SAVARA 1.1

Getting Started Guide

by Gary Brown and Jeff Yu

B 1 = = o o 2
A T o 1= = o 011 =SS 2
2.2, InStall@tion INSEIUCTIONScvveiieiee et e e e e e e e e e e eennas 2
2.3. Importing SamMpPIeS INt0 ECHPSE . .vvuiiiiiciie e 3

 BUSINESS ANAIYSIS ..ttt 6
3.1, DEfINE PartiCIPantSiiuu i e et e e e e e e et e e et e e e et e e et e e ee 6
A @ 11 1T Lo o= = o = 7
3.3. Create EXamMPIE IMESSAGES ...uuvveeiiieeii e ettt et e et e et e e e e e e e et e e e e e et e e et e e e e et 8

O AN o 1 (= ox {1 = 9
4.1. Define INformation MOGE!ooieiiiiiiii e e eennes 9

4.1.1. Validating Example Messages against Schema............coovevviiiniiiiiinc, 9
4.2. Define Choreography MOGELc.ouiiiiieii e e e e e e e e 10
4.2.1. Vdidating Requirements against Choreography Modelccooiiiiiiiiinieiiinnnnn. 10
4.2.2. Create DOCUMENTBIIONeevviriiie ettt e e e e e s 12

. Service Oriented ANalysisS and DESIGNuuuiiiiiiiiiiiii et 14
5.1, SErvice Oriented DESIGN .. ccvuiiii e e e e e e e aa s 14

. SErVICE DEVEIOPMENT ...t 16
8.1, WS BPEL ..ot e 16

6.1.1. Generating WS-BPEL hased SErVICESccuuuiiiiiiieiiiii e 16
6.1.2. Adding implementation detailSc.coeiiiiiiiiieii e 16

. Testable ArchiteCtUre ProjECToouuuiiiiii e et e 18
7.1. Managing DEPENTENCIESviiiieii e e e e e e et eaaa s 18
7.2. Validating a Testable Architecture ProjeCtoviiiviiiiiiiiiiecii e 20

c RUNEIME VAlTAALION L.euiii et e e e e e e e e eeenes 22
8.1. Service Validator CONfigUIaLioNuueieiuiniiiiii e e eeaens 22
8.2, SAVARA IMONITOT .ttt ettt sttt e e e et e s e e e e e e e n b as 23
8.3. Web Service / WS-BPEL Example - PUrchasingccccuuieiiiinieiiiiiecei e, 24

8.3.1. Deploying the EXampleoiiiiiii e 24
8.3.2. RUNNING the BEXaMPIEiiiiii e 24
8.4. JBOSSESB Example - Traillblazerccuviiiiiiii e 26
8.4.1. Deploying the EXaMPIEiiiiii e 26
8.4.2. RUNNING the EXaMPIEovviiiii e 27
8.4.3. Detecting a Validation EFTOFcc.uuiieiiiiiiieiiiiie et 27

Chapter 1.

Overview

Thisis the Getting Started Guide for SAVARA. This guide starts with the installation instructions for the
SAVARA tools and runtime modules.

The remainder of the document is organised to reflect phases within the SAVARA Methodology, and how
the current tool s can be used in support of that methodology. Thetoolsare till in development, and therefore
not all phases will have tools, and the toolsin some phases will not necessarily be complete.

Asan overview, the tools currently include capabilities for:

« Definition of business requirements as scenarios

 Creation of a choreography (global model) to represent the architecture for a system that delivers the
requirements

» Generation of documentation based on the choreography

» Generation of service implementation using WS-BPEL

» Generation of service interfaces using WSDL

» Conformance checking a WS-BPEL service implementation against a choreography

* Runtime validation of an ESB service against a choreography description

Chapter 2.

| nstallation

This section describes the installation procedure for SAVARA tools and runtime modules.

2.1. Prerequisites
The pre-requisites for the SAVARA Eclipse Tools are:
1. Eclipse JEE (3.6 or higher) http://www.eclipse.org

2. JBoss Toals (3.2 or higher) http://www.jboss.org/tools available from an update site

The pre-requisites for the SAVARA Service Validator are:

1. JBossAS (5.1.0.GA or higher) http://www.jboss.org/jbossas
2. JBOssAS (4.8 or higher) http://www.jboss.org/jbossesb

3. SAVARA (version 1.1.0 or higher), available from http://www.jboss.org/savara/downl oads

2.2. Installation I nstructions

Theinstallation instructions for the SAVARA Eclipse tools are:

1. Eclipse
Download the latest version of Eclipse JEE, and install in your environment.

2. BPMN Modeller

When Eclipse has been lauched, go to the Help->Install New Software.. menu item. Select the Eclipse
update site for the version of Eclipse (e.g. Helios). Within the SOA Development category, select the
BPMN Project Feature. Follow the instructions to accept the license and then restart Eclipse after the

plugins have been installed.

3. JBoss Tools

Start up your Eclipse environment, and go to the Help->Install New Software.. menu item. Select the
appropriate update site URL from the JBoss Tools download page, and enter it into the top text field in
the dialog window, and press the Add button. Once the contents of the update site is available, then select
the appropriate components and follow the instructionsto install them within your Eclipse environment.

The JBoss Savara Tools feature should be selected from the SOA Devel opment category.

If you wish to view the generated BPEL using a BPEL editor, rather than XML, then you should also

select the JBoss BPEL Editor from the SOA Development category.

NOTE: If you don't install the BPEL Editor, then you will have to install GMF. This can be found on
the Helios update site, under the Modeling category. Select the Graphical Modeling Framework entry,

and following the instructions to install.

http://www.eclipse.org
http://www.jboss.org/tools
http://www.jboss.org/jbossas
http://www.jboss.org/jbossesb
http://www.jboss.org/savara/downloads

Importing Samplesinto Eclipse

It is also recommended that you install the JBoss WebServices Tools, and JBossAS Tools, from the All
category. These arerequired to define and launch a JBossA S server from within Eclipse, generate a JAX -
WS web service from aWSDL definition, and test a Web Service.

The installation instructions for the SAVARA Service Validator are:

1. JBossAS
Download the |atest version and follow its installation instructions.

2. JBosseESB
Download the latest version and follow the instructions for installing it into the JBossA S environment.

3. SAVARA
Unpack the SAVARA distribution and edit thedepl oynment . pr operti es fileinthis${ SAVARA} /
i nstall folder. Set the org.jboss.as.home property to the root directory where the JBossAS
environment islocated, and change the org.jboss.as.config property from default if you wish to start your
JBossA S using adifferent configuration. Set the org.jboss.esh.home property to the root directory where
the JBossESB environment is located.

