SAVARA 1.0

Getting Started Guide

by Gary Brown and Jeff Yu

B 1 = = o o 2
A T o 1= = o 011 =SS 2
2.2, InStall@tion INSEIUCTIONScvveiieiee et e e e e e e e e e e eennas 2
2.3. Importing SamMpPIeS INt0 ECHPSE . .vvuiiiiiciie e 3

c BUSINESS ANAIYSIS ..t 6
3.1, DEfINE PartiCIPantSiiuu i e et e e e e e e et e e et e e e et e e et e e ee 6
A @ 11 1T Lo o= = o = 7
3.3. Create EXamMPIE IMESSAGES ...uuvveeiiieeii e ettt et e et e et e e e e e e e et e e e e e et e e et e e e e et 8

O AN o 1 (= ox {1 = 9
4.1. Define INfOrmation MOGE]coouuniiiiiii e aeens 9

4.1.1. Validating Example Messages against Schema............coovevviiiniiiiiinc, 9
4.2. Define Choreography MOGELc.ouiiiiieii e e e e e e e e 10
4.2.1. Vdidating Requirements against Choreography Modelccooiiiiiiiiinieiiinnnnn. 10
4.2.2. Create DOCUMENEALIONeevvvtieeiiii et e e e e et e e e et e e e eaie e e e eaenneeeee 12

. Service Oriented ANalysisS and DESIGNuuuiiiiiiiiiiiii et 14
5.1, SErvice Oriented DESIGN .. ccvuiiii e e e e e e e aa s 14

. SErVICE DEVEIOPMENT ...t 16
8.1, WS BPEL ..ot e 16

6.1.1. Generating WS-BPEL hased SErVICESccuuuiiiiiiieiiiii e 16

6.1.2. Adding implementation details to CreditAgencycooccvvveiieiiie i, 16

6.1.3. Adding implementation detailSto StOreoveviiviiieiiiiii e 19

B.2. SUMIMIAIY ettt e e e e et e e 22
RUNEIME ValidAtION ...ceeiiiii e e e e e e et e e e e anas 23
7.1. Service Validator Configuralionccceuuieiiiiieiiie e e e e e e e e e e 23
7.2. Deploy the TrailBlazer EXamMpPIecooovuiii e 24
7.3. Starting the PI4S0a MONITOLc..uiiiiiiiii e e e e e e e e e e e eaes 25
7.4. RUNNING the EXAMPIE ...t 26
7.5. Detecting @ Validation EFTOriiiiiiieii e e e e e e e e e e e 27

Chapter 1.

Overview

Thisis the Getting Started Guide for SAVARA. This guide starts with the installation instructions for the
SAVARA tools and runtime modules.

The remainder of the document is organised to reflect phases within the SAVARA Methodology, and how
the current tool s can be used in support of that methodology. Thetoolsare till in development, and therefore
not all phases will have tools, and the toolsin some phases will not necessarily be complete.

Asan overview, the tools currently include capabilities for:

« Definition of business requirements as scenarios

 Creation of a choreography (global model) to represent the architecture for a system that delivers the
requirements

» Generation of documentation based on the choreography

» Generation of service implementation using WS-BPEL

» Generation of service interfaces using WSDL

» Conformance checking a WS-BPEL service implementation against a choreography

* Runtime validation of an ESB service against a choreography description

Chapter 2.

| nstallation

This section describes the installation procedure for SAVARA tools and runtime modul es.

2.1. Prerequisites

The pre-requisites for the SAVARA Eclipse Tools are;

1. Eclipse JEE (3.5 or higher) http://www.eclipse.org

2. SAVARA (version 1.0.0 or higher), available from http://www.jboss.org/savara/downl oads

3. JBoss Tools (3.1 or higher) http://www.jboss.org/tools available from an update site

The pre-requisites for the SAVARA Service Validator (for JBossESB) are:

1. JBossAS (5.1.0.GA or higher) http://www.jboss.org/jbossas
2. JB0ssAS (4.8 or higher) http://www.jboss.org/jbossesb

3. SAVARA (version 1.0 or higher), available from http://www.jboss.org/savara/downl oads

2.2. Installation Instructions
Theinstallation instructions for the SAVARA Eclipse tools are:

1. Eclipse
Download the latest version of Eclipse JEE, and install in your environment.

2. BPMN Modeller

When Eclipse has been lauched, go to the Help->Install New Software.. menu item. Select the Eclipse
update site for the version of Eclipse (e.g. Galileo or Helios). Within the SOA Development category,
select the BPMN Project Feature. Follow the instructions to accept the license and then restart Eclipse

after the plugins have been installed.

3. JBoss Tools

Start up your Eclipse environment, and go to the Help->Install New Software.. menu item. Select the
appropriate update site URL from the JBoss Tools download page, and enter it into the top text field in
the dialog window, and press the Add button. Once the contents of the update site is available, then select
the appropriate components and follow the instructionsto install them within your Eclipse environment.

The pidsoa core feature should be selected from the All JBoss Tools category.

If you wish to view the generated BPEL using a BPEL editor, rather than XML, then you should also

select the JBoss BPEL Editor from the All JBoss Tools category.

NOTE: If you don't install the BPEL Editor, then you will have to install GMF. This can be found on
the Galileo/Heli os update site, under the Modeling category. Select the Graphical Modeling Framework

entry, and following the instructions to install.

http://www.eclipse.org
http://www.jboss.org/savara/downloads
http://www.jboss.org/tools
http://www.jboss.org/jbossas
http://www.jboss.org/jbossesb
http://www.jboss.org/savara/downloads

Importing Samplesinto Eclipse

4. Install SAVARA Eclipse plugins
The Eclipse pluginsfor SAVARA areinstalled viaan update site referenced on the SAVARA download

page.

Theinstallation instructions for the SAVARA Service Vaidator (for JBosSESB) are:

1. JBossAS
Download the |atest version and follow its installation instructions.

2. JBossESB
Download the latest version and follow the instructions for installing it into the JBossA S environment.

3. SAVARA
Unpack the SAVARA distribution and edit thedepl oynent . pr operti es fileinthis${ SAVARA} /
install folder. Set the org.jboss.ashome property to the root directory where the JBossAS
environment islocated, and change the org.jboss.as.config property from default if you wish to start your
JBossA S using adifferent configuration. Set the org.jboss.esh.home property to the root directory where
the JBossESB environment is located.

