
SAVARA 1.0

Getting Started Guide

by Gary Brown and Jeff Yu

ii

1. Overview .. 1

2. Installation ... 2

2.1. Prerequisites .. 2

2.2. Installation Instructions ... 2

2.3. Importing Samples into Eclipse .. 3

3. Business Analysis .. 6

3.1. Define Participants ... 6

3.2. Outline Scenarios ... 7

3.3. Create Example Messages ... 8

4. Architecture ... 9

4.1. Define Information Model ... 9

4.1.1. Validating Example Messages against Schema .. 9

4.2. Define Choreography Model ... 10

4.2.1. Validating Requirements against Choreography Model 10

4.2.2. Create Documentation ... 12

5. Service Oriented Analysis and Design .. 14

5.1. Service Oriented Design .. 14

6. Service Development .. 16

6.1. WS-BPEL ... 16

6.1.1. Generating WS-BPEL based Services .. 16

6.1.2. Adding implementation details to CreditAgency ... 16

6.1.3. Adding implementation details to Store .. 19

6.2. Summary .. 22

7. Runtime Validation ... 23

7.1. Service Validator Configuration .. 23

7.2. Deploy the TrailBlazer Example ... 24

7.3. Starting the pi4soa Monitor .. 25

7.4. Running the Example .. 26

7.5. Detecting a Validation Error ... 27

Chapter 1.

1

Overview
This is the Getting Started Guide for SAVARA. This guide starts with the installation instructions for the

SAVARA tools and runtime modules.

The remainder of the document is organised to reflect phases within the SAVARA Methodology, and how

the current tools can be used in support of that methodology. The tools are still in development, and therefore

not all phases will have tools, and the tools in some phases will not necessarily be complete.

As an overview, the tools currently include capabilities for:

• Definition of business requirements as scenarios

• Creation of a choreography (global model) to represent the architecture for a system that delivers the

requirements

• Generation of documentation based on the choreography

• Generation of service implementation using WS-BPEL

• Generation of service interfaces using WSDL

• Conformance checking a WS-BPEL service implementation against a choreography

• Runtime validation of an ESB service against a choreography description

Chapter 2.

2

Installation
This section describes the installation procedure for SAVARA tools and runtime modules.

2.1. Prerequisites

The pre-requisites for the SAVARA Eclipse Tools are:

1. Eclipse JEE (3.5 or higher) http://www.eclipse.org

2. SAVARA (version 1.0.0 or higher), available from http://www.jboss.org/savara/downloads

3. JBoss Tools (3.1 or higher) http://www.jboss.org/tools available from an update site

The pre-requisites for the SAVARA Service Validator (for JBossESB) are:

1. JBossAS (5.1.0.GA or higher) http://www.jboss.org/jbossas

2. JBossAS (4.8 or higher) http://www.jboss.org/jbossesb

3. SAVARA (version 1.0 or higher), available from http://www.jboss.org/savara/downloads

2.2. Installation Instructions

The installation instructions for the SAVARA Eclipse tools are:

1. Eclipse

Download the latest version of Eclipse JEE, and install in your environment.

2. BPMN Modeller

When Eclipse has been lauched, go to the Help->Install New Software.. menu item. Select the Eclipse

update site for the version of Eclipse (e.g. Galileo or Helios). Within the SOA Development category,

select the BPMN Project Feature. Follow the instructions to accept the license and then restart Eclipse

after the plugins have been installed.

3. JBoss Tools

Start up your Eclipse environment, and go to the Help->Install New Software.. menu item. Select the

appropriate update site URL from the JBoss Tools download page, and enter it into the top text field in

the dialog window, and press the Add button. Once the contents of the update site is available, then select

the appropriate components and follow the instructions to install them within your Eclipse environment.

The pi4soa core feature should be selected from the All JBoss Tools category.

If you wish to view the generated BPEL using a BPEL editor, rather than XML, then you should also

select the JBoss BPEL Editor from the All JBoss Tools category.