Start acommand window and execute the command ant deploy.
2.3. Importing Samplesinto Eclipse
Once the SAVARA Eclipse Tool distribution has been correctly installed, if you wish to try out any of the

examples then the following steps should be followed to import the relevant projects into the previously
configured Eclipse environment.

1. Select the 'Import..." menu item, associated with the popup menu on the background of the left panal
(Navigator or Package depending on perspective being viewed).

&5 Navigator i3 =
5%~
New k
1 Export...
& Refresh

2. When the import dialog appears, select the General-> ExistingProject from Workspace option and press
the 'Next' button.

Importing Samplesinto Eclipse

Select

d
Create new projects from an archive file or directory. H

Select an import source:

= (= General =

[E Archive File

& Existing Projects into Workspace

(7], File System =

El Preferences
P = cvs
b =EJB
[P (= Java EE
[P (= Plug-in Development
P (= Remote Systems

(4]

k

@ L Next = H Cancel | Finist

3. Ensuring that the 'Select root directory' radio button is selected, press the '‘Browse' button and navigate
to the ${ SAVARA- Tool s}/ sanpl es folder, then press 'Ok

s
E]l savara H savara-tools-eclipse-1.0-M1 Hsamplesl r [Create Fniﬂerl
Places Name ¥ | Modified |—|
@ gbrown 3 purchasing Today
& Desktop
O File System
[data

4 Add Ber | El
Select root directory of the projects to import
|

4. All of the Eclipse projects contained within the ${ SAVARA- Tool s}/ sanpl es directory structure
will be listed. Press the 'Finish' button to import them all.

Importing Samplesinto Eclipse

[E®; Import

Import Projects

Select a directory to search for existing Eclipse projects.

(@ Select root directory: [avara—tocls-eclipse—l.U—lesamplesl

Browse. ..

(") Select archive file: |

Projects:

purchasing (/NotBackedUp/gbrown/testing/savara/savar

(] I |

[+)

[] Copy projects into workspace
Working sets

[] Add project to working sets

Select All

eselect All

|

=
[14]
4]
=

@ < Back | |[Cancel]ﬂ Finish]

I 1 g

Once imported, the Eclipse navigator will list the sample projects:

=

A Hierarch} —m

Bale -

7 = purchasing
| BuyConfirmed xml
[¥| BuyRequest.xml
[8] creditAgency.xsd
¥ CreditCheckinvalid.xml
¥ CreditCheckOk.xml
[¥| CreditCheckRequest.xmil
& InvalidPurchase scn
[PurchaseGoods.cdm
5] store xsd

[SuccessfulPurchase.scn

Chapter 3.

Business Analysis

3.1. Define Participants

In the current Eclipse tools, that use the pi4soa Scenario and Choreography based models for defining
reguirements and architectural models, this phase would be achieved by defining the Participants and Roles
within the choreography model.

When a choreography description is initially created, using the New->Other->Choreography-
> Choreography Description menu item, the roles and relationships can be defined on the first tab.

! PurchaseGoods.cdm &2

[é Select

= Types £ 5: i

i Role = Credlmgencyé =+ BuyerBehavior]

=5 Behavior

% Relationship

StoreToCreditAgencyRel [BuyerTostoreRrel

4 For>

= StoreBehavior

Roles and Relationships | Base Types | Choreography Flows

Default participant types are automatically created, one per role, and can be found on the Base Types tab.
For example,

QOutline Scenarios

< PurchaseGoods.cdm &

[+ Select =~ P»= Name Spaces
[=-Base Types <« ns tns
gl NameSpace ne xsd
Participant ns pur
Type
ns sto
i Role Type
ns Ca
s Relationship
“ Type ~ [P Participant Types
I Information Buyer
Type
ca:CreditAgency
g Channel
Type sto:Store
&=, Token =~ [P Role Types
~2Z, Token > ;E Buyer
Locator)
[;t Credithgency
+— Behavior
e P ;t Store
L Passing <~ P Relationship Types
Channel
Details J\q BuyerToStoreRel
gl Identity %4 StoreToCreditAgencyRel

> B Channel Types

Only these components need to be specified in the choreography model. This enablesthem to be referenced
in the subsequently defined scenarios. Otherwise it would be necessary to return to the scenarios, once the

choreography model had been defined in the Architecture phase.

3.2. Outline Scenarios

When designing a system, it is necessary to capture requirements. V arious approaches can be used for this,
but currently there are no mechanisms that enable the requirements to be documented in such a way to

enable an implementation to be validated back against the requirements.

The pi4soa tools provide a means of describing requirements, representing specific use cases for the
interactions between a set of cooperating services, using scenarios - which can be considered similar to

UML sequence diagrams that have been enhanced to include example messages.

Inthe pur chasi ng Eclipse project, the Successf ul Pur chase. scn scenario looks like this:

Create Example Messages

— -
£ Choreography - purchasing-models/SuccessfulPurchase.scn - Eclipse SDK ‘L“ﬁJ§|
Fle Edit View MNavigate Search Project Run Window Help
HDE e - X o - : B0 e o a =53 choreogra... | *
5. Navigator &3 = 0| 4 successfulPurchase.scn &3 = im

0% <
ol [Select

-3 brokerage-broker
[= brokerage-models
& 52% brokerage-suppler T Participant Buyer Store CreditAgency
5= common-creditAgency
=-§2 purchasing-models

(= Scenario L

Event Group D

puy(BuyRequest
[.project ~, Message Link =
[E BuyConfirmed.xml
[E BuyRequest.xml = Send

L

[E CreditCheckInvald.xml — icheckCredit| CredltCheckReguest
[2 CreditCheckOk.xml = y |
[CreditCheckRequest.xml
@ InvalidPurchase.scn

[PurchaseGoods.cdm % Record State cCredrt CreditCheckOk;
L SuccessfulPurchase.scn

-5 purchasing-store

- Assert State

74 Elapsed Time

>
522 traiblazer-models % mport L., |Duy(BuyConfirmed
Scenario i
Scenario Editor | Simulation Log
o
= Outiine %
= E Properties | [£! Problems 52 @] Error Log ¥ =0
= = 0 errors, 17 warnings, 0 others
c.
Ty Description Resource Path Location Typl
= = & Warnings (17 items)
EW:F 4, Information types should define unique conc TraiBlazer.cdm traiblazer-models Unknown EMF
Fo— & The field SetBuyFailedMessageAction.config i SetBuyFailedMes... purchasing-store/src/... ne 36 Jave ¥
<

>

B

The business requirements can therefore defined as a set of scenarios, each demonstrating a specific use-
case, or path through the business process being enacted.

