file.

Name: | Quickstart_bpel_hello_world build xmi |

=] main (uﬁh Refresh (IE Build L\%Targets g Classpath] <@ Properties] =i JRE] B Envirunmenﬂ =] gommon}

Check targets to execute:

Name Description

W | deploy [default]
[J @ undeploy
sendhello

(I I D3}
1 out of 3 selected

[] Sort targets

[] Hide internal targets not selected for execution

Target execution order:

sendhello % ‘ |

[ey [reern |

@ [Close]||

Iz
C
3

Deselect the deploy target, and select the sendhello target, before pressing the Run button. Thiswas send a
test 'hello' message to the server, and then display the response in the Console tab.

| Design| Source| - ”

2! Markers [I‘:I Properties (ﬂ Servers ﬂlﬂ Data Source Explorer ﬂ"g Snippets (E Console &3 & Search} =g

<terminated= Quickstart_bpel_hello_world build.xml| [Ant Build] ,fusrjlibjjvm,’java—l.&n—openidl‘ ® % | B 5 = By e

ze. Using getResponseBodyAsStream instead is recommended. [
ens="http://www.]jboss.org/bpel/examples/wsdl '><TestPart=Hello '.'furldc,-’TestPartx,-'udens:helluRespunsex,’enu:Budyx,fenu

|| P

If you now want to update the BPEL process, select the assignHelloMesg node in the diagram, and select
the Properties view. On the |eft of the view isavertical list of tabs. Select the Details tab. Then select the
"Expression to Variable" from the list, and update the concat function's second parameter - for example to
add 'UPDATED' to the text.

14

Eclipse based Deployment

(& lJavalEElIQuickstartibpellhellolworld bpelcontent/Helloworldibpel EClipse! DEE
File Edit Navigate Search Project Run Window Help
B E 0 [Go|[@ma s |0]a|orne © o [} ® [java e
[5 Project Explorer 53 = 8/ 1 bpel-deployxml @ Helloworld.wsdl & *HelloWorld.bpel 2 = B3z outline 2~ TaskLi| = B
2 -) q 2 Helloworld (g = =
~ & Quickstart_bpel_hello_world ® e b o Partner Links
< ;= bpelContent % Sequence helloPartnerLink b @ Variables
& bpel-deploy.xml El ® Variables &% @ Correlation Sets
<2 Helloworld.bpel &) start myvar # Message Exchanges
22 Helloworld.wsdl . . mesgVar v % Sequence
V= Messages = assignHelloMesg @& Correlation 5...% % &) start
X hello_requestl.xml # Message Exc... & %
build.xml & end &end
[E readme.txt =]
= Servers @
Design| Source
[2 Markers =l Properties £2 4 Servers | {8 Data Source Explorer| [Snippets| B Console +” Search o ¥ =B
= assignHelloMesg
P —_—— — [
Description Variable to Variable From: | Expression ¢ I | variable
Details Expression language: |Same as Proce & ‘ ® mesgVar : string H
Join Behavior ——— .
H Icnncat($ng.sgv.ar,' WorldUPDATED" ® myVar: HelloMessage
Documentation Wl mestecwing g
a =D @i)
0 Writable Smart Insert 1:31

Once the update has been saved, go to the Server View and select the Full Publish option from the menu
associated with the Quickstart_bpel_hello_world project. This will cause the project to be re-deployed to
the RiftSaw server.

The final step is to then re-run the 'sendhello’ target within the bui | d. xm file, to send a new request,
and view the response. The response should now be modified according to the changes you made in the
BPEL process.

Design Source

[2i Markers | & Properties | 4% Servers [Data Source Explorer | 2 Snippets | El Console &2 < Search =g
<terminated> Quickstart_bpel_hello_world build.xml [Ant Build] /usr/lib/jvm/java-1.6.0-openjdk % % | B GF |E”@| =2 B e

g getResponseBodyAsStream instead is recommended

[A]
p://wew. jboss.org/bpel/examples/wsdl'><TestPart>Hello WorldUPDATED</TestPart></odens:helloResponse></env:Body></env
3

| I D)

If you expand the deployed project node, in the Server View, you will seethat both of the deployed versions
are shown. The older version is retained as there may still be BPEL process instances using that version of
the process. If you right-click on each of the child nodes, you will see that it is aso possible to undeploy
the specific versions. However, if you explicitly undeploy a version, then any remaining active process
instances for that version will be terminated.

