
SAVARA 1.1

Getting Started Guide

by Gary Brown and Jeff Yu

ii

1. Overview .. 1

2. Installation ... 2

2.1. Prerequisites .. 2

2.2. Installation Instructions ... 2

2.3. Importing Samples into Eclipse .. 3

3. Business Analysis .. 6

3.1. Define Participants ... 6

3.2. Outline Scenarios ... 7

3.3. Create Example Messages ... 8

4. Architecture ... 9

4.1. Define Information Model ... 9

4.1.1. Validating Example Messages against Schema .. 9

4.2. Define Choreography Model ... 10

4.2.1. Validating Requirements against Choreography Model 10

4.2.2. Create Documentation ... 12

5. Service Oriented Analysis and Design .. 14

5.1. Service Oriented Design .. 14

6. Service Development .. 16

6.1. WS-BPEL ... 16

6.1.1. Generating WS-BPEL based Services .. 16

6.1.2. Adding implementation details ... 16

7. Testable Architecture Project ... 18

7.1. Managing Dependencies .. 18

7.2. Validating a Testable Architecture Project ... 20

8. Runtime Validation ... 22

8.1. Service Validator Configuration .. 22

8.2. SAVARA Monitor .. 23

8.3. Web Service / WS-BPEL Example - Purchasing ... 24

8.3.1. Deploying the Example ... 24

8.3.2. Running the Example ... 24

8.4. JBossESB Example - Trailblazer ... 26

8.4.1. Deploying the Example ... 26

8.4.2. Running the Example ... 27

8.4.3. Detecting a Validation Error .. 27

Chapter 1.

1

Overview
This is the Getting Started Guide for SAVARA. This guide starts with the installation instructions for the

SAVARA tools and runtime modules.

The remainder of the document is organised to reflect phases within the SAVARA Methodology, and how

the current tools can be used in support of that methodology. The tools are still in development, and therefore

not all phases will have tools, and the tools in some phases will not necessarily be complete.

As an overview, the tools currently include capabilities for:

• Definition of business requirements as scenarios

• Creation of a choreography (global model) to represent the architecture for a system that delivers the

requirements

• Generation of documentation based on the choreography

• Generation of service implementation using WS-BPEL

• Generation of service interfaces using WSDL

• Conformance checking a WS-BPEL service implementation against a choreography

• Runtime validation of an ESB service against a choreography description

Chapter 2.

2

Installation
This section describes the installation procedure for SAVARA tools and runtime modules.

2.1. Prerequisites

The pre-requisites for the SAVARA Eclipse Tools are:

1. Eclipse JEE (3.6 or higher) http://www.eclipse.org

2. JBoss Tools (3.2 or higher) http://www.jboss.org/tools available from an update site

The pre-requisites for the SAVARA Service Validator are:

1. JBossAS (5.1.0.GA or higher) http://www.jboss.org/jbossas

2. JBossAS (4.8 or higher) http://www.jboss.org/jbossesb

3. SAVARA (version 1.1.0 or higher), available from http://www.jboss.org/savara/downloads

2.2. Installation Instructions

The installation instructions for the SAVARA Eclipse tools are:

1. Eclipse

Download the latest version of Eclipse JEE, and install in your environment.

2. BPMN Modeller

When Eclipse has been lauched, go to the Help->Install New Software.. menu item. Select the Eclipse

update site for the version of Eclipse (e.g. Helios). Within the SOA Development category, select the

BPMN Project Feature. Follow the instructions to accept the license and then restart Eclipse after the

plugins have been installed.

3. JBoss Tools

Start up your Eclipse environment, and go to the Help->Install New Software.. menu item. Select the

appropriate update site URL from the JBoss Tools download page, and enter it into the top text field in

the dialog window, and press the Add button. Once the contents of the update site is available, then select

the appropriate components and follow the instructions to install them within your Eclipse environment.

The JBoss Savara Tools feature should be selected from the SOA Development category.

If you wish to view the generated BPEL using a BPEL editor, rather than XML, then you should also

select the JBoss BPEL Editor from the SOA Development category.