NOTE: If you don't install the BPEL Editor, then you will have to install GMF. This can be found on

the Galileo/Helios update site, under the Modeling category. Select the Graphical Modeling Framework

entry, and following the instructions to install.

http://www.eclipse.org
http://www.jboss.org/savara/downloads
http://www.jboss.org/tools
http://www.jboss.org/jbossas
http://www.jboss.org/jbossesb
http://www.jboss.org/savara/downloads

Importing Samples into Eclipse

3

4. Install SAVARA Eclipse plugins

The Eclipse plugins for SAVARA are installed via an update site referenced on the SAVARA download

page.

The installation instructions for the SAVARA Service Validator (for JBossESB) are:

1. JBossAS

Download the latest version and follow its installation instructions.

2. JBossESB

Download the latest version and follow the instructions for installing it into the JBossAS environment.

3. SAVARA

Unpack the SAVARA distribution and edit the deployment.properties file in this ${SAVARA}/

install folder. Set the org.jboss.as.home property to the root directory where the JBossAS

environment is located, and change the org.jboss.as.config property from default if you wish to start your

JBossAS using a different configuration. Set the org.jboss.esb.home property to the root directory where

the JBossESB environment is located.

Start a command window and execute the command ant deploy.

2.3. Importing Samples into Eclipse

Once the SAVARA Eclipse Tool distribution has been correctly installed, if you wish to try out any of the

examples then the following steps should be followed to import the relevant projects into the previously

configured Eclipse environment.

1. Select the 'Import...' menu item, associated with the popup menu on the background of the left panal

(Navigator or Package depending on perspective being viewed).

2. When the import dialog appears, select the General->ExistingProject from Workspace option and press

the 'Next' button.

http://www.jboss.org/savara/downloads
http://www.jboss.org/savara/downloads

Importing Samples into Eclipse

4

3. Ensuring that the 'Select root directory' radio button is selected, press the 'Browse' button and navigate

to the ${SAVARA-Tools}/samples folder, then press 'Ok'.

4. All of the Eclipse projects contained within the ${SAVARA-Tools}/samples directory structure

will be listed. Press the 'Finish' button to import them all.

Importing Samples into Eclipse

5

Once imported, the Eclipse navigator will list the sample projects:

Chapter 3.

6

Business Analysis

3.1. Define Participants

In the current Eclipse tools, that use the pi4soa Scenario and Choreography based models for defining

requirements and architectural models, this phase would be achieved by defining the Participants and Roles

within the choreography model.

When a choreography description is initially created, using the New->Other->Choreography-

>Choreography Description menu item, the roles and relationships can be defined on the first tab.

Default participant types are automatically created, one per role, and can be found on the Base Types tab.

For example,

Outline Scenarios

7

Only these components need to be specified in the choreography model. This enables them to be referenced

in the subsequently defined scenarios. Otherwise it would be necessary to return to the scenarios, once the

choreography model had been defined in the Architecture phase.

3.2. Outline Scenarios

When designing a system, it is necessary to capture requirements. Various approaches can be used for this,

but currently there are no mechanisms that enable the requirements to be documented in such a way to

enable an implementation to be validated back against the requirements.

The pi4soa tools provide a means of describing requirements, representing specific use cases for the

interactions between a set of cooperating services, using scenarios - which can be considered similar to

UML sequence diagrams that have been enhanced to include example messages.

In the purchasing-models Eclipse project, the SuccessfulPurchase.scn scenario looks like

this:

Create Example Messages

8

The business requirements can therefore defined as a set of scenarios, each demonstrating a specific use-

case, or path through the business process being enacted.

3.3. Create Example Messages

The next step is to create the example messages required by the scenarios.

Some previously defined examples can be found in the process-models Eclipse project. For example,

the Buy request is defined as:

<tns:BuyRequest xmlns:tns="http://www.jboss.org/examples/store"

 id="1" />

Although a schema may not have been defined at this stage, unless one previously existed that is being

reused, it is a good idea to define a namespace for the message type. This is because it will be used within

the scenarios and architectural models defined in the following stage. If the namespace was not specified

at this stage, then the example messages, scenarios and architectural models would need to be updated at

a later stage.

