
Scribble Java

Developer Guide

by Gary Brown (Red Hat)

iii

1. Protocol ... 1

1.1. Common Components (maven artifact id scribble-core) ... 1

1.1.1. Issue Logging .. 1

1.1.2. Context .. 1

1.1.3. Resources ... 2

1.1.4. Protocol Model ... 2

1.2. Parsing (artifact id scribble-parser) ... 2

1.3. Validating (artifact id scribble-validation) ... 3

1.4. Projection (artifact id scribble-projection) .. 3

2. Monitor .. 5

2.1. Converting a Protocol into a Monitor State Machine .. 5

2.2. Dynamically Monitoring Message Exchanges .. 5

2.2.1. Managing session instances ... 5

2.2.2. Verifying behaviour .. 6

3. Simulation .. 9

3.1. Defining a Trace ... 9

3.2. Performing a Simulation .. 10

iv

Chapter 1.

1

Chapter 1. Protocol
This section explains how to make use of the Scribble Java tools to parse, validate and project

a Scribble protocol. The following sections of this document explain how applications can then

make use of these validated (and potentially projected) protocols to perform further tasks, such

as monitoring message exchanges to ensure they conform to a defined protocol, or simulating

message traces against endpoint simulators.

The Java tools make use of maven to store its artifacts (i.e. jars). These are associated with the

group id org.scribble and the artifact id scribble-<component>, where the <component> is the

individual area represented by the artifact. As well as there being an artifact per component of

the tooling, there is an additional scribble-core artifact that contains items shared by all of the

components.

1.1. Common Components (maven artifact id scribble-

core)

This artifact contains general interfaces/classes for issue logging, context, resources and the

protocol model (local and global variants).

1.1.1. Issue Logging

Whenever a component needs to perform processing on the protocol, to identify parsing, validation

or projection issues, then the component will use the org.scribble.logging.IssueLogger to report

any errors, warnings or other general information.

As part of the core artifact there is a org.scribble.logging.ConsoleIssueLogger implementation that

reports any issues to the console, however an application is free to provide its own implementation.

For example, the Eclipse tooling contains an implementation that converts the issues into Eclipse

markers for reporting in the Marker or Problems views.

1.1.2. Context

The org.scribble.context package contains the following components that may be used with

various protocol processing capabilities:

• Module Loader

The org.scribble.context.ModuleLoader interface is used during a variety of processing stages,

e.g. parsing, validation, monitoring, etc. It is responsible for retrieving a org.scribble.model.Module

object model associated with a fully qualified module name.

There is a default implementation of the module loader org.scribble.context.DefaultModuleLoader

that simply provides a caching capability for loaded modules. It is expected that a derived

loader implementation will be provided, that will leverage the caching capability of the default

Chapter 1. Protocol

2

implementation, but will provide the environment specific knowledge of how to obtain the modules.

One such concrete implementation is org.scribble.parser.ProtocolModuleLoader which can be

found in the scribble-parser component.

• Module Context

The module context is responsible for providing support services to any processing that is

occuring on a particular module. The focus of a particular module context instance will be an

individual org.scribble.model.Module instance. Based on the definitions contained within that

module instance, an application can request access to members, either within that module, or in

an associated module (identified by a fully qualified name).

1.1.3. Resources

Within the org.scribble.resources package is contained classes/interfaces to provide support for

locating and loading resources. These capabilities can be used to load modules, as well as any

other appropriate resources used during parsing, validation or further stages.

1.1.4. Protocol Model

The model contains the general module components, as well as the specfic components to

represent the local and global variations of the Scribble protocol.

The top level model component is org.scribble.model.Module.

1.2. Parsing (artifact id scribble-parser)

The parser is the component responsible for taking a text based description of a Scribble

protocol and transforming it into an object model. As part of this process, it will verify that

the syntax of the protocol description is valid, and report any errors using the supplied

org.scribble.logging.IssueLogger.