NOTE: If you don't install the BPEL Editor, then you will have to install GMF. This can be found on

the Helios update site, under the Modeling category. Select the Graphical Modeling Framework entry,

and following the instructions to install.

http://www.eclipse.org
http://www.jboss.org/tools
http://www.jboss.org/jbossas
http://www.jboss.org/jbossesb
http://www.jboss.org/savara/downloads

Importing Samples into Eclipse

3

It is also recommended that you install the JBoss WebServices Tools, and JBossAS Tools, from the All

category. These are required to define and launch a JBossAS server from within Eclipse, generate a JAX-

WS web service from a WSDL definition, and test a Web Service.

The installation instructions for the SAVARA Service Validator are:

1. JBossAS

Download the latest version and follow its installation instructions.

2. JBossESB

Download the latest version and follow the instructions for installing it into the JBossAS environment.

3. SAVARA

Unpack the SAVARA distribution and edit the deployment.properties file in this ${SAVARA}/

install folder. Set the org.jboss.as.home property to the root directory where the JBossAS

environment is located, and change the org.jboss.as.config property from default if you wish to start your

JBossAS using a different configuration. Set the org.jboss.esb.home property to the root directory where

the JBossESB environment is located.

Start a command window and execute the command ant deploy.

2.3. Importing Samples into Eclipse

Once the SAVARA Eclipse Tool distribution has been correctly installed, if you wish to try out any of the

examples then the following steps should be followed to import the relevant projects into the previously

configured Eclipse environment.

1. Select the 'Import...' menu item, associated with the popup menu on the background of the left panal

(Navigator or Package depending on perspective being viewed).

2. When the import dialog appears, select the General->ExistingProject from Workspace option and press

the 'Next' button.

Importing Samples into Eclipse

4

3. Ensuring that the 'Select root directory' radio button is selected, press the 'Browse' button and navigate

to the ${SAVARA-Tools}/samples folder, then press 'Ok'.

4. All of the Eclipse projects contained within the ${SAVARA-Tools}/samples directory structure

will be listed. Press the 'Finish' button to import them all.

Importing Samples into Eclipse

5

Once imported, the Eclipse navigator will list the sample projects:

Chapter 3.

6

Business Analysis

3.1. Define Participants

In the current Eclipse tools, that use the pi4soa Scenario and Choreography based models for defining

requirements and architectural models, this phase would be achieved by defining the Participants and Roles

within the choreography model.

When a choreography description is initially created, using the New->Other->Choreography-

>Choreography Description menu item, the roles and relationships can be defined on the first tab.

Default participant types are automatically created, one per role, and can be found on the Base Types tab.

For example,

Outline Scenarios

7

Only these components need to be specified in the choreography model. This enables them to be referenced

in the subsequently defined scenarios. Otherwise it would be necessary to return to the scenarios, once the

choreography model had been defined in the Architecture phase.

3.2. Outline Scenarios

When designing a system, it is necessary to capture requirements. Various approaches can be used for this,

but currently there are no mechanisms that enable the requirements to be documented in such a way to

enable an implementation to be validated back against the requirements.

The pi4soa tools provide a means of describing requirements, representing specific use cases for the

interactions between a set of cooperating services, using scenarios - which can be considered similar to

UML sequence diagrams that have been enhanced to include example messages.

In the purchasing Eclipse project, the SuccessfulPurchase.scn scenario looks like this:

Create Example Messages

8

The business requirements can therefore defined as a set of scenarios, each demonstrating a specific use-

case, or path through the business process being enacted.

3.3. Create Example Messages

The next step is to create the example messages required by the scenarios.

Some previously defined examples can be found in the purchasing Eclipse project. For example, the

Buy request is defined as:

<tns:BuyRequest xmlns:tns="http://www.jboss.org/examples/store"

 id="1" />

Although a schema may not have been defined at this stage, unless one previously existed that is being

reused, it is a good idea to define a namespace for the message type. This is because it will be used within

the scenarios and architectural models defined in the following stage. If the namespace was not specified

at this stage, then the example messages, scenarios and architectural models would need to be updated at

a later stage.