Although this phase has been defined following the definition of the scenarios, in practice these phases are

iterative. So scenarios and example messages would be defined concurrently. Similarly, new participants

may be added in an evolutionary manner, as scenarios are created that require them.

Chapter 4.

9

Architecture

4.1. Define Information Model

One of the stages within the architecture phase is to define the information model for the message types

associated with the messages exchanges between the interacting participants.

This involves defining message schema for each example message. The schema could already exist and be

reused, it could be based on existing schema and just need to be upgraded to support new requirements, or

it may need to be defined from scratch.

An example of a schema associated with the purchasing model is the store.xsd shown here:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.jboss.org/examples/store"

 xmlns:tns="http://www.jboss.org/examples/store"

 elementFormDefault="qualified">

 <element name="BuyRequest" type="tns:StoreType"></element>

 <element name="BuyConfirmed" type="tns:StoreType"></element>

 <element name="BuyFailed" type="tns:StoreType"></element>

 <complexType name="StoreType">

 <attribute name="id" type="string"></attribute>

 </complexType>

</schema>

Once the schema has been defined, then the example messages need to be updated to reference the schema,

as shown in the following BuyRequest.xml example message:

<tns:BuyRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:tns="http://www.jboss.org/examples/store"

 xsi:schemaLocation="http://www.jboss.org/examples/store store.xsd "

 id="1" />

4.1.1. Validating Example Messages against Schema

Once the association between example messages and the schema has been established, it is possible to

validate the messages against the schema.

For information on how to use the validation capabilities within Eclipse, please read the Eclipse XML

Validation Tutorial.

http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html
http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html

Define Choreography Model

10

4.2. Define Choreography Model

The next step in the development process is to specify a Choreography Model to implement the requirements

described within the set of scenarios.

The current representation used to define Choreography Models within SAVARA is the W3C Web Service

Choreography Description Language (WS-CDL). The pi4soa tools provide a WS-CDL (or choreography

description) editor. Although this standard is associated with web services, it does not mean that a system

specified using this standard needs to be implemented using web services. The actual WS-CDL language

is used for defining the interactions between any distributed system.

The choreography description for the Purchasing example can be found in purchasing-models/

PurchaseGoods.cdm. When the choreography editor has been launched, by double-clicking on this file

within the Eclipse environment, then navigate to the Choreography Flows tab to see the definition of the

purchasing process:

4.2.1. Validating Requirements against Choreography Model

The pi4soa tools can be used to test the scenarios against the choreography description, to ensure that the

choreography correctly implements the requirements. To test the SuccessfulPurchase.scn scenario

against the choreography, launch the scenario editor by double-clicking on the scenario file, and then

pressing the green play button in the toolbar. When complete, the scenario should look like the following

image, indicating that the scenario completed successfully.

Validating Requirements against Choreography

Model

11

To view a scenario that demonstrates a test failure, open the InvalidPurchase.scn scenario by

double-clicking on the file, and then initiate the test using the green play button in the toolbar. When

complete, the scenario should look like the following image.

You will notice that the Store participant has a red 'send' node, indicating that this action was not expected

behaviour when compared with the choreography description. The reason this is considered an error, is that

the Store participant should only send a BuyFailed message following an invalid credit check.

Create Documentation

12

When an error is detected in a scenario, the choreography designer can then determine whether the scenario

is wrong (i.e. it does not correctly describe a business requirement), or whether the choreography is wrong

and needs to be updated to accomodate the scenario.

4.2.2. Create Documentation

Once the choreography description has been successfully tested against the scenarios, the next step may be to

obtain approval to proceed to the analysis/design phase. To help support this effort, the pi4soa tools provide

the means to export the choreography description to a range of representations. HTML documentation

generated is discussed below, and BPMN diagram generation is discussed in the Service Oriented Analysis

and Design section.

To generate HTML documentation, select the Export->Other->HTML menu item associated with the

choreography description file.