Y ou can then use the menu associated with the project, contained in the Server View, to undeploy the project
(using the Add and Remove ... menu item) and finally use the menu associated with the server itself to Sop
the server.

15

Changing Endpoint Configuration Properties

3.4. Changing Endpoint Configuration Properties

Apache ODE provides the means to customise certain properties, associated with a BPEL endpoint, by
specifying the propertiesin afile with an extension of . endpoi nt .

For information on the properties that can be specified in this file, please see the Apache ODE
documentation, located at: http://ode.apache.org/endpoint-configuration.html.

: Note
1
RiftSaw currently only supports the following properties: mex.timeout

This section explains how to deploy these. endpoi nt files as part of a RiftSaw deployment.

Apache ODE supports two locations for finding these . endpoi nt files. A 'globa’ configuration
folder, which by default is ode/ VEEB- | NF/ conf , and a process deployment specific location, which is
ode/ VEEB- | NF/ pr ocesses/ $your _pr ocess. Properties associated with the 'global’ configuration
override any property values provided in the process specific location.

RiftSaw currently does not support a'global’ configuration location, so it will only obtain the configuration
filesfrom the deployed BPEL bundle. More specifically, from theroot | ocation within the BPEL deployment
unit, along side the BPEL deployment descriptor.

So, for example, if you place a file caled t est. endpoi nt in the ${Ri ft Saw}/ sanpl es/
qui ckstart/hell o_worl d/ bpel Cont ent folder, with the following content:

3 mnutes
nmex. ti meout =180000

then once deployed, the helloworld example could wait up to a maximum of 3 minutes to respond. To
test this out, edit thehel | o_wor | d. bpel and insert await activity before the response - similar to the
following:

<wai t >
<for>' PT150S </ for>
</wai t>

Thiswill wait 2 minutes 30 seconds before responding, which is 30 seconds more than the default timeout,
but still within the new timeout period specified within thet est . endpoi nt file. If you then wish to try
forcing the timeout to occur, simply increase the wait duration to 3 minutes 30 seconds, and resubmit the
test message using the ant sendhello command.

16

http://ode.apache.org/endpoint-configuration.html

Chapter 4.

Web Service Configuration

4.1. Overview

This section outlines the mechanisms that are available for configuring the web service stack used in
providing the web service for a BPEL process, as well as invoking external web services from a BPEL
process.

4.2. Configuring a JAX-WS Handler

JAX-WS is a standard Java API for client and server support of web services. The JAX-WS handler
mechanism can be used by aclient or server (i.e. the web service) to invoke a user specified class whenever
amessage (or fault) issent or received. The handler isthereforeinstalled into the message pipeline, and can
mani pul ate the message header or body as required.

The handlers are usually installed either programmatically, or through a Handler Chain annotation on the
Javainterface representing the Web Service. However, in the case of a BPEL process deployed to RiftSaw,
the JAX-W S service (representing the web service associ ated with the BPEL process) isdynamically created
on deployment.

Therefore to associate the configuration of a JAX-WS handler chain with the Web Service dynamically
created to support the BPEL process, the user must place afilecalledj ws_handl er . xm alongside the
BPEL process definition and deployment descriptor.

The following provides an example of the XML configuration associated with the j ws_handl er . xni
file. This particular exampleis used by the service_handler quickstart sample.

<handl er-chai ns xm ns="http://java. sun. com xnl / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi: schemalLocation="http://java. sun. com xm / ns/j avaee" >
<handl er - chai n>
<handl| er >
<handl er - name>JAXWSHandl er </ handl| er - nane>
<handl er - cl ass>org. j boss. soa. bpel . exanpl es. j axws. JAXWSHandl er </ handl er - cl ass>
<i ni t-paranp
<par am nane>Test Par anx/ par am nane>
<par am val ue>Test Val ue</ par am val ue>
</init-paranm
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

The format of thisfileisthe standard JAX-WS handler chain configuration. One or more handler elements
can be specified, with each handler defining a name and class. The handler configuration can optionally
provide initialization parameters that are passed to the init method on the handler implementation.

17

Apache CXF Configuration

@ Note
This mechanism only installs JAX-WS handlers on the ‘provider' web service. It is not
currently possible to configure JAX-WS handlers for the client endpoints that invoke
external web services from a BPEL process.

An exampl e of this mechanism can be found in the service_handler quickstart sample.