Although this phase has been defined following the definition of the scenarios, in practice these phases are

iterative. So scenarios and example messages would be defined concurrently. Similarly, new participants

may be added in an evolutionary manner, as scenarios are created that require them.

Chapter 4.

9

Architecture

4.1. Define Information Model

One of the stages within the architecture phase is to define the information model for the message types

associated with the messages exchanges between the interacting participants.

This involves defining message schema for each example message. The schema could already exist and be

reused, it could be based on existing schema and just need to be upgraded to support new requirements, or

it may need to be defined from scratch.

An example of a schema associated with the purchasing model is the store.xsd shown here:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.jboss.org/examples/store"

 xmlns:tns="http://www.jboss.org/examples/store"

 elementFormDefault="qualified">

 <element name="BuyRequest" type="tns:StoreType"></element>

 <element name="BuyConfirmed" type="tns:StoreType"></element>

 <element name="BuyFailed" type="tns:StoreType"></element>

 <complexType name="StoreType">

 <attribute name="id" type="string"></attribute>

 </complexType>

</schema>

Once the schema has been defined, then the example messages need to be updated to reference the schema,

as shown in the following BuyRequest.xml example message:

<tns:BuyRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:tns="http://www.jboss.org/examples/store"

 xsi:schemaLocation="http://www.jboss.org/examples/store store.xsd "

 id="1" />

4.1.1. Validating Example Messages against Schema

Once the association between example messages and the schema has been established, it is possible to

validate the messages against the schema.

For information on how to use the validation capabilities within Eclipse, please read the Eclipse XML

Validation Tutorial.

http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html
http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html

Define Choreography Model

10

4.2. Define Choreography Model

The next step in the development process is to specify a Choreography Model to implement the requirements

described within the set of scenarios.

The current representation used to define Choreography Models within SAVARA is the W3C Web Service

Choreography Description Language (WS-CDL). The pi4soa tools provide a WS-CDL (or choreography

description) editor. Although this standard is associated with web services, it does not mean that a system

specified using this standard needs to be implemented using web services. The actual WS-CDL language

is used for defining the interactions between any distributed system.

The choreography description for the Purchasing example can be found in purchasing/

PurchaseGoods.cdm. When the choreography editor has been launched, by double-clicking on this file

within the Eclipse environment, then navigate to the Choreography Flows tab to see the definition of the

purchasing process:

4.2.1. Validating Requirements against Choreography Model

The pi4soa tools can be used to test the scenarios against the choreography description, to ensure that the

choreography correctly implements the requirements. To test the SuccessfulPurchase.scn scenario

against the choreography, launch the scenario editor by double-clicking on the scenario file, and then

pressing the green play button in the toolbar. When complete, the scenario should look like the following

image, indicating that the scenario completed successfully.

Validating Requirements against Choreography Model

11

To view a scenario that demonstrates a test failure, open the InvalidPurchase.scn scenario by

double-clicking on the file, and then initiate the test using the green play button in the toolbar. When

complete, the scenario should look like the following image.

You will notice that the Store participant has a red 'send' node, indicating that this action was not expected

behaviour when compared with the choreography description. The reason this is considered an error, is that

the Store participant should only send a BuyFailed message following an invalid credit check.

Create Documentation

12

When an error is detected in a scenario, the choreography designer can then determine whether the scenario

is wrong (i.e. it does not correctly describe a business requirement), or whether the choreography is wrong

and needs to be updated to accomodate the scenario.

4.2.2. Create Documentation

Once the choreography description has been successfully tested against the scenarios, the next step may be to

obtain approval to proceed to the analysis/design phase. To help support this effort, the pi4soa tools provide

the means to export the choreography description to a range of representations. HTML documentation

generation is discussed below, and BPMN diagram generation is discussed in the Service Oriented Analysis

and Design section.

To generate HTML documentation, select the Export->Other->HTML menu item associated with the

choreography description file.

The next step is to provide the location and name of the HTML file to be generated.

Create Documentation

13

If the HTML has been generated within the scope of Eclipse project, then refresh the relevant folder to show

the file and open the file with the Eclipse web browser (as shown below). If outside the Eclipse project,

then use a normal web browser to view the file.

Chapter 5.