The next step is to provide the location and name of the HTML file to be generated.

Create Documentation

13

If the HTML has been generated within the scope of Eclipse project, then refresh the relevant folder to show

the file and open the file with the Eclipse web browser (as shown below). If outside the Eclipse project,

then use a normal web browser to view the file.

Chapter 5.

14

Service Oriented Analysis and Design
At this point in the lifecycle, various activities would occur related to reviewing services (i.e. in a SOA

Repository) and understanding whether existing services meet requirements, need to be modified, or

whether new services need to be developed from scratch.

5.1. Service Oriented Design

In the current SAVARA tooling, the main functionality in the Service Oriented Design phase is the

generation of BPMN (version 1) diagrams. These diagrams can be used as guidance for the development

teams that are implementing the individual services.

It is also possible to extend the generated BPMN (version 1) diagrams to include service logic. However

it should be noted that changes to the choreography or BPMN diagrams will not be synchronized/merged.

So changes in the choreography will not be checked for conformance against previously generated BPMN

diagrams, and it will be necessary to generate new 'service contract' BPMN (version 1) diagrams to reflect

changes in behaviour of a service within the updated choreography.

In future versions of the SAVARA, based on BPMN2, it will be possible to formally check BPMN2

process models for conformance against a choreography model, and potentially synchronize differences in

externally observable behaviour between them.

To generate a BPMN (version 1) diagram from a choreography, select the Export menu item associated

with the choreography file, and select the Other->BPMN option.

Once the option has been selected, you will be asked to select the location where the generated BPMN

diagrams should be stored. A diagram will be created containing all of the participants involved in the

choreography in a single collaboration diagram.

Service Oriented Design

15

Select a folder that is located within a project in your Eclipse workspace. Once the folder has been chosen,

the diagrams will be generated. To see them within the Eclipse project, you will need to refresh the relevant

folder.

The generated diagram will appear as two files, one contains the underlying BPMN model (i.e. the

information about the tasks, control links, message links, etc.) and the other file contains the diagram

information (i.e. node positions, etc). Double click on the file with the .bpmn_diagram suffix to view

the diagram in the Eclipse BPMN editor.

Chapter 6.

16

Service Development
Services can be developed by generating initial development artifacts, based on artifacts created in preceding

phases (e.g. global model or service contracts/designs).

To ensure that the services continue to conform to the artifacts defined in the previous phases, the tools

perform conformance checking between the service implementation and the existing architecture/design

artifacts. This is not possible with all implementation languages - they must provide the means to extract

the communication structure for comparison.

The following sections explain how the generation and conformance checking can be achieved for the

WS-BPEL implementation language.

6.1. WS-BPEL

This tools include a capability to generate a service implementation, for a participant in a choreography,

using WS-BPEL. A completed version of the PurchasingGoods example can be found in the samples

directory (which can be imported into Eclipse).

However if you wish to generate the example from scratch, the follow the instructions in this section. More

information about how to use this feature can be found in the User Guide.

6.1.1. Generating WS-BPEL based Services

When a choreography description has been created, it is possible to generate a BPEL Process (and associated

WSDL files and deployment descriptor) for each of the participants defined within the choreography. To

try this out, select the Savara->Generate->WS-BPEL menu item from the popup menu associated with the

PurchaseGoods.cdm.

This will display a dialog listing the possible services that can be generated from this choreography, with

a proposed Eclipse project name.

To test out this feature, uncheck the Buyer participant, leave the build system as Ant, select the messaging

system appropriate for your target environment and press the 'Ok' button. This will create a single new

project for the Store and CreditAgency participants.

Each project will contain a single bpel folder containing the WS-BPEL process definition for the

participant, a list of relevant WSDL files and a deployment descriptor file for use with RiftSaw. Howeve

the WS-BPEL and WSDL files are standard, so can be deployed to any WS-BPEL 2.0 compliant engine.