Start acommand window and execute the command ant deploy.
2.3. Importing Samplesinto Eclipse
Once the SAVARA Eclipse Toal distribution has been correctly installed, if you wish to try out any of the

examples then the following steps should be followed to import the relevant projects into the previously
configured Eclipse environment.

1. Select the 'Import..." menu item, associated with the popup menu on the background of the left panal
(Navigator or Package depending on perspective being viewed).

&5 Navigator i3 =
5%~
New k
1 Export...
& Refresh

2. When the import dialog appears, select the General-> ExistingProject from Workspace option and press
the 'Next' button.

http://www.jboss.org/savara/downloads
http://www.jboss.org/savara/downloads

Importing Samplesinto Eclipse

Select

d
Create new projects from an archive file or directory. H

Select an import source:

= (= General =

[E Archive File

& Existing Projects into Workspace

(7], File System =

El Preferences
P = cvs
b =EJB
[P (= Java EE
[P (= Plug-in Development
P (= Remote Systems

(4]

k

@ L Next = H Cancel | Finist

3. Ensuring that the 'Select root directory' radio button is selected, press the '‘Browse' button and navigate
to the ${ SAVARA- Tool s}/ sanpl es folder, then press 'Ok

s
E]l savara H savara-tools-eclipse-1.0-M1 Hsamplesl r [Create Fniﬂerl
Places Name ¥ | Modified |—|
@ gbrown 3 purchasing Today
& Desktop
O File System
[data

4 Add Ber | El
Select root directory of the projects to import
|

4. All of the Eclipse projects contained within the ${ SAVARA- Tool s}/ sanpl es directory structure
will be listed. Press the 'Finish' button to import them all.

Importing Samplesinto Eclipse

[E®; Import

Import Projects

Select a directory to search for existing Eclipse projects.

(@ Select root directory: [avara—tocls-eclipse—l.U—lesamplesl

Browse. ..

(") Select archive file: |

Projects:

purchasing (/NotBackedUp/gbrown/testing/savara/savar

(] I |

[+)

[] Copy projects into workspace
Working sets

[] Add project to working sets

Select All

eselect All

|

=
[14]
4]
=

@ < Back | |[Cancel]ﬂ Finish]

I 1 g

Once imported, the Eclipse navigator will list the sample projects:

=

A Hierarch} —m

Bale -

7 = purchasing
| BuyConfirmed xml
[¥| BuyRequest.xml
[8] creditAgency.xsd
¥ CreditCheckinvalid.xml
¥ CreditCheckOk.xml
[¥| CreditCheckRequest.xmil
& InvalidPurchase scn
[PurchaseGoods.cdm
5] store xsd

[SuccessfulPurchase.scn

Chapter 3.

Business Analysis

3.1. Define Participants

In the current Eclipse tools, that use the pi4soa Scenario and Choreography based models for defining
reguirements and architectural models, this phase would be achieved by defining the Participants and Roles
within the choreography model.

When a choreography description is initially created, using the New->Other->Choreography-
> Choreography Description menu item, the roles and relationships can be defined on the first tab.

! PurchaseGoods.cdm &2

[é Select

= Types £ 5: i

i Role = Credlmgencyé =+ BuyerBehavior]

=5 Behavior

% Relationship

StoreToCreditAgencyRel [BuyerTostoreRrel

4 For>

= StoreBehavior

Roles and Relationships | Base Types | Choreography Flows

Default participant types are automatically created, one per role, and can be found on the Base Types tab.
For example,

QOutline Scenarios

< PurchaseGoods.cdm &

[+ Select =~ P»= Name Spaces
[=-Base Types <« ns tns
gl NameSpace ne xsd
Participant ns pur
Type
ns sto
i Role Type
ns Ca
s Relationship
“ Type ~ [P Participant Types
I Information Buyer
Type
ca:CreditAgency
g Channel
Type sto:Store
&=, Token =~ [P Role Types
~2Z, Token > ;E Buyer
Locator)
[;t Credithgency
+— Behavior
e P ;t Store
L Passing <~ P Relationship Types
Channel
Details J\q BuyerToStoreRel
gl Identity %4 StoreToCreditAgencyRel

> B Channel Types

Only these components need to be specified in the choreography model. This enablesthem to be referenced
in the subsequently defined scenarios. Otherwise it would be necessary to return to the scenarios, once the
choreography model had been defined in the Architecture phase.

3.2. Outline Scenarios

When designing a system, it is necessary to capture requirements. V arious approaches can be used for this,
but currently there are no mechanisms that enable the requirements to be documented in such a way to
enable an implementation to be validated back against the requirements.

The pi4soa tools provide a means of describing requirements, representing specific use cases for the
interactions between a set of cooperating services, using scenarios - which can be considered similar to
UML sequence diagrams that have been enhanced to include example messages.

In the pur chasi ng- nodel s Eclipse project, the Successf ul Pur chase. scn scenario looks like
this:

Create Example Messages

— -
£ Choreography - purchasing-models/SuccessfulPurchase.scn - Eclipse SDK ‘L“ﬁJ§|
Fle Edit View MNavigate Search Project Run Window Help
HDE e - X o - : B0 e o a =53 choreogra... | *
5. Navigator &3 = 0| 4 successfulPurchase.scn &3 = im
0% <
ol [Select

-3 brokerage-broker
[= brokerage-models
& 52% brokerage-suppler T Participant Buyer Store CreditAgency
5= common-creditAgency
=-§2 purchasing-models

(= Scenario L

Event Group D

puy(BuyRequest
[.project ~, Message Link =
[E BuyConfirmed.xml
[E BuyRequest.xml = Send

L
[E CreditCheckInvald.xml — icheckCredit| CredltCheckReguest
[2 CreditCheckOk.xml = y |
[CreditCheckRequest.xml
@ InvalidPurchase.scn heckCredRCredRChackok)
[PurchaseGoods.cdm % Record State Zlccrsldrt CreditCheckOk
L SuccessfulPurchase.scn

- Assert State

i 74 Elapsed Time
-3 purchasing-store

>
522 traiblazer-models % mport L., |Duy(BuyConfirmed
Scenario i
Scenario Editor | Simulation Log
o
= Outiine %
= E Properties | [£! Problems 52 @] Error Log ¥ =0
= = 0 errors, 17 warnings, 0 others
c.
Ty Description Resource Path Location Typl
= = & Warnings (17 items)
EW:F 4, Information types should define unique conc TraiBlazer.cdm traiblazer-models Unknown EMF
Fo— & The field SetBuyFailedMessageAction.config i SetBuyFailedMes... purchasing-store/src/... ne 36 Jave ¥
<

>

B

The business requirements can therefore defined as a set of scenarios, each demonstrating a specific use-
case, or path through the business process being enacted.