4.3. Apache CXF Configuration

RiftSaw integrates with JBossWS, using the JAX-WS standard AP, to support the following web service
stacks: JBossWS native and Apache CXF. This section explains how RiftSaw deployed BPEL processes
can include additional configuration specifically applicable to the Apache CXF web service stack - and
is therefore only relevant if the JBossA S application server has been configured to use this stack. See the
Getting Started Guide for information on how to switch to the Apache CXF stack when installing RiftSaw.

This section will explain how web service endpoints, whether server (i.e. representing the BPEL process) or
client (i.e. being used to invoke external web services), are configured using the A pache CXF configuration
format. It will also discuss reasons why you may wish to do this additional CXF specific configuration.
However, for further information on how to configure CXF, and the features that it offers, the reader is
referred to the Apache CXF website http://cxf.apache.org.

4.3.1. Configuring the Server endpoint

To create a CXF configuration that will be used by the RiftSaw web service provider (i.e. the server), it is
simply a case of placing afile called j bossws- cxf . xm into the root folder of the BPEL deployment
(along side the deployment descriptor).

Thisisthe samefilename as used by jbossws-cxf, when deploying aweb service based on the use of JAXWS
annotations. An example of thefile content is:

<beans

xm ns="http://ww. springframework. org/ schema/ beans

xm ns: xsi =" http://ww. w3. org/ 2001/ XM_Schena- i nst ance

xm ns: beans='http://ww. springfranework. or g/ schena/ beans

xm ns: jaxws="http://cxf.apache. org/jaxws'

xsi : schemaLocati on='" http://cxf.apache. org/ core
http://cxf.apache. org/ schemas/ core. xsd
http://ww. springfranewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/jaxws
http://cxf.apache. org/ schenas/jaxws. xsd' >

<bean i d="User nameTokenSi gn_Request"
cl ass="org. apache. cxf.ws. security.wss4j.WsS4JI nl nterceptor">
<constructor-arg>
<map>

18

http://cxf.apache.org/

Configuring the Server endpoint

<entry key="action" val ue="UsernaneToken Ti nestanp Signature"/>
<entry key="passwordType" val ue="Passwor dDi gest" />
<entry key="user" val ue="serverx509v1"/>
<entry key="passwordCal | backCd ass"
val ue="org.j boss. test.ws.jaxws. sanpl es. wsse. Ser ver User nanmePasswor dCal | back"/ >
<entry key="signaturePropFile" val ue="etc/ Server_SignVerf.properties"/>
<entry key="signatureKeyldentifier" val ue="DirectReference"/>
</ map>
</ constructor-arg>
</ bean>

<bean i d="User naneTokenSi gn_Response"
cl ass="org. apache. cxf.ws. security.wss4j.WsS4JQut | nt er cept or" >
<constructor-arg>
<nﬂp>
<entry key="action" val ue="UsernaneToken Ti nestanp Signature"/>
<entry key="passwordType" val ue="PasswordText"/>
<entry key="user" val ue="serverx509v1"/>
<entry key="passwordCal | backC ass"
val ue="org. jboss. test.ws.jaxws. sanpl es. wsse. Ser ver User nanePasswor dCal | back"/ >
<entry key="signaturePropFile" val ue="etc/ Server_Decrypt.properties"/>
<entry key="signatureKeyl dentifier" val ue="DirectReference"/>
<entry key="signatureParts"

val ue="{El enent}{http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-

1. 0. xsd} Ti nest anp; { El enent }{http://schemas. xnl soap. or g/ soap/ envel ope/ } Body"/ >

</ map>
</ constructor-arg>
</ bean>

<j axws: endpoi nt
i d=" Secur eHel | oWor | dWS
address="http:// @ boss. bi nd. address@ 8080/ Qui ckst art _bpel _secure_servi ceWs
i npl enent or =" @r ovi der @ >
<j axws: i nl nt er cept or s>
<ref bean="UsernaneTokenSi gn_Request"/>
<bean cl ass="org. apache. cxf. bi ndi ng. soap. saaj . SAAJI nl nterceptor"/>
</jaxws:inl nterceptors>
<j axws: out | nt er cept or s>
<ref bean="UsernaneTokenSi gn_Response"/ >
<bean cl ass="org. apache. cxf. bi ndi ng. soap. saaj . SAAJQut | nt erceptor"/ >
</j axws: out | nt er cept or s>
</ j axws: endpoi nt >

</ beans>

This example configures the web service to use username token and digital signature authentication.