14

Service Oriented Analysis and Design
At this point in the lifecycle, various activities would occur related to reviewing services (i.e. in a SOA

Repository) and understanding whether existing services meet requirements, need to be modified, or

whether new services need to be developed from scratch.

5.1. Service Oriented Design

In the current SAVARA tooling, the main functionality in the Service Oriented Design phase is the

generation of BPMN (version 1) diagrams. These diagrams can be used as guidance for the development

teams that are implementing the individual services.

It is also possible to extend the generated BPMN (version 1) diagrams to include service logic. However

it should be noted that changes to the choreography or BPMN diagrams will not be synchronized/merged.

So changes in the choreography will not be checked for conformance against previously generated BPMN

diagrams, and it will be necessary to generate new 'service contract' BPMN (version 1) diagrams to reflect

changes in behaviour of a service within the updated choreography.

In future versions of the SAVARA, based on BPMN2, it will be possible to formally check BPMN2

process models for conformance against a choreography model, and potentially synchronize differences in

externally observable behaviour between them.

To generate a BPMN (version 1) diagram from a choreography, select the Export menu item associated

with the choreography file, and select the Other->BPMN option.

Once the option has been selected, you will be asked to select the location where the generated BPMN

diagrams should be stored. A diagram will be created containing all of the participants involved in the

choreography in a single collaboration diagram.

Service Oriented Design

15

Select a folder that is located within a project in your Eclipse workspace. Once the folder has been chosen,

the diagrams will be generated. To see them within the Eclipse project, you will need to refresh the relevant

folder.

The generated diagram will appear as two files, one contains the underlying BPMN model (i.e. the

information about the tasks, control links, message links, etc.) and the other file contains the diagram

information (i.e. node positions, etc). Double click on the file with the .bpmn_diagram suffix to view

the diagram in the Eclipse BPMN editor.

Chapter 6.

16

Service Development
Services can be developed by generating initial development artifacts, based on artifacts created in preceding

phases (e.g. global model or service contracts/designs).

To ensure that the services continue to conform to the artifacts defined in the previous phases, the tools

perform conformance checking between the service implementation and the existing architecture/design

artifacts. This is not possible with all implementation languages - they must provide the means to extract

the communication structure for comparison.

The following sections explain how the generation and conformance checking can be achieved for the WS-

BPEL implementation language.

6.1. WS-BPEL

This tools include a capability to generate a service implementation, for a participant in a choreography,

using WS-BPEL. A completed version of the PurchasingGoods example can be found in the samples

directory (which can be imported into Eclipse).

However if you wish to generate the example from scratch, the follow the instructions in this section. More

information about how to use this feature can be found in the User Guide.

6.1.1. Generating WS-BPEL based Services

When a choreography description has been created, it is possible to generate a BPEL Process (and associated

WSDL files and deployment descriptor) for each of the participants defined within the choreography. To

try this out, select the Savara->Generate->WS-BPEL menu item from the popup menu associated with the

PurchaseGoods.cdm.

This will display a dialog listing the possible services that can be generated from this choreography, with

a proposed Eclipse project name.

To test out this feature, uncheck the Buyer participant, leave the build system as Ant, and press the 'Ok'

button. This will create a single new project for the Store and CreditAgency participants.

Each project will contain a single bpel folder containing the WS-BPEL process definition for the

participant, a list of relevant WSDL files and a deployment descriptor file for use with RiftSaw. Howeve

the WS-BPEL and WSDL files are standard, so can be deployed to any WS-BPEL 2.0 compliant engine.

6.1.2. Adding implementation details

The generated BPEL processes and deployment descriptors are incomplete, due to lack of implementation

details in the choreography description. The choreography simply represents the externally observable

interactions between the parties, and therefore cannot provide internal implementation details.

Adding implementation details

17

Therefore a completed version of the deployment descriptor and BPEL process files, for both the

creditAgency and store participants, can be found in the purchasing example's completed folder.

To highlight the differences between the original generated version, and the completed version, simply

select both files and use the Compare With->Each Other menu item.

Chapter 7.