3.3. Create Example M essages

The next step is to create the example messages required by the scenarios.

Some previously defined examples can be found inthe pr ocess- nodel s Eclipse project. For example,
the Buy request is defined as:

<tns: BuyRequest xnins:tns="http://ww.]jboss. org/exanpl es/ store"
id="1" />

Although a schema may not have been defined at this stage, unless one previously existed that is being
reused, it is agood idea to define a namespace for the message type. Thisis because it will be used within
the scenarios and architectural models defined in the following stage. If the namespace was not specified

at this stage, then the example messages, scenarios and architectural models would need to be updated at
alater stage.

Although this phase has been defined following the definition of the scenarios, in practice these phases are
iterative. So scenarios and example messages would be defined concurrently. Similarly, new participants
may be added in an evolutionary manner, as scenarios are created that require them.

Chapter 4.

Architecture

4.1. Define Information M odel

One of the stages within the architecture phase is to define the information model for the message types
associated with the messages exchanges between the interacting participants.

Thisinvolves defining message schema for each example message. The schema could aready exist and be
reused, it could be based on existing schema and just need to be upgraded to support new requirements, or
it may need to be defined from scratch.

An example of a schema associated with the purchasing model isthe st or e. xsd shown here:

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
tar get Nanespace="http://ww. j boss. or g/ exanpl es/ st ore"
xm ns:tns="http://ww.]jboss. org/ exanpl es/ st ore"
el ement For nDef aul t =" qual i fi ed">

<el enent name="BuyRequest" type="tns: StoreType"></el ement>
<el enent name="BuyConfirnmed" type="tns: StoreType"></el enent>
<el enent name="BuyFail ed" type="tns: StoreType"></el enent >

<conpl exType name="St oreType">
<attribute nanme="id" type="string"></attribute>
</ conpl exType>
</ schenma>

Once the schema has been defined, then the example messages need to be updated to reference the schema,
as shown in the following BuyRequest . xm example message:

<tns: BuyRequest xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns:tns="http://ww.jboss. or g/ exanpl es/ st ore"
xsi : schemalLocati on="http://ww. j boss. or g/ exanpl es/ store store.xsd "
id="1" />

4.1.1. Validating Example M essages against Schema

Once the association between example messages and the schema has been established, it is possible to
validate the messages against the schema.

For information on how to use the validation capabilities within Eclipse, please read the Eclipse XML
Validation Tutorial.

http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html
http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html

Define Choreography Model

4.2. Define Choreography M odel

Thenext step in the devel opment processisto specify aChoreography Model to implement the requirements
described within the set of scenarios.

The current representation used to define Choreography Modelswithin SAVARA isthe W3C Web Service
Choreography Description Language (WS-CDL). The pi4soa tools provide a WS-CDL (or choreography
description) editor. Although this standard is associated with web services, it does not mean that a system
specified using this standard needs to be implemented using web services. The actual WS-CDL language
is used for defining the interactions between any distributed system.

The choreography description for the Purchasing example can be found in pur chasi ng- nodel s/
Pur chaseGoods. cdm When the choreography editor has been launched, by double-clicking on thisfile
within the Eclipse environment, then navigate to the Choreography Flows tab to see the definition of the
purchasing process:

e 2 =i
Flow: | PurchaseGoodsProcess 4
s seect B =
(= Grouping C... &
o= Choice
&
9 Conditional i —* BuyRequestRet
o Faralel & (fBuyRequesi]
+ Sequence
1
7 When %, [CreditChed
|| — CreditCheckRec
Wihie %, {/CreditCheck]
(= Activities @
4 Assgn -
S Finaize B
% Interaction [Credit vaid) i [Credit Invaidy
No Action
iy Perform < % [CredrCheckraiedy
.‘— CreditCheckOkl .ﬁ{- CreditCheckFail
T Stent Action £ {jCredtCheckoK] X, {/CreditCheckralec
) Bind
Participant
i . BuyContimed X (Euyrieds
B} Bind Variable J| +— BuyConfirmedr || ¢+ BuyFaledRespc
g cory .- {/BuyConfirmed] L {[BuyFaied
=
o Exchange
Participant 1+ {[Credt vaid 1+ {{Credtt Invald
&a# Record o)
B o)
v

Roles and Relationships Base Types Choreography Flows

4.2.1. Validating Requirements against Choreography M odel

The pidsoa tools can be used to test the scenarios against the choreography description, to ensure that the
choreography correctly implementsthe requirements. To test the Successf ul Pur chase. scn scenario
against the choreography, launch the scenario editor by double-clicking on the scenario file, and then
pressing the green play button in the toolbar. When complete, the scenario should look like the following
image, indicating that the scenario completed successfully.

10

Validating Requirements against Choreography

Model
Buyer Store CreditAgency
»
buy(BuyRequest
p
P
[checkCredit{CreditCheckRequest)
RS |
»
lcheckCredit(CreditCheckok)]
o
»
[buy(BuyConfirmed)
> il

To view a scenario that demonstrates a test failure, open the | nval i dPur chase. scn scenario by

double-clicking on the file, and then initiate the test using the green play button in the toolbar. When
complete, the scenario should look like the following image.

Buyer Store CreditAgency
»
buy(BuyRequest
p |
[
|checkCredit(CreditCheckRequest)
e |
B
[checkCredit(CreditCheckInvald) fault tns:CreditCheckFailed|
) il
»
[buy(BuyConfirmed)
> i

Y ou will notice that the Sore participant has ared 'send' node, indicating that this action was not expected
behaviour when compared with the choreography description. The reason thisis considered an error, isthat
the Sore participant should only send a BuyFailed message following an invalid credit check.

11

Create Documentation

When an error is detected in a scenario, the choreography designer can then determine whether the scenario
iswrong (i.e. it does not correctly describe a business regquirement), or whether the choreography iswrong
and needs to be updated to accomodate the scenario.