19

Configuring the Client endpoint

it isimportant that the attribute is set to the value @provider @ to enable the dynamically
created Java class to be correctly configured during deployment.

4.3.2. Configuring the Client endpoint

When configuring client endpoints, representing web servicesinvoked by aBPEL process, the configuration
is currently separated into different files on a per port basis - similar to the approach used by the Axis2
ODE integration.

The file name is of the form jbossws-cxf-{portnanme_| ocal part}.xm , where the
portname_local_part represents the local part of the portname of the web service being invoked. For
example, if the WSDL for the invoked web serviceis:

<definitions name='"SecureHel | oWor| dWsSer vi ce'
tar get Nanespace='http://secure_i nvoke/ hel loworld" >
<port Type nane=' SecureHel | oWorld' >

</ port Type>
<servi ce name=' Secur eHel | oWor | dWsSer vi ce' >
<port nane=' SecureHel | oWorl dPort' ... >

</ port>

</ service>

</ definitions>

then the CXF configuration file would be j bossws- cxf - Secur eHel | oWor | dPort . xmi .

The CXF configuration information within thisfile is associated with the CXF bus. For example:

<beans xm ns="http://ww. springfranmework. org/schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cxf="http://cxf.apache. org/core"
xm ns: wsa="http://cxf.apache. org/ ws/ addr essi ng"
xm ns: http="http://cxf.apache. org/transports/http/configuration"
xm ns: wsrm pol i cy="http://schemas. xnl soap. or g/ ws/ 2005/ 02/ r m pol i cy"
xm ns:wsrm ngr="http://cxf.apache. org/ ws/rnl manager"
xm ns: beans=" http://ww. spri ngfranmework. or g/ scherma/ beans'
xm ns:jaxws="http://cxf.apache. org/jaxws'
xm ns: nsl="http://secure_invoke/hel |l oworl d'
xsi : schemalLocat i on="
http://cxf.apache. org/core http://cxf.apache. org/ schenas/ core. xsd
http://cxf.apache. org/transports/http/configuration http://cxf.apache. org/schenas/
configuration/http-conf.xsd
http://schemas. xm soap. or g/ ws/ 2005/ 02/ rmi pol i cy http://schemas. xm soap. or g/ ws/ 2005/ 02/
rm wsr m pol i cy. xsd
http://cxf.apache. org/ ws/rnf manager http://cxf.apache. org/ schemas/configuration/wsrm
manager . xsd

20

Configuring the Client endpoint

http://ww. springfranework. org/ schema/ beans http://ww. springfranmework. org/ schena/ beans/
spring- beans. xsd
http://cxf.apache.org/jaxws http://cxf.apache. org/ schenmas/jaxws. xsd">

<bean i d="User naneTokenSi gn_Request"
cl ass="org. apache. cxf.ws. security.wss4j.WsS4JQut | nt erceptor" >
<constructor-arg>
<map>
<entry key="action" val ue="UsernaneToken Ti nestanp Signature"/>
<entry key="passwordType" val ue="Passwor dDi gest" />
<entry key="user" val ue="clientx509v1"/>
<entry key="passwordCal | backC ass"
val ue="org. j boss. test.ws.jaxws. sanpl es. wsse. d i ent User nanePasswor dCal | back"/ >

<entry key="signaturePropFile" value="etc/Cient_Sign.properties"/>
<entry key="signatureKeyldentifier" value="DirectReference"/>
<entry key="signatureParts"

val ue="{El enent}{http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-
1. 0. xsd} Ti nest anp; {El enent}{ htt p: // schemas. xnml soap. or g/ soap/ envel ope/ } Body"/ >
</ map>
</ constructor-arg>
</ bean>

<bean i d="User naneTokenSi gn_Response"
cl ass="org. apache. cxf.ws. security.wss4j.WsS4JI nlnterceptor” >
<constructor-arg>
<map>
<entry key="action" val ue="UsernaneToken Ti nestanp Signature"/>
<entry key="passwordType" val ue="PasswordText"/>
<entry key="user" val ue="serverx509v1"/>
<entry key="passwordCal | backC ass"
val ue="org.j boss.test.ws.jaxws. sanpl es. wsse. Cl i ent User nanePasswor dCal | back"/ >
<entry key="signaturePropFile" value="etc/Cient_Encrypt.properties"/>
<entry key="signatureKeyldentifier" value="DirectReference"/>
</ map>
</ constructor-arg>
</ bean>