3.3. Create Example M essages

The next step is to create the example messages required by the scenarios.

Some previously defined examples can be found in the pur chasi ng Eclipse project. For example, the
Buy request is defined as:

<tns: BuyRequest xnins:tns="http://ww.]jboss. org/exanpl es/ store"
id="1" />

Although a schema may not have been defined at this stage, unless one previously existed that is being
reused, it is agood idea to define a namespace for the message type. Thisis because it will be used within
the scenarios and architectural models defined in the following stage. If the namespace was not specified

at this stage, then the example messages, scenarios and architectural models would need to be updated at
alater stage.

Although this phase has been defined following the definition of the scenarios, in practice these phases are
iterative. So scenarios and example messages would be defined concurrently. Similarly, new participants
may be added in an evolutionary manner, as scenarios are created that require them.

Chapter 4.

Architecture

4.1. Define Information M odel

One of the stages within the architecture phase is to define the information model for the message types
associated with the messages exchanges between the interacting participants.

Thisinvolves defining message schema for each example message. The schema could aready exist and be
reused, it could be based on existing schema and just need to be upgraded to support new requirements, or
it may need to be defined from scratch.

An example of a schema associated with the purchasing model isthe st or e. xsd shown here:

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
tar get Nanespace="http://ww. j boss. or g/ exanpl es/ st ore"
xm ns:tns="http://ww.]jboss. org/ exanpl es/ st ore"
el ement For nDef aul t =" qual i fi ed">

<el enent name="BuyRequest" type="tns: StoreType"></el ement>
<el enent name="BuyConfirnmed" type="tns: StoreType"></el enent>
<el enent name="BuyFail ed" type="tns: StoreType"></el enent >

<conpl exType name="St oreType">
<attribute nanme="id" type="string"></attribute>
</ conpl exType>
</ schenma>

Once the schema has been defined, then the example messages need to be updated to reference the schema,
as shown in the following BuyRequest . xm example message:

<tns: BuyRequest xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns:tns="http://ww.jboss. or g/ exanpl es/ st ore"
xsi : schemalLocati on="http://ww. j boss. or g/ exanpl es/ store store.xsd "
id="1" />

4.1.1. Validating Example M essages against Schema

Once the association between example messages and the schema has been established, it is possible to
validate the messages against the schema.

For information on how to use the validation capabilities within Eclipse, please read the Eclipse XML
Validation Tutorial.

http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html
http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html

Define Choreography Model

4.2. Define Choreography M odel

Thenext step in the devel opment processisto specify aChoreography Model to implement the requirements
described within the set of scenarios.

The current representation used to define Choreography Modelswithin SAVARA isthe W3C Web Service
Choreography Description Language (WS-CDL). The pi4soa tools provide a WS-CDL (or choreography
description) editor. Although this standard is associated with web services, it does not mean that a system
specified using this standard needs to be implemented using web services. The actual WS-CDL language
is used for defining the interactions between any distributed system.

The choreography description for the Purchasing example can be found in purchasi ng/
Pur chaseGoods. cdm When the choreography editor has been launched, by double-clicking on thisfile
within the Eclipse environment, then navigate to the Choreography Flows tab to see the definition of the
purchasing process:

e 2 =i
Flow: | PurchaseGoodsProcess 4
s seect B =
(= Grouping C... &
o= Choice
&
9 Conditional i —* BuyRequestRet
o Faralel & (fBuyRequesi]
+ Sequence
1
7 When %, [CreditChed
|| — CreditCheckRec
Wihie %, {/CreditCheck]
(= Activities @
4 Assgn -
S Finaize B
% Interaction [Credit vaid) i [Credit Invaidy
No Action
iy Perform < % [CredrCheckraiedy
.‘— CreditCheckOkl .ﬁ{- CreditCheckFail
T Stent Action £ {jCredtCheckoK] X, {/CreditCheckralec
) Bind
Participant
i . BuyContimed X (Euyrieds
B} Bind Variable J| +— BuyConfirmedr || ¢+ BuyFaledRespc
g cory .- {/BuyConfirmed] L {[BuyFaied
=
o Exchange
Participant 1+ {[Credt vaid 1+ {{Credtt Invald
&a# Record o)
B o)
v

Roles and Relationships Base Types Choreography Flows

4.2.1. Validating Requirements against Choreography M odel

The pidsoa tools can be used to test the scenarios against the choreography description, to ensure that the
choreography correctly implementsthe requirements. To test the Successf ul Pur chase. scn scenario
against the choreography, launch the scenario editor by double-clicking on the scenario file, and then
pressing the green play button in the toolbar. When complete, the scenario should look like the following
image, indicating that the scenario completed successfully.

10

Validating Requirements against Choreography Model

Buyer Store CreditAgency
»
buy(BuyRequest
p
P
[checkCredit{CreditCheckRequest)
RS |
»
lcheckCredit(CreditCheckok)]
o
»
[buy(BuyConfirmed)
> i

To view a scenario that demonstrates a test failure, open the | nval i dPur chase. scn scenario by

double-clicking on the file, and then initiate the test using the green play button in the toolbar. When
complete, the scenario should look like the following image.

Buyer Store CreditAgency
»
buy(BuyRequest
p |
[
|checkCredit(CreditCheckRequest)
e |
B
[checkCredit(CreditCheckInvald) fault tns:CreditCheckFailed|
) il
»
[buy(BuyConfirmed)
> i

Y ou will notice that the Sore participant has ared 'send' node, indicating that this action was not expected
behaviour when compared with the choreography description. The reason thisis considered an error, isthat
the Sore participant should only send a BuyFailed message following an invalid credit check.

11

Create Documentation

When an error is detected in a scenario, the choreography designer can then determine whether the scenario
iswrong (i.e. it does not correctly describe a business regquirement), or whether the choreography iswrong
and needs to be updated to accomodate the scenario.