4.2.2. Create Documentation

Oncethe choreography description has been successfully tested against the scenarios, the next step may beto
obtain approval to proceed to the analysis/design phase. To help support this effort, the pidsoatools provide
the means to export the choreography description to a range of representations. HTML documentation
generated is discussed below, and BPMN diagram generation is discussed in the Service Oriented Analysis
and Design section.

To generate HTML documentation, select the Export->Other->HTML menu item associated with the
choreography description file.

— N

¥ Export £3

(4

Select an export destination:

= RUrnjUeouy

[»)

= SOA Tools Platform
= Tasks

= Team

= Web L
= Web Services
= XML

< [= Other

BPMN

W5s-CDL =

@ Next = H Cancel

vV VY VY YR

The next step is to provide the location and name of the HTML file to be generated.

12

Create Documentation

x|

5
Export Choreography Description As HTML

Select a file as the destination for the CDL based information

[a\.rarafsavara—tools—eclipse-l.U—I"-"I1!5ampIeSfpurchasingmtmlfpurchasing.html

Browse

® coa] o

If the HTML has been generated within the scope of Eclipse project, then refresh the rel evant fol der to show
the file and open the file with the Eclipse web browser (as shown below). If outside the Eclipse project,

then use a normal web browser to view thefile.

Java - file:/NotBackedUp/gbrown/testing/savara/savara-tools-eclipse-1,0-M1/samples/purchasing/html/purchasing. htm| - Eclipse

Fle Edit Navigate Search Project Run Window Help

Cigg BrO-Qr | EHGE BB I [l
[# Package Explorer 5% - fs Hierarchy| = O @ cl graphy D tion for £ =8
B & e ' [File JiNotBacke dUp/gbrown testing/savararsavara-tools-eclipse-1.0-M1/samples/purchasing/htrmijpurchasing htrmi] =
< {3 purchasing B
> & bpmn Choreography Description for Package: PurchaseGoods

< = htmi
[BuyCenfirmed.xmi Author: gary .
[¥] BuyRequest xmi .
Version: 0.1
(3] creditAgency.xsd

[¥) CreditCheckinvalid xml

[£ CreditCheckOk.xmi

. Top Level Choreographies

[¥] CreditCheckRequest.xmi
& InvalidPurchase scn

@ PurchaseGoods.cdm o PurchaseGoodsProcess
[8) store.xsd

» Type Definitions

@ successfulPurchase.scn
o Role Types
= Buyer

= CreditAgenc
= Store

o Relationship Types

= BuyerToStoreRel
= StoreToCreditAgencyRel

il

o Participant Types

13

Chapter 5.

Service Oriented Analysisand Design

At this point in the lifecycle, various activities would occur related to reviewing services (i.e. in a SOA
Repository) and understanding whether existing services meet requirements, need to be modified, or
whether new services need to be devel oped from scratch.

5.1. Service Oriented Design

In the current SAVARA tooling, the main functionality in the Service Oriented Design phase is the
generation of BPMN (version 1) diagrams. These diagrams can be used as guidance for the development
teams that are implementing the individual services.

It is also possible to extend the generated BPMN (version 1) diagrams to include service logic. However
it should be noted that changes to the choreography or BPMN diagrams will not be synchronized/merged.
So changes in the choreography will not be checked for conformance against previously generated BPMN
diagrams, and it will be necessary to generate new 'service contract' BPMN (version 1) diagramsto reflect
changes in behaviour of a service within the updated choreography.

In future versions of the SAVARA, based on BPMN2, it will be possible to formally check BPMN2
process models for conformance against a choreography model, and potentially synchronize differencesin
externally observable behaviour between them.

To generate a BPMN (version 1) diagram from a choreography, select the Export menu item associated
with the choreography file, and select the Other->BPMN option.

@ Java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help
- =] Export Edl
i e O A |
Select A
2 53 s Hierarch | = O E 4 H 5
E & Nl
= = purchasing Select an export destination
%] BuyConfirmed xml
[BuyRequest.xml T (=)
> (= SOA Tools Platform
[8] creditAgency.xsd
) P (= Tasks
¥ CreditCheckinvalid.xml
P = Team
%] CreditCheckOk xml
P = Web
¥ CreditCheckRequest.xml m
3 Web Services
Wl InvalidPurchase scn &
b= XML
I PurchaseGoods.cdm
- Other
[S) store.xsd =
B successrumrcnssescn | A
HTML
W5-CDL El

®

0 items

Once the option has been selected, you will be asked to select the location where the generated BPMN
diagrams should be stored. A diagram will be created containing all of the participants involved in the
choreography in a single collaboration diagram.

14

Service Oriented Design

Select afolder that is located within a project in your Eclipse workspace. Once the folder has been chosen,
the diagramswill be generated. To see them within the Eclipse project, you will need to refresh the relevant
folder.

The generated diagram will appear as two files, one contains the underlying BPMN model (i.e. the
information about the tasks, control links, message links, etc.) and the other file contains the diagram
information (i.e. node positions, etc). Double click on the file with the . bprm_di agr amsuffix to view
the diagram in the Eclipse BPMN editor.

Java - purchasing/bpmn/PurchaseGoods_PurchaseGoodsProcess.bpmn_diagram - Eclipse

EHle Edit Diagram Navigate Search Project Run Window Help

T @[30 |8 # e |®s v B (@
R P T - —
[# Package Explorer £ 12 Hierarchy| = O | [{] PurchaseGoods_PurchaseGoodsProcess.bpmn_diagram £2 = O [l TaskList 82 =a
B % < (2] palette b
> g purchasing Ak Qi [a-%|xe e
< 5= bpmn . (SEEEEEEL » Al b Activ
] Purch Purc | |z O == 3
— : e & Uncategorized
1 PurchaseGoods_PurchaseGoodsProc| e Text Annotation
¥l BuyConfirmed.xmi
¥ BuyRequestxmi Task
[§) creditAgency.xsd =
) CreditCheckinvalid.xmi "
Looping Task
[CreditCheckok xmi
[¥) CreditCheckRequest.xmi nd
@ InvalidPurchase scn Flow
Connector
3 PurchaseGoods.cdm = -
o 8 Outine 12 a
[§) store xsd Message = =
@ SuccessfulPurchase.scn Connection B E]
Association -
R — -1
crmcmngracicy) i Pool =
=)
| sub-prgcess
(> Start Events
N (= Intermediary
'
I (= End Events
lo 0
I & Gateway sha
I = -) |G Artfacts
[£¢ Problems 32 . @ Javadoc |[& Declaration v =8

0 errors, 1 warning, 0 others
Description Resource | Fath Location Type

b & Warnings (1 item)

(cl D|

15

Chapter 6.