18

Testable Architecture Project

7.1. Managing Dependencies

The previous sections have discussed the various phases of the software development lifecycle, and the

artifacts that can be created. They have also outlined some validation performed between the scenarios and

choreography, when a specific link has been established from the scenario.

However the aim of the "Testable Architecture" methodology is to provide validation between all artifacts,

to ensure that artifacts defined at any particular phase can be shown to be valid against the artifacts in

preceding phases.

Therefore the concept of a "Testable Architecture Project" or TAP has been introduced. This is essentially a

file that records information about the artifacts defined in each phase of the software development lifecycle,

and the relationships between them. This file can then be validated to ensure that each artifact, and its

dependencies, are valid in respect of each other.

For example, the purchasing example contains a TAP file with the following contents:

<project xmlns="http://www.savara.org/ta/project" xmlns:xsi="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.savara.org/ta/project tap.xsd"

 name="Purchasing" version="1.0.0">

 <phase name="requirements">

 <resource id="SuccessfulPurchase.scn">

 <uri type="eclipse" context="purchasing" locator="/SuccessfulPurchase.scn" />

 </resource>

 <resource id="InvalidPurchase.scn">

 <uri type="eclipse" context="purchasing" locator="/InvalidPurchase.scn" />

 </resource>

 </phase>

 <phase name="architecture">

 <resource id="PurchaseGoods.cdm">

 <uri type="eclipse" context="purchasing" locator="/PurchaseGoods.cdm" />

 <relationship type="depends" ref="SuccessfulPurchase.scn" />

 <relationship type="depends" ref="InvalidPurchase.scn" />

 </resource>

 </phase>

 <phase name="implementation">

 <resource id="PurchaseGoodsProcess_Store.bpel">

 <uri type="eclipse" context="PurchaseGoodsProcess-Store"

 locator="/bpelContent/PurchaseGoodsProcess_Store.bpel" />

 <relationship type="depends" ref="PurchaseGoods.cdm" >

 <description>

 Link from the BPEL process to the 'Store' participant

 within the choreography

 </description>

 <link type="role" to="Store" />

 </relationship>

Managing Dependencies

19

 </resource>

 <resource id="PurchaseGoodsProcess_CreditAgency.bpel">

 <uri type="eclipse" context="PurchaseGoodsProcess-CreditAgency"

 locator="/bpelContent/PurchaseGoodsProcess_CreditAgency.bpel" />

 <relationship type="depends" ref="PurchaseGoods.cdm" >

 <description>

 Link from the BPEL process to the 'CreditAgency' participant

 within the choreography

 </description>

 <link type="role" to="CreditAgency" />

 </relationship>

 </resource>

 </phase>

</project>

The top level element is project, with the name and version attributes to define the details of the Testable

Architecture Project.

The project then contains phase elements, one for each stage of the software development lifecycle we are

interested in. These elements are only used to segment the artifacts into the different phases, which can be

useful for tasks such as project management or documentation generation.

The phase element contains resource elements, one per artifact. A resource represents an artifact that is of

interest in the Testable Architecture Project.

The resource element contains one or more of the following elements:

1. uri

This element is used to define the location of a resource. A URI element is required for each environent

in which the resource may be accessed, for example, within Eclipse and within an SOA Repository.

The type attribute defines the type of locator, which will usually map onto the environment in which

the resource exists. So in this case we are only defining URI elements associated with the Eclipse

environment.

The context attribute defines the local information that can be used in the particular environment, to

determine where the resource is contained. For example, if the environment is Eclipse, the context would

be the project name.

The locator attribute is used to specify the specific location of the resource, within the particular specified

context, in the environment type. For example, if the environment was Eclipse, then the locator would

be the relative path of the resource within the project identified in the context attribute.

2. relationship

This element establishes a relationship from the containing resource, to another resource identifed by

the ref attribute.

The relationship element can optionally have additional information associated with it, to help clarify

the nature of the relationship between the two resources.

Validating a Testable Architecture Project

20

For example, in the TAP file illustrated above, the two BPEL resources (in the implementation phase)

have a relationship to the choreography file - however the relationship needs to be more specific. We

need to indicate what role within that choreography the BPEL processes are associated with. The link

element enables the type to be defined, and a value to be specified in the to attribute.