4.2.2. Create Documentation

Oncethe choreography description has been successfully tested against the scenarios, the next step may beto
obtain approval to proceed to the analysis/design phase. To help support this effort, the pidsoatools provide
the means to export the choreography description to a range of representations. HTML documentation
generation is discussed below, and BPMN diagram generation is discussed in the Service Oriented Analysis
and Design section.

To generate HTML documentation, select the Export->Other->HTML menu item associated with the
choreography description file.

— N

¥ Export £3

(4

Select an export destination:

= RUrnjUeouy

[»)

= SOA Tools Platform
= Tasks

= Team

= Web L
= Web Services
= XML

< [= Other

BPMN

W5s-CDL =

@ Next = H Cancel

vV VY VY YR

The next step is to provide the location and name of the HTML file to be generated.

12

Create Documentation

x|

5
Export Choreography Description As HTML

Select a file as the destination for the CDL based information

[a\.rarafsavara—tools—eclipse-l.U—I"-"I1!5ampIeSfpurchasingmtmlfpurchasing.html

Browse

® coa] o

If the HTML has been generated within the scope of Eclipse project, then refresh the rel evant fol der to show
the file and open the file with the Eclipse web browser (as shown below). If outside the Eclipse project,

then use a normal web browser to view thefile.

Java - file:/NotBackedUp/gbrown/testing/savara/savara-tools-eclipse-1,0-M1/samples/purchasing/html/purchasing. htm| - Eclipse

Fle Edit Navigate Search Project Run Window Help

Cigg BrO-Qr | EHGE BB I [l
[# Package Explorer 5% - fs Hierarchy| = O @ cl graphy D tion for £ =8
B & e ' [File JiNotBacke dUp/gbrown testing/savararsavara-tools-eclipse-1.0-M1/samples/purchasing/htrmijpurchasing htrmi] =
< {3 purchasing B
> & bpmn Choreography Description for Package: PurchaseGoods

< = htmi
[BuyCenfirmed.xmi Author: gary .
[¥] BuyRequest xmi .
Version: 0.1
(3] creditAgency.xsd

[¥) CreditCheckinvalid xml

[£ CreditCheckOk.xmi

. Top Level Choreographies

[¥] CreditCheckRequest.xmi
& InvalidPurchase scn

@ PurchaseGoods.cdm o PurchaseGoodsProcess
[8) store.xsd

» Type Definitions

@ successfulPurchase.scn
o Role Types
= Buyer

= CreditAgenc
= Store

o Relationship Types

= BuyerToStoreRel
= StoreToCreditAgencyRel

il

o Participant Types

13

Chapter 5.

Service Oriented Analysisand Design

At this point in the lifecycle, various activities would occur related to reviewing services (i.e. in a SOA
Repository) and understanding whether existing services meet requirements, need to be modified, or
whether new services need to be devel oped from scratch.

5.1. Service Oriented Design

In the current SAVARA tooling, the main functionality in the Service Oriented Design phase is the
generation of BPMN (version 1) diagrams. These diagrams can be used as guidance for the development
teams that are implementing the individual services.

It is also possible to extend the generated BPMN (version 1) diagrams to include service logic. However
it should be noted that changes to the choreography or BPMN diagrams will not be synchronized/merged.
So changes in the choreography will not be checked for conformance against previously generated BPMN
diagrams, and it will be necessary to generate new 'service contract' BPMN (version 1) diagramsto reflect
changes in behaviour of a service within the updated choreography.

In future versions of the SAVARA, based on BPMN2, it will be possible to formally check BPMN2
process models for conformance against a choreography model, and potentially synchronize differencesin
externally observable behaviour between them.

To generate a BPMN (version 1) diagram from a choreography, select the Export menu item associated
with the choreography file, and select the Other->BPMN option.

@ Java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help
- =] Export Edl
i e O A |
Select A
2 53 s Hierarch | = O E 4 H 5
E & Nl
= = purchasing Select an export destination
%] BuyConfirmed xml
[BuyRequest.xml T (=)
> (= SOA Tools Platform
[8] creditAgency.xsd
) P (= Tasks
¥ CreditCheckinvalid.xml
P = Team
%] CreditCheckOk xml
P = Web
¥ CreditCheckRequest.xml m
3 Web Services
Wl InvalidPurchase scn &
b= XML
I PurchaseGoods.cdm
- Other
[S) store.xsd =
B successrumrcnssescn | A
HTML
W5-CDL El

®

0 items

Once the option has been selected, you will be asked to select the location where the generated BPMN
diagrams should be stored. A diagram will be created containing all of the participants involved in the
choreography in a single collaboration diagram.

14

Service Oriented Design

Select afolder that is located within a project in your Eclipse workspace. Once the folder has been chosen,
the diagramswill be generated. To see them within the Eclipse project, you will need to refresh the relevant
folder.

The generated diagram will appear as two files, one contains the underlying BPMN model (i.e. the
information about the tasks, control links, message links, etc.) and the other file contains the diagram
information (i.e. node positions, etc). Double click on the file with the . bprm_di agr amsuffix to view
the diagram in the Eclipse BPMN editor.

Java - purchasing/bpmn/PurchaseGoods_PurchaseGoodsProcess.bpmn_diagram - Eclipse

EHle Edit Diagram Navigate Search Project Run Window Help

T @[30 |8 # e |®s v B (@
R P T - —
[# Package Explorer £ 12 Hierarchy| = O | [{] PurchaseGoods_PurchaseGoodsProcess.bpmn_diagram £2 = O [l TaskList 82 =a
B % < (2] palette b
> g purchasing Ak Qi [a-%|xe e
< 5= bpmn . (SEEEEEEL » Al b Activ
] Purch Purc | |z O == 3
— : e & Uncategorized
1 PurchaseGoods_PurchaseGoodsProc| e Text Annotation
¥l BuyConfirmed.xmi
¥ BuyRequestxmi Task
[§) creditAgency.xsd =
) CreditCheckinvalid.xmi "
Looping Task
[CreditCheckok xmi
[¥) CreditCheckRequest.xmi nd
@ InvalidPurchase scn Flow
Connector
3 PurchaseGoods.cdm = -
o 8 Outine 12 a
[§) store xsd Message = =
@ SuccessfulPurchase.scn Connection B E]
Association -
R — -1
crmcmngracicy) i Pool =
=)
| sub-prgcess
(> Start Events
N (= Intermediary
'
I (= End Events
lo 0
I & Gateway sha
I = -) |G Artfacts
[£¢ Problems 32 . @ Javadoc |[& Declaration v =8

0 errors, 1 warning, 0 others
Description Resource | Fath Location Type

b & Warnings (1 item)

(cl D|

15

Chapter 6.