Service Development

Servicescan be devel oped by generating initial development artifacts, based on artifactscreatedin preceding
phases (e.g. global model or service contracts/designs).

To ensure that the services continue to conform to the artifacts defined in the previous phases, the tools
perform conformance checking between the service implementation and the existing architecture/design
artifacts. Thisis not possible with all implementation languages - they must provide the means to extract
the communication structure for comparison.

The following sections explain how the generation and conformance checking can be achieved for the
WS-BPEL implementation language.

6.1. WS-BPEL

This tools include a capability to generate a service implementation, for a participant in a choreography,
using WS-BPEL. A completed version of the PurchasingGoods example can be found in the samples
directory (which can be imported into Eclipse).

However if you wish to generate the example from scratch, the follow the instructionsin this section. More
information about how to use this feature can be found in the User Guide.

6.1.1. Generating WS-BPEL based Services

When achoreography description has been created, it ispossibleto generate aBPEL Process (and associated
WSDL files and deployment descriptor) for each of the participants defined within the choreography. To
try this out, select the Savara->Generate->WS-BPEL menu item from the popup menu associated with the
Pur chaseGoods. cdm

Thiswill display a dialog listing the possible services that can be generated from this choreography, with
aproposed Eclipse project name.

To test out this feature, uncheck the Buyer participant, leave the build system as Ant, select the messaging
system appropriate for your target environment and press the 'Ok’ button. This will create a single new
project for the Store and CreditAgency participants.

Each project will contain a single bpel folder containing the WS-BPEL process definition for the
participant, alist of relevant WSDL files and a deployment descriptor file for use with RiftSaw. Howeve
the WS-BPEL and WSDL files are standard, so can be deployed to any WS-BPEL 2.0 compliant engine.

6.1.2. Adding implementation detailsto CreditAgency

6.1.2.1. Deployment Descriptor

When generated, the deployment descriptor initially has the following content:

16

Adding implementation details to CreditAgency

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<depl oy xm ns="http://ww. apache. or g/ ode/ schemas/ dd/ 2007/ 03" xm ns: ns1="http://ww. jboss. org/
exanpl es/ credi t Agency" >
<process nanme="nsl: PurchaseGoodsProcess_Credit Agency" >
<active>
true
</ active>
<provi de partnerLink="StoreToCreditAgency">
<service/>
</ provi de>
</ process>
</ depl oy>

The only change necessary isto add some attributes to the service element:

<servi ce name="nsl: Credi t AgencyService" port="CreditAgencylnterfacePort"/>

6.1.2.2. BPEL Process Definition

The generated BPEL process for the CreditAgency participant is as follows:

<process xm ns: bpel ="http://docs. oasi s-open. or g/ wsbpel / 2. 0/ process/ execut abl e"
xm ns: ca="http://ww. jboss. org/ exanpl es/ credi t Agency"
xm ns: pur="http://ww. jboss. org/ exanpl es/ pur chasi ng"
xm ns: sto="http://ww.]jboss. or g/ exanpl es/ st ore"
xm ns:tns="http://ww.]jboss. org/ savar a/ exanpl es"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: nsO="http://ww. scri bbl e. org/ conversation”
ns0: conver sati onType="savar a. sanpl es. Conrmon@r edi t Agency"
name="Pur chaseGoodsProcess_Cr edi t Agency"
tar get Nanespace="http://ww. j boss. or g/ exanpl es/ cr edi t Agency"
xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e" >
<inmport inportType="http://schenmas. xnl soap. org/ wsdl /"
| ocati on="Pur chaseGoodsProcess_Credi t Agency. wsdl "
nanmespace="http://ww. j boss. or g/ exanpl es/ cr edi t Agency"/ >
<inmport inportType="http://schenas. xnl soap. org/ wsdl /"
| ocati on="Pur chaseGoodsProcess_Store. wsdl "
namespace="http://ww. j boss. or g/ exanpl es/ store"/ >
<inmport inportType="http://schenas.xnl soap. org/ wsdl /"
| ocati on="Credi t AgencyPart ner Li nkTypes. wsdl "
nanmespace="http://ww. j boss. or g/ exanpl es/ cr edi t Agency"/ >
<part ner Li nks>
<partnerLi nk myRol e="Credi t AgencyServi ce" nane="StoreToCredi t Agency"
part ner Li nkType="ca: St or eToCr edi t AgencyServi ceLT"/ >
</ part ner Li nks>
<vari abl es>
<variabl e messageType="ca: Credi t CheckRequest" nane="cr edi t CheckRequest Var"/ >

17

Adding implementation details to CreditAgency

<vari abl e nessageType="ca: Credi t CheckCk" nane="credi t CheckCkVar"/ >
<vari abl e nmessageType="ca: Credit Checkl nval i d* name="cr edi t Checkl nval i dvar"/ >
</vari abl es>
<sequence>
<receive createlnstance="yes" operation="checkCredit"
part nerLi nk="St or eToCr edi t Agency" port Type="ca: Credi t Agencyl nt erf ace"
vari abl e="credi t CheckRequest Var"/ >
<if>
<sequence>
<reply operation="checkCredit" partnerLink="StoreToCreditAgency"
port Type="ca: Credi t Agencyl nt erface" vari abl e="credi t CheckCkVar"/ >
</ sequence>
<el se>
<sequence>
<reply faultNanme="ca: CreditCheckFail ed" operation="checkCredit"
par t nerLi nk="St or eToCr edi t Agency"
port Type="ca: Credi t Agencyl nt erface"
vari abl e="credi t Checkl nval i dvar"/>
</ sequence>
</ el se>
</[if>
</ sequence>
</ process>

There are three changes required, the first being to add a condition following the if element:

<if>
<condi ti on>
$credi t CheckRequest Var . Cr edi t CheckRequest / pur: anount & t; = 500
</ condi tion>

The next two changesrel ate to taking theinformation provided in the request and constructing an appropriate
normal and fault response. In thissimple examplewe only echo back theinformation received intherequest,
however more complicated processing could be performed before returning either response.