<cxf: bus>
<cxf:outlnterceptors>
<ref bean="User naneTokenSi gn_Request"/>
<bean cl ass="org. apache. cxf. bi ndi ng. soap. saaj . SAAJQut | nt erceptor"/>
</ cxf:outlnterceptors>
<cxf:inlnterceptors>
<ref bean="UsernaneTokenSi gn_Response"/ >
<bean cl ass="org. apache. cxf. bi ndi ng. soap. saaj . SAAJI nl nterceptor"/>
</ cxf:inlnterceptors>
</ cxf: bus>

</ beans>

This example configures the web service client to use username token and digital signature authentication.

21

Chapter 5.

UDDI Integration

5.1. Overview

Theintegration of aUDDI client into the RiftSaw runtime codebase allowsfor the auto-registration of BPEL
services to an UDDI registry upon deployment of the service. The registration process uses the jUDDI-3
client libraries which are capable of communicating to any UDDI v3 complaint registry.

Upon deployment both the Service and its BindingTemplate (EndPoint information) are registered, and a
partnerLinkChannel is created for each partnerLink. UDDI lookup will obtain the WSDL Endpoint from
the UDDI and access this URL to obtain the WSDL straight from the Service. Upon undeployment the

BindingTemplate is removed from the UDDI Registry.

5.2. UDDI config properties

By default RiftSaw uses the jUDDI client libraries of JBossESB/SOA-P, and the client configuration is
found in the deploy/jbossesh.sar/esh.juddi.client.xml. Both the name of the ClerkManager and the Clerk
itself are specified in the bpel .propertiesfile.

Table5.1. The UDDI related propertiesin the bpel.properties

attribute

bpel.uddi.registration

bpel.webservice.secure

type (default)

boolean (true)

boolean (false)

description

If st to 'false, the UDDI
integration is turned off. The
RiftSaw installation process sets
this value to 'true’ only if the
jbossesb-registry.sar is detected
containing a jUDDI v3 registry.
In al other case it is defaulted to
false.

The UDDI Registration process
registers an WSDL AccessPoint
in the BindingTemplate for the
BPEL Service it is registering.
The BPEL server exposes the
service WSDL Endpoint on the
WS stack (Currently we support
JBossWS and CXF), if your WS
stack is configured to a use a
secure (https) protocol, then you
need to switch this setting to
'true’. Notethat this setting isused
during the registration process
only.

22

UDDI config properties

attribute type (default) description
bpel.uddi.client.impl String Name of the class
(org.jboss.soa.bpel .uddi.UD DI Regighatti onl mplnplements the
org.jboss.soa.bpel .runtime.engine
interface.
bpel.uddi.clerk.config String (not used by default) Defines the path to the

bpel . uddi . client.xnl
config file. This can be left
commented out if you want to use
the j bossesb. sar/
esb. uddi . client.xm.
However in that case
a

bpel . uddi . cl er k. nanager
needs to be defined.

bpel.uddi.clerk.manager

String (esb-registry)

Defines the ClerkManager
name that will be used
if the bpel.uddi.clerk.config
is left commented out.
This value should correspond
to the name of the

manager in the
esb.juddi.client.xm .
Note that if the

bpel.uddi.clerk.config is defined,
the setting of the
bpel.uddi.clerk.manager is
ignored.

bpel.uddi.clerk

bpel.uddi.lookup

String (BPEL _clerk)

boolean (true)

Defines the Clerk name that
will be used. This value should
correspond to the name of the
clerk in the
esb.juddi.client.xm .
By default this is set to
'BPEL_clerk'.

If set to true, the creating process
of the partner channel will do
a lookup by serviceName in the
UDDI, and a WSDL Endpoint is
retrieved. This WSDL Endpoint
is then used to obtain the WSDL.
This process makes it easier to
move Endpoints around within

23

ode.UDDIRegistratic

Default configurations

attribute type (default) description

your deployment, without having
to update the partnerlink WSDL
files in your bpel deployments.
Note that an it is dill a
requirement to deploy the initial
partnerlink WSDL file for each
partnerLink.

5.3. Default configurations

When RiftSaw is deployed to JBossAS-5.1.0, jUDDI v3isnot installed, and therefore the UDDI integration
isturned off (bpel.uddi.registration=false).