Service Development

Servicescan be devel oped by generating initial development artifacts, based on artifactscreatedin preceding
phases (e.g. global model or service contracts/designs).

To ensure that the services continue to conform to the artifacts defined in the previous phases, the tools
perform conformance checking between the service implementation and the existing architecture/design
artifacts. Thisis not possible with all implementation languages - they must provide the means to extract
the communication structure for comparison.

The following sections explain how the generation and conformance checking can be achieved for the WS-
BPEL implementation language.

6.1. WS-BPEL

This tools include a capability to generate a service implementation, for a participant in a choreography,
using WS-BPEL. A completed version of the PurchasingGoods example can be found in the samples
directory (which can be imported into Eclipse).

However if you wish to generate the example from scratch, the follow the instructionsin this section. More
information about how to use this feature can be found in the User Guide.

6.1.1. Generating WS-BPEL based Services

When achoreography description has been created, it ispossibleto generate aBPEL Process (and associated
WSDL files and deployment descriptor) for each of the participants defined within the choreography. To
try this out, select the Savara->Generate->WS-BPEL menu item from the popup menu associated with the
Pur chaseCGoods. cdm

Thiswill display adialog listing the possible services that can be generated from this choreography, with
aproposed Eclipse project name.

To test out this feature, uncheck the Buyer participant, leave the build system as Ant, and press the 'Ok’
button. Thiswill create a single new project for the Store and CreditAgency participants.

Each project will contain a single bpel folder containing the WS-BPEL process definition for the
participant, alist of relevant WSDL files and a deployment descriptor file for use with RiftSaw. Howeve
the WS-BPEL and WSDL files are standard, so can be deployed to any WS-BPEL 2.0 compliant engine.

6.1.2. Adding implementation details

The generated BPEL processes and deployment descriptors are incomplete, due to lack of implementation
details in the choreography description. The choreography simply represents the externally observable
interactions between the parties, and therefore cannot provide internal implementation details.

16

Adding implementation details

Therefore a completed version of the deployment descriptor and BPEL process files, for both the
creditAgency and store participants, can be found in the purchasing example'sconpl et ed folder.

To highlight the differences between the original generated version, and the completed version, simply
select both files and use the Compare With->Each Other menu item.

17

Chapter 7.

Testable Architecture Project

7.1. Managing Dependencies

The previous sections have discussed the various phases of the software development lifecycle, and the
artifacts that can be created. They have also outlined some validation performed between the scenarios and
choreography, when a specific link has been established from the scenario.

However the aim of the "Testable Architecture" methodology is to provide validation between all artifacts,
to ensure that artifacts defined at any particular phase can be shown to be valid against the artifacts in
preceding phases.

Therefore the concept of a" Testable Architecture Project” or TAP has been introduced. Thisisessentialy a
filethat recordsinformation about the artifacts defined in each phase of the software devel opment lifecycle,
and the relationships between them. This file can then be validated to ensure that each artifact, and its
dependencies, are valid in respect of each other.

For example, the pur chasi ng example contains a TAP file with the following contents:

<proj ect xm ns="http://ww.savara.org/ta/project” xmns:xsi="http://ww.w3. org/ 2001/ XM_Schema"
xsi : schemalLocati on="http://ww. savara. org/ta/ proj ect tap.xsd"
name="Pur chasi ng" version="1.0.0">

<phase name="requirenments">
<resource id="Successful Purchase. scn">
<uri type="eclipse" context="purchasing" |ocator="/Successful Purchase.scn" />
</ resource>
<resource id="InvalidPurchase.scn">
<uri type="eclipse" context="purchasing" |ocator="/InvalidPurchase.scn" />
</ resource>
</ phase>

<phase nanme="architecture">
<resource id="PurchaseGoods. cdni >
<uri type="eclipse" context="purchasing" |ocator="/PurchaseGoods. cdn' />
<rel ationshi p type="depends
<rel ationshi p type="depends
</ resource>

ref =" Successf ul Pur chase. scn" />

ref ="Inval i dPur chase. scn" />

</ phase>

<phase nane="inpl enent ati on">
<resource id="PurchaseGoodsProcess_Store. bpel ">
<uri type="eclipse" context="PurchaseGoodsProcess- Store"
| ocat or ="/ bpel Cont ent / Pur chaseGoodsProcess_Store. bpel " />
<rel ationshi p type="depends" ref="PurchaseGoods. cdm' >
<descri pti on>
Link fromthe BPEL process to the 'Store' participant
wi thin the choreography
</ descri ption>
<link type="role" to="Store" />
</rel ationshi p>

18

Managing Dependencies

</ resource>
<resource id="PurchaseGoodsProcess_CreditAgency. bpel ">
<uri type="eclipse" context="PurchaseGoodsProcess- CreditAgency"
| ocat or ="/ bpel Cont ent / Pur chaseGoodsPr ocess_Cr edi t Agency. bpel " />
<rel ationshi p type="depends" ref="PurchaseGoods. cdm' >
<descri pti on>
Link fromthe BPEL process to the 'CreditAgency' participant
wi thin the choreography
</ descri pti on>
<link type="role" to="CreditAgency" />
</rel ationshi p>
</resource>
</ phase>
</ proj ect >

The top level element is project, with the name and version attributes to define the details of the Testable
Architecture Project.

The project then contains phase elements, one for each stage of the software development lifecycle we are
interested in. These elements are only used to segment the artifacts into the different phases, which can be
useful for tasks such as project management or documentation generation.

The phase element contains resource elements, one per artifact. A resource represents an artifact that is of
interest in the Testable Architecture Project.

The resource element contains one or more of the following elements:

1. uri
This element is used to define the location of aresource. A URI element is required for each environent
in which the resource may be accessed, for example, within Eclipse and within an SOA Repository.

The type attribute defines the type of locator, which will usually map onto the environment in which
the resource exists. So in this case we are only defining URI elements associated with the Eclipse
environment.

The context attribute defines the local information that can be used in the particular environment, to
determine where the resourceis contained. For example, if the environment is Eclipse, the context would
be the project name.

Thelocator attributeisused to specify the specific location of the resource, within the particular specified
context, in the environment type. For example, if the environment was Eclipse, then the locator would
be the relative path of the resource within the project identified in the context attribute.