7.2. Validating a Testable Architecture Project

To trigger validation of a Testable Architecture Project (TAP), select the .tap file and choose the Savara-

>Validate menu item. If any errors or warnings are detected, they will be recorded as errors in the Problems

or Markers view (depending on which perspective is being used).

If you invoke the validation on the TAP file within the purchasing project, you will find that it will

create an error associated with the choreography file, indicating that it does not meet the scenario

"InvalidPurchase.scn". This is because this scenario has specifically been created to demonstrate how an

error is reported.

If the scenario is simulated against the choreography, using the green play button on the toolbar, then it will

be possible to see specifically where the scenario is not met by the choreography.

In this case, it is because the CreditAgency has returned a credit check failed message, but the Store is still

attempting to return a buy confirmed message.

Its possible that this scenario is valid, and therefore the choreography needs to be updated to cater for this

scenario. However in this case, we may just be wanting to represent a negative use case, and therefore

deliberately describe a situation we do not want the choreography to handle. Therefore we need to configure

the scenario to indicate that the failure is expected.

Validating a Testable Architecture Project

21

Simply select the 'send' node for the final interaction between the Store and Buyer, and set the 'Expected

to Fail' property to true. This will cause a red boundary to be displayed around the node, indicating that it

is expected to fail. Now when the scenario is simulated or validated, if that node does not fail, that will be

reported as an error. However if the node does fail as expected, that will be treated as a valid case.

If the validation of the TAP file is performed again, the error associated with the

InvalidPurchase.scn should no disappear.

To experiment with other types of validation that are performed, open the PurchaseGoods.cdm and go

to the Base Types tab. Then open up the node for Information Types and select the CreditCheckOk entry. In

the Properties view, change the element attribute, e.g. appending an 'X' to the "ca:CreditCheckOk" value.

When the choreography has been saved, re-perform the validation on the TAP file. This should now display

'Type Mismatch' errors against the previously generated BPEL processes, and also flag errors associated

with the scenarios.

Chapter 8.

22

Runtime Validation

Note

Before you can deploy and run the runtime validation example, you will need to install the

SAVARA Validator module for JBoss.

The previous sections have provided a brief introduction to the design-time SOA governance features

provided within the SAVARA Eclipse Tools distribution. The aim of these capabilities are to enable

verification of an implementation, initially defined just using BPEL process definitions, against a

choreography, which in turn has been verified against business requirements defined using scenarios.

Therefore this helps to ensure that the implemented system meets the original business requirements.

Being able to statically check that the implementation should send or receive messages in the correct order is

important, as it will reduce the amount of testing required to ensure the service behaves correctly. However

it does not enable the internal implementation details to be verified, which may result in invalid decisions

being made at runtime, resulting in unexpected paths being taken.

Therefore, to ensure this situation does not occur, we also need runtime governance. We still need to be

able to verify that the services continue to conform to the choreography description. The Service Validator

capability within the SAVARA distribution can be used to validate the behaviour of each service.

In this section, we will use the purchasing example found in the ${SAVARA}/samples/purchasing

folder.

8.1. Service Validator Configuration

The service validator configuration is defined using specific annotation, that is associated with the 'exchange

details' components (contained within interactions), within the choreography description.

To view the pre-configured service validator configuration defined for the Purchasing example, edit the

PurchaseGoods.cdm file, navigate to the Choreography Flows tab and then select the Choreography-

>Edit Annotations menu item associated with the first 'exchange details' component (as shown below).

This will display the annotation editor, with the single configured annotation called 'validator'. This

annotation defines the information required for the Service Validator to monitor this specific message

exchange (e.g. the JMS destination on which the message will be passed, or in this case the Service Name

for the target Web Service).

SAVARA Monitor

23

Once an annotation has been defined, it will also be displayed as part of the tooltip for the associated model

component, for example:

Once the annotations have been defined for all relevant 'exchange details' components in the choreography

description, the choreography file can be copied to the ${JBossAS}/server/default/deploy/

savara-validator-jboss.sar/models folder in the JBossAS environment. The service validator

configuration for the purchasing example has been preconfigured to be deployed as part of the installation

procedure.