Thefollowing XML code should be added before the normal response (i.e. just inside the sequence element
following the condition:

<assi gn nane="CopyPur chaseDet ai | s">
<COpy>
<frone$cr edi t CheckRequest Var . Cr edi t CheckRequest </ f r on®>
<t 0>$credi t CheckOkVar . Credi t CheckCk</t 0>
</ copy>
</ assi gn>

18

Adding implementation details to Store

The following XML code should be added before the fault response (i.e. just inside the sequence element
that is contained in the else element:

<assi gn name="CopyPurchaseDet ai | s">
<C0py>
<frone$credi t CheckRequest Var . Cr edi t CheckRequest </ f ron®
<t o>%cr edi t Checkl nval i dVar. Cr edi t Checkl nval i d</t 0>
</ copy>
</ assi gn>

6.1.3. Adding implementation detailsto Store

6.1.3.1. Deployment Descriptor

When generated, the deployment descriptor initially has the following content:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<depl oy xm ns="http://ww. apache. or g/ ode/ schemas/ dd/ 2007/ 03" xm ns: ns1="http://ww. j boss. org/
exanpl es/ store">
<process nanme="nsl: Pur chaseGoodsProcess_Store">
<active>
true
</ active>
<provi de partnerLink="Buyer ToStore">
<service/>
</ provi de>
<i nvoke partnerLi nk="StoreToCredit Agency" >
<service/ >
</i nvoke>
</ process>
</ depl oy>

The only changes necessary are, (1) to add a namespace prefix definition,

xm ns: ns2="http://ww. j boss. or g/ exanpl es/ cr edi t Agency"

and (2) to add some attributes to the service element:

<provi de partnerLi nk="Buyer ToStore">
<service name="nsl: StoreService" port="StorelnterfacePort"/>
</ provi de>

19

Adding implementation details to Store

<i nvoke partnerLi nk="StoreToCredit Agency" >
<servi ce name="ns2: Credi t AgencyServi ce" port="CreditAgencylnterfacePort"/>
</invoke>

6.1.3.2. BPEL Process Definition

The generated BPEL process for the Store participant is as follows:

<process xm ns: bpel ="http://docs. oasi s-open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e"
xm ns: ca="http://ww.jboss. or g/ exanpl es/ cr edi t Agency"
xm ns: pur="http://ww.]jboss. or g/ exanpl es/ pur chasi ng"
xm ns: sto="http://ww.]jboss. or g/ exanpl es/ st ore"
xm ns:tns="http://ww.]jboss. org/ savar a/ exanpl es"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: nsO="http://ww. scri bbl e. org/ conver sati on"
ns0: conver sati onType="savar a. sanpl es. Pur chasi ng@st or e"
name="Pur chaseGoodsProcess_St ore"
t arget Nanespace="htt p: //ww. j boss. or g/ exanpl es/ st ore"
xm ns="http://docs. oasi s- open. or g/ wsbpel / 2. 0/ pr ocess/ execut abl e" >
<inmport inportType="http://schenas. xmnl soap. org/ wsdl /"
| ocati on="Pur chaseGoodsProcess_St ore. wsdl "
nanespace="http://ww.j boss. or g/ exanpl es/ store"/ >
<inport inportType="http://schenas. xm soap. org/ wsdl /"
| ocati on="Pur chaseGoodsProcess_Credi t Agency. wsdl "
nanmespace="http://ww. j boss. or g/ exanpl es/ cr edi t Agency"/ >
<inmport inportType="http://schenmas. xnl soap. org/ wsdl /"
| ocati on="St or ePar t ner Li nkTypes. wsdl "
namespace="http://ww. j boss. or g/ exanpl es/ store"/ >
<part ner Li nks>
<partnerLi nk nmyRol e="StoreService" name="Buyer ToSt or e"
partnerLi nkType="st o: Buyer ToSt or eSer vi ceLT"/ >
<partnerLi nk name="St or eToCr edi t Agency"
par t ner Li nkType="st o: St or eToCr edi t AgencyLT"
par t ner Rol e=" Cr edi t AgencyRequester"/ >
</ part ner Li nks>
<vari abl es>
<vari abl e messageType="st 0: BuyRequest" nane="buyRequest Var"/>
<variabl e messageType="ca: Credi t CheckRequest" nane="cr edi t CheckRequest Var"/ >
<variabl e messageType="ca: Credit CheckCk" nane="creditCheckOkVar"/>
<vari abl e nessageType="st o: BuyConfi rmed" nane="buyConfirnedVar"/>
<vari abl e nessageType="st o: BuyFai |l ed" nanme="buyFail edvar"/>
</vari abl es>
<sequence>
<recei ve createlnstance="yes" operation="buy" partnerLink="Buyer ToStore"
port Type="sto: Storel nterface" vari abl e="buyRequest Var"/>
<scope>
<f aul t Handl er s>
<catch faultMessageType="ca: Credit Checkl nval i d"
faul t Nane="ca: Credi t CheckFai | ed" faultVariabl e="credit Checkl nval i dvar">
<sequence>
<reply faultName="sto: BuyFai |l ed" operation="buy"
part ner Li nk="Buyer ToSt ore" port Type="sto: Storel nterface"
vari abl e="buyFai | edVar"/ >
</ sequence>

20

Adding implementation details to Store

</ cat ch>
</ f aul t Handl er s>
<sequence>
<i nvoke inputVari abl e="credi t CheckRequest Var" operation="checkCredit"
out put Vari abl e="credi t CheckCkVar" partnerLi nk="St or eToCr edi t Agency"
port Type="ca: Credi t Agencyl nterface"/>
<reply operation="buy" partnerLink="Buyer ToStore" portType="sto: Storelnterface"
vari abl e="buyConfi r medvar"/ >
</ sequence>
</ scope>
</ sequence>
</ process>

There are three changes required. The first being to add an assignment statement within the catch element's
sequence prior to thereply:

<assi gn nane="CopyPur chaseDet ai | s">
<copy>
<frone$credi t Checkl nval i dVar. Cr edi t Checkl nval i d</fron»
<t 0>$buyFai | edVar . BuyFai | ed</t o>
</ copy>
</ assi gn>