String path=....; // Colon separate directory paths where

 scribble modules are located

java.io.InputStream is=....; // Input stream containing text description

 of scribble protocol

org.scribble.parser.ProtocolParser pp=new

 org.scribble.parser.ProtocolParser();

org.scribble.logging.IssueLogger logger=new

 org.scribble.logging.ConsoleIssueLogger();

org.scribble.resources.DirectoryResourceLocator locator=new

 org.scribble.resources.DirectoryResourceLocator(path);

org.scribble.context.ModuleLoader loader=new

 org.scribble.parser.ProtocolModuleLoader(pp, locator, logger);

Validating (artifact id scribble-validation)

3

org.scribble.resources.Resource res=new

 org.scribble.resources.InputStreamResource(path, is);

org.scribble.model.Module module=pp.parse(res, loader, logger);

The last line of this example shows the parser being involved. It takes three parameters:

• the resource, containing the text based scribble protocol description

• the loader, to load any additional modules (or potentially other resources) that may be required

to support the parsing of the module

• the logger, to report any issues that arise from parsing the protocol description

If the parser returns a module, then it means that it was successfully parsed. Otherwise the syntax

errors will be reported to the issue logger and no module will be returned.

1.3. Validating (artifact id scribble-validation)

The validator is the component responsible for evaluating a protocol module

(org.scribble.model.Module) to determine if it conforms to a set of predefined rules (e.g.

wellformedness conditions). As with the parser, any issues will be reported to the supplied

org.scribble.logging.IssueLogger.

org.scribble.logging.IssueLogger logger=...;

org.scribble.resources.Resource res=...;

org.scribble.context.ModuleLoader loader=...;

org.scribble.model.Module module=...;

org.scribble.context.ModuleContext context=new

 org.scribble.context.DefaultModuleContext(res, module, loader);

org.scribble.validation.ProtocolValidator pv=new

 org.scribble.validation.ProtocolValidator();

pv.validate(context, module, logger);

Most of the components used in this example validation were introduced in the parser section

above. The new components in this example are the ProtocolValidator, which will perform the

validation, and the ModuleContext. As discussed in a previous section, the module context

provides access to members (e.g. type or protocol definitions) in a particular module, or associated

module.

1.4. Projection (artifact id scribble-projection)

In the context of Scribble, projection is the term used to describe extracting the local endpoint

behaviour of a role defined within a global protocol. The global protocol describes the interactions

Chapter 1. Protocol

4

between multiple parties, whereas the local protocol described the interactions from a particular

role’s perspective.

Being able to filter out just the responsibilies of an individual role, from the potentially complex set

of interactions that may be defined in a global protocol between many participants, is important -

primarily for being able to determine whether an implementation of that role (endpoint) is statically

or dynamically conforming to the expected behaviour.

org.scribble.logging.IssueLogger logger=...;

org.scribble.resources.Resource res=...;

org.scribble.context.ModuleLoader loader=...;

org.scribble.model.Module module=...;

org.scribble.context.ModuleContext context=new

 org.scribble.context.DefaultModuleContext(res, module, loader);

org.scribble.projection.ProtocolProjector projector=new

 org.scribble.projection.ProtocolProjector();

java.util.Set<Module> projected=projector.project(context, module, logger);

The code is very similar to the validation example, with the exception that we are creating a

ProtocolProjector and the projection results in a set of modules representing the local protocol

definitions.

Chapter 2.

5

Chapter 2. Monitor
The monitoring capability is used to ensure that a system conforms to a protocol description at

runtime. This is a form of dynamic validation, or conformance checking.

2.1. Converting a Protocol into a Monitor State Machine

To efficiently monitor a running system, to ensure that it is conformed to one or more roles within

a protocol description, it is necessary to transform the text based description (and even the object

model representation) into a form that can more effectively be used to drive a runtime monitoring

solution.

org.scribble.context.ModuleLoader loader=...;

org.scribble.resources.Resource res=...;

org.scribble.model.local.LProtocolDefinition lp=...; // Obtain the

 required local protocol definition

org.scribble.monitor.export.MonitorExporter exporter=new

 org.scribble.monitor.export.MonitorExporter();

org.scribble.context.ModuleContext context=new

 org.scribble.context.DefaultModuleContext(res, lp.getModule(), loader);

org.scribble.monitor.model.SessionType type=exporter.export(context, lp);

The first step is to obtain the module that contains the local protocol definition to be monitored.