Note

If the savara-validator-jboss.sar/validator-config.xml within the

JBossAS environment is modified, or choreography description files added, removed or

updated within the savara-validator-jboss.sar/models sub-folder, then the

changes will automatically be detected and used to re-configure the service validators

without having to restart the server.

8.2. SAVARA Monitor

The SAVARA Monitor is an Eclipse based tool that can be used to help develop, test and validate a business

process (encoded as a choreography) executing across a distributed system. (Future releases will include

equivalent web based tooling to enable production based logging and query of the validation information).

The tool is used to observe a correlated view of the executing business transactions. Each service validator

can be configured to report activites (i.e. sent and received messages) that it validates, to enable the correlator

to reconstitute a global interpretation of each transaction.

This correlated view of each transaction can be used to understand where each transaction is within the

process. It can also be used to report out of sequence, unexpected messages and more general errors in the

context of the business process.

Web Service / WS-BPEL Example - Purchasing

24

Once the following examples have been deployed to the JBossAS environment, and the server is running,

then the monitoring tool can be launched from the Eclipse environment by selecting the Savara->Monitor

menu item from the popup menu associated with the choreography (.cdm) file.

Wait for the monitor window to start, and indicate that the choreography is being monitored, shown in the

status line at the bottom of the window.

8.3. Web Service / WS-BPEL Example - Purchasing

Savara includes the ability to validate web services (and therefore BPEL processes) that use the jbossws-

native stack. However the ODE engine, used to execute BPEL processes within RiftSaw, currently optimises

communications between BPEL processes executing within the same engine, so that the communications

do not occur using the Web Service stack. This means that Savara is currently unable to validate these

interactions by default.

There are two solutions to this problem. The first is to disable the interprocess communications used between

the two BPEL processes, which will be the approach described in this section. The other approach is to

implement the 'Credit Agency' participant as a JAX-WS service.

8.3.1. Deploying the Example

Once the BPEL processes have been generated, and the implementation details added, it is currently

necessary to disable the 'inter-process' communication that is used to communicate between the two

processes (an ODE optimization when the processes are running in the same engine). This is achieved by

editing the deployment descriptor for the Store process (using a text editor rather than the Eclipse form

editor), and add the attribute usePeer2Peer="false" to the invoke element.

The next step is to deploy the BPEL processes for the Store and CreditAgency participants to a JBossAS

server running RiftSaw. This can be achieved using the Eclipse Web Tooling Project (WTP) server support,

in conjunction with the JBoss Tools features mentioned in the installation section.

Create a JBossAS server entry in the Servers view, using the New->Server menu item on the view's context

menu. Configure the server entry to point to a JBossAS environment that has previously been configured

to run RiftSaw. Select the server in the Servers view, and then select the Add and Remove ... menu item.

This will show a dialog window that will include the CreditAgency and Store BPEL projects on the left.

Select both projects, and press the Add button. When the Finish button is selected, the BPEL processes will

be associated with the server.

8.3.2. Running the Example

Start the server using the Start menu item associated with the JBossAS server in the Servers view, or

manually from a terminal window in the JBossAS server's bin folder using the run script. Once the server

has fully started, the BPEL processes should have been deployed.

The next step is to start the Savara->Monitor associated with the PurchaseGoods.cdm choreography

description.

Running the Example

25

The final step is to send a test message to the Store BPEL process. This can be achieved by selecting

the PurchaseGoodsProcess_Store.wsdl file, within the PurchaseGoodsProcess_Store project

(bpelContents folder), and then select the menu item Web Services->Test with Web Services Explorer.

Expand the 'StoreInterfaceBinding' node, in the left hand panel of the explorer, and select the 'buy' operation.

Then select the 'Source' link, which will show the various sections of the SOAP message to be sent. Edit

the message body to be:

 <q0:BuyRequest id="1" amount="200" />

Then press the 'Ok' button further down the panel. This will send the message to the Store process, and

eventually cause a response to appear in the lower panel.

Four entries should appear in the SAVARA monitor, the buy request, credit check request, credit check ok

(response) and buy confirmed (response).