6.1.2. Adding implementation details to CreditAgency

6.1.2.1. Deployment Descriptor

When generated, the deployment descriptor initially has the following content:

Adding implementation details to CreditAgency

17

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03" xmlns:ns1="http://www.jboss.org/

examples/creditAgency">

 <process name="ns1:PurchaseGoodsProcess_CreditAgency">

 <active>

 true

 </active>

 <provide partnerLink="StoreToCreditAgency">

 <service/>

 </provide>

 </process>

</deploy>

The only change necessary is to add some attributes to the service element:

 <service name="ns1:CreditAgencyService" port="CreditAgencyInterfacePort"/>

6.1.2.2. BPEL Process Definition

The generated BPEL process for the CreditAgency participant is as follows:

<process xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

 xmlns:ca="http://www.jboss.org/examples/creditAgency"

 xmlns:pur="http://www.jboss.org/examples/purchasing"

 xmlns:sto="http://www.jboss.org/examples/store"

 xmlns:tns="http://www.jboss.org/savara/examples"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ns0="http://www.scribble.org/conversation"

 ns0:conversationType="savara.samples.Common@CreditAgency"

 name="PurchaseGoodsProcess_CreditAgency"

 targetNamespace="http://www.jboss.org/examples/creditAgency"

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="PurchaseGoodsProcess_CreditAgency.wsdl"

 namespace="http://www.jboss.org/examples/creditAgency"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="PurchaseGoodsProcess_Store.wsdl"

 namespace="http://www.jboss.org/examples/store"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="CreditAgencyPartnerLinkTypes.wsdl"

 namespace="http://www.jboss.org/examples/creditAgency"/>

 <partnerLinks>

 <partnerLink myRole="CreditAgencyService" name="StoreToCreditAgency"

 partnerLinkType="ca:StoreToCreditAgencyServiceLT"/>

 </partnerLinks>

 <variables>

 <variable messageType="ca:CreditCheckRequest" name="creditCheckRequestVar"/>

Adding implementation details to CreditAgency

18

 <variable messageType="ca:CreditCheckOk" name="creditCheckOkVar"/>

 <variable messageType="ca:CreditCheckInvalid" name="creditCheckInvalidVar"/>

 </variables>

 <sequence>

 <receive createInstance="yes" operation="checkCredit"

 partnerLink="StoreToCreditAgency" portType="ca:CreditAgencyInterface"

 variable="creditCheckRequestVar"/>

 <if>

 <sequence>

 <reply operation="checkCredit" partnerLink="StoreToCreditAgency"

 portType="ca:CreditAgencyInterface" variable="creditCheckOkVar"/>

 </sequence>

 <else>

 <sequence>

 <reply faultName="ca:CreditCheckFailed" operation="checkCredit"

 partnerLink="StoreToCreditAgency"

 portType="ca:CreditAgencyInterface"

 variable="creditCheckInvalidVar"/>

 </sequence>

 </else>

 </if>

 </sequence>

</process>

There are three changes required, the first being to add a condition following the if element:

 <if>

 <condition>

 $creditCheckRequestVar.CreditCheckRequest/pur:amount <= 500

 </condition>

The next two changes relate to taking the information provided in the request and constructing an appropriate

normal and fault response. In this simple example we only echo back the information received in the request,

however more complicated processing could be performed before returning either response.

The following XML code should be added before the normal response (i.e. just inside the sequence element

following the condition:

 <assign name="CopyPurchaseDetails">

 <copy>

 <from>$creditCheckRequestVar.CreditCheckRequest</from>

 <to>$creditCheckOkVar.CreditCheckOk</to>

 </copy>

 </assign>

Adding implementation details to Store

19

The following XML code should be added before the fault response (i.e. just inside the sequence element

that is contained in the else element:

 <assign name="CopyPurchaseDetails">

 <copy>

 <from>$creditCheckRequestVar.CreditCheckRequest</from>

 <to>$creditCheckInvalidVar.CreditCheckInvalid</to>

 </copy>

 </assign>

6.1.3. Adding implementation details to Store

6.1.3.1. Deployment Descriptor

When generated, the deployment descriptor initially has the following content:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03" xmlns:ns1="http://www.jboss.org/

examples/store">

 <process name="ns1:PurchaseGoodsProcess_Store">

 <active>

 true

 </active>

 <provide partnerLink="BuyerToStore">

 <service/>

 </provide>

 <invoke partnerLink="StoreToCreditAgency">

 <service/>

 </invoke>

 </process>

</deploy>

The only changes necessary are, (1) to add a namespace prefix definition,

 xmlns:ns2="http://www.jboss.org/examples/creditAgency"

and (2) to add some attributes to the service element:

 <provide partnerLink="BuyerToStore">

 <service name="ns1:StoreService" port="StoreInterfacePort"/>

 </provide>

Adding implementation details to Store

20

 <invoke partnerLink="StoreToCreditAgency">

 <service name="ns2:CreditAgencyService" port="CreditAgencyInterfacePort"/>

 </invoke>

6.1.3.2. BPEL Process Definition

The generated BPEL process for the Store participant is as follows:

<process xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

 xmlns:ca="http://www.jboss.org/examples/creditAgency"

 xmlns:pur="http://www.jboss.org/examples/purchasing"

 xmlns:sto="http://www.jboss.org/examples/store"

 xmlns:tns="http://www.jboss.org/savara/examples"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ns0="http://www.scribble.org/conversation"

 ns0:conversationType="savara.samples.Purchasing@Store"

 name="PurchaseGoodsProcess_Store"

 targetNamespace="http://www.jboss.org/examples/store"

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="PurchaseGoodsProcess_Store.wsdl"

 namespace="http://www.jboss.org/examples/store"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="PurchaseGoodsProcess_CreditAgency.wsdl"

 namespace="http://www.jboss.org/examples/creditAgency"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="StorePartnerLinkTypes.wsdl"

 namespace="http://www.jboss.org/examples/store"/>

 <partnerLinks>

 <partnerLink myRole="StoreService" name="BuyerToStore"

 partnerLinkType="sto:BuyerToStoreServiceLT"/>

 <partnerLink name="StoreToCreditAgency"

 partnerLinkType="sto:StoreToCreditAgencyLT"

 partnerRole="CreditAgencyRequester"/>

 </partnerLinks>

 <variables>

 <variable messageType="sto:BuyRequest" name="buyRequestVar"/>

 <variable messageType="ca:CreditCheckRequest" name="creditCheckRequestVar"/>

 <variable messageType="ca:CreditCheckOk" name="creditCheckOkVar"/>

 <variable messageType="sto:BuyConfirmed" name="buyConfirmedVar"/>

 <variable messageType="sto:BuyFailed" name="buyFailedVar"/>

 </variables>

 <sequence>

 <receive createInstance="yes" operation="buy" partnerLink="BuyerToStore"

 portType="sto:StoreInterface" variable="buyRequestVar"/>

 <scope>

 <faultHandlers>

 <catch faultMessageType="ca:CreditCheckInvalid"

 faultName="ca:CreditCheckFailed" faultVariable="creditCheckInvalidVar">

 <sequence>

 <reply faultName="sto:BuyFailed" operation="buy"

 partnerLink="BuyerToStore" portType="sto:StoreInterface"

 variable="buyFailedVar"/>

 </sequence>

Adding implementation details to Store

21

 </catch>

 </faultHandlers>

 <sequence>

 <invoke inputVariable="creditCheckRequestVar" operation="checkCredit"

 outputVariable="creditCheckOkVar" partnerLink="StoreToCreditAgency"

 portType="ca:CreditAgencyInterface"/>

 <reply operation="buy" partnerLink="BuyerToStore" portType="sto:StoreInterface"

 variable="buyConfirmedVar"/>

 </sequence>

 </scope>

 </sequence>

</process>

There are three changes required. The first being to add an assignment statement within the catch element's

sequence prior to the reply:

 <assign name="CopyPurchaseDetails">

 <copy>

 <from>$creditCheckInvalidVar.CreditCheckInvalid</from>

 <to>$buyFailedVar.BuyFailed</to>

 </copy>

 </assign>

The remaining two changes relate to taking the information received in the initial request, to construct a

request to the credit agency, and then extracting the information from the credit agency response, to return

it to the Store client. The following snippet shows the two assignment statements either side of the invoke

statement:

 <assign name="CopyPurchaseDetails">

 <copy>

 <from>$buyRequestVar.BuyRequest</from>

 <to>$creditCheckRequestVar.CreditCheckRequest</to>

 </copy>

 </assign>

 <invoke inputVariable="creditCheckRequestVar" operation="checkCredit"

 outputVariable="creditCheckOkVar" partnerLink="StoreToCreditAgency"

 portType="ca:CreditAgencyInterface"/>

 <assign name="CopyPurchaseDetails">

 <copy>

 <from>$creditCheckOkVar.CreditCheckOk</from>

 <to>$buyConfirmedVar.BuyConfirmed</to>

 </copy>

 </assign>

Summary

22

6.2. Summary

This section has provided a brief introduction to the design-time SOA governance features provided within

the SAVARA Eclipse Tools distribution.

The aim of these capabilities are to enable verification of an implementation, initially defined just using

BPEL process definitions, against a choreography, which in turn has been verified against business

requirements defined using scenarios. Therefore this helps to ensure that the implemented system meets the

original business requirements.

Being able to statically check that the implementation should send or receive messages in the correct order is

important, as it will reduce the amount of testing required to ensure the service behaves correctly. However

it does not enable the internal implementation details to be verified, which may result in invalid decisions

being made at runtime, resulting in unexpected paths being taken. Therefore, to ensure this situation does

not occur, we also need runtime governance, which is discussed in a later section (Runtime Validation).

Chapter 7.

23

Runtime Validation

Note

Before you can deploy and run the runtime validation example, you will need to install the

SAVARA Validator module for JBossESB.

Once services have been deployed, as mentioned in the previous section, we still need to be able to verify that

the services continue to conform to the choreography description. The Conversation Validation capability

within the SAVARA distribution can be used to validate the behaviour of each service.

In this section, we will use the Trailblazer example found in the ${SAVARA}/samples/trailblazer

folder and the trailblazer-models Eclipse project.

7.1. Service Validator Configuration

The JBossESB service validator configuration is defined using jbossesb specific annotations, that are

associated with the 'exchange details' components (contained within interactions), within the choreography

description.

To view the pre-configured service validator configuration defined for the Trailblazer example, edit the

TrailBlazer.cdm file, navigate to the Choreography Flows tab and then select the Choreography-

>Edit Annotations menu item associated with the first 'exchange details' component (as shown below).

This will display the annotation editor, with the single configured annotation called 'validator'. This

annotation defines the information required for the Service Validator to monitor this specific message

exchange (i.e. the JMS destination on which the message will be passed).

Deploy the TrailBlazer Example

24

Once an annotation has been defined, it will also be displayed as part of the tooltip for the associated model

component, for example:

Once the jbossesb annotations have been defined for all relevant 'exchange details' components in

the choreography description, the choreography file can be copied to the ${JBossAS}/server/

default/deploy/savara-validator.esb/models folder in the JBossAS environment. The

service validator configuration for the trailblazer example has been preconfigured to be deployed as part

of the installation procedure.

Note

If the savara-validator.esb/validator-config.xml within the JBossAS

environment is modified, or choreography description files added, removed or updated

within the savara-validator.esb/models sub-folder, then the changes will

automatically be detected and used to re-configure the service validators without having

to restart the JBossESB server.

7.2. Deploy the TrailBlazer Example

The first step to deploying the Trailblazer example is to configure the JBossAS environment:

1. Update the ${JBossAS}/server/default/deploy/jbossesb.sar/jbossesb-

properties.xml file, in the section entitled "transports" and specify all of the SMTP mail server

settings for your environment.

2. Update the trailblazer/trailblazer.properties

Update the file.bank.monitored.directory and file.output.directory properties. These are folders used by

the File Based Bank, and are set to /tmp/input and /tmp/output by default.