When RiftSaw is deployed to SOA-P-5.0.0 (or JBossESB 4.8 or higher) UDDI integration isturned on and
the bpel.uddi.client.impl is set to org.jboss.soa.bpel .uddi.UDDIRegistrationimpl. The j bossesb. sar/
esb. uddi . client.xm isused, with manager name 'esb.registry’.

5.4. Other UDDI v3 Registries

Other UDDI v3 compliant registries can be used, however the UDDIv3 spec only requires communication
using the UDDI WebServices. To set up SOAP based communication specify the JAXWS-Transport.
At this point it makes sense to no longer use the the esb.uddi.client.xml, but rather use your own
bpel .uddi.client.xml. For more details please see the jUDDI v3 documentation.

5.5. UDDI Registry Entitiesand UDDI Seed Data

In the esb.uddi.client.xm a few properties are defined that are used by the Clerk at
registration time. These settings of these values can be customized, however they must correspond
to the UDDI seed data specified for the jbossesb publisher, in the j bossesb-regi stry. sar/
juddi _custom.install _dat a.Soyouwill need to change it there aswell.

The clerk is configured to use the jbossesb publisher and the keyDomain is set to "esh.jboss.org".
The businessKey is set to "redhat-jboss’.

The serviceDescription is set to "BPEL Service deployed by Riftsaw".

The bindingDescription is set to "BPEL Endpoint deployed by Riftsaw".

Note that in SOA-P-5 the j bossesb-registry. sar/esb. uddi.xnl contans a property
juddi.seed.always which is set to "true”. This means that that it is always trying to load the root seed data
on startup of the server. It isrecommended to turn thisvalue to "false" once you are content with the UDDI
Seed Data.

24

Chapter 6.

JBoss ESB Integration

6.1. Overview

This section outlines the support provided for the direct integration between RiftSaw and JBossESB.

Bi-directional loose integration is available through the use of web services. For example, an ESB action
may invoke a BPEL process running within RiftSaw by invoking the appropriate web service represented
by a WSDL interface. Similarly, a BPEL process can invoke an ESB managed service that is capable of
presenting itself as aweb service.

However this section will describe how integration between RiftSaw and JBossESB actions can be achieved
without the use of web services (i.e. WSDL and SOAP).

6.2. Using the BPELInvoke ESB action

The BPELInvoke ESB action can be used within ajboss-esh.xml to request an invocation on aBPEL process
running inside RiftSaw. The only constraints are that RiftSaw isinstalled within the same JavaVM and that
the requested BPEL process must have been deployed to the local RiftSaw engine.

The following example illustrates the BPELInvoke ESB action being used as part of the bpel _helloworld
sample.

<action nane="action2" class="org.jboss.soa.esb. actions. bpel . BPELI nvoke" >
<property name="service" value="{http://ww.]boss. org/bpel /exanpl es/wsdl } Hel | oServi ce"/>
<property name="port" val ue="Hel | oPort" />
<property nane="operation" val ue="hello" />
<property nanme="request Part Nane" val ue="TestPart" />
<property nanme="responsePart Nane" val ue="TestPart" />
</ acti on>

The ESB action classis org.jboss.soa.esh.actions.bpel .BPELInvoke.

The properties for this ESB action are:

* service

This property is mandatory, and defines the service name registered in the WSDL associated with the
deployed BPEL process.

* port

Thisproperty isoptional, and definesthe port name registered in the WSDL associated with the deployed
BPEL process. This parameter is only required if port specific endpoint configuration information has
been registered as part of the BPEL process deployment.

25

Using the BPELInvoke ESB action

e operation
This property is mandatory, and represents the WSDL operation that is being invoked.
* requestPartName

This optional property can be used to define the WSDL message part that the inbound ESB message
content should be mapped to. This property should be used where the ESB message does not already
represent a multi-part message.

* responsePartName

This optional property can be used to extract the content of a response multi-part WSDL message, and
place this in the ESB message being passed to the next ESB action in the pipeline. If this property is not
defined, then the complete multi-part message value will be placed in the ESB message.

» abortOnFault

Thisoptional property can be used to indicate whether afault, generated during the invocation of a BPEL
process, should be treated as a message (when the value of this property is'false’), or as an exception that
will abort the ESB service. The default value is 'true’, causing the ESB service to abort.