To demonstrate how an error would be detected and reported, issue a new request such as:

 <q0:BuyRequest id="2" amount="300" />

JBossESB Example - Trailblazer

26

This will result in an unexpected message to be reported, as there is a difference between the choreography

and the CreditAgency BPEL process (implementation). The choreography defines that a valid credit check

should be returned if the amount is less than 250. However the BPEL process has implemented this condition

as a valid credit check is where the amount is less or equal to 500.

8.4. JBossESB Example - Trailblazer

8.4.1. Deploying the Example

The first step to deploying the Trailblazer example is to configure the JBossAS environment:

1. Update the ${JBossAS}/server/default/deployers/esb.deployer/jbossesb-

properties.xml file, in the section entitled "transports" and specify all of the SMTP mail server

settings for your environment.

2. Update the trailblazer/trailblazer.properties

Update the file.bank.monitored.directory and file.output.directory properties. These are folders used by

the File Based Bank, and are set to /tmp/input and /tmp/output by default.

3. Update the trailblazer/esb/conf/jboss-esb.xml

There is a fs-provider block, update the directory attribute value to be the same as the file.output.directory

value in trailblazer.properties file.

4. Start the JBossAS server

Running the Example

27

One the server has been started, the next step is to deploy the relevant components into the JBossAS

environment. This is achieved by:

1. From the trailblazer folder, execute the following command to deploy the example to the ESB:

ant deploy

this should deploy the ESB and WAR files to your JBoss AS server/default.

2. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runJMSBank.

3. From the trailblazer/banks folder, execute the command to start the JMS Bank service: ant

runFileBank.

8.4.2. Running the Example

To run the example, you need to start a browser and select the URL localhost:8080/trailblazer. This will

show the following page, if the server has been configured correctly and the TrailBlazer example deployed:

Now you can submit quotes, You will see either a loan request rejected (single email) because the score

is less than 4, or two emails (one from JMS bank and one from FileBased bank) with valid quotes. When

entering subsequent quotes, make sure that the quote reference is updated, so that each session has a unique

id.

8.4.3. Detecting a Validation Error

To demonstrate the detection of validation errors, there is an alternative implementation of the trailblazer

modules that behaviour differently to the choreography that is being monitored. Specifically, the credit score

threshold used to determine whether a loan request should be issued to the banks, is raised from 4 to 7.

http://localhost:8080/trailblazer

Detecting a Validation Error

28

To deploy the version of the TrailBlazer example that results in validation errors, then:

• From the ${SAVARA}/samples/trailblazer folder, execute the following command to deploy

the example to the ESB: ant deploy-error-client.

The next step is to issue more transactions, until a credit check score occurs that is between 4 and 6 inclusive.

This will result in a insufficientCredit interaction being reported, which would be unexpected in terms of

the choreography.

When errors, such as unexpected messages, are detected by the service validators and reported to the

SAVARA Monitor, they are displayed in red.

	SAVARA 1.1
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Installation Instructions
	2.3. Importing Samples into Eclipse

	Chapter 3. Business Analysis
	3.1. Define Participants
	3.2. Outline Scenarios
	3.3. Create Example Messages

	Chapter 4. Architecture
	4.1. Define Information Model
	4.1.1. Validating Example Messages against Schema

	4.2. Define Choreography Model
	4.2.1. Validating Requirements against Choreography Model
	4.2.2. Create Documentation

	Chapter 5. Service Oriented Analysis and Design
	5.1. Service Oriented Design

	Chapter 6. Service Development
	6.1. WS-BPEL
	6.1.1. Generating WS-BPEL based Services
	6.1.2. Adding implementation details

	Chapter 7. Testable Architecture Project
	7.1. Managing Dependencies
	7.2. Validating a Testable Architecture Project

	Chapter 8. Runtime Validation
	8.1. Service Validator Configuration
	8.2. SAVARA Monitor
	8.3. Web Service / WS-BPEL Example - Purchasing
	8.3.1. Deploying the Example
	8.3.2. Running the Example

	8.4. JBossESB Example - Trailblazer
	8.4.1. Deploying the Example
	8.4.2. Running the Example
	8.4.3. Detecting a Validation Error

