
Scribble 2.0

User Guide

ii

1. Installation ... 1

1.1. Pre-Requisites .. 1

1.2. Installing the Command Line Version .. 1

1.3. Installing the Eclipse Version ... 2

2. Command Line Tools .. 3

2.1. Parsing a Protocol description .. 3

2.2. Validating a Protocol description .. 4

2.3. Checking Conformance a Protocol description ... 4

2.4. Projecting a Protocol description ... 5

2.5. Simulating a Protocol description against an Event List ... 6

Chapter 1.

1

Installation
This is the installation guide for the Scribble tools. Scribble is a notation for describing interaction based

protocols between multiple parties.

1.1. Pre-Requisites

The pre-requisites for the Scribble design time tools are:

1. Java

The design time tools are Java based, so you will need a suitable JVM (Java Virtual Machine) to run

the tools. If you also intend to generate Java APIs, for use at runtime, then you will need a JDK (Java

Development Kit).

Download the version 1.6 (or higher) from the http://www.java.com. Once downloaded, follow the

instructions to install the JVM or JDK on your system.

2. Eclipse

The Scribble protocol descriptions can be edited using a standard text editor, and the Scribble tools can

be invoked using command line tools (as described in the following chapter).

However it is also possible to use the Scribble tools from within the Eclipse IDE environment, by

installing the Scribble tools as plugins. If you wish to use this approach, then you will need a version of

Eclipse (3.6 or higher) which can be downloaded from the Eclipse website: http://www.eclipse.org.

1.2. Installing the Command Line Version

To install the command line version of the Scribble tools:

1. Download the Scribble tools distribution from: http://www.jboss.org/scribble/downloads.

2. Unpack the tool distribution in a suitable location

3. Setup environment

The commands can be executed from the bin folder of the Scribble tools distribution. Alternatively, the

bin folder can be added to the execution path, to enable the commands to be performed from any folder.

For example, on Linux running bash, simply edit the .bash_profile file within your home directory

to add:

 PATH=$PATH:${path-to-scribble}/bin

http://www.java.com
http://www.eclipse.org
http://www.jboss.org/scribble/downloads

Installing the Eclipse Version

2

1.3. Installing the Eclipse Version

The Eclipse plugins for the Scribble tools can be loaded from an update site using the update manager.

Select the Help->Install New Software... menu item, from your Eclipse environment, and follow the

instructions.

If installing a stable or development milestone release of the tools, then the plugins can be installed directly

from the network. If installing a nightly build of the plugins, to access the latest (but unstable) version of

the tools, then it will be necessary to download the update site as an archive, and point the Eclipse update

manager at the downloaded zip file.

The location of the stable, development and nightly builds can be found on the Scribble download page:

http://www.jboss.org/scribble/downloads.

Once the Eclipse environment has restarted, and if the distribution has been downloaded and expanded,

then the next step is to import the samples into the Eclipse workspace.

This can be done by selecting the Import->General->Existing Projects into Workspace and locating the

samples folder from the Scribble distribution.

This will display the set of projects within the samples folder, which can either be individually selected,

or all imported at once. Once imported, the Scribble Protocol files can be opened by double clicking the

file, to open the protocol context sensitive editor.

http://www.jboss.org/scribble/downloads

Chapter 2.

3

Command Line Tools
This section describes how to use the command line tools that are available in the bin folder of the Scribble

protocol tools distribution.

Information on the Scribble protocol notation (or language) can be found in the Scribble Protocol Guide.

2.1. Parsing a Protocol description

The parse command takes a single parameter, which is the path to the file containing the protocol description

to be parsed.

For example, if the user is in the top level folder of the Scribble tools distribution, without the bin folder

being added to the system path, then the following command can be executed to parse one of the sample

protocol descriptions:

bin/parse.sh samples/models/parse_and_validate/OrderProcess.spr

If the supplied file path is not valid, then the command will report an error.

This command will read the protocol description, as shown below, and convert it into an internal object

model representation.

import MyOrder;

protocol OrderProcess {

 role Buyer, Seller;

 MyOrder from Buyer to Seller;

}

If any errors are detected in the syntax of the parsed protocol description, then these will be reported to the

command window. For example, if you edit the supplied file, and change the keyword from to append an

'X', then the following error would be produced:

ERROR: [line 6] no viable alternative at input 'fromX'

Validating a Protocol description

4

2.2. Validating a Protocol description

The validate command takes a single parameter, which is the path to the file containing the protocol

description to be validated.