The remaining two changes relate to taking the information received in the initial request, to construct a
reguest to the credit agency, and then extracting the information from the credit agency response, to return
it to the Store client. The following snippet shows the two assignment statements either side of the invoke
statement:

<assi gn name="CopyPurchaseDet ai | s">
<C0py>
<f ron>$buyRequest Var . BuyRequest </ f r on>
<t 0>%cr edi t CheckRequest Var . Cr edi t CheckRequest </ t 0>
</ copy>
</ assi gn>
<invoke inputVariabl e="credit CheckRequest Var" operati on="checkCredit"
out put Vari abl e="credi t CheckCkVar" part nerLi nk="St or eToCr edi t Agency"
port Type="ca: Credi t Agencyl nterface"/>
<assi gn nane="CopyPur chaseDet ai | s">
<C0py>
<frone$credi t CheckOkVar . Cr edi t CheckOk</fronw
<t 0>$buyConfi r medVar . BuyConfi r med</ t o>
</ copy>
</ assi gn>

21

Summary

6.2. Summary

This section has provided a brief introduction to the design-time SOA governance features provided within
the SAVARA Eclipse Tools distribution.

The aim of these capabilities are to enable verification of an implementation, initially defined just using
BPEL process definitions, against a choreography, which in turn has been verified against business
reguirements defined using scenarios. Therefore this helpsto ensure that the implemented system meetsthe
original business requirements.

Being ableto statically check that the implementati on should send or receive messagesin the correct order is
important, asit will reduce the amount of testing required to ensure the service behaves correctly. However
it does not enable the internal implementation details to be verified, which may result in invalid decisions
being made at runtime, resulting in unexpected paths being taken. Therefore, to ensure this situation does
not occur, we also need runtime governance, which is discussed in alater section (Runtime Validation).

22

Chapter 7.

Runtime Validation

@ Note
Before you can deploy and run the runtime validation example, you will need to install the
SAVARA Validator module for JBossESB.

Once services have been deployed, as mentioned in the previous section, we still need to be ableto verify that
the services continue to conform to the choreography description. The Conversation Validation capability
within the SAVARA distribution can be used to validate the behaviour of each service.

In thissection, wewill usethe Trailblazer examplefound inthe ${ SAVARA} / sanpl es/ trai | bl azer
folder and thet r ai | bl azer - nodel s Eclipse project.

7.1. Service Validator Configuration

The JBossESB service validator configuration is defined using jbossesb specific annotations, that are
associated with the 'exchange details components (contained within interactions), within the choreography
description.

To view the pre-configured service validator configuration defined for the Trailblazer example, edit the
Trai | Bl azer. cdmfile, navigate to the Choreography Flows tab and then select the Choreography-
>Edit Annotations menu item associated with the first 'exchange details component (as shown below).

I} TraiBlazerProces:

_‘y CreditCheck?

Ig—' CreditCheckR—

7 Undo
‘}. /CreditCheck| i

Copy

X Delete
& [Creditcheck)
l‘— O eEell Choreography *
L (Crdiced] | o

w0 Generate Image...
Debug As

»

»

[{Choice}: g '
LS ,

»

Compare With

2 |valdcre _,M
—

This will display the annotation editor, with the single configured annotation called 'validator'. This
annotation defines the information required for the Service Validator to monitor this specific message
exchange (i.e. the IM S destination on which the message will be passed).

& EditA [Creditcr TEXCh B

| Parameters | Annotation

Destination l}ms‘queue/esbrtbrcredimqencyoueue J

Dynamic ReplyTo O

[save] [cose]

23

Deploy the TrailBlazer Example

Once an annotation has been defined, it will also be displayed as part of the tooltip for the associated model
component, for example:

Once the jbossesb annotations have been defined for al relevant 'exchange details components in
the choreography description, the choreography file can be copied to the ${ JBossAS}/ server/
def aul t/ depl oy/ savar a- val i dat or. esb/ nodel s folder in the JBossAS environment. The
service validator configuration for the trailblazer example has been preconfigured to be deployed as part
of the installation procedure.

@ Note
If the savar a-val i dat or. esb/ val i dat or - confi g. xm within the JBossAS
environment is modified, or choreography description files added, removed or updated
within the savar a- val i dat or . esb/ nodel s sub-folder, then the changes will
automatically be detected and used to re-configure the service validators without having
to restart the JBosSESB server.

7.2. Deploy the TrailBlazer Example

Thefirst step to deploying the Trailblazer example isto configure the JBossA S environment:

4,

Update the ${JIBossAS}/ server/ def aul t/ depl oy/ j bossesbh. sar/j bossesb-
properties. xm file in the section entitled "transports’ and specify all of the SMTP mail server
settings for your environment.

Updatethetrai | bl azer/trail bl azer. properties

Update the file.bank.monitored.directory and file.output.directory properties. These are folders used by
the File Based Bank, and are setto/ t np/ i nput and/ t np/ out put by default.

. Updatethet rai | bl azer/ esb/ conf/j boss-esb. xnl

Thereisafs-provider block, update the directory attribute value to be the same asthefile.output.directory
valueintrail bl azer. properti es file.

Start the JBossAS server

One the server has been started, the next step is to deploy the relevant components into the JBossAS
environment. Thisis achieved by:

1.

Fromthetrail bl azer folder, execute the following command to deploy the example to the ESB:
ant deploy

this should deploy the ESB and WAR filesto your JBossASser ver/ def aul t.

24

Starting the pi4soa Monitor

2. Fromthetrail bl azer/ banks folder, execute the command to start the IMS Bank service: ant
runJM SBank.

3. Fromthetrai |l bl azer/ banks folder, execute the command to start the IMS Bank service: ant
runFileBank.

7.3. Starting the pi4soa M onitor

The pidsoaMonitor isused to observe acorrelated view of the executing businesstransactions. Each service
validator can be configured to report activites (i.e. sent and received messages) that it validates, to enable
the correlator to reconstitute a global interpretation of each transaction.

This correlated view of each transaction can be used to understand where each transaction is within the
process. It can also be used to report out of sequence, unexpected messages and more general errorsin the
context of the business process.