This can ether be achieved by parsing a textual representation of a local protocol definition, or by

projecting the local modules from a global module.

Once the module is obtained, then the specific local protocol definition can be retrieved. As

a module may contain multiple local protocol definitions, it is important to select the one that

represents the initial (or top level) protocol definition from the perspective of what needs to be

monitored.

Once the exporter has been instantiated, invoke the export method with the selected local protocol

definition. This will export the protocol definition into a state machine representation associated

with the returned org.scribble.monitor.model.SessionType object. This object will be used in

subsequent runtime monitoring session instances to define the behavioural type being verified.

2.2. Dynamically Monitoring Message Exchanges

2.2.1. Managing session instances

It is currently out of the scope of the Scribble monitor to manage session instances. It is up to the

application invoking the monitor to determine:

Chapter 2. Monitor

6

• When a new session instance must be created and initialized

In this situation, the application should instantiated an instance of the

org.scribble.monitor.SessionInstance class and supply it, along with the relevant

org.scribble.monitor.model.SessionType object (defining the behavioural type to be monitored),

to the initializeInstance method of the monitor, e.g.

org.scribble.monitor.Monitor monitor=new

 org.scribble.monitor.DefaultMonitor();

org.scribble.monitor.model.SessionType sessionType=....;

org.scribble.monitor.SessionInstance instance=new

 org.scribble.monitor.SessionInstance();

monitor.initializeInstance(sessionType, instance);

The new session instance should then be stored by the application, associated with some relevant

key that can be used to retrieve it later.

• When an existing session instance should be retrieved

If a key is obtained from the interaction being monitored, possibly by extracting relevant information

from the message content or header, then it can be used to locate an existing session instance.

• When a session instance is no longer required

The org.scribble.monitor.SessionInstance class has a method called hasCompleted which will

return a boolean result, indicating whether the session instance has completed.

This should be checked after any processing of the session instance by the Scribble monitor.

If this method returns true, then the session instance object should be removed from the set of

application managed session instances.

2.2.2. Verifying behaviour

When behaviour is detected, and an appropriate session instance object created or retrieved,

then the behaviour can be verified using the Scribble monitor. Currently the following types of

verification can be performed:

• Message Sent

The following is an example of how to verify a sent message:

org.scribble.monitor.Monitor monitor=....;

org.scribble.monitor.model.SessionType sessionType=....;

org.scribble.monitor.SessionInstance instance=....;

Verifying behaviour

7

String toRole=....;

org.scribble.monitor.Message mesg=new org.scribble.monitor.Message();

mesg.setOperator("placeOrder");

mesg.getTypes().add("{http://acme.org/ordermgmt}Order");

mesg.getValues().add("<order xmlns=\"http://acme.org/ordermgmt\" id=\"xyz

\" />");

boolean result=monitor.sent(sessionType, instance, mesg, toRole);

The first lines are simply present to identify the types associated with the parameters to the sent

method.

The next block would identify the toRole, i.e. the role that the message is being sent to, and the

message details. The message includes an operator name, and a list of parameter types/values.

Note

Currently the values are not used, so it is not necessary to supply them, but in the

future they will be used in the evaluation of assertions.

The monitor is then invoked using the sent method, supplying the session type and instance, as

well as the message and to role. The result of this method is a boolean value indicating whether

the monitor considered it to be valid or not.

• Message Received

The following is an example of how to verify a received message:

org.scribble.monitor.Monitor monitor=....;

org.scribble.monitor.model.SessionType sessionType=....;

org.scribble.monitor.SessionInstance instance=....;

String fromRole=....;

org.scribble.monitor.Message mesg=new org.scribble.monitor.Message();

mesg.setOperator("placeOrder");

mesg.getTypes().add("{http://acme.org/ordermgmt}Order");

mesg.getValues().add("<order xmlns=\"http://acme.org/ordermgmt\" id=\"xyz

\" />");

boolean result=monitor.received(sessionType, instance, mesg, fromRole);

The first lines are simply present to identify the types associated with the parameters to the

received method.

Chapter 2. Monitor

8

The next block would identify the fromRole, i.e. the role that the message is been received from,

and the message details. The message includes an operator name, and a list of parameter types/

values.