For example, if the user is in the top level folder of the Scribble tools distribution, without the bin folder

being added to the system path, then the following command can be executed to validate one of the sample

protocol descriptions:

bin/validate.sh samples/models/parse_and_validate/OrderProcess.spr

When this command is performed initially, it will complete without any errors. However if you edit the

samples/models/parse_and_validate/OrderProcess.spr file, and change the following

line:

 MyOrder from Buyer to Seller;

For example, change the Seller role to Seller2, and then re-run the validate command. This will result in

the following error messages:

ERROR: [line 6] Unknown role 'Seller2'

2.3. Checking Conformance a Protocol description

Note
Conformance checking functionality has been temporarily removed from this release,

although an improved implementation should be provided in the near future, and therefore

the command infrastructure has remained for now.

The conforms command takes two parameters, which are both paths to a file containing a protocol

description. The first parameter is the protocol description to be checked for conformance against the second

parameter's protocol description. So the second parameter is the reference protocol description.

For example, if the user is in the top level folder of the Scribble tools distribution, without the bin folder

being added to the system path, then the following command can be executed to check one of the sample

protocol descriptions as being conformant with another reference protocol description:

Projecting a Protocol description

5

bin/conforms.sh samples/models/conformance_descriptions/OrderProcess.spr samples/models/

conformance_descriptions/ReferenceOrderProcess.spr

If you inspect the two process definitions, you will find one difference. The first protocol definition has

the following interaction:

 MyOrder from Buyer to Seller;

The second, reference protocol description, has the following interaction:

 Order from Buyer to Seller;

This results in the following conformance error message:

ERROR: Type mismatch with referenced description, was expecting Order

2.4. Projecting a Protocol description

The project command takes two parameters. The first parameter is the protocol description to be projected

and the second parameter is the participant.

For example, if the user is in the top level folder of the Scribble tools distribution, without the bin folder

being added to the system path, then the following command can be executed to project one of the sample

protocol descriptions:

bin/project.sh samples/models/parse_and_validate/OrderProcess.spr Seller

This results in the following located Protocol being displayed on the console:

import MyOrder;

protocol OrderProcess @ Seller {

Simulating a Protocol description against an Event List

6

 role Buyer;

 MyOrder from Buyer;

}

2.5. Simulating a Protocol description against an Event List

The simulate command takes two parameters. The first parameter is the located protocol description and

the second parameter is the event list to be simulated against the protocol.

For example, if the user is in the top level folder of the Scribble tools distribution, without the bin folder

being added to the system path, then the following command can be executed to simulate the protocol

description:

bin/simulate.sh samples/models/monitor/Purchasing@Buyer.spr samples/models/monitor/

Purchasing@Buyer.events

The event file is a comma separated value (csv) format, with the first column representing the event type,

and the second representing the value relevant for the event type. The event types are listed below:

• sendMessage

The value represents the message type.

• receiveMessage

The value represents the message type.

• sendChoice

The value represents the choice label.

• receiveChoice

The value represents the choice label.

• sendDecision

The value represents the decision boolean value (e.g. true or false). This can be used in conjunction with

an Optional or Repeat protocol construct.

• receiveDecision

The value represents the decision boolean value (e.g. true or false). This can be used in conjunction with

an Optional or Repeat protocol construct.

The event file used in the sample command above is:

sendMessage,Order,Broker

receiveChoice,_Confirmation,Broker

Simulating a Protocol description against an Event List

7

receiveMessage,Confirmation,Broker

and the result of running the command is:

INFO: Validated SendMessage Order to Broker

INFO: Validated ReceiveChoice _Confirmation from Broker

INFO: Validated ReceiveMessage Confirmation from Broker

	Scribble 2.0
	Table of Contents
	Chapter 1. Installation
	1.1. Pre-Requisites
	1.2. Installing the Command Line Version
	1.3. Installing the Eclipse Version

	Chapter 2. Command Line Tools
	2.1. Parsing a Protocol description
	2.2. Validating a Protocol description
	2.3. Checking Conformance a Protocol description
	2.4. Projecting a Protocol description
	2.5. Simulating a Protocol description against an Event List