2. relationship
This element establishes a relationship from the containing resource, to another resource identifed by
the ref attribute.

The relationship element can optionally have additional information associated with it, to help clarify
the nature of the relationship between the two resources.

19

Validating a Testable Architecture Project

For example, in the TAP file illustrated above, the two BPEL resources (in the implementation phase)
have a relationship to the choreography file - however the relationship needs to be more specific. We
need to indicate what role within that choreography the BPEL processes are associated with. The link
element enables the type to be defined, and a value to be specified in the to attribute.

7.2. Validating a Testable Architecture Project

Totrigger validation of a Testable Architecture Project (TAP), select the. t ap file and choose the Savara-
>Validate menu item. If any errors or warnings are detected, they will be recorded as errorsin the Problems
or Markers view (depending on which perspective is being used).

If you invoke the validation on the TAP file within the purchasing project, you will find that it will
create an error associated with the choreography file, indicating that it does not meet the scenario
"InvalidPurchase.scn". This is because this scenario has specifically been created to demonstrate how an
error is reported.

If the scenario is simulated against the choreography, using the green play button on the toolbar, then it will
be possible to see specifically where the scenario is not met by the choreography.

Buyer Store CreditAgency
»
p |
[
|checkCredit(CreditCheckRequest)
e |
B
[checkCredit(CreditCheckInvald) fault tns:CreditCheckFailed|
) Ll
=

[puy(BuyConfirmed)

g

In this case, it is because the CreditAgency has returned a credit check failed message, but the Storeis still
attempting to return a buy confirmed message.

Its possible that this scenario is valid, and therefore the choreography needs to be updated to cater for this
scenario. However in this case, we may just be wanting to represent a negative use case, and therefore
deliberately describe a situation we do not want the choreography to handle. Therefore we need to configure
the scenario to indicate that the failure is expected.

20

Validating a Testable Architecture Project

| Assert State |checkCredit(ca:Creditchecklnvalid) fault sens:CreditCheckFailed\
r s

w» Record
L
+) Elapse lpuy(sto:BuyConfirmed) response]
Time e
%= Import
Scenario

Scenario Editor | Simulation Log

—I Properties 3% [Z¢ Problems| & Console

Al | Property .\.-'alue
Description
Fault Name
Is Request false

Simply select the 'send’ node for the final interaction between the Store and Buyer, and set the 'Expected
to Fail' property to true. Thiswill cause ared boundary to be displayed around the node, indicating that it
is expected to fail. Now when the scenario is simulated or validated, if that node does not fail, that will be
reported as an error. However if the node does fail as expected, that will be treated as avalid case.

If the validation of the TAP file is performed again, the error associated with the
I nval i dPur chase. scn should no disappear.

To experiment with other types of validation that are performed, open the Pur chaseGoods. cdmand go
to the Base Types tab. Then open up the node for Information Types and sel ect the CreditCheckOk entry. In
the Properties view, change the element attribute, e.g. appending an 'X' to the "ca:CreditCheckOk" value.

When the choreography has been saved, re-perform the validation onthe TAPfile. This should now display
"Type Mismatch' errors against the previously generated BPEL processes, and also flag errors associated
with the scenarios.

21

Chapter 8.

Runtime Validation

@ Note

Before you can deploy and run the runtime validation example, you will need to install the
SAVARA Validator module for JBoss.

The previous sections have provided a brief introduction to the design-time SOA governance features
provided within the SAVARA Eclipse Tools distribution. The aim of these capabilities are to enable
verification of an implementation, initially defined just using BPEL process definitions, against a
choreography, which in turn has been verified against business requirements defined using scenarios.
Therefore this helps to ensure that the implemented system meets the original business requirements.

Being ableto statically check that theimplementation should send or receive messagesin the correct order is
important, asit will reduce the amount of testing required to ensure the service behaves correctly. However
it does not enable the internal implementation details to be verified, which may result in invalid decisions
being made at runtime, resulting in unexpected paths being taken.

Therefore, to ensure this situation does not occur, we also need runtime governance. We till need to be
ableto verify that the services continue to conform to the choreography description. The Service Validator
capability within the SAVARA distribution can be used to validate the behaviour of each service.

In this section, we will use the purchasing example found in the ${ SAVARA} / sanpl es/ pur chasi ng
folder.

8.1. Service Validator Configuration

Theservicevalidator configuration isdefined using specific annotation, that is associated with the 'exchange
details' components (contained within interactions), within the choreography description.

To view the pre-configured service validator configuration defined for the Purchasing example, edit the
Pur chaseGoods. cdmfile, navigate to the Choreography Flows tab and then select the Choreography-
>Edit Annotations menu item associated with the first ‘exchange details component (as shown below).

n
K Buyﬂequesf)

i— BuyRequestfi=

% {/BuyReques{

Copy
Delete

e | o

—+ CreditChecky Bun As »| Generate Image...

oy | o z
This will display the annotation editor, with the single configured annotation called 'validator'. This
annotation defines the information required for the Service Validator to monitor this specific message
exchange (e.g. the IM S destination on which the message will be passed, or in this case the Service Name
for the target Web Service).

22

SAVARA Monitor

& Edit T @

| Parameters | annotation

Destination [{http://www jboss.org/examples/store} storeservice |

Type | service name =

Dynamic ReplyTo]

| save| |close |

Once an annotation has been defined, it will also be displayed as part of the tooltip for the associated model
component, for example:

r~ 1 =
9 Condiitional . [BuyReques H

| — BuyRgguestre

e Parallel A -
B, n

’Ihis is the exchange details for the request exchange associated with interaction BuyRequest

e destina p://www.jboss.org/examples/store} StoreServi Type=servi

he service destination is '{http://www.jboss.org/exar eService' [Type=service name] [Dynamic Reply-To Destin

e % [CreditCheck’
& Activities ®

I — CreditCheckRe
13 Assign

U /irraditrhacl]

Once the annotations have been defined for all relevant 'exchange details' components in the choreography
description, the choreography file can be copied to the ${ JBossAS} / server/ def aul t / depl oy/
savar a-val i dat or - j boss. sar/ nodel s folder inthe JBossAS environment. The servicevalidator
configuration for the purchasing example has been preconfigured to be deployed as part of the installation
procedure.