This ESB action supports inbound messages with content defined as either:

- DOM

If the message content is a DOM document or element, then this can either be used as the complete
multi-part message, or as the content of a message part defined using the requestPartName property.

If the message content isa DOM text node, then this can ONLY be used if a multi-part name has been
defined in the requestPartName property.

» Java String

If the message content is a string representation of an XML document, then the requestPartName is
optional. If not specified, then the document must represent the multipart message.

If the message content is a string that does not represent an XML document, then the requestPartName
must be specified.

When the message content represents the complete multipart message, this must be defined as a top level
element (whose name isirrelevant) with immediate child elements that represent each of the multiple parts
of the message. Each of these elements must then have a single element/node, that represents the value of
the named part.

<nessage>
<Test Part >
Hello World
</ Test Part>
</ message>

26

Fault Handling

This shows an example of a multipart message structure. The top element (i.e. message) is unimportant.
The elements at the next level represent the part names - in this case there is only a single part, with name
TestPart. The value of this part is defined as a text node, with value "Hello World". However this could
have been an element representing the root node of a more complex XML value.

Thefollowing diagram illustrates the inter-rel ationship of the JBossESB bpel _helloworld quickstart and the
RiftSaw BPEL process configuration files.

jboss-esh.xml

<action name="action2" class="orgjboss.soa.esb.actions bpel. BPELInvoke">

<property name="service"
value="{http-/Amw jboss.org/bpel/exal
<property name="operatio gy
<property name="reque
<property name="respgng
<faction>

¥ ysdfiHelloService"/2
Glue="hello" />3
]

()

TestPart" />
="TestPart" /,

HelloWorld.bpel

<receive
name="start"
partnerLink="h

artnerLinkd

elloP

variable= =
createlnstance="yes"/>

<assign name="assignHelloMesg"¢

<copy>
L="TestPart"/>

<from variable="myVar" p

<to variable="mesgVar'/>
</copy=>
<copy>
<from=>concat($mesgVar, \i
<to variable="myVar" pa
</copy=>
</assign>
<reply name="end"

>L\ HelloWorld.wsdl

<wsdl:hinding name="HelloSpapBinding!' type="tns:HelloPortType">
<soap-hinding style="rpc"
transport="http://schema
<wsdl-operation ngme="he
<soap operation St
<wsdlinput>
<soap:body
namespace="http /fwww.jboss|org/bpel/examples/wsdl"
use="literal"/>
</wsdliinput>
<wsdl-output>
<soap body
namespace="http://mwww.jboss .orglhpel/examplesiwsdl"
use="literal"/>
<fwsdl-output=
</wsdl.operation>

<fwsd binding>
"HelloService

<wsdl:service namsg
<wsdl-port name="' thg="tns:HelloSoapBinding">

BSE-RL/SO
llo">
=" stylp="rpc"/>

p/http"/>

<soap.address location="http/flocalhost:

6.2.1. Fault Handling

8080/Quickstart_bpel_hello_worldWS"/>
<fwsdport>
</wsdl:service>

Thenormal responsefrom aWSDL operation will be returned from the BPEL I nvoke ESB action asanormal
message and placed on the action pipeline ready for processing by the next ESB action, or alternatively if
no further actions have been defined, then returned back to the service client.

Faults, associated with a WSDL operation, are handled slightly differently. Depending on configuration
it is possible to receive the fault as an ESB message or for the fault to be treated as an exception which
aborts the action pipeline. The configuration property used to determine which behaviour isused is called
abortOnFault. The default value for this property is "true". As an example, from the loan fault quickstart
sample,

27

Fault Handling

<action nane="action2" class="org.jboss.soa.esb. acti ons. bpel . BPELI nvoke" >
<property nanme="service" value="{http://exanple.conl| oan-approval /wsdl/}| oanService"/>
<property nanme="operation" val ue="request" />
<property nanme="abortOnFault" value="true" />

</ action>

A WSDL fault has two relevant pieces of information, the fault type (or code) and the fault details. These
are both returned in specific parts of ESB message's body.

1. Fault code (as javax.xml.namespace.QName)
ESB message body part: org.jboss.soa.esh.message.fault.detail.code

This body part identifies the specific WSDL fault returned by the BPEL process, associated with the
WSDL operation that was invoked.

Warning

The specific version of the QName used by the JBoss server is from the stax-api.jar

found in the server's lib/endorsed directory. If the client does not also include this jar
in afolder that isin its endorsed directories, then a class version exception will occur
when this ESB message part is accessed.