3. Update the trailblazer/esb/conf/jboss-esb.xml

There is a fs-provider block, update the directory attribute value to be the same as the file.output.directory

value in trailblazer.properties file.

4. Start the JBossAS server

One the server has been started, the next step is to deploy the relevant components into the JBossAS

environment. This is achieved by:

1. From the trailblazer folder, execute the following command to deploy the example to the ESB:

ant deploy

this should deploy the ESB and WAR files to your JBoss AS server/default.

Starting the pi4soa Monitor

25

2. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runJMSBank.

3. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runFileBank.

7.3. Starting the pi4soa Monitor

The pi4soa Monitor is used to observe a correlated view of the executing business transactions. Each service

validator can be configured to report activites (i.e. sent and received messages) that it validates, to enable

the correlator to reconstitute a global interpretation of each transaction.

This correlated view of each transaction can be used to understand where each transaction is within the

process. It can also be used to report out of sequence, unexpected messages and more general errors in the

context of the business process.

A simple monitoring tool is currently provided with the pi4soa tools, to enable the correlated global

view of the transactions to be observed. Once the Trailblazer example has been deployed to the JBossAS

environment, and the server is running, then the monitoring tool can be launched from the Eclipse

environment by selecting the Choreography->Monitor menu item from the popup menu associated with

the TrailBlazer.cdm file.

Wait for the monitor window to start, and indicate that the choreography is being monitored, shown in the

status line at the bottom of the window.

Running the Example

26

7.4. Running the Example

To run the example, you need to start a browser and select the URL localhost:8080/trailblazer. This will

show the following page, if the server has been configured correctly and the TrailBlazer example deployed:

Now you can submit quotes, You will see either a loan request rejected (single email) because the score

is less than 4, or two emails (one from JMS bank and one from FileBased bank) with valid quotes. When

entering subsequent quotes, make sure that the quote reference is updated, so that each session has a unique

id.

http://localhost:8080/trailblazer

Detecting a Validation Error

27

7.5. Detecting a Validation Error

To demonstrate the detection of validation errors, there is an alternative implementation of the trailblazer

modules that behaviour differently to the choreography that is being monitored. Specifically, the credit score

threshold used to determine whether a loan request should be issued to the banks, is raised from 4 to 7.

To deploy the version of the TrailBlazer example that results in validation errors, then:

• From the ${SAVARA}/samples/trailblazer folder, execute the following command to deploy

the example to the ESB: ant deploy-error-client.

The next step is to issue more transactions, until a credit check score occurs that is between 4 and 6 inclusive.

This will result in a insufficientCredit interaction being reported, which would be unexpected in terms of

the choreography.

When errors, such as unexpected messages, are detected by the service validators and reported to the

Choreography Monitor, they are displayed in red.

	SAVARA 1.0
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Installation Instructions
	2.3. Importing Samples into Eclipse

	Chapter 3. Business Analysis
	3.1. Define Participants
	3.2. Outline Scenarios
	3.3. Create Example Messages

	Chapter 4. Architecture
	4.1. Define Information Model
	4.1.1. Validating Example Messages against Schema

	4.2. Define Choreography Model
	4.2.1. Validating Requirements against Choreography Model
	4.2.2. Create Documentation

	Chapter 5. Service Oriented Analysis and Design
	5.1. Service Oriented Design

	Chapter 6. Service Development
	6.1. WS-BPEL
	6.1.1. Generating WS-BPEL based Services
	6.1.2. Adding implementation details to CreditAgency
	6.1.2.1. Deployment Descriptor
	6.1.2.2. BPEL Process Definition

	6.1.3. Adding implementation details to Store
	6.1.3.1. Deployment Descriptor
	6.1.3.2. BPEL Process Definition

	6.2. Summary

	Chapter 7. Runtime Validation
	7.1. Service Validator Configuration
	7.2. Deploy the TrailBlazer Example
	7.3. Starting the pi4soa Monitor
	7.4. Running the Example
	7.5. Detecting a Validation Error