@ Note

If the savar a-val i dator-j boss. sar/validator-config.xm within the
JBossAS environment is modified, or choreography description files added, removed or
updated within the savar a- val i dat or - j boss. sar/ nodel s sub-folder, then the
changes will automatically be detected and used to re-configure the service validators
without having to restart the server.

8.2. SAVARA Monitor

The SAVARA Monitor isan Eclipse based tool that can be used to help devel op, test and validate abusiness
process (encoded as a choreography) executing across a distributed system. (Future releases will include
equivalent web based tooling to enable production based logging and query of the validation information).

Thetool is used to observe a correlated view of the executing business transactions. Each service validator
can be configured toreport activites(i.e. sent and received messages) that it validates, to enablethe correl ator
to reconstitute a global interpretation of each transaction.

This correlated view of each transaction can be used to understand where each transaction is within the
process. It can also be used to report out of sequence, unexpected messages and more general errorsin the
context of the business process.

23

Web Service/ WS-BPEL Example - Purchasing

Once the following examples have been deployed to the JBossA S environment, and the server is running,
then the monitoring tool can be launched from the Eclipse environment by selecting the Savara->Monitor
menu item from the popup menu associated with the choreography (.cdm) file.

Wait for the monitor window to start, and indicate that the choreography is being monitored, shown in the
status line at the bottom of the window.

8.3. Web Service/ WS-BPEL Example - Purchasing

Savara includes the ability to validate web services (and therefore BPEL processes) that use the jbossws-
native stack. However the ODE engine, used to execute BPEL processeswithin RiftSaw, currently optimises
communications between BPEL processes executing within the same engine, so that the communications
do not occur using the Web Service stack. This means that Savara is currently unable to validate these
interactions by default.

Therearetwo solutionsto this problem. Thefirst isto disabletheinterprocess communications used between
the two BPEL processes, which will be the approach described in this section. The other approach is to
implement the 'Credit Agency' participant as a JAX-WS service.

8.3.1. Deploying the Example

Once the BPEL processes have been generated, and the implementation details added, it is currently
necessary to disable the 'inter-process communication that is used to communicate between the two
processes (an ODE optimization when the processes are running in the same engine). This is achieved by
editing the deployment descriptor for the Store process (using a text editor rather than the Eclipse form
editor), and add the attribute usePeer 2Peer="false" to the invoke element.

The next step is to deploy the BPEL processes for the Store and CreditAgency participants to a JBossAS
server running RiftSaw. This can be achieved using the Eclipse Web Tooling Project (WTP) server support,
in conjunction with the JBoss Tools features mentioned in the install ation section.

Create a JBossAS server entry in the Serversview, using the New-> Server menu item on the view's context
menu. Configure the server entry to point to a JBossAS environment that has previously been configured
to run RiftSaw. Select the server in the Servers view, and then select the Add and Remove ... menu item.
This will show a dialog window that will include the CreditAgency and Store BPEL projects on the l€ft.
Select both projects, and press the Add button. When the Finish button is sel ected, the BPEL processes will
be associated with the server.

8.3.2. Running the Example

Start the server using the Start menu item associated with the JBossAS server in the Servers view, or
manually from aterminal window in the JBossAS server'sbi n folder using the run script. Once the server
has fully started, the BPEL processes should have been deployed.

The next step is to start the Savara->Monitor associated with the Pur chaseGoods. cdmchoreography
description.

24

Running the Example

The final step is to send a test message to the Sore BPEL process. This can be achieved by selecting
the Pur chaseGoodsPr ocess_St or e. wsdl file, within the PurchaseGoodsProcess Store project
(bpel Cont ent s folder), and then select the menu item Web Services-> Test with Web Services Explorer.

Expand the'Storel nterfaceBinding' node, in theleft hand panel of the explorer, and select the 'buy’ operation.
Then select the 'Source' link, which will show the various sections of the SOAP message to be sent. Edit
the message body to be:

<g0: BuyRequest id="1" anmpunt="200" />

Then press the 'Ok" button further down the panel. This will send the message to the Store process, and
eventually cause aresponse to appear in the lower panel.

Four entries should appear in the SAVARA monitor, the buy request, credit check request, credit check ok
(response) and buy confirmed (response).

i SAVARA = E
File Help
4 lssues :|_Session Id From | To Msg Status
) ;1 (D) Store Buyer buy(BuyConfirmed) Initiated
= Sessions H ()] CreditAgency |Store checkCredit(CreditCheckoOk) Completed
l?g’ 1(D) {1 (D) Store CreditAgency |checkCredit(CreditCheckReque...Completed
‘|1 (1D) Buyer Store buy(BuyRequest) Initiated

Monitoring PurchaseGoods

To demonstrate how an error would be detected and reported, issue a new request such as:

<q0: BuyRequest id="2" anmpunt="300" />

25

JBossESB Example - Trailblazer

Thiswill result in an unexpected message to be reported, asthere is a difference between the choreography
and the CreditAgency BPEL process (implementation). The choreography defines that avalid credit check
should bereturned if theamount islessthan 250. However the BPEL process hasimplemented thiscondition
asavalid credit check is where the amount is less or equal to 500.

z SAVARA Monitor [EEE
File Help
% |ssues | _sessionid | From [To Msg Status
2 (ID Store Buyer buy(BuyConfirmed) Initiated
- 2 (ID CreditAgency Store checkCredit(CreditCheckOk) Initiated
T_F]’ 1(D) 2 (ID CreditAgency CreditCheckOk Unexpected
2 (ID Store CreditAgency checkCredit(CreditCheckRequest) |Completed
T_F]’ 2 (D) 2 (ID [Buyer Store buy(BuyRequest) Initiated
A1 (D |store Buyer buy(BuyConfirmed) Initiated
A1 (D |creditAgency |store checkCredit(CreditCheckOk) Completed
A1 (ID |Store |creditAgency checkCredit(CreditCheckRequest) Completed
1 (ID Buyer |store buy(BuyRequest) Initiated

Monitoring PurchaseGoods

8.4. JBossESB Example - Trailblazer

8.4.1. Deploying the Example

Thefirst step to deploying the Trailblazer example isto configure the JBossA S environment:

1. Update the ${JBossAS}/server/default/deployers/esb. depl oyer/jbossesh-
properties. xnl file in the section entitled "transports’ and specify al of the SMTP mail server
settings for your environment.

2. Updatethetrai |l bl azer/trail bl azer. properties

Update the file.bank.monitored.directory and file.output.directory properties. These are folders used by
the File Based Bank, and aresetto/ t np/ i nput and/ t np/ out put by default.