2. Fault code (as textual representation of QName)
ESB message body part: org.jboss.soa.bpel.message.fault.detail.code

This body part will return the textual representation of the QName for the fault code. The textual
representation is of the form "{ namespace} |ocal part" and can be converted back into a QName using the
javax.xml.namespace.QName.val ueOf(Sring) method.

3. Fault details
ESB message body part: org.jboss.soa.esh.message.fault.detail .detail

This body part will contain the textual representation of the message content associated with the fault.

28

Chapter 7.

Database

7.1. Upgrade database schema

The RiftSaw database schema has been changed between 2.0.0.Final and 2.1.0.Final, please refer to this
wiki page for the upgrade detail information.

7.2. Database schema diagram

Below isthe EER Diagram generated by Mysqgl Workbench tool.

29

http://community.jboss.org/wiki/RiftSawDatabaseupgrade
http://community.jboss.org/wiki/RiftSawDatabaseupgrade

v PID VARCHAR(255)
» STATE VARCHAR(255)
: |— —H<| © TYPE VARCHAR(255) H
55) o > VERSION
< DU VARCHAR(255)
> >
—| BPEL_CORRELATOR v
CORRELATOR_ID
» CORRELATOR_KEY VARCHAR(|255) Lity —
< PROG_ID <
>
o] ¥
_____ _ |
I
I
E v |
- 7
I
AR(255) I
O
T
~] BPEL_PROCESS v lr""é
ID |
16)
» GUID VARCHAR(255) |
. PROCESS_ID VARCHAR(255) Lo
>
» PROCESS_TYPE VARCHAR(255)
> VERSION

Database schema diagram

—| STORE_PROCESS v

>

—_| STORE_PROC_TO_PROP 4

STORE_PROCESS_PID VARCHAR(255)
STORE_PROPERTY _ID

>

~] BPEL_MESSAGE_EXCHANGE v
MESSAGE_EXCHANGE D VARCHAR(255)

» GALLEE VARCHAR(255)

» CHANNEL VARCHAR(255)

» CORRELATION_ID VARCHAR(255)

» CORRELATION_KEYS VARCHAR(255)

» CORRELATION_STATUS VARCHAR(255)

» CREATE_TIME TIMESTAMP

> DIRECTION CHAR(1)

+EPR TEXT
» FAULT VARCHAR(255)

5 FAULT _EXPLANATION VARCHAR(255)
» OPERATION VARCHAR(255)
> PARTNER_LINK_MODEL 1D
> PATTERN VARCHAR|255)
> PIPED_ID VARCHAR|255)
> PORT_TYPE VARCHAR|255)
> PROPAGATE_TRANS
» STATUS VARCHAR|255)

- SUBSCRIEER_COUNT
< CORR_ID
PARTNER_LINK_ID

< PROGESS_ID

£ PROCESS_INSTANCE_ID

<> REQUEST_MESSAGE_ID

marg. ..

¥

=
roly

o — —

_l

I

+C

Sty | O F

> T

N

;:.l___

	RiftSaw 2.1.0.Final
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview

	Chapter 2. Administration
	2.1. Overview
	2.2. BPEL Console
	2.2.1. Overview
	2.2.2. Logging in
	2.2.3. Deployed Process Definitions
	2.2.4. Process Instances
	2.2.5. Retiring and Reactivating Process Definitions

	2.3. BPEL Properties

	Chapter 3. Deploying BPEL Processes
	3.1. Overview
	3.2. Direct deployment to JBossAS server
	3.3. Eclipse based Deployment
	3.4. Changing Endpoint Configuration Properties

	Chapter 4. Web Service Configuration
	4.1. Overview
	4.2. Configuring a JAX-WS Handler
	4.3. Apache CXF Configuration
	4.3.1. Configuring the Server endpoint
	4.3.2. Configuring the Client endpoint

	Chapter 5. UDDI Integration
	5.1. Overview
	5.2. UDDI config properties
	5.3. Default configurations
	5.4. Other UDDI v3 Registries
	5.5. UDDI Registry Entities and UDDI Seed Data

	Chapter 6. JBoss ESB Integration
	6.1. Overview
	6.2. Using the BPELInvoke ESB action
	6.2.1. Fault Handling

	Chapter 7. Database
	7.1. Upgrade database schema
	7.2. Database schema diagram