Note

Currently the values are not used, so it is not necessary to supply them, but in the

future they will be used in the evaluation of assertions.

The monitor is then invoked using the received method, supplying the session type and instance,

as well as the message and from role. The result of this method is a boolean value indicating

whether the monitor considered it to be valid or not.

Chapter 3.

9

Chapter 3. Simulation
Simulation is performed by defining a trace file, containing a sequence of actions (e.g. message

transfers), and one or more simulation definitions identifying how each role should be simulated.

3.1. Defining a Trace

The trace model can be serialized as a JSON representation, e.g.

{

 "name":"RequestResponse-1",

 "steps":[{

 "type":"MessageTransfer",

 "message":{

 "operator":"buy",

 "types":["{http://scribble.org/

example}OrderRequest"],

 "values":[""]

 },

 "fromRole":"Buyer",

 "toRoles":["Seller"]

 },{

 "type":"MessageTransfer",

 "message":{

 "operator":"buy",

 "types":["{http://scribble.org/

example}OrderResponse"],

 "values":[""]

 },

 "fromRole":"Seller",

 "toRoles":["Buyer"]

 }],

 "simulations":[{

 "roleSimulators":{

 "Buyer":{

 "type":"MonitorRoleSimulator",

 "module":"scribble.examples.RequestResponse",

 "role":"Buyer",

 "protocol":"First"

 },

 "Seller":{

 "type":"MonitorRoleSimulator",

 "module":"scribble.examples.RequestResponse",

 "role":"Seller",

 "protocol":"First"

Chapter 3. Simulation

10

 }

 }

 }]

}

In this example trace file, two steps (or actions) are defined. The first is representing the order

request being sent from the Buyer role to the Seller role. The second is representing an order

response being returned from the Seller role to the Buyer role. The message component defined

the operator, list of parameter types, and list of parameter values. The values are currently optional

- however once assertions are supported, the value will need to be provided.

The simulations section defines a list of simulations. Each simulation defined an optional name,

and a map of role names to role simulators.

In this example, the only role simulator type used is MonitorRoleSimulator which uses the

Scribble monitor to verify that the message transfers defined in the trace conform to the Scribble

protocol identified by the module, role and protocol.

Note

If a trace contains steps associated with roles that are not defined within the role

simulator map, then those roles will be ignored when performing the simulation.

3.2. Performing a Simulation

To perform a simulation from within your own application, you need to perform the following steps:

// Create a locator that can be used to load the scribble modules and any

 associated resources

org.scribble.resources.ResourceLocator locator=new

 org.scribble.resources.DirectoryResourceLocator(...);

// Build or load the trace (e.g. deserialize the JSON representation)

org.scribble.trace.model.Trace trace=...;

// Create a context using the locator

org.scribble.trace.simulation.SimulatorContext context=new

 org.scribble.trace.simulation.DefaultSimulatorContext(locator);

// Create the simulator

org.scribble.trace.simulation.Simulator simulator=new

 org.scribble.trace.simulation.Simulator();

// Instantiate an implementation of the listener interface, to be informed

 when steps are simulated

// successfully or unsuccessfully

Performing a Simulation

11

org.scribble.trace.simulation.SimulationListener l=...;

// Add the listener to the simulator

simulator.addSimulationListener(l);

try {

 // Simulate the trace

 simulator.simulate(context, trace);

} catch (Exception e) {

 ...

}

// Unregister the listener

simulator.removeSimulationListener(l);

12

	Scribble Java Developer Guide
	Table of Contents
	Chapter 1. Protocol
	1.1. Common Components (maven artifact id scribble-core)
	1.1.1. Issue Logging
	1.1.2. Context
	1.1.3. Resources
	1.1.4. Protocol Model

	1.2. Parsing (artifact id scribble-parser)
	1.3. Validating (artifact id scribble-validation)
	1.4. Projection (artifact id scribble-projection)

	Chapter 2. Monitor
	2.1. Converting a Protocol into a Monitor State Machine
	2.2. Dynamically Monitoring Message Exchanges
	2.2.1. Managing session instances
	2.2.2. Verifying behaviour

	Chapter 3. Simulation
	3.1. Defining a Trace
	3.2. Performing a Simulation