3. Updatethetrai | bl azer/ esb/ conf/j boss-esh. xm

Thereisafs-provider block, update the directory attribute value to be the same asthefile.output.directory
valueintrai |l bl azer. properti es file

4, Start the JBossAS server

26

Running the Example

One the server has been started, the next step is to deploy the relevant components into the JBossAS
environment. Thisis achieved by:

1. Fromthetrail bl azer folder, execute the following command to deploy the example to the ESB:
ant deploy

this should deploy the ESB and WAR filesto your JBossASser ver/ def aul t .

2. Fromthetrai | bl azer/ banks folder, execute the command to start the IMS Bank service: ant
runJM SBank.

3. From thetrai | bl azer/ banks folder, execute the command to start the IMS Bank service: ant
runFileBank.

8.4.2. Running the Example

To run the example, you need to start a browser and select the URL localhost:8080/trailblazer. This will
show thefollowing page, if the server has been configured correctly and the TrailBlazer example deployed:

) JBossESB Loan Broker - Mozilla Firefox I;Ig|
Fle Edit View History Bookmarks Yahoo! Tools Help
@ B C far | %L http:/flocalhost:8080/tralblazer/ w - | Gl £
[Most Visited |] Customize Links |] Yahoo! Mail [] Web Services Choreog... ™ Apache Software Foun...
Y -2 - | ". | search - [- 2 Mai - E Answers - 4 Dating - & Mobie - [* Signin

**® subscription jboss.com jboss.org redhat.com

@ @ *ovisionofRadHat

Loan Broker Request Form

Name |Joe Broke {]

Address [1Spenditall St Broke Town 99999 DC]

SSN [1234567890

Email |joe@iliketospenditcom

Salary 5000000

Employer !Wesaysu &Co W

LoanAmount [1000.00 il

LoanDuration |12
Done @ Open Notebook

Now you can submit quotes, You will see either aloan request rejected (single email) because the score
isless than 4, or two emails (one from JMS bank and one from FileBased bank) with valid quotes. When
entering subsequent quotes, make sure that the quote reference is updated, so that each session has aunique
id.

8.4.3. Detecting a Validation Error

To demonstrate the detection of validation errors, there is an alternative implementation of the trailblazer
modulesthat behaviour differently to the choreography that isbeing monitored. Specifically, the credit score
threshold used to determine whether aloan request should be issued to the banks, israised from4to 7.

27

http://localhost:8080/trailblazer

Detecting a Validation Error

To deploy the version of the TrailBlazer example that resultsin validation errors, then:

» From the ${ SAVARA} / sanpl es/ trai | bl azer folder, execute the following command to deploy
the example to the ESB: ant deploy-error-client.

Thenext step istoissue moretransactions, until acredit check score occursthat isbetween 4 and 6inclusive.
This will result in ainsufficientCredit interaction being reported, which would be unexpected in terms of
the choreography.

Choreography Monitor
File Help
- |gsucs Session d From To Msg Status
1234567894 L ker Notifier ify i ientCredit) nitiated -
@ Unexpectsd Messapss| (1754567800 L ici... redit
@ Erors 1234567894 ... CreditAgency LoanBroker heckCredit(creditCheckResult) ompleted |
1234567894 ... LoanBroker reditAgency heckCredit(creditCheck) ompleted |
J Warnings 1234567893 ... LoanBroker otifier otifylinsufficientCredit) ompleted |
- 1234567893 ... CreditAgency heckCredit(creditCheckResult) ompleted |
m » . 11234567893 ... LoanBroker reditAgency heckCredit(creditCheck) ompleted |
171 1234567890 (38N 1234567892 ... L oanBroker atify(insufficientCredit) ompleted |
171 1234567891 (SSN) 1234567892 ... CreditAgency heckCredit(creditCheckResult) ompleted

.LoanBroker reditAgency heckCredit(creditCheck) ompleted

LoanBroker otifier otify(quote) ompleted
oanBroker equestQuote(quote) ompleted

71 1234567892 (55N)
71 1234567693 (35N)

otifier otify{quote) ompleted
?i 1234567824 (S5N) LoanBroker equestQuote(quote) ompleted
- Channels . Bank Frequesta: ompleted
1234567891 ...L. ker Bank requesta: Completed
& Bankchanneype 1234567891 ... CreditAgency LoanBroker heckCredit(creditCheckResult) ompleted |
@ creditrgencyChanneiTy [1234567891 ... LoanBroker reditAgency heckCredit(creditCheck)
1234567890 ... LoanBroker lotifier otify(insufficientCredit)
& NotifierChannsTyps 1234567390 ... CreditAgency heckCredit(creditCheckResulty =
1234567290 i hackCreadi itCheck) omnlatad >
redit xmins="http:llwww. servicedescription.org/sericeftracker'> B
scustomerlID>
1234567894
<leustomerUID> =
=ref>
0 [
=lref=
=customerEmail=
com —
| I Jo o1 i -
[Monitoring TrailBlazer

When errors, such as unexpected messages, are detected by the service validators and reported to the
SAVARA Monitor, they are displayed in red.

28

	SAVARA 1.1
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Installation Instructions
	2.3. Importing Samples into Eclipse

	Chapter 3. Business Analysis
	3.1. Define Participants
	3.2. Outline Scenarios
	3.3. Create Example Messages

	Chapter 4. Architecture
	4.1. Define Information Model
	4.1.1. Validating Example Messages against Schema

	4.2. Define Choreography Model
	4.2.1. Validating Requirements against Choreography Model
	4.2.2. Create Documentation

	Chapter 5. Service Oriented Analysis and Design
	5.1. Service Oriented Design

	Chapter 6. Service Development
	6.1. WS-BPEL
	6.1.1. Generating WS-BPEL based Services
	6.1.2. Adding implementation details

	Chapter 7. Testable Architecture Project
	7.1. Managing Dependencies
	7.2. Validating a Testable Architecture Project

	Chapter 8. Runtime Validation
	8.1. Service Validator Configuration
	8.2. SAVARA Monitor
	8.3. Web Service / WS-BPEL Example - Purchasing
	8.3.1. Deploying the Example
	8.3.2. Running the Example

	8.4. JBossESB Example - Trailblazer
	8.4.1. Deploying the Example
	8.4.2. Running the Example
	8.4.3. Detecting a Validation Error