A simple monitoring tool is currently provided with the pidsoa tools, to enable the correlated global
view of the transactions to be observed. Once the Trailblazer example has been deployed to the JBossAS
environment, and the server is running, then the monitoring tool can be launched from the Eclipse
environment by selecting the Choreography->Monitor menu item from the popup menu associated with
theTrai | Bl azer. cdmfile.

= 3= traiblazer-models
(= .settings
- bin
- SFC
[l .classpath
E .project
& LoanRequest.scn

= mmm
i News »
Open

Open With 4
= Copy

¥ Delete
Move...
Rename...

g Import...
3 Export...

£ Refresh

Run As
Debug As
Team
3= Outine &2 Compare With
\noutine is not Replace With

Croreography

Overlord

~ B

-

Generate * |l

Properties Depoy % 2
Test >

“ WWarnina

Wait for the monitor window to start, and indicate that the choreography is being monitored, shown in the
status line at the bottom of the window.

25

Running the Example

. Choreography Monitor

File Help

4 |zsues Sessiunlu\ Frarm To M5 | Status

Sessions

4 Channels

Euni(nring TrailBlazer

7.4. Running the Example

To run the example, you need to start a browser and select the URL localhost:8080/trailblazer. This will
show thefollowing page, if the server has been configured correctly and the TrailBlazer example deployed:

¥ JBossESB Loan Broker - Mozilla Firefox
Fle Edit View History Bookmarks Yahoo! Tools Help

@ = C T, I\ <. | http://localhost:8080/traiblazer/ vy - | G| co P2
Most Visited] Customize Links |] Yahoo! Mal |] Web Services Choreog... ™ Apache Software Foun... S
! -2 - | search - @ - 2 mai - E Answers - # Dating - (& Mobie - [+ Signin

°®® subscription jboss.com jboss.org redhat.com

* JBoss

@@ *ionofRedHat

Loan Broker Request Form

Name |Joe Broke |

Address 1 Spenditall Str. BrokeTown 99999 DC |

SSN [1234567530

Email hoe@mketospend\t:om ‘

Salary |50000.00 |

Employer [Wesayso & Co |

LoanAmount [1000.00 |

LoanDuration [12 |
Done @) Open Notebook

Now you can submit quotes, You will see either aloan request rejected (single email) because the score
islessthan 4, or two emails (one from JM S bank and one from FileBased bank) with valid quotes. When
entering subsequent quotes, make sure that the quote reference is updated, so that each session has aunique
id.

26

http://localhost:8080/trailblazer

Detecting a Validation Error

7.5. Detecting a Validation Error

To demonstrate the detection of validation errors, there is an alternative implementation of the trailblazer
modulesthat behaviour differently to the choreography that isbeing monitored. Specifically, the credit score
threshold used to determine whether aloan request should be issued to the banks, israised from4to 7.

To deploy the version of the TrailBlazer example that results in validation errors, then:
» From the ${ SAVARA} / sanpl es/ trai | bl azer folder, execute the following command to deploy
the example to the ESB: ant deploy-error-client.

The next step isto i ssue moretransactions, until acredit check score occursthat isbetween 4 and 6 inclusive.
This will result in a insufficientCredit interaction being reported, which would be unexpected in terms of
the choreography.

. Choreography Monitor

File Help
e Session ld Fram I To | Msg | Status
.LoanBroker otifyfinsufficientCredit) i -
@ Unsipectsd Messages | (1350567894 .. L oanBrokerParici, nsufficientCredit nexpected
@ Erors i heckCredit(creditCheckRes ompleted
L i lcheckC itCheck) Completed
J Warnings .LoanBroker ifi otifylinsufficientCredit) ompleted |
- 1234567893 ... CreditAgency heckCredit(creditCheckResulty ompleted |
1234567893 ... LoanBroker heckCredit(creditCheck) ompleted
171 1234567850 (35N ...LoanBroker ompleted |
V71 1234567891 (S8N) 1234567892 ... CreditAgency heckCredit(creditCheckResult) ompleted |
1234567892 ... LoanBroker ompleted
171 1234567892 (S5h) LoanBroker L ompleted |~
171 1234567893 (S5M) Bank oanBroker ompleted |
oanBroker otifier ompleted
71 1234567694 (35H) TequestQuote(quote) ompleted |
= Channels 1234567891 ... LoanBroker B requestQuote(quoteRequest) ompleted |
—-LoanBroker Bank requestQuote{quoteRequest) ompleted
@ BankChannzMype reditAgency LoanBroker heckCredit{creditCheckResult) ompleted |
& credithgencyChannelT, - hecke! tCheck) ompleted
ek ker Notifier ifyli fentCredit) Completed
& notierchannzType | (1334567890 .. Credithgency LoanBroker EheckCreili\(creili\CheckResul!i ompleted |—|
11234567290 i heckCredi itCheck) omnleted >
<insufficientCredit xmins="http/www sernvicedescription.org/sernicefracker's el |
<customerUID>
1234567894
slcustomerUiD> =
<ref>
0 [
=lref>
=customerEmail>
spenditcom |
«q Il I 1o i -
Eunnurinu TrailBlazer

When errors, such as unexpected messages, are detected by the service validators and reported to the
Choreography Monitor, they are displayed in red.

27

	SAVARA 1.0
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Installation Instructions
	2.3. Importing Samples into Eclipse

	Chapter 3. Business Analysis
	3.1. Define Participants
	3.2. Outline Scenarios
	3.3. Create Example Messages

	Chapter 4. Architecture
	4.1. Define Information Model
	4.1.1. Validating Example Messages against Schema

	4.2. Define Choreography Model
	4.2.1. Validating Requirements against Choreography Model
	4.2.2. Create Documentation

	Chapter 5. Service Oriented Analysis and Design
	5.1. Service Oriented Design

	Chapter 6. Service Development
	6.1. WS-BPEL
	6.1.1. Generating WS-BPEL based Services
	6.1.2. Adding implementation details to CreditAgency
	6.1.2.1. Deployment Descriptor
	6.1.2.2. BPEL Process Definition

	6.1.3. Adding implementation details to Store
	6.1.3.1. Deployment Descriptor
	6.1.3.2. BPEL Process Definition

	6.2. Summary

	Chapter 7. Runtime Validation
	7.1. Service Validator Configuration
	7.2. Deploy the TrailBlazer Example
	7.3. Starting the pi4soa Monitor
	7.4. Running the Example
	7.5. Detecting a Validation Error

